
On (I/O)-aware Good-For-Games Automata

Rachel Faran and Orna Kupferman

School of Engineering and Computer Science, Hebrew University, Jerusalem, Israel

Abstract. Good-For-Games (GFG) automata are nondeterministic automata that can
resolve their nondeterministic choices based on the past. The fact that the synthesis
problem can be reduced to solving a game on top of a GFG automaton for the specifi-
cation (that is, no determinization is needed) has made them the subject of extensive
research in the last years. GFG automata are defined for general alphabets, whereas
in the synthesis problem, the specification is over an alphabet 2I∪O , for sets I and O
of input and output signals, respectively. We introduce and study (I/O)-aware GFG
automata, which distinguish between nondeterminism due to I and O: both should
be resolved in a way that depends only on the past; but while nondeterminism in I is
hostile, and all I-futures should be accepted, nondeterminism in O is cooperative, and
a single O-future may be accepted. We show that (I/O)-aware GFG automata can be
used for synthesis, study their properties, special cases and variants, and argue for their
usefulness. In particular, (I/O)-aware GFG automata are unboundedly more succinct
than deterministic and even GFG automata, using them circumvents determinization,
and their study leads to new and interesting insights about hostile vs. collaborative
nondeterminism, as well as the theoretical bound for realizing systems.

1 Introduction

Synthesis is the automated construction of systems from their specifications [6, 18]. The
system should realize the specification, namely satisfy it against all possible environments.
More formally, the specification is a language L of infinite words over an alphabet 2I∪O,
where I and O are sets of input and output signals, respectively, and the goal is to build
a reactive system that outputs assignments to the signals in O upon receiving assignments
to the signals in I , such that the generated sequence of assignments, which can be viewed
as an infinite computation in (2I∪O)ω , is in L [18]. The common approach for solving the
synthesis problem is to define a two-player game on top of a deterministic automaton D for
L. The positions of the game are the states of D. In each round of the game, one player (the
environment) provides an input assignment in 2I , the second player (the system) responds
with an output assignment in 2O, and the game transits to the corresponding successor
state. The goal of the system is to respond in a way so that the sequence of visited positions
satisfies the acceptance condition ofD. Thus, the generated computation is in L. The system
has a winning strategy in the game iff the language L is (I/O)-realizable [9].

Now, if one replaces D by a nondeterministic automaton A for L, the system has to
respond not only with an output, but also with a transition ofA that should be taken. This is
problematic, as this choice of a transition should accommodate all possible future choices
of the environment. In particular, if different future choices of the environment induce com-
putations that are all in the language ofA yet require different nondeterministic choices, the
system cannot win. Thus, it might be that L is realizable and still the system has no winning
strategy in the game.

2 R. Faran and O. Kupferman

Some nondeterministic automata are, however, good for games. The study of such au-
tomata started in [13], by means of tree automata for derived languages. It then continued
by means of good for games (GFG) word automata [11].1 Intuitively, a nondeterministic
automaton A is GFG if it is possible to resolve its nondeterminism in a manner that only
depends on the past and still accepts all the words in the language. Formally, A over an
alphabet Σ and state space Q is GFG if there is a strategy g : Σ∗ → Q, such that for every
word w = σ1 · σ2 · · · ∈ Σω , the sequence g(w) = g(ε), g(σ1), g(σ1 · σ2),. . . is a run of
A on w, and whenever w is accepted by A, the run g(w) is accepting. Thus, the strategy g,
which witnesses A’s GFGness, maps each word x ∈ Σ∗ to the state that is visited after x
is read. Obviously, there exist GFG automata: deterministic ones, or nondeterministic ones
that are determinizable by pruning (DBP); that is, ones that just add transitions on top of
a deterministic automaton.2 In terms of expressive power, it is shown in [13, 17] that GFG
automata with an acceptance condition γ (e.g., Büchi) are as expressive as deterministic
γ automata. In terms of succinctness, GFG automata on infinite words are more succinct
(possibly even exponentially) than deterministic ones [4, 12]. Further research studies de-
cidability, typeness, complementation, construction, and minimization for GFG automata
[12, 5, 3, 1], as well as GFG automata for ω-pushdown languages [15]. Beyond its com-
putational advantages, the use of GFG automata circumvents cumbersome determinization
constructions that traditional synthesis algorithms involve [19, 14].

Recall that in order to be GFG, an automaton needs a strategy g : Σ∗ → Q that resolves
nondeterminism in a way that depends only on the past. We argue that this is a too strong
requirement for the synthesis problem. There, Σ = 2I∪O, and we suggest to distinguish
between nondeterminism due to the 2I component of each letter, which is hostile, and non-
determinism due to the 2O component, which is cooperative. As a simple example, consider
the nondeterministic Büchi (in fact, looping) automaton A1 over 2{a,b} appearing in Fig-
ure 1. The Boolean assertions on the transitions describe the letters with which they can be
taken. For example, the transition from q0 to q1 can be taken with the letters {a} or {a, b}.
Note that A1 is not GFG. Indeed, a strategy g : (2{a,b})∗ → Q neglects either the word
{a}ω , in the case g({a}) = q1, or the word {a} · {a, b}ω , in the case g({a}) = q2. Assume
that a is an input signal and b is an output signal, and that we play the synthesis game on
top of A1. Since the system controls the assignment to b, it wins the game: on input {a}, it
can proceed to q1, and keep assigning true to b, staying forever in q1, or it can proceed to q2
and keep assigning false to b, staying forever in q2.

We introduce and study (I/O)-aware GFG automata, which distinguish between non-
determinism due to I and O: both should be resolved in a way that depends on the past; but
while nondeterminism in I is hostile, and the strategy witnessing the GFGness should ad-
dress all possible “I-futures”, nondeterminism in O is cooperative, and a single “O-future”,
which the strategy chooses, is sufficient. More formally, an automaton A over 2I∪O is
(I/O)-aware GFG if for every word wI ∈ (2I)ω , if wI is hopeful, namely it can be paired
with a word wO ∈ (2O)ω to a computation accepted by A, then the pairing as well as the
accepting run of A can be produced in an on-line manner, thus in a way that only depends

1 GFGness is also used in [7] in the framework of cost functions under the name “history-
determinism”.

2 In fact, DBP automata were the only examples known for GFG automata when the latter were
introduced in [11]. As explained there, however, even DBP automata are useful in practice, as their
transition relation is simpler than the one of the embodied deterministic automaton and it can be
defined symbolically.

On (I/O)-aware GFG Automata 3

q0

q1

q2

q3

A1: a

a

¬a

b

¬b

true

Fig. 1. The automaton A1 is not GFG, yet is ({a}/{b})-aware GFG.

on the past. For example, the automaton A1 from Figure 1 is ({a}/{b})-aware GFG, as
given the a-component of a letter, there is a strategy that pairs it with a b-component and
a transition of A1 in a way that all the hopeful words in (2{a})ω are paired with a word in
(2{b})ω and an accepting run on the obtained computation.

After introducing (I/O)-aware GFG automata, our first set of results concerns their
applications and decidability. First, we show that nondeterminisitic (I/O)-aware GFG au-
tomata are sound and complete for (I/O)-realizability: the system has a winning strategy in
a game played on them iff the specification is (I/O)-realizable. Note that using a nondeter-
ministic automaton is always sound. The use of deterministic automata, then GFG automata,
and now (I/O)-aware GFG automata, is required for the completeness. We conclude that
the synthesis problem for (I/O)-aware GFG automata with acceptance condition γ can be
solved in the same complexity as deciding games with γ winning conditions. Thus, it co-
incides with the complexity for deterministic automata. In particular, for (I/O)-aware non-
deterministic Büchi automata, the synthesis problem can be solved in quadratic time. Then,
we study the problem of deciding whether a given nondeterministic automaton is (I/O)-
aware GFG. We show that the problem is reducible to the problem of deciding whether the
projection of A on I is GFG, and following [3], conclude that it is polynomial for Büchi
automata. We also extend the notion of DBP automata to the (I/O)-aware setting, and study
the relation between DBP and (I/O)-aware DBP automata, as well as the relation between
(I/O)-aware DBP and (I/O)-aware GFG automata.

It is tempting to believe that the more signals we identify as outputs, the “more (I/O)-
aware GFG” the automaton is. Our second set of results has to do with the fact that the above
intuition is wrong. Essentially, this follows from the fact that while nondeterminism in O
is cooperative, a strategy that witnesses (I/O)-aware GFGness has to “cover” only hopeful
input words, and the identification of signals as outputs may make some input words hope-
ful. In particular, while all deterministic automata are GFG, not all deterministic automata
are (I/O)-aware GFG. In order to address this phenomenon, we introduce (I+/O−)-aware
GFG automata: an automaton A is (I+/O−)-aware GFG if there is a partition 〈I ′, O′〉 of
I ∪O such that I ⊆ I ′ andA is (I ′/O′)-aware GFG. Intuitively, since I ⊆ I ′, then the sys-
tem has less control in the 〈I ′, O′〉 partition, which we show to imply that (I+/O−)-aware
GFG automata are sound and complete for (I/O)-realizablity. As discussed above, how-
ever, the connection between controlability and GFGness is not monotone. Consequently,
while deciding (I/O)-aware GFGness for Büchi automata is polynomial, we show that de-
ciding their (I+/O−)-aware GFGness requires a check of all possible partitions of I ∪ O,
and is NP-complete in |I ∪O|.

