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Abstract. In automated synthesis, we transform a specification into a system
that is guaranteed to satisfy the specification. In spite of the rich theory devel-
oped for system synthesis, little of this theory has been reduced to practice. This
is in contrast with model-checking theory, which has led to industrial develop-
ment and use of formal verification tools. We see two main reasons for the lack
of practical impact of synthesis. The first is algorithmic: synthesis involves de-
terminization of automata on infinite words, and a solution of parity games with
highly complex state spaces; both problems have been notoriously resistant to ef-
ficient implementation. The second is methodological: current theory of synthesis
assumes a single comprehensive specification. In practice, however, the specifi-
cation is composed of a set of properties, which is typically evolving – properties
may be added, deleted, or modified.
In this work we address both issues. We extend the Safraless synthesis algorithm
of Kupferman and Vardi so that it handles LTL formulas by translating them to
nondeterministic generalized Büchi automata. This leads to an exponential im-
provement in the complexity of the algorithm. Technically, our algorithm reduces
the synthesis problem to the emptiness problem of a nondeterministic Büchi tree
automaton A. The generation of A avoids determinization, avoids the parity ac-
ceptance condition, and is based on an analysis of runs of universal generalized
co-Büchi tree automata. The clean and simple structure of A enables optimiza-
tions and a symbolic implementation. In addition, it makes it possible to use in-
formation gathered during the synthesis process of properties in the process of
synthesizing their conjunction.

1 Introduction

One of the most significant developments in the area of program verification over the
last two decades has been the development of algorithmic methods for verifying tem-
poral specifications of finite-state programs; see [5]. A frequent criticism against this
approach, however, is that verification is done after significant resources have already
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been invested in the development of the program. Since programs invariably contain er-
rors, verification simply becomes part of the debugging process. The critics argue that
the desired goal is to use the specification in the program development process in order
to guarantee the design of correct programs. This is called program synthesis.

In the late 1980s, several researchers realized that the classical approach to program
synthesis, where a program is extracted from a proof that the specification is satisfiable,
is well suited to closed systems, but not to open (also called reactive) systems [1, 6, 23].
In reactive systems, the program interacts with the environment, and a correct program
should then satisfy the specification with respect to all environments. These researchers
argued that the right way to approach synthesis of reactive systems is to consider the
situation as a (possibly infinite) game between the environment and the program. A
correct program can be then viewed as a winning strategy in this game. It turns out that
satisfiability of the specification is not sufficient to guarantee the existence of such a
strategy. Abadi et al. called specifications for which a winning strategy exists realizable.
Thus, a strategy for a program with inputs in I and outputs in O maps finite sequences
of inputs (words in (2I)∗ – the actions of the environment so far) to an output in 2O – a
suggested action for the program. A strategy can then be viewed as a labeling of a tree
with directions in 2I by labels in 2O. The traditional algorithm for finding a winning
strategy transforms the specification into a parity automaton over such trees such that
a program is realizable precisely when this tree automaton is nonempty, i.e., it accepts
some infinite tree [23]. A finite generator of an infinite tree accepted by this automaton
can be viewed as a finite-state program realizing the specification. This is closely related
to the approach taken, e.g., in [25], to solve Church’s solvability problem [4]. Several
works during the 1990s showed how this approach to program synthesis can be carried
out in a variety of settings.

In spite of the rich theory developed for program synthesis, little of this theory has
been reduced to practice. In fact, the main approaches to tackle synthesis are either
to use heuristic approaches (e.g., [12]) or to restrict the kind of allowed specification
(e.g., [22]). Some people argue that this is because the realizability problem for linear-
temporal logic (LTL) specifications is 2EXPTIME-complete [23, 26], but this argument
is not compelling. First, experience with verification shows that even nonelementary al-
gorithms can be practical, since the worst-case complexity does not arise often (cf., the
model-checking tool MONA [7]). Furthermore, in some sense, synthesis is not harder
than verification. This may seem to contradict the known fact that while verification is
“easy” (linear in the size of the model and at most exponential in the size of the spec-
ification [16]), synthesis is hard (2EXPTIME-complete). There is, however, something
misleading in this fact: while the complexity of synthesis is given with respect to the
specification only, the complexity of verification is given with respect to the specifica-
tion and the program, which can be much larger than the specification. In particular, it
is shown in [26] that there are temporal specifications for which every realizing pro-
gram must be at least doubly exponentially larger than the specifications. Clearly, the
verification of such programs is doubly exponential in the specification, just as the cost
of synthesis.

We believe that there are two reasons for the lack of practical impact of synthe-
sis theory. The first is algorithmic and the second is methodological. Consider first
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the algorithmic problem. First, constructing tree automata for realizing strategies uses
determinization of Büchi automata. Safra’s determinization construction has been no-
toriously resistant to efficient implementations [2, 29] (An alternative construction is
equally hard [2]. Piterman’s improvement of Safra includes the tree structures that
proved hard to implement [21].) Second, determinization results in automata with a very
complicated state space. The best-known algorithms for parity-tree-automata emptiness
[13] are nontrivial already when applied to simple state spaces. Implementing them on
top of the messy state space that results from determinization is awfully complex, and
is not amenable to optimizations and a symbolic implementation.

