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ABSTRACT
Fast matrix multiplication algorithms are of practical use only if

the leading coefficient of their arithmetic complexity is sufficiently

small. Many algorithms with low asymptotic cost have large lead-

ing coefficients, and are thus impractical. Karstadt and Schwartz

have recently demonstrated a technique that reduces the leading

coefficient by introducing fast O(n2 logn) basis transformations,

applied to the input and output matrices.

We generalize their technique, by allowing larger bases for the

transformations while maintaining low overhead. Thus we acceler-

ate several matrix multiplication algorithms, beyond what is known

to be possible using the previous technique. Of particular inter-

est are a few new sub-cubic algorithms with leading coefficient 2,

matching that of classical matrix multiplication. For example, we ob-

tain an algorithmwith arithmetic complexity of 2nlog3 23+o(nlog3 23)
compared to 2n3 − n2 of the classical algorithm. Such new algo-

rithms can outperform previous ones (classical included) even on

relatively small matrices. We obtain lower bounds matching the

coefficient of several of our algorithms, proving them to be optimal.
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1 INTRODUCTION
Matrix Multiplication is a fundamental computation kernel, used

in many parallel and sequential algorithms. Improving its perfor-

mance has attracted the attention of many researchers. Strassen’s

algorithm [32] was the first sub-cubic matrix multiplication algo-

rithm. Since then, research regarding fast multiplication algorithms

has bifurcated into two main streams.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6184-2/19/06. . . $15.00

https://doi.org/10.1145/3323165.3323188

The first focuses on deriving asymptotic improvements by re-

ducing the exponent of the arithmetic complexity (cf. [4, 10, 11, 21,

28, 29, 31, 33, 37]). Often, these improvements come at the cost of

large “hidden constants”, rendering them impractical. Moreover, the

aforementioned algorithms are typically only applicable to matrices

of very large dimensions, further restricting their practicality.

The second line of research focuses on obtaining asymptotically

fast algorithms while maintaining lower hidden costs; allowing mul-

tiplication of reasonably-sized matrices (cf. [3, 16–20, 24, 25, 30, 34]).

These methods are thus more likely to have practical applications.

Within this line of research, several algorithms have been discov-

ered via computer-aided techniques (cf. [1, 3, 30]).

In 1978, Pan [24, 25] reduced the problem of matrix multiplica-

tion to the Triple-Product Trace, allowing the derivation of sev-

eral sub-cubic algorithms with relatively small base cases, such

as ⟨70, 70, 70; 143640⟩1, ⟨40, 40, 40; 36133⟩, and ⟨18, 18, 18; 3546⟩, al-

lowing multiplication in Θ(nω0 ), where ω0 = log
70
143640 ≈ 2.79,

ω0 = log
40
36133 ≈ 2.84, and ω0 = log

18
3546 ≈ 2.82, respectively.

In 2013, Smirnov [30] used computer-aided search to find base cases.

Notable among Smirnov’s algorithms are ⟨6, 3, 3; 40⟩-algorithm, and

⟨4, 3, 3; 29⟩-algorithm, allowing multiplication in Θ(nω0 ), where

ω0 = log
54
(403) ≈ 2.774 and ω0 = log

36
(293) ≈ 2.818, respectively.

Similarly, Ballard and Benson [3] used computer-aided techniques

to derive additional multiplication algorithms, such as ⟨5, 2, 2; 18⟩

and ⟨3, 2, 2; 11⟩, allowing multiplication in Θ(nω0 ), where ω0 =

log
20
18

3 ≈ 2.89 and ω0 = log
12
11

3 ≈ 2.89, respectively.

1.1 Previous Research
The hidden constants of the arithmetic complexity of recursive-

bilinear algorithms, including matrix multiplication, is determined

by the number of linear operations performed in the base case.