(I/O)-aware GFG automata significantly extend the type of automata that are sound and
complete for (I/O)-realizability. A natural problem that follows is the generation of small
(I+/O−)-aware GFG automata. Our third set of results concerns this challenge, and its

4 R. Faran and O. Kupferman

tight relation to the problem of generating small realizing (I/O)-transducers. We describe
two heuristics in this front. In the first, we introduce the notion of (I/O)-coverage be-
tween automata, which together with (I/O)-aware GFGness entails preservation of (I/O)-
realizability. We then discuss generation of small (I/O)-covering automata, showing that
(I/O)-aware GFG automata are unboundedly more succinct than deterministic and even
GFG automata. Intuitively, while an automaton may need a large state space in order to
recognize all computations, an (I/O)-aware GFG automaton that is used for synthesis
may reject some of the computations, as long as it covers all hopeful input words. While
(I/O)-covering GFG automata under-approximate the specification, our second heuristic is
counter-example guided inductive synthesis (CEGIS), and it generates over-approximating
GFG automata. Unlike earlier CEGIS efforts [21, 20, 2], our starting point is a LTL for-
mula, and we iteratively refine GFG automata that over-approximate the specification and
its complement. Our GFG automata are obtained by applying the subset construction on
the nondeterministic automaton and adding nondeterministic transitions to states associated
with strict subsets of the successor subset. Working with the subset construction is always
sound and complete for safety automata. For Büchi automata, refinement steps are needed
in cases richer information that is needed for keeping track of visits in accepting states.
Working with GFG automata, we let the winning strategy use small subsets, in particular
follow the nondeterministic automaton when possible. In Section 8, we elaborate further on
how our results shed light on the open problem of whether a minimal realizing transducer
for an NBW specification with n states needs 2O(n logn) or only 2O(n) states, as well as the
use of GFG automata whose choices under-approximate the specifications.

2 Preliminaries

2.1 Automata

A nondeterministic word automaton over a finite alphabetΣ is a tupleA = 〈Σ,Q, q0, δ, α〉,
where Q is a set of states, q0 ∈ Q is an initial state, δ : Q × Σ → 2Q \ {∅} is a total
transition function, and α is an acceptance condition. We say that A is deterministic if for
every q ∈ Q and σ ∈ Σ, we have that |δ(q, σ)| = 1. A run of A on an infinite word
σ0, σ1, · · · ∈ Σω is a sequence of states r = q0, q1, . . . , where for every position i ≥ 0, we
have that qi+1 ∈ δ(qi, σi). We use inf(r) to denote the set of states that r visits infinitely
often. Thus, inf(r) = {q : qi = q for infinitely many i-s}.

We consider Büchi acceptance condition, where α ⊆ Q, and a run is accepting iff it
visits states in α infinitely often; that is, α∩ inf(r) 6= ∅. We also consider looping automata,
which are a special case of Büchi automata in which all states except for one rejecting sink
are in α (equivalently, α = Q and the transition function need not be total). The language
of A, denoted L(A), is the set of all words w ∈ Σω such that A has an accepting run on w.

We use three letter acronyms in {D,N} × {B,L} × {W} to denote classes of word au-
tomata. The first letter indicates whether this is a deterministic or nondeterministic automa-
ton, and the second indicates the acceptance condition. For example, NLW is a nondeter-
ministic looping automaton.

We say that a nondeterministic automaton is good for games (GFG, for short) if its
nondeterminism can be resolved based on the past [11]. Formally, a nondeterministic au-
tomaton A = 〈Σ,Q, q0, δ, α〉 is GFG if there exists a function g : Σ∗ → Q such that
the following hold: (1) g(ε) = q0, (2) The strategy g is compatible with δ; thus, for every

On (I/O)-aware GFG Automata 5

w · σ ∈ Σ∗ × Σ, we have that g(w · σ) ∈ δ(g(w), σ), and (3) The strategy g “covers” all
words in L(A); thus for every word w = σ0 · σ1 · · · ∈ L(A), the run that g induces on w,
namely g(ε), g(σ0), g(σ0 ·σ1), . . . , is accepting. We then say that g witnesses the GFGness
of A.

2.2 Games

A game is a tuple G = 〈VAND, VOR, E, α〉, where VAND and VOR are disjoint sets of positions,
owned by Player AND and Player OR, respectively. Let V = VAND ∪VOR. Then, E ⊆ V ×V
is an edge relation, and α is a winning condition, defining a subset of V ω . A play is an
infinite sequence of positions v0, v1, · · · ∈ V ω , such that for every index i ≥ 0, we have that
〈vi, vi+1〉 ∈ E. A play π ∈ V ω is winning for Player OR if π satisfies α, and is winning for
Player AND otherwise. We focus here on Büchi games, where α ⊆ V and π satisfies α if it
visits the positions in α infinitely often.

Starting from some position v0 ∈ V , the players generate a play inG as follows. In every
round, if the current position is v ∈ Vj , for j ∈ {AND, OR}, then Player j chooses a suc-
cessor v′ of v, and the play proceeds to position v′. A strategy for a player j ∈ {AND, OR}
is a function fj : V ∗ × Vj → V such that for every u ∈ V ∗ and v ∈ Vj , we have that
〈v, fj(u, v)〉 ∈ E. Thus, a strategy for Player j maps the history of the game so far, when it
ends in a position v owned by Player j, to a successor of v. Two strategies fAND, fOR, and an
initial position v0 induce a play π = v0, v1, v2 · · · ∈ V ω , where for every i ≥ 0, if vi ∈ Vj ,
for j ∈ {AND, OR}, then vi+1 = fj((v0, . . . , vi−1), vi). We say that π is the outcome of
fOR, fAND, and v0, and denote π = outcome(fOR, fAND, v0).

We say that a position v ∈ V is winning for Player OR if there exists a strategy fOR such
that for every strategy fAND, we have that outcome(fOR, fAND, v) is winning for Player OR.
We then say that fOR is a winning strategy of Player OR from v. We define similarly winning
positions and strategies for Player AND.

It is known that Büchi games are determined. That is, every position in a Büchi game
is winning for exactly one of the players. Solving a game is deciding which vertices are
winning for every player. Büchi games can be solved in quadratic time [22].

2.3 Synthesis

Consider two finite sets I and O of input and output signals, respectively. For two words
wI = i0 · i1 · i2 · · · ∈ (2I)ω and wO = o0 · o1 · o2 · · · ∈ (2O)ω , we define wI ⊕ wO as the
word in (2I∪O)ω obtained by merging wI and wO. Thus, wI ⊕wO = (i0 ∪ o0) · (i1 ∪ o1) ·
(i2 ∪ o2) · · · .

An (I/O)-transducer models a finite-state system that generates assignments to the
output signals while interacting with an environment that generate assignments to the input
signals. Formally, an (I/O)-transducer is T = 〈I,O, S, s0, ρ, τ〉, where S is a set of states,
s0 ∈ S is an initial state, ρ : S × 2I → S is a transition function, and τ : S → 2O is a
labelling function on the states. Intuitively, T models the interaction of an environment that
generates at each moment in time a letter in 2I with a system that responds with letters in
2O. Consider an input word wI = i0 · i1 · · · · ∈ (2I)ω . The run of T on wI is the sequence
s0, s1, s2 . . . such that for all j ≥ 0, we have that sj+1 = ρ(sj , ij). The output of T on wI

is then wO = o1 ·o2 · · · · ∈ (2O)ω , where oj = τ(sj) for all j ≥ 1. Note that the first output
assignment is that of s1, thus τ(s0) is ignored. This reflects the fact that the environment

6 R. Faran and O. Kupferman

initiates the interaction. The computation of T on wI , denoted T (wI), is then wI ⊕ wO.
Thus, T (wI) = i0 ∪ o1, i1 ∪ o2, . . . ∈ (2I∪O)ω .

For an automatonA over 2I∪O, we say that T (I/O)-realizesA if for every input word
wI ∈ (2I)ω , the computation of T on wI is in L(A). If there exists an (I/O)-transducer
T that (I/O)-realizes A, then we say that A is (I/O)-realizable. The synthesis problem
is to decide, given an automaton A, whether A is (I/O)-realizable, and if so, to return an
(I/O)-transducer that realizes it.

A common approach to solve the synthesis problem uses games. Given an NBW A =
〈2I∪O, Q, q0, δ, α〉 with a total δ, we define the synthesis game GSYN(A, I, O) as follows.
Intuitively, the game is played over Q, and starts at q0. Let q be the position of the game
at the beginning of some round. The round proceeds as follows: first, Player AND, who
represents the environment, chooses a letter i ∈ 2I . Then, Player OR, who represents the
system, chooses a letter o ∈ 2O and a state q′ such that q′ ∈ δ(q, i ∪ o), and the game
proceeds to q′. Formally, we define GSYN(A, I, O) = 〈VAND, VOR, E, α〉, where VAND = Q,
VOR = Q × 2I , and E = {〈q, 〈q, i〉〉 : q ∈ VAND and i ∈ 2I} ∪ {〈〈q, i〉, q′〉 : there is o ∈
2O such that q′ ∈ δ(q, i ∪ o)}.

We say that an automaton A over alphabet 2I∪O is sound and complete for (I/O)-
realizability whenA is (I/O)-realizable iff q0 is a winning state for Player OR inGSYN(A, I, O).
Note that all NBWs are sound for (I/O)-realizability, in the sense that if q0 is a win-
ning state for the system in GSYN(A, I, O), then A is (I/O)-realizable. However, there
are (I/O)-realizable NBWs for which q0 is not winning for Player OR. The inherent diffi-
culty inA being nondeterministic lies in the fact that each move of Player OR to a successor
state inA should accommodate all possible future choices of Player AND. If different future
choices of Player AND induce computations that are all in the language of A yet require
different nondeterministic choices, then Player OR cannot win.

3 (I/O)-Aware Good-for-Games Automata

For an automaton A over 2I∪O and a word wI ∈ (2I)ω , we say that wI is hopeful in A if
there exists a word wO ∈ (2O)ω such that wI ⊕ wO ∈ L(A). Consider a nondeterministic
automatonA = 〈2I∪O, Q, q0, δ, α〉, and let g : (2I)∗ → 2O×Q be a function. We denote the
first and second components of g by gO and gQ, respectively. That is, for a wordwI ∈ (2I)∗,
we have that g(wI) = 〈gO(wI), gQ(wI)〉. We say thatA is (I/O)-aware GFG if there exists
a function g : (2I)∗ → 2O ×Q such that the following hold.

