
Multi-Player Flow Games
Shibashis Guha

Université Libre de Bruxelles
Brussels, Belgium

shibashis.guha@ulb.ac.be

Orna Kupferman
The Hebrew University

Jerusalem, Israel
orna@cs.huji.ac.il

Gal Vardi
The Hebrew University

Jerusalem, Israel
gal.vardi@mail.huji.ac.il

ABSTRACT
In the traditional maximum-flow problem, the goal is to transfer
maximum flow in a network by directing, in each vertex in the net-
work, incoming flow to outgoing edges. The problem corresponds to
settings in which a central authority has control on all vertices of the
network. Today’s computing environment, however, involves sys-
tems with no central authority. In particular, in many applications of
flow networks, the vertices correspond to decision-points controlled
by different and selfish entities. For example, in communication
networks, routers may belong to different companies, with differ-
ent destination objectives. This suggests that the maximum-flow
problem should be revisited, and examined from a game-theoretic
perspective.

We introduce and study multi-player flow games (MFGs, for
short). Essentially, the vertices of an MFG are partitioned among
the players, and a player that owns a vertex directs the flow that
reaches it. Each player has a different target vertex, and the objective
of each player is to maximize the flow that reaches her target vertex.
We study the stability of MFGs and show that, unfortunately, an
MFG need not have a Nash Equilibrium. Moreover, the Price of
Anarchy and even the Price of Stability of MFGs are unbounded.
That is, the reduction in the flow due to selfish behavior is unbounded.
We study the problem of deciding whether a given MFG has a
Nash Equilibrium and show that it is ΣP2 -complete, as well as the
problem of finding optimal strategies for the players (that is, best-
response moves), which we show to be NP-complete. We continue
with some good news and consider a variant of MFGs in which flow
may be swallowed. For example, when routers in a communication
network may drop messages. We show that, surprisingly, while this
model seems to incentivize selfish behavior, a Nash Equilibrium
that achieves the maximum flow always exists, and can be found in
polynomial time. Finally, we consider MFGs in which the strategies
of the players may use non-integral flows, which we show to be
stronger.

KEYWORDS
Game Theory for practical applications; Noncooperative games:
computation; Methodologies for agent-based systems; Noncoopera-
tive games: theory & analysis

ACM Reference Format:
Shibashis Guha, Orna Kupferman, and Gal Vardi. 2018. Multi-Player Flow
Games. In Proc. of the 17th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2018), M. Dastani, G. Sukthankar, E. André,
S. Koenig (eds.), Stockholm, Sweden, July 2018, IFAAMAS, 9 pages.

Proc. of the 17th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), , July
2018, Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

1 INTRODUCTION
A flow network is a directed graph in which each edge has a capacity,
bounding the amount of flow that can go through it. The amount
of flow that enters a vertex equals the amount of flow that leaves
it, unless the vertex is a source, which has only outgoing flow, or a
target, which has only incoming flow. The fundamental maximum-
flow problem gets as input a flow network with a source vertex and
a target vertex and searches for a maximum flow from the source
to the target [5, 12]. The problem was first formulated and solved
in the 1950’s [10, 11]. It has attracted much research on improved
algorithms [6, 7, 13] and variant settings [8, 22], and has been
applied in many application domains, including traffic in road or rail
systems, fluids in pipes, currents in an electrical circuit, packets in a
communication network, and many more [2].

All studies of flow networks so far assume that all the vertices
in the network are controlled by a central authority. Indeed, the
maximum-flow algorithm finds a flow that directs the flow in all ver-
tices of the network. In many applications of flow networks, however,
the vertices correspond to decision-points controlled by different en-
tities. For example, in communication networks, routers may belong
to different companies, with different destination objectives, and in
software defined networks (SDNs), vertices may be SDN switches,
programmed by different entities [1, 23]. Likewise, hostile entities
may try to direct the flow to alternative targets or to locations where
flow gets stuck. The above examples suggest that the maximum-flow
problem should be revisited, and examined from a game-theoretic
perspective. Beyond the applications, such a study is interesting from
a theoretical point of view. Indeed, both the maximum-flow problem
and algorithmic game theory are fundamental topics in theoretical
computer science, and their combination involves interesting ideas
and tools from both topics.

We introduce and study multi-player flow games (MFGs, for
short).1 Essentially, the vertices of an MFG are partitioned among the
players, and a player that owns a vertex directs the flow that reaches
it. Each player has a different target vertex, and the objective of the
players is to maximize the flow that reaches their target vertices. A
strategy for a player advises her how to direct flow that enters vertices
under her control. Formally, for each vertex u, let Eu� denote the
set of edges outgoing from u. Also, for each edge e, let c(e) ∈ IN
denote its capacity. Then, for each vertex u controlled by the player,
a strategy for the player includes a policy fu : IN → INEu�

that
maps every incoming flow x ∈ IN to a function describing how x is
partitioned among the edges outgoing from u. For each incoming
flow x ∈ IN and edge e ∈ Eu�, we require that fu (x)(e) ≤ c(e) and∑
e ∈Eu� fu (x)(e) = min{x ,

∑
e ∈Eu� c(e)}. Thus, fu (x) assigns to

each edge outgoing from u a flow that is bounded by its capacity.

1Not to confuse with games in which players cooperate in order to construct a sub-graph
that maximizes the flow in the traditional setting, which are also termed flow games
(c.f., [14]).

Also, when the incoming flow is larger than the capacity of the
outgoing edges (which bounds the outgoing flow), then flow is lost
and the outgoing flow is lower than the incoming flow. In addition,
an initial-flow function assigns an initial flow to some of the vertices.
The game is played among k players. Each Player i ∈ {1, . . . ,k} has
a target vertex ti , and the goal of Player i is to maximize the flow
that enters ti . Note that the definition of flow in an MFG is different
from the traditional definition of maximum flow, which corresponds
to the case where all vertices belong to a single player, and in which
the “flow conservation” property is respected in all vertices. Indeed,
in the game setting, flow may get lost when it reaches vertices whose
outgoing capacity is smaller than the incoming flow. We assume that
the network is acyclic. Then, given strategies for the players, it is
possible to calculate the flow by following a topological ordering of
the vertices.

