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Abstract
Traditional synthesis algorithms return, given a specification over finite sets of input and output
Boolean variables, a finite-state transducer all whose computations satisfy the specification. Many
real-life systems have an infinite state space. In particular, behaviors of systems with a finite control
yet variables that range over infinite domains, are specified by automata with infinite alphabets.
A register automaton has a finite set of registers, and its transitions are based on a comparison of
the letters in the input with these stored in its registers. Unfortunately, reasoning about register
automata is complex. In particular, the synthesis problem for specifications given by register
automata, where the goal is to generate correct register transducers, is undecidable.

We study the synthesis problem for systems with a bounded number of registers. Formally,
the register-bounded realizability problem is to decide, given a specification register automaton A

over infinite input and output alphabets and numbers ks and ke of registers, whether there is a
system transducer T with at most ks registers such that for all environment transducers T ′ with at
most ke registers, the computation T‖T ′, generated by the interaction of T with T ′, satisfies the
specification A. The register-bounded synthesis problem is to construct such a transducer T , if exists.
The bounded setting captures better real-life scenarios where bounds on the systems and/or its
environment are known. In addition, the bounds are the key to new synthesis algorithms, and, as
recently shown in [24], they lead to decidability. Our contributions include a stronger specification
formalism (universal register parity automata), simpler algorithms, which enable a clean complexity
analysis, a study of settings in which both the system and the environment are bounded, and a
study of the theoretical aspects of the setting; in particular, the differences among a fixed, finite,
and infinite number of registers, and the determinacy of the corresponding games.
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1 Introduction

Synthesis is the automated construction of a system from its specification. The specification
distinguishes between outputs, generated by the system, and inputs, generated by its
environment. The system should realize the specification, namely satisfy it against all
possible environments. Thus, for every sequence of inputs, the system should generate a
sequence of outputs so that the induced computation satisfies the specification [10, 31]. The
systems are modelled by transducers: automata whose transitions are labeled by letters from
the input alphabet, which trigger the transition, and letters from the output alphabet, which
are generated when the transition is taken. Since its introduction, synthesis has been one
of the most studied problems in formal methods, with extensive research on wider settings,
heuristics, and applications [25, 1].

Until recently, all studies of the synthesis problem considered finite state transducers that
realize specifications given by temporal-logic formulas over a finite set of Boolean propositions
or by finite-state automata. Many real-life systems, however, have an infinite state space.

© Ayrat Khalimov and Orna Kupferman;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 21; pp. 21:1–21:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ayrat.khalimov@gmail.com
mailto:orna@cs.huji.ac.il
https://doi.org/10.4230/LIPIcs.CONCUR.2019.21
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


21:2 Register-Bounded Synthesis

One class of infinite-state systems, motivating this work, consists of systems in which the
control is finite and the source of infinity is the domain of the variables in the systems.
This includes, for example, data-independent programs [38, 21, 27], software with integer
parameters [5], communication protocols with message parameters [11], datalog systems with
infinite data domain [4, 37], and more [8, 6]. Lifting automata-based methods to the setting
of such systems requires the introduction of automata with infinite alphabets. The latter
include registers [34], pebbles [29, 35], or variables [19, 20], or handle the infinite alphabets
by attributing it by labels from an auxiliary finite alphabet [3, 2].

A register automaton [34] has a finite set of registers, each of which may contain a letter
from the infinite alphabet. The transitions of a register automaton do not refer explicitly to
each of the (infinitely many) input letters. Rather, they compare the letter in the input with
the content of the registers, and may also store the input letter in a register. Several variants
of this model have been studied. For example, [22] forces the content of the registers to be
different, [29] adds alternation and two-wayness, [23] allows the registers to change their
content nondeterministically during the run, and [36] adds the ability to check for uniqueness
of the input letter. Likewise, register transducers are adjusted to model systems whose
interaction involves input and output variables over an infinite domain: their transitions are
labeled by guards that compare the value in the input with the content of the registers. In
addition, while taking a transition, the transducer stores this value in some of its registers
and outputs a value stored in one of its registers. For example, a transition of a register
transducer can be “in state q5, if the value in the input is not equal to the value stored in
register #1, then store the value in the input into register #2, output the value stored in
register #1, and transit to state q3”. A register automaton can thus specify properties like
“every value read in the input in two successive cycles is output in the next cycle”. For more
elaborated examples, see Examples 1 and 2.

The transition to infinite alphabets makes reasoning much more complex. In particular,
the universality and containment problems for register automata are undecidable [29], and
so is the synthesis problem for specifications given by register automata [14]. While the
specifications used for the undecidability result in [14] are register automata with a fixed
number of registers, the realizing transducers are equipped with an unbounded queue of
registers: they can push the inputs into the queue, and later compare the inputs with the
values in the queue. This, for example, is helpful for realizing specifications like “every value
that appears in the input has to eventually appear on the output twice”. While the latter can
be specified by a register automaton with a single register, a realizing transducer for it may
behave as follows: it queues every incoming value into its queue, outputs the value stored
in the head of the queue twice, and dequeues it — which requires an unbounded queue of
registers. Moreover, as shown in [16], the synthesis problem stays undecidable even when
the number of registers in the realizing transducer is finite, yet not known in advance. In
[24], it is shown that bounding the number of registers of the realizing transducer makes the
synthesis problem decidable. Essentially, such a bound enables an abstraction of the infinite
number of register valuations to a finite number of equivalence relations. In more details,
since the transitions of the specification register automaton only compare the value in the
input with the content of its registers, we can abstract the exact values stored in the registers
and only maintain their partition into equivalence classes: two registers are in the same class
if they agree on the values stored in them. In particular, such a partition fixes the transition
that the automaton should take, and can be updated whenever the input value is stored in
some register.

In this paper we offer a comprehensive study of the synthesis problem for systems
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with a bounded number of registers. As has been the case with bounded synthesis in the
finite-state setting [32, 13, 17, 26], the motivation for the study is both conceptual and
computational: First, the bounded setting captures better real-life scenarios where bounds
on the systems and/or its environment are known. Second, the bounds are the key to new
synthesis algorithms, and in the case of systems with an infinite variable domain, they lead to
decidability. Note that the only parameter we bound is the number of registers. In particular,
the size of the alphabet stays infinite, and the size of the system and its environment stays
unbounded1.

Let us start with the conceptual motivation. It is by now realized that requiring a
realizing system to satisfy the specification against all possible environments is often too
demanding. Dually, allowing all possible systems is perhaps not demanding enough. This issue
is traditionally approached by adding assumptions on the system and/or the environment,
which are modeled as part of the specification (see e.g. [9]). In bounded synthesis in the
finite-state setting, the assumptions on the system and its environment are given by means
of bounds on the sizes of their state space [32, 26]. In the setting of register transducers,
bounding the size of the state spaces of the system and its environment is not of much interest,
as a register may be used to store the value of the state. Thus, the interesting parameter
to bound is the number of allowed registers. Indeed, this setting corresponds to systems
with a finite control and a finite number of memory elements, each maintaining a value from
an infinite domain. Formally, the register-bounded realizability problem is to decide, given a
specification register automaton A over infinite input and output alphabets and numbers ks

and ke of registers, whether there is a system transducer T with at most ks registers such
that for all environment transducers T ′ with at most ke registers, the computation T‖T ′,
generated by the interaction of T with T ′, satisfies the specification A. The register-bounded
synthesis problem is to construct such a transducer T , if exists.

We continue to the computational motivation and describe our contribution. Our
specifications are given by universal register parity automata on infinite words (reg-UPW, for
short). Thus, each configuration of the automaton may have several successor configurations,
and an infinite word is accepted if all the possible runs on it are accepting. Reg-UPWs
are more expressive than deterministic register parity automata or universal register Büchi
automata, and are more succinct than universal register co-Büchi automata. Reg-UPWs
are incomparable with nondeterministic register parity automata (reg-NPW). There are
good reasons to work with the universal (rather than nondeterministic) model. First, basic
questions are undecidable for reg-NPW. In particular, [12] shows undecidability of the
universality problem for nondeterministic register weak automata with a single register,
which can be shown to imply undecidability of reg-NPW register-bounded synthesis. Second,
as we demonstrate in Section 2, the class of properties that are expressible by reg-UPWs is
more interesting in practice. In particular, reg-UPWs are easily closed under conjunction,
which is crucial for synthesis.

We describe a simple algorithm for the register-bounded synthesis problem for reg-UPW
specifications ([24] only handles co-Büchi automata), which enables a clean complexity
analysis ([24] only shows decidability). We study the settings in which both the system and
the environment are bounded ([24] only bounds the system), and we study the theoretical

1 We note, however, that bounding the number of states in the realizing transducer has proven to be helpful
also in the context of systems over infinite alphabets. For example, [18] describes a CEGAR-based
synthesis algorithm that approaches the general undecidable synthesis problem by iteratively refining
under-approximating systems of bounded sizes.
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aspects of the setting; in particular, the differences between a fixed, a finite yet unbounded,
and an infinite number of registers, and the determinacy of the corresponding games.

Our synthesis algorithm reduces the register-bounded synthesis problem to the traditional
synthesis problem. Specifically, given a specification reg-UPW A with kA registers, and
numbers ks and ke, we construct a (register-less) UPW A′ that abstracts the values in the
registers of A and consider instead equivalences among registers in the three sets of registers
involved: these of A, and these of the system and environment transducers. The synthesis
problem for A is then reduced to that of A′. In Section 3 we solve the case where the
environment is not bounded (thus ke =∞) and then in Section 4 continue to the general case.
Our complexity analysis carefully takes into account the fact that in the determinization of
A′, the registers of A and the environment behave universally, whereas these of the system
behave deterministically. Accordingly, the complexity of the register-bounded synthesis
problem for A with n states, finite alphabet of size m, and index c, can be solved in time
(cmn(ks + ke + kA))O(cn(ks+ke+kA)(ke+kA+1)). Thus, it is polynomial in m, exponential in c,
n, and ks, and doubly-exponential only in kA and ke. Then, in Section 5 we also study
determinacy of register-bounded synthesis and show that for all ks ∈ N and ke ∈ N∪{∞}, the
problem is not determined: there are specifications that are neither realizable by a bounded
system (with respect to bounded environments), nor their negations are realizable by a
bounded environment (with respect to bounded systems). This corresponds to the picture
obtained for bounded synthesis for finite-state systems, where the size of the state space is
bounded (we bound only the number of registers) [26]. Finally, in Section 6, we examine
the difference in the strength of systems and environments with a fixed, finite, or infinite
number of registers, and the existence of a cut-off point, namely a finite-model property
characterizing settings where a finite and bounded number of registers suffices.

