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Abstract9

An energy game is played between two players, modeling a resource-bounded system and its10

environment. The players take turns moving a token along a finite graph. Each edge of the graph is11

labeled by an integer, describing an update to the energy level of the system that occurs whenever12

the edge is traversed. The system wins the game if it never runs out of energy. Different applications13

have led to extensions of the above basic setting. For example, addressing a combination of the14

energy requirement with behavioral specifications, researchers have studied richer winning conditions,15

and addressing systems with several bounded resources, researchers have studied games with multi-16

dimensional energy updates. All extensions, however, assume that the environment has no bounded17

resources.18

We introduce and study both-bounded energy games (BBEGs), in which both the system and19

the environment have multi-dimensional energy bounds. In BBEGs, each edge in the game graph20

is labeled by two integer vectors, describing updates to the multi-dimensional energy levels of21

the system and the environment. A system wins a BBEG if it never runs out of energy or if its22

environment runs out of energy. We show that BBEGs are determined, and that the problem of23

determining the winner in a given BBEG is decidable iff both the system and the environment24

have energy vectors of dimension 1. We also study how restrictions on the memory of the system25

and/or the environment as well as upper bounds on their energy levels influence the winner and the26

complexity of the problem.27
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1 Introduction31

A reactive system interacts with its environment and should behave correctly in all envir-32

onments. Synthesis of a reactive system thus corresponds to finding a winning strategy33

in a two-player game between the system and the environment. The game is played on a34

graph whose vertices are partitioned between the players. Starting from some initial vertex,35

the players move a token along the graph: whenever the token is in a vertex owned by36

the system, the system decides to which successor to move the token, and similarly for37

the environment. Together, the players generate a path in the graph. The choices of the38

players correspond to actions that the system and the environment may take, and so the39

generated path corresponds to a possible outcome of an interaction between the system and40

its environment.41

The winning condition in the game is induced by the correctness criteria for the system.42

Early work on synthesis focuses on qualitative criteria, typically described by a temporal logic43

formula that specifies the allowed interactions [27, 3]. There, the essence of the actions that44

the system and the environment take is the way they modify the truth assignment to input45
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and output signals. Accordingly, the edges of the graph are labeled by such assignments,46

and the generated path is an infinite word over the alphabet of assignment. The system47

wins if this word satisfies the specification. Recent work studies also games with quantitative48

objectives. There, the essence of the actions that the system and the environment take is the49

way they modify some quantitative measure, such as a budget or an energy level. Accordingly,50

the edges of the graph are labeled by updates to the quantitative measure, and the winning51

condition refers to properties like its limit sum or average [17, 32].52

Energy games belong to the second class of games: the two players model a resource-53

bounded system and its environment. Accordingly, each edge of the game graph is labeled by54

an integer, describing an update to the energy level of the system that occurs whenever the55

edge is traversed. The system wins the game if it never runs out of energy. The term “energy"56

may refer to a wide range of applications: an actual energy level, where actions involve57

consumption or charging of energy; storage, where actions involve storing or freeing disc58

space; money ones, where actions involve costs and rewards to a budget of some economic59

entity, and more [11].60

Different applications have led to extensions of the above basic setting. For example,61

addressing a combination of the energy requirement with behavioral specifications, researchers62

have studied energy parity games, whose winning conditions combine quantitative and63

qualitative conditions [9, 2]. Then, addressing systems with several bounded resources,64

researchers have studied generalized energy games, in which the system player has a multi-65

dimensional energy level, the updates along the edges are vectors of integers, and the system66

wins if it does not run out of energy in any of its resources.67

Two main questions regarding energy games have been studied. The first, called the68

unknown initial-credit problem, is the problem of deciding the existence of an initial energy69

level that is sufficient for the system to win the game. The second, called the given initial-70

credit problem, is the problem of deciding whether a given initial energy level is sufficient for71

the system to win. It is shown in [6, 8] that memoryless strategies, namely strategies that72

decide how to direct the token based on its current location, are sufficient to win energy73

games, and that consequently, both the unknown and the given initial-credit problems are74

decidable in NP∩coNP. For multi-dimensional energy games, the unknown initial-credit75

problem is coNP-complete [10], whereas the given initial-credit problem (a.k.a. Z-reachability76

VASS game) is 2EXPTIME-complete [7, 12, 19].77

We introduce and study both-bounded energy games (BBEGs), in which both the system78

and the environment have (multi-dimensional) energy bounds. In BBEGs, each edge in the79

game graph is labeled by two integer vectors, describing updates to the multi-dimensional80

energy levels of the system and the environment. A system wins a BBEG if it never runs out81

of energy or if its environment runs out of energy.82

Bounded environments are of interest in several paradigms in computer science. For83

example, in cryptography, one studies the security of a given cryptosystem with respect to84

attackers with bounded (typically polynomial) computational power [24]. In the analysis of85

on-line algorithms, one sometimes cares for the competitive ratio of a given on-line algorithm86

with respect to requests issued by a bounded adversary [5]. Likewise, studying bounded87

rationality in games, bounds are placed on the power of the players. As shown in [26], such88

bounds affect the kind of equilibria one gets, and gives in fact a way of getting around some89

of the problematic cases of equilibria, (e.g., in the Prisoner’s Dilemma [28]). Even closer to90

the work here is the extension of bounded synthesis [29] to settings where both the system and91

the environment have bounds on their size [21]. In addition to better modeling the studied92

setting, the bounds are sometimes used in order to obtain decidability or better complexity,93
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and they can also serve in heuristics, as in SAT-based algorithms for bounded synthesis94

[13]. Finally, a setting in which the system and the environment have similar properties (in95

particular, both are bounded) enjoys duality between the players. Adding budget constraints96

to the environment makes the players in energy games dual up to the player that moves first97

and the definition of who wins when the game continues forever. From a practical point of98

view, in many of the scenarios modeled by energy games, the environment is another system,99

hence with its own bounds. This includes, for example, a robot that interacts with another100

robot, both having bounded batteries, or a consumer that interacts with a company, both101

having bounded budgets.102

We show that BBEGs are determined, and that the problem of determining the winner103

in a given BBEG is decidable iff both the system and the environment have energy vectors104

of dimension 1. This is both bad news, as traditional energy games are decidable for all105

dimensions [7], and good news, as adding an (unbounded) energy level to the environment106

causes even the setting with energy vectors of dimension 1 to include two unbounded107

components, as in two-counter machines [25]. In order to show decidability, we relate the108

energy level of the environment with the value of a counter in one-counter energy games [1],109

which augment energy games with a counter. Once, however, the system or the environment110

has an energy vector of dimension 2, we can use the energy level of the other player to store111

the sum of the counters, which enable us to simulate a two-counter machine by a BBEG in112

which the dimension of the energy vector of one of the players is strictly bigger than 1.113

We continue and study how restrictions on the memory of the system and/or the114

environment influence the winner and the complexity of the problem. We show that unlike115

the case of energy games, where memoryless strategies suffice [6, 8], here the situation is116

more complicated, and is also not symmetric: while infinite memory may be needed for117

the system, finite-memory strategies are sufficient for the environment. Essentially, this118

follows from the different winning criteria for the system and the environment, in particular119

the fact that wins of the environment happen in finite prefixes of the interaction. The120

memory required for the environment, however, cannot be a-priory bounded. We study the121

problem of deciding a winner in BBEGs in which the players are restricted to memoryless or122

finite-memory strategies. We show that such games are not determined, and that when both123

players are restricted, the problem is ΣP2 -complete. Also, when only the system is restricted,124

the problem is strongly related to reachability problems in vector addition systems with states125

(VASS) [18], is decidable, and is in PSPACE for BBEGs in which both the system and the126

environment have energy vectors of dimension 1.127

Finally, we consider settings in which there is an upper bound on the capacity of the128

bounded resources. Such bounds exist in resources like batteries or disc space. In standard129

energy games, researchers have extensively studied settings in which the energy level of the130

system does not exceed a given maximum capacity [6, 15]. This includes both a semantics in131

which an overflow leads to losing the game and a semantics in which an overflow is truncated.132

We study this setting in BBEGs, in particular the problem of determining the winner in a133

BBEG with energy bounds for one of the players. We show that the problem is reducible to134

deciding standard multi-dimensional energy games, and is thus decidable.135

2 Preliminaries136

Both-bounded energy game. A both-bounded energy game (BBEG, for short) is a game137

played by two players, Player 1 and Player 2, on a weighted game graph. Each of the players138

has an energy vector, and the edges of the graph are labeled with updates to those vectors,139
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applied when the edge is traversed. The vertices of the graph are partitioned into positions140

that are owned by Player 1 and positions that are owned by Player 2. The game proceeds141

as follows. A token is placed on the initial position of the game graph. The players move142

the token along the graph in rounds. In each round, the player that owns the position the143

token is placed on chooses an edge from this position, and moves the token along it. Each of144

the players has an initial energy vector, which is updated according to the updates along145

the edges. The goal of Player 1 is not to run out of energy. The goal of Player 2 is to make146

Player 1 run out of energy, without running out of energy herself.147

Formally, a BBEG is a tuple G = 〈S1, S2, sinit, E, d1, d2, x
1
0, x

2
0, τ〉, where S1 and S2 are148

disjoint finite sets of positions, owned by Player 1 and Player 2, respectively. We use S149

to denote S1 ∪ S2. Position sinit ∈ S is the initial position; E ⊆ S × S is a set of edges;150

for j ∈ {1, 2}, we have that dj ≥ 1 is the dimension of Player j and xj0 ∈ Ndj is the initial151

energy vector of Player j. Finally, τ : E → Zd1 × Zd2 is a cost function. Traversing an edge152

e with τ(e) = (x1, x2), updates to the energy vectors of Player 1 and Player 2 by x1 and153

x2, respectively. We use τ(e)[1] and τ(e)[2] to denote x1 and x2, respectively. We consider154

non-blocking games, i.e., for every position s ∈ S, there is at least one edge leaving s, thus155

〈s, s′〉 ∈ E, for some s′ ∈ S. We call a BBEG with dimensions d1 for Player 1 and d2 for156

Player 2 a (d1, d2)-BBEG.157

For an integer n ≥ 1, we denote by [n] the set {1, ..., n}. For a vector u in Zn and i ∈ [n],158

we denote by u[i] the i-th component of u. We define the size of G to be the size required159

for storing the cost function τ , that is |G| = |E| · (d1 + d2) · log(m), where m is the largest160

integer appearing in some energy update vector. Note that since G is non-blocking, the161

definition takes the position space into account. Note also the definition assumes that the162

updates are given in binary.163

Given a BBEG G, we define a run in G to be an infinite sequence r = s1, s2, ... ∈ Sω such164

that s1 = sinit and 〈si, si+1〉 ∈ E for all i ≥ 1. For a run r = s1, s2... and n ≥ 0, we denote by165

rn the prefix of r up to its n-th position. That is, rn = s1, s2, ...sn. We say that n is the length166

of rn. For j ∈ {1, 2}, we say that a prefix rn belongs to Player j if sn ∈ Sj . We define the167

energy level of Player j up to the n-th position in r to be ej(rn) = xj0 +
∑n−1
i=0 τ(〈si, si+1〉)[j].168

Note that ej(rn) is a vector in Zdj . For a vector u in Zn, We use u ≥ 0 to indicate that169

u[i] ≥ 0 for all i ∈ [n], and, dually, use u < 0 to indicate that u[i] < 0 for some i ∈ [n].170

We say that a sequence c ∈ S∗ + Sω is a computation in G if one of the following holds:171