Example 1.1. Consider the MFG G appearing in Figure 1. The
game is played between two players. The vertices of Player 1 are
circles, and those of Player 2 are squares. An initial flow of 2 arrives
to vertex s, and the targets of the players are t1 and t2. We can view
G as a communication network with routers operated by companies
with different targets. Unless outgoing channels are filled, a router
does not drop packets that reach it, and it can direct the packets
however it chooses.

s

u t2

v t1

2

1

1

1

1

1

2

1

Figure 1: The MFG G
No matter how Player 1 directs the flow in vertex s, a flow of at

least 1 reaches t1. Indeed, if Player 1 directs 1 to v, then it continues
from there to t1. Also, if Player 1 directs 2 to u, then Player 2 directs
at most 1 to t2, and directs the rest, namely at least 1, to v (from
where it is directed to t1) or to t1. Note that Player 2 may direct no
flow to t2, in which case a flow of 2 reaches t1, yet Player 2 has no
incentive to do so. Moreover, if Player 1 directs 1 to v and 1 to u,
and Player 2 directs 1 from u to v, then flow gets lost in v, as the
capacity of edges outgoing from v is only 1. �

In [16], the authors introduced and studied flow games. Flow
games are played on flow networks with a single source and a single
target. The vertices in the network are partitioned between two
players, MAX and MIN. Player MAX corresponds to the network
authority, whose goal is to maximize the flow from the source to the
target, while MIN corresponds to a hostile environment, whose goal
is to minimize this flow. The authors studied the problem of finding
a strategy for MAX that maximizes the flow against every strategy
of MIN, and showed that the problem is ΣP2 -complete. They also
studied some theoretical properties of flow games, in particular a
restriction to strategies that ensures no loss of flow, and an extension
to strategies that allows non-integral flows, which were proved to be
stronger. While flow games are strongly related to two player MFGs,
they cannot model two-player MFGs, as MIN does not have a target
vertex, and her only goal is to minimize the flow that MAX directs
to the target. Dually, MFGs cannot model flow games. In particular,
adding a target vertex for MIN to which flow may be directed does
not work, as, by the definition of flow in MFGs, flow may be directed

to this target only after outgoing edges to other vertices are saturated.
More importantly, as we elaborate below, the questions on MFGs
that we study here originate from its game-theoretic nature, and are
very different from those studied in [16].

In order to describe our contribution, we first need some notations.
A profile in an MFG is a tuple of strategies, one for each player. Pri-
mary questions about games in traditional game-theory applications
concern their stability. The most common criterion for stability is
the existence of a Nash equilibrium (NE, for short) [18]: a profile in
which no (single) player can benefit from unilaterally changing her
strategy.2 It is well known that decentralized decision-making may
lead to stable profiles that are sub-optimal from the point of view of
society as a whole. Formally, a profile is a social optimum (SO, for
short) if it maximizes the flow to all target vertices together. An SO
thus corresponds to a maximum flow in a network obtained from the
MFG by adding a source vertex in which the initial flow is generated,
and a target vertex to which all target vertices are connected. The in-
efficiency incurred due to selfish behavior of the players is measured
by the price of anarchy (PoA) [15, 20] and price of stability (PoS)
[4] measures. The PoA is the worst-case inefficiency of an NE (that
is, the ratio between the flow in an SO and in a worst NE, namely one
in which minimum flow reaches all targets). The PoS is the best-case
inefficiency of a Nash equilibrium (that is, the ratio between the flow
in an SO and a best NE). Another important question in game-theory
applications is that of finding a best-response move, namely a strat-
egy that maximizes the utility of a given player (that is, the flow to
her target, in the case of MFGs), given the strategies of the other
players. The absence of regulation by some central authority is a
driving theme of algorithmic game theory, cf. [19], inspired by the
open nature of today’s computing environments.3

We start with some bad news about the stability of MFGs. We
show that there are simple (in fact, two-player) MFGs in which
no NE exists. Moreover, the PoA and even the PoS of MFGs are
unbounded. That is, for every threshold x ≥ 1, there is an MFG Gx
such that the SO in Gx is x (that is, when cooperating, the players
can direct x units of flow to their targets), whereas a best NE in Gx
is 1 (that is, in all stable profiles, only 1 flow unit reaches a target
vertex). Also, the problem of deciding whether a given MFG has
an NE is ΣP2 -complete, which essentially suggests that we have to
go over all possible profiles and deviations from them. We continue
with the best-response problem and show that it is NP-complete.
The high complexity is not surprising, and corresponds to the known
computational price when moving from a nondeterministic setting to
a game-based one, for example the increase from PSPACE to 2EX-
PTIME when moving from temporal satisfiability [17] to temporal
realizability [21].

We continue with some good news and consider a variant of
MFGs in which flow may be dropped (MFGD, for short). Thus, an
owner of a vertex may choose not to direct some of the incoming
flow. In particular, when Player i owns a vertex from which her target
cannot be reached, then she has no incentive not to drop the flow.

2Throughout this paper, we consider pure strategies. Unlike mixed strategies, pure
strategies may not be random or drawn from a distribution.
3Different aspects of networks have already been extensively studied from the perspec-
tives of algorithmic game theory. This includes, for example, network formation games
[4] or incentive issues in interdomain routing and the BGP protocol [9]. We are the first,
however, to consider the maximum-flow problem from this perspective.

We show that, surprisingly, while this model seems to incentivize
the above selfish behavior, it is actually stable, and with no stability
inefficiency. Thus, MFGDs always have an NE, and their PoS is 1.
Moreover, such an NE that is also an SO can be found in polynomial
time. Our algorithm is based on a careful choice of augmenting paths
in the Ford-Fulkenson method [11], chosen in a way that guarantees
that no player has an incentive to deviate from the profile that induces
the maximum flow found by the algorithm. We show that this careful
choice is acute, as the PoA of MFGs with drops is unbounded.

Recall that the capacities in an MFG are integral and the strategies
of the players can assign only integral flows. Integral-flow MFGs
arise naturally in settings in which the objects we transfer along the
network cannot be partitioned into fractions, as is the case with cars,
packets, and more. Sometimes, however, as in the case of liquids,
flow can be partitioned arbitrarily. In the traditional maximum-flow
problem, it is well known that when the capacities are integral, then
there exists an integral maximum flow. We study an extension of
MFGs to non-integral strategies. We show that, interestingly, non-
integral strategies are stronger, in the sense they can guarantee strictly
greater outcomes. Despite the richness of non-integral strategies, we
can show that our results are carried over to the non-integral case.

2 PRELIMINARIES
For k ≥ 1, let [k] = {1, . . . ,k}. A multi-player flow game (MFG)
is G = ⟨k,V ,E, c, (ti)i ∈[k], init, owns⟩, where k is the number of
players, V is a set of vertices, E ⊆ V ×V is a set of directed edges,
and c : E → IN is a capacity function, assigning to each edge an
integral amount of flow that the edge can transfer. For a vertex
u ∈ V , let E�u and Eu� be the sets of incoming and outgoing
edges to and from u, respectively. That is, E�u = (V × {u}) ∩ E and
Eu� = ({u} ×V) ∩ E. A sink is a vertex u with no outgoing edges,
thus Eu� = ∅. For each i ∈ [k], the vertex ti ∈ V is a target vertex
for Player i. We assume that the targets ti are distinct, i.e., ti , tj for
all i , j, and that ti is a sink for all i ∈ [k]. LetT = {t1, . . . , tk }. The
function init : V → IN is an initial-flow function, assigning to each
vertex an initial flow. Finally, the function owns : V → [k] assigns
to each vertex a player that owns it. We assume that for all i ∈ [k],
we have that owns(ti) = i, and we useVi to denote the set of vertices
owned by player i, thus Vi = {v : owns(v) = i}. We assume that the
capacities and the initial flows are given in unary.

