Abstraction for Falsification

Thomas Ball, Orna Kupfermaf, and Greta Yorsh

1 Microsoft Research, Redmond, WA, USA.
Email: tball@microsoft.com, URL: www.research.microsoft.cesttyall
2 Hebrew University, School of Eng. and Comp. Sci., Jerusalem 91904, Israel.
Email: orna@cs.huji.ac.il, URL: www.cs.huji.ac-lbrna
3 Tel-Aviv University, School of Comp. Sci., Tel-Aviv 69978, Israel.
Email:gretay@post.tau.ac.il, URL: www.math.tau.ac.gfetay

Abstract. Abstraction is traditionally used in the proceswefification There, an abstrac-

tion of a concrete system is sound if properties of the abstract system also hold in the con-
crete system. Specifically, if an abstract statatisfies a property thenall the concrete
states that correspond décsatisfy) too. Since the ideal goal of proving a system correct in-
volves many obstacles, the primary use of formal methods nowadglsifcation There,

as intesting the goal is to detect errors, rather than to prove correctness. In the falsification
setting, we can say that an abstraction is sound if errors of the abstract system exist also
in the concrete system. Specifically, if an abstract siatmlates a property), thenthere
existsa concrete state that corresponds &nd violates) too.

An abstraction that is sound for falsification need not be sound for verification. This suggests
that existing frameworks for abstraction for verification may be too restrictive when used for
falsification, and that a new framework is needed in order to take advantage of the weaker
definition of soundness in the falsification setting.

We present such a framework, show that it is indeed stronger (than other abstraction frame-
works designed for verification), demonstrate that it can be made even stronger by param-
eterizing its transitions by predicates, and describe how it can be used for falsification of
branching-time and linear-time temporal properties, as well as for generating testing goals
for a concrete system by reasoning about its abstraction.

1 Introduction

Automated abstraction is a powerful technique for reasoning about systems. An abstrac-
tion framework [CC77] consists of a concrete system with (large, possibly infinite) state
space’, an abstract system with (smaller, often finite) state spa@nd an abstraction
functionp: C' — A that relates concrete and abstract states. An abstraction framework
is sound with respect to a logicif all properties specified i, that hold in an abstract
statea also hold in all the concrete states that correspond #ormally, for alla € A

andy € L, if a satisfiesp then for allc € C with p(c, a), we have that satisfiesp.

The soundness of the abstraction framework enables the user to verify properties of the
abstract system using techniques such as model checking [CE81,QS81] and conclude
their validity in the concrete system.

While the ultimate goal of formal verification is to prove that a system satisfies
some specification, there are many obstacles to achieving this ideal in practice. Thus,
the primary use of formal methods nowadayfaisification where the goal is to detect
errors rather than to provide a proof of correctness. This is reflected in the extensive
research done on bounded model checking (c.f., [FB@), runtime verification (c.f.,
[Sip99)), etc. In the falsification setting, we can say that an abstraction is sound with
respect to a logid. if all errors specified in_ that hold in an abstract statealso hold

in some concrete state that corresponds.téormally, for alla € A andy € L,

if a satisfiesp then there is: € C such thatp(c, a) andc satisfiesp. 4 Since every
abstract state corresponds to at least one concrete state, the soundness condition in the
falsification setting is weaker than the soundness condition in the verification setting.
To see that this weaker definition is sufficiently strong for falsification, note that the
concrete statethat satisfies witnesses that the concrete system is erroneous (we note
that in the falsification setting is a “bad” property that we don’t wish the system to
have, while in the verifications settingis a “good” property that we wish the system

to have).

We develop a new abstraction framework to take advantage of the weaker defini-
tion of soundness in the falsification setting. Our framework is basetanfal tran-
sition systemgMTS) [LT88]. Traditional MTS have two types of transitionsiay
(over-approximating transitions) amaust (under-approximating transitions). The use
of must transitions in the falsification setting was explored in [PDV01,GLSTO05], with
different motivations. Our framework contains, in addition, a new type of transition,
which can be viewed as the reverse versiomwfst transitions [Bal04]. Accordingly,
we refer to transitions of this type asust ™~ transitions and refer to the traditionak:st
transitions asnust™ transitions. While anust™ transition from an abstract staieto
an abstract stat€ implies that for all concrete stateswith p(c, a) there is a succes-
sor concrete stat€ with p(c¢,a’), amust™ transition froma to o’ implies that for all
concrete states with p(c, o’) there is a concrete predecessor statéth p(c, a). The
must ™ transitions correspond to the weaker soundness requirement in the falsification
setting and are incomparablestaust™ transitions.

Consider, for example, a simple concrete system consisting of the assignment state-
mentx:=x-3 . Suppose that the abstract system is formed via predicate abstraction
using the predicate > 6. Consider the abstract transiti¢m > 6} x:=x-3 {z > 6}.