1. c is an infinite run in G, and for every n ≥ 1, we have that e1(cn) ≥ 0 and e2(cn) ≥ 0.172

2. There is n ≥ 1 such that c is a finite prefix of length n of a run in G, e1(c) < 0 or173

e2(c) < 0, and for every m < n, it holds that e1(cm) ≥ 0 and e2(cm) ≥ 0.174

We denote by comp(G) the set of computations in G. For a finite computation c ∈ comp(G)175

of length m ∈ N and 0 ≤ n ≤ m, we denote by cn the prefix of c up to its n-th position. We176

denote by comp(G) the set of computations in G, by pref(G) the set of prefixes of comp(G),177

and by prefj(G), for j ∈ {1, 2}, the set of prefixes that belong to Player j.178

Strategies. A strategy for Player j is a function γj : pref j(G) → S, such that for all179

p · s ∈ pref j(G) with p ∈ S∗ and s ∈ Sj , we have that 〈s, γj(p · s)〉 ∈ E. That is, a strategy180

for Player j maps each prefix p · s with s ∈ Sj to a position that has an incoming edge from181

s. We say that a computation c = s1, s2, ... ∈ comp(G) is consistent with a strategy γj for182

Player j, if for every i ≥ 1 such that ci ∈ pref j(G), it holds that si+1 = γj(ci). Given two183

strategies γ1 for Player 1 and γ2 for Player 2, we define the outcome of γ1 and γ2, denoted184

outcome(γ1, γ2), to be the single computation that is consistent with both γ1 and γ2. Note185

that indeed there is exactly one such computation. Note also that since the domain of a186

strategy may be infinite, a general strategy may require infinite memory.187
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Winning Conditions. A computation c is winning for Player 1 if one of the following188

holds:189

1. Player 1 never runs out of energy. That is, c is infinite. Note that if c is infinite, then190

for all n ≥ 1, we have that e1(cn) ≥ 0. Thus, Player 1 manages to keep her energy level191

non-negative during the infinite computation c.192

2. Player 2 runs out of energy before Player 1. That is, there is n ≥ 1 such that c =193

s1, s2, ..., sn, it holds that e2(c) < 0, and either e1(c) ≥ 0 or sn−1 ∈ S2. We can think of194

the energy updates along the edges as if traversing an edge leaving position in Sj , for195

j ∈ {1, 2}, updates first the energy vector of Player j, and then updates the energy vector196

of the other player. Thus, Player 2 runs out of energy before Player 1 if the energy level197

of Player 2 becomes negative while the energy level of Player 1 is non-negative, or both198

energy levels become negative together, but as a consequence of a move made by Player 2.199

If none of the two conditions above hold, then c is winning for Player 2. In other words, c is200

winning for Player 2 if Player 1 runs out of energy before Player 2. That is, there is n ≥ 1201

such that c = s1, s2, ..., sn, e1(c) < 0, and either e2(c) ≥ 0 or sn−1 ∈ S1. Note that while a202

computation winning for Player 2 is always finite, a computation winning for Player 1 may203

be either finite or infinite.204

A strategy γ1 is winning for Player 1 if for every strategy γ2 for Player 2, the computation205

outcome(γ1, γ2) is winning for Player 1. Dually, a strategy γ2 is winning for Player 2 if for206

every strategy γ1 for Player 1, the computation outcome(γ1, γ2) is winning for Player 2. For207

j ∈ {1, 2}, we say that Player j wins in G if she has a winning strategy.208

I Example 1. Consider the BBEG G in Figure 1. Drawing BBEGs, we describe positions in209

S1 and S2 by circles and squares, respectively. The initial position is marked by an incoming210

arrow from the initial energy vectors, and edges are labeled with the energy vectors assigned211

by the cost function. For example, in G both players start with energy level 0, and the212

transition from s2 to s3 does not change the energy level of Player 1, and decreases by 1 the213

energy level of Player 2.214

We show that Player 1 wins in G. Indeed, if Player 2 always takes the loop on s1, then215

Player 1 wins, as the outcome is an infinite computation in which the energy level of Player 1216

is always non-negative. Otherwise, Player 2 loops n times in s1, for some n ∈ N, and then217

moves to s2. At this point, the energy level of both players is n. Player 1 can then take the218

loop on s2 exactly n times, setting both energy levels back to 0. At this point, Player 1 can219

take the transition to s3 and make Player 2 lose, since her energy level drops below 0. J220

0, 0 s1

1, 1

s2 s3
0, 0 0,−1

−1,−1 −1, 0

Figure 1 The game graph G.

Determinacy. A game is determined if in all instances G of the game, either Player 1221

wins in G, or Player 2 wins in G. Since the set of computations that are winning for Player 1222

is closed, we have from [23] that BBEGs are determined. Indeed, if Player 2 does not have a223

winning strategy, one can construct a strategy for Player 1 such that every finite-computation224

consistent with it is not losing for Player 1. Since the set of winning computations for Player 1225

is closed (in the topological sense), this strategy must be winning.226

I Remark 2. [Adding structural assumptions] For simplicity of describing computations227

and strategies, we define BBEGs without parallel edges. For convenience, we sometimes228
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describe BBEGs with parallel edges (that is, the graph G may have several, yet finitely many,229

edges between two positions, each with a different update). We sometimes also assume that230

each transition in the BBEG updates the energy to one player only, or assume that the costs231

on the transitions are all in {−1, 0, 1}. As explained in Appendix A.1, these assumptions do232

not restrict the generality of our results. J233

3 Deciding BBEGs234

In this section we study the problem of determining the winner in a given BBEG. We give a235

clear border for their decidability: determining the winner in (1, 1)-BBEGs is decidable, yet236

determining the winner in (d1, d2)-BBEGs is undecidable when d1 ≥ 1 and d2 ≥ 2 or when237

d2 ≥ 1 and d1 ≥ 2.238

I Theorem 3. The problem of determining the winner in (1, 1)-BBEGs is decidable.239

Proof. We reduce (1, 1)-BBEGs to one-counter energy games of dimension 1.240

A one-counter energy game of dimension 1 is A = 〈Q1, Q2, δ, δ0〉, where Q1 and Q2 are241

distinct finite sets of positions owned by Player 1 and Player 2, respectively. We use Q to242

denote Q1 ∪ Q2. The game A has two transition relations, δ ⊆ Q × {−1, 0, 1}2 × Q and243

δ0 ⊆ Q×{−1, 0, 1}× {0, 1}×Q. A configuration in A is a triple 〈p, e, c〉 ∈ Q×Z×N, which244

describes a position, energy level, and a counter value. The transition relations δ and δ0245

define a relation between successor configurations as follows. A configuration 〈p′, e′, c′〉 is246

successor of configuration 〈p, e, c〉 iff one of the following holds:247

1. c′ ≥ 0 and 〈p, e′ − e, c′ − c, p′〉 ∈ δ.248

2. c = 0 and 〈p, e′ − e, c′, p′〉 ∈ δ0.249

Note that δ0-transitions can be taken only when the value of the counter is 0, and they can250

not decrease the value. Also, δ-transitions can be taken whenever they do not reduce the251

value of the counter below 0.252

The game proceeds as follows. At each round, the player who owns the current position253

chooses a transition, and the new configuration is a successor of the current one. Note that254

during the game, the value of the counter is always non-negative. The game terminates and255

Player 2 wins if a configuration 〈p, e, r〉 with e < 0 is reached. Player 1 wins every infinite256

game. It is shown in [1], that given an initial configuration c = 〈p, e, r〉, determining the257

winner in A from c is decidable.258

Given a (1, 1)-BBEG G, we construct a one-counter energy game A with dimension 1, such259

that Player 1 wins in G iff Player 1 wins in A. Since determining the winner of one-counter260

energy games with dimension 1 is decidable [1], we get decidability for (1, 1)-BBEGs.261

Let G = 〈S1, S2, sinit, E, 1, 1, x1
0, x

2
0, τ〉. For simplicity, we assume that each transition262

in G updates the energy level of only one player, and that the costs on the transitions are263

numbers in {−1, 0, 1} (see Remark 2).264

We define A = 〈Q1, Q2, δ, δ0〉 so that the energy level in A represents the energy of265

Player 1 in G, and the counter value represents the energy level of Player 2 in G. For that,266

we define Q1 = S1 ∪ {sink}, and Q2 = S2. Now, let Q′1 = {s ∈ S1 : there is s′ ∈ S such that267

〈s, s′〉 ∈ E and τ(〈s, s′〉) = (0,−1)}, and Q′2 = {s ∈ S2 : for all s′ ∈ S such that 〈s, s′〉 ∈ E,268

we have that τ(〈s, s′〉) = (0,−1)}. That is, Q′1 is the set of positions from which Player 1269

can decrease the energy level of Player 2, and Q′2 is the set of positions from which Player 2270

must decrease her own energy level.271

We define δ = {〈s, τ(〈s, s′〉)[1], τ(〈s, s′〉)[2], s′〉 : 〈s, s′〉 ∈ E} ∪ {〈sink, 0, 0, sink〉} and272

δ0 = (Q′1 ∪Q′2)× {0}2 × {sink}. In Appendix A.2, we prove that Player 1 wins in A from273
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〈sinit, x1
0, x

2
0〉 iff Player 1 wins in G. Essentially, this follows from the fact we let Player 1274

reach a winning sink whenever she can make Player 2 lose her energy, and we force Player 2275

to the sink whenever she runs out of energy. J276

We now show that the positive result in Theorem 3 is tight.277

I Theorem 4. The problem of determining the winner of BBEGs is undecidable. Undecidab-278

ility holds already for (1, 2)-BBEGs or (2, 1)-BBEGs, and when the weights on the transitions279

are all vectors over {−1, 0, 1}.280

Proof. We start with (1, 2)-BBEGs, and show a reduction from the halting problem of281

two-counter machines to our problem. A two-counter machine is a sequence M = (l1, ..., ln)282

of commands involving two counters x and y. We refer to {1, ..., n} as the locations of the283

machine. The command ln is the halting command, and each command li, for i < n, is of284

one of the following forms, where c ∈ {x, y} is a counter and 1 ≤ i, j ≤ n are locations:285

inc : c := c+ 1286

goto : goto i287

test-dec : if c = 0 then goto i else (c := c− 1; goto j)288

289

For the test-dec command, we refer to i as the positive successor of the command, and290

refer to j as the negative successor of the command. Since we always check whether c = 0291

before decreasing it, the counters never have negative values. For a two-counter machine M ,292

the question whether M halts is known to be undecidable [25].293

Given a machineM , we construct a game G such thatM halts iff Player 2 wins in G. The294

reduction idea is as follows: the dimension of Player 1 is one, and the dimension of Player 2295

is two. During a computation in G, the energy level of Player 1 is x + y, and the energy296

level of Player 2 is (x, y), where x and y are the two counters of M . If M never halts, then297

both energy levels remain non-negative during the infinite computation, and thus Player 1298

wins. If M reaches the halting command, then we reach a losing position for Player 1, so299

Player 2 wins. We now describe the reduction in detail. Given M = (l1, ..., ln), we construct300

G = 〈S1, S2, sinit, E, 1, 2, 0, 02, τ〉, such that S2 = {1, ..., n}, and S1 = Ltd × {1, 2}, where301

Ltd ⊆ {1, .., n} is the set of all locations of the test-dec commands in M . The initial energy302

levels are 0 for Player 1 and (0, 0) for Player 2, reflecting the fact that the counters are303

initiated to 0. Now, we introduce a gadget for each command li as follows.304

1. if li is x := x+ 1, then G includes an edge e = 〈i, i+ 1〉 with τ(e) = (1, (1, 0)).305

2. if li is y := y + 1, then G includes an edge e = 〈i, i+ 1〉 with τ(e) = (1, (0, 1)).306

3. if li is goto j, then G includes an edge e = 〈i, j〉 with τ(e) = (0, (0, 0)).307

4. if li is if x = 0 then goto j else (x := x− 1; goto k), then G includes the gadget described308

in Figure 2 (left).309

5. if li is if y = 0 then goto j else (y := y − 1; goto k), then G includes the gadget described310

in Figure 2 (right).311

6. for the halting command, ln, the game G includes an edge e = 〈n, n〉 with τ(e) =312

(−1, (0, 0)).313
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i

(i, 1) (i, 2)k

j

−1, (−1, 0) 0, (0, 0)

0, (0, 0)

−1, (0,−1)

0, (0, 0)

i

(i, 1) (i, 2)k

j

−1, (0,−1) 0, (0, 0)

0, (0, 0)

−1, (−1, 0)

0, (0, 0)

1

Figure 2 The gadgets for x-test-dec (left) and y-test-dec (right) commands.