When drawing two-player MFGs, we use circles and squares to
describe the vertices of Player 1 and 2, respectively, and use dark
filled circles to describe sinks (ownership of sinks is not impor-
tant). The function init is described by edges entering vertices, each
labeled with the corresponding initial flow.

A policy for a vertex u ∈ V \T is a function that distributes an
incoming flow to the outgoing edges. Formally, a policy for u is
a function fu : IN → INEu�

such that for every flow x ∈ IN and
edge e ∈ Eu�, we have fu (x)(e) ≤ c(e) and

∑
e ∈Eu� fu (x)(e) =

min{x ,
∑
e ∈Eu� c(e)}. Thus, fu (x) assigns to each edge outgoing

from u a flow that is bounded by its capacity. Also, when the in-
coming flow is larger than the sum of the capacities of the outgoing
edges (which bounds the outgoing flow), then flow leaks and the
outgoing flow is lower than the incoming flow. In practice, leaks
correspond to either actual leaks – fluid in a pipe system that is lost
when the system is overflowed, or to packets that are dropped by

routers all of whose outgoing channels are filled. Note that this is
different from the traditional definition of flow in a network, which
corresponds to the case where all vertices belong to a single player,
and in which the “flow conservation" property is respected. Note
that as the capacities and initial flows are given in unary, a policy is
polynomial in the size of the MFG.

A flow in an MFG is a function f ∈ INE that assigns to each edge
the flow that travels in it. We require that for every edge e ∈ Eu�,
we have f (e) ≤ c(e), and for every vertex u ∈ V \ T , we have∑
e ∈Eu� f (e) = min{init(u) +

∑
e ∈E�u f (e),

∑
e ∈Eu� c(e)}. That

is, the flow in each edge is bounded by its capacity, and the flow
that leaves each vertex is the minimum of the flow that enters the
vertex, by the initial flow or from its neighbors, and the sum of the
capacities of edges outgoing from it. We focus on the case where
the graph ⟨V ,E⟩ is acyclic. Then, given policies fu for all vertices
in u ∈ V \ T , we can calculate the flow in the game as follows.
First, we order the vertices in a topological ordering. If a vertex v2
can be reached from a vertex v1 along some path, then v2 appears
after v1 in the topological ordering. We start from the first vertex
u in the topological ordering, and use fu to assign a flow to each
edge in Eu�. Now, we continue to the next vertex in the topological
ordering. Whenever we reach a vertex v, the incoming flow to v,
denoted x , has already been calculated. We then use fv (x) to assign
a flow for each edge in Ev�, and continue along the topological
ordering until we reach all targets in T . Since the flow that enters
a vertex u depends only on the sub-game that reaches u, it is easy
to see that the calculation above is independent of the topological
ordering. Indeed, if u1 and u2 are not ordered, then flow that leaves
u1 does not reach u2, and vice versa.

A strategy of Player i is a collection of policies, one for each
vertex inVi \{ti }. A profile P = ⟨π1, . . . ,πk ⟩ is a vector of strategies,
one for each player. For a profile P and a strategy π of Player i ∈ [k],
let P[i ← π] denote the profile obtained from P by replacing the
strategy of Player i in P by π . Given a profile P , the flow in which
the players follow their strategies in P is denoted f P and can be
calculated as described above. Given a profile P , the outcome of
Player i, denoted outcomei (P), is the amount of flow that reaches
her target ti , thus outcomei (P) =

∑
e ∈E�ti f

P (e). The outcome of a
game for profile P is then outcome(P) =

∑k
i=1 outcomei (P), namely

the flow that reaches all the targets in T .
A profile of strategies is a Nash equilibrium (NE, for short) if

no (single) player can increase her outcome by unilaterally chang-
ing her strategy. Given an MFG G, the set of NEs of G is denoted
by NE(G). A social optimum (SO, for short) is a profile in which
the outcome of G is maximized. An NE need not be an SO. The
standard measures to quantify the inefficiency caused due to the
selfish behavior of the players is to compare the outcome of the
NEs with that of the SO. Specifically, the price of stability (PoS) is
the ratio between the SO and the outcome of a best NE; formally,
PoS(G) = minP ∈NE(G) outcome(SO)/outcome(P), and the price of
anarchy (PoA) is the ratio between the SO and the outcome of a
worst NE; formally, PoA(G) = maxP ∈NE(G) outcome(SO)/outcome(P).
We note that since the objective in MFGs is to maximize the out-
come, the PoS and PoA ratios have the outcome of the SO in the
numerator, as opposed to games in which the outcome is associated
with costs and the objective is to minimize it.

3 EQUILIBRIA IN MFGS
In this section we study equilibria and its inefficiency in MFGs. Our
results are negative: An MFG need not have a Nash Equilibrium,
and deciding the existence of an NE in a given MFG is ΣP2 -complete.
Moreover, the Price of Anarchy and even the Price of Stability of
MFGs are unbounded.

THEOREM 3.1. There exists an MFG with no NE.

PROOF. Consider the MFG G = ⟨2,V ,E, c, (t1, t2), init, owns⟩
appearing in Figure 2. The edges for which the capacity is not
specified have capacity 1.

v1 v2

v3

v4

v5

t1 t2
2

v6

2

Figure 2: An MFG with no NE

We claim that there is no NE in G. Consider a profile P . First,
if outcome1(P) < 2, then we claim that Player 1 has a beneficial
deviation that increases her outcome to 2. Indeed, let fv2 be the
policy of Player 2 inv2, and let x3,x4, and x5 be the flow that Player 2
directs to v3,v4, and v5, respectively, when a flow of 2 reaches v2.
Formally, x3 = fv2 (2)(⟨v2,v3⟩), x4 = fv2 (2)(⟨v2,v4⟩), and x5 =
fv2 (2)(⟨v2,v5⟩). A strategy of Player 1 that ensures an outcome of 2
then directs all the initial flow into v2, thus fv1 (2)(⟨v1,v2⟩) = 2, and
directs the flow in v4 so that the incoming flow into both v3 and v5
is 1. Since x3,x4,x5 ∈ {0, 1} and x3 + x4 + x5 = 2, this is possible.
Specifically, if x3 = x4 = 1, then the flow in v4 is directed to v5;
dually, if x5 = x4 = 1, then the flow in v4 is directed to v3, and if
x3 = x5 = 1, then the policy in v4 is irrelevant. Now, when Player 1
directs the flow in v3 and v5 to t1, then each of them contributes 1 to
the flow, thus the flow reaching t1 is 2, and we are done.