Strassen’s ⟨2, 2, 2; 7⟩-algorithm has a base-case with 18 additions,

resulting in a leading coefficient of 7. This was later reduced to 15

additions by Winograd [38], decreasing the leading coefficient from

7 to 6. Probert [27] and Bshouty [7] showed that 15 additions are

necessary for any ⟨2, 2, 2; 7⟩-algorithm, leading to the conclusion

that the leading coefficient of Strassen-Winograd is optimal for the

2 × 2 base case.

Karstadt and Schwartz [18] recently observed that these lower-

bounds implicitly assume the input and output are given in the

standard basis. Discarding this assumption allows further reduction

in the number of arithmetic operations from 15 to 12, decreasing

the leading coefficient to 5. The same approach, applied to other

algorithms, resulted in a significant reduction of the corresponding

leading coefficients (see Table 1). Moreover, Karstadt and Schwartz

extended the lower bounds due to Probert [27] and Bshouty [7]

by allowing algorithms that include basis transformations, thus

1
The notation ⟨n,m, k ; t ⟩ refers to an algorithm with a base case that multiplies

matrices of dimension n ×m,m × k using t scalar multiplications. See Notation 2.6
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Table 1: Examples of Decomposed Algorithms

Algorithm Leading Monomial

Linear Operations Leading Coefficient Improvement

Original [18] [Here] Original [18] [Here] Optimal [18] [Here]

⟨6, 3, 3; 40⟩ [30] nlog54 40
3

≈ n2.774 1246 202 6 55.63 9.39 7 ? 83.1% 87.4%

⟨2, 2, 2; 7⟩ [32] nlog2 7 ≈ n2.807 18 12 4 7 5 5 ✓ 28.6% 28.6%

⟨4, 3, 3; 29⟩ [30] nlog36 29
3

≈ n2.818 137 109 1 8.54 6.96 2 ✓ 18.5% 76.6%

⟨3, 3, 3; 23⟩ [3, 17, 20] nlog3 23 ≈ n2.854 97 61 1 7.93 5.36 2 ✓ 32.4% 74.8%

⟨5, 2, 2; 18⟩ [3] nlog20 18
3

≈ n2.894 53 32 1 6.98 4.46 2 ✓ 36.1% 71.3%

⟨3, 2, 2; 11⟩ [3] nlog12 11
3

≈ n2.894 22 18 1 5.06 4.6 2 ✓ 9.1% 60.5%

The leading monomial of rectangular ⟨n,m, k ; t ⟩-algorithms refers to their composition [15] into square ⟨nmk, nmk, nmk ; t 3 ⟩-algorithms. The improvement

column is the ratio between the leading coefficients of the arithmetic complexity of Alternative Basis [18] or Decomposed algorithms [Here], and the original

algorithms. The ⟨4, 3, 3; 29⟩, ⟨3, 3, 3; 23⟩, ⟨5, 2, 2; 18⟩, and ⟨3, 2, 2; 11⟩-algorithms are optimally decomposed with a leading coefficient matching that of the

classical algorithm, for up to three levels of decomposition (Definition 3.5). All optimally decomposed ⟨n,m, k ; t ⟩-algorithms with the leading coefficient 2

maintain the same coefficient when converted to square ⟨nmk, nmk, nmk ; t 3 ⟩-algorithms.

proving that their ⟨2, 2, 2; 7⟩-algorithm obtains an optimal leading

coefficient in the alternative basis regime.

Key to the approach of Karstadt and Schwartz are fast basis trans-

formations, which can be computed in O(n2 logn), asymptotically

faster than the matrix multiplication itself. These transformations

can be viewed as an extension of the “intermediate representation”

approach, which previously appeared in Bodrato’s [5] method for

matrix squaring.

Cenk and Hassan [8] developed a technique for computing multi-

plication algorithms, such as Strassen’s, which utilizes memoization,

allowing a reduction of the leading coefficient. Their approach ob-

tains a ⟨2, 2, 2; 7⟩-algorithm with a leading coefficient of 5, as in

Karstadt and Schwartz [18], albeit with larger exponents in the

low-order monomials.