These transitions are the only transitions G has. We also define sinit to be 1; that is, the314

state corresponding to l1.315

In Appendix A.3 we prove that the reduction is correct, thus M halts iff Player 2 wins316

in G. For this, we first prove that if a player has a winning strategy, then she also has a317

winning strategy that follows the instructions. That is, at every step of the computation, the318

best move for the current player is the one that leads to the state corresponding to the next319

command to be read according to M . Then, we show that the outcome of strategies that320

follow the instruction, is such that the energy level of Player 1 stores x+ y, and the energy321

level of Player 2 stores (x, y). Then, as the value of the counters is always non-negative and322

the position that corresponds to the halting command is losing for Player 1, we get that M323

halts iff Player 2 wins in G.324

The challenging part in the construction and its proof is to construct the test-dec325

gadgets so that a strategy that follows the instruction is indeed dominating, and that the326

energy levels indeed maintain the values of the the counters and their sum. Note that327

excluding positions induced by the test-dec gadgets, all positions in G belong to Player 2.328

In order to understand the idea behind the gadget, consider for example the x-test-dec329

gadget, associated with the command if x = 0 then goto j else (x := x− 1; goto k). As the330

energy level of Player 2 is (x, y), taking the transition from position i to position k when331

x = 0 is a losing action for Player 2, as it updates the x-component of her energy level to −1.332

Thus, when x = 0, a dominating strategy for Player 2 takes the transition from position i to333

position (i, 1). Then, as the energy level of Player 1 is x+ y, taking the transition from (i, 1)334

to (i, 2) when x = 0 is a loosing action for Player 1. Indeed, after y traversals in the loop in335

position (i, 2), the energy levels of the players become 0 and (0, 0), causing Player 1 to lose336

in the next round. Thus, when x = 0, a dominating strategy for Player 1 takes the transition337

from position (i, 1) to position j. In addition, the energy levels of the players does not change338

when the token moves from position i to j. Similar considerations show that when x 6= 0, a339

dominating strategy for Player 2 takes the transition from position i to position k, which340

involves an update to the energy levels that corresponds to the decrement of x by 1.341

We continue and prove undecidability for (2, 1)-BBEGs. We show a similar reduction342

from the halting problem of two-counter machines. Take G = 〈S1, S2, sinit, E, 1, 2, 0, (0, 0), τ〉343

the BBEG used above, and consider the BBEG G′ = 〈S2, S1, sinit, E, 2, 1, (0, 0), 0, τ ′〉, where344

τ ′(〈s, s′〉) = (τ(〈s, s′〉)[2], τ(〈s, s′〉)[1]) for all 〈s, s′〉 ∈ E, s 6= n, and τ ′(n, n) = ((−1, 0), 0).345

That is, G′ obtained from G by switching the dimensions of the players, their initial energy346

vectors, the updates on the edges and the sets of positions. Consequently, also in G′, a347

dominating strategy for the players is consistent with the commands, it implies that the348

energy level of Player 1 is (x, y), the energy level of Player 2 is x+ y, and since the sink n is349

losing for Player 1, we get that M halts if and only if Player 2 wins in G′. J350
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It follows from Theorem 3 and Theorem 4 that determining the winner of (d1, d2)-BBEGs351

is decidable iff d1 = d2 = 1. In particular, it is easy to extend Theorem 4 to bigger dimensions,352

by adding to the energy vectors components whose energy values are not updated during the353

whole computation.354

4 BBEGs with finite-memory strategies355

In this section we study BBEGs in which the memory used in the strategies of the players is356

bounded. Following [13], we consider two types of finite-memory strategies. The first type357

bounds the number of states of a transducer that induces the strategy. The second type358

is position-based, and bounds the number of memory states with which we can refine each359

position of the BBEG. In particular, a memoryless strategy is a position-based strategy in360

which no refinement is allowed. Below we describe the two types formally.361

An I/O-transducer is a tupleM = 〈I,O,Q, q0, δ, L〉, for an input alphabet I, an output362

alphabet O, a finite set of states Q, an initial state q0 ∈ Q, a transition function δ : Q×I → Q,363

and a labelling function L : Q→ O. We extend the transition function δ to words in I∗ in364

the expected way, thus δ∗ : Q × I∗ → Q is such that for all q ∈ Q, p ∈ I∗, and i ∈ I, we365

have that δ∗(q, ε) = q, and δ∗(q, p · i) = δ(δ∗(q, p), i). The transducerM induces a strategy366

γM : I∗ → O, where for all p ∈ I∗, we have that γM(p) = L(δ∗(q0, p)).367

Consider a BBEG G = 〈S1, S2, sinit, E, d1, d2, x
1
0, x

2
0, τ〉. Let S = S1 ∪ S2. We say that a368

strategy γj for Player j in G has finite-memory if it can be defined by an S/S-transducer369

(or transducer, when S is clear from the context). The strategy corresponding to M is370

defined by γj(p) = L(δ∗(q0, p)), for all p ∈ pref j(G). We say that an S/S-transducer371

M = 〈S, S,Q, q0, δ, L〉 refines G, if the states of M refine the positions of G. Formally,372

Q = S ×M for some finite set of memory states M , q0 = 〈sinit,m0〉 for some m0 ∈M , and373

for all s1, s2 ∈ S and m1 ∈M , it holds that δ(〈s1,m1〉, s2) = 〈s2,m2〉 for some m2 ∈M . We374

say that a strategy for Player j is memoryless, if it is induced by a transducer that refines G375

with |M | = 1, thus, Q = S. Note that one can refer to a memoryless strategy for Player j as376

a function γj : Sj → S.377

For m1,m2 ≥ 1, we say that Player 1 (m1,m2)-wins in G, if she has a strategy induced378

by a transducer with m1 states, that is winning against all strategies for Player 2 that are379

induced by a transducer with m2 states. The definition for Player 2 (m1,m2)-winning is380

similar. All our results on (m1,m2)-winning apply also to transducers that refine G (see381

Remark 15). Note that a general BBEG corresponds to m1 = m2 =∞. Of special interest382

are also settings in which only one of m1 or m2 is ∞, corresponding to BBEGs where only383

one player has a memory bound.384

4.1 Properties of BBEGs with finite-memory strategies385

In this section we study properties of BBEGs with finite-memory strategies. Recall that386

in energy games with no resource-bounds on the environment, it is sufficient to consider387

memoryless strategies. We first show that the situation in BBEGs is more complicated, and388

is also not symmetric: while infinite memory may be needed for Player 1, finite-memory389

strategies are sufficient for Player 2. Essentially, this follows from the fact that a win of390

Player 2 is a co-safety property: when Player 2 wins, she does so in a finite computation.391

I Theorem 5. There is a game G such that Player 1 (∞,∞)-wins G, but for all m1 ≥ 1,392

Player 2 (m1,∞)-wins G. On the other hand, for every BBEG G, if Player 2 (∞,∞)-wins393

G, then there is m2 ∈ N such that Player 2 (∞,m2)-wins G.394
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Proof. For the first claim, consider the game G described in Example 1 with initial energy395

levels 0 for both players. We saw that Player 1 has a (general) winning strategy. On the396

other hand, for every strategy γ1 for Player 1 that is based on a transducer with m1 states,397

the (finite-memory) strategy γ2 for Player 2 that loops m1 + 1 times in s1 and then moves to398

s2 is winning for Player 2 (see Appendix A.4 for the full proof). We continue to the second399

claim. Intuitively, the claim follows from the fact that all the computations in which Player 2400

wins are finite. Formally, let G be a BBEG in which Player 2 wins, and let γ2 be a winning401

strategy. Consider the unfolding of the game G in which Player 2 plays γ2. The unfolding is402

a tree T γ2
G in which each node is a prefix of a computation that is consistent with γ2. Since403

Player 2 wins, every such a computation is finite, thus every path in T γ2
G is finite. Since the404

degree of T γ2
G is bounded, we get that T γ2

G is a finite tree, which induces a finite-memory405

winning strategy for Player 2. J406

Since finite-memory strategies are sufficient for Player 2 to win, a natural question is407

whether there is a “bounded-size property" for Player 2’s strategy, in particular whether408

she can win with a memoryless strategies. Such properties exist in many other settings.409

For example, in games with a Streett winning condition, only Player 2 can win with a410

memoryless strategy [30], and, more relevant to our study here, in synthesis of an LTL411

formula ψ, we know that if there is an infinite system that realizes ψ, then there is also a412

system with at most 22|ψ| states that does it, and the same for the environment [21, 27, 14].413

Thus, (∞,∞)-realizability coincides with (∞, 22|ψ|)-realizability, (22|ψ|
,∞)-realizability, and414

(22|ψ|
, 22|ψ|)-realizability. As we now show, in the case of BBEGs, no bounded-size property415

exists.416

I Theorem 6. There is no computable function f : BBEGs→ N such that for every BBEG417

G, we have that Player 2 (∞,∞)-wins G iff Player 2 (∞, f(G))-wins G.418

Proof. In Section 4.2, we are going to show that the problem of deciding whether Player 2419

(∞,m2)-wins a BBEG G is decidable for all given BBEGs and bounds m2 ∈ N. Hence, the420

existence of a computable function f would lead to decidability of BBEGs of all dimensions,421

contradicting Theorem 4. J422

Recall that BBEGs are determined. As finite-state and memoryless strategies need not be423

sufficient to winning a BBEG, we now study determinancy of BBEGs when both players have424

bounds on their memory. Formally. we say that a game is determined under finite-memory425

strategies or determined under memoryless strategies, if in all instances G of the game, either426

Player 1 wins in G, or Player 2 wins in G, when the strategies of both players are restricted to427

finite-memory or memoryless strategies, respectively. Note that since the restriction applies428

to both players, the two types of determinancy need not imply each other.429

I Theorem 7. BBEGs are not determined under finite-memory or memoryless strategies.430

Proof. We start with finite-memory strategies. Consider the game G described in Example 1.431

In Appendix A.4, we show that when both players are restricted to finite-memory strategies,432

there is no winning player in G.433

We continue to memoryless strategies. Consider the (1, 1)-BBEG G described in Figure 3.434

In Appendix A.5, we show that there is no winning strategy in G when both players are435

restricted to play memoryless strategies. J436
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0, 0 s1 s2

s3
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0, 0

1, 1

−1,−1

0,−1 −1, 0

0,−1

1

Figure 3 No player has a memoryless winning strategy

4.2 Deciding BBEGs with finite-memory strategies437

In this section we study the problem of deciding the winner in a given BBEG in which438

at least one player is restricted to finite-memory strategies. We show that the problem is439

decidable for BBEGs of all dimensions. We start with BBEGs with memoryless strategies440

and show that deciding whether Player 1 has a memoryless strategy that is winning against441

every memoryless strategy for Player 2 is ΣP2 -complete. We first prove the following lemma,442

about deciding the winner given strategies for the players. The proof, in Appendix A.6, is443

based on the fact that outcome(γ1, γ2) is a simple lasso, and one can determine the winner444

by analyzing the updates to the energy levels along the prefix and the cycle of the lasso.445