This transition is not anust transition, as there are pre-states satisfying 6 (namely

x =7,z = 8 andx = 9) for which the assignment statement results in a post-
state that does not satisfy > 6. Therefore, in a traditional MTS this transition is a
may transition. However, in an MTS witlhust™ transitions, the above transition is

a must™ transition, as for every post-staté satisfyingz > 6 there is a pre-state
satisfyingz > 6 such that the execution &f=x-3 from cyieldsc'. It is impossible to
make this inference in a traditional MTS, even those augmented with hyper-must tran-
sitions [LX90,SG04]. As we shall see below, the observation that the abstract transition
is amust™ transition rather than aay transition enables better reasoning about the
concrete system.

We study MTS with these three types of transitions, which we refer terasiry
modal transition systemgTMTS)°. We first show that the TMTS model is indeed
stronger than the MTS model: while MTS with onlyay andmust™ transitions are
logically characterized by a 3-valued modal logic with th& and EX (for all suc-

4 Note that the falsification setting is different than the problenyerfieralized model check-
ing [GJ02]. There, the existential quantifier ranges over all possible concrete systems and the
problem is one of satisfiability (does there exist a concrete system with the same property as
the abstract system?). Here, the concrete system is given and we only replace the universal
guantification on concrete states that correspondlig an existential quantification on them.

5 Not to be confused with the three-valued logic sometimes used in these systems.

cessors/exists a successor) operators, TMTS are logically characterized by a strictly
more expressive modal logic which has, in addition, #%¢ and EY" (for all prede-
cessors/exists a predecessor) past operators. We then show that by replasirig
transitions bymust™ transitions, existing work on abstraction/refinement for verifica-
tion [GHJ01,SG03,BG04,SG04,DNO5] can be lifted to abstraction/refinement for falsi-
fication.

In particular, this immediately provides a framework for falsification of CTL and
calculus specifications. Going back to our example, by letting existential quantification
range overmust™ transitions, we can conclude from the fact that the abstract system
satisfies the property Xa > 6 (there is a successor in whieh > 6 is valid) that
some concrete state also satisfte&x > 6. Note that such reasoning cannot be done
in a traditional MTS, as there thewust™ transition is overapproximated byraay
transition, which is not helpful for reasoning about existential properties. Thus, there
are cases where evaluation of a formula on a traditional MTS returfrothing can
be concluded for the concrete system, and refinement is needed) and its evaluation on a
TMTS returns arexistentialtrue or existentialfalse Formally, we describe é-valued
falsification semanticfor TMTS. In addition to thd (all corresponding concrete states
satisfy the formula)F (all corresponding concrete states violate the formula),_and
truth values that the 3-valued semantics for MTS has, the falsification semantics also
has theT 5 (there is a corresponding concrete state that satisfies the foriuléhere
is a corresponding concrete state that violates the formula))Arfchixed — bothT 5
andF3 hold) truth values.

The combination ofnust™ andmust™ transitions turn out to be especially power-
ful when reasoning abowteak reachabilitywhich is useful for abstraction-guided test
generation [Bal04] and falsification of linear-time properties. As discussed in [Bal04],
if there is a sequence ofust~ transitions froma, to a; followed by a sequence of
must™ transitions froma; to ay, then there are guaranteed to be concrete stgtes
andc;, (corresponding tag anday) such thai is reachable from, in the concrete
system (in which case we say thagt is weakly reachable from,). In this case, we
can conclude that it is possible to cover the abstract statéa testing. When the ab-
straction is the product of an abstract system with a nondeterminigtihiBiuutomaton
accepting all the faults of the system, weak reachability can be used in order to de-
tect faults in the concrete system. We focus on abstractions obtained from programs by
predicate abstraction, and study the problem of composing transitions in an TMTS in a
way that guarantees weak reachability. We suggest a method whette” andmust™
transitions are parameterized with predicates, automatically induced by the weakest
preconditions and the strongest postconditions of the statements in the ptogram

The paper is organized as follows. Section 2 formally presents ternary modal tran-
sition systems (TMTS), how they abstract concrete systems (as well as each other) and
characterizes their abstraction pre-order via the full propositional modal logic (full-
PML). Section 2.3 presents tiéevalued falsification semantics for TMTS and demon-
strates that TMTS are more precise for falsification than traditional MTS. We also show
that falsification can be lifted to the-calculus as well as linear-time logics. Section 3

5 We note (see the remark at the end of Section 3 for a detailed discussion) that our approach is
different than refining the TMTS as the predicates we use are local to the transitions.

shows that weak reachability can be made more precise by parameterizingdath
and must~ transitions via predicates. Section 4 describes describes applications of
TMTS to abstraction-guided testing and to model checking. Section 5 concludes the
paper.

Due to a lack of space, this version does not contain proofs and contains only a
partial discussion of the results. For a full version, the reader is referred to the authors’
URLSs and our technical report [BKYO05].

2 The Abstraction Framework

In this section we describe our abstraction framework. We define TMTS — ternary
modal transition systems, which extend modal transition systems by a third type of
transition, and study their theoretical aspects.

2.1 Ternary modal transition systems

A concrete transition system a tupleC = (AP, S¢, Ic,—¢, Lc), whereAP is a

finite set of atomic propositionsc is a (possibly infinite) set of statef; C S¢ is a

set of initial states;—¢C S¢ x S¢ is a transition relation anfic: Se x AP — {T,F}

is a labeling function that maps each state and atomic proposition to the truth value of
the proposition in the state.