Now, if outcome1(P) = 2, then we claim that Player 2 has a
beneficial deviation that increases her outcome from 0 to 1. First,
note that in order for outcome1(P) to be 2, it must be that Player 1
directs all the initial flow to v2. Also, since outcome1(P) = 2, it must
be that outcome2(P) = 0. Moreover, the flow of 2 that gets to t1 must
arrive from v3 and v5. Let fv4 be the policy of Player 1 in v4, and let
x3 and x5 be the flow that Player 1 directs to v3 and v5, respectively,
when a flow of 1 arrives to v4. Formally, x3 = fv4 (1)(⟨v4,v3⟩) and
x5 = fv4 (1)(⟨v4,v5⟩). Consider a strategy for Player 2 in which the
policy at v2 is such that when an incoming flow of 2 arrives, then 1
is directed to v4, and in addition, if x3 ≥ x5, then 1 unit is directed
to x3, and if x3 < x5, then 1 is directed to x5. The above policy
ensures that one of the vertices v3 or v5 has an incoming flow of 2.
Accordingly, even a policy of Player 1 that first saturates the edges
to t1 has to direct 1 into t2, and we are done.

It follows that in each profile at least one player has an incentive
to change her strategy, thus no profile is an NE. �

Theorem 3.1 gives rise to the exists-NE problem, namely deciding,
given an MFG G, whether G has an NE.

THEOREM 3.2. The exists-NE problem for MFGs is ΣP2 -complete.

v1 v2

v3

v4

v5

t2v0t1
2r (n +m)

Gθ
22r (n +m)

2r (n +m) − 2

Figure 3: An NE exists iff θ is satisfiable

PROOF. We start with the upper bound. Recall that a strategy
for Player i is a collection of policies fu : IN → INEu�

, for all
u ∈ Vi . Clearly, the policy has to refer only to incoming flow that
is smaller or equal to the sum of the capacities of the edges in E�u

and the initial flow assigned to u by init. Thus, since we assume
that capacities are given in unary, the description of strategies is
polynomial in the input. Given a profile P , checking whether there
exists a beneficial deviation for some player is in NP. Consequently,
deciding whether there exists a profile P from which no player has a
beneficial deviation can be solved by a nondeterministic polynomial-
time Turing machine with an NP oracle.

We continue to the lower bound and describe a reduction from
QBF2: satisfiability for quantified Boolean formulas with 2 alter-
nations of quantifiers, where the most external quantifier is “ex-
ists". Let ψ be a Boolean propositional formula over the variables
x1, . . . ,xn ,y1, . . . ,ym and let θ = ∃x1 . . . ∃xn∀y1 . . . ∀ymψ . We as-
sume thatψ is in positive normal form in which every literal appears
r times.

We are going to use as a black box the following reduction, a
variant of which is proven in [16].

LEMMA 3.3. Given a QBF2 formula θ = ∃x1...∃xn∀y1...∀ymψ
in which every literal appears r times, we can construct a two-player
MFG Gθ with targets t1 and v0 and an initial flow of 2r (n+m), such
that if θ is satisfiable, then Player 1 has a strategy that ensures that
a flow of 1 reaches t1 and a flow of 2r (n +m) − 1 reaches v0, and if
θ is not satisfiable, then Player 2 has a strategy that ensures that no
flow reaches t1 and a flow of 2r (n +m) reaches v0.

Consider the MFG G appearing in Figure 3. Note that G combines
the MFG Gθ from Lemma 3.3 with the "no-NE" example from
Theorem 3.1. We prove that G has an NE iff θ is satisfiable. Assume
first that θ is satisfiable. Then, by Lemma 3.3, Player 1 can ensure
that a flow of 1 reaches t1 and a flow of 2r (n + m) − 1 reaches
v1. Consider a strategy of Player 2 in which she directs a flow of
2r (n+m)−2 fromv1 to t2 and the remaining flow of 1 tov2. Arguing,
in the same way as in Theorem 3.1, we can see that Player 1 has
a strategy such that now a total flow of 2 units reaches t1 and the
remaining flow of 2r (n +m) − 2 units reaches t2. We claim that this
profile is an NE. In the game Gθ , Player 1 can ensure a maximum
flow of 1 to t1 while the remaining flow of 2r (n +m) − 1 reaches v0
which is forwarded to v1. If Player 2, now forwards a flow of 1 to
v2 from v1, Player 1 can ensure that this 1 unit of flow reaches t1
and thus a total flow of 2 units reaches t1. Hence given the strategy
of Player 2, Player 1 does not have a strategy to ensure that more
flow reaches t1. Now we show that Player 2 also cannot deviate from
her current strategy and increase her flow. In particular, Player 2
can change her policy in v1 and send 2 units of flow to v2 while the

remaining flow of 2r (n +m) − 3 is sent to t2. Even in this case, out
of the 2 units of flow reaching v2, no more than a flow of 1 can reach
t2 and hence Player 2 does not have a deviation from her strategy
that increases her flow.

Assume now that θ is not satisfiable. Then, by Lemma 3.3, Player 2
can ensure that a flow of 2r (n +m) reaches v1. The only policy of
Player 2 at v1 is to send a flow of 2r (n +m) − 2 units to t2 and the
remaining flow of 2 units to v2. The same arguments used in the
proof of Theorem 3.1 imply that the profile we have is not an NE.
Further, when θ is unsatisfiable, we note that for every strategy of
Player 1, Player 2 has a strategy such that a flow of 2r (n +m) − 1
reaches t2 while the remaining flow of 1 reaches t1 and for every
strategy of Player 2, Player 1 has a strategy such that a flow of 2
units reaches t1, and hence an NE cannot exist. �

We continue to study the PoA and PoS, for the cases where an
NE exists, and show that they are both unbounded.

THEOREM 3.4. The PoA in MFGs is unbounded.

PROOF. Consider the two-player MFG Gx appearing in Figure 4.

v1 t1

t2

x

v2

1

x − 1x

Figure 4: An MFG with unbounded PoA

The outcome of an SO of Gx , namely the maximum flow to t1
and t2 together, is x , obtained when Player 1 directs all the initial
flow to t1 and t2. On the other hand, consider a profile in which
Player 1 directs to t1 only a flow of 1 and directs to the sink v2 a
flow of x − 1. The profile is an NE, yet its outcome is only 1. Thus,
PoA(Gx) ≥ x . Since x can be unbounded, we are done. �

Theorem 3.4 is not too surprising, as the PoA considers worst
NEs. We now show that the PoS is unbounded too. Here, we have to
bound the best NE, which is technically much more challenging.

THEOREM 3.5. The PoS in MFGs is unbounded.

PROOF. Consider the MFG Gx appearing in Figure 5. For sim-
plicity, we assume that x is even.

a b

c1

c x
2

u1

m1

d1

u x
2

m x
2

d x
2

t1 t2
x

v2
v1

x

x x

2

2

...