Another major issue is methodological. The current theory of program synthesis
assumes that one gets a comprehensive set of temporal assertions as a starting point.
This cannot be realistic in practice. A more realistic approach would be to assume an
evolving formal specification: temporal assertions can be added, deleted, or modified.
Since it is rare to have a complete set of assertions at the very start of the design process,
there is a need to develop compositional synthesis algorithms. Such algorithms can, for
example, refine designs when provided with additional temporal properties.

In this paper we address both issues. We focus on the case where forbidden behav-
iors are described by nondeterministic generalized Büchi automata on infinite words,
which are Büchi automata with multiple acceptance sets (corresponding to the impar-
tiality fairness condition of [17]). Our interest in specifying forbidden behaviors and in
using the generalized Büchi condition is motivated by the fact that LTL formulas (and
their negation) can be conveniently translated to nondeterministic generalized Büchi
automata [9]. Equivalently, one can specify allowed behavior by universal generalized
co-Büchi automata. Following [15], we offer an alternative to the standard automata-
theoretic approach. The crux of our approach is avoiding the use of determinization
constructions and of nondeterministic parity tree automata. In the approach described
here, one checks whether the specification ψ is realizable using the following steps: (1)
construct a universal generalized co-Büchi tree automaton Aψ that accepts all realizing
strategies for ψ, (2) reduce4 Aψ to an alternating weak tree automaton Awψ , (3) translate
Awψ to a nondeterministic Büchi tree automaton Anψ , and (4) check that the language of
Anψ is nonempty. The key is avoiding determinization, by using universal generalized
co-Büchi automata instead of deterministic parity automata.5

The difference between our approach here and the approach in [15] is that here
we use generalized co-Büchi automata, unlike the co-Büchi automata used there. This
leads to an exponential improvement in the complexity of our algorithm, as we describe
below. Extending the framework of [15] to generalized co-Büchi automata requires two
key technical steps. First, as our Safraless approach used a “Safraful” bound on the size

4 We use “reduce A1 to A2”, rather than “translate A1 to A2” to indicate that A2 accepts a
subset of the language of A1, yet the language ofA1 is empty iff the language ofA2 is empty.

5 A note to readers who are discouraged by the fact our method goes via several intermediate
automata: it is possible to combine the reductions into one construction, and in fact we describe
here also a direct translation of universal generalized co-Büchi automata into nondeterministic
Büchi automata. In practice, however, it is beneficial to have many intermediate automata,
as each intermediate automaton undergoes optimization constructions that are suitable for its
particular type, cf. [11].
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of the realizing strategies, we need to extend Safra’s construction to nondeterministic
generalized Büchi automata, obtaining an exponential improvement (with respect to an
approach that first translates the generalized Büchi automaton to a Büchi automaton) in
that construction. Second, we need to show how the co-Büchi ranks devised in [14] for
the analysis of runs of universal automata on words can be applied to the analysis of
runs of universal automata on finitely generated trees.

Beyond the improvement in complexity, the advantage of the Safraless approach is
that we get tree automata with cleanly described state spaces, which enables the appli-
cation of symbolic algorithms for Büchi tree automata emptiness. Further, we can now
obtain a compositional algorithm. Given a specification ψ, we first check its realizabil-
ity. Suppose now that we get an additional specification ψ′. We can, of course, simply
check the realizability of ψ ∧ ψ′ from scratch. Instead, we suggest to first check also
the realizability of ψ′. We then show how, thanks to the simple structure of the tree au-
tomata, much of the work used in checking the realizability of ψ and ψ′ in isolation can
be reused in checking the realizability of ψ ∧ ψ′. The compositional algorithm we sug-
gest can be combined with an incremental algorithm, in which we iteratively increase
the bound on the size of the realizing strategy. As demonstrated in [11] for the linear
setting, the bound that is needed in practice is usually much smaller than the worst-case
bound. In addition, we explain how the incremental and compositional algorithm can
be implemented symbolically.

2 Preliminaries

We assume familiarity with the basic notions of alternating automata on infinite trees,
cf. [10].

Given an alphabet Σ and a set D of directions, a Σ-labeled D-tree is a pair 〈T, τ〉,
where T ⊆ D∗ is a tree over D and τ : T → Σ maps each node of T to a letter
in Σ. A transducer is a labeled finite graph with a designated start node, where the
edges are labeled by D and the nodes are labeled by Σ. A Σ-labeled D-tree is regular
if it is the unwinding of some transducer. More formally, a transducer is a tuple T =
〈D,Σ, S, sin, η, L〉, where D is a finite set of directions, Σ is a finite alphabet, S is
a finite set of states, sin ∈ S is an initial state, η : S × D → S is a deterministic
transition function, and L : S → Σ is a labeling function. We define η : D∗ → S in the
standard way: η(ε) = sin, and for x ∈ D∗ and d ∈ D, we have η(x · d) = η(η(x), d).
Intuitively, A Σ-labeled D-tree 〈D∗, τ〉 is regular if there exists a transducer T =
〈D,Σ, S, sin, η, L〉 such that for every x ∈ D∗, we have τ(x) = L(η(x)). We then say
that the size of the regular tree 〈D∗, τ〉, denoted ‖τ‖, is |S|, the number of states of T .