1. g(ε) = 〈∅, q0〉,
2. The strategy g is compatible with δ. Thus for every wI ∈ (2I)∗ and i ∈ 2I , we have

that gQ(wI · i) ∈ δ(gQ(wI), i ∪ gO(wI)), and
3. The strategy g “covers” all input words that are hopeful in A. Thus for every wI that is

hopeful inA, we have that gQ(wI) = gQ(ε), gQ(i0), gQ(i0 · i1), . . . is an accepting run
on wI ⊕ (gO(ε) · gO(i0) · gO(i0 · i1) · · ·).

Example 1. Consider the nondeterministic Büchi (in fact, looping) automaton A2 over
2{a,b,c} appearing in Figure 2. Missing transitions lead to a rejecting sink.

Note thatA2 is not GFG. Indeed, a strategy g : (2{a,b,c})∗ → Q neglects either the word
{a, b}ω , in the case g({a, b}) = q1, or the word {a, b}·{a, b, c}ω , in the case g({a, b}) = q2.

Assume that a and b are input signals and c is an output signal. Now, a function g :
(2{a,b})∗ → 2{c} × Q such that g(ε) = 〈∅, q0〉, g({a, b}) = 〈∅, q2〉, g({a}) = 〈∅, q3〉

On (I/O)-aware GFG Automata 7

q0

q1

q2

q3
q4

a ∧ b

a ∧ b

a ∧ ¬b

a ∧ b ∧ c

a ∧ b ∧ ¬c

¬a ∧ b

¬a ∧ ¬b

true

Fig. 2. The automaton A2 is not GFG, yet is ({a, b}/{c})-aware GFG.

and g(∅ · (2{a,b})∗) = g({a} · {b} · (2{a,b})∗) = g({a, b} · {a, b} · (2{a,b})∗) = 〈∅, q4〉,
witnesses thatA2 is ({a, b}/{c})-aware GFG. Intuitively, identifying c as an output enables
A2 to accept only one of the words {a, b}ω and {a, b} · {a, b, c}ω . ut

As demonstrated in Example 1, the distinction between the nondeterminism in I and
O makes some automata good for games. Beyond being applicable to more specifications,
the cooperative nature of the nondeterminism in O makes (I/O)-aware GFG automata un-
boundedly more succinct than GFG automata. Indeed, a GFG automaton may need a large
state space in order to recognize all computations, whereas an (I/O)-aware GFG automa-
ton only needs to cover all hopeful input words. Similarly, determinization, even in GFG
automata, may be needed in order to accept in an on-line manner all computations, and is
not needed if we only care to accept a subset of them. We get back to this point in Section 7.

Remark 1. [On (I/O)-aware DBP automata] Translating LTL formulas to nondetermin-
istic automata, one typically uses the Büchi acceptance condition [23], which has motivated
our focus on NBWs. For safety properties, one ends up with NLWs – nondeterministic loop-
ing automata. As studied in [16, 4], GFG NLWs are determinizable by prunning (DBP, for
short); that is, their transition function embodies a deterministic transition function that rec-
ognizes the same language. Extending the study to the (I/O)-aware setting is possible: We
say that an NBW A is (I/O)-aware DBP if it is possible to resolve the nondeterministic
choices of A by choosing, for every state q and assignment i ∈ 2I , a transition from q that
agrees with i, in a way that covers all input sequences that are hopeful in A. In Appendix A
we define (I/O)-aware DBP automata formally and show that all the known results about
DBPness extend easily to the (I/O)-aware setting. In particular, while (I/O)-aware DBP
automaton is (I/O)-aware GFG, the reverse direction is valid only for (I/O)-aware GFG
NLWs. ut

4 Synthesis with (I/O)-Aware GFG Automata

In this section we show that, as has been the case with GFG automata, (I/O)-aware GFG
automata are sound and complete for (I/O)-realizability. Also, in spite of their succinct-
ness, the complexity of the synthesis problem for (I/O)-aware GFG automata coincides
with that of deterministic automata, and the problem of deciding whether a given automa-
ton is (I/O)-aware GFG is not more complex than the problem of deciding whether a given
automaton is GFG.

Theorem 1. (I/O)-aware GFG automata are sound and complete for (I/O)-realizability.

8 R. Faran and O. Kupferman

Proof. Consider an (I/O)-aware GFG automaton A = 〈2I∪O, Q, q0, δ, α〉. We show that
q0 is winning for Player OR (the system) in GSYN(A, I, O) iff A is (I/O)-realizable.

The first direction holds already for general automata: if Player OR wins GSYN(A, I, O),
then his winning strategy induces an (I/O)-transducer that (I/O)-realizes A.

For the other direction, assume that A is a realizable (I/O)-aware GFG automaton.
Let g : (2I)∗ → 2O × Q be a function that witnesses A’s (I/O)-aware GFGness, and let
GSYN(A, I, O) = 〈Q,Q× 2I , E, α〉 be the synthesis game. We describe a winning strategy
for Player OR in GSYN(A, I, O). Consider a prefix of a play q0, 〈q0, i0〉, q1, 〈q1, i1〉, . . . ,
qk, 〈qk, ik〉. A winning strategy for Player OR is to move from 〈qk, ik〉 to gQ(i0 · i1 · · · ik).
By the second condition on (I/O)-aware GFGness, the function g is compatible with δ, and
so the above move exists. In addition, since A is realizable, then all the words in (2I)ω are
hopeful in A. Then, by the third condition on (I/O)-aware GFGness, we have that the run
that gQ produces is accepting. Therefore, this strategy is indeed winning for Player OR. ut

Example 2. Consider again the automaton A2 from Example 1. Let I = {a, b} and O =
{c}. It is easy to see that Player OR does not win the synthesis game on A2. Indeed, Player
AND can win by starting with input {b}. Since A2 is ({a, b}/{c})-aware GFG, we can
conclude that A2 is not ({a, b}/{c})-realizable. ut

The following corollary follows immediately from Theorem 1 and from the known com-
plexity of deciding Büchi games [22].

Corollary 1. The synthesis problem for (I/O)-aware automata with acceptance condition
γ can be solved in the complexity of deciding games with winning condition γ. In particular,
the synthesis problem for (I/O)-aware NBWs can be solved in quadratic time.

We turn to study the complexity of deciding whether a given automaton is (I/O)-aware
GFG. For an NBWA = 〈2X , Q, q0, δ, α〉 and a partition 〈I,O〉 of X , we define the projec-
tion of A on I as A|I = 〈2I , Q, q0, δ′, α〉, where for every two states q1, q2 ∈ Q and letter
i ∈ 2I , we have that q2 ∈ δ′(q1, i) iff there exists o ∈ 2O such that q2 ∈ δ(q1, i ∪ o). Thus,
A|I is obtained fromA by hiding the 2O-component in its transitions. Note thatA|I accepts
all the words in (2I)ω that are hopeful in A.

Lemma 1. For every automaton A over 2X and every partition 〈I,O〉 of X , we have that
A is (I/O)-aware GFG iff A|I is GFG.

Lemma 1 implies the following. The result for NBWs also uses [3].

Corollary 2. Consider an acceptance condition γ. The complexity of deciding (I/O)-aware
GFGness for γ automata coincides with the complexity of deciding GFGness for γ au-
tomata. In particular, deciding (I/O)-aware GFGness for NBWs can be done in polynomial
time.

5 Non-Monotonicity of (I/O)-Aware GFGness

For a setX of signals and two partitions 〈I,O〉 and 〈I ′, O′〉 ofX to input and output signals,
we say that 〈I,O〉 has less control than 〈I ′, O′〉 if I ′ ⊆ I (equivalently, O′ ⊇ O). That is,
in 〈I ′, O′〉, the system assigns values to all the signals in O and possibly some more, which
have been assigned by the environment in the partition 〈I,O〉.

On (I/O)-aware GFG Automata 9

Consider a specification NBWA over the alphabet 2X . It is not hard to see that if 〈I,O〉
has less control than 〈I ′, O′〉 and A is (I/O)-realizable, then A is also (I ′/O′)-realizable.
Indeed, an (I ′/O′)-transducer that realizes A can be obtained from an (I/O)-transducer
that realizes A by moving the signals in I \ I ′ from the transitions to the output function,
and arbitrarily pruning nondeterminism. On the other hand, as we shall see below, the NBW
A may be (I/O)-aware GFG and not (I ′/O′)-aware GFG, and vice-versa. We first study
the two extreme partitions, namely the ones when the system has all or no control.

Lemma 2. Every NBW over 2X is (∅/X)-aware GFG. Every NBW over 2X is (X/∅)-
aware GFG iff it is GFG.

We continue to the general case, showing that the identification of signals as input or
output can both improve and harm (I/O)-aware GFGness. We start with an example.

Example 3. Consider again the NLW A2 from Example 1. As we have seen there, A2

is not GFG, yet is ({a, b}/{c})-aware GFG. Here, we claim that A2 is not ({a}/{b, c})-
aware GFG. Thus, identifying b as an output signal harms (I/O)-aware GFGness. Indeed, a
function that attempts to witness ({a}/{b, c})-aware GFGness is g : (2{a})∗ → 2{b,c}×Q,
and it neglects either the word {a}ω , in the case gQ({a}) = q3, or the word {a} · ∅ω , in the
case gQ({a}) ∈ {q1, q2}. ut

In Theorem 2 below we generalize Example 3 and show that the alternation between
positive and negative effect of control on (I/O)-aware GFGness is unboundedly long. The
proof can be found in Appendix C.3.

