
Abstraction for Falsification

Thomas Ball1, Orna Kupferman2, and Greta Yorsh3

1 Microsoft Research, Redmond, WA, USA.
Email: tball@microsoft.com, URL: www.research.microsoft.com/∼tball

2 Hebrew University, School of Eng. and Comp. Sci., Jerusalem 91904, Israel.
Email: orna@cs.huji.ac.il, URL: www.cs.huji.ac.il/∼orna

3 Tel-Aviv University, School of Comp. Sci., Tel-Aviv 69978, Israel.
Email:gretay@post.tau.ac.il, URL: www.math.tau.ac.il/∼gretay

Abstract. Abstraction is traditionally used in the process ofverification. There, an abstrac-
tion of a concrete system is sound if properties of the abstract system also hold in the con-
crete system. Specifically, if an abstract statea satisfies a propertyψ thenall the concrete
states that correspond toa satisfyψ too. Since the ideal goal of proving a system correct in-
volves many obstacles, the primary use of formal methods nowadays isfalsification. There,
as intesting, the goal is to detect errors, rather than to prove correctness. In the falsification
setting, we can say that an abstraction is sound if errors of the abstract system exist also
in the concrete system. Specifically, if an abstract statea violates a propertyψ, thenthere
existsa concrete state that corresponds toa and violatesψ too.
An abstraction that is sound for falsification need not be sound for verification. This suggests
that existing frameworks for abstraction for verification may be too restrictive when used for
falsification, and that a new framework is needed in order to take advantage of the weaker
definition of soundness in the falsification setting.
We present such a framework, show that it is indeed stronger (than other abstraction frame-
works designed for verification), demonstrate that it can be made even stronger by param-
eterizing its transitions by predicates, and describe how it can be used for falsification of
branching-time and linear-time temporal properties, as well as for generating testing goals
for a concrete system by reasoning about its abstraction.

1 Introduction

Automated abstraction is a powerful technique for reasoning about systems. An abstrac-
tion framework [CC77] consists of a concrete system with (large, possibly infinite) state
spaceC, an abstract system with (smaller, often finite) state spaceA, and an abstraction
functionρ: C → A that relates concrete and abstract states. An abstraction framework
is sound with respect to a logicL if all properties specified inL that hold in an abstract
statea also hold in all the concrete states that correspond toa. Formally, for alla ∈ A
andϕ ∈ L, if a satisfiesϕ then for allc ∈ C with ρ(c, a), we have thatc satisfiesϕ.
The soundness of the abstraction framework enables the user to verify properties of the
abstract system using techniques such as model checking [CE81,QS81] and conclude
their validity in the concrete system.

While the ultimate goal of formal verification is to prove that a system satisfies
some specification, there are many obstacles to achieving this ideal in practice. Thus,
the primary use of formal methods nowadays isfalsification, where the goal is to detect
errors rather than to provide a proof of correctness. This is reflected in the extensive
research done on bounded model checking (c.f., [FKZ+00]), runtime verification (c.f.,
[Sip99]), etc. In the falsification setting, we can say that an abstraction is sound with
respect to a logicL if all errors specified inL that hold in an abstract statea also hold

in some concrete state that corresponds toa. Formally, for all a ∈ A and ϕ ∈ L,
if a satisfiesϕ then there isc ∈ C such thatρ(c, a) andc satisfiesϕ. 4 Since every
abstract state corresponds to at least one concrete state, the soundness condition in the
falsification setting is weaker than the soundness condition in the verification setting.
To see that this weaker definition is sufficiently strong for falsification, note that the
concrete statec that satisfiesϕ witnesses that the concrete system is erroneous (we note
that in the falsification settingϕ is a “bad” property that we don’t wish the system to
have, while in the verifications settingϕ is a “good” property that we wish the system
to have).

We develop a new abstraction framework to take advantage of the weaker defini-
tion of soundness in the falsification setting. Our framework is based onmodal tran-
sition systems(MTS) [LT88]. Traditional MTS have two types of transitions:may
(over-approximating transitions) andmust (under-approximating transitions). The use
of must transitions in the falsification setting was explored in [PDV01,GLST05], with
different motivations. Our framework contains, in addition, a new type of transition,
which can be viewed as the reverse version ofmust transitions [Bal04]. Accordingly,
we refer to transitions of this type asmust− transitions and refer to the traditionalmust
transitions asmust+ transitions. While amust+ transition from an abstract statea to
an abstract statea′ implies that for all concrete statesc with ρ(c, a) there is a succes-
sor concrete statec′ with ρ(c′, a′), amust− transition froma to a′ implies that for all
concrete statesc′ with ρ(c′, a′) there is a concrete predecessor statec with ρ(c, a). The
must− transitions correspond to the weaker soundness requirement in the falsification
setting and are incomparable tomust+ transitions.

Consider, for example, a simple concrete system consisting of the assignment state-
ment x:=x-3 . Suppose that the abstract system is formed via predicate abstraction
using the predicatex > 6. Consider the abstract transition{x > 6} x:=x-3 {x > 6}.
This transition is not amust transition, as there are pre-states satisfyingx > 6 (namely
x = 7, x = 8, andx = 9) for which the assignment statement results in a post-
state that does not satisfyx > 6. Therefore, in a traditional MTS this transition is a
may transition. However, in an MTS withmust− transitions, the above transition is
a must− transition, as for every post-statec′ satisfyingx > 6 there is a pre-statec
satisfyingx > 6 such that the execution ofx:=x-3 from c yieldsc′. It is impossible to
make this inference in a traditional MTS, even those augmented with hyper-must tran-
sitions [LX90,SG04]. As we shall see below, the observation that the abstract transition
is amust− transition rather than amay transition enables better reasoning about the
concrete system.