I Lemma 8. Given a BBEG and two memoryless strategies γ1 and γ2 for Player 1 and446

Player 2, respectively, deciding the winner in outcome(γ1, γ2) can be done in polynomial447

time.448

Lemma 8 suggests that deciding whether Player 1 has a memoryless strategy that is449

winning against every memoryless strategy for Player 2 can proceed by guessing a Player 1450

strategy and challenging it against a guessed Player 2 strategy. Thus, the problem can451

be solved by a nondeterministic polynomial-time Turing machine with an oracle to a non-452

deterministic polynomial-time Turing machine. Below we formalize this intuition and provide453

also a matching lower bound.454

I Theorem 9. Deciding whether Player 1 has a memoryless strategy that is winning against455

every memoryless strategy for Player 2 is ΣP2 -complete.456

Proof. The upper bound follows directly from Lemma 8 (see details in Appendix A.7).457

For the lower bound, we describe a reduction from QBF2, the problem of determining458

the truth of quantified Boolean formulas with two alternations of quantifiers, where the459

external quantifier is “exists". Let ψ be a Boolean propositional formula over the variables460

x1, ..., xl, y1, ..., ym, and let θ = ∃x1, ..., xl∀y1, ..., ymψ. Also, let X = {x1, ..., xl}, Y =461

{y1, ..., ym}, X̄ = {x1, ..., xl}, Ȳ = {y1, ..., ym}, and Z = X ∪ X̄ ∪ Y ∪ Ȳ . By [31], we may462

assume that ψ is given in 3DNF. That is, ψ = (z1
1 ∧ z2

1 ∧ z3
1) ∨ ... ∨ (z1

n ∧ z2
n ∧ z3

n), where463

for all 1 ≤ i ≤ 3 and 1 ≤ j ≤ n, we have that zij ∈ Z. For 1 ≤ j ≤ n, we denote the clause464

(z1
j ∧ z2

j ∧ z3
j ) by cj .465

Given a formula θ = ∃x1, ..., xl∀y1, ..., ymψ, we construct a (1, 1)-BBEG G such that θ is466

true iff Player 1 wins G with a memoryless strategy. In the game G, we describe the energy467

levels of the players and updates to the energy levels by bit-vectors in {−2,−1, 0, 1, 2, 3}n. Up-468

dates to the bit-vectors are done in a bit-wise manner, thus 〈bn, bn−1, ..., b1〉+〈b′n, b′n−1, ..., b
′
1〉 =469

〈bn + b′n, bn−1 + b′n−1, ..., b1 + b′1〉. Our games are defined so that all reachable energy levels470

are in {−2,−1, 0, 1, 2, 3}n. Each bit vector v = 〈bn, bn−1, ..., b1〉 represents a single value in471

Z, namely
∑n
i=1 bi · (10)i−1. For example, the value of 〈1,−2, 0, 3〉 is 3 · 1 + 0 · 10 + (−2) ·472

100 + 1 · 1000 = 803. We say that v is positive (negative) iff the value it represents is positive473

(negative), respectively.474
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The idea behind the reduction is as follows. Each assignment g : X ∪Y → {T, F} induces475

a bit-vector vg = 〈bn, bn−1, ..., b1〉 ∈ {0, 1, 2, 3}n, such that for all 1 ≤ i ≤ n, the bit bi476

indicates how many literals in ci are satisfied by the assignment g. Note that this number477

is indeed in {0, 1, 2, 3}. For example, take ψ = (x1 ∧ x2 ∧ y1) ∨ (x1 ∧ x2 ∧ y1), with the478

assignment g in which g(x1) = g(x2) = T , and g(y1) = F . Since g satisfies two literals in c1479

and three literals in c2, we have that vg = 〈3, 2〉.480

The game G consists of two parts: an assignment part, and a check part. In the assignment481

part, Player 1 assigns values to the variables in X, and then Player 2 assigns values to the482

variables in Y . Together, the players generate an assignment g : X ∪ Y → {T, F}, and the483

energy level of both players is updated in the same way, so that by the end of this part, it is484

vg. Note that the assignment g satisfies ψ iff the vector vg contains the bit 3; thus there is485

1 ≤ i ≤ n with bi = 3. At the check part, we let Player 2 win if vg does not contain such a486

bit. We do this by allowing Player 2 to decrease each bit (in the energy level of both players)487

by 0, 1 or 2. Accordingly, if no bit in vg is 3, then Player 2 has a strategy so that by the end488

of this process, the energy level of the players is represented by the bit-vector 0n, in which489

case Player 2 can force a win. On the other hand, if some bit in vg is 3, then for all strategies490

of Player 2, at least one bit is not 0 at the end of this process. In this case, Player 2 loses.491

In Appendix A.7, we describe the two parts in detail and prove the correctness of the492

reduction. J493

Note that since under memoryless strategies BBEGs are not determined, ΠP
2 -completeness494

for the dual problem does not follow from Theorem 9. In fact, as we show below, the dual495

problem is also ΣP
2 -complete. The proof, in Appendix A.8, is similar to the proof of496

Theorem 9. In particular, for the lower bound, the game we construct here is obtained from497

the game constructed there by switching the ownership of positions, switching between the498

cost functions of the players, and by changing the sink to be a winning position for Player 2.499

I Theorem 10. Deciding whether Player 2 has a memoryless strategy that is winning against500

every memoryless strategy for Player 1 is ΣP2 -complete.501

We now show that ΣP
2 -completeness holds also when both players are restricted to502

finite-state strategies. Note that while the considerations are similar to these in the proof503

of Theorem 9, the lower bound for the memoryless case implies only a lower bound for504

the finite-memory case with transducers that refine the game G. There, we can use the505

reduction from the proof of Theorem 9 as is, with m1 = |S1| and m2 = |S2|. For general506

finite-state strategies, a transducer with |Sj | states, for j ∈ {1, 2}, does not necessarily507

induce a memoryless strategy for Player j. In the proof of the theorem, in Appendix A.9,508

we show that for the specific game G described in the reduction in Theorem 9, Player 1509

(|S1|, |S2|)-wins G iff she wins with a memoryless strategy, and similarly for Player 2 and the510

game described in the reduction in Theorem 10. Hence, the same reduction can be used.511

I Theorem 11. Given a BBEG G and m1,m2 ∈ N (given in unary), the problems of512

deciding whether Player 1 (m1,m2)-wins and deciding whether Player 2 (m1,m2)-wins in G513

are ΣP2 -complete.514

Note that the reductions used in Theorems 9, 10, and 11 generate a (1, 1)-BBEG, thus515

ΣP2 -hardness holds already for them.516

We continue and consider BBEGs in which only Player 1 has a memory bound. We show517

that the setting is strongly related to vector addition systems with states (VASS), defined518

below.519
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For d ≥ 1, a d-VASS is a finite Zd-labeled directed graph V = 〈Q,T 〉, where Q is a finite520

set of states, and T ⊆ Q×Zd ×Q is a finite set of transitions. The set of configurations of V521

is C = Q×Nd. For a pair of configurations 〈p1, v1〉, 〈p2, v2〉 ∈ C and t = 〈p1, z, p2〉 ∈ T such522

that v2 = v1 + z, we write 〈p1, v1〉 →t 〈p2, v2〉. For c, c′ ∈ C we write c→∗ c′ if c = c′, or if523

there is m ≥ 1 such that c0 →t1 c2 →t2 ....→tm cm, for some t1, ..., tm ∈ T and c0, ..., cm ∈ C,524

with c0 = c and cm = c′. That is, c →∗ c′ indicates that there is a sequence of successive525

configurations from c to c′ in V , and the vector is non-negative in all the configurations526

along the sequence. The d-VASS reachability problem is to decide, given a d-VASS V and527

configurations c, c′ ∈ C, whether c→∗ c′.528

We are going to reduce questions about (m1,∞)-winning in BBEGs to questions about529

VASSs. The underlying idea is as follows. First, once we bound the memory of Player 1, we530

can guess a transducer that generates her strategy. The product of the BBEG with such a531

transducer results in a one-player BBEG, in which all positions belong to Player 2. As the532

evolution of a one-player BBEG does not involve alternation between players, we can model533

it by a VASS. Essentially, the configurations of the VASS correspond to positions in the534

game along with energy vectors of the players. The winning condition in the BBEG induces535

requirement on the VASS, as formalized in the following lemma (see proof in Appendix A.10).536

I Lemma 12. Given a (d1, d2)-BBEG G in which all the positions are owned by Player 2,537

the winner in G can be decided by solving at most d1 instances of (d2 + 1)-VASS reachability.538

We can now use Lemma 12 in order to decide whether Player 1 (m1,∞)-wins a given539

BBEG.540

I Theorem 13. Given a BBEG G and m1 ∈ N, determining whether Player 1 (m1,∞)-wins541

G is decidable.542

Proof. Let G be a (d1, d2)-BBEG, for some d1, d2 ≥ 1, and consider a transducer T with543

state space Q of size m1 that maintains a strategy for Player 1. Let S = S1 ∪S2 be the state544

space of G. When Player 1 follows T , the possible outcomes of the game are embedded in the545

product G× T . The product has state space S ×Q. Each positions in S1 ×Q has a single546

successor: its S-component is determined by the output function of T and its Q-component547

is determined by the transition function of T . Therefore, we can refer to the product G× T548

as a BBEG all whose positions belong to Player 2. The updates on the edges of the product549

BBEG are induced by these in G, and so it is a (d1, d2)-BBEG. By Lemma 12, determining550

the winner in G× T can be reduced to solving d1 instances of (d2 + 1)-VASS-reachability,551

which is decidable [22].552

It follows that determining whether Player 1 (m1,∞)-wins G can be decided by going553

over the finitely many candidates transducers T of size m1, and applying the above check to554

each of them. J555

I Remark 14. [Complexity] While Theorems 13 only refer to decidability, known complexity556

results on VASS can be used in order to give complexity upper bounds in some cases.557

Specifically, as 2-VASS reachability is PSPACE-complete [4], and the candidate transducers558

T are polynomial in m1, we get that determining whether Player 1 (m1,∞)-wins G is559

decidable in PSPACE for (1, 1)-BBEGs with m1 given in unary. J560

We note that while similar considerations can be used in order to decide whether Player 2561

(∞,m2)-wins a given BBEG, for m2 ∈ N (see proof in Appendix A.11), the latter does not562

provide a solution to the problem of deciding whether Player 1 (∞,m2)-wins a given BBEG,563

which we leave open. Indeed, BBEGs are not (∞,m2)-determined, in the sense that there is564
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a BBEG G and m2 ∈ N such that neither Player 1 (∞,m2)-wins nor Player 2 (∞,m2)-wins565

G. For example, by switching the vertices owned by Player 1 and Player 2 in the BBEG566

appearing in Figure 3, we get a BBEG such that Player 1 does not (∞,m2)-wins for all567

m2 ∈ N, and Player 2 does not wins with a memoryless strategy, and in particular does not568

(∞, 1)-wins.569

Finally, we note that, unsurprisingly, even when we fix the size of the strategy of Player 2,570

the size of the strategy required for Player 1 to win depends on both the number of positions571

in the game and the updates in its transitions, inducing a strict hierarchy. Specifically, in572

