
International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

Latticed Simulation Relations and Games

Orna Kupferman

School of Engineering and Computer Science, Hebrew University, Jerusalem 91904, Israel

Email: orna@cs.huji.ac.il

and

Yoad Lustig

School of Engineering and Computer Science, Hebrew University, Jerusalem 91904, Israel

Email: yoad@cs.huji.ac.il

Received (received date)

Revised (revised date)
Communicated by Editor’s name

ABSTRACT

Multi-valued Kripke structures are Kripke structures in which the atomic proposi-
tions and the transitions are not Boolean and can take values from some set. In particu-
lar, latticed Kripke structures, in which the elements in the set are partially ordered, are
useful in abstraction, query checking, and reasoning about multiple view-points. The

challenges that formal methods involve in the Boolean setting are carried over, and in
fact increase, in the presence of multi-valued systems and logics. We lift to the latticed
setting two basic notions that have been proven useful in the Boolean setting. We first
define latticed simulation between latticed Kripke structures. The relation maps two

structures M1 and M2 to a lattice element that essentially denotes the truth value of
the statement “every behavior of M1 is also a behavior of M2”. We show that latticed-
simulation is logically characterized by the universal fragment of latticed µ-calculus, and
can be calculated in polynomial time. We then proceed to defining latticed two-player

games. Such games are played along graphs in which each transition have a value in the
lattice. The value of the game essentially denotes the truth value of the statement “the
∨-player can force the game to computations that satisfy the winning condition”. An

earlier definition of such games involved a zig-zagged traversal of paths generated during
the game. Our definition involves a forward traversal of the paths, and it leads to better
understanding of multi-valued games. In particular, we prove a min-max property for
such games, and relate latticed simulation with latticed games.

1. Introduction

Several recent verification methods involve reasoning about multi-valued Kripke

structures in which an atomic proposition is interpreted at a state as a lattice el-

ement, rather than a Boolean value.a The multi-valued setting arises directly in

aA lattice 〈L,≤〉 is a partially ordered set in which every two elements a, b ∈ L have a least
upper bound (a join b) and a greatest lower bound (a meet b). We will define lattices in detail in

1

systems in which the designer can give to the atomic propositions rich values like

“unknown” or “don’t care” (c.f., the IEEE Standard Multivalue Logic System for

VHDL Model Interoperability [21]), or in contexts in which one reasons about qual-

itative properties of systems [7]. The multi-valued setting arises indirectly in appli-

cations like abstraction methods, in which it is useful to allow the abstract system

to have unknown assignments to atomic propositions and transitions [28, 4], query

checking [6], which can be reduced to model checking over multi-valued Kripke

structures, and verification of systems from inconsistent viewpoints [20], in which

the value of the atomic propositions is the composition of their values in the dif-

ferent viewpoints. Recently, multi-valued logics were used to reason about systems

that have a number of prioritized requirements rather than a single specification

[1].

The various applications use various types of lattices (see Figure 1). For example,

in the abstraction application, researchers have used three values ordered as in L3

[4], as well as its generalization to linear orders [9, 7, 1]. In query checking, the lattice

elements are sets of formulas, ordered by the inclusion order [5]. When reasoning

about inconsistent viewpoints, each viewpoint is Boolean, and their composition

gives rise to products of the Boolean lattice, as in L2,2 [13]. Finally, in systems with

rich values of the atomic propositions, several orders may be used, allowing the

modeling of uncertainty, disagreement, and relative importance [10]. In the most

general setting, both the atomic propositions and the transitions in the Kripke

structure are elements in a lattice [14]. We refer to such structures as latticed

Kripke structures.

Properties of latticed Kripke structures can be specified using multi-valued log-

ics. In particular, [3] introduced a latticed version of the µ-calculus. The value of

a latticed µ-calculus formula ψ in a latticed Kripke structure M , denoted JM,ψK,

is an element in L — the lattice with respect to which M and ψ are defined. Sev-

eral model-checking algorithms for latticed µ-calculus are studied in the literature

[3, 29]. Automated tools for reasoning about multi-valued logics include theorem

provers for first-order multi-valued logics (cf. [17, 30]) and symbolic multi-valued

model checkers (cf. [8]). Naturally, the challenges that formal methods involve

in the Boolean setting are carried over, and in fact increase, in the presence of

multi-valued systems and logics.

In 1971, Milner defined the simulation pre-order between systems [26]. Simula-

tion enjoys many appealing properties, making it a key notion in reasoning about

systems and their specifications. First, simulation has a fully abstract semantics:

a Kripke structure M2 simulates a Kripke structure M1 iff every computation tree

embedded in the unrolling of M1 can be embedded also in the unrolling of M2.

Second, simulation has a logical characterization: M2 simulates M1 iff every uni-

versal branching-time formula satisfied by M2 is satisfied also by M1 [27, 2, 16]. It

follows that simulation is a suitable notion of implementation, and it is the coarsest

abstraction of a system that preserves universal branching-time properties. Third,

simulation can be defined locally by means of a game that relates states with their

Section 2.

2

immediate successor states. Based on its local definition, simulation between finite-

state systems can be checked in polynomial time [11] and symbolically [18]. Finally,

simulation implies trace-containment, which cannot be defined locally and requires

polynomial space for verification [31]. Hence simulation is widely used both in

manual and in automatic verification.

An adoption of the advantages of simulation to the multi-valued setting was

partially suggested in the context of abstraction. There, modal transition systems

(MTS) are used in order to model systems at different levels of abstraction [24].

Accordingly, atomic propositions have three possible values (false, unknown, and

true), and transitions have three possible values (false, may, and must). Researchers

have defined mixed simulation between MTSs [12, 15] and use it as a precision order:

M1 is simulated by M2 iff M2 is more precise (less abstract) than M1. The adoption

is partial in the sense that it fits only for the special case of MTS, and it returns a

Boolean value: either M2 simulates M1 or it does not.

In this work we define and study latticed simulation in general. Given two Kripke

structures M1 and M2 over a lattice L, the simulation value of M1 by M2, denoted

sim val(M1,M2), is an element in L that essentially denotes the truth value of the

statement “every behavior of M1 is also a behavior of M2”. Technically, for two

states q1 of M1 and q2 of M2, the simulation value of q1 by q2 refers to both the

agreement between the states on the values of the atomic propositions, and to the

value in which successors of q1 can be matched with successors of q2. The logical

characterization of simulation is extended to the latticed setting: for every sentence

ψ in the universal fragment of latticed µ-calculus, we have that sim val(M1,M2) ≤

JM2, ψK → JM1, ψK. Thus, the greater the simulation value is, the more likely it is

that the value of ψ in M1 is not smaller than its value in M2. The characterization is

tight, in the sense that if sim val(M1,M2) 6≥ l, for a lattice value l ∈ L, then there

is a sentence ψ in the universal latticed µ-calculus such that JM2, ψK → JM1, ψK 6≥ l.

In [23], we defined the implication value between two latticed Kripke structures M1

and M2, denoted imp val(M1,M2). Essentially, imp val(M1,M2) denotes the truth

value of the statement “every computation of M1 is also a computation of M2”; thus

it is the latticed counterpart of trace containment. The computational advange of

simulation with respect to trace containment is carried over to the latticed setting:

sim val(M1,M2) ≤ imp val(M1,M2), and while the calculation of imp val(M1,M2)

is PSPACE-complete [23], sim val(M1,M2) can be calculated in PTIME. We also

define latticed bisimulation and study its properties.

It is easy to see that Boolean simulation and its properties are a special case

of latticed simulation and its properties. This may create an impression as if the

extension to the latticed setting is straightforward. To see that this is not the

case, note that there are quite many extensions of the Boolean setting to a latticed

setting that coincide with the Boolean setting for the Boolean lattice. For example,

we could have defined latticed simulation so that if the simulation value of M1

by M2 is a lattice element l, then for all universal formulas ψ, if JM2, ψK ≥ l,

then JM1, ψK ≥ l. To see that this definition is different, consider the three-valued

linearly-ordered lattice {0, 1
2 , 1} and assume there is a formula ψ such that JM2, ψK =

3

1
2 and JM1, ψK = 0. A simulation value of 1

2 is possible according to our definition

(indeed, 1
2 ≥ (1

2 → 0)) but is not possible according to the alternative definition

(indeed, JM2, ψK ≥ 1
2 yet JM1, ψK 6≥ 1

2). Our search for a good definition have

eventually converged to the suggested one — the only definition that enjoys all the

helpful properties of Boolean simulation.

Recall that in the Boolean case, simulation can be defined by means of a game

between two players. We define and study latticed games and show that latticed

simulation can be defined by means of such games. An earlier definition of latticed

games is presented in [29]. As in our setting, the game graph is a latticed Kripke

structure whose states are partitioned into ∨-states and ∧-states. Also, the game is

defined so that its value is a lattice element that essentially denotes the truth value

of the statement “the ∨-player can force the games into computations that satisfy

the winning condition”. The definition of the value of a game in [29], however, is

conceptually different from the definition of the winner in a Boolean two-players

game. Indeed, the value of a play in the game in [29] is defined as the limit of

a sequence {val i}
∞
i=0, where each value val i is computed by backward traversal

of the prefix v0, v1, . . . , vi of the path generated during the play. Thus, while in

Boolean games the generated path is traversed in a forward manner, here the need

to calculate a lattice value has forced a zig-zagged traversal.