We denote an alternating tree automaton by a tuple A = 〈Σ,D,Q, qin, δ, α〉,
where Σ is the input alphabet, D is a set of directions, Q is a finite set of states,
δ : Q × Σ → B+(D × Q) is a transition function, qin ∈ Q is an initial state, and
α specifies the acceptance condition A run of A is accepting if all its infinite paths sat-
isfy the acceptance condition. For a path π, we denote the set of automaton states visited
infinitely often along this path by inf(π). We consider here four acceptance conditions
defined as follows
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– A path π satisfies a generalized Büchi condition α = {F1, F2, . . . , Fk} ⊆ 2Q iff
for all 1 ≤ i ≤ k we have inf(π)∩Fi 6= ∅. The number k of sets in α is called the
index of the automaton. If |α| = 1 we call α a Büchi condition.

– A path π satisfies a generalized co-Büchi condition α = {F1, F2, . . . , Fk} ⊆ 2Q

iff for some 1 ≤ i ≤ k we have inf(π) ∩ Fi = ∅. The number k of sets in α is
called the index of the automaton. If |α| = 1 we call α a co-Büchi condition.

– A path π satisfies a parity condition α = 〈F0, . . . , Fk〉 where F0, . . . Fk form a
partition of Q iff for some even i we have inf(π) ∩ Fi 6= ∅ and forall i′ < i we
have inf(π) ∩ Fi′ = ∅. We call k the number of priorities of α.

For the three conditions, an automaton accepts a tree iff there exists a run that accepts
it. We denote by L(A) the set of all Σ-labeled trees that A accepts. We also refer to a
fourth condition, which is a special case of the Büchi condition, and is referred to as the
weak condition [20].

Below we discuss some special cases of alternating automata. The alternating au-
tomaton A is nondeterministic if for all the formulas that appear in δ, if (d1, q1) and
(d2, q2) are conjunctively related, then d1 6= d2. (i.e., if the transition is rewritten in
disjunctive normal form, there is at most one element of {d} × Q, for each d ∈ D,
in each disjunct). The automaton A is universal if all the formulas that appear in δ are
conjunctions of atoms in D × Q, and A is deterministic if it is both nondeterministic
and universal. The automaton A is a word automaton if |D| = 1. Then, we can omit
D from the specification of the automaton and denote the transition function of A as
δ : Q × Σ → B+(Q). If the word automaton is nondeterministic or universal, then
δ : Q×Σ → 2Q.

We denote each of the different types of automata by an acronym in {D,N,U,A}×
{B,GB,C,GC, P} × {W,T}, where the first letter describes the branching mode of
the automaton (deterministic, nondeterministic, universal, or alternating), the second
letter describes the acceptance condition (Büchi, generalized Büchi, co-Büchi, gener-
alized co-Büchi, or parity), and the third letter describes the object over which the au-
tomaton runs (words or trees). For example, APT are alternating parity tree automata
and UGCT are universal generalized co-Büchi tree automata.

3 Synthesis

Consider an UGCW S over the alphabet 2I∪O, for sets I and O of input and output
signals. The realizability problem for S [23] is to decide whether there is a strategy
f : (2I)∗ → 2O, generated by a transducer6 such that all the computations of the system
generated by f are in L(S). We call such a strategy, a good strategy. A computation
ρ ∈ (2I∪O)ω is generated by f if ρ = (i0 ∪ o0), (i1 ∪ o1), (i2 ∪ o2), . . . and for all
j ≥ 1, we have oj = f(i0 · i1 · · · ij−1).

In practice, the UGCW S originates from an LTL formula ψ that specifies the de-
sired properties of the program we synthesize. In order to get S, we first translate ¬ψ to
an NGBW A¬ψ , and then dualize A¬ψ by viewing it as a UGCW. By [31, 9], A¬ψ , and

6 As S recognizes an ω-regular language, if some transducer that generates f exists, then there
is also a finite-state transducer.
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thus also S, have 2O(|ψ|) states and index O(|ψ|). Alternatively, one can define prop-
erties directly using UGCW, as done, for example, in the framework of Generalized
Symbolic Trajectory Evaluation [32], by means of fair assertion graphs.

Theorem 1. The realizability problem for a UGCW can be reduced to the nonemptiness
problem of a UGCT with the same state space and index.

Proof: A strategy f : (2I)∗ → 2O can be viewed as a 2O-labeled 2I -tree. Given a
UGCW S, we define a UGCT S ′ such that S ′ accepts a 2O-labeled 2I -tree 〈T, τ〉 iff τ
is a good strategy for S.