Theorem 2. [(I/O)-aware GFGness is not monotone] For every k ≥ 1, we can define a
DLWAk over an alphabet 2{x1,x2...,x2k}, such that for all 1 ≤ j ≤ k, we have thatAk is not
({x1, . . . , x2j−1}/{x2j , . . . , x2k})-aware GFG and is ({x1, . . . , x2j}/ {x2j+1, . . . , x2k})-
aware GFG.

When, however, the specification is (I/O)-realizable, then monotonicity holds for par-
titions that have less control than 〈I,O〉:
Theorem 3. Consider an (I/O)-realizable NBW A and a partition 〈I ′, O′〉 that has less
control than 〈I,O〉. If A is (I ′/O′)-aware GFG, then A is also (I/O)-aware GFG.

Proof. Consider an (I/O)-realizable NBW A = 〈2I∪O, Q, q0, δ, α〉, and let 〈I ′, O′〉 be
a partition that has less control than 〈I,O〉. That is, I ⊆ I ′. Assume that A is (I ′/O′)-
aware GFG and let g′ : (2I

′
)∗ → 2O

′ × Q and f : (2I)∗ → 2O be functions that witness
A’s (I ′/O′)-aware GFGness and (I/O)-realizability, respectively. We define a function
g : (2I)∗ → 2O ×Q that witnesses A’s (I/O)-aware GFGness.

Essentially, we construct g as follows. Given a word wI ∈ (2I)∗, we first use f in order
to extend wI to a word over 2I

′
, and then apply g′ on the extended word. Formally, for

wI = i0, i1, · · · ∈ (2I)∗, let wO = f(i0), f(i0 · i1), · · · ∈ (2O)∗. That is, wO is the word
that f pairs with wI . Let C = O \ O′ be the set of signals for which control is lost in the
transition from the partition 〈I,O〉 to 〈I ′, O′〉. Let u ∈ (2C)∗ be the projection of wO on
C. That is, u = f(i0) ∩ C, f(i0 · i1) ∩ C, · · · ∈ (2C)∗. Note that C = I ′ \ I . Thus, we can
define wI′ = wI ⊕ u ∈ (2I

′
)∗, and we define g(wI) = 〈g′O(wI′) ∪ c, g′Q(wI′)〉, where c is

the last letter of u.
Since A is (I ′/O′)-aware GFG, the function g′ induces an accepting run of A on every

word in (2I
′
)ω that is hopeful in A. This holds also for the word generated above, and so

the function g witnesses A’s (I/O)-aware GFGness. ut

10 R. Faran and O. Kupferman

6 (I+/O−)-Aware Good-for-Games Automata

The non-monotonicity of the behavior of the signals discussed in Section 5 points to a
bothering situation. In particular, an automaton may be GFG, in fact even deterministic, and
hence be sound and complete for (I/O)-realizability, and still not be (I/O)-aware GFG. In
this section we address this by defining (I+/O−)-aware GFG automata, which consider,
given A, all the partitions of I ∪ O with respect to which A is sound and complete for
(I/O)-realizability.

For an NBW A = 〈2I∪O, Q, q0, δ, α〉, we say that A is (I+/O−)-aware GFG if there
exists a partition 〈I ′, O′〉 that has less control than 〈I,O〉, namely I ⊆ I ′, such that A
is (I ′/O′)-aware GFG. Note that every (I/O)-aware GFG automaton is (I+/O−)-aware
GFG. In fact, by Lemma 2, every GFG automaton is (I+/O−)-aware GFG. However, as
Lemma 2 implies, there are (I+/O−)-aware GFG automata that are not GFG or not (I/O)-
aware GFG. We first argue that (I+/O−)-aware GFG automata are sound and complete for
(I/O)-realizability.

Theorem 4. (I+/O−)-aware GFG automata are sound and complete for (I/O)-realizability.

Proof. LetA = 〈2I∪O, Q, q0, δ, α〉 be an (I+/O−)-aware GFG automaton, and let 〈I ′, O′〉
be a partition that has less control than 〈I,O〉 and for which A is (I ′/O′)-aware GFG.
We show that Player OR wins GSYN(A, I, O) iff A is (I/O)-realizable. The first direction
holds for general NBWs. For the other direction, assume that A is (I/O)-realizable. Then,
as 〈I ′, O′〉 has less control than 〈I,O〉, Theorem 3 implies that A is (I/O)-aware GFG.
Therefore, by Theorem 1, Player OR wins GSYN(A, I, O). ut

Theorem 4 enables us to extend Corollary 1 to (I+/O−)-aware GFG automata:

Corollary 3. The synthesis problem for (I+/O−)-aware automata with acceptance con-
dition γ can be solved in the complexity of deciding games with winning condition γ. In
particular, the synthesis problem for (I+/O−)-aware NBWs can be solved in quadratic
time.

We turn to study the complexity of deciding (I+/O−)-aware GFGness. As we shall
see, the non-monotonicity suggests that one should check all possible partitions of I ∪ O.
Formally, we have the following.

Theorem 5. Consider an NBW A = 〈2I∪O, Q, q0, δ, α〉. The problem of deciding whether
A is (I+/O−)-aware GFG is polynomial in |Q| and NP-complete in |I ∪O|.

Proof. Given an NBWA = 〈2I∪O, Q, q0, δ, α〉, one can decide whetherA is (I+/O−)-aware
GFG by checking, for all partitions 〈I ′, O′〉 that have less control than 〈I,O〉, whether A
is (I ′/O′)-aware GFG. By Corollary 2, each such check can be done in time polynomial in
|Q|. Further, by guessing a partition 〈I ′, O′〉 that has less control than 〈I,O〉, and checking
whether A is (I ′/O′)-aware GFG we get membership in NP with respect to |I ∪O|.

We proceed to the lower bound, showing that deciding (I+/O−)-aware GFGness is
NP-hard in |I ∪O|. The 3SAT problem, known to be NP-hard, is to decide whether a given
3CNF formula is satisfiable. We show a reduction from 3SAT to deciding (I+/O−)-aware
GFGness. Let X = {x1, . . . , xn} be a set of variables, and consider a 3CNF formula ϕ =
c1 ∧ c2 ∧ · · · ∧ cm, where for every 1 ≤ j ≤ m, we have that cj = lj1 ∨ lj2 ∨ lj3, and
ljk ∈

⋃
x∈X{x,¬x}, for all 1 ≤ k ≤ 3. We construct an NBW A = 〈2I∪O, Q, q0, δ, Q〉

On (I/O)-aware GFG Automata 11

such that A is (I+/O−)-aware GFG iff ϕ is satisfiable. In fact, all the states of A are
accepting, thus the lower bound holds already for NLWs.

We define I = {1, . . . , n+m} andO =
⋃

x∈X{x, x̃}. For every clause c, we define c̃ as
the clause obtained by replacing every literal of the form ¬x with the signal x̃. For example,
if c = x1 ∨ ¬x2 ∨ x3, then c̃ = x1 ∨ x̃2 ∨ x3. We define, for every 1 ≤ j ≤ n, the NLW
Bj = 〈2I∪O, Pj , p

j
0, δ
B
j , Pj〉, illustrated in Figure 3. In addition, for every 1 ≤ j ≤ m, we

define the NLW Cj = 〈2I∪O, Sj , s
j
0, δ
C
j , Sj〉, illustrated in Figure 3.

pj
0

pj
1

pj
2

Bj: xj ∧ x̃j

xj ∧ x̃j

xj

x̃j

sj
0

sj
1

sj
2

Cj:
c̃j

¬c̃j

j

¬j

q0

B1 Bn C1 Cm.

A:

1 n n + 1 n + m

Fig. 3. The NLWs Bj , Cj , and A.

The NBW A combines B1, . . . ,Bn, C1, . . . , Cm in the way illustrated in Figure 3. That
is, A = 〈2I∪O, Q, q0, δ, Q〉, where Q = {q0} ∪ (

⋃
1≤j≤n Pj) ∪ (

⋃
1≤j≤m Sj), and for all

q ∈ Q and σ ∈ 2I∪O, we have that

δ(q, σ) =

{pj0} if q = q0 and σ = {j}, for 1 ≤ j ≤ n
{sj−n0 } if q = q0 and σ = {j}, for n+ 1 ≤ j ≤ n+m

δBj (q, σ) if q ∈ Pj , for 1 ≤ j ≤ n
δCj (q, σ) if q ∈ Sj , for 1 ≤ j ≤ m
∅ otherwise.

Note that both |I ∪ O| and |Q| are of size polynomial in |ϕ|. In Appendix C.4, we prove
that A is (I+/O−)-aware GFG iff ϕ is satisfiable. ut

7 (I/O)-Awareness and Synthesis

A natural problem that follows from our results is the generation of small (I+/O−)-aware
GFG automata. Thus, given an NBW A, return a minimal (I+/O−)-aware GFG automa-
ton equivalent to A. In this section we argue that the equivalence requirement is too strong
and can be relaxed to produce even smaller automata. We relate the problem of generating
(I/O)-aware GFG automata with that of generating realizing (I/O)-transducers, and show
how it sheds light on an important open problem, namely whether minimal realizing trans-
ducers for NBW specifications with n states need 2O(n logn) or only 2O(n) states. We also
suggest a heuristic algorithm that solves synthesis given a specification and its negation,
possibly avoiding determinization and getting a transducer with less than 2O(n logn) states.

7.1 Minimal (I/O)-Transducers

We start with the definition of covering automata, which replaces the equivalence condition.
For two automata A and A′ over 2I∪O, we say that A′ (I/O)-covers A if L(A′) ⊆ L(A)

12 R. Faran and O. Kupferman

and L(A|I) = L(A′|I). Thus, every word in (2I)ω that is hopeful in A is hopeful also
in A′, and A′ does not extend the language of A. 3 Moreover, A′ (I+/O−)-covers A if
there is a partition 〈I ′, O′〉 that has less control than 〈I,O〉 such that L(A′) ⊆ L(A) and
L(A|I′) = L(A′|I′). We then say that A′ (I+/O−)-covers A with 〈I ′, O′〉. Note that if A′
(I/O)-covers A, then A′ also (I+/O−)-covers A (with the partition 〈I,O〉), yet, as has
been the case with (I+/O−)-awareness, allowing coverage with partitions with less control
strictly strengthen the definition, and, as we show below, is still sound and complete for
(I/O)-realizability.