Our definition of a value of a game avoids the zig-zagged traversal and is based

on a mutual definition of two values: one for the ∨-player and one for the ∧ player.

The values are updated during the play, and the values after the i-th transition

depends on the values before the i-th transition and the value of the edge traversed

during the i-th transition. The value of a game according to our definition coincides

with the value in [29]. The fact our definition resembles the forward traversal in

Boolean games leads to a better understanding of latticed games. In particular,

we prove a min-max theorem for latticed games: the value of a game for the ∨-

player complements the value of the game for the ∧-player.b We note that this

result is technically very challenging. In particular, unlike Boolean games, the

value of a game need not be achieved with a single strategy. Beyond the relation

between latticed games and latticed simulation, they are of independent interest. In

particular, as discussed in [29], model checking of latticed µ-calculus can be reduced

to latticed-game solving.

2. Preliminaries

Let 〈A,≤〉 be a partially ordered set, and let P be a subset of A. An element

a ∈ A is an upper bound on P if a ≥ b for all b ∈ P . Dually, a is a lower bound on

P if a ≤ b for all b ∈ P . An element a ∈ A is the least element of P if a ∈ P and

a is a lower bound on P . Dually, a ∈ A is the greatest element of P if a ∈ P and

a is an upper bound on P . A partially ordered set 〈A,≤〉 is a lattice if for every

two elements a, b ∈ A both the least upper bound and the greatest lower bound of

{a, b} exist, in which case they are denoted a ∨ b (a join b) and a ∧ b (a meet b),

respectively. A lattice is complete if for every subset P ⊆ A both the least upper

bIn multi-valued games, determinancy is generalized to having a min-max property.

4

bound and the greatest lower bound of P exist, in which case they are denoted
∨

P and
∧

P , respectively. In particular,
∨

A and
∧

A are denoted ⊤ (top) and

⊥ (bottom), respectively. A lattice 〈A,≤〉 is finite if A is finite. Note that every

finite lattice is complete. A lattice is distributive if for every a, b, c ∈ A, we have

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) and a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

The traditional disjunction and conjunction logic operators correspond to the

join and meet lattice operators. In a general lattice, however, there is no natural

counterpart to negation. A De Morgan (or quasi-Boolean) lattice is a lattice in

which every element a has a unique complement element ¬a such that ¬¬a = a, De

Morgan rules hold, and a ≤ b implies ¬b ≤ ¬a. In the rest of the paper we consider

only finite c distributive De Morgan lattices.

1

2

{b}

1

0

L2

{a, b}

{a} {c}

{b, c}

∅

2{a,b,c}

{a, b, c}

{a, c}

0

1 (1,1)

(0,0)

L3 L2,2

(0,1) (1,0)

Figure 1: Some lattices.

In Figure 1 we describe some (finite distributive De Morgan) lattices. The

elements of the lattice L2 are the usual truth values 1 (true) and 0 (false) with

the order 0 ≤ 1. The lattice L3 contains in addition the value 1
2 , with the order

0 ≤ 1
2 ≤ 1, and with negation defined by ¬0 = 1 and ¬ 1

2 = 1
2 .

The lattice L2,2 is the Cartesian product of two L2 lattices, thus (a, b) ≤ (a′, b′)

if both a ≤ a′ and b ≤ b′. Also, ¬(a, b) = (¬a,¬b). Finally, the lattice 2{a,b,c} is

the power set of {a, b, c} with the set-inclusion order (that is, the transitive closure

of the edges in the figure). Complementation is interpreted as set complementation

relative to {a, b, c}. In this lattice, for example, {a} ∨ {b} = {a, b}, {a} ∧ {b} = ⊥,

{a, c} ∨ {b} = ⊤, and {a, c} ∧ {b} = ⊥.

A join irreducible element is a value l ∈ L such that l 6= ⊥ and for all l1, l2 ∈ L,

if l1 ∨ l2 ≥ l, then l1 ≥ l or l2 ≥ l. For example, in L3 (and in every linear order),

all elements are join irreducible. On the other hand, in the lattice 2{a,b,c}, the

elements {a}, {b}, {c}, and are join irreducible, but {a, b}, {b, c}, and {a, c} are not

join irreducible. To see the latter, note that {a} ∨ {b, c} ≥ {a, c} but {a} 6≥ {a, c}

and {b, c} 6≥ {a, c}. Birkhoff’s representation theorem for finite distributive lattices

implies that in order to prove that l1 = l2 it is sufficient if to prove that for every

cNote that focusing on finite lattices is not as restrictive as may first seem. Indeed, even when
the lattice is infinite, the problems we consider involve only finite Kripke structures. Therefore,
only a finite number of lattice elements appear in a problem, and since the lattice is distributive,
the closure of logical operations on these values is still finite.

5

join irreducible element l it holds that l1 ≥ l iff l2 ≥ l. We denote the set of join

irreducible elements of L by JI (L). A meet irreducible element l ∈ L is a value for

which if l1 ∧ l2 ≤ l then either l1 ≤ l or l2 ≤ l. Note that in a De Morgan lattice,

an element is meet irreducible iff its complement is join irreducible.

Consider a lattice L (we abuse notation and refer to L also as a set of elements,

rather than a pair of a set with an order on it). For a set X of elements, an L-set

over X is a function S : X → L assigning to each element of X a value in L. It

is convenient to think about S(x) as the truth value of the statement “x is in S”.

We say that an L-set S is Boolean if S(x) ∈ {⊤,⊥} for all x ∈ X. The usual set

operators can be lifted to L-sets as expected. Given two L-sets S1 and S2 over X,

we define join, meet, and complementation so that for every element x ∈ X, we have

S1∨S2(x) = S1(x)∨S2(x), S1∧S2(x) = S1(x)∧S2(x), and comp(S1)(x) = ¬S1(x).d

A latticed Kripke structure is a 6-tuple M = 〈L, AP,Q,Q0, R,Θ〉, where L is

a lattice, AP is a set of atomic propositions, Q is set of states, Q0 is an L-set of

initial states, R : Q × Q → L is an L-set of transitions, and Θ : AP → LQ maps

each atomic proposition p to an L-set of states, describing the truth value of p in

each state.

The µ-calculus [22] is an expressive temporal logic that subsumes logics like LTL

and CTL⋆. A multi-valued variant of the µ-calculus, was suggested and studied in

[3]. We call this logic latticed µ-calculus (LMC, for short)e. For technical conve-

nience, we consider LMC formulas in a positive form in which negation applies only

to atomic propositions. Given a set AP of atomic propositions and a set Var of

variables, LMC formulas have the following syntax, with p ∈ AP and y ∈ Var .

ϕ = p|¬p|ϕ1 ∨ ϕ2|ϕ1 ∧ ϕ2|AXϕ|EXϕ|µy.ϕ(y)|νy.ϕ(y)

Note that the operators ∨ and ∧ stand for “join” and “meet”, rather than “or” and

“and”. In fixed-point formulas µy.ϕ(y) and νy.ϕ(y), the operators µ and ν bind

free occurrences of y in ϕ. We use ϕ1 → ϕ2 to abbreviate (the positive normal form

of) ¬ϕ1 ∨ ϕ2.

A valuation V : Var → LQ over a lattice L maps the variables in Var into L-sets

of states. We write V⊥ for the valuation that maps every variable to the L-set

that maps every state to ⊥ (that it, for every y ∈ Var and q ∈ Q, it holds that

V⊥(y)(q) = ⊥). For a variable y ∈ Var and an L-set l, we write V[y = l] for the

valuation that agrees with V except that it maps y to l.

The semantics of an LMC formula ϕ is defined with respect to a latticed Kripke

structure M and a valuation V to the free variables in ϕ. Given such a valuation, the

formula induces an L-set of states, denoted JM,ϕKV , in which each state s of M is

mapped to a value in L describing the truth value of the formula in s. Accordingly,

given V, a formula ϕ with a free variable y can be viewed as a transformer fV,†
ϕ :

LQ → LQ, defined by fV,y
ϕ (g) = JM,ϕKV[y=g]. We use µfV,y

ϕ and νfV,y
ϕ to denote

dIf S1 and S2 are over different domains X1 and X2, we can view them as having the same
domain X1 ∪ X2 and let S1(x) = ⊥ for x ∈ X2 \ X1 and S2(x) = ⊥ for x ∈ X1 \ X2.

eThe logic is termed µL in [3], and is termed Lµ in [29]. We prefer a terminology that does
not involve mathematical symbols.

6

the the least and greatest fixed-points of fV,y
ϕ with respect to V. By the Tarksi-

Knaster Theorem, these fixed-points exist.

Formally, the interpretation JM,ϕKV of an LMC formula ϕ in a latticed Kripke

structure M = 〈L, AP,Q,Q0, R,Θ〉 and valuation V over a complete lattice L is

defined as follows:f

JM,pKV = Θ(p)
JM,¬pKV = comp(Θ(p))

JM,µy.ϕKV = µfV,y
ϕ

JM,νy.ϕKV = νfV,y
ϕ

JM,yKV = V(y)

JM,ϕ1 ∨ ϕ2KV = JM,ϕ1KV ∨ JM,ϕ2KV
JM,ϕ1 ∧ ϕ2KV = JM,ϕ1KV ∧ JM,ϕ2KV

JM,EXϕKV = λs.
∨

s′∈Q

(R(s, s′) ∧ JM,ϕKV(s′))

JM,AXϕKV = λs.
∧

s′∈Q

(R(s, s′) → JM,ϕKV(s′))

A formula in which every variable is in the scope of a fixed-point operator is a

sentence. If ϕ is a sentence, we write J(M, s), ϕK for the value JM,ϕKV⊥
(s). Since

we almost exclusively deal with sentences, we abuse notation and omit the valuation

V⊥.