We study MTS with these three types of transitions, which we refer to asternary
modal transition systems(TMTS)5. We first show that the TMTS model is indeed
stronger than the MTS model: while MTS with onlymay andmust+ transitions are
logically characterized by a 3-valued modal logic with theAX andEX (for all suc-

4 Note that the falsification setting is different than the problem ofgeneralized model check-
ing [GJ02]. There, the existential quantifier ranges over all possible concrete systems and the
problem is one of satisfiability (does there exist a concrete system with the same property as
the abstract system?). Here, the concrete system is given and we only replace the universal
quantification on concrete states that correspond toa by an existential quantification on them.

5 Not to be confused with the three-valued logic sometimes used in these systems.

2

cessors/exists a successor) operators, TMTS are logically characterized by a strictly
more expressive modal logic which has, in addition, theAY andEY (for all prede-
cessors/exists a predecessor) past operators. We then show that by replacingmust+

transitions bymust− transitions, existing work on abstraction/refinement for verifica-
tion [GHJ01,SG03,BG04,SG04,DN05] can be lifted to abstraction/refinement for falsi-
fication.

In particular, this immediately provides a framework for falsification of CTL andµ-
calculus specifications. Going back to our example, by letting existential quantification
range overmust− transitions, we can conclude from the fact that the abstract system
satisfies the propertyEXx > 6 (there is a successor in whichx > 6 is valid) that
some concrete state also satisfiesEXx > 6. Note that such reasoning cannot be done
in a traditional MTS, as there themust− transition is overapproximated by amay
transition, which is not helpful for reasoning about existential properties. Thus, there
are cases where evaluation of a formula on a traditional MTS returns⊥ (nothing can
be concluded for the concrete system, and refinement is needed) and its evaluation on a
TMTS returns anexistentialtrue or existentialfalse. Formally, we describe a6-valued
falsification semanticsfor TMTS. In addition to theT (all corresponding concrete states
satisfy the formula),F (all corresponding concrete states violate the formula), and⊥
truth values that the 3-valued semantics for MTS has, the falsification semantics also
has theT∃ (there is a corresponding concrete state that satisfies the formula),F∃ (there
is a corresponding concrete state that violates the formula), andM (mixed – bothT∃
andF∃ hold) truth values.

The combination ofmust+ andmust− transitions turn out to be especially power-
ful when reasoning aboutweak reachability, which is useful for abstraction-guided test
generation [Bal04] and falsification of linear-time properties. As discussed in [Bal04],
if there is a sequence ofmust− transitions froma0 to aj followed by a sequence of
must+ transitions fromaj to ak, then there are guaranteed to be concrete statesc0

andck (corresponding toa0 andak) such thatck is reachable fromc0 in the concrete
system (in which case we say thatak is weakly reachable froma0). In this case, we
can conclude that it is possible to cover the abstract stateak via testing. When the ab-
straction is the product of an abstract system with a nondeterministic Büchi automaton
accepting all the faults of the system, weak reachability can be used in order to de-
tect faults in the concrete system. We focus on abstractions obtained from programs by
predicate abstraction, and study the problem of composing transitions in an TMTS in a
way that guarantees weak reachability. We suggest a method wheremust+ andmust−

transitions are parameterized with predicates, automatically induced by the weakest
preconditions and the strongest postconditions of the statements in the program6.

The paper is organized as follows. Section 2 formally presents ternary modal tran-
sition systems (TMTS), how they abstract concrete systems (as well as each other) and
characterizes their abstraction pre-order via the full propositional modal logic (full-
PML). Section 2.3 presents the6-valued falsification semantics for TMTS and demon-
strates that TMTS are more precise for falsification than traditional MTS. We also show
that falsification can be lifted to theµ-calculus as well as linear-time logics. Section 3

6 We note (see the remark at the end of Section 3 for a detailed discussion) that our approach is
different than refining the TMTS as the predicates we use are local to the transitions.

3

shows that weak reachability can be made more precise by parameterizing bothmust+

and must− transitions via predicates. Section 4 describes describes applications of
TMTS to abstraction-guided testing and to model checking. Section 5 concludes the
paper.

Due to a lack of space, this version does not contain proofs and contains only a
partial discussion of the results. For a full version, the reader is referred to the authors’
URLs and our technical report [BKY05].

2 The Abstraction Framework

In this section we describe our abstraction framework. We define TMTS — ternary
modal transition systems, which extend modal transition systems by a third type of
transition, and study their theoretical aspects.

2.1 Ternary modal transition systems

A concrete transition systemis a tupleC = 〈AP, SC , IC ,−→C , LC〉, whereAP is a
finite set of atomic propositions,SC is a (possibly infinite) set of states,IC ⊆ SC is a
set of initial states,−→C⊆ SC×SC is a transition relation andLC : SC×AP 7→ {T, F}
is a labeling function that maps each state and atomic proposition to the truth value of
the proposition in the state.7

An abstraction ofC is a partially defined system. Incompleteness involves both the
value of the atomic propositions, which can now take the value⊥ (unknown), and the
transition relation, which is approximated by over- and/or under-approximating transi-
tions. Several frameworks are defined in the literature (c.f. [LT88,BG99,HJS01]). We
define here a new framework, which consists ofternary transition systems(TMTS, for
short). Unlike the traditional MTS, our TMTS has two types of under-approximating
transitions. Formally, we have the following.