Figure 5: An MFG with unbounded PoS

It is easy to see that the maximum flow to t1 and t2 together,
namely the outcome of an SO, is x . We show that Gx has an NE,

yet no NE has an outcome of more than 1. Consider the profile P
in which Player 1 directs a flow of 1 from a to b and the policy of
Player 2 in b for an incoming flow of y ≥ 1 is as follows: a flow of 1
is directed to c1 and a flow of y − 1 is directed to v2. It is not hard to
see that the profile P is an NE.

Now we show that no NE has an outcome of more than 1 in G.
Consider a profile P such that outcome(P) > 1. Then, there must
be a flow of y > 1 from b. If outcome2(P) > 0, in which case
outcome1(P) < y, then Player 1 can change her strategy and ensure
that the entire flow of y reaches t1. Indeed, no matter how Player 2
directs the flow from b and from the c j vertices, Player 1 can direct
all of it to t1. On the other hand, if outcome2(P) = 0, then Player 2
has the following beneficial deviation. In b, she directs a flow greater
than 1 to some c j , for j ∈ [x2], and in c j , she directs the flow so that
either uj or dj have incoming flow greater than 1. Thus, if the policy
of Player 1 in mj is to direct the flow to uj , then Player 2 directs a
flow of 1 to uj and a positive flow tomj . Now, since from uj Player 1
can direct only a flow of 1 to t1, then a positive flow reaches t2. It
follows that no NE with an outcome greater than 1 exists.

Since x , and hence the SO, is unbounded, so is the PoS. �

4 THE BEST-RESPONSE PROBLEM
Given an MFG G with k players, a profile P , and an index i ∈ [k],
a strategy πi of Player i is a best response with respect to P if
outcomei (P[i ← πi]) ≥ outcomei (P[i ← π ′i]) for all strategies π ′i
of Player i. That is, πi is a strategy that maximizes the outcome of
Player i assuming the other players do not change their strategies
in P . In this section we study the computational complexity of the
best-response problem, namely the question of deciding, given P , i,
and a threshold λ ∈ IN, whether there exists a strategy πi of Player i
such that outcomei (P[i ← πi]) ≥ λ.

THEOREM 4.1. The BR problem for MFGs is NP-complete.

PROOF. Membership in NP is easy. Given a profile P in an MFG,
a strategy πi of Player i, and a threshold λ, it can be checked in
polynomial time whether outcomei (P[i ← πi]) ≥ λ.

We prove NP-hardness by a reduction from CNF-SAT. We con-
sider a normal form for propositional formulas in which all literals
appear the same number of times. Consider a propositional formula
ψ over n variables x1, . . . ,xn . We assume thatψ hasm clauses and
every literal appears in exactly r clauses. It is not hard to see that
every CNF formula can be translated in polynomial time to one that
satisfies the above assumption. We construct, in polynomial time, a
two-player MFG Gψ and a strategy π2 of Player 2 such that Player 1
has a best response π1 with outcome1(⟨π1,π2⟩) ≥ (m − r) · n iffψ is
satisfiable.

A scheme of the MFG Gψ appears in Figure 6. The MFG has three
types of vertices: (1) Variable verticesv1, . . . ,vn , (2) Literal vertices
x1,x1, . . . ,xn ,xn , and (3) Clause vertices C1, . . . ,Cm . Since we
examine the best response of Player 1, the target vertex of Player 2
is not important, and can be one of the sinks.

For a literal l and a clause Cj , we have an edge ⟨l ,Cj ⟩ iff the
literal l does not appear in the clause Cj in ψ . Since there are m
clauses and each literal appears in exactly r clauses, then each literal
vertex l has outgoing edges tom − r clause vertices and an outgoing
edge to a sink. Consider the strategy π2 of Player 2 in which for

each literal vertex, if the incoming flow is exactly m − r , then the
entire flow is directed to the clause vertices, and otherwise the flow
is directed to the sink. We claim there is a best response π1 such that
outcome1(⟨π1,π2⟩) = (m − r) · n iffψ is satisfiable.

Assume first thatψ is satisfiable. Consider a satisfying assignment
toψ . Let π1 be the strategy for Player 1 that directs the initial flow of
m−r in each variable vertex to the corresponding literal vertex that is
assigned true. Thus, n of the 2n literal vertices have an incoming flow
ofm−r each, while the remaining n literal vertices have an incoming
flow of 0. Since every clause Cj is satisfied in the assignment, at
least one of the literals appearing inCj is assigned true. Let l be such
a literal. By the construction, the edge ⟨l ,Cj ⟩ does not appear in Gψ .
Thus, the maximum incoming flow to Cj is n − 1. The strategy π1
directs all the incoming flow to Cj to the target vertex t1, and thus
no flow is lost. Hence, ifψ is satisfiable, then Player 1 has a strategy
π1 such that outcome1(⟨π1,π2⟩) = (m − r) · n.

v1

x̄1

x1 C1

C2

vn

x̄n Cm

xn

t1
...

...

...

m − r

m − r

m
−
r

m
−
r

m
−
r

m
− r

m
−r

m
−
r

m
−r

m
−
r

n − 1

n − 1

n − 1

Figure 6: NP hardness of the BR problem

Assume now thatψ is not satisfiable. Then, for every assignment
of the variables, there is a clause Cj that is not satisfied. Thus,
none of the literals that appear in Cj is assigned true. Recall that
corresponding to a literal l not appearing in Cj , there is an edge
⟨l ,Cj ⟩ in Gψ . Thus, each literal l ′ that is assigned true has an edge
⟨l ′,Cj ⟩, implying that the incoming flow to Cj is n, whereas the
capacity of the outgoing edge fromCj is n− 1. Hence, there is a flow
loss in Cj , implying that outcome1(⟨π1,π2⟩) < (m − r) · n. �

5 MFGS WITH DROPS
Recall that in MFGs, flow is lost only if it reaches a vertex whose
outgoing capacity is lower than its incoming flow. In this section we
study multiplayer flow games with drops (MFGD, for short), where
incoming flow is allowed to be dropped whenever the player chooses,
even if the outgoing capacity is not full. Thus, the players have full
control on their vertices and they may drop flow if they wish. This
setting is useful, for example, in switched networks in which routers
can choose to drop packets. Formally, a policy for a vertex u is a
function fu : IN→ INEu�

such that for every flow x ∈ IN and edge
e ∈ Eu�, we have fu (x)(e) ≤ c(e) and

∑
e ∈Eu� fu (x)(e) ≤ x .

Note that when Player i owns a vertex from which her target
cannot be reached, then she has no incentive not to drop the flow.
Thus, the MFGD model seems to be less optimal for the society as a

whole. We show that, surprisingly, it is actually stable, and with no
stability inefficiency.

THEOREM 5.1. Every MFGD has an NE. Furthermore, The
PoS in MFGD is 1, and an NE that is also an SO can be found in
polynomial time.