The value of an LMC sentence ϕ in a latticed Kripke structure M , denoted

JM,ϕK, is
∧

q∈Q(Q0(q) → JM,ϕK(q)). Note that we get the standard Boolean

semantics of µ-calculus as a special case.

The universal fragment of LMC, termed ALMC, consists of the formulas that

do not contain the EX operator. Note that since we assume that formulas are in a

positive normal form, the above syntactic restriction implies that indeed formulas

of ALMC can only impose universal requirements. Finally, the fixed-point free

fragment consists of formulas that do not contain a fixed-point operator. Thus, it

corresponds to a latticed version of Modal Logic, we term it LML, and term its

universal fragment ALML.

Example 1 Consider the latticed Kripke structure M = 〈2{a,b,c}, {p}, {q0, q1, q2}, Q0, R,Θ〉,

where Q0(q0) = ⊤ and Q0(q1) = Q0(q2) = ⊥, appearing in Figure 2. The values

of R and Θ are described in the figure (we describe only transitions with value

greater than ∅; in the description of the value of the transitions and the value of

p inside the states, we omit the {} notation). For example, Θ(p)(q0) = {a, b} and

R(q0, q1) = {b, c}. Also, Q0(q0) = {a, b, c} and the initial value of q1 and q2 is ∅.

ab
q0M :

b
q1

bc
q2

bcbc

b c
abc abc

b
q′
1

b
q′
2

acbc

c c

bc
q′
0M ′ :

abc abc

Figure 2: Latticed Kripke structures over L = 2{a,b,c}.

Below we describe the truth value of some LMC formulas in M . Since q0 is the

only state with Q0(q0) 6= ⊥ and Q0(q0) = {a, b, c}, we have JM,ϕK = J(M, q0)K(ϕ).

fWe use λs.θ(s) to denote the L-set in which each state s is mapped to θ(s).

7

• JM,pK = {a, b}.

• JM,EXpK = ({b, c} ∧ {b}) ∨ ({b, c} ∧ {b, c}) = {b, c}.

• JM,AXpK = ({b, c} → {b}) ∧ ({b, c} → {b, c}) = ({a, b} ∧ {a, b, c}) = {a, b}.

Note that in the Boolean case, a state may satisfy AXθ without satisfying EXθ

only if it does not have successors. In the latticed setting, the transitions to the

successors have values. This is why the value of EXθ may not be greater than the

value of AXθ, as we see here.

Let us now calculate JM,νz.p∧AXzK; that is, the truth value of “p holds at all

reachable states”. Let θ(z) = p ∧ AXz. We start with z0 that maps all states to

{a, b, c}. We then iterate θ as described in Table 1. A fixed-point is reached when

z2 = z3, and JM,νz.p ∧ AXzK = {a, b}. Intuitively, p holds at all reachable states

from both viewpoints a and b: From viewpoint b, the proposition p indeed holds at

all states. From viewpoint a, the proposition p does not hold in states q1 and q2,

but these states are not reachable.

q0 q1 q2

z0 {a,b,c} {a,b,c} {a,b,c}
z1 {a,b} {b} {b,c}
z2 {a,b} {b} {b}
z3 {a,b} {b} {b}

Table 1: JM,νz.p ∧ AXzK calculation.

3. Latticed Simulation

In this section we define latticed simulation — an extention of the definition of

the simulation pre-order of [26] to the latticed context. Let M1 = 〈L, AP,Q1, Q
1
0, R1,Θ1〉

and M2 = 〈L, AP,Q2, Q
2
0, R2,Θ2〉 be two latticed Kripke structures. In the Boolean

case, a relation S ⊆ Q1 ×Q2 is a simulation relation if two conditions are satisfied:

First, simulating states satisfy the same propositions. Second, if q2 ∈ Q2 simulates

q1 ∈ Q1 then for every successor q′1 of q1 there exists a successor q′2 of q2 such

that q′2 simulates q′1. In the latticed setting, the simulation relation is an L-set

S ∈ LQ×Q. Intuitively, S(q1, q2) describes the truth value of the statement “every

behavior of M1 is also a behavior of M2”. As in the Boolean case, the simulation

value of a pair of states q1 and q2 depends both in agreement on the values of the

atomic propositions in q1 and q2 and in the ability to match successors of q1 with

successors of q2.

We capture the first condition by the value

SAP (q1, q2) =
∧

p∈AP

JM1, pK(q1) ↔ JM2, pK(q2).

8

We capture the second condition by the value

SR(q1, q2) =
∧

q′

1
∈Q1



R1(q1, q
′
1) →

∨

q′

2
∈Q2

(R2(q2, q
′
2) ∧ S(q′1, q

′
2))



 .

An L-relation S : Q1 ×Q2 → L is an L-simulation from M1 to M2 if for all q1 ∈ Q1

and q2 ∈ Q2, we have S(q1, q2) = SAP (q1, q2) ∧ SR(q1, q2).

Example 2 Consider the latticed Kripke structures M and M ′ appearing in Fig-

ure 2. The following is an L-simulation from M to M ′.

• S(q0, q
′
0) = S(q0, q

′
1) = S(q0, q

′
2) = S(q1, q

′
0) = S(q1, q

′
2) = S(q2, q

′
1) = {b},

• S(q2, q
′
0) = S(q2, q

′
2) = {a, b},

• S(q1, q
′
1) = {a, c, b}.

Let us verify S(q2, q
′
0). First, SAP (q2, q

′
0) = {a, b, c}. Now, SR(q2, q

′
0) = S0

R ∧

S1
R ∧ S2

R, where Si
R = R(q2, qi) →

∨

q′∈Q′(R′(q′0, q
′) ∧ S(qi, q

′)). For example,

S0
R = R(q2, q0) → ((R′(q′0, q

′
0) ∧ S(q0, q

′
0)) ∨ (R′(q′0, q

′
1) ∧ S(q0, q

′
1)) ∨ (R′(q′0, q

′
2) ∧

S(q0, q
′
2))) = {c} → ((∅ ∧ {b}) ∨ ({b, c} ∧ {b}) ∨ ({a, c} ∧ {b}) = {a, b}. Also,

S1
R = {a, b, c}, and S2

R = {a, b}. Hence, SR(q2, q
′
0) = {a, b} and S(q2, q

′
0) = {a, b}.

In the Boolean setting, S(q1, q2) guarantees that all universal µ-calculus formulas

that are satisfied in q2 are also satisfied in q1. In the latticed setting, we have the

following.

Theorem 3 Consider an L-simulation S : Q1 × Q2 → L. For all states q1 ∈ Q1

and q2 ∈ Q2 and for all ALMC sentences ψ, we have S(q1, q2) ≤ JM2, ψK(q2) →

JM1, ψK(q1).

Proof: The proof proceeds by induction of the structure of ψ. For atomic propo-

sitions, the claim follows from the fact that S(q1, q2) ≤ SAP (q1, q2). Indeed,

SAP (q1, q2) ≤ JM1, pK(q1) ↔ JM2, pK(q2) ≤ JM2, pK(q2) → JM1, pK(q1).

For the induction step, we consider the different possible structures of ψ. As-

sume first that ψ = ϕ1 ∨ ϕ2. By the induction hypothesis, we have S(q1, q2) ≤

¬JM2, ϕ1K(q2) ∨ JM1, ϕ1K(q1) and S(q1, q2) ≤ ¬JM2, ϕ2K(q2) ∨ JM1, ϕ2K(q1). Now,
S(q1, q2) = S(q1, q2) ∧ S(q1, q2)

≤ (¬JM2, ϕ1K(q2) ∨ JM1, ϕ1K(q1)) ∧ (¬JM2, ϕ2K(q2) ∨ JM1, ϕ2K(q1))
≤ (¬JM2, ϕ1K(q2) ∧ ¬JM2, ϕ2K(q2)) ∨ (JM1, ϕ1K(q1) ∨ JM1, ϕ2K(q1))
= ¬(JM2, ϕ1K(q2) ∨ JM2, ϕ2K(q2)) ∨ (JM1, ϕ1K(q1) ∨ JM1, ϕ2K(q1))
= ¬JM2, ϕ1 ∨ ϕ2K(q2) ∨ JM1, ϕ1 ∨ ϕ2K(q1).

The proof for ψ = ϕ1 ∧ ϕ2 is simular. By the induction hypothesis, we have

S(q1, q2) ≤ ¬JM1, ϕ1K(q1)∨JM2, ϕ1K(q2) and S(q1, q2) ≤ ¬JM1, ϕ2K(q1)∨JM2, ϕ2K(q2).