2 Preliminaries

2.1 Register Automata
Let ΣI and ΣO be two finite alphabets and let D be an infinite domain of data values. We
consider systems that get inputs in ΣI × D and respond with outputs in ΣO × D. Let
Σ = ΣI × ΣO. Computations of systems as above are words in 〈σ0, i0, o0〉〈σ1, i1, o1〉... ∈
(Σ×D ×D)ω. Register automata specify languages of such words. Let B = {true, false}. A
k-register word automaton is a tuple A = 〈Σ, Q, q0, R, v0, δ, α〉, where Σ is a finite alphabet,
Q is the set of states, q0 ∈ Q is an initial state, R is a set of k registers, v0 ∈ DR is an initial
register valuation, δ : Q × (Σ × BR × BR) → 2Q×BR is a transition function, and α is an
acceptance condition (we later define several acceptance conditions). Intuitively, when A
is in state q and reads a letter 〈σ, i, o〉 ∈ Σ×D ×D, it compares i and o with the content
of its registers and branches into several new configurations according to the result of this
comparison. In more detail, rather than specifying a transition for each element in Σ×D×D,
the transition function δ specifies a transition for each element in Σ× BR × BR, where the
two guards in BR compare the values stored in the registers with i and o. Then, δ directs A
into a set of pairs in Q×BR, each describing a successor state and a storing mask, indicating
which registers are going to store i.

A configuration of A is a pair 〈q, v〉 ∈ Q×DR, describing the state that A visits and the
content of its registers. A run of A starts in the configuration 〈q0, v0〉, and continues to form
an infinite sequence of successive configurations. In order to define runs formally, we first
need some notations. Given a valuation v ∈ DR and a value d ∈ D, let v ∼ d denote the
Boolean assignment g ∈ BR that indicates the agreement of v with d. Thus, for every r ∈ R,
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we have g(r) = true iff v(r) = d. The function update : DR×D×BR → DR maps a valuation
v ∈ DR, a value d ∈ D, and a storing mask a ∈ BR, to the valuation obtained from v by
changing the value stored in registers that are positive in a to d. Formally, for every r ∈ R,
we have that update(v, d, a)(r) is d if a(r) = true and is v(r) otherwise. Note that it need
not be the case that update(v, d, a) ∼ d = a. Indeed, if v(r) = d, then update(v, d, a)(r) = d

regardless of a(r).
For two configurations 〈q′, v′〉 and 〈q, v〉 in Q×DR, and a triple 〈σ, i, o〉 ∈ Σ×D ×D,

we say that 〈q′, v′〉 is a 〈σ, i, o〉-successor of 〈q, v〉 if there exists a ∈ BR such that 〈q′, a〉 ∈
δ(q, 〈σ, v ∼ i, v ∼ o〉) and v′ = update(v, i, a).

Now, a run of A on a word w = 〈σ0, i0, o0〉〈σ1, i1, o1〉... ∈ (Σ × D × D)ω is an infinite
sequence 〈q0, v0〉〈q1, v1〉... ∈ (Q×DR)ω of configurations such that for every j ≥ 0, we have
that 〈qj+1, vj+1〉 is a 〈σj , ij , oj〉-successor of 〈qj , vj〉. Note that there may be several different
runs on the same word. Note also that since δ may return an empty set of possible transitions,
a configuration 〈qj , vj〉 need not have 〈σj , ij , oj〉-successors. There, the sequence of successive
configurations is finite, and is not a run.

When A is a parity automaton, α : Q → {0, ..., c − 1}, for an index c ∈ N, a run ρ is
accepting if the maximal rank that is visited by ρ infinitely often is even. Formally, ρ =
〈q0, v0〉〈q1, v1〉... is accepting if max{j ∈ {0, ..., c− 1} : α(ql) = j for infinitely many l ≥ 0} is
even. The co-Büchi acceptance condition is a special case of parity, with c = 2. Thus, ρ is
accepting if vertices 〈q, v〉 with α(q) = 1 are visited only finitely often. When A is universal,
it accepts the word w if all the runs of A on w are accepting. Note that since we require runs
to be infinite, the universal quantification on the runs means that a configuration with no
successors is like an accepting configuration: once we reach it, there are no restrictions on the
suffix of the word. The language of A, denoted L(A), is the set of all words that A accepts.
We sometimes use w |= A to indicate that w ∈ L(A). We use reg-UPW and reg-UCW to
abbreviate a universal register parity and co-Büchi automata, respectively. A (register-less)
UPW can be viewed as a special case of a reg-UPW with no registers. In particular, it has
no initial valuation and its transition function is of the form δ : Q× Σ→ 2Q.

I Example 1. The reg-UCW A appearing in Figure 1 specifies an arbiter with a single output
signal ack (that is, ΣI is a singleton, and we ignore it, and ΣO = 2{ack}) that gets in each
moment in time an input data value i, and outputs either ack or ¬ack along with an output
data value o. It accepts a word if every input data value different from the previous one is
eventually outputted with ack. The acceptance condition α requires runs to visit q1 only
finitely often. The reg-UCW A has a single register, thus R = {r1}, and we describe vectors
in Σ × BR × BR by triples in {ack,¬ack} × {0, 1} × {0, 1}, possibly replacing some of the
parameters by _, indicating that both values of this parameter apply. We continue to describe
the transition function. First, δ(q0, 〈_, 1,_〉) = {〈q0, 0〉}. That is, if the input data value
agrees with the one stored in r1, we only loop in q0. Then, δ(q0, 〈_, 0,_〉) = {〈q0, 1〉, 〈q1, 1〉}.
That is, if the input data value differs from the one stored in r1, then A both loops in q0
and sends a copy to q1, and stores the value of the input data value in r1. In state q1, we
have δ(q1, 〈ack,_, 1〉) = ∅, thus the copy sent to q1 fulfils its mission when it reads an ack
with an output data value that agrees with the one stored in r1. In all other cases, the copy
stays in q1. Thus, δ(q1, 〈¬ack,_,_〉) = δ(q1, 〈ack,_, 0〉) = 〈q1, 0〉. The parity acceptance
condition α = {q0 7→ 0, q1 7→ 1} then guarantees that all copies sent to q1 eventually fulfil
their missions. We note that the universality of A is used in order to detect all data values
that are not stored in r1: a copy of the automaton is launched for each of them. Such a
detection is impossible in a deterministic or even a nondeterministic register automaton.
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q0 q1

i = r1
i 6= r1/store1

i 6= r1/store1

¬ack ∨ o 6= r1

Figure 1 The reg-UCW A. The edge labels are symbolic, where the expressions i 6= r1 and i = r1

mean that the i-guard is 0 and 1 respectively, and the expression o 6= r1 means that the o-guard is
0. The label store1 means the storing mask is 1, while its absence means it is 0. The state q1 is
doubly-circled, indicating that a run is accepting iff it visits q1 only finitely often.

2.2 Register Transducers
Register transducers model systems with inputs in ΣI×D and outputs in ΣO×D. Every such
system implements a strategy (ΣI ×D)+ → ΣO ×D, describing the output it generates after
reading a sequence of inputs. A register transducer is a tuple T = 〈ΣI ,ΣO, S, s0, R, v0, τ〉,
where ΣI and ΣO are input and output finite alphabets, S is a set of states, s0 ∈ S is an initial
state, R is a set of registers, v0 ∈ DR is an initial register valuation, and τ : S× (ΣI ×BR)→
S ×BR ×ΣO ×R is a transition function. Intuitively, when T is in state s and reads a letter
〈i, i〉 ∈ ΣI × D, it compares i with the content of its registers. Depending on i and the
comparison, it transits deterministically to a successor state and may store the data value i

into its registers. It also outputs a letter in ΣO and a value stored in one of the registers.
Note that a register may store either its initial value or some value seen earlier as a data
input.

Formally, a configuration of T is a pair in S × DR, and successive configurations are
defined in a way similar to the one defined for automata, except that T is deterministic: given
a configuration 〈s, v〉 ∈ S ×DR and an input 〈i, i〉 ∈ ΣI ×D, let τ(s, 〈i, v ∼ i〉) = 〈s′, a, o, r〉.
Then, the 〈i, i〉-successor of 〈s, v〉 is 〈s′, update(v, i, a)〉.

Given an input word w = 〈i0, i0〉〈i1, i1〉... ∈ (ΣI ×D)ω, the run of T on w is the sequence
〈s0, v0〉〈s1, v1〉... ∈ (S ×DR)ω, where for all j ≥ 0, we have that 〈sj+1, vj+1〉 is the 〈ij , ij〉-
successor of 〈sj , vj〉. For every j ≥ 0, let τ(sj , ij , vj ∼ ij) = 〈sj+1, aj , oj , rj〉. Then, the
computation of T on w is the sequence 〈〈i0, o0〉, i0, o0〉〈〈i1, o1〉, i1, o1〉... ∈ ((ΣI×ΣO)×D×D)ω

such that for every j ≥ 0, we have that oj = update(vj , ij , aj)(rj). Thus, the transducer
moves from sj to sj+1, stores ij in registers that are positive in aj , and then outputs oj and
the (updated) content of register rj . A (register-less) transducer is a special case of a register
transducer with no registers. In particular, it has no initial valuation and its transition
function is of the form τ : S × ΣI → S × ΣO.

For a register transducer T and a reg-UPW A, we say that T realizes A, denoted T |= A,
if for all input words w ∈ (ΣI ×D)ω, the computation of T on w is in the language of A.

I Example 2. Figure 2 describes a register transducer that realizes the reg-UCW from
Example 1. The input alphabet ΣI is a singleton and we ignore it. The output alphabet
ΣO = 2{ack}, and the register set R = {r1, r2}. The transducer loops in the initial state
s0 if the current data input equals the previous data input (which is stored in register r1).
Otherwise (i 6= r1), the transducer stores the new data value into r1, does not raise ack,
outputs the value of register r1 (it has to output something), and moves into state s1. Now,
if it does not see a new data input (i = r1), then—in order to acknowledge the previous
data input—it raises ack, outputs the previous data input from r1, and returns into s0.
Alternatively, if in state s1 the transducer sees a new data input (i 6= r1), then it stores into
r2, raises ack, outputs the previous data input from r1, and moves into s2. From there, if no
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new data input was seen, the transducer moves into s3, while outputting the value of r2 and
raising ack. And so on. Thus, in states s0 and s1 register r1 contains the previous data input,
while in states s2 and s3 it is stored in register r2. Finally, register r1 is initialized with the
same value as the automaton register, while r2 can start with anything. We conclude with a
remark that there is a simpler transducer that realizes the same reg-UCW: It always raises
ack, stores alternatingly into r1 and r2 while outputting alternatingly the value of r2 and r1.
But such a transducer produces spurious acks, while our transducer does not.

s0 s1 s2 s3

i = r1/〈¬ack , r1〉

i 6= r1/〈¬ack , r1, store1〉

i = r1/〈ack , r1〉

i 6= r1/〈ack , r1, store2〉

i 6= r2/〈ack , r2, store1〉

i = r2/〈ack , r2〉

i 6= r2/〈¬ack , r2, store2〉

i = r2/〈¬ack , r2〉

Figure 2 A register transducer that realizes the reg-UCW A from Example 1. The edge labeling
for ΣO and the guards is symbolic, and is similar to that in Figure 1.

2.3 Synthesis with an Infinite or Unbounded Number of System
Registers

The realizability problem is to decide, given a reg-UPW A over ΣI × ΣO ×D ×D, whether
there is a register transducer all whose computations are accepted by A. The synthesis
problem is to construct such a transducer, if exists.

The realizability and synthesis problems in the context of specifications and systems with
an infinite data domain was first studied in [14]. The transducers in [14] have an infinite
number of registers, all initialized to the same value. The automata in [14] are universal
register automata with a variant of weak acceptance condition, and additionally do not allow
for register re-assignment. It is shown in [14] that the synthesis problems is undecidable,
already for automata with only two registers. Since our automata and transducers are more
powerful, undecidability applies to our setting. Thus, when the number of registers in the
system is infinite, the realizability and synthesis problems are undecidable.