Theorem 6. Consider two automata A and A′ over 2I∪O. If A′ (I+/O−)-covers A with
〈I ′, O′〉 and is (I ′/O′)-aware GFG, then A′ is sound and compete for (I/O)-realizability
of A.

Proof. We prove that Player OR wins GSYN(A′, I, O) iff A is (I/O)-realizable. The first
direction is easy: if Player OR wins GSYN(A′, I, O), then A′ is (I/O)-realizable. Since
L(A′) ⊆ L(A), then every transducer that (I/O)-realizes A′ also (I/O)-realizes A, thus
A is (I/O)-realizable.

For the other direction, assume that A is (I/O)-realizable, and let T be a transducer
that (I/O)-realizes A. Consider a word wI ∈ (2I)ω . Let wI′ = T (wI) ∩ (2I

′
)ω , that is,

wI′ is the projection on I ′ of the computation of T on wI . Clearly, wI′ ∈ L(A|I′), and
therefore, wI′ ∈ L(A′|I′). Let g : (2I

′
)∗ → 2O

′ × Q be a function that witnesses that A′
is (I ′/O′)-aware GFG. We describe a winning strategy for Player OR in GSYN(A′, I, O).
Recall that in GSYN(A′, I, O), Player OR responds to a sequence of input letters over 2I

with an output letter in 2O and an according transition. Essentially, Player OR uses T in
order to extend a given sequence of input letters in (2I)∗ to a sequence of letters in (2I

′
)∗,

and then plays accordingly to g. Formally, we extend the notion of computations of T to
finite words. Consider a prefix of a play q0, 〈q0, i0〉, q1, 〈q1, i1〉, . . . , qk, 〈qk, ik〉. A winning
strategy for Player OR in GSYN(A′, I, O) is to move from 〈qk, ik〉 to gQ((2I

′
)∗ ∩ T (wI)),

where wI = i0 · i1 · · · ik. Recall that for all wI ∈ (2I)ω , we have that wI′ is hopeful in A′.
Therefore, the above strategy is winning for Player OR. ut

Theorem 6 implies that one can solve synthesis for an automaton A by constructing
an (I ′/O′)-aware GFG automaton A′ that (I+/O−)-covers A with 〈I ′, O′〉, rather than an
equivalent one, and solving GSYN(A′, I, O).

Remark 2. Note that for A′ to (I+/O−)-cover A with 〈I ′, O′〉, the L(A|I) = L(A′|I)
requirement is strengthened to L(A|I′) = L(A′|I′). This is crucial. That is, it may be the
case that A is realizable, yet Player OR losses GSYN(A′, I, O) for an (I+/O−)-aware GFG
automaton A′ such that L(A|I) = L(A′|I) and L(A′) ⊆ L(A). As an example, consider an
automatonA over 2{a,b,c} withL(A) = (2{a,b,c})ω , and the automatonA2 from Example 1.
Let I = {a} andO = {b, c}. It is easy to see that all the words in (2{a})ω are hopeful inA2,
and that L(A2) ⊆ L(A). In addition,A is clearly realizable. Recall thatA2 is ({a, b}/{c})-
aware GFG, thus it is (I+/O−)-aware GFG. Yet, Player OR loosesGSYN(A2, I, O). Indeed,
a winning strategy for Player AND is to start with input {a}, and then choose input ∅ if
Player OR responds with output in which b is true, and choose input {a} otherwise. ut

3 Note that the definition is different than open implication in [10], whereA′ open impliesA if every
(I/O)-transducer that (I/O)-realizes A′ also (I/O)-realizes A′. For example, an empty A′ open
implies every unrealizable A, yet need not (I/O)-cover it.

On (I/O)-aware GFG Automata 13

We turn to study the size of a minimal (I/O)-covering (I/O)-aware GFG NBW. Since
unboundedly large parts of the specification automaton may not bee needed for its realiza-
tion, we have the following.

Lemma 3. Consider an NBWA. An (I/O)-aware GFG NBW that (I/O)-coversA may be
unboundedly smaller than any GFG automaton equivalent to A.

Theorem 7. Consider an (I/O)-realizable NBW A. The size of a minimal (I/O)-aware
GFG NBW that (I/O)-covers A coincides with the size of a minimal (I/O)-transducer
that (I/O)-realizes A.

Proof. It is easy to see that if A is realizable, then an (I/O)-transducer that (I/O)-realizes
A can be viewed as an (I/O)-aware GFG NLW that (I/O)-coversA. Conversely, a winning
strategy for the system onGSYN(A, I, O), for an (I/O)-aware GFG NBWA, can be viewed
as an (I/O)-transducer that (I/O)-realizes A. Note that since our definition of (I/O)-
transducers has the output assignments in the states, we actually need 2|O| copies of each
state. These copies, however, are not needed if one considers (I/O)-transducers with output
assignments on the transitions. ut

We continue to the problem of generating small covering (I/O)-aware GFG NBWs. By
Theorem 7, the latter coincides with the problem of generating small realizing transducers.
The currently known upper bound for the size of a realizing transducer, starting with a
specification NBW A with n states, is 2O(n logn), and is based on playing the synthesis
game on a deterministic automaton equivalent to A. Unlike the case of determinization, no
matching lower bound is known. Below we relate the existence of such a lower bound with
the existence of an NBW that is easy to complement yet hard to determinize.

Theorem 8. Let n ≥ 1. If there is an NBW An with n states such that (1) An is easy to
complement: there is an NBWA′n withO(n) states such that L(A′n) = Σω \L(An), yet (2)
An is hard to determinize: a DBW equivalent to An needs at least 2O(n logn) states, then
there is a realizable NBW Bn with O(n) states such that the minimal realizing transducer
for Bn needs at least 2O(n logn) states.

Proof. Let Σ be the alphabet of An. We define Bn over Σ × {0, 1} so that L(Bn) contains
all words w ⊕ v such that w ∈ L(An) iff v has infinitely many 1’s. Thus, the projection on
Σ is in L(An) iff the projection on {0, 1} has infinitely many 1’s.

It is not hard to see that we can define Bn by an NBW with O(n) states. Indeed, we
can define Bn as the union of an NBW B1n for words w ⊕ v such that w ∈ L(An) and v
has infinitely many 1’s and an NBW B2n for words w ⊕ v such that w 6∈ L(An) and v has
finitely many 1’s. The NBW B1n is the product of An, which has n states, with a 2-state
DBW for “infinitely many 1’s”, so its size is O(n). The NBW B2n is the product of an NBW
that complements An, and which, by Condition (1), has O(n) states, with a 3-state NBW
for “only finitely many 1’s”. So the size of B2n is also O(n).

Now, if we view Σ as an input alphabet and view {0, 1} as an output alphabet, then a
(Σ/{0, 1})-transducer for Bn induces a DBW for A of the same size (note we refer here
to Σ and {0, 1} as input and output alphabets, rather than signals, but this is a technical
issue, as we could have encoded them). To see this, consider a (Σ/{0, 1})-transducer Tn =
〈Σ, {0, 1}, S, s0, ρ, τ〉 that realizes Bn, and let Dn = 〈Σ,S, s0, ρ, α〉 be a DBW with α =
{s : τ(s) = 1}. We claim thatL(Dn) = L(An). Indeed, since Tn realizesBn, then for every
input word w ∈ Σω , the computation of Tn on w has infinitely many 1’s iff w ∈ L(An).

14 R. Faran and O. Kupferman

Hence, the run ofDn on w visits α infinitely often iff w ∈ L(An). Hence, by Condition (2),
the transducer Tn needs at least 2O(n logn) states. ut

Remark 3. Theorem 8 refers to languages that are DBW-recognizable. It is easy to extend
it to all ω-regular languages by considering automata with a parity acceptance condition of
index k, for every k ≥ 1. Then, the automata Bn are over the alphabet Σ × {1, . . . , k}, and
they accept all words w ⊕ v such that w ∈ L(An) iff the minimal index that appears in v
infinitely often is even. ut

7.2 Using Over-Approximating GFG automata

In Section 7.1, we suggest the use of GFG automata that under-approximate the specifica-
tion. In this section we suggest a heuristic that starts with an LTL formula ϕ and is based on
GFG automata that over-approximate NBWs for ϕ and ¬ϕ. The GFG automaton that over
approximates an NBW A is obtained by applying the subset construction on A and adding
nondeterministic transitions to states associated with strict subsets of the successor subset.
By working with the over-approximations of both ϕ and ¬ϕ, we iteratively refine the sub-
set construction, adding information that makes the state spaces closer to that of DPWs for
ϕ and ¬ϕ. This continues until we get a transducer that realizes ϕ or ¬ϕ, typically much
earlier than full determinization is performed.

We now describe the heuristic in more detail. For an NBW A = 〈2I∪O, Q, q0, δ, α〉, the
nondeterministic subset construction of A is NSC(A) = 〈2I∪O, 2Q, {q0}, δ′, α′〉, where
S′ ∈ δ′(S, σ) iff S′ ⊆ ∪q∈Sδ(q, σ), and S ∈ α′ iff S ∩ α 6= ∅. That is, NSC(A) extends
the subset construction of A by adding transitions, for every S ∈ 2Q and σ ∈ 2I∪O, to all
the subsets of δ(S, σ). Note that α′ contains all sets whose intersection with α is not empty,
and so NSC(A) over-approximates A, thus L(A) ⊆ L(NSC(A)). In addition, NSC(A) is
DBP, and so it is GFG with respect to the deterministic subset construction of A.