Now,
S(q1, q2) = S(q1, q2) ∧ S(q1, q2)

≤ (¬JM2, ϕ1K(q2) ∨ JM1, ϕ1K(q1)) ∧ (¬JM2, ϕ2K(q2) ∨ JM1, ϕ2K(q1))
= (¬JM2, ϕ1K(q2) ∨ ¬JM2, ϕ2K(q2)) ∨ (JM1, ϕ1K(q1) ∧ JM1, ϕ2K(q1))
= ¬(JM2, ϕ1K(q2) ∧ JM2, ϕ2K(q2)) ∨ (JM1, ϕ1K(q1) ∧ JM1, ϕ2K(q1))
= ¬JM1, ϕ1 ∧ ϕ2K(q1) ∨ JM2, ϕ1 ∧ ϕ2K(q2).

9

For ψ = AXϕ, we proceed as follows. By definition, S(q1, q2) ≤ SR(q1, q2) ≤
∧

q′

1

¬R1(q1, q
′
1)∨

∨

q′

2

(R2(q2, q
′
2)∧S(q′1, q

′
2)). By the induction hypothesis, we have:

S(q1, q2) ≤
∧

q′

1

(¬R1(q1, q
′
1) ∨

∨

q′

2

(R2(q2, q
′
2) ∧ (¬JM2, ϕK(q′2) ∨ JM1, ϕK(q′1))))

≤
∧

q′

1

(¬R1(q1, q
′
1) ∨

∨

q′

2

((R2(q2, q
′
2) ∧ ¬JM2, ϕK(q′2)) ∨ JM1, ϕK(q′1)))

= (
∨

q′

2

(R2(q2, q
′
2) ∧ ¬JM2, ϕK(q′2))) ∨ (

∧

q′

1

(¬R1(q1, q
′
1) ∨ JM1, ϕK(q′1))

= ¬(
∧

q′

2

(¬R2(q2, q
′
2) ∨ JM2, ϕK(q′2))) ∨ (

∧

q′

1

(¬R1(q1, q
′
1) ∨ JM1, ϕK(q′1)))

= ¬JM2, AXϕK(q2) ∨ JM1, AXϕK(q1).
It is left to prove the case ψ is a fixed-point formula. We describe the case

ψ = µy.ϕ(y). The proof for νy.ϕ(y) is similar. By the Tarski-Knaster Theorem,

the value of a fixed point formula can be calculated iteratively: start with y0 = V⊥/,

and for all i > 0, define yi+1 = ϕ(yi) until a fixed-point is reached.

The proof of our claim follows from proving by induction on i that for every

i ≥ 0, it holds that S(q1, q2) ≤ yi(q2) → yi(q1). For the base case (i.e. i = 0), we

have S(q1, q2) ≤ (⊤∨⊥) = ⊤. To finish the proof, we have to prove that S(q1, q2) ≤

yi(q2) → yi(q1) implies S(q1, q2) ≤ yi+1(q2) → yi+1(q1). Since yi(q) = ϕ(q), the

proof of the induction step can be done by an induction on the structure of ϕ. In

order to prove the induction here, we need to prove the claim for all operators other

than fixed-point operators. This, however, was already done above (outside the

fixed-point operators case).

Note that the relation SR depends on S, thus there may be several latticed-

simulation relations. We define the maximal simulation relation to be the relation

S∗ that maps every pair of states to the join of their image under every simulation re-

lation. Formally, we define S∗(q1, q2) =
∨

S∈SL(M1,M2)
S(q1, q2), where SL(M1,M2)

is the set of simulation relations from M1 to M2.

We now justify the definition by showing that the maximal simulation relation

is indeed a simulation relation, and furthermore, it can be easily computed.

Theorem 4 The relation S∗ is a simulation relation, and it can be computed in

polynomial time.

Proof: We compute the simulation relation S∗ in iterations. Let S0 = SAP . Note

that SAP can be computed in time O(|Q1||Q2||AP |). Next, we iteratively compute,

for i > 0 the L-relation Si+1, defined as

Si+1(q1, q2) = Si(q1, q2) ∧
∧

q′

1
∈Q1

R1(q1, q
′
1) →

∨

q′

2
∈Q2

(R2(q2, q
′
2) ∧ Si(q

′
1, q

′
2)).

Note that Si+1 can be computed from Si in time O(|Q1|
2, |Q2|

2). Since Si+1(q1, q2) ≤

Si(q1, q2) it follows trivially that a fixed point S∗ will be reached within |L||Q1||Q2|

iterationsg. Thus, assuming |L| and |AP | are fixed, S∗ can be computed in time

|Q1|
3|Q2|

3.

It is not hard to see that S∗ (as a fixed point of the process) is a simulation

relation. It is also not hard to prove by induction on i that for every simulation

gIn fact, since by Birkhoff’s representation theorem every value can be represented as the set
of join irreducible elements lesser or equal from it, it is not hard to see that a fixed point is be
reached within |JI (L)| · |Q1| · |Q2| iterations.

10

relation S′, and two states q1 ∈ Q1, q2 ∈ Q2, it holds that S∗(q1, q2) ≥ S(q1, q2).

Since S∗ itself is a simulation relation, we get that S∗ is the maximal simulation

relation.

We now show that logical characterization by ALMC is tight for the maximal

simulation.

Theorem 5 For every pair of states q1 ∈ Q1 and q2 ∈ Q2, and value l ∈ L,

if S∗(q1, q2) 6≥ l, then there exists an ALML formula ϕ such that JM2, ϕK(q2) →

JM1, ϕK(q1) 6≥ l.

Proof: By Birkhoff’s representation theorem, if two values l1 and l2 are such that

l1 6≥ l2, then there exists a join irreducible value l′ such that l2 ≥ l′ and l1 6≥ l′.

Therefore, it is enough to prove the claim for values l that are join irreducible.

For i ≥ 0, denote by Si the i-th latticed relation defined in the proof of Theo-

rem 4. Let j be the minimal index for which Sj(q1, q2) 6≥ l. We prove the claim by

induction on j.

For j = 0, we get that SAP (q1, q2) 6≥ l. Therefore, by the definition of SAP , there

exists an atomic proposition p, or a negation of one ¬p (assume w.l.o.g. we deal with

an atomic proposition p), such that JM1, pK(q1) ↔ JM2, pK(q2) 6≥ l. Thus, either

JM2, pK(q2) → JM1, pK(q1) 6≥ l (and we are done) or JM1, pK(q1) → JM2, pK(q2) 6≥

l. In the latter case, both ¬JM1, pK(q1) 6≥ l and JM2, pK(q2) 6≥ l. Thus, both

JM1,¬pK(q1) 6≥ l and ¬JM2,¬pK(q2) 6≥ l (note the double negation in the last

inequality). By join irreducibility of l, we get that ¬JM2,¬pK(q2)∨JM1,¬pK(q1) 6≥ l.

Therefore, the claim holds for either ϕ = p or ϕ = ¬p.

Assume now that the claim holds for j, we prove it for j + 1. By definition,

Sj+1(q1, q2) = Sj(q1, q2) ∧
∧

q′

1
∈Q1

R1(q1, q
′
1) →

∨

q′

2
∈Q2

(R2(q2, q
′
2) ∧ Sj(q

′
1, q

′
2)).

By the minimality of j + 1, we have Sj(q1, q2) ≥ l. Therefore, there exists

q′1 ∈ Q1 for which R1(q1, q
′
1) → (R2(q2, q

′
2) ∧ Sj(q

′
1, q

′
2)) 6≥ l, for every q′2 ∈ Q2.

This means that both ¬R1(q1, q
′
1) 6≥ l and R2(q2, q

′
2) ∧ Sj(q

′
1, q

′
2) 6≥ l for every

q′2 ∈ Q2. In particular, for all q′2 ∈ Q2, either R2(q2, q
′
2) 6≥ l or Sj(q

′
1, q

′
2) 6≥ l. In

the latter case, let ϕq′

2
be such that JM2, ϕq′

2
K(q′2) → JM1, ϕq′

2
K(q′1) 6≥ l. By the

induction hypothesis, such a formula exists. (Note that both ¬JM2, ϕq′

2
K(q′2) 6≥ l

and JM1, ϕq′

2
K(q′1) 6≥ l.) Let A ⊆ Q2 be the set of states q′2 for which R2(q2, q

′
2) ≥ l,

and let ϕ′ =
∧

q′

2
∈A ϕq′

2
be the meet of the formulas ϕq′

2
for q′2 ∈ A.

We show that AXϕ′ satisfies our claim; that is, JM2, AXϕ′K(q2) → JM1, AXϕ′K(q1) 6≥

l. To see this, let us decompose the latter.

JM2, AXϕ′K(q2) → JM1, AXϕ′K(q1) =

= ¬JM2, AXϕ′K(q2) ∨ JM1, AXϕ′K(q1)

= [¬
∧

s′∈Q

(R2(q2, s
′) → JM2, ϕ

′K(s′))] ∨
∧

s′∈Q

(R1(q1, s
′) → JM1, ϕ

′K(s′))

= [¬
∧

s′∈Q

(¬R2(q2, s
′) ∨ JM2, ϕ

′K(s′))] ∨
∧

s′∈Q

(¬R1(q1, s
′) ∨ JM1, ϕ

′K(s′))

= [
∨

s′∈Q

(R2(q2, s
′) ∧ ¬JM2, ϕ

′K(s′))] ∨
∧

s′∈Q

(¬R1(q1, s
′) ∨ JM1, ϕ

′K(s′))

11

≤ [
∨

q′

2
∈Q

(R2(q2, q
′
2) ∧ ¬JM2, ϕ

′K(q′2))] ∨ (¬R1(q1, q
′
1) ∨ JM1, ϕ

′K(q′1)).