Consider now the case where the number of registers is finite but not fixed a-priori. It
is shown in [12] that the nonemptiness problem for universal 2-register automata on finite
words is undecidable. It is not hard to reduce their nonemptiness problem to the synthesis
problem for 2-register UPWs, such that the realizing system outputs an accepted word, which
implies the undecidability of the latter. Thus, we get the following.

I Theorem 3 ([12, 14]). The synthesis problem of transducers with an infinite or a finite
but unbounded number of registers for specifications given by 2-register UPWs is undecidable.
In the case of an infinite number of registers, undecidability holds even when the transducer
registers are initialized with the same value.

Proof. We elaborate on the case of a finite number of system registers. LetA = 〈Σ, Q, q0, R, v0, δ, α〉
be a universal 2-register automaton on finite words that in every transition reads a single
data value i and ignores the data value o. Thus, essentially it defines a language of data
words in (Σ×D)∗. Such automata are considered in [12], and there it is proven that the
nonemptiness problem is undecidable. Recall that since A is on finite words, its acceptance
condition α ⊆ Q. We now construct a 2-register UPW A′ = 〈Σ′, Q′, q0, R, v0, δ

′, α′〉 such that
A′ is realizable iff A is nonempty, as follows.

The output finite alphabet ΣO = Σ ∪̇ {e} contains a new letter e. The input finite
alphabet ΣI is a singleton. The finite alphabet of A′ is Σ′ = ΣI × ΣO.
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The state set Q′ = Q ∪̇ {qrej, qacc} contains two new states, where qrej is a rejecting sink
and qacc is an accepting sink. Automaton A′ starts in the same initial state as A, and
with the same initial register valuation v0.
α′ maps qrej to 1 and all other states to 0.
The transition function δ′ : Q′ × (Σ′ × BR × BR)→ 2Q′×BR×BR is as follows. (Note that
we need the right side with two assignments, one for i and one for o.) First, δ′ contains
the original transitions of δ, adapted so that o in A′ plays the role of i in A. Formally,
〈q′, ao, ai〉 ∈ δ′(q, 〈σ, go, gi〉) if 〈q′, ai, ao〉 ∈ δ(q, 〈σ, gi, go〉), for every q′, q ∈ Q, σ ∈ Σ, and
gi, go, ai, ao ∈ BR. Second, the automaton A′ moves into the rejecting sink qrej whenever it
reads the letter e in a state not in α∪{qacc}. Formally, δ′(q, 〈e, gi, go〉) = {〈qrej,∅,∅〉} for
every q ∈ Q\α and gi, go ∈ BR. Third, from every state in α the automaton moves into the
accepting sink qacc on reading the letter e. Formally, δ′(q, 〈e, gi, go〉) = {〈qacc,∅,∅〉} for
every q ∈ α and gi, go ∈ BR. Finally, the automaton loops in the rejecting and accepting
sinks, respectively. Formally, δ′(q, 〈σ, gi, go〉) = {〈q,∅,∅〉} for every q ∈ {qrej, qacc},
σ ∈ Σ′, and gi, go ∈ BR.

Suppose that A has an accepted finite data word w in (Σ×D)∗. Then there is transducer that
realizes A′: it outputs an accepted finite data word w, followed by 〈e,_〉 where _ is arbitrary
in D, then followed by anything. Suppose now that there is a transducer realizing A′. It is
easy to see that then the transducer must output a finite data word w ∈ (ΣO \ {e} ×D)∗
accepted by A, followed by 〈e,_〉 where _ is arbitrary in D, then followed by anything. J

3 Synthesis with a Fixed Number of System Registers

The system-bounded realizability problem is to decide, given a reg-UPW A over ΣI×ΣO×D×D
and a number ks of registers, whether there is a transducer with at most ks registers all whose
computations are accepted by A. The system-bounded synthesis problem is to construct such
a transducer, if exists.

Let A = 〈Σ, Q, q0, RA, v
A
0 , δ, α〉, and let |RA| = kA. Recall that Σ = ΣI × ΣO. We define

a UPW A′ (that is, with no registers) that abstracts the values stored in RA. Instead, A′
maintains an equivalence relation over the registers of A and the registers of the realizing
transducer, indicating which of them agree on the values stored in them.

Let Rs denote a set of ks registers, namely these of the realizing transducer (we subscript
its elements by s as this transducer models the system), and let R = RA ∪Rs. For valuations
vA ∈ DRA and vs ∈ DRs , let vA ∪ vs be the valuation in DR obtained by taking their union.
Likewise, for a valuation v ∈ DR, let vA and vs denote the projections of v on RA and Rs,
respectively. Let Π be the set of all equivalence relations over R. Consider an element π ∈ Π,
thus π ⊆ R × R. For two registers r, r′ ∈ R, we write π(r, r′) to denote that r and r′ are
equivalent in π. Note that r and r′ may be both in RA, both in Rs, or one in RA and one in
Rs. Each equivalence relation π ∈ Π induces a partition of R into equivalence classes, and we
sometimes refer to the elements in Π as partitions of R. Then, for π ∈ Π, we talk about sets
S ∈ π, where S ⊆ R, and π(r, r′) indicates that r and r′ are in the same set in the partition.
Let f : DR → Π map a register valuation v ∈ DR to the partition π ∈ Π, where for every
two registers r, r′ ∈ R, we have that π(r, r′) iff v(r) = v(r′).

Recall that we describe guards and storing masks on a set R of registers by Boolean
functions in BR. Each assignment g ∈ BR corresponds to a set of registers characterized
by g. In the sequel, we sometimes refer to Boolean assignments as sets, thus assume that
g ⊆ R, and talk about union and intersection of assignments, referring to the sets they
characterize. Consider a partition π of R and a Boolean assignment gs ⊆ Rs. We say that gs
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is π-consistent if there is an equivalence class S ∈ π∪{∅} such that S∩Rs = gs. We then say
that 〈π, gs〉 chooses S. Note that for gs = ∅, the set S is either empty or contains no system
registers, and might be not unique. For example, if RA = {#1, #2, #3, #4}, Rs = {#5, #6}, and
π = {{#1}, {#2, #3}, {#4, #5}, {#6}}, then 〈π, {#5}〉 chooses only {#4, #5}, the pair 〈π, {#6}〉
chooses only {#6}, and 〈π,∅〉 chooses {#1}, {#2, #3}, or ∅. For a set SA ⊆ RA, we say
that 〈π, gs〉 A-chooses SA if there is a set S ∈ π ∪ {∅} such that 〈π, gs〉 chooses S and
SA = S ∩ RA. Thus, 〈π, gs〉 A-chooses SA if 〈π, gs〉 chooses a set whose RA registers are
these in SA. Continuing the previous example, 〈π, {#5}〉 A-chooses {#4}, the pair 〈π, {#6}〉
A-chooses ∅, and 〈π,∅〉 A-chooses {#1}, {#2, #3}, or ∅. Finally, for a register r ∈ R, the
pair 〈π, r〉 A-chooses the unique set SA ⊆ RA if SA = S ∩RA, for the set S ∈ π such that
r ∈ S. In the example above, the pairs 〈π, #4〉 and 〈π, #5〉 both A-choose {#4}, and the pair
〈π, #6〉 A-chooses ∅.

The following lemma follows immediately from the definitions.

I Lemma 4. Consider a partition π of R = Rs ∪RA and a valuation v ∈ DR s.t. f(v) = π.
Then:

(a) for every i ∈ D, the guard vs ∼ i is π-consistent and A-chooses the guard vA ∼ i,
(b) for every guard g ∈ (π ∪ {∅}), there exists i ∈ D satisfying (v ∼ i) = g, and
(c) for every r ∈ R, the pair 〈π, r〉 A-chooses vA ∼ v(r).

Recall the function update : DR×D×BR → DR, where update(v, d, a) is obtained from v

by storing d in the registers in a. We now define a function update′ : Π×BR×BR → Π, which
adjusts the update function to the abstraction of valuations by partitions. Intuitively, for a
partition π ∈ Π, a guard g ∈ (π ∪ {∅}), and a storing mask a ⊆ R, we obtain the partition
update′(π, g, a) from π by moving the registers in a either into the equivalence class of g (if
g is not empty), or into a new equivalence class. Formally, update′(π, g, a) = {S \ a : S ∈
π\{g}}∪{g∪a}\{∅}. Note that, in particular, update′(π,∅, a) = {S\a : S ∈ π}∪{a}\{∅}.

I Lemma 5. For every valuation v ∈ DR, value i ∈ D, and storing mask a ⊆ R, we have
that f(update(v, i, a)) = update′(f(v), v ∼ i, a).

We are now ready to define the abstraction of A. In addition to ks, the abstraction is
parameterized by a partition π0 of the system and automaton registers. Given ks and π0, the
(ks, π0)-abstraction of A is the UPW A′ = 〈Σ′, Q′, q′0, δ′, α′〉 with the following components.

Q′ = Q × Π and q′0 = 〈q0, π0〉. Thus, each state in A′ is a pair 〈q, π〉, abstracting
configurations 〈q, vA〉 of A and register valuations vs of an anticipated transducer that
satisfy f(vs ∪ vA) = π.
Σ′ = Σ × BRs × Rs × BRs . Recall that in A, the transition function is δ : Q × (Σ ×
BRA × BRA) → 2Q×BRA , and when A is in configuration 〈q, vA〉 and reads a letter
〈σ, i, o〉 ∈ Σ×D ×D, it proceeds according to 〈σ, gA

i , g
A
o 〉 ∈ Σ× BRA × BRA , where gA

i

is vA ∼ i and gA
o is vA ∼ o. Also, each successor state q′ is paired with a storing mask

aA
i ∈ BRA , which induces a successor configuration 〈q′, update(vA, i, a

A
i )〉 of 〈q, vA〉 in A.

Intuitively, each letter 〈σ, gs
i , rs, a

s
i 〉 ∈ Σ′, together with the current partition, induces

choices for 〈σ, gA
i , g

A
o , a

A
i 〉 ∈ Σ× BRA × BRA × BRA which determine the transitions in A

that the abstraction follows.
For every state 〈q, π〉 ∈ Q′ and letter 〈σ, gs

i , rs, a
s
i 〉 ∈ Σ′, we have that 〈q′, π′〉 ∈

δ′(〈q, π〉, 〈σ, gs
i , rs, a

s
i 〉) iff there exist gA

i , g
A
o , a

A
i ∈ BRA such that the following condi-

tions hold.
gA
i is A-chosen by 〈π, gs

i 〉. Note that if gs
i is not π-consistent, then no such gA

i exists.
Let gi = gs

i ∪ gA
i ; note that gi ∈ (π ∪ {∅}).

CONCUR 2019
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Recall that the output value in register transducers refers to the updated register
values, namely their values in the successor configuration. Therefore, when we compare
the data output of a transducer with the register values of the automaton, we first have
to update the values of the system transducer. For this, we introduce the partition
π?. Let π? be the partition after updating the system registers in π according to the
guard gs

i and the storing mask as
i . Thus, π? = update′(π, gi, as

i ).
gA
o is A-chosen by 〈π?, rs〉. Note that since the set chosen by 〈π?, rs〉 is not empty, gA

o

is unique.
〈q′, aA

i 〉 ∈ δ(q, 〈σ, gA
i , g

A
o 〉).