1.2 Our Contribution
We extend Karstadt and Schwartz’s method for Alternative Basis

Multiplication. While the basis transformations of [18] are homo-

morphisms over the same linear space (i.e., changes of basis), we

consider transformations into a linear space of any intermediate

dimension (see Figure 1). Such transformations incur costs of low-

order monomials, as opposed to the O(n2 logn) cost of basis trans-
formations, but allow further reduction of the leading (and other)

coefficients.

We rely on the mixed-product property of the Kronecker Product

(Fact 3.2) to rearrange the computation graph, allowing us to aggre-

gate all the decompositions into a single stage of the algorithm. As

the aforementioned transformations correspond to low-order mono-

mials, we intentionally “offload” part of the computation onto them.

To this end, we utilize decompositions in which the matrices of

maps contributing to the leading monomial are sparse, whereas the

matrices of transformations contributing to low-order monomials

may be relatively dense.

We apply our decomposition scheme to several fast matrix mul-

tiplication algorithms, resulting in significant reduction of their

arithmetic complexity compared to previous techniques (Table 1).

We present several decomposed sub-cubic algorithms with leading

coefficient 2, matching that of the classical multiplication algorithm.

Such algorithms outperform previous ones (classical included) even

Figure 1: Illustrations of Recursive-Bilinear, Alternative Basis and Decomposed Matrix Multiplication



Table 2: Example of Arithmetic Complexity: ⟨3, 3, 3⟩-Algorithms

Algorithm Arithmetic Complexity

⟨3, 3, 3; 27⟩ Classical 2n3 − n2

⟨3, 3, 3; 23⟩ Original Algorithm [3, 17, 20] 7.93nlog3 23 − 6.93n2

⟨3, 3, 3; 23⟩ Alternative Basis [18] 5.36nlog3 23 + 3.22n2 log
3
n − 4.36n2

⟨3, 3, 3; 23⟩ Decomposed [Here] 2nlog3 23 + 6.75nlog3 21 − 7.75n2

⟨3, 3, 3; 23⟩ Fully Decomposed [Here] 2nlog3 23 + 3nlog3 20 + 2nlog3 14 + 2nlog3 12 + 2nlog3 11 + 33nlog3 10 − 43n2

In terms of arithmetic complexity, the fully decomposed algorithm outperforms all ⟨3, 3, 3⟩-algorithms for n ≥ 243 (see Figure 3)

on small matrices. In particular, we obtain decompositions with

said properties for ⟨4, 3, 3; 29⟩-algorithm [30], ⟨3, 3, 3; 23⟩-algorithm

[3, 17, 20], ⟨5, 2, 2; 18⟩-algorithm [3], and ⟨3, 2, 2; 11⟩-algorithm [3].

Furthermore, optimally decomposed algorithms maintain the lead-

ing coefficient of 2when converted into square ⟨nmk,nmk,nmk ; t3⟩-
algorithms. See Table 1 for a brief overview of these results.

Lastly, we obtain lower bounds for several of the leading coef-

ficients. We extend the lower bound of [18] for alternative basis

⟨2, 2, 2; 7⟩-algorithms, showing that even in our new framework, the

leading coefficient of any ⟨2, 2, 2; 7⟩-algorithm is at least 5, matching

the best known coefficient. Furthermore, we show that the leading

coefficient of any ⟨n,m,k ; t⟩-algorithm in our framework is at least

2, matching several of our obtained algorithms.

1.3 Paper Organization
In Section 2 we recall some preliminaries regarding recursive-

bilinear algorithms. In Section 3 we describe our Decomposed

Recursive-Bilinear Algorithm. We prove its correctness, and pro-

vide an analysis of its complexity. In Section 4 we show how our

approach can be applied to reduce the coefficients of low-order

monomials as well. In Section 5 we prove lower bounds on the

leading coefficient, and present algorithms obtaining this bound.