The last expression is a join of several expressions none of which is greater than

l: First, for every q′2 (alternatively called s′), we have R2(q2, q
′
2) ∧ ¬JM2, ϕ

′K(q′2) 6≥

l. Next, we have ¬R1(q1, q
′
1) 6≥ l and JM1, ϕ

′K(q′1)) 6≥ l. Therefore, from join

irreducibility of l we get that the join of all of the above is not greater or equal to

l either.

For two Lattice Kripke Structures M1 = 〈L, AP,Q1, Q
1
0, R1,Θ1〉 and M2 =

〈L, AP,Q2, Q
2
0, R2,Θ2〉, we define the simulation value of M1 by M2 to be

S∗(M1,M2) =
∧

q1∈Q1



Q1
0(q1) → (

∨

q2∈Q2

(Q2
0(q2) ∧ S∗(q1, q2)))



 ,

where S∗ is the maximal simulation relation of the two structures.

Theorem 6 below gives the full logical characterization of latticed simulation. It

follows from Theorems 3 and 5, and the distributivity of the lattice.

Theorem 6 Let M1 and M2 be two Kripke structures.

1. For all ALMC sentences ψ, we have S∗(M1,M2) ≤ JM2, ψK → JM1, ψK.

2. For all l ∈ L, if S∗(M1,M2) 6≥ l, then there exists an ALML formula ψ such

that JM2, ψK → JM1, ψK 6≥ l.

In [23], we defined the implication value between latticed automata. The defi-

nition extends to latticed Kripke structures: for two latticed Kripke structures M1

and M2 over a lattice L, let imp val(M1,M2) be the implication value of M2 by

M1. Essentially (for details, see [23]), each word w ∈ (2AP)ω has a “membership

value” in M1 and in M2, and imp val(M1,M2) denotes the truth value of the state-

ment “for all words, the membership value in M1 implies the membership value in

M2”. As in the Boolean case, the branching setting is more general than the linear

setting. Formally, we have the following.

Theorem 7 For all latticed Kripke structures M1 and M2, we have S∗(M1,M2) ≤

imp val(M1,M2).

Thus, latticed simulation, which can be calculated in polynomial time, is a lower

bound to the implication value, whose calculation is PSPACE-complete.

3.1. Latticed Bisimulation

The Boolean simulation pre-order has a symmetric version, namely the bisim-

ulation relation. Two Kripke structures that are bisimilar have exactly the same

behaviors. Adding symmetry to our definition of latticed simulation results in a

latticed bisimulation relation. Formally, for two lattice kripke structures M1 =

〈L, AP,Q1, Q
1
0, R1,Θ1〉 and M2 = 〈L, AP,Q2, Q

2
0, R2,Θ2〉, an L-relation S : Q1 ×

Q2 → L is an L-bisimulation between M1 and M2 if

S(q1, q2) = SAP (q1, q2) ∧ SR(q1, q2) ∧ SR(q2, q1),

12

where SAP and SR are as in L-simulation.

The logical characterization of L-simulation extends L-bisimulation, now with

LMC.

Theorem 8 Let S be the maximal L-bisimulation relation between M1 and M2.

1. For all LMC sentences ϕ, it holds that S(q1, q2) ≤ JM1, ϕK(q1) ↔ JM2, ϕK(q2).

2. For all l ∈ L, if S(M1,M2) 6≥ l, then there exists an LML formula ψ such

that JM2, ψK ↔ JM1, ψK 6≥ l.

Proof: As the definition of bisimulation is symmetric, it is enough to prove

S(q1, q2) ≤ JM1, ϕK(q1) → JM2, ϕK(q2). The proof proceeds by induction on the

formula structure as in the proof of Theorem 3. In fact, in the proof of Theorem 3

we already saw proofs for the base case, and for the inductive step for all the µ-

calculus connectives except EX. This case is dual to the AX case, and proceeds as

follows. Let ψ = EXϕ. By definition, S(q1, q2) ≤
∧

q′

1

(¬R1(q1, q
′
1)∨

∨

q′

2

(R2(q2, q
′
2)∧

S(q′1, q
′
2))).

By the induction hypothesis we have:
S(q1, q2) ≤

∧

q′

1

(¬R1(q1, q
′
1) ∨

∨

q′

2

(R2(q2, q
′
2) ∧ (¬JM1, ϕK(q′1) ∨ JM2, ϕK(q′2))))

≤
∧

q′

1

(¬R1(q1, q
′
1) ∨

∨

q′

2

(¬JM1, ϕK(q′1) ∨ (R2(q2, q
′
2) ∧ JM2, ϕK(q′2))))

=
∧

q′

1

((¬R1(q1, q
′
1) ∨ ¬JM1, ϕK(q′1)) ∨

∨

q′

2

(R2(q2, q
′
2) ∧ JM2, ϕK(q′2)))

= ¬(
∨

q′

1

R1(q1, q
′
1) ∧ JM1, ϕK(q′1)) ∨ (

∨

q′

2

(R2(q2, q
′
2) ∧ JM2, ϕK(q′2)))

= ¬JM1, EXϕK(q1) ∨ JM2, EXϕK(q2)

Other properties of latticed simulation extend easily to latticed bisimulation:

it can be computed in polynomial time, and the bisimulation value between two

latticed Kripke structures is a lower bound to the equivalence value (two-sided

implication) between them.

4. Latticed Games

A latticed game graph is a pair G = 〈V,E〉, where V is a set of vertices and

E : V × V → L is an L-set of transitions. The vertices are partitioned into two

sets, V∨ and V∧ (referred to as the ∨-vertices and the ∧-vertices). A latticed game

is a latticed game graph together with an initial state v0 ∈ V and a acceptance

condition α. We postpone the description of the acceptance condition since for that

we need the notion of a play that we define next.

Intuitively, a play of the game proceeds as follows: a token is put on some

initial vertex. If the token is placed on a ∨-vertex then the ∨-player chooses an

edge originating at the vertex on which the token is on, and the token is advanced

along that edge. Similarly, if the token is placed on a ∧-vertex, then the ∧-player

is doing the choosing. After the token is advanced to the successor vertex, the

process repeats. This proceeds forever and the play of the game is a sequence of

vertices p = {vi}
∞
i=0 (the sequence of vertices the token has traversed during the

play). Each play is assigned a value, in a fashion we will describe next. Intuitively,

the ∨-player’s objective is to maximize the value of the play, while the ∧-player’s

13

objective is to minimize it. We proceed to define the value of a play formally. Note

that the value of a play is defined from the ∨-player perspective, and is in fact the

value of the game for the ∨-player. We postpone the definition of the value of the

game for the ∧-player.

The acceptance value of the play, denoted acc(p), stands for the value with which

the play satisfies the acceptance condition. For example, an L-Büchi acceptance

condition is an L-set of states F ∈ LV , and the acceptance value of the play p is
∧∞

i=0

∨

j>i F (vi).

The value of a play is set not only by its acceptance value, but also by the values

of the edges traversed during the play. Intuitively, when a player traverses an edge

with low value he gives up more then if would have traversed an edge with a higher

value. Assume, for example, that the underlying lattice is 2{a,b,c} and in the first

move the ∨-player traversed an edge with value {a}. This means that the ∨-player

gives up all values that are not smaller or equal to {a}, and “is willing” that at the

end of the play the acceptance value would be met with {a}. By dual reasoning,

if the first move is done by the ∧-player over an edge with value {a}, then the

∧-player (whose objective is to lower the total play value) “is willing” that at the

end of the game the value would be joined with ¬{a} = {b, c}. Furthermore, the

order in which edges are traversed is important: if one player already gave up some

value l, the other player is assured the value l, and may move freely along edges

that would have implied giving up l on other circumstances.

We therefore define two “given up” values, r∨ and r∧. These values are defined

inductively along the play, where at the beginning neither player has given up

anything, thus r∨0 = ⊤ and r∧0 = ⊥. If pi ∈ V∨, then the next transition is taken

by the ∨-player. If the ∨-player chooses to traverse an edge with value different

than ⊤, then he gives up the value of the edge traversed, except the parts of the

value already given up by the ∧-player. Thus, r∨i+1 = r∨i ∧ (E(pi, pi+1) ∨ r∧i). The

∧-player, on the other hand, gives up nothing, and therefore r∧i+1 = r∧i . Similarly,

if pi ∈ V∧, then r∨i+1 = r∨i , and r∧i+1 = r∧i ∨ (¬E(pi, pi+1) ∧ r∨i). Since both {r∨i }

and {r∧i } are monotonic, their limit is defined. Let r∨ =
∧∞

i=0 r∨i and r∧ =
∨∞

i=0 r∧i
To define the value of a play we need one more technical observation. Let

val∨∧(p) = (acc(p) ∧ r∨) ∨ r∧, and val∧∨(p) = (acc(p) ∨ r∧) ∧ r∨. Similarly, let

val∨∧
i (p) = (acc(p) ∧ r∨i) ∨ r∧i , and val∧∨

i (p) = (acc(p) ∨ r∧i) ∧ r∨i . We will shortly

prove that val∧∨(p) = val∨∧(p) and define the value of the play, denoted val(p), to

equal both.