We can now complete updating the partition. The partition π′ is the result of updating
the registers of A in π? according to the guard gA

i and the storing mask aA
i . Let

g?
i = gi ∪ as

i be the updated guard after system storing. Then π′ = update′(π?, g?
i , a

A
i ).

The acceptance condition of A′ is induced from the one of A. Thus, for every state
〈q, π〉 ∈ Q′, we have that α′(〈q, π〉) = α(q).

Recall that the abstraction of A is parameterized by both the number of registers that
the system transducer may have as well as an initial partition for the registers of both the
system and the automaton. Let vA ∈ DRA be a valuation of the automaton registers. A
partition π ∈ Π is consistent with vA if there is a register valuation vs ∈ DRs such that
π = f(vA ∪ vs). Thus, all automaton registers are related according to vA, and the system
registers are unrestricted.

I Example 6. Let D = N, RA = {#1, #2, #3, #4}, and Rs = {#5, #6, #7}. Then the partition
π = {{#1, #4, #5}, {#2, #6}, {#3}, {#7}} is consistent with the valuation vA ∈ DRA for which
vA(#1) = vA(#4) = 9, vA(#2) = 2, and vA(#3) = 13. Indeed, taking vs ∈ DRs with vs(#5) = 9,
vs(#6) = 2, and vs(#7) = 14 results in π = f(vA ∪ vs). Note that different valuations
vs ∈ DRs may witness the consistency of π with vA. In our example, all these with vs(#5) = 9,
vs(#6) = 2, and vs(#7) 6∈ {2, 9, 13}. Also, several different partitions may be consistent with
a given valuation vA ∈ DRA . In our example, all these in which register #1 and #4 are in the
same set, different from the (different) sets of #2 and #3.

We can now state our main theorem, relating the realizability of A with realizability of its
abstraction. Consider a ks-register ΣI/ΣO-transducer T = 〈ΣI ,ΣO, S, s0, R, v0, τ〉. We can
view T as a (register-less) Σ′I/Σ′O–transducer T ′, for Σ′I = ΣI × BR and Σ′O = BR ×ΣO ×R.
Indeed, the transition function τ : S × (ΣI ×BR)→ S ×BR ×ΣO ×R of T can be viewed as
τ ′ : S × Σ′I → S × Σ′O. When v0 ∈ DRs is fixed, we say that T and T ′ correspond to each
other. Essentially, our main theorem follows from the fact that a reg-UPW A is realized
by a ks-transducer T iff the abstraction of A is realized by the register-less transducer that
corresponds to T . Formally, we have the following.

I Theorem 7. Consider a reg-UPW A with Σ = ΣI × ΣO, set of registers RA, and an
initial valuation vA

0 . Then, A is realizable by a ks-register ΣI/ΣO-transducer with a set
of registers Rs iff there is a partition π0 of R = Rs ∪ RA, consistent with vA

0 , such that
the (ks, π0)-abstraction of A is realizable by a (ΣI × BRs)/(ΣO ×Rs × BRs)-transducer. In
particular, a transducer that realizes the (ks, π0)-abstraction of A corresponds to a ks-register
transducer that realizes A.

Proof. Let A = 〈Σ, Q, q0, RA, v
A
0 , δ, α〉 and let A′ be its (ks, π0)-abstraction, where π0

is a partition of R consistent with vA
0 . We prove that for every valuation vs

0 ∈ DRs

satisfying f(vA
0 ∪ vs

0) = π0, ks-register ΣI/ΣO-transducer T initialized with vs
0, and register-

less (ΣI × BRs)/(BRs × ΣO ×Rs)-transducer T ′, where T and T ′ correspond to each other,
it holds that T |= A iff T ′ |= A′. The theorem then follows.
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Assume first that T 6|= A. We prove that T ′ 6|= A′. Since T 6|= A, there is an input
sequence wI

T = 〈i0, i0〉〈i1, i1〉..., a run ρT = 〈s0, v
s
0〉〈s1, v

s
1〉... of T on wI

T , a computation
wT =

〈
〈i0, o0〉, i0, o0

〉〈
〈i1, o1〉, i1, o1

〉
... that T generates when it follows ρT , and a rejecting

run ρA = 〈q0, v
A
0 〉〈q1, v

A
1 〉... of A on the computation wT . Note that A may have several runs

on wT . Since it is universal, and A rejects wT , we know that at least one of them does not
satisfy α. We show that wI

T and ρT induce an input sequence wI
T ′ to T ′ such that A′ rejects

the computation of T ′ on wI
T ′ . We define wI

T ′ = 〈i0, vs
0 ∼ i0〉〈i1, vs

1 ∼ i1〉.... The word wI
T ′

uniquely defines the computation wT ′ and the run ρT ′ = s0s1... of T ′. We now define the
rejecting run ρA′ of A′ on wT ′ . It starts in the state 〈q0, π0〉. Suppose that in step j ≥ 0, the
run ρA reaches the configuration 〈q, vA〉, the run ρT reaches the configuration 〈s, vs〉, and the
run ρA′ reaches the state 〈q, π〉. Assume that π = f(vA∪vs). Since π0 = f(vA

0 ∪vs
0), this holds

for j = 0. Assume that in ρT , the transducer T transit in the step j from 〈s, vs〉 to 〈s′, v′s〉,
while reading 〈i, i〉 and outputting 〈o, o〉. Note that the respective letter of the computation
wT ′ is σ′ = 〈〈i, o〉, gs

i , rs, as〉, where gs
i = (vs ∼ i) and it holds that 〈s′, as, o, rs〉 = τ(s, i, gs

i ).
Let 〈q′, v′A〉 be a 〈〈i, o〉, i, o〉-successor of 〈q, vA〉 as appears in ρA. We argue that (†) the pair
〈q′, π′〉 is a σ′-successor of 〈q, π〉 in A′, where π′ = f(v′A ∪ v′s). By repeatedly applying (†), we
can start from 〈q0, π0〉 and, for all j ≥ 0, get the successor 〈qj+1, πj+1〉 of 〈qj , πj〉, obtaining
the sought run ρA′ . Also, by the definition of α′, the fact that ρA is rejecting implies that
so is ρA′ . It is left to prove the claim (†). By the definition of the A’s transitions, there
exist gA

i , gA
o , aA such that the guard gA

i = (vA ∼ i), the guard gA
o = (vA ∼ v′s(rs)), and

〈q′, aA〉 ∈ δ(q, 〈〈i, o〉, gA
i , g

A
o 〉). We need to show the following.

gA
i is A-chosen by gs

i . This follows from Lemma 4(a), for gA
i = (vA ∼ i) and gs

i = (vs ∼ i).
gA
o is A-chosen by 〈π?, rs〉, where π? = update′(π, gi, as). Note that f(v′s ∪ vA) = π? by
Lemma 5, since gi = (v ∼ i) and f(v) = π. The statement then follows from Lemma 4(c).
The satisfaction of δ is immediate because of the A transition.
π′ = f(v′s ∪ v′A). By the abstraction definition, π′ = update′(π?, g?

i , aA), where g?
i =

(gs
i ∪as). Note that v′s∪ v′A = update(v′s∪ vA, i, aA). The item then follows from Lemma 5,

since g?
i = ((v′s ∪ vA) ∼ i).

This concludes the proof of the claim (†), and so T 6|= A implies that T ′ 6|= A′.
Assume now that T ′ 6|= A′. We prove that T 6|= A. Since T ′ 6|= A′, there is an input

sequence wI
T ′ that induces the run ρT ′ = s0s1... and the computation wT ′ of T ′ such that wT ′

generates a rejecting run ρA′ = 〈q0, π0〉〈q1, π1〉... in A′. Given wT ′ (and hence ρT ′) and ρA′ ,
we construct a computation wT of T that induces a rejecting run ρA in A. The run ρT starts
in 〈s0, v

s
0〉, and the run ρA starts in 〈q0, v

A
0 〉. Suppose that in some step j ≥ 0, the run ρT ′

reaches a state s, the run ρA′ reaches a state 〈q, π〉, the run ρT reaches a configuration 〈s, vs〉,
and the run ρA reaches a configuration 〈q, vA〉. Assume that π = f(vs ∪ vA). This holds
for j = 0. Assume that T ′ transits into s′ when reading 〈i, gs

i 〉 and outputting 〈as, o, rs〉,
and that A′ transits into 〈q′, π′〉 when reading 〈〈i, o〉, gs

i , rs, as〉. Then, (††) there exist i ∈ D

such that the transducer T transits into 〈s′, v′s〉 on reading 〈i, i〉, the automaton A transits
into 〈q′, v′A〉 on reading 〈〈i, o〉, i, o〉, where o = v′s(rs), and f(v′s ∪ v′A) = π′. Applying (††) in
the initial step, when j = 0, we construct the configuration 〈s1, v

s
1〉 of ρT , the configuration

〈q1, v
A
1 〉 of ρA, and the first letter 〈〈i, o〉, i, o〉 of wT . Note that the preconditions of (††) hold,

in particular, f(vs
1 ∪ vA

1 ) = π1, and we can apply it again. By an iterative application, we
construct the sought computation wT and the rejecting run ρA on wT . It is left to prove
the claim ††. Let v = vs ∪ vA. Because 〈q, π〉 transits into 〈q′, π′〉, there exist gA

i , gA
o , aA

satisfying the conditions of the abstraction definition. In particular, gA
i is A-chosen by

〈π, gs
i 〉. Let gi = gs

i ∪ gA
i ; note that gi ∈ (π ∪ {∅}). By Lemma 4(b), there exists i ∈ D

such that (v ∼ i) = gi (when gi = ∅, the value i is not unique). Define v′s = update(vs, i, as).

CONCUR 2019
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Because (vs ∼ i) = gs
i , it is immediate that T transits into 〈s′, v′s〉 on reading 〈i, i〉. Let

v′A = update(vA, i, aA). To prove that A transits into 〈q′, v′A〉 on reading 〈〈i, o〉, i, o〉, we need
to show the following.
〈q′, aA〉 ∈ δ(q, 〈〈i, o〉, gA

i , g
A
o 〉). This holds because A′ transits into 〈q′, π′〉 on reading

〈〈i, o〉, gs
i , rs, as〉.

(vA ∼ i) = gA
i . This follows from the way we picked i.

(vA ∼ o) = gA
o . Recall that o = v′s(rs). By definition of the abstraction, the guard gA

o

is A-chosen by 〈π?, rs〉, where π? = update′(π, gi, as). Furthermore, f(v′s ∪ vA) = π? by
Lemma 5, since f(v) = π and (v ∼ i) = gi. Hence by Lemma 4(c), the pair 〈π?, rs〉
A-chooses (vA ∼ o). By the abstraction definition, the pair 〈π?, rs〉 A-chooses gA

o . Since
the choice is unique, they are equal.

Finally, we show that f(v′s ∪ v′A) = π′. By the abstraction definition, π′ = update′(π?, g?
i , aA),

where g?
i = gi ∪ as. Note that ((v′s ∪ vA) ∼ i) = g?

i (i.e., the registers equal to i are those
that were equal to i (gi) union the updated ones (as)). The statement then follows from
Lemma 5. This concludes the proof of the claim (††), and so T ′ 6|= A′ implies that T 6|= A.