We also prove a lower bound on the leading coefficient of ⟨2, 2, 2; 7⟩-

algorithms. In Section 6 we present our sparsification method. Sec-

tion 7 contains a discussion of this work. Lastly, in Appendix A we

provide an example of a decomposed algorithm.

2 PRELIMINARIES
2.1 Notations

Notation 2.1. Let t ∈ N. The notation [t] represents the set:

[t] = {1, 2, . . . , t}

Notation 2.2. Let R be a ring and let l ,n,m ∈ N. Denote N =
nl ,M =ml . LetA ∈ RN×M be a matrix. DenoteAi, j the (i,j)-th block
of size N

n × M
m . The block-row order vectorization of A corresponding

to blocks of size N
n × M

m , is recursively defined as follows:

®A = ( ®A1,1 . . . ®A1,m . . . ®An,1 . . . ®An,m )T

Notation 2.3. Denote the number of non-zero entries in a matrix
by nnz(A) = |{x ∈ A : x , 0}|

Notation 2.4. Denote the number of non-singleton entries in a
matrix by nns(A) = |{x ∈ A : x < {0,+1,−1}}|.

Notation 2.5. Let R be a ring and let l ,n,m ∈ N. Denote N =
nl ,M =ml . Let a ∈ RNM be a vector, and let:

∀i ∈ [nm] : a(i) = (a NM
nm ·(i−1)+1, . . . ,a NM

nm ·i )

The block segmentation of a is denoted:

â = (a(1), . . . ,a(nm))T ∈ (R
NM
nm )nm

2.2 Recursive Bilinear Algorithms
Recursive bilinear algorithms use a divide-and-conquer strategy.

They utilize a fixed-size base case, allowing fast computation of

small inputs. For recursive-bilinear algorithms representing ma-

trix multiplication, we denote them by their base case using the

following notation.

Notation 2.6. A recursive-bilinear matrix multiplication algo-
rithm with a base case that multiplies matrices of dimension n ×m
andm × k using t scalar multiplications, is denoted by ⟨n,m,k ; t⟩.

Any such algorithm can be naturally extended into a recursive-

bilinear algorithm which multiplies matrices of dimensions nl ×

ml ,ml × kl , where l ∈ N. The input matrices are first segmented

into blocks of sizes
nl
n × ml

m ,
ml

m × k l
k , respectively. Subsequently,

linear combinations of blocks are performed directly, while scalar

multiplication of blocks is computed via recursive invocations of

the base algorithm. Once the blocks are decomposed into single

scalars, multiplication is performed directly.

The asymptotic complexity of an ⟨n,n,n; t⟩-algorithm isO(nω0 ),

where ω0 = loдn (t). In the rectangular case, the exponent of an

⟨n,m,k ; t⟩-algorithm is ω0 = loдnmk (t
3).

Any bilinear algorithm, matrix multiplication included, can be

described using three matrices, in the following form:

Fact 2.7. Bilinear Representation: Let R be a ring, and let n,m,k ∈

N. Let f (x ,y) : (Rn ·m × Rm ·k ) → Rn ·k be a bilinear algorithm
that performs t multiplications. There exist three matrices: U ∈

Rt×n ·m ,V ∈ Rt×m ·k ,W ∈ Rt×n ·k , such that:

∀x ∈ Rn×m ,y ∈ Rm×k
: f (x ,y) =WT ((U · ®x) ⊙ (V · ®y))

Where ⊙ is the Hadamard (element-wise) product.



Definition 2.8. Let R be a ring, and let U ∈ Rt×nm , V ∈ Rt×mk
,

W ∈ Rt×nk be three matrices. A recursive-bilinear algorithm with

the encoding matricesU ,V and the decoding matrixW , is defined

as follows:

Algorithm 1 Recursive-Bilinear Algorithm ALG ⟨U ,V ,W ⟩

Input: a ∈ R(nm)l ,b ∈ R(mk )l

Output: c = ALG ⟨U ,V ,W ⟩(a,b)
1: procedure ALG ⟨U ,V ,W ⟩(a,b)
2: ã = U · â ▷ Transform inputs (Notation 2.5)