Example 9 Consider the game G over the lattice 2{a,b,c} appearing in Figure 3.

Assume that all the computations of G are accepting with value {a, b, c}. We

calculate the value of some plays in G.

• Consider the play p = (v0, v0, v1)
ω. By definition, r∨0 = {a, b, c} and r∧0 = ∅.

Since the first transition is by the ∨-player, we have, r∨1 = r∨0 ∧ (E(v0, v0) ∨

r∧0) = {a, b, c}∧({a, c}∨∅) = {a, c}. Also, r∧1 = r∧0 = ∅. The second transition

is also by the ∨-player, thus r∨2 = r∨1 ∧ (E(v0, v1)∨r∧1) = {a, c}∧ ({a, b}∨∅) =

{a}. Also, r∧2 = r∧1 = ∅. The third transition is by the ∧-player, thus

r∧3 = r∧2 ∨ (¬E(v1, v0)∧ r∨2) = ∅∨ ({a}∧{a}) = {a}. Also, r∨3 = r∨2 = {a}. At

14

{b}{b, c}

{b}{a, b}

{c}

{a, c}

v2

v0

∨

∧
v1

∧

Figure 3: A game over the lattice 2{a,b,c}.

this point, the sequences r∨i and r∧i reach a fixed-point, thus r∨ = r∧ = {a}.

Hence, val∨∧(p) = val∧∨(p) = {a}.

• Consider now the play p = vω
0 . Here, r∨ = {a, c} and r∧ = ∅. Accordingly,

val∨∧(p) = ({a, b, c}∧{a, c})∨∅ = {a, c}, which equals val∧∨(p) = ({a, b, c}∨

∅) ∧ {a, c} = {a, c}.

• Consider now the play p = (v0, v2)
ω. Here, r∨ = {b} and r∧ = ∅. Accordingly,

val∨∧(p) = val∧∨(p) = {b}.

Another definition of the value of a play was introduced by [29]. In [29], the

authors define the value of a finite prefix of the play p0, . . . , pi in a backward manner.

First, valii(p) = acc(p). Then, for j ≤ i, we have valij−1(p) = valij(p) ∧ E(pj−1, pj)

if pj−1 is a ∨-vertex, or valij−1 = valij ∨ ¬E(pj−1, pj) if pj−1 is a ∧-vertex. The

value of the prefix p0, . . . , pi is then vali = vali0. It can be shown that the sequence

{vali}∞i=0 stabilizes, and the value of the play is taken to be the limit. Thus, for

the entire play, the value is calculated in a zig-zagged manner: in each iteration,

a vertex is added, and then the calculation proceeds backwardly. Our definition,

on the other hand, involves a forward traversal, and is similar to the definition in

the Boolean case. As the next lemma shows, the intermediate values we get in our

forward traversal coincide with these that [29] gets in the zig-zagged traversal.

Lemma 1 For every play p = p0p1 . . ., and every i ≥ 0, we have val∨∧
i (p) =

val∧∨
i (p) = vali.

Proof: It is enough to prove that for every join irreducible element l ∈ L, it holds

that val∨∧
i ≥ l iff val∧∨

i ≥ l iff vali ≥ l. Assume first that vali ≥ l. Denote by k

the largest index such that for all j ≤ k it holds that valij ≥ l. Since whenever a

∨-vertex pj is visits the value valij is met with E(pj , pj+1), we are assured that for

all j < k, all the edges traversed by the ∨-player have value greater or equal to l.

Therefore, for all j ≤ k, we have r∨j ≥ l.

In addition, either k = i in which case acc(p) ≥ l, or pk−1 is a ∧-vertex and

¬E(pk−1, pk+1) ≥ l. We show that r∨i ≥ l and therefore both val∨∧
i ≥ l and

val∧∨
i ≥ l. If k = i then r∨i ≥ l and there is nothing to prove. Otherwise, k < i

and we have to show that for j > k, we have that r∨j ≥ l. However, r∨k ≥ l, and for

15

j > k either r∨j+1 = r∨j , or r∨j+1 = r∨j ∧ (E(pj , pj+1) ∨ r∧j). Since r∧k ≥ l and {r∧j } is

monotonically non-decreasing, we get that for all j > k, we have r∨j ≥ l.

Assume now that either r∧∨ ≥ l or r∧∨ ≥ l. Then, either r∧j ≥ l for some index

j, or acc(p) ≥ l. If for some index j we have r∧j ≥ l, let k be the minimal index

for which r∧k ≥ l. Clearly pk−1 is a ∧-vertex and ¬E(pk−1, pk) ≥ l. In addition,

r∨k−1 ≥ l and by the monotonicity of {r∨j } we get that for every j < k it holds that

r∨j ≥ l. Therefore, for all j < k we have valj ≥ l as needed. We are left with the

case in which for all indices j it holds that r∧j 6≥ l. In that case, since either r∧∨ ≥ l

or r∧∨ ≥ l, it must be that both acc(p) ≥ l and r∨ ≥ l. Therefore, by monotonicity

of {r∨j }, we have r∨j ≥ l for all j and therefore valj ≥ l.

Since both {r∨j }
∞
j=1 and {r∧j }

∞
j=1 are monotone, they must stabilize eventually,

implying an equivalence among the three values:

Corollary 1 val∧∨(p) = val∨∧(p) = lim vali.

We define the value of a play p to be val∧∨(p) and denote it by val(p). We also

define the value of a play p for the ∧-player, denoted val∧(p), as the negation of

the value of the game for the ∨-player, i.e., ¬val(p).

A strategy for a player is a function from prefixes of plays ending in one of his

vertices, to the set of vertices. Thus, a ∨-player strategy is f : V ∗ · V∨ → V . A

prefix p0, . . . , pn is consistent with a strategy f of the ∨-player, if for all j ≥ 0 it

holds that if pj is a ∨-vertex then pj+1 = f(p0, . . . , pj). Similarly, a strategy for

the ∧-player is a function f : V ∗ · V∧ → V , and a prefix p0, . . . , pn is consistent f ,

if for all j ≥ 0 it holds that if pj is a ∧-vertex then pj+1 = f(p0, . . . , pj). A play is

consistent with a strategy if all its prefixes are consistent the strategy. It is easy to

see that for every two strategies, one for the ∨-player and one for the ∧-player, there

is exactly one play consistent with both strategies. Thus, two strategies induce a

play.

The value of a strategy f , denoted val(f), is the meet of all the plays compatible

with f (this holds for strategies of either player). The value of a game for a player

is the join of the values of that player’s strategies. Thus, the value of a game

G for the ∨-player, denoted val∨(G), is the join of all values of strategies of the

∨-player. Similarly, the value of a game for the ∧-player, denoted val∧(G), is

the join of all values of strategies of the ∧-player. In Theorem 13 we prove that

val∧(G) = ¬val∨(G).

Example 10 Consider again the game G discussed in Example 9. Consider a

strategy f for the ∨-player that whenever the play is in v0, goes to v2. There are

infinitely many plays that are compatible of this strategy (depending on the move

of the ∧-player whenever the play is in v2). All these plays, however, have value

{b}. Thus, val(f) = {b}. Consider now a strategy f ′ the ∨-player that whenever

the play is in v0, goes to v0. Only the play vω
0 is compatible with f . The value of

this play is {a, c}, Thus, val(f ′) = {a, c}. It follows that val∨(G) = {a, b, c}.

Remark 11 Unlike the Boolean case, the ∨-player might not have a single strategy

ensuring him the value of the game. In fact, it might be the case that the value of

the game cannot be obtained as the value of a single play. As an example, consider

the game G described in Figure 3. In this game, over the lattice 2{a,b,c}, all the

16

vertices are ∨-vertices, the initial vertex is v0, and all vertices have acceptance value

{a, b, c} (edges that are not in drawn have value ∅). It is not hard to see that the

value of the game is {a, c} although every single play has either value {a} or value

{c}. On the other hand, when the acceptance condition is one for which memoryless

strategies suffice (in particular, in Büchi and parity games), the value of the game

for the ∨-player can be obtained by following memoryless strategies.

4.1. Properties of lattice games

In the latticed case, unlike the Boolean case, it is not necessarily true that a

game value can be obtained in a single play. Therefore, it does not make sense to

search for a single strategy as a solution to the game. What is true, is that for each

join irreducible element l ∈ JI (L) it holds that if the game value is greater than or

equal to l, then there exists a single strategy that ensures that a value of at least

l, is obtained. Thus, Birkhoff’s representation theorem enables us to decompose a

latticed game to several Boolean games. Formally, we have the following.

Theorem 12 For a latticed game G = 〈V,E〉, over a lattice L, there exists a family

of Boolean games {Gl = 〈V,El〉}l∈JI (L) all sharing the same state space, such that

the ∨-player has a winning strategy in Gl iff there is a strategy in G ensuring the

∨-player a value greater than or equal to l.

Furthermore, for every l ∈ JI (L), the game Gl can be computed in logarithmic

space from G. In addition, the strategy ensuring a value greater than or equal to l

can be computed, in logarithmic space, from a winning strategy in Gl and vice versa.