An abstraction of” is a partially defined system. Incompleteness involves both the
value of the atomic propositions, which can now take the valyenknown), and the
transition relation, which is approximated by over- and/or under-approximating transi-
tions. Several frameworks are defined in the literature (c.f. [LT88,BG99,HJS01]). We
define here a new framework, which consistseshary transition system@MTS, for
short). Unlike the traditional MTS, our TMTS has two types of under-approximating
transitions. Formally, we have the following.

may mustT must™

ATMTS is atupled = (AP, Sa,1a,— 4, — a4, —4,La), WhereAP is a
finite set of atomic propositions, 4 is a finite set of abstract statds, C S, is a set of

nay mustt

e .. . t—
initial states, the transition relations=", %3, , and™“%", are subsets of 4 x S 4 sat-

must™ may

+
isfying 725"y %% and ™%, %%, and L 4: S4 x AP — {T,F, L} is a labeling
function that maps each state and atomic proposition to the truth value (possibly un-
known) of the proposition in the state. Whdns clear from the context we sometimes

usemay(a, a’), mustt(a,a’), andmust ™~ (a,a’) instead ofs —4 a, a mﬁf; a’,and
a ™, o, respectively.

The elements of T, F, L} can be arranged in an “information lattice” [KIe87] in
which L C T and L C F. We say that a concrete statesatisfiesan abstract state
if for all p € AP, we haveL 4(a,p) T Lc(c,p) (equivalently, ifL 4(a,p) # L then
Lc(ce,p) = La(a,p)).

LetC = (AP, Sc, Ic,—¢, Lc) be a concrete transition system. A TMHS=

may mustt must

(AP,Sa,Ia,—a,— 4, — 4, La)is anabstractionof C if there exists a total and

" We useT andF to denote the truth valugsue andfalseof the standard (verification) seman-
tics, and introduce additional truth values in Section 2.3.

onto functionp: S — S4 such that (i) for allc € S, we have that: satisfiesp(c),

ay must™ must™

and (i) the transition relations—~%, ™%, , and™%', satisfy the following:

- a 24 « if there is a concrete statewith p(c) = a, there is a concrete staté
with p(¢’) = @/, andec —¢ .

mustt

— a — 4 o only if for every concrete statewith p(c) = a, there is a concrete state
¢ with p(¢’) = a’ ande —¢ .

must™

— a — 4 d only if for every concrete stat€ with p(¢’) = «’, there is a concrete
statec with p(¢) = a andc —¢ (.

Note thatmay transitions over-approximate the concrete transitions. In particular,
the abstract system can contaituy transitions for which there is no corresponding
concrete transition. Duallypust~ andmust™ transitions under-approximate the con-
crete transitions. Thus, the concrete transition relation can contain transitions for which
there are no correspondingust transitions. Since is onto, each abstract state cor-

ustt _ may must”™ — may

responds to at least one concrete state, an C—4 and — 4 C—4. On

nust™ must™

the other hand3’, and™™%’, are incomparable. Finally, note that by lettingst-
transitions becomenay-transitions, and by adding superfluoug:y-transitions, we
can have several abstractions of the same concrete system.

A precision preordeion TMTS defines when one TMTS is more abstract than an-

ma mustt must™
other. For two TMTSA = (AP, Sa, T4, —5%, ™%, ™%, 'L,)andB = (AP, Sg,

may mustt must™

I, —B,—B, — 8, Lp), the precision preorder is the greatest relaibr@ S, x
S such that ifH(a, b) then

CO. forallp € AP, we haveL 4(a,p) C Lg(b,p),
C1. if b =3 ¥/, then there is/ € S, such thatH(a’, V') anda —4 o/,

may

C2. if b 5% b, then there is/ € S4 such that(a’, ') anda’ —5 a,
C3.ifa ”ﬁf; a’, then there i$’ € Sp such that(a’,v’) andb %t; ¥, and
C4. if o’ ™%, a, then there i$’ € S such thatH(a’,b') andy’ ™35 b.

WhenH(a, b), we write (4, a) < (B, b), which indicates tha#l is more abstract (less
defined) thanB.

By viewing a concrete system as an abstract system whagg must™, and
must~ transition relations are equivalent to the transition relation of the concrete sys-
tem, we can use the precision preorder to relate a concrete system and its abstraction.
Formally, the precision preordéf C Sc x S4 (also known agnixed simulation
[DGG97,GJ02)) is such th&t(c, a) iff p(c) = a.

2.2 Alogical characterization

The logicfull-PML is a propositional logic extended with the modal operathks (“for
all immediate successors”) and” (“for allimmediate predecessors”). Thus, full-PML
extends PML [Ben91] by the past-time operatty’. The syntax of full-PML is given
bytheruled ::=p | -0 |OAO| AXO| AY O, forp € AP.