A TMTS is a tupleA = 〈AP, SA, IA,
may−→A,

must+−→A ,
must−−→A , LA〉, whereAP is a

finite set of atomic propositions,SA is a finite set of abstract states,IA ⊆ SA is a set of

initial states, the transition relations
may−→A,

must+−→A , and
must−−→A are subsets ofSA×SA sat-

isfying
must+−→A⊆ may−→A and

must−−→A⊆ may−→A, andLA:SA × AP → {T, F,⊥} is a labeling
function that maps each state and atomic proposition to the truth value (possibly un-
known) of the proposition in the state. WhenA is clear from the context we sometimes

usemay(a, a′), must+(a, a′), andmust−(a, a′) instead ofa
may−→A a, a

must+−→A a′, and

a
must−−→A a′, respectively.

The elements of{T, F,⊥} can be arranged in an “information lattice” [Kle87] in
which⊥ v T and⊥ v F. We say that a concrete statec satisfiesan abstract statea
if for all p ∈ AP , we haveLA(a, p) v LC(c, p) (equivalently, ifLA(a, p) 6= ⊥ then
LC(c, p) = LA(a, p)).

Let C = 〈AP, SC , IC ,−→C , LC〉 be a concrete transition system. A TMTSA =

〈AP, SA, IA,
may−→A,

must+−→A ,
must−−→A , LA〉 is anabstractionof C if there exists a total and

7 We useT andF to denote the truth valuestrue andfalseof the standard (verification) seman-
tics, and introduce additional truth values in Section 2.3.

4

onto functionρ: SC → SA such that (i) for allc ∈ SC , we have thatc satisfiesρ(c),

and (ii) the transition relations
may−→A,

must+−→A , and
must−−→A satisfy the following:

– a
may−→A a′ if there is a concrete statec with ρ(c) = a, there is a concrete statec′

with ρ(c′) = a′, andc −→C c′.

– a
must+−→A a′ only if for every concrete statec with ρ(c) = a, there is a concrete state

c′ with ρ(c′) = a′ andc −→C c′.

– a
must−−→A a′ only if for every concrete statec′ with ρ(c′) = a′, there is a concrete

statec with ρ(c) = a andc −→C c′.

Note thatmay transitions over-approximate the concrete transitions. In particular,
the abstract system can containmay transitions for which there is no corresponding
concrete transition. Dually,must− andmust+ transitions under-approximate the con-
crete transitions. Thus, the concrete transition relation can contain transitions for which
there are no correspondingmust transitions. Sinceρ is onto, each abstract state cor-

responds to at least one concrete state, and so
must+−→A⊆ may−→A and

must−−→A⊆ may−→A. On

the other hand,
must+−→A and

must−−→A are incomparable. Finally, note that by lettingmust-
transitions becomemay-transitions, and by adding superfluousmay-transitions, we
can have several abstractions of the same concrete system.

A precision preorderon TMTS defines when one TMTS is more abstract than an-

other. For two TMTSA = 〈AP, SA, IA,
may−→A,

must+−→A ,
must−−→A , LA〉 andB = 〈AP, SB ,

IB ,
may−→B ,

must+−→B ,
must−−→B , LB〉, the precision preorder is the greatest relationH ⊆ SA×

SB such that ifH(a, b) then

C0. for all p ∈ AP , we haveLA(a, p) v LB(b, p),
C1. if b

may−→B b′, then there isa′ ∈ SA such thatH(a′, b′) anda
may−→A a′,

C2. if b′
may−→B b, then there isa′ ∈ SA such thatH(a′, b′) anda′

may−→A a,

C3. if a
must+−→A a′, then there isb′ ∈ SB such thatH(a′, b′) andb

must+−→B b′, and

C4. if a′ must−−→A a, then there isb′ ∈ SB such thatH(a′, b′) andb′ must−−→B b.

WhenH(a, b), we write(A, a) ¹ (B, b), which indicates thatA is more abstract (less
defined) thanB.

By viewing a concrete system as an abstract system whosemay, must+, and
must− transition relations are equivalent to the transition relation of the concrete sys-
tem, we can use the precision preorder to relate a concrete system and its abstraction.
Formally, the precision preorderH ⊆ SC × SA (also known asmixed simulation
[DGG97,GJ02]) is such thatH(c, a) iff ρ(c) = a.

2.2 A logical characterization

The logicfull-PML is a propositional logic extended with the modal operatorsAX (“for
all immediate successors”) andAY (“for all immediate predecessors”). Thus, full-PML
extends PML [Ben91] by the past-time operatorAY . The syntax of full-PML is given
by the rulesθ ::= p | ¬θ | θ ∧ θ | AXθ | AY θ, for p ∈ AP .

We define a3-valued semanticsof full-PML formulas with respect to TMTS. The

value of a formulaθ in a statea of a TMTSA = 〈SA, IA,
may−→A,

must+−→A ,
must−−→A , LA〉,

5

denoted[(A, a) |= θ], is defined as follows:

[(A, a) |= p] = LA(a, p).