Proof: The game Gl = 〈V,El〉 has the same set of vertices as G, with the same

partition to ∨- and ∧-vertices. There exists an edge 〈v, u〉 in Gl iff either v ∈ V∨

and the edge 〈v, u〉 has value greater than or equal to l in G, or v ∈ V∧ and the edge

〈v, u〉 does not have value less than or equal to ¬l in G. Formally, El = {(u, v) ∈

E ∩ (V∨ × V) | E(〈v, u〉) ≥ l} ∪ {(u, v) ∈ E ∩ (V∧ × V) | E(〈v, u〉) 6≤ ¬l}. A state is

accepting in Gl iff its acceptance value in G is greater than or equal to l.

Since all the games share the same state space, it is not hard to see that every a

prefix of a play in Gl is also a prefix of a play in G. Note that a prefix of a play in G

is also a prefix of a play in Gl iff no player has given up l yet. Formally, v1, . . . , vn

is a prefix of a play in Gl iff r∨n ≥ l and r∧n 6≥ l.

Let fl be a winning strategy for the ∨-player in the Boolean game Gl. We prove

that if the ∨-player plays according to fl in G (as long as it can) then the ∨-player

is assured that the value of the play would be greater than or equal to l. The main

observation is that as long as no player gives up l, the (prefix of the) play in G is a

(prefix of a) play in Gl, and therefore the ∨ player can follow fl without giving up

l (as l is winning in Gl). If, on the other hand, the ∧-player does give up l at some

stage, then the ∨-player is ensured a that the value of the play would be greater

than or equal to l regardless of his future actions.

In case the ∧-player never gives up l, then the ∨-player continues to play ac-

cording to fl and the resulting play can be viewed as a play in Gl compatible with

fl. Since fl is a winning strategy for the ∨-player in Gl, such a play is sure to visit

17

infinitely often accepting states of Gl i.e. states with acceptance value greater than

or equal to l in G. Therefore, the acceptance value of the play in G is greater than

or equal to l.

As for the other direction, assume the ∨-player has a strategy f ensuring him a

value greater than or equal to l in G. Clearly, if the ∨-player follows f , then if the

∧-player has not given up l neither does the ∨-player. Thus, the strategy can be

used as a strategy of the game Gl. Furthermore, since the strategy ensures a value

greater than or equal to l in G, every play in Gl that is compatible with f must be

accepting in Gl.

Theorem 12 suggests a way to solve a latticed game by decomposing it into

Boolean games and solving each of the Boolean games. A different algorithm is

suggested in [29].

Recall that Boolean Büchi games are determined: in every game, one of the

players has a winning strategy. Extending this result to the latticed setting amounts

to proving that for every value l, if the value of the game for the ∨-player is greater

than l, then ¬l is greater than the value of the game for the ∧-player.

Theorem 13 For a lattice game G, we have val∧(G) = ¬val∨(G).

Proof: We denote by S∧ the set of ∧-player strategies. For a strategy S we denote

by c(S) the set of plays compatible with S. By definition,

val∧(G) =
∨

S∈S∧

val∧(S) =
∨

S∈S∧

∧

p∈c(S)

val∧(p) =
∨

S∈S∧

∧

p∈c(S)

¬val∨(p).

Let l be a join irreducible value (note that ¬l is a meet irreducible value). If

val∨(G) ≥ l, then the ∨-player can ensure a value of at least l by playing according to

the winning strategy fl in the game Gl. Therefore, for every meet player strategy

S ∈ S∧ and play p, if p is compatible with both fl and S then val∨(p) ≥ l.

Equivalently, for p ∈ c(fl) ∩ c(S) we have ¬val∨(p) ≤ ¬l. Therefore, for every

S ∈ S∧, we have
∧

p∈c(S) ¬val∨(p) ≤ ¬l, and
∨

S∈S∧

∧

p∈c(S) ¬val∨(p) ≤ ¬l. Thus,

if val∨(G) ≥ l, then val∧(G) ≤ ¬l.

If, on the other hand, val∨(G) 6≥ l, then the ∨-player has no winning strategy in

Gl. As Gl is determined [25], this implies that the ∧-player has a winning strategy

in Gl, we denote it by Sl. Just as in the proof of Theorem 12, for every play

p compatible with Sl it holds that val∨(p) 6≥ l. Equivalently, for p ∈ c(Sl), it

holds that ¬val∨(p) 6≤ ¬l. Therefore, by the meet irreducibility of ¬l, we have
∧

p∈c(S
l
) ¬val∨(p) 6≤ ¬l, and val∧(G) =

∨

S∈S∧

∧

p∈c(S) ¬val∨(p) 6≤ ¬l.

Thus, for every join irreducible element l, we get val∨(G) ≥ l iff val∧(G) ≤ ¬l,

which implies val∨(G) ≥ l iff ¬val∧(G) ≥ l. By Birkhoff’s representation theorem

we get val∨(G) = ¬val∧(G).

4.2. The simulation game

For two latticed Kripke structures M1 = 〈L, AP,Q1, Q
1
0, R1,Θ1〉 and M2 =

〈L, AP,

Q2, Q
2
0, R2,Θ2〉, the simulation game for M1 and M2 is a latticed game defined

18

as follows. Intuitively, the ∧-player “claims” that M1 is not simulated by M2,

while the ∨-player “claims” that M1 is simulated by M2. The game value is then

S∗(M1,M2). Thus, in the beginning of the game, the ∧-player chooses an initial

state q1 in M1, and the ∨-player chooses an initial state q2 in M2 that is supposed to

resemble q1. We measure the resemblance value between q1 and q2 by SAP (q1, q2) =
∧

p∈AP (JM1, pK(q1) ↔ JM2, pK(q2)). The game proceeds by the ∧-player choosing

a successor to q1, denoted q′1, followed by the ∨-player choosing a successor to q2,

denoted q′2. Again, q′2 is supposed to resemble q′1. This process is iterated ad

infinitum.

Naturally, the edges values correspond to the transitions taken, thus the edge

chosen by the ∧-player to move from q1 to q′1 has the value of the transition

R1(q1, q
′
1). The values of the ∨-player transitions reflect not only the value of the

corresponding transition in M2, but also the resemblance between the state in M1

to the state in M2. Therefore, the value of the ∨-player transition is the value of the

transition in M2 meet the value SAP (q′1, q
′
2). We now to define the game formally.

The game graph is G〈M1,M2〉 = 〈V,E〉, where V = (Q1 ×Q2 ×{∧,∨})∪{in∧}∪

(Q1 × {in∨}). The ∧-vertices are (Q1 × Q2 × {∧}) ∪ {in∧}, and the ∨-vertices are

(Q1 × Q2 × {∨}) ∪ (Q1 × {in∨}). The initial position is in∧, and the edges are

defined as follows. For every q1 ∈ Q1, there exists an edge from in∧ to 〈q1, in∨〉

with value Q1
0(q1). For every q1 ∈ Q1 and q2 ∈ Q2 there is an edge from 〈q1, in∨〉

to 〈q1, q2,∧〉 with value Q2
0(q2) ∧ SAP (q1, q2). For q1, q

′
1 ∈ Q1 and q2, q

′
2 ∈ Q2, the

edge from 〈q1, q2,∧〉 to 〈q′1, q2,∨〉) has value R1(q1, q
′
1), and the edge from 〈q′1, q2,∨〉

to 〈q′1, q
′
2,∧〉) has value R2(q2, q

′
2)∧SAP (q′1, q

′
2). All other edges have value ⊥. The

acceptance criteria is Büchi in which all vertices are accepting with value ⊤ (making

the acceptance value of every play ⊤).

We now claim that the value of the simulation game is the simulation value of

M1 by M2.

Theorem 14 val∨(G〈M1,M2〉) = S∗(M1,M2).

Proof: Recall that the simulation value is S∗(M1,M2) =
∧

q1∈Q1
Q1

0(q1) → (
∨

q2∈Q2

(Q2
0(q2) ∧ S∗(q1, q2))). By Birkhoff’s representation theorem, it is enough to prove

that for every join irreducible element l ∈ L, the value of the simulation game is

greater than or equal to l iff S∗(M1,M2) is greater than or equal to l. For the rest

of the proof we fix such a join irreducible element l.

Assume first that S∗(M1,M2) ≥ l. We describe a strategy for the ∨-player

that ensures that the value of every play is greater than or equal to l. Since the

acceptance value of a play is always ⊤, we only have to find a strategy ensuring

that the ∨-player does not give up l unless the ∧-player did that first.

When a play begins at in∧, the ∧-player chooses a vertex q1 and moves to

〈q1, in∨〉. Since S∗(M1,M2) ≥ l, we know that (¬Q1
0(q1) ∨ (

∨

q2∈Q2
(Q2

0(q2) ∧

S∗(q1, q2))) ≥ l. As l is join irreducible, either ¬Q1
0(q1) ≥ l, in which case the

∧-player gives up l first, or
∨

q2∈Q2
(Q2

0(q2) ∧ S∗(q1, q2)) ≥ l, in which case there

exists a state q2 for which Q2
0(q2) ∧ S∗(q1, q2) ≥ l (again by join irreducibility).

Thus, the strategy advises the ∨-player move to 〈q1, q2,∧〉. The value of the edge

is greater than or equal to l, since both Q2
0(q2) ≥ l and S∗(q1, q2) ≥ l, implying

19

that SAP (q1, q2) ≥ l. By similar reasoning (regarding transition values rather than

initial values) we construct the rest of the strategy.