J

We can now analyze the complexity of our synthesis algorithm. Recall that the input
to the problem is a reg-UPW A and an integer ks ≥ 0, and the output is a ks-register
transducer that realizes A, or an answer that no such transducer exists. Theorem 7 reduces
the problem for A with n states, index c, and kA registers, to the synthesis problem of a
(register-less) UPW A′ with n(kA + ks)kA+ks states and index c. Indeed, the state space
of A′ is the product of that of A with the set of possible partitions of the registers of A
and these of the generated transducer, and the number of such partitions is bounded by
(kA + ks)kA+ks . Note that A′ is parameterized by both ks and π0. While ks is fixed, π0
depends on the initial partition of Rs. Thus, we may need to repeat the reduction |Πs| ≤ k ks

s

times, where Πs is the set of system partitions. By [30, 33] a UPW with N states and index c
can be determinized to a DPW with (Nc)O(Nc) states and index O(Nc). Then, the synthesis
problem for DPW reduces linearly, up to a multiplicative factor in the sizes of the alphabets,
to solving parity games, which can be done in time at most O((n′)5), for a game with n′
vertices and index c′ < logn′ [7]. The alphabet of A′ is Σ′ = Σ × BRs × Rs × BRs . Let
m = |Σ|. Then, |Σ′| = m · 2O(ks). Thus, the new factor in the complexity is |Σ|, which is
typically much smaller than N . It follows that the synthesis problem for A′ can be solved
in time (Nmc)O(Nc) =

(
cmn(kA + ks)kA+ks

)O(cn(kA+ks)kA+ks). Thus, a naive analysis gives
a complexity that is doubly-exponential in kA and ks and is exponential in n and c. As
we argue below, the analysis can be tightened to a one that is doubly-exponential only in
kA and is exponential in n, c, and ks. Essentially, this follows from the fact that while the
partition-component in the state space of A′ behaves universally with respect to the registers
in RA, it is deterministic with respect to these in Rs.

I Theorem 8. Register-bounded synthesis with ks system registers for reg-UPWs with n
states, finite alphabet of size m, index c, and kA registers, is solvable in time (cmn(ks +
kA))O(cnkA(ks+kA)kA ). Thus, it is polynomial in m, exponential in n, c, and ks, and doubly-
exponential in kA.

Proof. By [33, 30], a UPW A′ with N states and index c can be determinized to a DPW
with (Nc)O(Nc) states and index O(Nc) 2. The state space of the DPW consists of history

2 The paper [30] determinizes Streett automata, but we can convert a UPW of index c into a Streett
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trees. Each node in a history tree is a state of A′, their union is the set of states that A′
may visit, and the structure of the history tree maintains information required for detecting
the maximal rank that is visited infinitely often. Thus, the history-tree construction is an
augmentation of the subset construction, where on top of the subset of states, we maintain
additional information.

Recall that in the UPW A′, each state is a member of Q × Π, where Π is the set of
possible partitions of R = RA ∪ Rs. Also, for every letter in Σ′, namely 〈σ, gs, rs, as〉 ∈
Σ× BRs ×Rs × BRs , the 〈σ, gs, rs, as〉-successors of a state 〈q, π〉 are pairs 〈q′, π′〉 in which
π′ is the partition obtained from π by updating the system registers according to the
system assignment as and updating the automaton registers according to the transition
of A that induce the pair 〈q′, π′〉. The update of the system registers is deterministic: all
the 〈σ, gs, rs, as〉-successors 〈q′, π′〉 agree on the partition of the system registers in π′: this
partition is uniquely defined by the partition of the system registers in π, the system guard
gs, and the storing mask as. In contrast, the automaton registers in π′ may be updated in
different ways, induced from the universal branches in A.

The deterministic behavior of the system registers enables us to tighten the bound on
the number of different history trees. Indeed, recall that each history tree is associated
with a subset of the states of A′. Rather than considering all subsets, we need to consider
only these in which the Π components of all states agree on the partition of the system
registers. The number x of such states is bounded by n · |Πs

A|, where |Πs
A| is the number of

partitions of R for a fixed partition of Rs, and so |Πs
A| ≤ (ks + kA)kA . By [30, Claim 4.6]

the number of history trees is (xc)O(xc). Therefore, the number of history trees, subject to a
fixed system partition, is

(
cn(ks + kA)kA

)O(cn(ks+kA)kA). To get the total number of history
trees, we multiply it by the number |Πs| ≤ k ks

s of system partitions, which does not change
the asymptotic analysis.

In addition, by [30, p.15], the index of the DPW is bounded by 2(d c
2e + 1)x, for x as

above, which is O(cn(ks + kA)kA).
Given a DPW with n′ = (cn(ks + kA))O(cnkA(ks+kA)kA ) states and index c′ = O(cn(ks +

kA)kA), we construct the parity game of size mn′ and index c′. A winning strategy for the
system player witnesses that A is realizable, and induces the sought system transducer.
For c′ < logn′, parity games can be solved in time O(n′)5 [7]. This gives a (cmn(ks +
kA))O(cnkA(ks+kA)kA ) time complexity for checking the realizability of A′ for a single initial
partition π0. Repeating this for all possible |Πs| such partitions does not change the
asymptotic analysis. J

We note that when the specification automaton A is a reg-UCW, its abstraction A′ is
a UCW. Since reg-UCWs can be expressed as reg-UPWs with c = 2, the obtained time
complexity for the case where specifications are reg-UCWs is (mn(ks + kA))O(nkA(ks+kA)kA ).

4 Synthesis with a Fixed Number of System and Environment
Registers

In this section, we consider the system-bounded synthesis problem with respect to restricted
environments. Such environments are expressible by a register transducer with a bounded
number of registers. Clearly, restricting the environments makes more specifications realizable.
As we shall see, however, the complexity of the synthesis problem increases. An important

automaton with d c
2 e acceptance pairs.
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conceptual difference between the setting studied in Section 3 and the one here is that once
we fix the number of registers of both the system and the environment, we also fix the
number of data values that may participate in the interaction. Indeed, the only data outputs
that the system and environment transducers may generate during the interaction are these
stored in their registers in their initial valuations.

In order to define the bounded setting, we first have to define the interaction between sys-
tem and environment transducers. Consider a system transducer Tsys = 〈ΣI ,ΣO, Ss, s

s
0, Rs, v

s
0, τs〉

and an environment transducer Tenv = 〈ΣO,ΣI , Se, s
e
0, Re, v

e
0, τe〉. Note that the outputs

of the environments are the inputs of the system, and vice versa. We denote the compu-
tation that is the interaction between the two transducers by Tenv‖Tsys, indicating that
the environment initiates the interaction and is the first transducer to move. Recall that
τe : Se × (ΣO ×BRe)→ Se ×BRe ×ΣI ×Re. The ΣO and BRe components of the transition
depends on the output of the system, which are generated when the system moves between
states. Likewise, τs : Ss×(ΣI×BRs)→ Ss×BRs×ΣO×Rs, with the ΣI and BRs components
depending on the output of the environment. Recall that we assume that the environment
moves first. Accordingly, for the first step of the interaction we assume that the ΣO and BRe

components are induced by the pair 〈∅, v0(r0)〉, for some designated register r0 ∈ Re.
Formally, Tenv‖Tsys = 〈〈i0, o0〉, i0, o0〉〈〈i1, o1〉, i1, o1〉... ∈ ((ΣI × ΣO) × D × D)ω is

such that there are runs ρe = 〈se
0, v

e
0〉〈se

1, v
e
1〉〈se

2, v
e
2〉... ∈ (Se × DRe)ω of Tenv and ρs =

〈ss
0, v

s
0〉〈ss

1, v
s
1〉〈ss

2, v
s
2〉... ∈ (Ss ×DRs)ω of Tsys such that the following hold. Let 〈o−1, o−1〉 =

〈∅, ve
0(re

0)〉. Then, for every j ≥ 0, the following hold:
τe(se

j , oj−1, v
e
j ∼ oj−1) = 〈se

j+1, a
e
j , ij , r

e
j 〉, ij = ve

j (re
j ), and ve

j+1 = update(ve
j , oj−1, a

e
j).

That is, in each round in the interaction, including the first round, the environment
moves first, the configuration 〈se

j+1, v
e
j+1〉 is the 〈oj−1, oj−1〉-successor of 〈se

j , v
e
j 〉, and the

transition taken in this move fixes ij and ij .
τs(ss

j , ij , v
s
j ∼ ij) = 〈ss

j+1, a
s
j , oj , r

s
j 〉, oj = vs

j (rs
j ), and vs

j+1 = update(vs
j , ij , a

s
j). That

is, the system respond by moving to the configuration 〈ss
j+1, v

s
j+1〉, which is the 〈ij , ij〉-

successor of 〈ss
j , v

s
j 〉, and the transition taken in this move fixes oj and oj .

The environment-system-bounded realizability problem is to decide, given a reg-UPW
A over ΣI × ΣO × D × D, and numbers ks and ke of system and environment registers,
respectively, whether there is a system transducer Tsys with at most ks registers such that
for all environment transducers Tenv with at most ke registers, we have that Tenv‖Tsys |= A.
The environment-system-bounded synthesis problem is to construct such a system transducer,
if exists.

Let A = 〈Σ, Q, q0, RA, v
A
0 , δ, α〉. As in the construction in Section 3, we define a (register-

less) UPW A′ that abstracts the registers of A and maintains instead the equivalence relation
between the registers. Here, however, the equivalence relation refers to the registers of A, of
the system, and of the environment. Let Rs and Re denote the sets of system and environment
registers, respectively. Let R = Rs ∪Re ∪RA, Π be the set of equivalence relations over R,
and f : DR → Π map a register valuation to the partition it induces. We modify the function
update′ from Section 3 to refer to registers directly, namely update′ : Π×R× BR → Π maps
〈π, r, a〉 to the partition resulting from moving the registers in a into the equivalence class of
r. Formally, update′(π, r, a) = {S \ a : S ∈ π \ C} \ {∅} ∪ {C ∪ a}, where C ∈ π and r ∈ C.
The update function has properties similar to these stated in Lemma 5.

I Lemma 9. For every valuation v ∈ DR, register r ∈ R, and storing mask a ⊆ R, we have
that f(update(v, v(r), a)) = update′(f(v), r, a).
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Given a reg-UPW A, bounds ks, ke ∈ N, and an initial partition π0 ∈ DR, the (ks, ke, π0)-
abstraction of A is the UPW A′ = 〈Σ′, Q′, q′0, δ′, α′〉, defined as follows.

Σ′ = Σ×Rs × BRs × BRs .
Q′ = (Q×Π×Rs) ∪ {q′0}. A state 〈q, π, rs〉 ∈ Q×Π×Rs contains, in addition to the
original state q and partition π, the register rs whose value was output by the system
transducer in the previous move.
The initial state q′0 = 〈q0, π0, r

e
0〉. It contains the environment register re

0, because in the
first move the environment transducer reads its own data value ve

0(re
0).