3:
˜b = V · ˆb

4: if l = 1 then ▷ Base Case

5: c̃ =WT · (ã ⊙ ˜b) ▷ Scalar multiplication

6: else
7: for r = 1 to t do
8: c̃[r ] = ALG ⟨U ,V ,W ⟩(ã[r ], ˜b[r ]) ▷ Recursion

9: returnWT · c̃

Notation 2.9. A recursive-bilinear algorithm defined by the ma-
tricesU ,V ,W is denoted by ALG ⟨U ,V ,W ⟩ .

The following necessary and sufficient condition characterizes

the encoding and decoding matrices of matrix multiplication algo-

rithms:

Fact 2.10. Triple Product Condition [6]: Let R be a ring and let
m,n,k, t ∈ N. Let U ∈ Rt×nm ,V ∈ Rt×mk ,W ∈ Rt×nk . For every
r ∈ [t], denoteUr,(i, j) the element in the r’th row of U corresponding
to the input element Ai, j . Similarly, Vr,(i, j) corresponds to the input
element Bi, j , andWr,(i, j) to the output element (AB)i, j .U ,V are the
encoding matrices andW is the decoding matrix of an ⟨n,m,k ; t⟩-
algorithm if and only if:

∀i1, i2 ∈ [n],∀k1,k2 ∈ [m],∀j1, j2 ∈ [k]

t∑
r=1

Ur,(i1,k1)Vr,(k2, j1)Wr,(i2, j2) = δi1,i2δk1,k2δj1, j2

Where δi, j = 1 ⇔ i = j

Claim 2.11. Additive Complexity: [18] Encoding the inputs and
decoding the outputs of an ⟨n,m,k ; t⟩-algorithm using the correspond-
ing encoding/decoding matrices U ,V ,W incurs an arithmetic cost.
Let qu ,qv ,qw be the number of arithmetic operations performed by
the encoding and decoding matrices, correspondingly. Then:

qu = nnz(U ) + nns(U ) − rows(U )

qv = nnz(V ) + nns(V ) − rows(V )

qw = nnz(W ) + nns(W ) − cols(W )

We provide the proof of [18], for completeness.

Proof. Each row ofU ,V corresponds to a linear combination of

A,B’s elements. Each column ofW corresponds to combinations of

the multiplicands. The first non-zero entry in each row selects the

first element to include in the combination (at no arithmetic cost).

Each additional non-zero element indicates another element in the

combination, requiring an additional arithmetic operation. If the

entry is not a singleton, it requires an additional multiplication by

a scalar, thus requiring two operations in total. □

3 DECOMPOSED RECURSIVE-BILINEAR
ALGORITHM

In this section we present the Decomposed Recursive-Bilinear Al-

gorithm. To this end, we first define the notion of fast recursive

transformations, which will be key to our algorithm. Next, we

present the algorithm itself, followed by a proof of its correctness,

and an analysis of its arithmetic complexity.

3.1 Fast Recursive Transformation
By Claim 2.11, the additive complexities qu ,qv ,qw are determined

by the amount of non-zeros and non-singletons in the matrices

U ,V ,W . Thus, sparsifying these matrices accelerates their corre-

sponding algorithms. To this end, we now define a set of efficiently

computable recursive transformations which will later be leveraged

to increase the sparsity of the encoding/decoding matrices.

Definition 3.1. (Generalization of [18]). Let R be a ring. Let φ1 :
Rs1 → Rs2 be a linear transformation. Let l ∈ N and denote

S1 = (s1)
l
, S2 = (s2)

l
. Let v ∈ RS1 , and denote ∀i ∈ [s1] : v

(i) =

(v S
1

s
1

·(i−1)+1, . . . ,v S
1

s
1

·i ). The linearmapφl : R
S1 → RS2 is recursively-

defined as follows:

φl (v) = φ1

©«
φl−1(v

(1))

φl−1(v
(2))

...