Appendix A.12, we show that for all m1 ∈ N, there is a BBEG Gm1 with 3 states as well as573

a BBEG G′m1
in which all updates are in {−1, 0, 1}, such that Player 1 (m1 + 2, 0)-wins Gm1574

and G′m1
, yet Player 2 (m1 + 1, 0)-wins Gm1 and G′m1

. Similar results can be shown for the575

size of the strategy for Player 2.576

I Remark 15. [From general to position-based strategies] Our positive decidability and577

complexity results are based on going over candidate strategies for the players. By restricting578

attention to strategies that refine the BBEG, these results apply also to position-based579

finite-state strategies. In addition, our lower bounds apply already for memoryless strategies,580

and so apply also for position-based finite-state strategies. J581

5 BBEG with Bounded Energy Capacities582

So far we studied BBEGs in which the players must keep their energy level non-negative, but583

there is no upper bound on the energy they may accumulate. This corresponds to systems in584

which there is no bound on the capacity of the energy resource. In many cases (c.f., battery,585

disc space), such a bound exists. In this section we study the problem of determining the586

winner in BBEGs in which one of the players has a bounded energy capacity. We consider587

both a semantics in which an overflow leads to losing the game (losing semantics, for short)588

and a semantics in which an overflow is truncated (truncated semantics, for short).589

Formally, a one-player-bounded BBEG is G = 〈S1, S2, sinit, E, d1, d2, x
1
0, x

2
0, τ, j, b〉, which590

extends a BBEG by specifying a player j ∈ {1, 2} and a bound vector b ∈ Zdj . In the losing591

semantics, the definition of a winning computation in a one-player-bounded BBEG is similar592

to the definition in the case of a BBEG, except that the requirement for the energy to stay593

non-negative is replaced, for Player j, by a requirement to stay both non-negative and below594

the bound b. Formally, a computation c that is winning for Player j has to satisfy, in addition595

to the winning condition of a BBEG, the requirement ej(cn)[i] ≤ b[i] for all n ≥ 1 and596

i ∈ [dj ]. In the truncated semantics, the winning condition is as in the underlying BBEG,597

yet the energy level of Player j up to the n-th position in a run r = s1, s2, ... is defined598

inductively for all i ∈ [dj ] as follows: ej(rn)[i] = min{b[i], ej(rn−1)[i] + τ(〈si, si+1〉)[j][i]},599

where ej(r0)[i] = xj0[i].600

In Theorem 16 below we show that the problem of deciding whether Player 1 wins a601

one-player-bounded BBEG is decidable for BBEGs of all dimensions. Essentially, our solution602

is based on expanding the position space of the game to maintain the energy level of Player j.603

Consequently, the cost function in the transitions updates the energy level of the other player604

only. When j = 2, thus the energy of Player 2 is bounded, we are left with updates to the605

energy level of Player 1. Thus, we obtain a standard multi-dimensional energy game, except606

that we add a sink that is winning for Player 1 and corresponds to positions in which the607

energy level of Player 2 is negative or, in the losing semantics, is above the bound b.608

When j = 1, thus the energy of Player 1 is bounded, we obtain a multi-dimensional energy609

game in which transitions update the energy level Player 2 only. The game contains a sink,610
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which is losing for Player 1, and Player 2 wins the game if she can reach the sink without611

her energy becoming negative. Thus, the setting is similar to that of multi-dimensional612

reachability energy games. By [16], one-dimensional energy-reachability games can be613

decided in NP∩coNP, and so our proof boils down to extending their algorithm to the614

multi-dimensional case. The full details can be found in Appendix A.13.615

I Theorem 16. The problem of determining whether Player 1 wins a one-player-bounded616

BBEG is decidable.617

I Remark 17. [Bounding only some of the energy components] In the multi-dimensional618

setting, we can consider games in which each player has energy bounds for some of the619

components in her energy vector. It is easy to see for for d1, d2 ≥ 1 determining the winner of620

a (d1, d2)-BBEG is decidable iff each player has at most one unbounded component. Indeed,621

one can extend the position space of a BBEG to remember the value of the (d− 1) + (d− 1)622

bounded components, and then deciding (1, 1)-BBEG. J623
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A Proofs703

A.1 Proof of the assumptions in Remark 2704

It is easy to see that every BBEG with parallel edges has an equivalent BBEG of linear size705

without parallel edges. Indeed, let s, t ∈ S be two positions and let A be the set of edges706

from s to t, with updates l1, ..., l|A|. We can add new positions s(s,t)
1 , ..., s

(s,t)
|A| , and edges707

{(s, s(s,t)
i ) : 1 ≤ i ≤ |A|} ∪ {(s(s,t)

i , t) : 1 ≤ i ≤ |A|} instead of the parallel edges, with708

updates τ(〈s, s(s,t)
i 〉) = li and τ(〈s(s,t)

i , t〉) = (0d1 , 0d2), for all 1 ≤ i ≤ |A|.709

It is also easy to see that every BBEG with has an equivalent BBEG of linear size in710

which each transition updates the energy to one player only. The only nontrivial issue in the711

decomposition of a transition is that we should first update the energy of the player that712

owns the source position. Thus, an edge leaving s ∈ S1, labeled with (x1, x2) and leading to713

t ∈ S, can be replaced the two edges 〈s, us,t〉 with τ(〈s, us,t〉) = (x1, 0d2), and 〈us,t, t〉 with714

τ(〈us,t, t〉) = (0d1 , x2), for a new position us,t. For the case s ∈ S2, the new edges update715

first the energy of Player 2.716

Finally, we can translate a BBEG to a BBEG in which the updates on the transitions are717

all in {−1, 0, 1}. We describe the translation for (1, 1)-BBEGs. A similar translation works718

for BBEGs of higher dimensions. Indeed, one can first convert a BBEG to one in which719

every transition updates the energy to one player only, as described above, and then replace720

an edge labeled with (x1, 0d2) with |x1| edges that update x1 to the energy of Player 1, while721
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not affecting the energy of Player 2. Similarly, we can handle edges labeled with (0d1 , x2).722

Note, however, that since we define the size of a BBEG with the costs on the edges of given723

in binary, the resulting BBEG is of size exponential in the size of the original BBEG. Since724

we consider BBEGs with updates in {−1, 0, 1} only in contexts of decidability, this does not725

affect our results.726

A.2 Correctness of the upper-bound reduction in Theorem 3727

We prove that Player 1 wins in A from 〈sinit, x1
0, x

2
0〉 iff Player 1 wins in G. First, an infinite728

computation in G induces an infinite game in A that never reaches the sink. Also, a finite729

computation in G in which Player 1 runs out of energy before Player 2, induces a finite730

game in A that is losing for Player 1. Finally, a finite computation in G that reaches a731

configuration in which Player 1 can make Player 2 lose, or Player 2 has no choice but to lose732

her energy, reaches a position in Q′1 ∪ Q′2 with the energy level of Player 2 being 0. The733

corresponding game in A reaches Q′1 ∪Q′2 with the counter being 0. If the current position734

is in Q′1, Player 1 can use the δ0-transition to the sink and stay there forever. If the current735

position is in Q′2, Player 2 has no choice but to use the δ0-transition and reach the sink.736

Thus, Player 1 wins in G iff Player 1 can force an infinite game in A.737

A.3 Correctness of the lower-bound reduction in Theorem 4738

We prove that the reduction is correct, i.e., the machine M halts iff Player 2 wins in G. We739

describe a computation of M by an infinite sequence f = f0, f1, f2, ... ∈ ({1, ..., n}×N×N)ω,740

such that f0 = (1, 0, 0) and for all i ≥ 1, we have that fi[1] is the location of the i-th741

command in the computation, and fi[2] and fi[3] are the values of the counters x and y,742

respectively, after reading that command. If for some i ≥ 0 we have that fi[1] = n, then743

fi+1 = fi. Consider a computation π ∈ comp(G), and let v = v0, v1, ... be the projection of744

π on S2. We say that π is consistent if for all i ∈ N, we have that e1(vi) = fi[2] + fi[3] and745

e2(vi) = (fi[2], fi[3]). That is, π is consistent if the energy level of Player 1 stores x+ y, and746

the energy level of Player 2 stores 〈x, y〉.747

First, we show that if a player has a winning strategy, then she also has a winning strategy748

that follows the instructions. That is, at every step of the computation, the best move for the749

current player is the one that leads to the state corresponding to the next command to be750

read according to M . For c ∈ {x, y}, denote by Lctd ⊆ Ltd the set of locations of test-dec751

commands that examine counter c. Note that excluding positions induced by the test-dec752

gadgets, all positions in G belong to Player 2, and that the position corresponding to the753

halting command is losing for Player 1. Also note that all positions except some positions in754

the test-dec gadgets are deterministic, that is, have a single transition leaving them.755

Recall that for a consistent prefix p, the energy level e2(p) stores 〈x, y〉. Accordingly, for756

c ∈ {x, y}, we use ec2(p) to refer to e2(p)[1] when c = x, and to refer to e2(p)[2] when c = y.757

Also, we use c̄ to refer to y when c = x, and to refer to x when c = y.758

We say that a strategy γ1 for Player 1 is consistent if for every p ∈ pref 1(G) ending in759

position (i, 1) for i ∈ Lctd, if e1(p) > ec̄2(p), then γ1(p) = (i, 2), and if e1(p) ≤ ec̄2(p), then760

γ1(p) = j, for j that is the positive successor of li. Similarily, we say that a strategy γ2 for761

Player 2 is consistent if for every p ∈ pref 2(G) ending in position i ∈ Lctd, if ec2(p) = 0, then762

γ2(p) = (i, 1), and if ec2(p) > 0, then γ2(p) = k, for k that is the negative successor of li.763

Note that every player has a unique consistent strategy. Let γ1 and γ2 be the consistent764

strategies for Player 1 and Player 2, respectively. Let r = outcome(γ1, γ2). We argue that r765

is consistent. Let v = v0, v1, ... be the projection of r on S2. We prove that for all i ∈ N, it766
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holds that e1(vi) = fi[2]+fi[3] and e2(vi) = (fi[2], fi[3]). The proof proceeds by an induction767

on i. Initially, f0 = (1, 0, 0), and indeed for all runs in G, the initial position is 1 and the768

initial energy levels are 0 for Player 1 and (0, 0) for Player 2.769

Let m ≥ 1, and assume that the claim holds for all 0 ≤ i < m. If vm /∈ Ltd, then770

Player 2 has a single successor, which corresponds to fm+1[1], and the energy levels are771

updated correctly. We now consider the case vm ∈ Lxtd. Denote fm−1[1] = i, fm−1[2] = x,772

and fm−1[2] = y. By the induction hypothesis, we have that e1(vm−1) = x + y and773

e2(vm−1) = (x, y). We distinguish between two cases:774

1. If x = 0, then following γ2, Player 2 chooses to go to position (i, 1). This move does not775

affect the energy level. Since x = 0, then x+ y = y, and following γ1, Player 1 chooses to776

go to position j that is the positive successor of li. This transition does not affect the777

energy levels either. So, we have that vm = j, e1(vm) = x+ y, and e2(vm) = (x, y), as778

required.779

2. If x > 0, then, following γ2, Player 2 chooses to go to position k that is the negative780

successor of li. This transition decreases by one the the energy level of Player 1 and the781

first component in the energy level of Player 2. So, vm = k, e1(vm) = x + y − 1, and782

e2(vm) = (x− 1, y), as required.783

The case where i ∈ Lytd is similar.784

Let γ1, γ2 be the consistent strategies for Player 1 and Player 2, respectively, and denote785

r = outcome(γ1, γ2). We show that if Player 2 plays a strategy δ2 that is not consistent,786

then she loses against the consistent strategy γ1 of Player 1.787

Assume that Player 1 plays γ1 and Player 2 plays δ2, which is not consistent. Let m be788

the minimal index in outcome(γ1, δ2) that deviates from r. That is, m is the minimal index t789

such that δ2(rt) 6= γ2(rt). Let i be the last position in rm. Since all positions in S2 \ Ltd are790

deterministic, it must be that i ∈ Ltd. Assume that i ∈ Lxtd. Then, either e2(rm)[0] = 0 and791