We define &3-valued semanticef full-PML formulas with respect to TMTS. The

may mustT must”

value of a formul& in a staten of a TMTS A = (Sa,la,— 4, —a, —a,La),

denoted(A4, a) |~ 6], is defined as follows:

[(A,a) Fp] = La(a,p).
T if[(Aa)_ 0 =F
[(Ayja) E—-0l=(F if [(4,a) E0]=T.
1 otherwise.
T if [(A.a) £ 6] = T and[(A, a) = 6]
[(Aya) 01 N0 =< F if [(A,a) E 6] =For[(A, a) E 6] =
1 otherwise.

T]H

T ifforall ¢, if may(a,a’) then[(A4,a’) = 60] =T.
[(A,a) = AX0) = { F ifexistsa’ s.t.must™(a,a’) and[(A,d') = 0] =F.

1 otherwise.

T ifforall ', if may(d’,a) then[(4,d’) = 60] =
[(A,a) E AY 6] = ¢ F if existsa’ S.t.must (a’,a) and[(A,d') = 0] = F.

1 otherwise.

While PML logically characterizes the precision preorder on MTS [GJ02], full-
PML characterizes the precision preorder on TMTS. It follows that the TMTS model
is indeed stronger than the MTS model, because TMTS are logically characterized by
a strictly more expressive modal logic which has the past operatrand EY, in
addition toAX and EX operators. Formally, we have the following.

Theorem 1. Let A = (AP, S4, Lo, "%, ™55 ™5t 1) and B = (AP, Sg, I,

may mustt must”

—'p, —p, —n, L) be two TMTS. For every two statess S, andb € Sg, we
have that(A,a) < (B,b) iff [(4,a) = 0] C [(B,b) = 6] for all ful-PML formulasé.

2.3 Falsification Using TMTS

As shown in Section 2.2, the backwards naturenafst— transitions makes them suit-
able for reasoning about the past. Thus, TMTS can be helpful in the verification setting
for reasoning about specifications in fulicalculus and other specification formalisms
that contain past operators. We view this as a minor advantage of TMTS. In this section
we study their significant advantage: reasoning about specifications in a falsification
setting.

In addition to the truth value$, F, and L, we now allow formulas to have the
valuesT 3 (existentialtrue), F3 (existentialfalse), andM (“mixed” — both T andF).
Intuitively, the valued 5, F5, andM refine the valuel, and are helpful for falsification
and testing, as they indicate that the abstract state corresponds to at least one concrete
state that satisfies the properfys], at least one concrete state that violates the property
(F3), and at least one pair of concrete states in which one state satisfies the property,
and the other state violates M.

As shown in the figure on the next page, the six valdgs= {T,F,M,T3,F3, L}
can be ordered in the information lattice depicted on the left. The values can also be
ordered in the “truth lattice” depicted on the right:

8 The specifications may contain both future and past operators. For simplicity, we describe the
framework here for th@-calculus, which does not contain past modalities. By lettingAlie
modality range overnust™ transitions, the framework can be used for falsification of full
p-calculus specifications.

T M F T3
AN /
T3 F3 1 M
NS AN /
1 F3
\
F
information lattice truth lattice

We allow the truth values of the (abstract) labeling function to range over the six
truth values.

ATMTS A = (AP,S4,14, ﬂ%,’wf;?’%ﬁj@ is an abstraction of a con-
crete transition syster@ = (AP, S¢, Ic,—¢, L¢) if there exists a total and onto
functionp: S¢ — S4 such that for alb € S, andp € AP:

— La(a,p) =Tonlyifforall c € S¢ such thap(c) = a, Le(e,p) =T;

— La(a,p) = Fonlyifforall ¢c € S¢ such thap(c) = a, Le(c,p) = F;

— La(a,p) = T3 only if there exists: € S¢ such thap(c) = a andLg(e,p) = T;
— La(a,p) = F3 only if there exists: € S¢ such thap(c) = aandL¢a(c,p) = F;
— La(a,p) = M only if there existe,¢’ € S¢ such thatp(c) = p(d) = a,

Le(e,p) =T,andL¢(c,p) =F.

In addition, p satisfies the requirement (ii) defined in Section 2.1.
The complementation{ £ — Lg) and the conjunction: Lg x Lg — Lg) oper-
ations are defined as follows:

- ANFFsMT3 T L
FI|T FIFF FF FF
F5|T3 F3|lF F5 F5 F5 F5 F5
MM M|FF3FsF5 M Fq
T3|F3 TslFFsF3 L T3 L
TIF TIFFEMTSs T L
1L 1LIFF3F3 L 1 L

We define &-valued falsification semantied PML formulas with respect to TMTS.

The value of a formuld in a statez of a TMTS A = (AP, S4, 4, —4, ’”ﬁf;, must,
L,), denoted(A, a) = 0], is defined as follows:

[(4, a) = pl = La(a,p).
[(4,a) = =0] = =([(A, a) = 0])
(C40) o aa) = AlfOA = 0, [(4,0) k= 1)
T if for all o', if may(a,a’) then[(A,a’) E0] =T.
F if existsa’ St must™ (a,a’) and[(A,ad’) E 0] = F.
(A, 0) = AXO =1 £ i existsa’ s.t.must—(a.a’) and[(A, ') 1= 6] 3 Fo.
1 otherwise.