φl−1(v
(s1))

ª®®®®®¬
Where φ1 is applied to a vector of s1 elements in R

S
1

s
1 .

Applying the recursively-defined φl to the block-row order vec-

torization (as in Definition 2.2) of a matrix A ∈ RN×M
yields:

φl ( ®A) = φ1

©«
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→©«
φl−1( ®A1,1) . . . φl−1( ®A1,m )

...
. . .

...

φl−1( ®An,1) . . . φl−1( ®An,m )

ª®®®¬
ª®®®®¬

3.2 Analysis of Recursive-Bilinear Algorithms
Fact 3.2. Mixed-Product Property [36]: Denote by ⊗ the Kronecker

product. Let A,B ∈ Rm1×n1 and C,D ∈ Rm2×n2 be two matrices. The
following equality holds:

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD)

Claim 3.3. Let R be a ring. Let φ1 : Rs1 → Rs2 be a linear trans-
formation. Let l ∈ N and denote S1 = (s1)

l , S2 = (s2)
l . Let ®v ∈ RS1 .

Denote by ⊗ the Kronecker product. Then:

φl (®v) = (φ1 ⊗ · · · ⊗ φ1)︸             ︷︷             ︸
l t imes

· ®v := (⊗l φ1) · ®v

Proof. The proof is by induction on l . The base case (l = 1) is

immediate, since:

φ1(®v) = (⊗1 φ1)®v



We next assume the claim holds for (l − 1) ∈ N and show it holds

for l . Observe that:

φl (®v) = φ1
(
φl−1(v

(1)),φl−1(v
(2)), . . . ,φl−1(v

(s1))
)T

= φ1
(
(⊗l−1 φ1)v

(1), (⊗l−1 φ1)v
(2), . . . , (⊗l−1 φ1)v

(s1)
)T

= (φ1 ⊗ φ1−1) · ®v := (⊗l φ1) · ®v

Where the first equality is by the definition of φl , the second is by

the induction hypothesis, and the last equality is by the definition

of the Kronecker product. □

Lemma 3.4. Let R be a ring. Let U ∈ Rt×nm , V ∈ Rt×mk ,W ∈

Rt×nk be three matrices and let ALG ⟨U ,V ,W ⟩ be a recursive-bilinear
algorithm defined byU ,V ,W . Let l ∈ N and denote N = nl ,M =ml ,
K = kl . Let a ∈ RNM and b ∈ RMK be two vectors. Then:

ALG ⟨U ,V ,W ⟩(a,b) =W
T
l · ((Ul · a) ⊙ (Vl · b))

Proof. The proof is by induction on l . The base case (l = 1) is

immediate, since by definition of a recursive-bilinear algorithm,

∀x ∈ Rnm , ∀y ∈ Rmk
:

ALG ⟨U ,V ,W ⟩(x ,y) =W
T · ((U ·x)⊙(V ·y)) =WT

1
· ((U1 ·x)⊙(V1 ·y))

We next assume the claim holds for (l − 1) ∈ N and show it holds

for l . Denote â, ˆb the block segmentations (Notation 2.5) of a and b,
respectively. Let:

∀i ∈ [t] : ci = ALG ⟨U ,V ,W ⟩

(
(U · â)i , (V · ˆb)i

)
By the induction hypothesis:

ci =W
T
l−1 · ((Ul−1 · (U · â)i ) ⊙ (Vl−1 · (V · ˆb)i ))

However:

©«
Ul−1 · (U · â)1

...

Ul−1 · (U · â)t

ª®®¬ =
©«
u1,1 ·Ul−1 . . . u1,nm ·Ul−1
...

. . .
...

ut,1 ·Ul−1 . . . ut,nm ·Ul−1

ª®®¬i · â = Ul · a
Where the last equality follows by Claim 3.3. The same applies to

V . Therefore by the definition of ALG ⟨U ,V ,W ⟩ :

ALG ⟨U ,V ,W ⟩(a,b) =W
T · (c1 . . . ct )

T

=WT ·

©«
WT
l−1

(
Ul−1 · (U · â)1) ⊙ (Vl−1 · (V · ˆb)1

)
...