PROOF. Consider an MFGD G = ⟨k,V ,E, c, (ti)i ∈[k], init, owns⟩.
We show an algorithm for finding an SO that is also an NE. Con-
sider the flow network G′ obtained from G by adding a source
vertex s from which the initial flow is directed, and a target vertex
t to which all target vertices may direct their flow. Formally, G′ =
⟨V ′,E ′, c ′, s, t⟩, whereV ′ = V ∪{s, t}, E ′ = E∪({s}×V)∪(T ×{t}),
and the capacities are c ′(e) = c(e), for e ∈ E, c ′(⟨s,u⟩) = init(u),
for u ∈ V , and c ′(⟨ti , t⟩) = C, for some large C, for ti ∈ T . Our
algorithm follows the Ford-Fulkerson method [5, 11] (FF method,
for short) for finding a maximum flow from s to t in G′, where
the augmenting paths are chosen in a way that would guarantee the
stability of the induced profile.

Before we describe the algorithm, let us briefly review the FF
method. We start with a flow function f for which f (e) = 0 for
all edges e ∈ E, giving an initial flow value of 0. At each iteration,
we improve the flow f in G′ by finding an augmenting path in an
associated residual network G′f . The residual network G′f consists of
edges with capacities that represent how we can change the flow f
in G′. Essentially, these are either edges of G′ that are not saturated
in f , in which case their capacity in G′f is the difference between
their capacity and the flow that f assigns to them, indicating it
can be increased in this amount, or reverse of edges to which f
assigns a positive flow, in which case their capacity in G′f is this
flow, indicating that it can be decreased in this amount. Once we
find an augmenting path from s to t in G′f , we can identify the edges
in G′ for which we can change f and obtain an improved flow. We
repeat this process until the residual network has no augmenting
path, which implies we have reached a maximum flow.

We use a variant of the FF method in which after an augmenting
path is found, the improved flow is obtained by transferring a flow of
1 in it. Thus, in each iteration, the value of the flow increases by 1. In
addition, the residual path is found as follows: For a subset H ⊆ V ′

and two vertices u,v ∈ V , we say that v is H -reachable from u if
there is a path from u to v that visits only vertices in H (in particular,
u,v ∈ H).

In each iteration of our algorithm we start with a current flow f
in G′ and find a simple path ρ from s to t in G′f . Then, we check for
every vertex u ∈ ρ, by the order of ρ, whether the player that owns
u can “take control of" the path. That is, if u ∈ Vi , then we check
whether ti isVi -reachable from u in G′f . If the answer is yes, then we
change the path ρ to a path ρ ′ that is the concatenation of the subpath
of ρ from s to u with a simple path from u to t through ti that visits
only vertices in Vi . We use ρ ′ as the augmenting path. If no player
can take control of ρ, then we use ρ as the augmenting path. Clearly,
this algorithm follows the FF method and thus it gives a maximum
flow from s to t in G′. We denote this flow by f : E ′ → IN.

Let P be the profile of strategies induced from f as follows.
Consider a vertex u ∈ V . Let xu be the incoming flow to u in f .
The policy for u is then fu (y)(e) = f (e), for every y ≥ xu and
e ∈ Eu�, and fu (y)(e) = 0, for every y < xu and e ∈ Eu�. Thus, if

the incoming flow to u is at least the flow that enters u in f , then the
flow in Eu� according to fu agrees with f . Otherwise, namely if the
incoming flow to u is strictly smaller than the flow that enters u in f ,
then all the incoming flow is dropped. Note that outcome(P) is the
value of f , and thus P is an SO. We now show that it is also an NE.

Consider a player i ∈ [k]. We show that Player i has no beneficial
deviation from P . Let G′i = ⟨V

′
i ∪{s

′
i },E

′
i , c
′
i , s
′
i , ti ⟩ be a flow network

induced by G′, where V ′i is the vertices u ∈ Vi such that ti is Vi -
reachable in G′ from u, and s ′i is a new source vertex. Note that ti ∈
V ′i . The flow network G′i contains the edges e ∈ E ′ ∩ (V ′i ×V

′
i) with

capacities c ′i (e) = c ′(e), and edges from s ′i to V ′i . For every vertex
v ∈ V ′i , we define c ′i (⟨s

′
i ,v⟩) =

∑
u ∈V ′\({s }∪V ′i)

f (⟨u,v⟩) + init(v).
Note that by changing her strategy in the MFGD G, Player i cannot
direct to a vertex v ∈ V ′i an incoming flow of more than c ′i (⟨s

′
i ,v⟩)

from outside ofV ′i , since the incoming flow tov from a vertexu ∈ Vj
for j , i is bounded by f (⟨u,v⟩) according to the strategy of Player j,
and the initial incoming flow to v is init(v). Let | fi | be maximum
flow in G′i . In order to prove that Player i has no beneficial deviation
from P , we prove that | fi | = outcomei (P). Thus, Player i cannot
increase the incoming flow to a vertex u ∈ V ′i from outside of V ′i
beyond c ′i (⟨s

′
i ,u⟩), and under this restriction she cannot increase the

flow that reaches ti .
In order to prove that | fi | = outcomei (P), we describe a run of

the FF method on G′i that is induced by the run on G′ described
above. Intuitively, if an augmenting path in the residual graph of G′

visits V ′i , then each time it enters V ′i , it either reaches ti , in which
case it induces a path from s ′i to ti in the residual graph of G′i , or it
leaves V ′i , in which case it induces a path in the residual graph of
G′i from s ′i to some other vertex. According to the way we chose
the augmenting paths in the residual graphs of G′, if an augmenting
path leaves V ′i then ti is not V ′i -reachable from the vertices in this
augmenting path. We partition the set V ′i in the residual graph of
G′ to a subset H ⊆ V ′i that contains the vertices from which ti is
V ′i -reachable, and a subset H ′ = V ′i \ H . Note that there are no
edges from H ′ to H in the residual graph. Also, according to the
way we choose the augmenting paths, it is not possible that a path
visits a vertex in H and moves to a vertex in H ′. Thus, ti is not
V ′i -reachable from the vertices in H ′ in the residual graphs of G′

also in the subsequent iterations of the algorithm since an edge from
H ′ to H in a subsequent residual graph may appear only if we use an
augmenting path that traverses from H to H ′. Consider a run of the
FF method on G′i where the augmenting paths are induced by the
augmenting paths in the run of the FF method on G′ that reach ti .
We ignore augmenting paths in the run on G′ that do not reach V ′i ,
and also ignore subpaths that enter and then leaveV ′i . Recall that we
use a variant of the FF method in which after an augmenting path is
found, the next residual graph is obtained by transferring a flow of 1
in the augmenting path, even if the residual capacity of this path is
greater than 1.