Let S = 〈2I∪O, Q, qin, δ, α〉. Then, S ′ = 〈2O, 2I , Q, qin, δ′, α〉, where for every
q ∈ Q and o ∈ 2O, we have δ′(q, o) =

∧
i∈2I

∧
q′∈δ(q,i∪o)(i, q

′). Thus, from state q,
reading the output assignment o ∈ 2O, the automaton S ′ branches to each direction
i ∈ 2I , with all the states q′ to which δ branches when it reads i ∪ o in state q. It is
not hard to see that S ′ accepts a 2O-labeled 2I -tree 〈T, τ〉 iff for all the paths {ε, i0, i0 ·
i1, i0 · i1 · i2, . . .} of T , the infinite word (i0 ∪ τ(ε)), (i1 ∪ τ(i0)), (i2 ∪ τ(i0 · i1)), . . .
is accepted by the UGCW S as required.

We now describe an emptiness preserving translation of UGCT to NBT. The correct-
ness proof of the construction is given in Sections 4.1 and 4.2. There, we also suggest
to use ABT as an intermediate step in the construction. While this adds a step to our
chain of reductions, it enables further optimizations of the result.

For an integer c, let [c] denote the set {0, 1, . . . , c}, and let [c]odd and [c]even denote
the set of odd and even members of [c], respectively. Also, let Rk(c) = [2c]even ∪
([2c]odd × {1, . . . , k}), and ≤ be the lexicographical order on the elements of Rk(c).
We refer to the members of Rk(c) in [2c]even as even ranks and refer to the members
of Rk(c) in [2c]odd × {j} as odd ranks with index j. Note that the size of Rk(c) is
c(k + 1) + 1. Our construction refers to a function Det(n, k), which, as we show later,
is bounded from above by n2n+2kn.

Theorem 2. Let A be a UGCT with n states and index k. There is an NBT A′ over the
same alphabet such that all the following hold.

– L(A′) ⊆ L(A),
– L(A) 6= ∅ implies L(A′) 6= ∅, and
– the number of states in A′ is 2O(n2(logn+log k)).

Proof: Let A = 〈Σ,D,Q, qin, δ, {F1, . . . , Fk}〉, and let c = Det(n, k). Note that c is
2O(n(logn+log k)). Let Rk(c) be the set of functions f : Q→ Rk(c) in which f(q), for
all q ∈ Fj , is not odd with index j. For g ∈ Rk(c), let odd(g) = {q : g(q) is odd}. We
define A′ = 〈Σ,D,Q′, q′in, δ

′, α′〉, where
– Q′ = 3Q×Rk(c). For technical convenience, we refer to the states of Q′ as triples
〈S,O, f〉 with O ⊆ S ⊆ Q and f ∈ Rk(c).

– q′in = 〈{qin}, ∅, g0〉, where g0 maps all states to 2c.
– For q ∈ Q, σ ∈ Σ, and d ∈ D, let δ(q, σ, d) = {q′ | (d, q′) ∈ δ(q, σ)}. For S ⊆ Q,
σ ∈ Σ, and d ∈ D we define δ(S, σ, d) in the natural way. For two functions g and
g′ in Rk(c), a letter σ, and direction d ∈ D, we say that g′ covers 〈g, σ, d〉 if for all
q and q′ in Q, if q′ ∈ δ(q, σ, d), then g′(q′) ≤ g(q). Let g′ � 〈g, σ, d〉 denote that
g′ covers 〈g, σ, d〉. Then, for all 〈S,O, g〉 ∈ Q′ and σ ∈ Σ, we define δ as follows.
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• If O 6= ∅, then

δ′(〈S,O, g〉, σ) =
∧
d∈D

∨
gd�〈g,σ,d〉

(d, 〈δ(S, σ, d), δ(O, σ, d) \ odd(gd), gd〉)

• If O = ∅, then

δ′(〈S,O, g〉, σ) =
∧
d∈D

∨
gd�〈g,σ,d〉

(d, 〈δ(S, σ, d), δ(S, σ, d) \ odd(gd), gd〉)

– α′ = 2Q × {∅} ×Rk(c).
In Section 4 we sketch the proof that this automaton indeed satisfies the conditions of
the theorem.

In fact, A′ accepts every regular tree in the language of A that is produced by a
“small” transducer. We show that whenever A accepts some regular tree, there exists
some “small” regular tree that is accepted by A′. Thus, if A accepts some regular tree,
it accepts a regular tree produced by a small transducer, and this regular tree is also
accepted by A′.

Corollary 1. The realizability problem for an NGBW with n states and index k can be
reduced to the nonemptiness problem of an NBT with 2O(n2(logn+log k)) states.

These bounds are exponentially better than those established in [15]. There, the
NGBW is converted to an NBW with nk states and the overall resulting complexity is
2O((nk)2(log k+logn)).7

The synthesis problem for S is to find a transducer that generates a strategy real-
izing S. Known algorithms for the nonemptiness problem can be easily extended to
return a transducer [24]. The algorithm we present here also enjoys this property, thus
it can be used to solve not only the realizability problem but also the synthesis problem.
(For a comparison of the Safraless and the Safraful approaches to synthesis from the
perspective of program size, see [15].)