δ2(rm) = k, for k that is the negative successor of li, or e2(rm)[0] > 0 and δ2(rm) = (i, 1).792

Since m is minimal and r is consistent, we get that e1(rm) = x+ y and e2(rm) = (x, y) for793

some x, y ∈ N. If x = 0 and δ2(rm) = k, then the first component in the energy level of794

Player 2 is decreased below 0, so she loses. If x > 0 and δ2(rm) = (i, 1), then according to795

γ1, Player 1 chooses from (i, 1) to go to (i, 2). Since x + y > y, Player 1 wins at the sink796

(i, 2). Hence, outcome(γ1, δ2) is winning for Player 1. The case where i ∈ Lytd is similar.797

Since δ2 is not winning for every δ2 6= γ2, we get that if Player 2 wins, her winning798

strategy must be consistent.799

Now, we show that if Player 1 wins, then she can win with γ1. Assume that Player 1800

has a winning strategy δ1 6= γ1. We show that γ1 is winning for Player 1 too. We already801

showed that outcome(γ1, δ2) is winning for Player 1 for every δ2 6= γ2. It is left to show that802

outcome(γ1, γ2) is winning for Player 1. Letm be the minimal index t in outcome(δ1, γ2) such803

that δ1(rt) 6= γ1(rt). Since all positions in S1\(Ltd×{1}) are deterministic, it must be that rm804

ends in position i ∈ Ltd×{1}. Assume that i ∈ Lxtd×{1}. Then, either e1(rm) > e2(rm)[2] and805

δ1(rm) = j for j that is the positive successor of li, or e1(rm) ≤ e2(rm)[2] and δ1(rm) = (i, 2).806

Since m is minimal and r is consistent, we get that e1(rm) = x + y and e2(rm) = (x, y)807

for some x, y ∈ N. If it is the case that e1(rm) > e2(rm)[2], we have that δ1(rm) = j and808

γ1(rm) = (i, 2). By going to (i, 2), since x+ y > y, we get that Player 2 loses at (i, 2). Hence,809

outcome(γ1, γ2) is winning for Player 1. Also, it cannot be the case that e1(rm) ≤ e2(rm)[2]810

and δ1(rm) = (i, 2): since x+ y ≤ y, we get that Player 1 loses at (i, 2), in contradiction to811

the fact that δ1 is winning. The case where i ∈ Lytd × {1} is similar.812

By the above, if Player 2 has a winning strategy, it must be consistent, and if Player 1813

wins, her consistent strategy is winning. Therefore, the question of determining the winner814
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in G is reduced to determining the winner of outcome(γ1, γ2). When both players play their815

consistent strategies, we have that the energy levels are updated according to the values of816

the counters in f . Since the value of every counter is non-negative during the run, so are the817

energy levels of the players during the computation. Since the state corresponding to the818

halt command is a rejecting sink for Player 1, we have that if M halts, then Player 2 wins in819

G. Otherwise, the energy levels of both players, in particular Player 1, remain non-negative820

during the infinite computation, and Player 1 wins.821

A.4 Proof of Theorem 7 – finite-memory strategies822

We prove that when both players are restricted to finite-memory strategies, there is no823

winning player in the BBEG G described in Example 1.824

First, we show that for every (finite-memory) strategy γ2 for Player 2, there is finite-825

memory strategy γ1 of Player 1, such that outcome(γ1, γ2) is winning for Player 1. Let γ2 be826

a strategy for Player 2, and let n be the number of times Player 2 loops at s1 before moving827

to s3 (clearly, if she loops at s1 forever, she loses). Let γ1 be finite-memory strategy for828

Player 1 that loops at s2 exactly n times, and then moves to s3. As was shown in Example 1,829

outcome(γ1, γ2) is winning for Player 1.830

We now show that Player 1 does not have a finite-memory strategy that is winning831

against every finite-memory strategy of Player 2. Moreover, for every finite-memory strategy832

γ1 for Player 1, there is a finite-memory strategy γ2 for Player 2 such that outcome(γ1, γ2)833

is winning for Player 2. Let γ1 be a finite memory strategy for Player 1, modelled by a834

transducerM = 〈I,O,Q, q0, δ, L〉, and let m = |Q|. Consider the finite-memory strategy γ2835

for Player 2 that loops m+ 1 times in s1 and then moves to s2. Let t be the number of times836

Player 1 loops at s2 before moving to s3 in outcome(γ1, γ2). We show that outcome(γ1, γ2)837

is winning for Player 2. Indeed, If t < m+ 1, then after looping t times in s2, the energy level838

of Player 2 is strictly positive. Thus, when reaching s3, the energy levels are non-negative,839

and s3 is a losing position for Player 1. Now, assume t ≥ m + 1. For i ∈ [m + 1], Let pi840

be the prefix of outcome(γ1, γ2) after which s2 is visited for the (i + 1)-th time. That is,841

pi = (s1)m+1 · (s2)i+1. Since m+ 1 > m, there are two indices 1 ≤ k < l ≤ m+ 1 such that842

δ∗(q0, p
k) = δ∗(q0, p

l). That is, after Player 2 loops m+ 1 times at s1, looping k or l times843

in s2 takes Player 1 to the same state ofM. Since k < l, we get that there is a loop in the844

strategy of Player 1, making her loop at s2 forever. Thus, Player 1 makes both energy levels845

negative at the same time, and loses.846

A.5 Proof of Theorem 7 – memoryless strategies847

We prove that when both players are restricted to memoryless strategies, there is no winning848

player in the BBEG G described in Figure 3.849

First, we show that for every memoryless strategy γ1 for Player 1, there is a memoryless850

strategy γ2 for Player 2 such that outcome(γ1, γ2) is winning for Player 2. Note that Player 1851

has to choose an outgoing edge only from s2. Let us consider a memoryless strategy γ1 for852

Player 1. If γ1(s2) = s3, then for the strategy γ2 for Player 2 that chooses to go from s1 to853

s2 by the edge labeled (0, 0), it holds that outcome(γ1, γ2) is winning for Player 2: when854

the computation reaches s2, the energy level of Player 1 is 0, so the transition to s3 makes855

her lose. If γ1(s2) = s4, then the strategy γ2 for Player 2 that chooses to go from s1 to s2856

by the edge labeled (1, 1) is such that outcome(γ1, γ2) is winning for Player 2: when the857

computation reaches s4, the energy level of Player 2 is 1, so she can pay 1 to reach s5, which858

is a rejecting sink for Player 1.859
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We continue and show that for every strategy γ2 for Player 2 (in particular a memoryless860

strategy), there is a memoryless strategy γ1 for Player 1 such that outcome(γ1, γ2) is winning861

for Player 1. Consider a strategy γ2 for Player 2. If by following γ2 Player 2 goes from s1 to862

s2 by the edge labeled (0, 0), then a memoryless strategy γ1 for Player 1 with γ1(s2) = s4863

is such that outcome(γ1, γ2) is winning for Player 1: the energy level of Player 2 becomes864

negative at the transition to s4. If by following γ2 Player 2 goes from s1 to s2 by the edge865

labeled (1, 1), then the strategy γ1 for Player 1 with γ1(s2) = s3 is such that outcome(γ1, γ2)866

is also winning for Player 1: until the computation reaches s3, the energy level of Player 1867

remains non-negative, and s3 is a winning sink for Player 1.868

A.6 Proof of Lemma 8869

As explained in Remark 2, we can assume that every edge in G updates the energy of one870

player only. It is easy to see that the strategies γ1 and γ2 induce a simple lasso in G. We871

can ignore all positions and edges in G that are not part of this lasso and consider the graph872

G′ that is induced by this lasso. Denote by p the part of the computation before the loop,873

and by q the computation that is a single traversal of the loop. If some component decreases874

below 0 in p · q, then the winner can be determined easily: the losing player is the one875

that owns the component that becomes negative earliest, which can be found in polynomial876

time. Otherwise, all d1 + d2 components remain non-negative during p · q. If e1(q) ≥ 0, then877

Player 1 wins. Indeed, Player 1 survives the part before the loop and a single traversal of878

the loop, and since the loop does not have a negative effect on her energy level, she can879

take the loop forever. If e1(q) < 0 and e2(q) ≥ 0, then Player 2 wins, since the energy level880

of Player 1 becomes negative at some point of the computation, while the energy level of881

Player 2 remains non-negative. If e1(q) < 0 and e2(q) < 0, we can check which player wins882

as follows. We can think of the energy of the players and the updates as vectors in Zd1+d2 ,883

where the first d1 components belong to Player 1, and the last d2 components belong to884

Player 2. We can check in polynomial time which component becomes negative earliest, and885

the loser is the player owns this component. Note that since every transition in G′ updates886

the energy vector of a single player at a time, if there is more than one component that887

becomes negative at the same step, all of those components belong to the same player.888

A.7 Missing details in the proof of Theorem 9889

For the upper bound, consider a BBEG G = 〈S1, S2, sinit, E, d1, d2, x
1
0, x

2
0, τ〉. Memoryless890

strategies for the players can be represented by polynomial-length strings. Then, given a891

memoryless strategy γ1 for Player 1, the problem of checking whether there is a memoryless892

strategy γ2 for Player 2 such that outcome(γ1, γ2) is winning for Player 2 is in NP. Indeed,893

given a memoryless strategy γ1 for Player 1, we can decide by a non-deterministic Turing894

Machine whether there is a memoryless strategy γ2 for Player 2 such that outcome(γ1, γ2) is895

winning for Player 2, by guessing γ2 and applying Lemma 8. So, deciding whether there is a896

memoryless strategy γ1 for Player 1 such that for every memoryless strategy γ2 for Player 2897

it holds that outcome(γ1, γ2) is winning for Player 1, can be done by a nondeterministic898

polynomial-time Turing machine with an oracle to a nondeterministic polynomial-time Turing899

machine, and we are done.900

We continue to the lower bound and describe the two parts of the BBEG in detail. For901

convenience, we describe the BBEG with parallel edges (see Remark 2). Both players start902

with the initial energy level 0, which is represented by the bit-vector 0n. The assignment903

part is described in Figure 4.904
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sx1
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....... sxl
sy1

sy2
....... sym check

0,0
bx1

bx1

bx2

bx2

bxl−1

bxl−1

bxl

bxl

by1

by1

by2

by2

bym−1

bym−1

0

1

Figure 4 The assignment part.