[(A, a) |= ¬θ] =





T if [(A, a) |= θ] = F.
F if [(A, a) |= θ] = T.
⊥ otherwise.

[(A, a) |= θ1 ∧ θ2] =





T if [(A, a) |= θ1] = T and[(A, a) |= θ2] = T.
F if [(A, a) |= θ1] = F or [(A, a) |= θ2] = F.
⊥ otherwise.

[(A, a) |= AXθ] =





T if for all a′, if may(a, a′) then[(A, a′) |= θ] = T.
F if existsa′ s.t.must+(a, a′) and[(A, a′) |= θ] = F.
⊥ otherwise.

[(A, a) |= AY θ] =





T if for all a′, if may(a′, a) then[(A, a′) |= θ] = T.
F if existsa′ s.t.must−(a′, a) and[(A, a′) |= θ] = F.
⊥ otherwise.

While PML logically characterizes the precision preorder on MTS [GJ02], full-
PML characterizes the precision preorder on TMTS. It follows that the TMTS model
is indeed stronger than the MTS model, because TMTS are logically characterized by
a strictly more expressive modal logic which has the past operatorsAY andEY , in
addition toAX andEX operators. Formally, we have the following.

Theorem 1. Let A = 〈AP, SA, IA,
may−→A,

must+−→A ,
must−−→A , LA〉 andB = 〈AP, SB , IB ,

may−→B ,
must+−→B ,

must−−→B , LB〉 be two TMTS. For every two statesa ∈ SA andb ∈ SB , we
have that(A, a) ¹ (B, b) iff [(A, a) |= θ] v [(B, b) |= θ] for all full-PML formulasθ.

2.3 Falsification Using TMTS

As shown in Section 2.2, the backwards nature ofmust− transitions makes them suit-
able for reasoning about the past. Thus, TMTS can be helpful in the verification setting
for reasoning about specifications in fullµ-calculus and other specification formalisms
that contain past operators. We view this as a minor advantage of TMTS. In this section
we study their significant advantage: reasoning about specifications in a falsification
setting8.

In addition to the truth valuesT, F, and⊥, we now allow formulas to have the
valuesT∃ (existentialtrue), F∃ (existentialfalse), andM (“mixed” – both T andF).
Intuitively, the valuesT∃, F∃, andM refine the value⊥, and are helpful for falsification
and testing, as they indicate that the abstract state corresponds to at least one concrete
state that satisfies the property (T∃), at least one concrete state that violates the property
(F∃), and at least one pair of concrete states in which one state satisfies the property,
and the other state violates it (M).

As shown in the figure on the next page, the six valuesL6 = {T, F, M , T∃, F∃,⊥}
can be ordered in the information lattice depicted on the left. The values can also be
ordered in the “truth lattice” depicted on the right:

8 The specifications may contain both future and past operators. For simplicity, we describe the
framework here for theµ-calculus, which does not contain past modalities. By letting theAY
modality range overmust+ transitions, the framework can be used for falsification of full
µ-calculus specifications.

6

T BB M
zz CC F

}}
T∃

CC
F∃

{{
⊥

T

T∃
|| CC

⊥ BB M
{{

F∃

F
information lattice truth lattice

We allow the truth values of the (abstract) labeling functionLA to range over the six
truth values.

A TMTS A = 〈AP, SA, IA,
may−→A,

must+−→A ,
must−−→A , LA〉 is an abstraction of a con-

crete transition systemC = 〈AP, SC , IC ,−→C , LC〉 if there exists a total and onto
functionρ: SC → SA such that for alla ∈ SA andp ∈ AP :

– LA(a, p) = T only if for all c ∈ SC such thatρ(c) = a, LC(c, p) = T;
– LA(a, p) = F only if for all c ∈ SC such thatρ(c) = a, LC(c, p) = F;
– LA(a, p) = T∃ only if there existsc ∈ SC such thatρ(c) = a andLC(c, p) = T;
– LA(a, p) = F∃ only if there existsc ∈ SC such thatρ(c) = a andLC(c, p) = F;
– LA(a, p) = M only if there existc, c′ ∈ SC such thatρ(c) = ρ(c′) = a,

LC(c, p) = T, andLC(c′, p) = F.

In addition,ρ satisfies the requirement (ii) defined in Section 2.1.
The complementation (¬:L6 → L6) and the conjunction (∧:L6 ×L6 → L6) oper-

ations are defined as follows:

¬
F T
F∃ T∃
M M
T∃ F∃
T F
⊥ ⊥

∧ F F∃ M T ∃ T ⊥
F F F F F F F
F∃ F F∃ F∃ F∃ F∃ F∃
M F F∃ F∃ F∃ M F∃
T∃ F F∃ F∃ ⊥ T∃ ⊥
T F F∃ M T ∃ T ⊥
⊥ F F∃ F∃ ⊥ ⊥ ⊥

We define a6-valued falsification semanticsof PML formulas with respect to TMTS.