Note that the conditions for tHe and theF5 conditions are not mutually exclusive.
If both conditions hold, we take the value to be the strorgealue.

For clarity, we give the semantics for the existential operdtdf explicitly (an
equivalent definition follows from the semantics4X and—):

F ifforall o, if may(a,a’) then[(A,d') E 6]
T ifexistsa’ s.t.must™(a,a’) and[(A,d’) =
T3 ifexistsa’ s.t.must™ (a,a’) and[(A,ad') =
1 otherwise.

F
(4,a) = EX6) = ;

0]
0]
Thus, the semantics of the next-time operators follows betht~ andmust™ transi-

tions (thatisa’ is such thatnust™(a, a’) or must™ (a, a’)). To understand whyrust ~
transitions are suitable for falsification, let us explain the positive falsification semantics
for the EX modality. The other cases are similar. Consider a concrete transition sys-
temC = (AP, S¢,Ic,—¢, L¢), and an abstraction for it = (AP, Sa, 14, —

mustt must™

,—a, —a,La). Letp: So — S be the witness function for the abstraction.

We argue that if(A4,a) = EXp| = T3, then there is a concrete statsuch that
p(c) = aandc = EXp. By the semantics of th® X operator|(A4,a) = EXp] = T3
implies that there is’ € S, such thatnust™ (a,a’) andL 4 (a’,p) 3 T3. Leté be a
concrete state with(¢) = o’ and Lo (¢,p) = T (by the definition of abstraction, at
least one such exists). Sincenust™(a, a’), then for every concrete statésuch that
p(c) = a’ there is a concrete statesuch thatp(c) = a ande —¢ ¢'. In particular,
there is a concrete statesuch thap(c) = a andec —¢ ¢. Thus,c = EXp and we are
done.

Leta anda’ be abstract states. The (reflexive) transitive closure@ft—, denoted
[must~]* is defined in the expected manner as follofwsust—]*(a,a”) if eithera =
a’ or there is an abstract statesuch thafmust—]*(a, a’) andmust=(a’, a’). We say
that an abstract staté is onto reachabldrom an abstract stateif for every concrete
statec’ that satisfiea’, there is a concrete stat¢hat satisfies andc’ is reachable from
c. Dually, we can define the transitive closurenfist™ transitions, denotepinust*]*,
andtotal reachability The transitive closure afiust™ andmust™ transitions retain
the reachability properties for a single transitidniust—]*(a, a’) only if o’ is onto
reachable fronu, and[must™]*(a,a’) only if a’ is total reachable from [Bal04].

By extending PML by fixed-point operators, one gets the lpg@alculus [Koz83],
which subsumes the branching temporal logics CTL and*CThe 3-valued semantics
of PML can be extended to the-calculus [BG04]. Note that in the special case of
CTL and CTL* formulas, this amounts to letting path formulas range owey and
must™ paths [SGO03]. The fact that the “onto” naturemaf.st~ transitions is retained
under transition closure enables us to extend the soundness argumenttfesathed
falsification semantics described above for a singl& or AX modality to nesting
of such modalities and thus, to PML and thecalculus, as shown in our technical
report [BKYO05].

3 Weak Reachability

When reasoning about paths in the abstract system, one can often manage with an even
weaker type of reachability (than transitive closure owerst— transitions): we say that
an abstract state’ is weakly reachabldrom an abstract state if there is a concrete
statec’ that satisfies!’, there is a concrete statethat satisfies:, andc’ is reachable

from c. The combination ofnust™ andmust™ transitions turn out to be especially
powerful when reasoning about weak reachability.

If there are three abstract statgs a,, andas such thatz, is onto reachable from
a1 andags is total reachable from,, thenas is weakly reachable froma; . Hence, weak
reachability can be concluded from the existence of a sequenee:.f transitions
followed immediately by a sequencesmfust™ transitions:

Theorem 2. [Bal04] If [must™]*(a1,az2) and [must™]*(az, az), thenas is weakly
reachable fronu;.

3.1 Weak Reachability in Predicate Abstraction

We now focus on the case where the concrete system is a program, and its abstraction
is obtained by predicate abstraction. We then show that weak reachability can be made
tighter by parameterizing the abstract transitions by predicates. The predicates used
in these transitions may be (and usually are) different from the predicates used for
predicate abstraction.

Consider a progran®. Let X be the set of variables appearing in the program and
variables that encode the program location, andlée the domain of all variables (for
technical simplicity, we assume that all variables are over the same domain). We model
P by a concrete transition system in which each state is labeled by a valuati®h.in
Let®d = {¢1, ¢, ..., ¢} be a set of predicates (quantifier-free formulas of first-order
logic) on X. For a seiz C & and an assignment ¢ DX, we say that: satisfiesa
iff ¢ satisfies all the predicates in The satisfaction relation induces a total and onto
functionp : DX — 2%, wherep(c) = a for the uniquea for which ¢ satisfiesa. An
abstraction of the prograi® that is based o is a TMTS with state spacg®, thus
each state is associated (and is labeled by) the set of predicates that hold in it. For a
detailed description of predicate abstraction see [GS97].