For every literal z ∈ Z, let bz = 〈bnz , . . . , b1z〉 ∈ {0, 1}n describe how the bit-vector905

vg should be updated when z is assigned T . That is, for all 1 ≤ i ≤ n, if the literal z906

appears in the clause ci, then biz = 1, and otherwise biz = 0. For our example formula907

(x1 ∧ x2 ∧ y1) ∨ (x1 ∧ x2 ∧ y1), we have bx1 = 〈0, 0〉 and by1 = 〈0, 1〉. Since in this part,908

the energy levels of both players are updated in the same way, we label each transition in909

the figure by a single update. As described in the figure, first Player 1 assigns values to910

the variables in X and then Player 2 assigns values to the variable in Y . An assignment911

is reflected in the energy levels of both players being updated according to the literal that912

is chosen. In our example, if from sy1 Player 2 chooses the transition that corresponds to913

assigning T to y1, then the energy level of both players is increased by 〈0, 1〉.914

We continue to the check part, where all the positions belong to Player 2. The check part915

is described in Figure 5. Here too, except for the transition to the sink, the updates to the916

energy levels of Player 1 and Player 2 coincide, and we label the transitions in the figure by917

a single update.918

sn . . . s1 p sink

tn,0 t2,0

tn,−1 t2,−1

tn,−2 t2,−2 t1,−2

t1,0

t1,−1

t1,−1, 0

0, 0

1

Figure 5 The check part.

For every 1 ≤ i ≤ n and d ∈ {0,−1,−2}, let ti,d = 0i−1 · {d} · 0n−(i+1). That is, all the919

bits in ti,d are 0, except for the i-th bit, which is d. As described in Figure 5, the check part920

consists of a chain of positions si, for n ≥ i ≥ 1, where from si+1 Player 2 proceeds to si921

while updating the energy levels by ti,0, ti,−1, or ti,−2. Then, from position p, there is a922

single transition with updates t1,−1, 0 to the energy levels. Thus, the least significant bit of923

the energy level of Player 1 is decreased by 1, and the energy level of Player 2 is not changed.924

We now prove that θ is true iff Player 1 wins in G with a memoryless strategy.925

Assume first that θ is true. Then, there is an assignment fX for X such that for every926

assignment fY for Y , we have that ψ is true under fX ∪ fY . We show that there is a927

memoryless strategy for Player 1 that is winning against every (not necessarily memoryless)928

strategy for Player 2. An assignment fX for X induces a memoryless strategy γfX for Player 1929

in which for every variable xi such that fX(xi) = T , Player 1 chooses from sxi the transition930

labeled bxi , and for every variable xi such that fX(xi) = F , Player 1 chooses from sxi the931

transition labeled bxi . We show that γfX is winning for Player 1. Let γ be a strategy for932

Player 2, and let fY be the assignment for Y induced by γfX and γ. That is, fY (yi) = T933

if γ proceeds from syi with the transition labeled byi in the computation in which Player 1934

follows γfX , and fY (yi) = F if γ proceeds from syi with the transition labeled byi . When935

the computation that is consistent with γfX and γ reaches the check part, the energy level of936

both players is vfX∪fY . Since fX ∪ fY satisfies ψ, we have that there is 1 ≤ i ≤ n such that937
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the i-th bit of vfX∪fY is 3. Let vp be the bit-vector the players own when reaching p. It is938

easy to verify that vp is not all-zero. Let j be the most significant bit in vp that is not 0.939

We distinguish between two cases. If the j-th bit of vp is positive, then vp is positive. In this940

case, vp + t1,−1 is not negative, and Player 1 can loop in the sink forever and win the game.941

Otherwise, the j-th bit of vp is negative, so vp is negative. So, at some point at the check942

part, the current bit-vector of the players becomes negative, as a consequence of step made943

by Player 2. So Player 2 loses.944

For the second direction, assume that θ is false, and consider a strategy γ for Player 1.945

Note that every strategy for Player 1 in G is memoryless. Let fX be the assignment for X946

induced by γ. Then, there is an assignment fY for Y such that ψ is false under fX ∪ fY .947

Let γfY be the following memoryless strategy for Player 2. First, at the assignment part,948

the strategy γfY is consistent with fY . That is, as detailed above, for a position syi the949

strategy γfY proceeds with the transition labeled with the update that corresponds to fY (yi).950

Let v = 〈bn, bn−1, ..., b1〉 be the energy level of both players at the end of the assignment951

part. Since ψ is false under fX ∪ fY , then bi ∈ {0, 1, 2} for all n ≥ i ≥ 1. Accordingly, in952

the check part, the strategy γfY can choose from si a transition labeled ti,−bi , namely a953

transition that decreases the i-th bit of the energy levels of both players to 0. Consequently,954

the computation of G that is consistent with γ and γfY reaches the state p with energy level955

0, and reaches the sink with a negative energy level for Player 1, which loses.956

A.8 Proof of Theorem 10957

The upper bound follows from Lemma 8 by arguments similar to these in Theorem 9. For958

the lower bound, we show a reduction similar to the one in the proof of Theorem 9. Let959

G = 〈S1, S2, sinit, E, 1, 1, 0, 0, τ〉 be the BBEG in the proof of Theorem 9, and consider the960

BBEG G′ = 〈S2, S1, sinit, E, 1, 1, 0, 0, τ ′〉, where for all 〈s, s′〉 ∈ E such that s 6= sink, we961

have that τ ′(〈s, s′〉) = (τ(〈s, s′〉)[2], τ(〈s, s′〉)[1]), and τ ′(〈sink, sink〉) = (−1, 0). Note that962

G′ is obtained from G by switching between S1 and S2, between the cost functions of the963

players, and by changing the sink to be a winning position for Player 2.964

We claim that Player 2 wins in G′ iff θ is true: at the assignment part, Player 2 assigns965

values to the variables in X, and then Player 1 assigns values to the variable in Y . As in966

Theorem 9, the assignment is reflected in the energy levels of both players being updated967

according to the literal that is chosen. Then, at the check part, we let Player 1 win iff there968

is an unsatisfied clause under the assignment induced by the first part of the play.969

A.9 Proof of Theorem 11970

We start with the upper bounds. Let G = 〈S1, S2, sinit, E, d1, d2, x
1
0, x

2
0, τ〉. An S/S-971

transducer with m states can be represented by a string polynomial in m and |G|. Also,972

given two transducers M1 and M2 with m1 and m2 states, respectively, one can build a973

BBEG G′ that is the product of G withM1 andM2, and is in size polynomial of G, m1,974

and m2. Note that since in G′ is a product of a game with strategies for both players, it975

is a simple lasso that correspond to the outcome of the game when the players follow their976

strategies. Then, by arguments similar to those in Lemma 8, one can determine the winner977

in G′ in time polynomial in G, m1 and m2. Hence, for j ∈ {1, 2}, deciding whether Player j978

(m1,m2)-wins can be done by a nondeterministic polynomial-time Turing machine with an979

oracle to a nondeterministic polynomial-time Turing machine, and we are done.980

We continue to the lower bound. In Theorem 9, we described a reduction from QBF2 that981

proves ΣP2 -hardness for determining whether Player 1 wins when both players play memoryless982
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strategies, and similarly for Player 2. Taking m1 = |S1| and m2 = |S2|, the reduction also983

proved ΣP2 -hardness for deciding whether Player 1 (m1,m2)-wins with a finite-state strategy984

that refines G, and for deciding whether Player 2 (m1,m2)-wins with a finite-state strategy985

that refines G. We argue that the same reduction proves hardness also when the players have986

general finite-state strategy. That is, given a formula θ = ∃x1, ..., xl∀y1, ..., ymψ, we construct987

the same game G as in Theorem 9, and claim that θ is true iff Player 1 (|S1|, |S2|)-wins in G.988

For the first direction, assume θ is true. Assume S1 = {s1
1, ..., s

1
|S1|}. As we saw in989

Theorem 9, Player 1 has a memoryless winning strategy γ1. This memoryless strategy is990

winning against any general strategy for Player 2. Consider the strategy γM1 induced by a991

transducerM1 with states q1, .., q|S1|, where each state qi defines the behaviour of Player 1992

in s1
i according to γ1. That is, L(qi) = δ(qi, s) = γ1(s1

i ), for all i ∈ [n] and s ∈ S. For every993

p ∈ pref 1(G), it holds that γM1(p) = γ1(p). Hence, γM1 is a winning strategy.994

For the second direction, recall that the proof of Theorem 9 shows that if θ is not true, then995

for every strategy (not necessarily memoryless) γ1 for Player 1, Player 2 has a memoryless996

strategy γ2 such that outcome(γ1, γ2) is winning for Player 2. Assume S2 = {s2
1, ..., s

2
|S2|}. So,997

given a transducerM1 with |S1| states, let γM1 be the strategy for Player 1 that corresponds998

toM1. Let γ2 be a memoryless strategy for Player 2 such that outcome(γM1 , γ2) is winning999

for Player 2. Then the transducerM2 with states q1, .., q|S2|, in which each state qi defines1000

the behaviour of Player 2 in s2
i according to γ2, induces a winning strategy.1001

The arguments for the problem of deciding whether Player 2 (m1,m2)-wins are similar,1002

applied to the BBEG G′ in the proof of Theorem 9.1003

A.10 Proof of Lemma 121004

Let G = 〈∅, S2, sinit, E, d1, d2, x
1
0, x

2
0, τ〉 be a BBEG. We construct a VASS V with config-1005

urations that represent a position and energy vectors in G, with target configuration that1006

represents a position and energy vectors from which Player 2 can win in one move. The idea1007

is that Player 2 wins in G iff she can force the game to an edge in which the energy level of1008

Player 1 is low enough at some component to drop below 0, and her own energy level is high1009

enough to stay non-negative after taking this edge.1010

Formally, for all k ∈ [d1], we construct the (d2 + 1)-VASS Vk = 〈Qk, Tk〉 as follows.1011

Let Qk = S ∪ {ssink} for some ssink /∈ S, and T
′

k = {〈u, z, v〉 : 〈u, v〉 ∈ E, for all i ∈1012

[d2] we have that z[i] = τ(〈u, v〉)[2][i], and z[d2 + 1] = τ(〈u, v〉)[1][k]}. That is, the vectors1013

on the transitions in T ′

k represent the update to the energy vector of Player 2 in their first1014

d2 components, and the update of the k-th component of Player 1 in their last component.1015

We define the set of transitions T ′′

k = {〈u, z, ssink〉 : there is v ∈ S such that 〈u, z, v〉 ∈ T ′

k}.1016

That is, for every transition in T ′

k leaving a state u, there is a transition in T ′′

k leaving u with1017

the same update and entering ssink. For i ∈ [d2 + 1] and z ∈ Z, let bzi to be the vector of1018

dimension d2 + 1 with z in the i-th component, and 0 in all other components. We define1019

the set of transitions T ′′′

k = {〈ssink, b−1
i , ssink〉 : i ∈ [d2]} ∪ {〈u, b1d2+1, u〉 : u ∈ V \ {ssink}}.1020

That is, ssink has self loops that can decrease the components that belong to Player 2. Also,1021

every state but the sink has a self loop that increases the component that belongs to Player 1.1022

We define the set of transitions of V to be Tk = T
′

k ∪ T
′′

k ∪ T
′′′

k ∪ {〈ssink, 0d2+1, ssink〉}. Let1023

vkinit ∈ Zd2+1 be the vector with vkinit[i] = x2
0[i] for all i ∈ [d2], and vkinit[d2 + 1] = x1

0[k] + 1.1024

That is, vkinit represents x2
0 in its first d2 components, and x1

0[k] + 1 in its last component.1025

Note that we added 1 to x1
0[k]. That is because in Vk we want to let the last component1026

reach 0, if in the corresponding computation in G it becomes negative.1027

We claim that Player 2 wins G iff there is k ∈ [d1] such that 〈sinit, vkinit〉 →∗ 〈ssink, 0d2+1〉1028

in Vk. It is clear that Player 2 wins G iff there is k ∈ [d1] such that Player 2 can lead1029



O. Kupferman and N. Shamash Halevy XX:25

the computation in G to a configuration in which Player 1 runs out of energy in her k-th1030

component, while keeping her own energy vector non-negative during the whole computation.1031