We show that in every iteration, the subgraph induced by the
vertices from which ti is V ′i -reachable in the residual graph of G′

is similar to the subgraph induced by the vertices from which ti is
V ′i -reachable in the residual graph of G′i . This property follows by
an induction as follows. Note that a subpath in V ′i of an augmenting
path in G′ that enters and leaves V ′i visits only vertices from which
ti is not V ′i -reachable and does not induce an augmenting path in

G′i . A subpath in V ′i of an augmenting path in the residual graph
of G′ that visits vertices from which ti is V ′i -reachable induces an
augmenting path in G′i and affects both residual graphs similarly.

In order to show that the FF run that we described on G′i is valid,
we show that after the last iteration, there is no augmenting path in
the residual graph of G′i . Assume that there is a simple augmenting
path τ in the residual graph of G′i after the last iteration and let
⟨s ′i ,u⟩ be the first edge in τ . We denote the residual graphs of G′ and
G′i after the last iteration by G′′ and G′′i respectively. We denote the
flow obtained for G′i by д : E ′i → IN, thus, G′′i is the residual graph
of G′i for the flow д. Since ti is V ′i -reachable from u in G′′i then it
is also V ′i -reachable from u in G′′. Hence, ti is also V ′i -reachable
from u in the residual graphs in all the iterations of the runs on
G′ and G′i . Every augmenting path that reaches u in the run on G′

induces an augmenting path in the run on G′i . Therefore, д(⟨s ′i ,u⟩) =∑
v ∈(V ′\V ′i)

f (⟨v,u⟩) = f (⟨s,u⟩)+
∑
v ∈(V ′\(V ′i ∪{s }))

f (⟨v,u⟩). Since
ti is reachable from u in G′′ and there are no augmenting paths
in G′′ then f (⟨s,u⟩) = c ′(⟨s,u⟩) = init(u). Thus, д(⟨s ′i ,u⟩) =
init(u) +

∑
v ∈(V ′\(V ′i ∪{s }))

f (⟨v,u⟩) = c ′i (⟨s
′
i ,u⟩). Therefore, we

have reached a contradiction to the assumption that τ is an aug-
menting path in G′′i that starts with the edge ⟨s ′i ,u⟩.

Note that the augmenting paths in the run on G′i correspond to
the augmenting paths in the run on G′ that reach ti . Hence, the
maximum flow in G′i equals the incoming flow to ti according to
f , which equals the flow that reaches ti in the MFGD G with the
profile P .

We now analyze the complexity of the algorithm. In each iteration
of the FF run, finding the augmenting path can be done in linear
time by solving reachability problems. The number of iterations is
the value of the maximum flow, which is bounded by

∑
v ∈V init(v).

Since init is given in unary, the time complexity of the algorithm is
polynomial. �

As in the case of MFGs, the PoA for MFGDs is unbounded, and
the BR problem for MFGDs is NP-complete. The proofs are similar
to these of Theorems 3.4 and 4.1.

THEOREM 5.2. The PoA in MFGDs is unbounded.

THEOREM 5.3. The BR problem for MFGDs is NP-complete.

6 NON-INTEGRAL MFGS
Recall that the capacities in an MFG are integral and that a policy
for a vertex can assign only integral flows. As discussed in Sec-
tion 1, integral-flow MFGs arise naturally in settings in which the
objects we transfer along the network cannot be divided into frac-
tions. Moreover, sometimes, as in the cases of messages or other
information packages, objects can be split up to a known granular-
ity. It is easy to see that by multiplying all capacities by a factor γ
and solving an integer-flow game in the obtained game, we get a
solution that involves strategies with fractions of 1

γ in the original
game. In the traditional maximum-flow problem, which corresponds
to the SO, it is well known that when the capacities are integral,
then there exists an integral maximum flow. In this section we study
an extension of MFGs to non-integral strategies. Let IR+ denote
the set of non-negative real numbers. A non-integral policy for a
vertex u ∈ V is a function fu : IR+ → IREu�

+ such that for every
flow x ∈ IR+ and edge e ∈ Eu�, we have fu (x)(e) ≤ c(e) and

∑
e ∈Eu� fu (x)(e) = min{x ,

∑
e ∈Eu� c(e)}. We say that a strategy

is a non-integral strategy if it contains non-integral policies. We
first show that, interestingly, non-integral strategies are stronger, in
the sense they can guarantee strictly greater outcomes. Formally,
for a strategy πi of Player i and a threshold λ > 0, we say that πi
guarantees outcome λ if for every profile P in which Player i uses
πi , we have that outcomei (P) ≥ λ.

THEOREM 6.1. There is an MFG with integral capacities and
initial flow, and a threshold λ, such that no integral strategy of
Player i guarantees outcome λ, yet Player i has a non-integral
strategy that guarantees outcome λ.

u

v1

v0

v2

t1 t2
2

Figure 7: Player 1 can guarantee a flow of 1.5 that cannot be
guaranteed using integral strategies

PROOF. Consider the MFG G appearing in Figure 7. Note that
init(u) = 2, and the capacity of every edge is 1. Consider the follow-
ing strategy π1 of Player 1. In verticesv1 andv2, if the incoming flow
is more than 1, the policy is to direct a flow of 1 to t1 and the remain-
ing incoming flow to t2. If the incoming flow is less than or equal
to 1, then the policy is to direct the entire flow to t1. The policy in
v0 is to split an incoming flow equally between v1 and v2 Formally,
fv1 (x)(⟨v1, t1⟩) = min{1,x} and fv1 (x)(⟨v1, t2⟩) = max{0,x − 1},
and similarly for v2. Also, fv0 (x)(⟨v0,v1⟩) = fv0 (x)(⟨v0,v2⟩) =

x
2 .

It is not hard to see that π1 guarantees a flow of 1.5. Also, an integral
strategy cannot guarantee a flow of 1.5. To see this, note that for
every candidate integral strategy π1 of Player 1, Player 2 can respond
with a strategy that would cause the incoming flow to either v1 or v2
to be 2, forcing Player 1 to direct a flow of 1 to t2.

Note that we could take two copies of G and obtain an example
with a threshold of 3. Thus, the superiority of non-integral strategies
applies to both integral and non-integral thresholds. Note also that
just multiplying all capacities by 2 is not sufficient for getting an
example with threshold 3. �

Theorem 6.1 motivates the study of Non-Integral MFGs (NIM-
FGs, for short), where players may use non-integral strategies. Note
that the capacity of the edges and the initial flow assigned by init
are still integral. We first show that the bad news about the stability
of MFGs are carried over to NIMFGs:

THEOREM 6.2. There exists an NIMFG with no NE. The PoA
and PoS of NIMFGs are unbounded.

PROOF. We start with the first claim and show that the MFG with
no NE described in the proof of Theorem 3.1 does not have an NE
even when we allow non-integral strategies. In fact, the proof there
stays valid, except that now x3,x4, and x5 are in [0, 1] rather than
{0, 1}. Similarly, the examples for the unbounded PoA and PoS for
MFGs, described in the proofs of Theorems 3.4 and 3.5 apply also
to NIMFGs. �

On the positive side, since the SO involves integral flows, and
the profile described in the proof of Theorem 5.1 is resistant also to
deviations by non-integral strategies, the good news about the PoS
of MFGDs being 1 stays valid in the non-integral case.