Defining δ′, we use two auxiliary partitions: First, π? corresponds to the register valuation
after the environment transducer moves and updates its registers. Then, π?? corresponds
to the register valuations after the system transducer moves and updates its registers.
Finally, the destination partition π′ corresponds to the register valuation after A moves.
For every state 〈q, π, r〉 ∈ (Q×Π×Rs) ∪ {〈q0, π0, r

e
0〉} and letter 〈σ, rs, g

s
i , a

s
i 〉 ∈ Σ′, we

have that 〈q′, π′, rs〉 ∈ δ′(〈q, π, r〉, 〈σ, rs, g
s
i , a

s
i 〉) iff there exist re ∈ Re, ae

o ∈ BRe , and
aA
i ∈ BRA satisfying the following.
Let π? = update′(π, r, ae

o ). That is, the environment transducer updates its registers
using the previous system value. (In the initial state, the environment transducer uses
the value stored in its register re

0.)
Let C ∈ π? be the set that contains re. We require that (C ∩Rs) = gs

i .
Let π?? = update′(π?, re, a

s
i ). That is, the system transducer updates its registers

using the value stored currently in the register that the environment outputs.
The automaton A transits and updates its registers using the values in the registers of
the environment and system transducers. Hence, the input guard gA

i is A-chosen by
〈π??, re〉, while the output guard gA

o is A-chosen by 〈π??, rs〉. Thus, we require that
〈q′, aA

i 〉 ∈ δ(q, 〈σ, gA
i , g

A
o 〉) and π′ = update′(π??, re, a

A
i ).

The acceptance condition of A′ is induced from the one of A. Thus, for every state
〈q, π, r〉 ∈ Q′, we have that α′(〈q, π, r〉) = α(q).

Recall that the abstraction of A is parameterized by both the number of registers that
the system transducer may have as well as an initial partition for the registers of the system,
the environment, and the automaton. Let vA ∈ DRA be a valuation of the automaton
registers, and πs a partition of Rs. A partition π ∈ Π is consistent with vA and πs if there
are register valuations vs ∈ DRs and ve ∈ DRe s.t. πs = f(vs) and π = f(vA ∪ vs ∪ ve). Thus,
automata registers are related according to vA

0 , system registers are related according to πs,
and environment registers are not related in any special way.

I Theorem 10. Consider a reg-UPW A with Σ = ΣI×ΣO, set of registers RA, and an initial
valuation vA

0 . Then, A is realizable by a ks-register ΣI/ΣO-transducer with a set of registers
Rs with respect to environments that are ke-register ΣO/ΣI-transducers iff there is a partition
πs of Rs and a (ΣI × BRs)/(ΣO ×Rs × BRs)-transducer T ′ such that for every partition π0
of R that is consistent with vA

0 and πs, the transducer T ′ realizes the (ks, ke, π0)-abstraction
of A.

Proof. The theorem follows from the following claim. Fix a system ks-register transducer
Tsys with an initial valuation vs

0, and fix an environment initial valuation ve
0. Let A′ be the

(ks, ke, π0)-abstraction of A with π0 = f(vs
0∪ ve

0 ∪ vA
0 ). Let T ′sys be the register-less transducer

corresponding to Tsys. Then, we have that T ′sys |= A′ iff for every environment transducer
Tenv with the initial valuation ve

0, it holds that Tenv‖Tsys |= A. The proof uses ideas similar
to those in Theorem 7.
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Assume first that there is Tenv initialized with ve
0 such that Tenv‖Tsys 6|= A. We then

show that T ′sys 6|= A′. Let Tenv = 〈Se, s
e
0, Re, v

e
0, τe〉 and Tsys = 〈Ss, s

s
0, Rs, v

s
0, τs〉. Let

the computation Tenv‖Tsys = 〈〈i0, o0〉, i0, o0〉〈〈i1, o1〉, i1, o1〉... induce the rejecting run ρA =
〈q0, v

A
0 〉〈q1, v

A
1 〉... in A. Let ρe = 〈se

0, v
e
0〉〈se

1, v
e
1〉... and ρs = 〈ss

0, v
s
0〉〈ss

1, v
s
1〉... be the runs

of interacting Tenv and Tsys, respectively. Let wI
sys′ = 〈i0, vs

0 ∼ i0〉〈i1, vs
1 ∼ i1〉... be an

input word to T ′sys. The input word wI
sys′ uniquely induces the computation wsys′ and the

run ρsys′ = s0s1.... We now define the rejecting run ρA′ on wsys′ . It starts in 〈q0, π0, r
e
0〉.

Suppose that at moment j ≥ 0, the run ρA reached the configuration 〈q, vA〉, the run ρsys
reached 〈ss, vs〉, the run ρenv reached 〈se, ve〉, and the run ρA′ reached 〈q, π, r〉. Assume
that f(vs ∪ ve ∪ vA) = π. The assumption holds for j = 0. Later we will use the pair
〈o∗, o∗〉 ∈ ΣO ×D that is defined as follows. For j > 0, let 〈o∗, o∗〉 be the last output of the
system transducer and then we assume that o∗ = vs(r). For j = 0, let 〈o∗, o∗〉 = 〈∅, ve(re

0)〉.
Now, let Tenv in ρenv at the moment j transit from 〈se, ve〉 to 〈s′e, v′e〉, while reading 〈o∗, o∗〉
and outputting 〈i, i〉, whereas Tsys transits from 〈ss, vs〉 to 〈s′s, v′s〉, while reading 〈i, i〉
and outputting 〈o, o〉. We need the following notations: ge

o = (ve ∼ o∗), gs
i = (vs ∼ i),

〈ae
o , re〉 = τe(se, o

∗, ge
o )|BRe×Re

, and 〈as
i , rs〉 = τs(ss, i, g

s
i )|BRs×Rs

. Note that i = v′e(re) and
o = v′s(rs). Let 〈q′, v′A〉 be a 〈〈i, o〉, i, o〉-successor of 〈q, vA〉 in ρA. We argue that (†) the pair
〈q′, π′, rs〉 is a 〈〈i, o〉, gs

i , rs, a
s
i 〉-successor of 〈q, π, r〉 in A′, where π′ = f(v′A∪v′s∪v′e). Therefore,

we apply this claim to get the successor 〈q1, π1, r1〉 of 〈q0, π0, r
e
0〉 in ρA′ , then apply it again to

get 〈q2, π2, r2〉, and so on. In this way we construct the sought rejecting run ρA′ induced by
the computation wsys′ . It is left to prove the claim †. By the definition of the A transitions,
there exist gA

i , gA
o , aA such that the guard gA

i = (vA ∼ i), the guard gA
o = (vA ∼ o), and

〈q′, aA〉 ∈ δ
(
q, 〈〈i, o〉, gA

i , g
A
o 〉
)
. Let π? = update′(π, r, ae

o ) and π?? = update′(π?, re, a
s
i ). By

Lemma 9, we have that π? = f(v′e ∪ vs ∪ vA) and π?? = f(v′e ∪ v′s ∪ vA). Now we need to show
the following.

The guard gA
i is A-chosen by 〈π??, re〉. This follows from Lemma 4(c).

The guard gA
o is A-chosen by 〈π??, rs〉. This follows from Lemma 4(c).

The satisfaction of δ is immediate because of the A transition.
π′ = f(v′A ∪ v′s ∪ v′e). By definition of δ′, the partition π′ = update′(π??, re, a

A
i ). By

Lemma 9, update′(π??, re, a
A
i ) = f(v′e ∪ v′s ∪ v′A). The statement then follows.

This completes the proof of the first direction.
Assume now that T ′sys 6|= A′. We show that there is Tenv initialized with ve

0 such
that Tenv‖Tsys 6|= A. Since T ′sys 6|= A′, there is an input word wI

sys′ to T ′sys that in-
duces the run ρsys′ = ss

0s
s
1... and the computation wsys′ which generates a rejecting run

ρA′ = 〈q0, π0, r
e
0〉〈q1, π1, r1〉... in A′. Let ρ× = 〈ss

0, 〈q0, π0, r
e
0〉〉〈ss

1, 〈q1, π1, r1〉〉... be the cor-
responding run in the product of T ′sys and A′. Wlog., we assume that ρ× is regular and
hence can be expressed as a finite-length lasso. Thus, ρ× = x0...xm−1(xm...xm+n)ω, where
x0...xm−1 is the stem and xm...xm+n is the loop, where m ≥ 0 and n ≥ 0. Note that all
elements xi are different. Given wsys′ , ρsys′ , ρA′ , and ρ×, we construct Tenv initialized with
ve

0 such that Tenv‖Tsys induces a rejecting run ρA in A. We also construct ρsys, ρenv, and
ρA. The state space of Tenv is Se ⊆ Ss ×QA′ and consists of the states that appear in ρ×.
The initial state se

0 = 〈ss
0, 〈q0, π0, r

e
0〉〉. Thus, we can write ρ× = se

0...s
e
m−1(se

m...s
e
m+n)ω. The

run ρsys starts in 〈ss
0, v

s
0〉, the run ρenv starts in 〈se

0, v
e
0〉, and the run ρA starts in 〈q, vA

0 〉.
Suppose that at some moment j ≥ 0, the run ρsys′ reached state ss, the run ρA′ reached
state 〈q, π, r〉, the run ρsys reached configuration 〈ss, vs〉, the run ρenv reached configuration
〈se, ve〉, and the run ρA reached configuration 〈q, vA〉. Assume that π = f(vs ∪ ve ∪ vA)
and se = 〈ss, 〈q, π, r〉〉. This holds for j = 0. We will use the pair 〈o∗, o∗〉 ∈ ΣO × D

that is defined as follows. If j > 0, then 〈o∗, o∗〉 is the output of Tsys when it moved into
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〈ss, vs〉. If j = 0, let 〈o∗, o∗〉 = 〈∅, ve
0(re

0)〉. Assume that for j > 0 the value o∗ = vs(r).
Now, let T ′sys transit from s into s′ while reading 〈i, gs

i 〉 and outputting 〈o, as
i , rs〉. Let

A′ transit into 〈q′, π′, rs〉. Then, as we show later, the following holds (††): the environ-
ment transducer Tenv transits into 〈s′e, v′e〉 while reading 〈o∗, o∗〉 and outputting 〈i, i〉, where
s′e = 〈s′s, 〈q′, π′, rs〉〉, the system transducer Tsys transits into 〈s′s, v′s〉 while reading 〈i, i〉
and outputting 〈o, o〉, where o = v′s(rs), the automaton A transits into 〈q′, v′A〉 on reading
〈〈i, o〉, i, o〉, and it holds that π′ = f(v′s ∪ v′e ∪ v′A). Using this claim, we iteratively construct
the sought rejecting run ρA of A on Tenv‖Tsys, which completes the direction. Thus, we
are left to prove the claim. The interesting part is the definition of the transition function
τe of Tenv, while the rest follows from definitions and Lemmas 9 and 4(c). We now define
τe. Since 〈q′, π′, rs〉 is a 〈〈i, o〉, gs

i , rs, a
s
i 〉-successor of 〈q, π, r〉 in A′, there exist ae

o , re, and
aA
i such that π? = update′(π, r, ae

o ), π?? = update′(π, re, a
s
i ), π′ = update′(π??, re, a

A
i ), gA

i

is A-chosen by 〈π??, re〉, gA
o is A-chosen by 〈π??, rs〉, and the guard gs

i respects re and π?.
First, if we visit se for the first time (and thus τe(se, σe) was not defined yet), then we set
τe(se, σe) = 〈s′e, ae

o , i, re〉 for every σe ∈ ΣO × BRe . Second, suppose that we visited the state
se before. Because the run ρ× is a lasso, every state se in ρ× has the unique successor
state. Furthermore, the state se uniquely identifies the letter that A′ is reading. Hence, the
current letter 〈〈i, o〉, gs

i , rs, a
s
i 〉 and successor 〈q′, π′, rs〉 of A′ are exactly as they were when

we visited se = 〈〈ss, 〈q, π, r〉〉〉 for the first time. Hence, the previously set value of τe(se,_),
where _ is arbitrary, ensures that Tenv transits into a configuration with the state s′e. Thus,
the transition function τe moves Tenv as specified in claim (††). J