Let p · s be the computation before the final step in which Player 1 drops below 0 in1032

the k-th component. Thus, there is an edge e = 〈s, s′〉 ∈ E for some s′ ∈ S, such that1033

e2(p·s)+τ(e)[2] ≥ 0, but e1(p·s)[k]+τ(e)[1][k] < 0. The sequence of successive configurations1034

in Vk that witnesses 〈sinit, vkinit〉 →∗ 〈ssink, 0d2+1〉 starts with p · s. When reaching s, the1035

current vector v has e2(p · s) for its first d2 components, and e1(p · s)[k] in its last one. Now,1036

we can take the self loop 〈s, b1d2+1, s〉 exactly −(e1(p · s)[k] + τ(e)[1][k]) times, setting the1037

k-th component to −τ(e)[1][k]. Then, we move to the sink with the transition that adds1038

τ(e)[2] in the first d2 components, and τ(e)[1][k] in the last one. Note that now the vector1039

has e2(p · s) + τ(e)[2] in its first d2 components, and 0 in its last one. Now, for all i ∈ [d2],1040

we take the loop 〈ssink, b−1
i , ssink〉 exactly e2(p · s)[i] + τ(e)[2][i] times, setting to 0 the i-th1041

component. After that, we reached the configuration 〈ssink, 0d2+1〉. Note that the only way1042

to reach 〈ssink, 0d2+1〉 is by reaching a position s ∈ S with a vector in which the first d21043

components are big enough to survive the transition to the sink, and the last one is small1044

enough to be set to 0, after a (maybe empty) sequence of incrementation-loops at s. Since1045

we start with x1
0[k] + 1 at the (d2 + 1)-th component, this sequence of configuration induces1046

a computation in G in which the k-th component of Player 1 drops below 0.1047

A.11 Deciding whther Player 2 (∞, m2)-wins1048

I Theorem 18. Given a BBEG G and m2 ∈ N, determining whether Player 2 (∞,m2)-wins1049

G is decidable.1050

Proof. Assume that G is a (d1, d2)-BBEG. As in (m1,∞)-winning for Player 1, we can1051

consider the product of G with a transducer T for Player 2 with m2 states. This product is a1052

BBEG all whose positions are owned by Player 1. It is easy to see that Player 1 wins in this1053

product iff it contains infinite computation in which her energy level is always non-negative,1054

or a finite prefix of a computation that leads to a position in which the energy level of1055

Player 2 is negative in some component while the energy vector of Player 1 along this prefix1056

is always non-negative. Checking the second condition can be done by a reduction to VASS,1057

with a construction similar to the one in the proof of Lemma 12. Checking the first condition1058

can also be reduced to VASS, but is more complicated. So, for the sake of decidability, it is1059

sufficient to note that the first condition can also be solved by solving a d1-dimensional energy1060

game, in which we ignore the components that belong to Player 2. From [20, 7], the given1061

initial-credit problem of d1-dimensional energy game can be solved in (d1 − 1)−EXPTIME,1062

and is thus decidable.1063

It follows that for every transducer with m2 states for Player 2, we can check whether1064

Player 1 wins when Player 2 follows this transducer. Moreover, if Player 1 does not win,1065

Player 2 does, and so the transducer T induces a winning strategy for her. Thus, Player 21066

(∞,m2)-wins G iff she wins with some transducer with m2 states, that is, iff she wins in at1067

least on of these products, which is decidable. J1068

A.12 On the size of the strategy required for Player 11069

The two theorems below show that even when we fix the size of the strategy of Player 2, the1070

size of the strategy of Player 1 depends on both the number of positions in the game and the1071

updates in its transitions.1072

I Theorem 19. There are n,m2 ∈ N such that for all m1 ∈ N, there is a BBEG Gm1 with1073

n states such that Player 1 (m1 + 2,m2)-wins Gm1 , but Player 2 (m1 + 1,m2)-wins Gm1 .1074
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Proof. We show the claim holds with n = 3 and m2 = 0. For all m1 ∈ N, consider the1075

BBEG Gm1 in Figure 6, with initial vector 0 for each player. Moving fron s1 to s2, Player 11076

updates the two energy vectors to m1. Since s3 is a losing position for Player 1, Player 11077

must take the transition from s2 to s3 when the energy vector of Player 2 is 0. In order to do1078

so, she must loop at s2 exactly m1 times. If she loops less than m1 times, the computation1079

reaches s3, which makes Player 1 lose. If she loops at s2 more than m1 times, she makes1080

herself loose at s2. A transducer with m1 + 2 states enables Player 1 remember how many1081

s2-loops are left before moving to s3 (the first state is for moving from s1 to s2, and the last1082

one is for moving to s3 and stay there), while every transducer with less than m1 + 2 states1083

induces a losing strategy for Player 1. J1084

s1 s2 s3
m1,m1

−1,−1

0,−1

−1, 0

1

Figure 6 The BBEG Gm1

We now show that the strategy size of Player 1 depends on number of positions. This1085

stays valid even if the updates on the edges and the strategy size of Player 2 are fixed.1086

I Theorem 20. There are w,m2 ∈ N such that for all m1 ∈ N, there is a BBEG G′m1
in1087

which all updates are in {−w,−(w − 1), ..., w − 1, w}, such that Player 1 (m1 + 2,m2)-wins1088

G′m1
, but does not (m1 + 1,m2)-wins G′m1

.1089

Proof. We show the claim holds with w = 1 and m2 = 0. For all m1 ∈ N, consider the1090

BBEG G
′

m1
in Figure 7, with initial energy 0 for each player. Note that G′

m1
is essentially1091

the BBEG Gm1 in Figure 6, except that the first transition is replaced by m1 transitions1092

labeled by (1, 1). The proof is similar to the proof of Theorem 19. J1093

s1 ... sm1 t
1, 1 1, 1

−1,−1

0,−1

−1, 0

1

Figure 7 The BBEG G
′
m1

A.13 Proof of Theorem 161094

Let G = 〈S1, S2, sinit, E, d1, d2, x
1
0, x

2
0, τ, j, b〉 be a one-player-bounded BBEG. Assume first1095

that j = 2, thus b ∈ Zd2 is a bound vector for Player 2. We start with the losing semantics and1096

define the d1-dimensional energy game G′ = 〈S′1, S′2, 〈sinit, x2
0〉, E′, τ ′〉 as follows. Let V be1097

the set of all non-negative vectors in Zd2 that are bounded by b. That is, V = {v ∈ Zd2 : 0 ≤1098

v[i] ≤ b[i] for all i ∈ [d2]}. Let S′1 = S1×V and S′2 = S2×V . Also, let S = S′1∪S′2∪{ssink},1099

for some ssink /∈ S1 ∪ S2. We now define a set of edges E′ ⊆ S′ × S′ and a cost function1100

τ ′ : E′ → Zd1 . For all e = 〈s, s′〉 ∈ E and v, v′ ∈ V such that v′ = v + τ(e)[2], we have1101

the edge e′ = 〈〈s, v〉, 〈s′, v′〉〉 in E′, with τ ′(e′) = τ(e)[1]. For all e = 〈s, s′〉 ∈ E and v ∈ V1102

such that v + τ(e)[2] /∈ V , we have the edge e′ = 〈〈s, v〉, ssink〉 in E′, with τ ′(e′) = τ(e)[1].1103
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We also have an edge 〈ssink, ssink〉 in E′, with τ ′(〈ssink, ssink〉) = 0d1 . Note that the cost1104

function τ ′ defines the cost for Player 1 only, while S′ maintains the energy level of Player 2.1105

We claim Player 1 wins in G iff Player 1 wins in G′ with initial energy x1
0. Indeed, every1106

computation c in G induces a computation c′ in G′, such that the current energy level of1107

Player 2 in c′ is maintained at the second component of the current position in c′, and the1108

energy level of Player 1 in c is the same as in c′. Thus, if c is infinite, so is c′. Also, if at1109

some point during c, Player 2 exceeds her boundaries (by going below 0 or above b at some1110

component), then c′ reaches ssink, which is a winning position for Player 1. Finally, if at1111

some point during c, the energy level of Player 1 drops below 0, then so it does in c′. Hence,1112

in order to decide the winner in G, we can determine the winner in G′. Since the given1113

initial-credit problem for d1-dimensional energy game is decidable in (d1 − 1)−EXPTIME1114

[20, 7], we can decide the winner of a one-player-bounded BBEG with j = 2.1115

Now, in the truncated semantics, since there are finitely-many possible energy vectors for1116

Player 2, we can also expand the position space to maintain them. The only difference is that1117

when an overflow in the energy of Player 2 occurs in some components, instead of reaching1118

the sink, the computation stays in positions that correspond to the maximum bound of those1119

components.1120

We continue to the case j = 1, thus b ∈ Zd1 is a bound vector for Player 1. We describe1121

the construction for the losing semantics, the extension to the truncated semantics is exactly1122

as in the j = 2 case.1123

We define the d2-dimensional energy-reachability game G′ = 〈S′1, S′2, 〈sinit, x0〉, E′, τ ′〉 as1124

follows. Let V be the set of all non-negative vectors in Zd1 that are bounded by b. That1125

is, V = {v ∈ Zd1 : 0 ≤ v[i] ≤ b[i] for all i ∈ [d1]}. Let S′1 = S1 × V and S′2 = S2 × V .1126

Also, let S = S′1 ∪ S′2 ∪ {ssink}, for some ssink /∈ S1 ∪ S2. We now define a set of edges1127

E′ ⊆ S′ × S′ and a cost function τ ′ : E′ → Zd2 . For all e = 〈s, s′〉 ∈ E and v, v′ ∈ V such1128

that v′ = v+ τ(e)[1], we have the edge e′ = 〈〈s, v〉, 〈s′, v′〉〉 in E′ with τ ′(e′) = τ(e)[2]. For all1129

e = 〈s, s′〉 ∈ E and v ∈ V such that v+τ(e)[1] /∈ V , we have the edge e′ = 〈〈s, v〉, ssink〉 in E′1130

with τ ′(e′) = τ(e)[2]. We also have an edge 〈ssink, ssink〉 in E′ with τ ′(〈ssink, ssink〉) = 0d2 .1131

Note that the cost function τ ′ defines the cost for Player 2 only, while S′ maintains the1132

energy level of Player 1. In G′, Player 2 wins if she can reach ssink, while keeping her own1133

energy vector non-negative. Otherwise, Player 1 wins.1134

By [16], one-dimensional energy-reachability games can be decided in NP∩coNP. Since we1135

are interested in the multi-dimensional case, we give here a brief description of an algorithm1136

that determines the winner in multi-dimensional energy-reachability games: First, note that1137

without the energy constraints, thus in a plain reachability game played on the game graph1138

G′ with objective ssink, one can compute in polynomial time the set Attr of winning positions1139

for the reacher, namely for Player 2. From every position in Attr, Player 2 has a memoryless1140

winning strategy, called the attractor strategy. Since the strategy is winning a memoryless, it1141

includes no cycles, and so we can assume that every play that is consistent with this strategy1142

is a simple path in the graph. Now, adding the energy constraint to the picture, we get that1143

if Player 2 reaches a position in Attr with energy level that is sufficient for traversing a simple1144

path in G′ she can win by using her attractor strategy. Moreover, such a sufficient energy1145

level can be computed, for example |E| · |W |d2 , where |W | is the largest absolute value of an1146

update, is sufficient. Hence, we can extend the position-space of G′ to maintain the energy1147

level of Player 2 (with the bound of |E| · |W |d2), and then determine the winner of a plain1148

reachability game on this extended graph.1149
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