Assume now that S∗(M1,M2) 6≥ l. We present a strategy for the ∧-player that

ensures that the ∨-player has given up l before the ∧-player does. Note that while

the value given up by the ∧-player is accumulated as a join, l is join irreducible and

therefore if it is given up it must be given up some in specific transition.

By the definition of S∗(M1,M2), there must exist a state q1 for which (¬Q1
0(q1)∨

(
∨

q2∈Q2
(Q2

0(q2) ∧ S∗(q1, q2))) 6≥ l. Recall the way S∗ is computed in Theorem 4.

There exists a minimal number k ≥ 0 such that (¬Q1
0(q1) ∨ (

∨

q2∈Q2
(Q2

0(q2) ∧

Sk(q1, q2)))

6≥ l. In his first move, the ∧-player moves into 〈q1, in∨〉. Since ¬Q1
0(q1) 6≥ l, the ∧-

player does not give up l in this move. The ∨-player responses by moving into some

state 〈q1, q2,∨〉. If in this move the ∨-player gives up l, we are done. Otherwise, we

are assured that Sk(q1, q2) 6≥ l. We now show that the ∨-player can force the game

into a state 〈q′1, q
′
2,∧〉 such that Sk−1(q

′
1, q

′
2) 6≥ l without giving up l. Recall that

Sk(q1, q1) = Sk−1(q1, q2) ∧
∧

q′

1
∈Q1

∨

q′

2
∈Q2

R1(q1, q
′
1) → (R2(q2, q

′
2) ∧ Sk−1(q

′
1, q

′
2)).

Therefore, either Sk−1(q1, q2) 6≥ l or by repeating the reasoning used when choosing

the initial state (this time regarding transition values rather than initial values),

the ∧-player can force the game into a desired state (without giving up l). Clearly,

within a finite number of moves the play is forced into some state 〈q∗1 , q∗2 ,∧〉 such

that S0(q
∗
1 , q∗2) = SAP (q∗1 , q∗2) 6≥ l and from such a state the ∨-player must give up

l.

Thus, as in the Boolean setting, latticed simulation can be defined in terms of

a game between two players.

5. Discussion

We lifted the notions of simulation and games to a multi-valued setting. We

considered values taken from a lattice, and we were able to lift the known properties

of simulation and games to the latticed setting. In the Boolean setting, bisimulation

is an equivalence relation, and an abstraction of a system (one that agrees with

the original system on all µ-calculus specifications) can be obtained by merging

bisimilar states to one state. In the latticed setting, bisimulation associates with

each two states a lattice element denoting their bisimulation value. Therefore,

even if we settle on a lattice element l and seek an abstraction whose bisimulation

value with the original system is l, it is not clear how to define the state space

and the transitions of the abstraction. Finding a satisfying definition would enable

us to find coarsest abstractions that may not agree with the original system on all

specifications, but for which we can provide a lower bound on the value of agreement

(i.e., most view-points agree).

Another open question is the extension of latticed simulation to Kripke struc-

tures with fairness. In the Boolean setting, the relation between simulation and

games has led to a definition of fair simulation that retains the logical character-

ization and the computational advantages of simulation [19]. While the relation

between simulation and games is maintained in the latticed setting, it is an open

20

question whether latticed games can be used in a definition of latticed fair simula-

tion. Indeed, the definition in [19] relates a strategy that generates computations

in the simulated structure with a strategy that generates computations in the sim-

ulating structure. In the latticed setting, the value of the game may depend on

different strategies, thus a game-based definition of fair simulation has to take all

strategies into an account.

References

1. R. Alur, A. Kanade, and G. Weiss. Ranking automata and games for prioritized
requirements. In Proc 20th Int. Conf. on Computer Aided Verification, volume
5123 of Lecture Notes in Computer Science. Springer, 2008.

2. S. Bensalem, A. Bouajjani, C. Loiseaux, and J. Sifakis. Property preserving sim-
ulations. In Proc 4th Int. Conf. on Computer Aided Verification, volume 663 of
Lecture Notes in Computer Science, pages 260–273. Springer, 1992.

3. Bruns and Godefroid. Model checking with multi-valued logics. In Proc. 31st Int.

Colloq. on Automata, Languages, and Programming, volume 3142 of Lecture Notes

in Computer Science, pages 281–293, 2004.

4. G. Bruns and P. Godefroid. Model checking partial state spaces with 3-valued
temporal logics. In Proc 11th Int. Conf. on Computer Aided Verification, pages
274–287, 1999.

5. G. Bruns and P. Godefroid. Temporal logic query checking. In Proc. 16th IEEE

Symp. on Logic in Computer Science, pages 409–420. IEEE Computer Society,
2001.

6. W. Chan. Temporal-logic queries. In Proc 12th Int. Conf. on Computer Aided

Verification, volume 1855 of Lecture Notes in Computer Science, pages 450–463.
Springer, 2000.

7. K. Chatterjee, L. Doyen, and T. Henzinger. Quantative languages. 2008.

8. M. Chechik, B. Devereux, and S. Easterbrook. Implementing a multi-valued sym-
bolic model checker. In Proc. 7th Int. Conf. on Tools and Algorithms for the

Construction and Analysis of Systems, number 2031 in Lecture Notes in Computer
Science, pages 404–419. Springer, 2001.

9. M. Chechik, B. Devereux, and A. Gurfinkel. Model-checking infinite state-space sys-
tems with fine-grained abstractions using SPIN. In Proc. 8th Int. SPIN Workshop

on Model Checking Software, volume 2057 of Lecture Notes in Computer Science,
pages 16–36. Springer, 2001.

10. M. Chechik, S. Easterbrook, and V. Petrovykh. Model checking over multi-valued
logics. In Formal Methods Europe, 2001.

11. R. Cleaveland, J. Parrow, and B. Steffen. The concurrency workbench: A semantics-
based tool for the verification of concurrent systems. ACM Transactions on Pro-

gramming Languagues and Systems, 15:36–72, 1993.

12. D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems.
ACM Transactions on Programming Languagues and Systems, 19(2):253–291, 1997.

13. S. Easterbrook and M. Chechik. A framework for multi-valued reasoning over
inconsistent viewpoints. In Proc. 23rd Int. Conf. on Software Engineering, pages
411–420. IEEE Computer Society Press, 2001.

14. M.C. Fitting. Many-valued modal logics. Fundamenta Informaticae, XV:235–254,
1991.

21

15. P. Godefroid and R. Jagadeesan. Automatic abstraction using generalized model
checking. In Proc 14th Int. Conf. on Computer Aided Verification, volume 2404,
pages 137–150, 2002.

16. O. Grumberg and D.E. Long. Model checking and modular verification. ACM

Transactions on Programming Languagues and Systems, 16(3):843–871, 1994.

17. R. Hähnle. Automated deduction in multiple-valued logics. International Series of

Monographs on Computer Science, 10, 1994.

18. M.R. Henzinger, T.A. Henzinger, and P.W. Kopke. Computing simulations on
finite and infinite graphs. In Proc. 36th IEEE Symp. on Foundations of Computer

Science, pages 453–462. IEEE Computer Society Press, 1995.

19. T.A. Henzinger, O. Kupferman, and S. Rajamani. Fair simulation. Information

and Computation, 173(1):64–81, 2002.

20. M. Huth and S. Pradhan. Consistent partial model checking. Electr. Notes Theor.

Comput. Sci., 73:45–85, 2004.

21. IEEE. IEEE standard multivalue logic system for VHDL model interoperability
(Std logic 1164), 1993.

22. D. Kozen. Results on the propositional µ-calculus. Theoretical Computer Science,
27:333–354, 1983.

23. O. Kupferman and Y. Lustig. Lattice automata. In Proc. 8th Int. Conf. on

Verification, Model Checking, and Abstract Interpretation, volume 4349 of Lecture

Notes in Computer Science, pages 199 – 213. Springer, 2007.

24. K.G. Larsen and G.B. Thomsen. A modal process logic. In Proc. 3rd IEEE Symp.

on Logic in Computer Science, 1988.

25. D.A. Martin. Borel determinacy. Annals of Mathematics, 65:363–371, 1975.

26. R. Milner. An algebraic definition of simulation between programs. In Proc. 2nd

Int. Joint Conf. on Artificial Intelligence, pages 481–489. British Computer Society,
1971.

27. A. Pnueli. Linear and branching structures in the semantics and logics of reactive
systems. In Proc. 12th Int. Colloq. on Automata, Languages, and Programming,
volume 194 of Lecture Notes in Computer Science, pages 15–32. Springer, 1985.

28. S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In O. Grum-
berg, editor, Proc 9th Int. Conf. on Computer Aided Verification, volume 1254,
pages 72–83. Springer, 1997.

29. S. Shoham and O. Grumberg. Multi-valued model checking games. In 3rd Int.

Symp. on Automated Technology for Verification and Analysis, volume 3707, pages
354–369. Springer, 2005.

30. V. Sofronie-Stokkermans. Automated theorem proving by resolution for finitely-
valued logics based on distributive lattices with operations. Multiple-Valued Logics:

An International Journal, 5(2), 2000.

31. L.J. Stockmeyer and A.R. Meyer. Word problems requiring exponential time. In
Proc. 5th ACM Symp. on Theory of Computing, pages 1–9, 1973.

22