We now analyze the complexity of the environment-system-bounded synthesis problem.
Using Theorem 10, we can reduce the synthesis problem for ks system and ke environment
registers, reg-UPW A with n states, index c, and kA registers, to the synthesis problem of
a (register-less) UPW A′ with O(nkk) states and index c, where k = ks + ke + kA. Recall
that the reduction does not create a single instance of the register-less synthesis problem,
and instead requires to find a system partition πs such that the (ks, ke, π0)-abstractions of
A, for every π0 consistent with vA

0 and πs, are realized by a single transducer. There can
be no more than ks

ks system partitions, and we are going to enumerate them one by one.
Now, once a system partition πs is fixed, we can create a single UPW that represents the
intersection of the abstraction UPWs for each π0 consistent with πs and vA

0 . To this end, we
create one initial state per π0, while the rest of the definition stays the same. The number of
initial states is bounded by (ks + ke + kA)ke . Let us call this automaton A′. By the same
naive analysis as in the system-bounded case, the synthesis problem for A′ can be solved in
time (Nmc)O(Nc) =

(
cmnkk

)O(cnkk), where m = |Σ| is the size of the finite alphabet of A.
In order to account for enumeration of system partitions, we multiply it by ks

ks , but this
does not affect the asymptotic complexity. Thus, the environment-system-bounded synthesis
problem is doubly-exponential in kA, ks, and ke, and is exponential in n and c.

As in the case of system-bounded synthesis, we can use the fact that the system-partition
component in the state space of A′ is deterministic with respect to the registers in Rs, and
behaves universally only with respect to the registers in RA and Re. The universal behavior
with respect to Re follows from the fact that a system transducer plays against all possible
environment transducers. Accordingly, we can tighten the complexity as follows.

I Theorem 11. Environment-system-bounded synthesis with ks system and ke environment
registers for reg-UPWs with n states, finite alphabet of size m, index c, and kA registers is
solvable in time (cmn(ks + ke + kA))O(cn(ks+ke+kA)(ke+kA+1)). Thus, it is polynomial in m,
exponential in c, n, and ks, and doubly-exponential in kA and ke.
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5 Determinacy

For an ω-regular specification ψ over (Σ ×D ×D)ω, let ¬ψ denote its complement, thus
L(¬ψ) = (Σ × D × D)ω \ L(ψ). The specification ψ may be given by a reg-UPW, yet
the results in this section refer to general ω-regular specifications over infinite alphabets.
In particular, reg-UPWs are not closed under complementation. Traditional synthesis is
determined, in the sense that for every ω-regular specification ψ over finite alphabets, either
there is a system transducer that realizes ψ, or there is an environment transducer that
realizes ¬ψ. Note that not having a system transducer that realizes ψ only means that
for every system Tsys, there is an environment transducer Tenv such that the computation
Tenv‖Tsys satisfies ¬ψ. This by itself does not imply that there is an environment Tenv such
that for all systems Tsys, the computation Tenv‖Tsys satisfies ¬ψ. However, by determinacy
of Borel games [28], we know that the lack of Tsys that realizes ψ does imply the existence of
Tenv that realizes ¬ψ. In [26], the authors show that determinacy no longer holds if we bound
the number of states in systems or environments. In this section, we examine determinacy in
a setting with a bounded number of registers.

For ks ∈ N and ke ∈ N ∪ {∞}, we say that the register-bounded synthesis problem is
(ks, ke)-determined if for every specification ψ, either

ψ is I/O (ks, ke)-realizable: there is a system transducer Tsys with ks registers such that
for all environment transducers Tenv with ke registers, the computation Tenv‖Tsys satisfies
ψ, or
¬ψ is O/I (ke, ks)-realizable: there is an environment transducer Tenv with ke registers
such that for all system transducers Tsys with ks registers, the computation Tenv‖Tsys
satisfies ¬ψ.

In particular, the case ke =∞ corresponds to the setting where the number of registers in
only one of the transducers is bounded. Note that Tsys and Tenv are not completely dual: in
both cases above we consider the computation Tenv‖Tsys, thus with Tenv moving first.

I Theorem 12. For every ks ∈ N and ke ∈ N∪ {∞}, the register-bounded synthesis problem
is not (ks, ke)-determined.

Proof. For every ks ≥ 1, we describe a specification ψks
such that for all ke ∈ N ∪ {∞}

neither ψks is I/O (ks, ke)-realizable nor ¬ψks is O/I (ke, ks)-realizable.
Let D = N. We describe ψks

by an LTL-like formalism, with the temporal operator X
(next) and Boolean propositions of the form o = d and i = d, for d ∈ N. The letter i denotes
the data-input to the system (that is, the data output of an environment), and o denotes the
data output of the system (that is, the data-input of the environment). For example, for
m ≥ 2, the formula ϕm = (o = 3) ∧ X

(
(o = 4) ∧ X((o = 5) ∧ · · · ∧ X(o = m) · · · )

)
requires

the system to output the sequence 3, 4, . . . ,m (when m = 2, the conjunction is empty, thus
ϕ2 = true).

Now, for m ≥ 1, we define ψm = (i = 1→ o = 2) ∧ (i = 2→ o = 1) ∧ Xϕm+1. Thus, in
order to satisfy ψm, a system has to output x, 3, 4, . . . ,m+ 1, where x depends on the input i
received from the environment in the first cycle: if i = 1, then x = 2, and if i = 2, then x = 1.
Note that ψm can be specified by a reg-UPW with m+ 1 registers initialized to 1, . . . ,m+ 1.

Consider a bound ks ≥ 1. First, observe that for environment transducers Tenv, there
is a system transducer Tsys with at most ks registers, such that the computation Tenv‖Tsys
satisfies ψks

. Indeed, Tsys maintains the values x, 3, 4, . . . , ks + 1 in its registers and outputs
them as required.

In addition, we argue that for all system transducers Tsys with at most ks registers, there is
an environment transducer Tenv with one register, such that the computation Tenv‖Tsys does



A. Khalimov and O. Kupferman 21:19

not satisfy ψks . Essentially, this follows from the fact that the only data outputs that Tsys
can generate are these stored in its registers, either in its initial register evaluation, or during
the interaction, thus after being output by Tenv. Thus, in order to output x, 3, 4, . . . , ks + 1,
the transducer Tsys has to store these values in its initial assignment. Indeed, it cannot count
on Tenv to output them. Since Tsys has only ks registers, and ks − 1 of them are used for
storing 3, 4, . . . , ks + 1, only one register can be used for storing the x. The value x, however,
is not known in advance: for each value (in particular, 1 or 2) that Tsys may store as the
anticipated x, there is an environment transducer Tenv that provides as input the same value.
Then, ψks

forces Tsys to output the “dual” value, which is not stored in its registers. J

6 On Fixed, Finite, and Infinite Number of Registers

For finite-state systems, finite-model properties assert that when a specification is given,
there is often a cut-off point: an LTL formula ψ is satisfiable iff there is a computation of
length exponential in |ψ| that satisfies it [15], and is realizable iff there is a transducer of size
doubly-exponential in |ψ| that realizes it [31]. In this section we study a similar question for
register-bounded synthesis. We differentiate the strength of systems and environments with
a fixed, finite, or infinite number of registers. In particular, we ask whether there is a bound
on the number of system registers that may be required for the synthesis of a realizable
specification, or a bound on the number of environment registers sufficient for model-checking
systems against a given specification.

We first need some definitions and notations. Let Tk,Tfin, and Tinf denote the classes of
transducers with a fixed (to k), finite, and infinite number of registers, respectively. Similarly,
let Ak and Afin denote the classes of reg-UPWs with with a fixed (to k) and finite number
of registers. Note that Tfin =

⋃
k Tk and Afin =

⋃
k Ak.

For four parameters k1
s , k

2
s , ke ∈ ({inf, fin} ∪ N), and kA ∈ ({fin} ∪ N), we say that

k2
s -systems are at least as powerful as k1

s -systems with respect to ke-environments and kA-
specifications, denoted k2

s ≥
sys
ke,kA

k1
s , if for every reg-UPW A ∈AkA , the existence of a system

transducer in Tk1
s
that realizes A against all environment transducers in Tke

implies the
existence of a system transducer in Tk2

s
that also does so. We use the k2

s ≥
sys
ke,kA

k1
s relation

in order to define the relations k2
s =sys

ke,kA
k1

s (k2
s -systems are equivalent to k1

s -systems with
respect to ke-environments and kA-specifications) and k2

s >
sys
ke,kA

k1
s (k2

s -systems are strictly
more powerful than k1

s -systems with respect to ke-environments and kA-specifications) in the
expected way. These relations are useful in the context of synthesis.

For k1
e , k

2
e , ks ∈ ({inf, fin} ∪ N), kA ∈ ({fin} ∪ N), we say that k2

e-environments are
at least as powerful as k1

e-environments with respect to ks-systems and kA-specifications,
denoted k2

e ≥env
ks,kA

k1
e , if for every reg-UPW A ∈AkA , and every system transducer Tsys ∈ Tks

,
if there is an environment transducer T 1

env ∈ Tk1
e
such that T 1

env‖Tsys 6|= A (that is, T 1
env

prevents Tsys from realizing A), then there is also T 2
env ∈ Tk2

e
that prevents Tsys from realizing

A. We then define the relations k2
e =env

ks,kA
k1

e and k2
e >

env
ks,kA

k1
e in the expected way. These

relations are useful in the context of model checking.
We now present the hierarchy among the classes. The gap results follow from specifications

that force the system or environment to store the desired number of different values (sometimes
infinitely many). The collapse results follow from cut-off properties on the number of
environment registers required in order to generate a computation that violates a property
specified by an automaton with a fixed number of registers.

I Theorem 13. The following relations among classes of systems and environments hold.
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For all ke ∈ ({inf, fin} ∪ N), kA ∈ ({fin} ∪ N), and ks ∈ N, we have that
inf >sys

ke,kA
fin >sys

ke,kA
ks + 1 >sys

ke,kA
ks.

Let ks = inf. Then, for all kA ∈ ({fin} ∪ N) and ke ∈ N, we have that
inf >env

ks,kA
fin >env

ks,kA
ke + 1 >env

ks,kA
ke.

Let kA = fin. Then, for all ks ∈ ({fin} ∪ N) and ke ∈ N, we have that
inf =env

ks,kA
fin >env

ks,kA
ke + 1 >env

ks,kA
ke.