4 From UGCT to NBT

Recall that runs of alternating tree automata are labeled trees. By merging nodes that are
roots of identical subtrees, it is possible to maintain runs in graphs. In Section 4.2, we
prove a bounded-size run graph property for UGCT. In Section 4.2, we show how the
bounded-size property enables a simple translation of UGCT to ABT, which we then
translate to an NBT. Combining the translations results in the UGCT to NBT construc-
tion described in Theorem 2. While our construction avoids using the determinization
construction, the proof of the bounded-size run-graph property makes use of the bound
the construction provides to the blow-up involved in determinization. Since we handle
the generalized co-Büchi construction, we need a bound on the blow-up involved in the
determinization of NGBW. We provide such a bound in Section 4.1.

7 We can use the improved bound on determinization established in [21] to improve the bounds
in [15]. This, however, reduces only the constants in the exponent.
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4.1 NGBW to DPW

There are two known approaches to determinization of NGBW. The first is to convert
the NGBW to an NBW [3] and then use determinization [27, 21]. The second is to
view the NGBW as a Streett automaton and apply determinization of Streett automata
[28, 21]. Both approaches produce automata with (nk)O(nk) states. In this section we
show how to extend the determinization construction for the case of generalized Büchi
automata. Our construction below produces a DPW with (nk)O(n) states, exponentially
fewer states than the approaches described.

We offer here a succinct description of the improvement. The basis of our con-
struction is Safra’s determinization [27], as improved by Piterman [21]. The key is to
augment compact Safra trees with an indexing function. In Piterman’s construction, the
DPW refers to a visit in the set of accepting states as a good event. In our extension,
a good event occurs only after visits to all the sets in the generalized Büchi condition.
Thus, the idea is similar to the indexing used in the translation of NGBW to NBW [9],
but the challenge is to combine this indexing in the state space of the DPW in a way
that minimizes the blow-up in terms of k. the improved construction is used only to
generate the improved bound. The synthesis algorithm uses this bound but it does not
use the determinization construction.

Theorem 3. Given an NGBW with n states and index k, we can construct an equivalent
DPW with at most n2n+2kn states and 2n priorities.

Proof: Let N = 〈Σ,S, δ, s0, α〉 be an NGBW with |S| = n and α = {F1, . . . , Fk}.
Let V = [n]. We construct the DPW D equivalent to N . Let D = 〈Σ,D, ρ, d0, α

′〉,
where the components of D are as follows.

– A generalized compact Safra tree t is 〈N, 1, p, l, h, r, g〉 where N ⊆ V is a set of
nodes, 1 ∈ N is the root node, p : N → N is the parenthood function, l : N → 2S

is a labeling of the nodes with subsets of S, h : N → [k] is an indexing function
associating with every node an index in [k], and r, g ∈ [n + 1] are used to define
the parity condition. In addition, the label of every node is a proper superset of
the union of the labels of its children. The labels of two siblings are disjoint. The
set of nodes is always consecutive and includes the first |N | elements in V (i.e.,
1, . . . , |N |). The set D of states is the set of generalized compact Safra trees over
S and k.

– d0 ∈ D has a unique node 1 where l(1)={s0}, h(1)=1, r=2, and g=1.
– The parity acceptance condition is α′={F ′

0, . . . , F
′
2n−1} where

• F ′
0 = {d ∈ D | g = 1}

• F ′
2i+1 = {d ∈ D | r = i+ 2 and g ≥ r}

• F ′
2i+2 = {d ∈ D | g = i+ 2 and r > g}

– For every tree d ∈ D and letter σ ∈ Σ the transition d′ = ρ(d, σ) is the result of
the following transformations on d. (1) For every node v with label S′ replace S′

by δ(S′, σ). (2) For every node v with label S′ such that h(v) = i and S′ ∩Fi 6= ∅,
create a son v′ such that v′ is the minimal value in V that is greater than all other
nodes. Set its label to S′∩Fi and its index to 1. We may use temporarily nodes in the
range [(n+1)..(2n)]. (3) For every node v with label S′ and state s ∈ S′ such that
s belongs also to some sibling v′ of v such that v′ < v, remove s from the label of
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v and all its descendants. (4) For every node v whose label is equal to the union of
the labels of its children, remove all descendants of v. If h(v) = k, change h(v) to
1 and call v green. If h(v) < k, increase h(v) by one. Set g to the minimum of n+1
and the green nodes. (5) Remove all nodes with empty labels. Set r the minimum
of n+1 and all the nodes removed during all stages of the transformation. (6) Let
Z denote the set of nodes removed during all previous stages of the transformation.
For every node v let rem(v) be |{v′ ∈ Z | v′ < v}|. For every node v such that
l(v) 6= ∅ we replace v by v−rem(v).

Let Det(n, k) be the number of generalized compact Safra trees for NGBW with n
states and index k. By Theorem 3, Det(n, k) is bounded from above by n2n+2kn.