WT
l−1

(
Ul−1 · (U · â)t ) ⊙ (Vl−1 · (V · ˆb)t

)
ª®®®®¬

=WT
l ((Ul · a) ⊙ (Vl · b))

Where the last equality follows by Claim 3.3. □

3.3 Decomposed Bilinear Algorithm
LetU ,V andW be the encoding/decoding matrices of a recursive-

bilinear algorithm. LetU = Uφ ·φ,V = Vψ ·ψ andW =Wτ ·τ be de-

compositions of the aforementionedmatrices, and letALG ⟨Uφ ,Vψ ,Wτ ⟩

be a recursive-bilinear algorithm defined by the encoding and de-

coding matricesUφ ,Vψ andWτ (Algorithm 1). Let l ∈ N and denote

N = nl ,M =ml
. The Decomposed Recursive-Bilinear Algorithm is

defined as follows:

Algorithm 2 Decomposed Recursive-Bilinear Algorithm

Input: a ∈ RN ,b ∈ RM

Output: c = ALG ⟨U ,V ,W ⟩(a,b)
1: function DRB(a,b)

2: ã = φl (a) ▷ Transform the first input

3:
˜b = ψl (b) ▷ Transform the second input

4: c̃ = ALG ⟨Uφ ,Vψ ,Wτ ⟩(ã,
˜b) ▷ Recursive-bilinear phase

5: c = τTl (c̃) ▷ Transform the output

6: return c

3.4 Correctness
In this sectionwe prove that output ofDRB (Algorithm 2) is identical

to the output of a recursive-bilinear algorithm with the encoding

and decoding matricesU ,V andW (Algorithm 1).

Definition 3.5. LetU ∈ Rt×nm , V ∈ Rt×mk
,W ∈ Rt×nk be three

matrices. Let:

Uφ ∈ Rt×(t−ru )

Vψ ∈ Rt×(t−rv )

Wτ ∈ Rt×(t−rw )

φ ∈ R(t−ru )×nm

ψ ∈ R(t−rv )×mk

τ ∈ R(t−rw )×nk

ru ∈ [t − nm]

rv ∈ [t −mk]

rw ∈ [t − nk]

Where U = Uφ · φ, V = Vψ · ψ , and W = Wτ · τ . We refer to

Uφ ,Vψ ,Wτ ,φ,ψ ,τ as a decomposition of U , V , andW with levels
ru ,rv , and rw , correspondingly.

Lemma 3.6. Let R be a ring. Let l ∈ N and denote N = nl ,M =ml ,
K = kl . Let a ∈ RNM , b ∈ RMK be two vectors. LetU ∈ Rt×nm ,V ∈

Rt×mk , andW ∈ Rt×nk be three matrices, and letUφ ,Vψ ,Wτ ,φ,ψ ,τ
be a decomposition ofU , V ,W with levels ru ,rv ,rw , as in Definition
3.5. Let ALG ⟨Uφ ,Vψ ,Wτ ⟩ be a recursive-bilinear algorithm defined by

Uφ ,Vψ ,Wτ , and denote ã = φl (a), ˜b = ψl (b). The following equality
holds:

ALG ⟨Uφ ,Vψ ,Wτ ⟩(ã,
˜b) =Wτ

T
l · ((Ul · a) ⊙ (Vl · b))

Proof. ALG ⟨Uφ ,Vψ ,Wτ ⟩ is a recursive-bilinear algorithm which

uses the encoding/decodingmatricesUφ ,Vψ ,Wτ , therefore by Lemma

3.4, ∀x ∈ RNM ,∀y ∈ RMK
:

ALG ⟨Uφ ,Vψ ,Wτ ⟩(x ,y) =Wτ
T
l ((Uφ l · x) ⊙ (Vψ l · y))