For all ks ∈ N, kA ∈ N, and 0 < ke < ks + kA, we have that
inf =env

ks,kA
fin =env

ks,kA
ks + kA + 1 >env

ks,kA
ke + 1 >env

ks,kA
ke.

Before proving the hierarchy theorem, we prove the following cut-off result about model
checking of register transducers. A similar result is proven in [27, Thm.2], but we provide it
here for completeness, using our model and notations.

I Lemma 14. The following claims hold.
For every T and A, if T 6|= A, then there exists an input word to T with no more than
(ks + kA + 1) data values that induces a computation of T rejected by A.
There exist T and A such that T 6|= A, but all input words with less than (ks + kA + 1)
data values generate computations of T accepted by A.

Proof. We prove the first claim. Suppose that a ks-register transducer T = 〈ΣI ,ΣO, S, s0, Rs, v
s
0, τ〉

is rejected by a kA-register UPW A = 〈Σ, Q, q0, RA, v
A
0 , δ, α〉 where Σ = ΣI×ΣO. Thus, there

is an input word wI to T that generates a computation w = 〈〈i0, o0〉, i0, o0〉〈〈i1, o1〉, i1, o1〉...
that induces a rejecting run ρA = 〈q0, v

A
0 〉〈q1, v

A
1 〉... of A. Let ρT = 〈s0, v

s
0〉〈s1, v

s
1〉... be the

run of T on wI . Using w, ρT , and ρA, we construct the data-domain D′ of size ks + kA + 1,
and an input word w′I to T with data values from D′, such that w′I generates a computation
w′ in T that induces a rejecting run ρ′A in A. The domain D′ is as follows. First, it contains
all initial register values of T and A. Second, we add new values to D′ until its size becomes
ks + kA + 1.

We now construct w′I , the run ρ′T of T on w′I , and ρ′A. The run ρ′A starts in 〈q0,w0〉 and
the run ρ′T starts in 〈s0, v

s
0〉. As we show below, the following claim (†) holds. Suppose that

in a step j ≥ 0, the run ρA reaches 〈q, v〉, the run ρ′A reaches 〈q,w〉, the run ρT reaches 〈s, vs〉,
and the run ρ′T reaches 〈s,ws〉. Assume that f(vA ∪ vs) = f(wA ∪ ws). This holds initially,
when j = 0. Assume that T transits from 〈s, vs〉 into 〈s′, v′s〉 on reading 〈i, i〉 and outputs
〈o, o〉. Assume that A transits from 〈q, vA〉 into 〈q′, v′A〉 on reading the letter 〈〈i, o〉, i, o〉.
Then, there exist i?, o? ∈ D′ such that T transits from 〈s,ws〉 to 〈s′,w′s〉 on reading 〈i, i?〉
and outputs 〈o, o?〉, the configuration 〈q′,w′A〉 is a 〈〈i, o〉, i?, o?〉-successor of 〈q,wA〉, and
f(v′s∪v′A) = f(w′s∪w′A). We can apply this claim in the initial step, when j = 0, and construct
the first letter 〈i, o, i?, o?〉 of the computation w′, the successor configuration 〈q1,w

A
1 〉 in ρ′A,

and the successor configuration 〈s1,w
s
1〉 in ρ′T . Note that f(vA

1 ∪ vs
1) = f(wA

1 ∪ws
1), and hence

we can apply the claim again. By an iterative application, we construct the computation w′
and the rejecting run ρ′A of A on w′. By projecting w′ into the inputs, we get the sought
input word w′I .

We now prove the claim (†). We first define i?. Let gs
i = (vs ∼ i), gA

i = (vA ∼ i), and
gi = gs

i ∪ gA
i . Recall that gi ⊆ Rs ∪RA. If gi 6= ∅, we set i? = (ws ∪ wA)(r) for any r ∈ gi,

otherwise set i? to any value from D′ that is not used by ws ∪ wA (such a value exists since
|D′| > ks + kA). Note that (ws ∼ i?) = (vs ∼ i) = gs

i and (wA ∼ i?) = (vA ∼ i) = gA
i . We

continue to define o?. Let 〈as
i , rs〉 = τ(s, i, gs

i )|BRs×Rs
be the storing mask and the output

register used by T during the transition in ρT and in ρ′T (note that it is the same transition in
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ρT and ρ′T ). Let w′s = update(ws, i
?, as

i ) be the updated transducer configuration in ρ′T . Then,
we set o? = w′s(rs). We note that f(v′s) = f(w′s) by Lemma 5 and (wA ∼ o?) = (vA ∼ o) by
Lemma 4(c). Let gA

o = (vA ∼ o). By now, we defined i?, o?, the successor configuration 〈s′,w′s〉
in ρ′T , and now we proceed to define w′A. Let aA

i be the storing mask used by A when moving
from 〈q, vA〉 to 〈q′, v′A〉, hence 〈q′, aA

i 〉 ∈ δ(q, 〈i, o〉, gA
i , g

A
o ). Since (wA ∼ i?) = (vA ∼ i) = gA

i

and (wA ∼ o?) = (vA ∼ o) = gA
o , we have that 〈q,w′A〉 is a 〈〈i, o〉, i?, o?〉-successor of 〈q,wA〉,

where w′A = update(wA, i
?, aA

i ). Finally, to show that f(w′A ∪ w′s) = f(v′A ∪ v′s), we apply
Lemma 5 twice. First, it gives that f(wA ∪ w′s) = f(vA ∪ v′s); second, it gives the needed
statement.

We now prove the second claim of the lemma. We construct the transducer T with ks

registers and the automaton A with kA registers such that every input word to T with less
than (ks + kA + 1) data values generates an accepted computation, and yet there is an input
word with (ks + kA + 1) data values that generates a rejected computation. Let D = N,
ΣI = {a} is the singleton, and ΣO = {¬b, b}. Consider the register transducer T in the figure
below. The registers rs

1, ..., r
s
ks

are initialized to the values 1, ..., ks, respectively. From the
initial state, on reading the data-input that equals the value of register rs

1, the transducer
transits into the successor state, keeps the register values unchanged, outputs the data value
of some non-important register _ ∈ Rs and the finite letter ¬b. On reading the data-input
that is not equal to the value of rs

1, the transducer transits into the sink state (now shown)
where it stays forever and outputs the finite letter ¬b. The transitions from other states are
similar. Thus, the transducer reaches the right-most state only if it reads the values 1, ..., ks.
In the right-most state, the transducer loops forever regardless of what it reads, and outputs
the finite letter b.

. . .
i = rs

1/〈¬b,_〉 i = rs
2/〈¬b,_〉 i = rs

ks
/〈¬b,_〉

∗/〈b,_〉

Now consider the reg-UCW below. The initial values of the automaton registers rA
1 , ..., r

A
kA

are ks + 1, ..., ks + kA, respectively. From the initial state, on reading the finite letter ¬b, the
automaton loops, and does not change the register values. If the automaton reads the finite
letter b and the data-input i equals the value of rA

1 , the automaton transits into the successor
state while keeping the register values intact. And so on. The transition into the right-most
state  requires the data-input i to differ from the values of all automaton registers. The
state  is a rejecting sink.

. . .  

¬b
b ∧ i = rA

1 i = rA
2 i = rA

kA i 6= rA
1 ∧ ... ∧ i 6= rA

kA ∗

Now it is easy to see that in order to generate a rejecting computation of the transducer
above, the input word has to begin with the data values 1, ..., ks + kA + 1, and every other
data-word is accepted. This concludes the proof of the second claim, and of the lemma. J

We now prove the theorem.

Proof of Theorem 13. We start with the relations between the system classes. Consider the
specification “throughout the computation, all outputs have never appeared as inputs before”
which can be expressed by a 1-register UPW. Consider an environment transducer that stores
the current system output and sends it back to the system in the next round. Now, only
system transducers with an infinite number of registers that initially store infinitely many
values, can satisfy this specification when interacting with the above environment transducer.
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Because the environment transducer and the UPW use only one register, we conclude that
inf >sys

ke,kA
fin for every ke ∈ ({inf, fin} ∪ N) and kA ∈ ({fin} ∪ N).

Consider a variation of the previous specification: “until (including) moment t, all outputs
have never appeared as inputs before”, where t > 0 is a parameter, which can also be
specified by a 1-register UPW. Consider the same environment as before, namely the one
that sends every system output back to the system. In order to realize the specification, a
system transducer needs ks ≥ t registers. Hence, t + 1 >sys

ke,kA
t and fin >sys

ke,kA
t for every

ke ∈ ({inf, fin} ∪ N), kA ∈ ({fin} ∪ N), and t > 0.

We continue to the relations among the environment classes. Recall Lemma 14 that
says that if a ks-register system transducer Tsys has a computation rejected by a kA-register
UPW A, then there is an input word to Tsys with no more than (kA + ks + 1) data values
that induces a computation of Tsys rejected by A. This input word can be generated by an
environment transducer with (kA + ks + 1) registers. Then, it follows that inf =env

ks,kA
fin for

ks, kA ∈ ({fin} ∪ N). Also, if ks, kA ∈ N are fixed, then inf =env
ks,kA

fin =env
ks,kA

ks + kA + 1.
Because the bound (kA+ks+1) is tight (the second claim in Lemma 14), for some specifications
A and system transducers Tsys that do not realize A, we have that Tsys does realize A with
respect to all environments with kA + ks registers. Hence, ks + kA + 1 >env

ks,kA
ke + 1 for

every ke < ks + kA. The same consideration also implies that fin >env
ks,kA

ke for every
ks ∈ ({inf, fin} ∪ N) and kA ∈ ({fin} ∪ N).

Finally, consider a letter a ∈ ΣO and consider the specification “eventually always a”.
Consider a system that stores every data-input into its registers. Further, the system outputs
a whenever it reads a data-input that has appeared before (and hence equals to one of
its registers). Consider an environment, with an infinite number of registers, that always
provides a new value to the system. When interacting with this environment, the system
does not satisfy the specification. On the other hand, every environment transducer with a
finite number of registers starts, at some point, to repeat its values. When interacting with
such an environment transducer, the system satisfies the specification. Hence, inf >env

ks,kA
fin

for ks = inf and every kA ∈ ({fin} ∪ N). J

Theorem 13 implies, in particular, that once the numbers ks and kA of system and
automaton registers are fixed, then for model checking it is sufficient to consider environments
with (ks + kA + 1) registers only. Also, when ks is not fixed, such a cut-off does not exist.
A similar question is whether there exists a cut-off for synthesis, once the numbers ke and
kA are fixed. Unfortunately, the answer is negative. Indeed, such a bound would lift the
decidability of the environment-system-bounded synthesis problem (Theorem 10) to the
synthesis problem of unbounded systems wrt. bounded environments, and the latter is
undecidable (by the same argument as Theorem 3). Note, however, that Theorem 3 considers
system transducers initialized with unboundedly many data values. This leaves a hope for a
positive answer to the system cut-off question for the case when system transducers have a
finite-but-unbounded number of registers initialized with a fixed number of data values, and
environment transducers have a fixed number of registers. We leave this question for future
work. Finally, we note that the variant of a synthesis problem, where system transducers have
a finite-but-unbounded number of registers initialized to the same value, and environment
transducers have a finite-but-unbounded number of registers with no restriction on initial
values, is undecidable [16].
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