The value of a formulaθ in a statea of a TMTSA = 〈AP, SA, IA,
may−→A,

must+−→A ,
must−−→A

, LA〉, denoted[(A, a) |= θ], is defined as follows:

[(A, a) |= p] = LA(a, p).
[(A, a) |= ¬θ] = ¬([(A, a) |= θ])
[(A, a) |= θ1 ∧ θ2] = ∧([(A, a′) |= θ1], [(A, a′) |= θ1])

[(A, a) |= AXθ] =





T if for all a′, if may(a, a′) then[(A, a′) |= θ] = T.
F if existsa′ s.t.must+(a, a′) and[(A, a′) |= θ] = F.
F∃ if existsa′ s.t.must−(a, a′) and[(A, a′) |= θ] w F∃.
⊥ otherwise.

Note that the conditions for theF and theF∃ conditions are not mutually exclusive.
If both conditions hold, we take the value to be the strongerF value.

7

For clarity, we give the semantics for the existential operatorEX explicitly (an
equivalent definition follows from the semantics ofAX and¬):

[(A, a) |= EXθ] =





F if for all a′, if may(a, a′) then[(A, a′) |= θ] = F.
T if existsa′ s.t.must+(a, a′) and[(A, a′) |= θ] = T.
T∃ if existsa′ s.t.must−(a, a′) and[(A, a′) |= θ] w T∃.
⊥ otherwise.

Thus, the semantics of the next-time operators follows bothmust− andmust+ transi-
tions (that is,a′ is such thatmust−(a, a′) ormust+(a, a′)). To understand whymust−

transitions are suitable for falsification, let us explain the positive falsification semantics
for theEX modality. The other cases are similar. Consider a concrete transition sys-
temC = 〈AP, SC , IC ,−→C , LC〉, and an abstraction for itA = 〈AP, SA, IA,

may−→A

,
must+−→A ,

must−−→A , LA〉. Let ρ: SC → SA be the witness function for the abstraction.
We argue that if[(A, a) |= EXp] = T∃, then there is a concrete statec such that

ρ(c) = a andc |= EXp. By the semantics of theEX operator,[(A, a) |= EXp] = T∃
implies that there isa′ ∈ SA such thatmust−(a, a′) andLA(a′, p) w T∃. Let ĉ be a
concrete state withρ(ĉ) = a′ andLC(ĉ, p) = T (by the definition of abstraction, at
least one sucĥc exists). Sincemust−(a, a′), then for every concrete statec′ such that
ρ(c′) = a′ there is a concrete statec such thatρ(c) = a andc −→C c′. In particular,
there is a concrete statec such thatρ(c) = a andc −→C ĉ. Thus,c |= EXp and we are
done.

Let a anda′ be abstract states. The (reflexive) transitive closure ofmust−, denoted
[must−]∗ is defined in the expected manner as follows:[must−]∗(a, a′′) if either a =
a′′ or there is an abstract statea′ such that[must−]∗(a, a′) andmust−(a′, a′′). We say
that an abstract statea′ is onto reachablefrom an abstract statea if for every concrete
statec′ that satisfiesa′, there is a concrete statec that satisfiesa andc′ is reachable from
c. Dually, we can define the transitive closure ofmust+ transitions, denoted[must+]∗,
and total reachability. The transitive closure ofmust+ andmust− transitions retain
the reachability properties for a single transition:[must−]∗(a, a′) only if a′ is onto
reachable froma, and[must+]∗(a, a′) only if a′ is total reachable froma [Bal04].

By extending PML by fixed-point operators, one gets the logicµ-calculus [Koz83],
which subsumes the branching temporal logics CTL and CTL?. The 3-valued semantics
of PML can be extended to theµ-calculus [BG04]. Note that in the special case of
CTL and CTL? formulas, this amounts to letting path formulas range overmay and
must+ paths [SG03]. The fact that the “onto” nature ofmust− transitions is retained
under transition closure enables us to extend the soundness argument for the6-valued
falsification semantics described above for a singleEX or AX modality to nesting
of such modalities and thus, to PML and theµ-calculus, as shown in our technical
report [BKY05].

3 Weak Reachability

When reasoning about paths in the abstract system, one can often manage with an even
weaker type of reachability (than transitive closure overmust− transitions): we say that
an abstract statea′ is weakly reachablefrom an abstract statea if there is a concrete
statec′ that satisfiesa′, there is a concrete statec that satisfiesa, andc′ is reachable

8

from c. The combination ofmust+ andmust− transitions turn out to be especially
powerful when reasoning about weak reachability.

If there are three abstract statesa1, a2, anda3 such thata2 is onto reachable from
a1 anda3 is total reachable froma2, thena3 is weakly reachable froma1. Hence, weak
reachability can be concluded from the existence of a sequence ofmust− transitions
followed immediately by a sequence ofmust+ transitions:

Theorem 2. [Bal04] If [must−]∗(a1, a2) and [must+]∗(a2, a3), then a3 is weakly
reachable froma1.

3.1 Weak Reachability in Predicate Abstraction

We now focus on the case where the concrete system is a program, and its abstraction
is obtained by predicate abstraction. We then show that weak reachability can be made
tighter by parameterizing the abstract transitions by predicates. The predicates used
in these transitions may be (and usually are) different from the predicates used for
predicate abstraction.