Given an LTL formula ϕ, let Aϕ and A¬ϕ be NBWs for ϕ and ¬ϕ, respectively. By
determinacy of games,Aϕ is (I/O)-realizable iffA¬ϕ is not (O/I)-realizable.4 We use Ãϕ

and Ã¬ϕ to denote the over-approximations ofAϕ andA¬ϕ, respectively, generated during
the algorithm. Initially, Ãϕ = NSC(Aϕ) and Ã¬ϕ = NSC(A¬ϕ). In every iteration, we
solve bothGSYN(Ãϕ, I, O) andGSYN(Ã¬ϕ, O, I). Since we work with over-approximations,
the following three outcomes are possible.

1. Player AND winsGSYN(Ã¬ϕ, O, I). Then, we conclude that ϕ is realizable, the winning
strategy for Player AND induces a transducer that realizes ϕ, and we are done.

2. Player AND wins GSYN(Ãϕ, I, O). Then, we conclude that ϕ is not realizable, and we
are done.

3. Player OR wins in both games. Note this is possible only due to the over-approximation.
We model-check the single computation w that is the outcome of the interaction of the
winning strategies of Player OR in the games. If w |= ϕ, we conclude that Ãϕ needs to
be refined. At this point we may also model check the transducer induced by the winning
strategy of Player OR in GSYN(Ã¬ϕ, O, I), and conclude that ϕ is not realizable if the

4 A more precise definition of the dual setting adds to the realizability notation the parameter of
“who moves first”. Then, Aϕ is (I/O)-realizable with the environment moving first iff A¬ϕ is
not (O/I)-realizable with the system (that is, the player that generates signals in O) moving first.
Adding this parameter is easy, yet makes the writing more cumbersome, so we give it up.

On (I/O)-aware GFG Automata 15

transducer satisfies ¬ϕ. Dually, if w 6|= ϕ, we conclude that Ã¬ϕ needs to be refined,
and we may model check the transducer induced by the winning strategy of Player OR
in GSYN(Ãϕ, I, O), and conclude it realizes ϕ. If model checking fails, or if we decide
to skip it, we refine (possibly both Aϕ and A¬ϕ, one according to w and one with
respect to the counterexample obtained from the model checking) and continue to the
next iteration.

It is left to describe the refinement. Essentially, the refinement of Ãϕ (and similarly for
Ã¬ϕ) with respect to a counterexample word w excludes w from Ãϕ, and is done in a way
that eventually results in a GFG automaton for Aϕ, unless the procedure halts in an earlier
iteration. The refinement may use any on-the-fly determinization construction whose state
space consists of information on top of the subset construction (e.g., Safra trees [19] or
reduced trees [8]). Let Dϕ be a DPW for Aϕ, and let r be the run of Dϕ on w. By the way
we defined and have refined Ãϕ so far, the states in r can be mapped to the states of Ãϕ. For
example, in the first iteration, where the states of Ãϕ are subsets of states inAϕ, we use the
fact that each state in Dϕ is associated with such a subset. We use this mapping in order to
refine states of Ãϕ that are mapped to by different states along r, and update the acceptance
condition of Ãϕ accordingly. See Appendix B for an example.

As with other counterexample-guided refinement methodologies, several heuristics con-
cerning the choice of a counterexample are possible. Here, we also suggest heuristics for
the choice of winning strategy in both GSYN(Ãϕ, I, O) and GSYN(Ã¬ϕ, O, I). This is where
the GFGness of the nondeterministic subset construction plays a role. We say that a winning
strategy for a player is minimalistic if for every state associated with a subset S ⊆ 2Q that
she chooses, every state that is associated with a subset S′ ⊂ S is losing for her. By choos-
ing minimalistic strategies, we avoid determinization associated with large sets, whenever
possible. In fact, when Aϕ is (I/O)-aware GFG, a winning strategy may coincide with the
GFG strategy. In addition, in the case Player OR wins both of the games, we can consider
several winning strategies, and either refine or check the induced transducer with respect to
each one of them.

In the worst case, the algorithm halts when either Ãϕ or Ã¬ϕ is a DPW for ϕ or ¬ϕ,
respectively. Thus, their size bounds the number of iterations. In each iteration, we solve
two parity games, check whether a single computation satisfies ϕ, and optionally model-
check a transducer – all these are done in less than exponential time, and so the overall time
complexity is doubly exponential in |ϕ|, meeting the lower bound for LTL synthesis.

8 Discussion

We introduced (I+/O−)-aware GFG automata and studied their properties, especially in
the context of synthesis. Our contribution significantly extends the type of automata that are
sound and complete for (I/O)-realizability.

We left open the problem of generating minimal covering (I/O)-aware GFG automata,
and show that it is tightly related, and in fact brings new insights, to the long-standing open
problem of generating minimal (I/O)-realizing transducers, namely the problem of whether
a minimal realizing transducer for an NBW specification with n states needs 2O(n logn) or
only 2O(n) states. The current upper bound goes through determinization and is 2O(n logn),
but no matching lower bound is known. We related the problem to the one of finding NBWs
that are easy to complement yet hard to determinize, which is also open. We believe that

16 R. Faran and O. Kupferman

this family of problems is of great practical interest, less because of the difference between
2O(n logn) and 2O(n), and more because of the possibility, suggested by Theorem 8, that a
simple determinization construction, or at least a simple synthesis algorithm, can be devel-
oped for the case NBWs are given for both the specification and its negation. Finally, we
suggested a synthesis heuristic that uses easy to construct GFG automata for the specifi-
cation and its negation: Determinization with a subset construction over-approximates the
language, and GFGness under-approximates the language by allowing transitions to strict
subsets. While the performance of the heuristic in practice still needs to be checked, we be-
lieve that the underlying idea, of combining a simple construction that extends the language
with GFG nondeterministic choices that restrict the language, deserves further study.

References
1. B. Abu Radi and O. Kupferman. Minimizing GFG transition-based automata. In Proc. 46th

ICALP, LIPIcs 132, 2019.
2. R. Alur, R. Bodik, G. Juniwal, M. Martin, M. Raghothaman, S. Seshia, R. Singh, A. Solar-

Lezama E. Torlak, and A. Udupa. Syntax-Guided Synthesis. IEEE, 2013.
3. M. Bagnol and D. Kuperberg. Büchi good-for-games automata are efficiently recognizable. In

Proc. 38th FSTTCS, LIPIcs 132, 2018.
4. U. Boker, D. Kuperberg, O. Kupferman, and M. Skrzypczak. Nondeterminism in the presence of

a diverse or unknown future. In Proc. 40th ICALP, LNCS 7966, 2013.
5. U. Boker, O. Kupferman, and M. Skrzypczak. How deterministic are Good-For-Games automata?

In Proc. 37th FSTTCS, LIPIcs 93, 2017.
6. A. Church. Logic, arithmetics, and automata. In Proc. Int. Congress of Mathematicians, 1963.
7. Th. Colcombet. The theory of stabilisation monoids and regular cost functions. In Proc. 36th

ICALP, LNCS 5556, 2009.
8. D. Fisman and Y. Lustig. A modular approach for Büchi determinization. In Proc. 26th CONCUR,

2015.
9. E. Grädel, W. Thomas, and T. Wilke. Automata, Logics, and Infinite Games: A Guide to Current

Research, LNCS 2500, 2002.
10. K. Greimel, R. Bloem, B. Jobstmann, and M. Vardi. Open implication. In Proc. 35th ICALP,

LNCS 5126, 2008.
11. T.A. Henzinger and N. Piterman. Solving games without determinization. In Proc. 15th CSL,

LNCS 4207, 2006.
12. D. Kuperberg and M. Skrzypczak. On determinisation of good-for-games automata. In Proc.

42nd ICALP, 2015.
13. O. Kupferman, S. Safra, and M.Y. Vardi. Relating word and tree automata. Ann. Pure Appl.

Logic, 138(1-3):126–146, 2006.
14. O. Kupferman and M.Y. Vardi. Safraless decision procedures. In Proc. 46th FOCS, 2005.
15. K. Lehtinen and M. Zimmermann. Good-for-games ω-pushdown automata. In Proc. 35th LICS,

2020.
16. G. Morgenstern. Expressiveness results at the bottom of the ω-regular hierarchy. M.Sc. Thesis,

The Hebrew University, 2003.
17. D. Niwinski and I. Walukiewicz. Relating hierarchies of word and tree automata. In Proc. 15th

STACS, LNCS 1373, 1998.
18. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. 16th POPL, 1989.
19. S. Safra. On the complexity of ω-automata. In Proc. 29th FOCS, 1988.
20. A. Solar-Lezama. Program Synthesis by Sketching. PhD thesis, UC Berkeley, 2008.
21. A. Solar-Lezama, L. Tancau, R. Bodik, S. A. Seshia, and V. Saraswat. Combinatorial sketching

for finite programs. In Proc. 12th ASPLOS, 2006.
22. M.Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics of programs. Journal

of Computer and Systems Science, 32(2):182–221, 1986.
23. M.Y. Vardi and P. Wolper. Reasoning about infinite computations. I&C, 115(1):1–37, 1994.

On (I/O)-aware GFG Automata 17

A (I/O)-Aware Determinizability by Prunning

Translating LTL formulas to nondeterministic automata, one typically uses the Büchi accep-
tance condition [23], which has motivated our focus on NBWs. For safety properties, one
ends up with nondeterministic looping automata, where all infinite runs are accepting. As
studied in [16, 4], GFG NLWs are determinizable by prunning (DBP, for short); that is, their
transition function embodies a deterministic transition function that recognizes the same
language. In this section we study (I/O)-aware DBPness, showing that all known results
about DBPness extend easily to the (I/O)-aware setting.