Finally, since the policies in NIMFGs should refer to uncountably
many possible incoming flow values, there is no finite representation
of strategies. Since the BR problem gets a profile as an input, it is
not well defined for NIMFGs. As we elaborate in Section 7, the
challenge is to find a finite representation of non-integral strategies
to which attention can be restricted.

7 DISCUSSION
Today’s computing environment involves systems with no central
authority. This calls for a game-theoretic examination of classical
algorithmic problems. We introduced and studied MFGs, which
capture settings in which the vertices of a flow network are owned
by entities with different destination objectives. While the results
regarding the stability and efficiency of MFGs are negative, we
show that allowing the players to drop flow makes the game much
more stable and efficient: an MFGD always has an SO that is an
NE, and that can be found in polynomial time. This positive result
implies that even networks that are controlled by many different
entities can reach a stable SO. Also, when considering networks that
are controlled by different entities, allowing them to drop flow is
recommended in order to improve stability and efficiency.

Unlike the traditional maximum-flow problem, where an integral
maximum flow always exists, in MFGs players can benefit from
using non-integral strategies. The need to consider real-valued flows
gives rise to the challenge of finite representation of strategies. One
way to cope with it is to prove a sufficient-granularity property,
bounding the granularity to which unit flows should be divided.
Another way is to develop a specification formalism for non-integral
strategies, say “saturate the edge to v1 and divide the remaining
flow evenly between v2 and v3”. A finite representation of strategies
would make it possible to reason about a best-response dynamics
in NIMFGs, and may simplify the witnesses used in the NP and
ΣP2 algorithms for MFGs. A related future work is an extension of
MFGs to a probabilistic setting, where policies in vertices specify
for each outgoing edge the probability that an incoming flow would
be directed to it. Thus, profiles induce a distribution over possible
flows, and the objective of a player is to increase the flow expected
to reach her target vertex. While the probabilistic setting may seem
more stable, our negative results in the non-integral case may carry
over to it, as strategies that break an integral flow to fractions in
[0, 1] have a lot in common with strategies that direct this integral
flow according to probabilities in [0, 1].

Finally, MFGs motivate problems around network design, where
the goal is to design stable networks. In particular, in MFG repair,
we are given an MFG and we are asked to modify it in order to
achieve stability or reduce the PoS or PoA (see [3], for a similar
study in the context of repairing multi-agent systems with ω-regular
objectives). Allowed modifications may increase or decrease the
capacity of edges, change ownership of vertices, possibly assigning
some vertices to an authority. Each such modification has a cost, and
the goal is to understand the trade-off between the budget we have
for repairs and the achieved stability.

REFERENCES
[1] S. Agarwal, M. S. Kodialam, and T. V. Lakshman. 2013. Traffic engineering

in software defined networks. In Proc. 32nd IEEE International Conference on
Computer Communications. 2211–2219.

[2] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. 1993. Network flows: Theory, algo-
rithms, and applications. Prentice Hall Englewood Cliffs.

[3] S. Almagor, G. Avni, and O. Kupferman. 2015. Automatic Generation of Quality
Specifications. In Proc. 26th Int. Conf. on Concurrency Theory, Vol. 42. 325–339.

[4] E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler, and T. Roughgar-
den. 2008. The Price of Stability for Network Design with Fair Cost Allocation.
SIAM J. Comput. 38, 4 (2008), 1602–1623.

[5] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. 1990. Introduction to Algorithms.
MIT Press and McGraw-Hill.

[6] E.A. Dinic. 1970. Algorithm for solution of a problem of maximum flow in
a network with power estimation. Soviet Math. Doll 11, 5 (1970), 1277–1280.
English translation by RF. Rinehart.

[7] J. Edmonds and R.M. Karp. 1972. Theoretical improvements in algorithmic
efficiency for network flow problems. J. ACM 19, 2 (1972), 248–264.

[8] S. Even, A. Itai, and A. Shamir. 1976. On the Complexity of Timetable and
Multicommodity Flow Problems. SIAM J. Comput. 5, 4 (1976), 691–703.

[9] J. Feigenbaum, C.H. Papadimitriou, R. Sami, and S. Shenker. 2005. A BGP-based
mechanism for lowest-cost routing. Distributed Computing 18, 1 (2005), 61–72.

[10] L.R. Ford and D.R. Fulkerson. 1956. Maximal flow through a network. Canadian
journal of Mathematics 8, 3 (1956), 399–404.

[11] L.R. Ford and D.R. Fulkerson. 1962. Flows in networks. Princeton Univ. Press,
Princeton.

[12] A.V. Goldberg, É. Tardos, and R.E. Tarjan. 1989. Network flow algorithms.
Technical Report. DTIC Document.

[13] A.V. Goldberg and R.E. Tarjan. 1988. A new approach to the maximum-flow
problem. J. ACM 35, 4 (1988), 921–940.

[14] E. Kalai and E. Zemel. 1982. Totally balanced games and games of flow. Mathe-
matics of Operations Research 7, 3 (1982), 476–478.

[15] E. Koutsoupias and C. Papadimitriou. 2009. Worst-case equilibria. Computer
Science Review 3, 2 (2009), 65–69.

[16] O. Kupferman, G. Vardi, and M.Y. Vardi. 2017, to appear. Flow Games. In Proc.
37th Conf. on Foundations of Software Technology and Theoretical Computer
Science.

[17] O. Lichtenstein and A. Pnueli. 1985. Checking that Finite State Concurrent Pro-
grams Satisfy their Linear Specification. In Proc. 12th ACM Symp. on Principles
of Programming Languages. 97–107.

[18] J.F. Nash. 1950. Equilibrium points in n-person games. In Proceedings of the
National Academy of Sciences of the United States of America.

[19] N. Nisan, T. Roughgarden, E. Tardos, and V.V. Vazirani. 2007. Algorithmic Game
Theory. Cambridge University Press.

[20] C. H. Papadimitriou. 2001. Algorithms, games, and the Internet. In Proc. 33rd
ACM Symp. on Theory of Computing. 749–753.

[21] A. Pnueli and R. Rosner. 1989. On the Synthesis of a Reactive Module. In Proc.
16th ACM Symp. on Principles of Programming Languages. 179–190.

[22] É. Tardos. 1985. A strongly polynomial minimum cost circulation algorithm.
Combinatorica 5, 3 (1985), 247–255.

[23] S. Vissicchio, L. Vanbever, and O. Bonaventure. 2014. Opportunities and research
challenges of hybrid software defined networks. Computer Communication Review
44, 2 (2014), 70–75.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Equilibria in MFGs
	4 The Best-Response Problem
	5 MFGs with Drops
	6 Non-Integral MFGs
	7 Discussion
	References