Note that all the transitions of the concrete system in which only the variables that
encode the program location are changed (all transitions associated with statements that
are not assignments, c.f., conditional branches, skip, etc.) arerhotti™ andmust ™
transitions, assuming that includes all conditional expressions in the program. We
call such transitionsilenttransitions. The identification of silent transitions makes our
reasoning tighter: ifi ﬂf’j a’ we can replace the transition framo o’ with transitions
from a’s predecessors i@. The type of a new transition is the same as the type of the
transitions leading ta. ° Such elimination of silent transitions result in an abstract
system in which each transition is associated with an assignment statement.

For simplicity of exposition, we present a toy examfle€onsider the progran®
appearing in Figure 1.

When describing an abstract system, it is convenient to describe an abstract state in
S 4 as a pair of program location and a Boolean vector describing which of the program
predicates b hold. Let¢; = (z < 6) andg2 = (z > 7). The abstraction oP that

% A transition froma’ may also be silent, in which case we continue until the chain of silent
transitions either reaches an end state or reaches an assignment statement. If the chain reaches
an end state, we can maken end state.

1 Qur ideas have proven useful also in real examples, as described in our technical re-
port [BKYO05].

L0 ifz < 6then

L1 r:=x+ 3;
L2 if x > 7then
L3 rx:=x—3;
L4 end

Fig. 1. The programP.

x<6 x>7 (x=6)v(x=7)

Fig. 2. The abstract transition system of the progr&rfrom Figure 1.

corresponds to the two predicates is described in the left-hand side of Figure 2. In the
right-hand side, we eliminate the silent transitions.

We now turn to study weak reachability in the abstract system. By Theorem 2, if
[must™]*(a1,a2) and[must™|*(az, az), thenag is weakly reachable from;. While
Theorem 2 is sound, it is not complete, in the sense that it is possible to have two
abstract states anda’ such thata’ is weakly reachable from and still no sequence
of transitions as specified in Theorem 2 exists in the abstract system. As an example,
consider the abstract states= (L1 : TF) anda’ = (L4 : TF). While ¢’ is weakly
reachable from; c.f., ¢’ =(L4:x = 5) is reachable frona =(L0:z = 5), the only path
from a to o’ in the abstraction contains twaay transitions, so Theorem 2 cannot be
applied. In fact, the status of the abstract states (L4:FT) and (L4:FF) also is not clear,
as the paths from to these states do not follow the sequence specified in Theorem 2.
Accordingly, Theorem 2 does not help us determining whether there is aninqout
to P such that the execution @ on = would reach location L4 with: that is strictly
bigger thari7 or with = that is equal t@ or 7. Our goal is to tighten Theorem 2, so that
we end up with fewer such undetermined cases.

3.2 Parameterized Must Transitions

Recall that each abstract state is associated with a location of the program, and thus
it is also associated with a statement. For a statementd a predicate over X, the

10

weakest preconditiofVP (s, e) and thestrongest postconditioBP (s, e) are defined as
follows [Dij76]:
— The execution ok from every state that satisfi8§P (s, ¢) results in a state that
satisfiese, andWP(s,) is the weakest predicate for which the above holds.
— The execution of from a state that satisfiesesults in a state that satisfieB(s, e),
andSP(s, e) is the strongest predicate for which the above holds.
For example, in the prografi, we haveWP(zx ==z + 3,2 > 7) =z > 4, SP(z :=
r+3,r<6)=x<9, WPz :=2-3,2<6)=2<9,andSP(z .=z — 3,2 >
7 =x>4.
Let 0 be a predicate ovek. We parameterizerust™ andmust ™ transitions by)
as follows:

— must™(0)(a,a’) only if for every concrete state that satisfies: A 6, there is a
concrete state’ that satisfies’ andc —¢ ¢'.

— must™(0)(a, a’) only if for every concrete stat€ that satisfies.’ A 6, there is a
concrete state that satisfies andc —¢ ¢'.

Thus, amust™(9) transition is total from all states that satigfyand amust=(6)
transition is onto all states that satigfyNote that wher® = T, we get usuatnust™
andmust~ transitions. Parameterized transitions can be generated automatically (us-
ing WP and SP) while building the TMTS without changing the complexity of the
abstraction algorithm.

Theorem 3. Let ¢ and o/ be two abstract states, andthe statement executed dn
Then,must™ (WP(s,a’))(a,a’) andmust™ (SP(s,a))(a,a’).

The good news about Theorem 3 is that it is complete in the sense that for all
predicated, if there is anust™ () transition froma to o/, thena — (§ — WP(s,a’)),
and similarly formust~ transitions, as formalized below.

Lemma 1. Leta anda’ be two abstract states, ardhe statement executeddn

— If there is amust™ () transition froma to a’, thena — (§ — WP(s,a’)).
— If there is amust~ () transition froma to o/, thena’ — (6 — SP(s,a)).

Thus, the pre and post conditions, which can be generated automatically, are the
strongest predicates that can be used. Note that using Theorem 3, it is possible to replace
all may transitions by parameterizedust~ andmust™ transitions.