An NBW A = 〈2I∪O, Q, q0, δ, α〉 is DBP if there is a DBW A′ = 〈2I∪O, Q, q0, δ′, α〉
such that for all q ∈ Q and σ ∈ 2I∪O, we have that δ′(q, σ) ⊆ δ(q, σ) and L(A′) = L(A).
It is easy to see that every DBP NBW is GFG. Indeed, if A is DBP, then a function that
witnesses its GFGness can follow the transitions of the deterministic automaton embodied
in A. The other direction does not hold: there are GFG NBWs that are not DBP [4]. For
NLWs, however, GFGness does coincide with DBPness [16, 4].

Adding (I/O)-awareness to DBPness essentially means that it is possible to resolve
the nondeterministic choices of A by choosing, for every state q and assignment i ∈ 2I , a
transition from q that agrees with i, in a way that covers all input sequences that are hopeful
inA. Formally, we say thatA with a total transition function δ is (I/O)-aware DBP if there
exists a function g : Q× 2I → 2O ×Q such that the following hold.

– For every q ∈ Q and i ∈ 2I , we have that gQ(q, i) ∈ δ(q, i ∪ gO(q, i)), and
– For every word wI = i0 · i1 · · · ∈ (2I)ω , if wI is hopeful in A, then q0, q1, q2, . . . is

an accepting run on wI ⊕ (o0, o1, o2, . . .), where for every index j ≥ 0 we have that
qj+1 = gQ(qj , ij) and oj = gO(qj , ij).

We first argue that the connection between the (I/O)-aware GFGness of an automaton
A and the GFGness of A|I applies also for DBPness:

Lemma 4. An automaton A is (I/O)-aware DBP iff A|I is DBP.

Proof. Assume first thatA|I is DBP and let f : Q× 2I → Q be the function that witnesses
it. We extend f to a function f ′ : Q × 2I → 2O × Q as follows. For every q ∈ Q and
i ∈ 2I , we define f ′(q, i) = 〈o, f(q, i)〉, where o ∈ 2O is such that f(q, i) ∈ δ(q, i ∪ o).
Clearly, f ′ witnesses that A is (I/O)-aware DBP. For the second direction, assume that A
is (I/O)-aware DBP and let f : Q × 2I → 2O × Q be the function that witnesses it. The
function fQ witnesses thatA|I is DBP. Indeed, fQ produces accepting runs on all the words
that are hopeful in A, which are exactly the words in L(A|I). ut

We continue and argue that the relation between DBPness and GFGness applies also in
the (I/O)-aware setting:

Lemma 5. 1. Every (I/O)-aware DBP automaton is (I/O)-aware GFG.
2. Every (I/O)-aware GFG NLW is (I/O)-aware DBP.
3. There exists an (I/O)-aware GFG NBW that is not (I/O)-aware DBP.

Proof. For the first claim, assume that A = 〈2I∪O, Q, q0, δ, α〉 is (I/O)-aware DBP, and
let f : Q × 2I → 2O × Q be the function that witnesses this. We extend f to a function
g : (2I)∗ → 2O ×Q, where g(ε) = 〈∅, q0〉, and for every wI · i ∈ (2I)∗ × 2I , we have that
g(wI · i) = f(gQ(wI), i). It is easy to see that g witnesses that A is (I/O)-aware GFG.

18 R. Faran and O. Kupferman

For the second claim, consider an (I/O)-aware GFG NLW A. Then, by Lemma 1, we
have that A|I is GFG, and so, by [16, 4], we have that A|I is DBP. Thus, by Lemma 4, the
NLW A is (I/O)-aware DBP.

For the last claim, letA be a GFG NBW over some alphabet 2X that is not DBP. By [4],
such an NBW exists. By Lemma 2, we have that A is (X/∅)-aware GFG. In addition, as
A = A|X , Lemma 4 implies that A is not (X/∅)-aware DBP, as a function f : Q× 2X →
2∅ ×Q that witnesses A’s (X/∅)-aware DBPness witnesses also its DBPness. ut

Finally, the notion of (I+/O−)-aware GFG automata extends naturally to DBP, thus an
NBW A is (I+/O−)-aware DBP iff there exists a partition 〈I ′, O′〉 that has less control
than 〈I,O〉, namely I ⊆ I ′, and A is (I ′/O′)-aware DBP. Since our “bad news results”,
namely the non-monotonicity and the NBW used in the lower bound proof in Theorem 5
are looping, they are valid also for (I/O)-aware and (I+/O−)-aware DBPness.

B On The Refinement Step in Section 7.2

Consider the example NBWA on the left of Figure 4, where the input signals are {i1, i2, i3},
and the output signals are {o1, o2}. We assume that the signals are mutually exclusive,
thus in each moment in time, exactly one input signal and exactly one output signal is
on. Accordingly, there are six letters in the alphabet of A, and it specifies the following
behavior: as long as the environment generates i1, the system has to respond with a prefix
of L = ((o1 · o1)+ · (o1 · o2)+)ω . Once the environment generates i2 or i3, all suffixes
are correct. If the environment keeps generating i1 forever, the system has to respond with
a word in L. For simplicity, we illustrate the refinement only for the deterministic subset
construction of A.

5 1

3

4

2 6

7

A:

i1 ∧ o1

i1 ∧ o1 i1 ∧ o2

i1 ∧ o1
i1 ∧ o1 i1 ∧ o1

i1 ∧ o1i1 ∧ o2

i2

i2 i3
i3

true

{1, 2} {3, 4, 5, 6}

{7}

SC(A):

i1 ∧ o1

i1

i2 ∨ i3 i2 ∨ i3

true

Fig. 4. An NBW A and its subset construction.

Refinement of states in NSC(A) that are associated with strict subsets is similar (and
is necessary in order to filter out from the over-approximating automaton all the accepting
runs on the counterexample word).

The NBW SC(A) on the right of Figure 4 is the subset construction applied to A. For
the input word i1ω , a transducer that realizes A has to produce an output word in L above.
However, Ã accepts also the words {i1, o1}ω and ({i1, o1} · {i1, o2})ω , which are not in
L(A). We show the refinement with respect to the word w = ({i1, o1} · {i1, o2})ω .

On (I/O)-aware GFG Automata 19

The automaton D in the left of Figure 5 is a DBW for A (for the sake of readability,
we omit from it an accepting sink {7} and (i2 ∨ i3)-transitions from all the states to the
accepting sink). Every state in D consists of a subset of the states in A and additional
information that describes which paths visited an accepting state recently (we follow the
break-point construction used in [8], where the additional information is on states along
paths that have not visited α – these are the underlined states). We refine the states along

{1, 2} {3, 4, 5, 6} {1, 2}

{3, 4, 5, 6}{1, 2}

i1 ∧ o1

i1 ∧ o2

i1 ∧ o1

i1 ∧ o1i1 ∧ o1

i1 ∧ o2

i1 ∧ o1

{1, 2} {3, 4, 5, 6}
i1 ∧ o1

i1 ∧ o2

{1, 2} {3, 4, 5, 6}

{7}

i1 ∧ o1
i1 ∧ o1

i1

i2 ∨ i3

i2 ∨ i3

i2 ∨ i3 i2 ∨ i3

true

Fig. 5. A DBW D for A and SC(A) after refinement w.r.t. ({i1, o1} · {i1, o2})ω .

the accepting run of SC(A) on w that are mapped to by states in the rejecting run of D on
w, namely, both {1, 2} and {3, 4, 5, 6}. The resulting NBW Ã is described on the right of
Figure 5, where the states and edges that appear already in SC(A) are colored gray. Note
that we do not have to construct D, just generate, on-the-fly, its run on w. Note also that Ã
is still an over-approximation of A. However, it is not hard to see that an additional step of
refinement, for example w.r.t. the word {i1, o1} · {i1, o1} · w, adds the copies of the state
{1, 2} with the necessary information, and thus is sufficient in order to get an NBW for
which a winning strategy for Player OR realizes A.

Finally, note that working with NSC(A), a winning strategy should use only states from
which there is an i-transition for every i ∈ {i1, i2, i3}, thus it has to start in {1, 2}, and
move, given i1, to a subset of {3, 4, 5, 6} that is a superset of {5, 6}. Then, given i1, it must
go back to {1, 2}. Assuming that the strategy is memoryless, this induces a loop that is
associated with a word not in L(A). Thus, refinement is needed also in this case.

In many cases, refinement can be avoided. As an example, consider the NBW B over
2{i,o} that appears on the left of Figure 6. The language of B is given by the LTL formula
GFi ⇐⇒ GFo. That is, B accepts every word that has infinitely many i-s iff it has
infinitely many o-s. Note that L(B) is not DBW-recognizable. The DBW in the right of Fig-

2 1 3

4

i

o

i

o
¬i ¬o

¬i ∧ ¬o

¬i ∧ ¬o

¬i ∧ ¬o

¬i ∧ ¬o

{2} {1} {3}

{2, 4}

i ∧ o

¬i ∧ o

i ∧ o

o

¬i ∧ ¬o

¬i ∧ ¬o i ∧ o

Fig. 6. An NBW B and a sub-automaton of NSC(B) that realizes B.

20 R. Faran and O. Kupferman

ure 6 is a sub-automaton of NSC(B) on top of which player OR winsGSYN(NSC(B), {i}, {o}),
and it can be viewed as a transducer that realizes B. Thus, by over-approximating B and
solving synthesis according to the heuristic that chooses a minimalistic winning strategy,
we solve the synthesis problem for B avoiding determinization.

C Proofs

C.1 Proof of Lemma 1

Assume first that A is (I/O)-aware GFG, and let g : (2I)∗ → 2O × Q be a function
that witnesses its (I/O)-aware GFGness. It is easy to see that the function gQ : (2I)∗ → Q
witnesses thatA|I is GFG. Indeed, the function gQ produces accepting runs on all the words
that are hopeful in A, which are exactly the words in L(A|I). In addition, every run that is
accepting in A is accepting in A|I .