4.2 From UGCT to NBT

A bounded-size run graph property for UGCT Let A = 〈Σ,D,Q, qin, δ, α〉 be a
UGCT with α = {F1, . . . , Fk}. Recall that a run 〈Tr, r〉 of A on a Σ-labeled D-tree
〈T, τ〉 is a (T ×Q)-labeled tree in which a node y with r(y) = 〈x, q〉 stands for a copy
ofA that visits the state q when it reads the node x. Assume that 〈T, τ〉 is regular, and is
generated by a transducer T = 〈D,Σ, S, sin, η, L〉. For two nodes y1 and y2 in Tr, with
r(y1) = 〈x1, q1〉 and r(y2) = 〈x2, q2〉, we say that y1 and y2 are similar iff q1 = q2
and η(x1) = η(x2). By merging similar nodes into a single vertex, we can represent the
run 〈Tr, r〉 by a finite graph G = 〈V,E〉, where V = S × Q and E(〈s, q〉, 〈s′, q′〉) iff
there is c ∈ D such that (c, q′) ∈ δ(q, L(s)) and η(s, c) = s′. We restrict G to vertices
reachable from the vertex 〈sin, qin〉. We refer to G as the run graph of A on T . A run
graph ofA is then a run graph ofA on some transducer T . We say thatG is accepting iff
every infinite path ofG has only finitely many Fj-vertices (vertices in S×Fj), for some
1 ≤ j ≤ k. Since A is universal and T is deterministic, the run 〈Tr, r〉 is memoryless
in the sense that the merging does not introduce to G paths that do not exist in 〈Tr, r〉,
and thus, it preserves acceptance. Formally, we have the following:

Lemma 1. Consider a UGCTA. Let 〈T, τ〉 be a tree generated by a transducer T . The
run tree 〈Tr, r〉 of A on 〈T, τ〉 is accepting iff the run graph G of A on T is accepting.

Note that G is finite, and its size is bounded by S ×Q. We now bound S and get a
bounded-size run-graph property for UGCT. The bound on S depends on the blow-up
involved in NGBW determinization, which we studied in Section 4.1. Essentially, the
bound depends on the size of an NPT equivalent to the UGCT, and in order to get such
an NPT we have to determinize an NGBW that accepts bad paths in runs of the UGCT.

Theorem 4. A UGCT A with n states and index k is not empty iff A has an accepting
run graph with at most Det(n, k) · n vertices.

From UGCT to NBT via ABT Consider a graph G′ ⊆ G. We say that a vertex 〈s, q〉
is finite in G′ iff all the paths that start at 〈s, q〉 are finite. For 1 ≤ j ≤ k, we say that a
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vertex 〈s, q〉 is Fj-free in G′ iff all the vertices in G′ that are reachable from 〈s, q〉 are
not Fj-vertices. Note that, in particular, an Fj-free vertex is not an Fj-vertex.

Given a run 〈Tr, r〉, we define an infinite sequence of graphs G0 ⊇ G1
1 ⊇ G2

1 ⊇
. . . Gk1 ⊇ Gk+1

1 ⊇ G1
3 ⊇ . . . Gk+1

3 ⊇ G1
5 . . . as follows. To simplify notations, we

sometimes refer to G1
2i+1 as G2i+1 and to Gk+1

2i+1 as G2i+2. Thus, G1 = G1
1, G2 =

Gk+1
1 , G3 = G1

3, G4 = Gk+1
3 , and so on.

– G0 = G.
– G1

2i+1 = G2i \ {〈s, q〉 | 〈s, q〉 is finite in G2i}.
– Gj+1

2i+1 = Gj2i+1 \ {〈s, q〉 | 〈s, q〉 is Fj-free in Gj2i+1}, for 1 ≤ j ≤ k.

Lemma 2. A run graph G = 〈V,E〉 is accepting iff there is i ≤ |V | for which G2i is
empty.

Let G be an accepting run graph. Given a vertex 〈s, q〉 in G, the rank of 〈s, q〉,
denoted rank(s, q), is defined as follows:

rank(s, q) =
[

2i If 〈s, q〉 is finite in G2i.
〈2i+ 1, j〉 If 〈s, q〉 is Fj-free in Gj2i+1.

Recall that, for an integer c, we have defined Rk(c) = [2c]even ∪ ([2c]odd ×
{1, . . . , k}), as a set of c(k + 1) ranks, and defined ≤ as the lexicographical order
on the elements ofRk(c). For an odd rank ρ = 〈2i+1, j〉, we refer toGj2i+1 asGρ. Let
c = |V |. By Lemma 2, there is i ≤ c for which G2i is empty. Therefore, every vertex
gets a well-defined rank in Rk(c).

Lemma 3. In every infinite path in an accepting run graph G, there exists a vertex
〈s, q〉 with an odd rank such that all the vertices 〈s′, q′〉 on the path that are reachable
from 〈s, q〉 have rank(s′, q′) ≤ rank(s, q).

We can now use the analysis of ranks in order to translate UGCT to NBT. In order
to enable further optimizations, we use ABT as an intermediate step in the construction.

Theorem 5. Let A be a UGCT with n states and index k. There is an ABT A′ over the
same alphabet such that all the following hold.

– L(A′) ⊆ L(A),
– L(A) 6= ∅ implies L(A′) 6= ∅, and
– the number of states in A′ is 2O(n(logn+log k)).