It is easy to see how parameterized transitions can help when we consider weak
reachability. Indeed, ifnust = (01)(a, a’), must™(02)(a’,a”), andd; A Oz A d’ is satis-
fiable, thern” is weakly reachable from, as formalized by the following lemma.

Lemma 2. If must™(61)(a,a’), must™(02)(a’,a’”), andf; A3 Ad’ is satisfiable, then
there are concrete statesandc¢” such that(c), a”’(¢”"), and¢” is reachable from.

The completeness of Theorem 3 implies that whers weakly reachable from
via two transitions, this always can be detected by taking= SP(s,a) andf, =
WP(s',a’), wheres ands’ are the statements executed in the two transitions.

In our example, we have seen that the transitions from (L1:TF) to (L3:FT) and from
(L3:FT) to (L4:TF) are bothnay transitions, and thus Theorem 2 cannot be applied.

11

However, the fact that the first transition also isnast~ (z < 9) transition and the
second also is must™ (z < 9), together with the fact that > 7 A z < 9 is satisfiable,
guarantee that there is a concrete state that corresponds to (L1:TF) and from which
a concrete state that corresponds to (L4:TF) is reachable. Indeed, as we noted earlier,
(L4:z = 5) is reachable from (LQ@: = 5).

Whena anda’ are of distance greater than two transitions, parameterization is use-
ful for composing the sequence ofust™ transitions with the sequence efust™
transitions:

Theorem 4. If [must™]* (a1, az), must™ (61)(az,a3), must™(02)(as, as), [must™]*
(aq,as5), andas A 61 A 05 is satisfiable, thems is weakly reachable froma; .

Again, the predicate8, andf, are induced by the pre and postconditions of the
statement leading to the abstract state in which the two sequences are composed.

The transitive closure of the parameterized.st transitions does not retain the
reachability properties of a single transition and requires reasoning in an assume-guarantee
fashion, where two predicates are associated with each transition. Our technical re-
port [BKYO05] presents such an extension and shows how to use it to extend the set of
reachable states further.

4 Applications

This section describes application of weak reachability for linear-time falsification and
for abstraction-guided test generation.

In linear-time model checkingve check whether all the computations of a given
program P satisfy a specification), say an LTL formula. In the automata-theoretic
approach to model checking, one constructs an automdtgn for the negation of
1. The automatomd,;, is usually a nondeterministiciBhi automaton, where a run
is accepting iff it visits a set of designated states infinitely often. The prodrams
faulty with respect tap if the product of A, with the program contains a fair path —
one that visits the set of designated states infinitely often. The produtt gfwith an
abstraction ofP may contain fair paths that do not correspond to computatior3, of
thus again there is a need to check for weak reachability.

When reasoning about concrete systems, emptiness of the product automaton can
be reduced to a search for an accepting state that is reachable from both an initial state
and itself. In the context of abstraction, we should make sure that the path from the
accepting state to itself can be repeated, thus weak reachability is too wedk arde
instead we need the following.

Theorem 5. If, in the product automaton aP with respect to LTL formula), there
is an initial abstract statez;,,;; and an accepting state,.. such thata,.. is onto
reachable fronu;,;; and from itself, ora,.. is weakly reachable from,,;; and total
reachable from itself, thef violatesi.

Falsification methods are relatedt&sting where the system is actually executed.
The infeasible task of executing the system with respect to all inputs is replaced by

1 Whenv is a safety propertyd-., is an automaton accepting finite bad prefixes [KV01], and
weak reachability is sufficient.

12

checking a test suite consisting of a finite subset of inputs. It is very important to mea-
sure the exhaustiveness of the test suite, and indeed, there has been an extensive research
in the testing community oooverage metrigsvhich provide such a measure.

Some coverage metrics are defined with respect to an abstraction of the system. For
example, inpredicate-complete testini@al04], the goal is to cover all the reachable
observable states (evaluation of the system’s predicates under all reachable states), and
reachability is studied in an abstract system whose state space consists of an overap-
proximation of the reachable observable states. The observable states we want our test
suite to cover are abstract states that are weakly reachable.

The fundamental question in this setting is how to determine which abstract states
are weakly reachable. As we have seen, TMTS provide a sufficient condition for deter-
mining weak reachability (via a sequencewfist~ transitions followed by a sequence
of must™ transitions). The parameterization method makes this condition tighter.

5 Conclusion

We have described an abstraction framework that containg — transitions, the back-
wards version ofnust transitions, and showed howust ™~ transitions enable reason-

ing about past-time modalities as well as future-time modalities in a falsification seman-
tics. We showed that the falsification setting allows for a stronger type of abstraction
and described applications in falsification of temporal properties and testing.

A general idea in our work is that by replacingust™ by must~ transitions, ab-
straction frameworks that are sound for verification become abstraction frameworks that
are sound (and more precise) for falsification. We demonstrated it with model checking
and refinement, and we believe that several other ideas in verification can be lifted
to falsification in the same way. This includes generalized model checking [GJ02],
making the framework complete [DNO5], and its augmentation with hyper-transitions
[LX90,SG04].