For the other direction, assume that A|I is GFG, and let g′ : (2I)∗ → Q be a function
that witnesses its GFGness. We describe a function g : (2I)∗ → 2O × Q that witnesses
A’s (I/O)-aware GFGness. First, we define gQ = g′. We define gO inductively as follows:
gO(ε) = ε, and for a word wI · i ∈ (2I)∗ × 2I , we have that gO(wI · i) = o, where o ∈ 2O

is such that gQ(wI · i) ∈ δ(gQ(wI), i ∪ o). Clearly, g is consistent with δ. In addition, note
that for every wI ∈ (2I)ω , we have that wI ∈ L(A|I) iff there exists wO ∈ (2O)ω such that
wI ⊕ wO ∈ L(A). It is not hard to see that in this case, gQ(ε), gQ(i0), gQ(i0 · i1), . . . is an
accepting run on wI ⊕ (gO(ε) · gO(i0) · gO(i0 · i1) · · ·). Thus, g witnessesA’s (I/O)-aware
GFGness, and we are done.

C.2 Proof of Lemma 2

Consider an NBW A over 2X . For the first claim, note that he NBW A|∅ is a single-letter
NBW, thus its language is either empty, in which case it is clearly GFG, or it includes a
single word, in which case its accepting run induces a function that witnesses its GFGness.
Hence,A|∅ is GFG, implying, by Lemma 1, thatA is (∅/X)-aware GFG. Also, sinceA|X =
A, the second claim follows from Lemma 1.

C.3 Proof of Theorem 2

We define Ak = 〈2{x1,x2...,x2k}, Q, q0, δ, Q〉, where Q = {q0, q1, . . . , qk+1}, and δ is de-
fined, for all 1 ≤ j ≤ k, as follows (see Figure 7 for an illustration of A4).

– δ(q0, {x1, x2, . . . , x2j−1}) = qj ,
– δ(q0, {x1, x2 . . . , x2k}) = qk+1,
– δ(qj , {x1, x3, x5, . . . , x2(j−1)−1}) = qj , and
– δ(qk+1, {x1, x3, x5, . . . , x2k−1}) = qk+1.

Consider an index 1 ≤ j ≤ k. Let I = {x1, . . . , x2j−1} andO = {x2j , x2j+1, . . . , x2k}.
We show that Ak

|I is not GFG. Then, it follows from Lemma 1 that Ak is not (I/O)-
aware GFG (see Figure 7 for illustrations of A4

|{x1,x2,x3} and A4
|{x1,x2,x3,x4}; in both, the

states q5 and q4 are identical to q3, and are omitted in the figure). Consider a function
g : (2I)∗ → Q. Note that g(I) ∈ {qj , . . . , qk+1}. If g(I) = qj , then g neglects the word I ·

On (I/O)-aware GFG Automata 21

q0

q1

q2

q3

q4

q5

A4:
{x1}

{x1, x2, x3}

{x1, x2, . . . , x5}

{x1, x2, . . . , x7}

{x1, x2, . . . , x8}

∅

{x1}

{x1, x3}

{x1, x3, x5}

{x1, x3, x5, x7}

q0

q1

q2

q3

A4
|{x1,x2,x3}:

{x1}

{x1, x2, x3}

{x1, x2, x3}

∅

{x1}

{x1, x3}

q0

q1

q2

q3

A4
|{x1,x2,x3,x4}:

{x1}

{x1, x2, x3}

{x1, x2, x3, x4}

∅

{x1}

{x1, x3}

Fig. 7. The DLW A4 and its projections.

({x1, x3, . . . , x2j−1})ω ∈ L(Ak
|I). Otherwise, g neglects the word I·({x1, x3, . . . , x2(j−1)−1})ω ∈

L(Ak
|I).

Now, let I = {x1, . . . , x2j} and O = {x2j+1, . . . , x2k}. We prove that Ak is (I/O)-
aware GFG by showing that Ak

|I is GFG. First, note that all the transitions in Ak
|I from q0

to q1, . . . , qj are labeled with different strict subsets of I , and all the transitions inAk
|I from

q0 to qj+1, . . . , qk+1 are labeled with I . We show that a function g : (2I)∗ → Q such that
g(I) = qj+1 witnesses thatAk

|I is GFG. Indeed, since the self-loops in qj+1, qj+2, . . . , qk+1

are labeled with the same subset of I (namely, {x1, x3, x5, . . . , x2j−1}), we have that g does
not neglect any word in L(Ak

|I).

C.4 Correctness of the reduction in the proof of Theorem 5

We prove that A is (I+/O−)-aware GFG iff ϕ is satisfiable.
Recall that A is (I+/O−)-aware GFG iff it is (I ′/O′)-aware GFG for partition 〈I ′, O′〉

that has less control than 〈I,O〉. Further, since A is deterministic in its transitions from
q0 and all those transitions are labeled with input letters, then A is (I ′/O′)-aware GFG iff
all the NLWs B1, . . . ,Bn, C1, . . . , Cm are (I ′/O′)-aware GFG. Intuitively, the purpose of
the NLWs B1, . . . ,Bn is to ensure that the choice of I ′ induces an assignment to X , by
forcing I ′ to include, for every x ∈ X , at most one of x and x̃. The purpose of the NLWs
C1, . . . , Cm is to ensure that the assignment that I ′ induces satisfies ϕ.

We prove that for every 1 ≤ j ≤ n, the NLW Bj is (I ′/O′)-aware GFG iff either
xj /∈ I ′ or x̃j /∈ I ′. For the first direction, assume that xj /∈ I ′. Then, a function g :

(2I
′
)∗ → 2O

′ ×Pj such that gQ(σ) = pj1 for all σ ∈ 2I
′

witnesses that Bj is (I ′/O′)-aware
GFG, as all the words over 2I

′
that are accepted from pj2 are accepted also from pj1. The

case that x̃j /∈ I ′ is symmetrical, with gQ(σ) = pj2. For the other direction, we prove that
if both xj ∈ I ′ and x̃j ∈ I ′, then Bj is not (I ′/O′)-aware GFG. First, if gQ(σ) = pj1,
then g neglects all the words σ1 · σω

2 ∈ (2I
′
)ω , where xj , x̃j ∈ σ1, x̃j ∈ σ2 and xj /∈ σ2.

Indeed, a run that follows g on these words gets stuck when it reads σ2 from pj1. Note that
all those words are in L(Bj|I′), as σω

2 can be accepted from pj2. The case that gQ(σ) = pj2 is
symmetrical, with the words σ1 ·σω

2 such that xj , x̃j ∈ σ1, xj ∈ σ2 and x̃j /∈ σ2. Therefore,

22 R. Faran and O. Kupferman

all the automata B1, . . . ,Bn are (I ′/O′)-aware GFG iff I ′ includes, for every x ∈ X , at
most one of x, x̃. We say that such I ′ is legal.

We continue and prove that for every 1 ≤ j ≤ m, the NLW Cj is (I ′/O′)-aware GFG
iff I ′ includes a signal that participates in c̃j . Consider an index 1 ≤ j ≤ m. In the first
direction, if I ′ includes a signal that participates in c̃j , then Cj|I′ is deterministic, and thus
Cj is (I ′/O′)-aware GFG. For the other direction, assume by way of contradiction that
all the signals that participate in c̃j are not in I ′, and that Cj is (I ′/O′)-aware GFG. Let
g : (2I

′
)∗ → 2O

′ × Sj be a function that witnesses Cj’s (I ′/O′)-aware GFGness, and
consider a letter σ ∈ 2I

′
. If gQ(σ) = sj1, then g neglects the word σ · ∅ω . Otherwise, we

have that gQ(σ) = sj2, and g neglects the word σ · {j}ω . Note that both σ · ∅ω and σ · {j}ω
are in L(Cj|I′). We say that I ′ is good if it includes, for every j, at least one signal that
participates in c̃j . Note that all the automata C1, . . . , Cm are (I ′/O′)-aware GFG iff I ′ is
good. It follows that A is (I+/O−)-aware GFG iff there exists a partition 〈I ′, O′〉 that has
less control than 〈I,O〉 such that I ′ is both legal and good. We show that the later holds iff
ϕ is satisfiable.

In the first direction, let 〈I ′, O′〉 be a partition of I ∪O that has less control than 〈I,O〉
and such that I ′ is legal and good. We define an assignment f : X → {true, false}, where
f(x) = true iff x ∈ I ′. Note that I ′ is legal, thus f is well-defined. In addition, since I ′ is
good, then f satisfies ϕ. For the other direction, let f : X → {true, false} be an assignment
that satisfies ϕ. We define I ′ = I ∪ {x : f(x) = true} ∪ {x̃ : f(x) = false}. It is easy to
see that I ′ is both legal and good.

C.5 Proof of Lemma 3

Consider the LTL formula ψn = (G¬a) ∨ F (a ∧XnGb) over {a, b}. Note that ψn has the
flavor of the regular language Ln = (0+1)∗ ·0·(0+1)n−1 over {0, 1}. The language Ln is a
classical example to the succinctness of nondeterministic automata: a nondeterministic au-
tomaton for Ln can guess whether each 0 is located in the desired position, namely n letters
before the end of the word, and needs only O(n) states. On the other hand, a deterministic
and even a GFG automaton for Ln needs to remember the last n letters and needs at least 2n

states. Indeed, a GFG strategy cannot map different words of length n to the same state, as a
suffix that inserts only one of them to Ln would fool the automaton. Back to ψn, where the
property Gb plays the role of “end of word” in Ln. Here too, a nondeterministic automaton
An for ψn may guess whether each occurrence of a appears n positions before a tail of b’s
starts; and here too, if we do not distinguish between input and output signals, then a GFG
automaton for ψn is exponential in n. On the other hand, if I = {a} and O = {b}, then
an (I/O)-aware GFG automaton A′n can assume a cooperative behavior of the system in
which b is always valid, have a single state, and still (I/O)-cover An.