As detailed in the proof of the Theorem, the ABT A′ accepts all the regular trees
〈T, τ〉 ∈ L(A) that are generated by a transducer T = 〈D,Σ, S, sin, η, L〉 with at most
Det(n, k) states. Note that the run graph of A on such 〈T, τ〉 is accepting and is of size
most Det(n, k) · n. By Theorem 4, we have that L(A′) 6= ∅ iff L(A) 6= ∅.

The state space of A′ is Q′ = Q × Rk(c). Intuitively, when A′ is in state 〈q, ρ〉 as
it reads the node x ∈ T , it guesses that the rank of the vertex 〈η(x), q〉 of G is ρ. The
transitions of A′ allows the guessed ranks to decrease, but makes sure that if a state
is in Fj , the guessed rank for it cannot be odd with index j. By Lemma 3, the guessed



11

ranks should eventually converge to some odd rank, which is checked by the acceptance
condition of A′.8

In [18], Miyano and Hayashi describe a translation of ABW to NBW. In Theorem 6
below (see also [19]), we present (a technical variant of) their translation, adapted to
tree automata,

Theorem 6. LetA be an ABT with n states. There is an NBTA′ with 2O(n) states, such
that L(A′) = L(A).

Combining Theorems 5 and 6, one can reduce the nonemptiness problem for UGCT
to the nonemptiness problem for NBT. Consider a UGCT A with n states and in-
dex k. If we translate A to an NBT by going through the ABT we have obtained
in Theorem 5, we end up with an NBT with 22O(n(log n+log k))

states, as the ABT has
2O(n(logn+log k)) states. In order to complete the construction, and get the NBT de-
scribed in the proof of Theorem 2, we exploit the special structure of the ABT and
show that only 2O(n2(logn+log k)) states of the NBT constructed in Theorem 6 may
participate in an accepting run.

5 Compositional Synthesis

A serious drawback of current synthesis algorithms is that they assume a comprehen-
sive set of temporal assertions as a starting point. In practice, however, specifications are
evolving: temporal assertions are added, deleted, or modified during the design process.
In this section we describe how our synthesis algorithm can support compositional syn-
thesis, where the temporal assertions are given one by one. We show how the Safraless
approach enables us, when we check the realizability of ψ∧ψ′, to use much of the work
done in checking the realizability of ψ and ψ′ in isolation. Devising compositional syn-
thesis algorithms to other forms of composition, e.g., ψ′ → ψ, is an interesting research
problem.

Our compositional algorithm extends the incremental-synthesis algorithm described
in [15]. Essentially, we show that when we construct and check the emptiness of the
NBT to which realizability of ψ ∧ ψ′ is reduced, we can use much of the work done
in the process of checking the emptiness of the two (much smaller) NBTs to which
realizability of ψ and ψ′ is reduced (in isolation).

We first review the incremental-synthesis idea from [15]. Recall that our construc-
tion is based on the fact we can bound the maximal rank that a vertex in an accepting run
graph G gets. Often, the sequence G0, G1, G2, . . . of graphs described in Section 4.2
converges to the empty graph very quickly, making the bound on the maximal rank
much smaller (see [11] for an analysis and experimental results for the case of UCW).
Accordingly, one can regard the bound c as a parameter in the construction: start with a
small parameter, and increase it if necessary.

8 Readers familiar with weak automata [20], would note that our automaton is in fact an alter-
nating weak tree automaton. It is the special structure of weak automata that enables some of
the optimizations we describe below.
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To see how this is done, consider the combined construction described in Theo-
rem 2. Starting with a UGCT A with state space Q of size n, we took c = Det(n, k) ·n
(an upper bound on the size of the minimal accepting run graph of A), and constructed
an NBT A′ with state space 3Q ×Rk(c), where Rk(c) is the set of functions f : Q→
Rk(c) in which f(q) is not odd with index j for all q ∈ Fj . For l ≤ c, let Rk[l] be the
restriction of Rk to functions with range Rk(l), and let A′[l] be the NBT A′ resulting
from replacing the functions Rk[c] by Rk[c]. Recall that the NBT A′[l] is empty iff
all the run graphs of A of size at most l are not accepting. Thus, coming to check the
emptiness of A, the incremental approach proceeds as follows: start with a small l and
check the nonemptiness of A′[l]. If A′[l] is not empty, then A is not empty, and we can
terminate with a “nonempty” output. Otherwise, increase l, and repeat the procedure.
When l = c and A′[l] is still empty, we can terminate with an “empty” output.

As argued for UCTs in [15], it is possible to take advantage of the work done during
the emptiness test of A′[l1], when testing emptiness of A′[l2], for l2 > l1. To see this,
note that the state space ofA′[l2] consists of the union of 3Q×Rk[l1] (the state space of
A′[l1]) with 3Q× (Rk[l2] \Rk[l1]) (states whose f ∈ Rk[l2] has a state that is mapped
to a rank greater than l1). Also, since ranks can only decrease, once the NBT A′[l2]
reaches a state of A′[l1], it stays in such states forever. So, if we have already checked
the nonemptiness of A′[l1] and have recorded the classification of its states to empty
and nonempty, the additional work needed in the nonemptiness test of A′[l2] concerns
only states in 3Q × (R[l2] \ Rk[l1]).