Consider a programP . Let X be the set of variables appearing in the program and
variables that encode the program location, and letD be the domain of all variables (for
technical simplicity, we assume that all variables are over the same domain). We model
P by a concrete transition system in which each state is labeled by a valuation inDX .
Let Φ = {φ1, φ2, . . . , φn} be a set of predicates (quantifier-free formulas of first-order
logic) on X. For a seta ⊆ Φ and an assignmentc ∈ DX , we say thatc satisfiesa
iff c satisfies all the predicates ina. The satisfaction relation induces a total and onto
functionρ : DX → 2Φ, whereρ(c) = a for the uniquea for which c satisfiesa. An
abstraction of the programP that is based onΦ is a TMTS with state space2Φ, thus
each state is associated (and is labeled by) the set of predicates that hold in it. For a
detailed description of predicate abstraction see [GS97].

Note that all the transitions of the concrete system in which only the variables that
encode the program location are changed (all transitions associated with statements that
are not assignments, c.f., conditional branches, skip, etc.) are bothmust+ andmust−

transitions, assuming thatΦ includes all conditional expressions in the program. We
call such transitionssilent transitions. The identification of silent transitions makes our
reasoning tighter: ifa

silent−→A a′ we can replace the transition froma toa′ with transitions
from a’s predecessors toa′. The type of a new transition is the same as the type of the
transitions leading toa. 9 Such elimination of silent transitions result in an abstract
system in which each transition is associated with an assignment statement.

For simplicity of exposition, we present a toy example.10 Consider the programP
appearing in Figure 1.

When describing an abstract system, it is convenient to describe an abstract state in
SA as a pair of program location and a Boolean vector describing which of the program
predicates inΦ hold. Letφ1 = (x < 6) andφ2 = (x > 7). The abstraction ofP that

9 A transition froma′ may also be silent, in which case we continue until the chain of silent
transitions either reaches an end state or reaches an assignment statement. If the chain reaches
an end state, we can makea an end state.

10 Our ideas have proven useful also in real examples, as described in our technical re-
port [BKY05].

9

L0 if x < 6 then
L1 x := x + 3;
L2 if x > 7 then
L3 x := x− 3;
L4 end

Fig. 1. The programP .

Fig. 2. The abstract transition system of the programP from Figure 1.

corresponds to the two predicates is described in the left-hand side of Figure 2. In the
right-hand side, we eliminate the silent transitions.

We now turn to study weak reachability in the abstract system. By Theorem 2, if
[must−]∗(a1, a2) and[must+]∗(a2, a3), thena3 is weakly reachable froma1. While
Theorem 2 is sound, it is not complete, in the sense that it is possible to have two
abstract statesa anda′ such thata′ is weakly reachable froma and still no sequence
of transitions as specified in Theorem 2 exists in the abstract system. As an example,
consider the abstract statesa = (L1 : TF) anda′ = (L4 : TF). While a′ is weakly
reachable froma; c.f., c′ =(L4:x = 5) is reachable fromc =(L0:x = 5), the only path
from a to a′ in the abstraction contains twomay transitions, so Theorem 2 cannot be
applied. In fact, the status of the abstract states (L4:FT) and (L4:FF) also is not clear,
as the paths froma to these states do not follow the sequence specified in Theorem 2.
Accordingly, Theorem 2 does not help us determining whether there is an inputx < 6
to P such that the execution ofP on x would reach location L4 withx that is strictly
bigger than7 or with x that is equal to6 or 7. Our goal is to tighten Theorem 2, so that
we end up with fewer such undetermined cases.

3.2 Parameterized Must Transitions

Recall that each abstract state is associated with a location of the program, and thus
it is also associated with a statement. For a statements and a predicatee overX, the

10

weakest preconditionWP(s, e) and thestrongest postconditionSP(s, e) are defined as
follows [Dij76]:

– The execution ofs from every state that satisfiesWP(s, e) results in a state that
satisfiese, andWP(s, e) is the weakest predicate for which the above holds.

– The execution ofs from a state that satisfiese results in a state that satisfiesSP(s, e),
andSP(s, e) is the strongest predicate for which the above holds.

For example, in the programP , we haveWP(x := x + 3, x > 7) = x > 4, SP(x :=
x + 3, x < 6) = x < 9, WP(x := x − 3, x < 6) = x < 9, andSP(x := x − 3, x >
7) = x > 4.

Let θ be a predicate overX. We parameterizemust+ andmust− transitions byθ
as follows:

– must+(θ)(a, a′) only if for every concrete statec that satisfiesa ∧ θ, there is a
concrete statec′ that satisfiesa′ andc −→C c′.

– must−(θ)(a, a′) only if for every concrete statec′ that satisfiesa′ ∧ θ, there is a
concrete statec that satisfiesa andc −→C c′.
Thus, amust+(θ) transition is total from all states that satisfyθ, and amust−(θ)

transition is onto all states that satisfyθ. Note that whenθ = T, we get usualmust+

andmust− transitions. Parameterized transitions can be generated automatically (us-
ing WP andSP) while building the TMTS without changing the complexity of the
abstraction algorithm.

Theorem 3. Let a and a′ be two abstract states, ands the statement executed ina.
Then,must+(WP(s, a′))(a, a′) andmust−(SP(s, a))(a, a′).

The good news about Theorem 3 is that it is complete in the sense that for all
predicatesθ, if there is amust+(θ) transition froma to a′, thena → (θ → WP(s, a′)),
and similarly formust− transitions, as formalized below.

Lemma 1. Leta anda′ be two abstract states, ands the statement executed ina.