Another interesting direction is to useust ™ transitions in order to strengthen ab-
stractions in the verification setting: the ability to move both forward and backwards
across the transition relation has proven helpful in the concrete setting. kising
transitions, this also can be done in the abstraction setting.

References

[Balo4] T. Ball. A theory of predicate-complete test coverage and generati@rd limterna-
tional Symposium on Formal Methods for Components and Ob2@@z!.

[Ben91] J.Benthem. Languages in actions: categories, lambdas and dynamiShogiies in
Logic, 130, 1991.

[BG99] G. Bruns and P. Godefroid. Model checking partial state spaces with 3-valued tempo-
ral logics. InComputer Aided Verificatiqgrpages 274-287, 1999.

[BG04] G. Bruns and P. Godefroid. Model checking with 3-valued temporal logic81$t
International Colloquium on Automata, Languages and Programmintume 3142
of Lecture Notes in Computer Scienpages 281-293, 2004.

[BKYO5] T. Ball, O. Kupferman, and G. Yorsh. Abstraction for falsification. Technical Report
MSR-TR-2005-50, Microsoft Research, 2005.

[CCT77] P.Cousot and R. Cousot. Abstract interpretation: a unified lattice model for the static
analysis of programs by construction or approximation of fixpoints.PGPL 77:
Principles of Programming Languaggsages 238-252. ACM, 1977.

13

[CEB1] E.M.Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons us-
ing branching time temporal logic. Rroc. Workshop on Logic of Programglume
131 ofLecture Notes in Computer Scienpages 52—71. Springer-Verlag, 1981.

[DGG97] D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems.
ACM Trans. Program. Lang. Sys19(2):253-291, 1997.

[Dij76] E.W. Dijksta. A Discipline of ProgrammingPrentice-Hall, 1976.

[DNO5] D.Dams and K. S. Namjoshi. Automata as abstraction¥MiICAl 2005 Paris, 2005.
to appear, LNCS, Springer-Verlag.

[FKZ*00] R. Fraer, G. Kamhi, B. Ziv, M. Vardi, and L. Fix. Prioritized traversal: efficient reach-
ability analysis for verication and falsification. Rroc. 12th Conference on Computer
Aided Vericationvolume 1855 ot ecture Notes in Computer Scienpages 389-402,
Chicago, IL, USA, July 2000. Springer-Verlag.

[GHJO01] P. Godefroid, M. Huth, and R. Jagadeesan. Abstraction-based model checking using
modal transition systems. Proceedings of CONCUR’2001 (12th International Con-
ference on Concurrency Theoryplume 2154 of_ecture Notes in Computer Science
pages 426-440. Springer-Verlag, 2001.

[GJ02] P. Godefroid and R. Jagadeesan. Automatic abstraction using generalized model
checking. InComputer Aided Verificatigrpages 137-150, 2002.

[GLSTO5] O. Grumberg, F. Lerda, O. Strichman, and M. Theobald. Proof-guided
underapproximation-widening for multi-process systemsPOPL, pages 122-131,
2005.

[GS97] S. Graf and H. Saidi. Construction of abstract state graphs with PVEAWN97:
Computer-aided Verificatigl.NCS 1254, pages 72—-83. Springer-Verlag, 1997.

[HISO01] M. Huth, R. Jagadeesan, and D. Schmidt. Model checking partial state spaces with
3-valued temporal logics. IESOR pages 155-169, 2001.

[Kle87] S. C. Kleenelntroduction to Metamathematic®North Holland, 1987.

[Koz83] D. Kozen. Results on the propositionaicalculus. Theoretical Computer Science
27:333-354, 1983.

[KV01] O. Kupferman and M.Y. Vardi. Model checking of safety propertiestmal methods
in System Desigri9(3):291-314, November 2001.

[LT88] K.G.Larsen and G.B. Thomsen. A modal process logidPiioc. 3th Symp. on Logic
in Computer Sciengddinburgh, 1988.

[LX90] K. G. Larsen and L. Xinxin. Equation solving using modal transition systems. In
LICS, pages 108-117, 1990.

[PDVO1] C.S. Pasareanu, M. B. Dwyer, and W. Visser. Finding feasible counter-examples when
model checking abstracted java programsTACAS pages 284—298, 2001.

[@S81] J.P. Queille and J. Sifakis. Specification and verification of concurrent systems in
Cesar. InProc. 5th International Symp. on Programmijngplume 137 ofLecture
Notes in Computer Sciengeages 337—-351. Springer-Verlag, 1981.

[SG03] S. Shoham and O. Grumberg. A game-based framework for CTL counterexamples
and 3-valued abstraction-refinementQomputer Aided Verificatiqmpages 275287,
2003.

[SG04] S. Shoham and O. Grumberg. Monotonic abstraction-refinement for CTILools
and Algorithms for Construction and Analysis of Systems (TACAB)me 2988 of
Lecture Notes in Computer Scienpages 546-560. Springer-Verlag, 2004.

[Sip99] H.B. Sipma.Diagram-based Verification of Discrete, Real-time and Hybrid Systems
PhD thesis, Stanford University, Stanford, California, 1999.

14