We now describe how the incremental approach can be extended to a compositional
one. Let S = 〈Σ,Q, δ, qin, {F1, . . . , Fk}〉 and S ′ = 〈Σ,Q′, δ′, q′in, {F ′

1, . . . , F
′
k′}〉

be UGCWs specifying required behaviors. Let n = |Q| and n′ = |Q′|. Without loss
of generality, assume that the state spaces Q and Q′ are disjoint. We can define the
intersection of S and S ′ as the UGCW P obtained by putting S and S ′ “side by side”;
thus9 P = 〈Σ,Q∪Q′, δ∪δ′, {qin, q′in}, {F1∪Q′, . . . , Fk∪Q′, F ′

1∪Q, . . . , F ′
k′ ∪Q}〉.

Note that it is indeed the case that P has an accepting run on a word w iff both S and
S ′ has an accepting run on w.

Let A and A′ be the NBTs to which realizability of S and S ′ is reduced, respec-
tively. A non-compositional approach generates the NBT that corresponds to P . By
Theorem 2, this results in an NBT U with state space 3Q∪Q

′ × Rk+k′(p)Q∪Q
′
, for

p = Det(n+n′, k+ k′) · (n+n′). On the other hand, the state spaces of A and A′ are
much smaller, and are 3Q × Rk(c)Q and 3Q

′ × Rk′(c′)Q
′
, for c = Det(n, k) · n and

c′ = Det(n′, k′) · n′. respectively.
Let us examine the structure of the state space of U more carefully. Each of its states

can be viewed as a triplet 〈S ∪ S′, O ∪ O′, f〉, for O ⊆ S ⊆ Q, O′ ⊆ S′ ⊆ Q′, and
f : Q ∪ Q′ → Rk+k′(p). For f as above, let f|Q and f|Q′ denote the restrictions of
f to Q and Q′, respectively. Note that if f maps the states in S to ranks in Rk(c) and
maps states in S′ to ranks in Rk′(c′), then the state 〈S ∪ S′, O ∪ O′, f〉 corresponds
to the states 〈S,O, f|Q〉 of A and 〈S′, O′, f|Q′〉 of A′. Moreover, if one of these states
is empty, so is 〈S ∪ S′, O ∪ O′, f〉. This observation is the key to our compositional
algorithm.

9 For technical simplicity, we allow P to have two initial states. This can be easily avoided by
adding a new initial state whose transitions are the union of the transitions from qin and q′

in.



13

For l ≤ c and l′ ≤ c′, let U [l, l′] denote the NBT U restricted to states 〈S ∪ S′, O ∪
O′, f〉 in which f(q), for q ∈ S, is in Rk(l) and f(q′), for q′ ∈ S′, is in Rk′(l′). We
check the emptiness of U incrementally and compositionally as follows. We start with
small l1 and l′1 and check the emptiness of U [l1, l′1]. Doing so, we first mark as empty
all states 〈S∪S′, O∪O′, f〉 for which either 〈S,O, f|Q〉 is empty inA or 〈S′, O′, f|Q′〉
is empty inA′, and continue the emptiness check only in the (expectedly much smaller)
state space. If U [l1, l′1] is not empty, we are done. Otherwise, we increase our parameters
to l2 and l′2, with l2 ≥ l1 and l′2 ≥ l′1. Note that we need not increase both parameters.
Checking the emptiness of U [l2, l′2], we make use of the information gathered in the
emptiness checks of A[l2], A′[l′2], as well as U [l1, l′1]. The procedure continues until we
either reach lj and l′j for which U [lj , l′j ] is not empty, in which case the specification
is realizable, or we find that U [p, p] is empty, in which case the specification is not
realizable.

We note that, as with the incremental approach, the significant advantage of the
compositional approach is when the specification is realizable, and especially when
U [l, l′] is not empty for l and l′ smaller than c and c′ – thus we can use information
about A and A′ all the way to the positive response. We also note that the incremental
approach is possible due to the simple structure of the state spaces of the NBTs to
which we have reduced the realizability problem. This simple structure also makes it
easy to implement our approach symbolically: the state space of the NBT consists of
sets of states and a ranking function, it can be encoded by Boolean variables, and the
NBT’s transitions can be encoded by relations on these variables and a primed version
of them. The fixpoint solution for the nonemptiness problem of NBT (c.f., [30]) then
yields a symbolic solution to the original UGCT nonemptiness problem. Moreover,
checking the emptiness of U [lj , l′j ], we can use BDDs for the empty states in A[lj ],
A[l′j ], and U [lj−1, l

′
j−1]. Finally, as discussed in [15], the BDDs that are generated

by the symbolic nonemptiness procedure can be used to generate a symbolic witness
strategy, from which we can synthesize a sequential circuit implementing the strategy.
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10. E. Grädel, W. Thomas, and T. Wilke. Automata, Logics, and Infinite Games: A Guide to
Current Research. LNCS 2500. Springer-Verlag, 2002.

11. S. Gurumurthy, O. Kupferman, F. Somenzi, and M.Y. Vardi. On complementing nonde-
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