– If there is amust+(θ) transition froma to a′, thena → (θ → WP(s, a′)).
– If there is amust−(θ) transition froma to a′, thena′ → (θ → SP(s, a)).

Thus, the pre and post conditions, which can be generated automatically, are the
strongest predicates that can be used. Note that using Theorem 3, it is possible to replace
all may transitions by parameterizedmust− andmust+ transitions.

It is easy to see how parameterized transitions can help when we consider weak
reachability. Indeed, ifmust−(θ1)(a, a′), must+(θ2)(a′, a′′), andθ1 ∧ θ2 ∧ a′ is satis-
fiable, thena′′ is weakly reachable froma, as formalized by the following lemma.

Lemma 2. If must−(θ1)(a, a′), must+(θ2)(a′, a′′), andθ1∧θ2∧a′ is satisfiable, then
there are concrete statesc andc′′ such thata(c), a′′(c′′), andc′′ is reachable fromc.

The completeness of Theorem 3 implies that whena′ is weakly reachable froma
via two transitions, this always can be detected by takingθ1 = SP(s, a) and θ2 =
WP(s′, a′), wheres ands′ are the statements executed in the two transitions.

In our example, we have seen that the transitions from (L1:TF) to (L3:FT) and from
(L3:FT) to (L4:TF) are bothmay transitions, and thus Theorem 2 cannot be applied.

11

However, the fact that the first transition also is amust−(x < 9) transition and the
second also is amust+(x < 9), together with the fact thatx > 7∧ x < 9 is satisfiable,
guarantee that there is a concrete state that corresponds to (L1:TF) and from which
a concrete state that corresponds to (L4:TF) is reachable. Indeed, as we noted earlier,
(L4:x = 5) is reachable from (L0:x = 5).

Whena anda′ are of distance greater than two transitions, parameterization is use-
ful for composing the sequence ofmust− transitions with the sequence ofmust+

transitions:

Theorem 4. If [must−]∗(a1, a2), must−(θ1)(a2, a3), must+(θ2)(a3, a4), [must+]∗

(a4, a5), anda3 ∧ θ1 ∧ θ2 is satisfiable, thena5 is weakly reachable froma1.

Again, the predicatesθ1 andθ2 are induced by the pre and postconditions of the
statement leading to the abstract state in which the two sequences are composed.

The transitive closure of the parameterizedmust transitions does not retain the
reachability properties of a single transition and requires reasoning in an assume-guarantee
fashion, where two predicates are associated with each transition. Our technical re-
port [BKY05] presents such an extension and shows how to use it to extend the set of
reachable states further.

4 Applications
This section describes application of weak reachability for linear-time falsification and
for abstraction-guided test generation.

In linear-time model checking, we check whether all the computations of a given
programP satisfy a specificationψ, say an LTL formula. In the automata-theoretic
approach to model checking, one constructs an automatonA¬ψ for the negation of
ψ. The automatonA¬ψ is usually a nondeterministic B̈uchi automaton, where a run
is accepting iff it visits a set of designated states infinitely often. The programP is
faulty with respect toψ if the product ofA¬ψ with the program contains a fair path –
one that visits the set of designated states infinitely often. The product ofA¬ψ with an
abstraction ofP may contain fair paths that do not correspond to computations ofP ,
thus again there is a need to check for weak reachability.

When reasoning about concrete systems, emptiness of the product automaton can
be reduced to a search for an accepting state that is reachable from both an initial state
and itself. In the context of abstraction, we should make sure that the path from the
accepting state to itself can be repeated, thus weak reachability is too weak here11, and
instead we need the following.

Theorem 5. If, in the product automaton ofP with respect to LTL formulaψ, there
is an initial abstract stateainit and an accepting stateaacc such thataacc is onto
reachable fromainit and from itself, oraacc is weakly reachable fromainit and total
reachable from itself, thenP violatesψ.

Falsification methods are related totesting, where the system is actually executed.
The infeasible task of executing the system with respect to all inputs is replaced by

11 Whenψ is a safety property,A¬ψ is an automaton accepting finite bad prefixes [KV01], and
weak reachability is sufficient.

12

checking a test suite consisting of a finite subset of inputs. It is very important to mea-
sure the exhaustiveness of the test suite, and indeed, there has been an extensive research
in the testing community oncoverage metrics, which provide such a measure.

Some coverage metrics are defined with respect to an abstraction of the system. For
example, inpredicate-complete testing[Bal04], the goal is to cover all the reachable
observable states (evaluation of the system’s predicates under all reachable states), and
reachability is studied in an abstract system whose state space consists of an overap-
proximation of the reachable observable states. The observable states we want our test
suite to cover are abstract states that are weakly reachable.

The fundamental question in this setting is how to determine which abstract states
are weakly reachable. As we have seen, TMTS provide a sufficient condition for deter-
mining weak reachability (via a sequence ofmust− transitions followed by a sequence
of must+ transitions). The parameterization method makes this condition tighter.

5 Conclusion
We have described an abstraction framework that containsmust− transitions, the back-
wards version ofmust transitions, and showed howmust− transitions enable reason-
ing about past-time modalities as well as future-time modalities in a falsification seman-
tics. We showed that the falsification setting allows for a stronger type of abstraction
and described applications in falsification of temporal properties and testing.

A general idea in our work is that by replacingmust+ by must− transitions, ab-
straction frameworks that are sound for verification become abstraction frameworks that
are sound (and more precise) for falsification. We demonstrated it with model checking
and refinement, and we believe that several other ideas in verification can be lifted
to falsification in the same way. This includes generalized model checking [GJ02],
making the framework complete [DN05], and its augmentation with hyper-transitions
[LX90,SG04].

Another interesting direction is to usemust− transitions in order to strengthen ab-
stractions in the verification setting: the ability to move both forward and backwards
across the transition relation has proven helpful in the concrete setting. Usingmust−

transitions, this also can be done in the abstraction setting.

References
[Bal04] T. Ball. A theory of predicate-complete test coverage and generation. In3rd Interna-

tional Symposium on Formal Methods for Components and Objects, 2004.
[Ben91] J. Benthem. Languages in actions: categories, lambdas and dynamic logic.Studies in

Logic, 130, 1991.
[BG99] G. Bruns and P. Godefroid. Model checking partial state spaces with 3-valued tempo-

ral logics. InComputer Aided Verification, pages 274–287, 1999.
[BG04] G. Bruns and P. Godefroid. Model checking with 3-valued temporal logics. In31st

International Colloquium on Automata, Languages and Programming, volume 3142
of Lecture Notes in Computer Science, pages 281–293, 2004.

[BKY05] T. Ball, O. Kupferman, and G. Yorsh. Abstraction for falsification. Technical Report
MSR-TR-2005-50, Microsoft Research, 2005.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for the static
analysis of programs by construction or approximation of fixpoints. InPOPL 77:
Principles of Programming Languages, pages 238–252. ACM, 1977.

13

[CE81] E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons us-
ing branching time temporal logic. InProc. Workshop on Logic of Programs, volume
131 ofLecture Notes in Computer Science, pages 52–71. Springer-Verlag, 1981.

[DGG97] D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems.
ACM Trans. Program. Lang. Syst., 19(2):253–291, 1997.

[Dij76] E.W. Dijksta. A Discipline of Programming. Prentice-Hall, 1976.
[DN05] D. Dams and K. S. Namjoshi. Automata as abstractions. InVMCAI 2005, Paris, 2005.

to appear, LNCS, Springer-Verlag.
[FKZ+00] R. Fraer, G. Kamhi, B. Ziv, M. Vardi, and L. Fix. Prioritized traversal: efficient reach-

ability analysis for verication and falsification. InProc. 12th Conference on Computer
Aided Verication, volume 1855 ofLecture Notes in Computer Science, pages 389–402,
Chicago, IL, USA, July 2000. Springer-Verlag.

[GHJ01] P. Godefroid, M. Huth, and R. Jagadeesan. Abstraction-based model checking using
modal transition systems. InProceedings of CONCUR’2001 (12th International Con-
ference on Concurrency Theory), volume 2154 ofLecture Notes in Computer Science,
pages 426–440. Springer-Verlag, 2001.

[GJ02] P. Godefroid and R. Jagadeesan. Automatic abstraction using generalized model
checking. InComputer Aided Verification, pages 137–150, 2002.

[GLST05] O. Grumberg, F. Lerda, O. Strichman, and M. Theobald. Proof-guided
underapproximation-widening for multi-process systems. InPOPL, pages 122–131,
2005.

[GS97] S. Graf and H. Saidi. Construction of abstract state graphs with PVS. InCAV 97:
Computer-aided Verification, LNCS 1254, pages 72–83. Springer-Verlag, 1997.

[HJS01] M. Huth, R. Jagadeesan, and D. Schmidt. Model checking partial state spaces with
3-valued temporal logics. InESOP, pages 155–169, 2001.

[Kle87] S. C. Kleene.Introduction to Metamathematics. North Holland, 1987.
[Koz83] D. Kozen. Results on the propositionalµ-calculus. Theoretical Computer Science,

27:333–354, 1983.
[KV01] O. Kupferman and M.Y. Vardi. Model checking of safety properties.Formal methods

in System Design, 19(3):291–314, November 2001.
[LT88] K.G. Larsen and G.B. Thomsen. A modal process logic. InProc. 3th Symp. on Logic

in Computer Science, Edinburgh, 1988.
[LX90] K. G. Larsen and L. Xinxin. Equation solving using modal transition systems. In

LICS, pages 108–117, 1990.
[PDV01] C. S. Pasareanu, M. B. Dwyer, and W. Visser. Finding feasible counter-examples when

model checking abstracted java programs. InTACAS, pages 284–298, 2001.
[QS81] J.P. Queille and J. Sifakis. Specification and verification of concurrent systems in

Cesar. InProc. 5th International Symp. on Programming, volume 137 ofLecture
Notes in Computer Science, pages 337–351. Springer-Verlag, 1981.

[SG03] S. Shoham and O. Grumberg. A game-based framework for CTL counterexamples
and 3-valued abstraction-refinement. InComputer Aided Verification, pages 275–287,
2003.

[SG04] S. Shoham and O. Grumberg. Monotonic abstraction-refinement for CTL. InTools
and Algorithms for Construction and Analysis of Systems (TACAS), volume 2988 of
Lecture Notes in Computer Science, pages 546–560. Springer-Verlag, 2004.

[Sip99] H.B. Sipma.Diagram-based Verification of Discrete, Real-time and Hybrid Systems.
PhD thesis, Stanford University, Stanford, California, 1999.

14