Observe the following equality:

Uφ l · φl = (Uφ ⊗ Uφ l−1) · (φ ⊗ φl−1)) Claim 3.3

= (Uφφ) ⊗ (Uφ l−1φl−1) Fact 3.2

= U ⊗ (Uφ l−1φl−1) Definition of U

= U ⊗ · · · ⊗ U = Ul

Similarly, Vψ l ·ψl = Vl andWτ l · τl =Wl . Therefore, applying

ALG ⟨Uφ ,Vψ ,Wτ ⟩ to ã,
˜b yields:

ALG ⟨Uφ ,Vψ ,Wτ ⟩(ã,
˜b) =Wτ

T
l ((Uφ l · ã) ⊙ (Vψ l ·

˜b))

=Wτ
T
l ((Uφ l · φl · a) ⊙ (Vψ l ·ψl · b))

=Wτ
T
l (((Uφ l · φl ) · a) ⊙ ((Vψ l ·ψl ) · b))

=Wτ
T
l · ((Ul · a) ⊙ (Vl · b)) □



Theorem 3.7. Let R be a ring. Let l ∈ N and denote N = nl ,M =
ml ,K = kl . LetU ∈ Rt×nm ,V ∈ Rt×mk ,W ∈ Rt×nk be three matri-
ces, and let Uφ ,Vψ ,Wτ ,φ,ψ ,τ be a decomposition of U , V ,W with
levels ru ,rv ,rw , as in Definition 3.5. Let DRB be defined as in Algo-
rithm 2, and let ALG ⟨U ,V ,W ⟩ , ALG ⟨Uφ ,Vψ ,Wτ ⟩ be recursive-bilinear
algorithms. The output of DRB satisfies:

∀a ∈ RNM ,∀b ∈ RMK
: DRB(a,b) = ALG ⟨U ,V ,W ⟩(a,b)

Proof. Denote ã = φl (a), ˜b = ψl (b). By Lemma 3.6:

ALG ⟨Uφ ,Vψ ,Wτ ⟩(ã,
˜b) =Wτ

T
l ((Ul · a) ⊙ (Vl · b))

Therefore by the definition of DRB:

DRB(a,b) = τTl · ALG ⟨Uφ ,Vψ ,Wτ ⟩(ã,
˜b)

= τTl ·Wτ
T
l · ((Ul · a) ⊙ (Vl · b))

= (Wτ l · τl )
T · ((Ul · a) ⊙ (Vl · b))

=WT
l · ((Ul · a) ⊙ (Vl · b))

Where the second equality follows from Lemma 3.6 and the

fourth equality follows from the identityWτ l · τl =Wl in Lemma

3.6. □

Corollary 3.8. LetU ,V andW be the encoding and decoding ma-
trices of an ⟨n,m,k ; t⟩-algorithm. Then ∀A ∈ Rn

l×ml
,∀B ∈ Rm

l×k l
:

DRB( ®A, ®B) = ALG ⟨U ,V ,W ⟩(
®A, ®B) =

−−−→
A · B

3.5 Arithmetic Complexity
We next analyze the arithmetic complexity of Algorithm 2. To this

end, we first compute the arithmetic complexity of an ⟨n,m,k ; t⟩-
algorithm.

Claim 3.9. Let R be a ring and let ALG be a recursive-bilinear
⟨n,m,k ; t⟩-algorithm. Let l ∈ N and denote N = nl ,M =ml , K = kl .
Let A ∈ RN×M ,B ∈ RM×K be two matrices. Let qu ,qv ,qw be the
additive complexities (as in Claim 2.11) of the encoding/decoding
matrices. The arithmetic complexity of ALG(A,B) is:

FALG (N ,M,K) =
( qu
t − nm

+
qv

t −mk
+

qw
t − nk

+ 1
)
· t l

−
qu

t − nm
· NM −

qv
t −mk

·MK −
qw

t − nk
· NK

Proof. ALG is a recursive algorithm. In each step, ALG invokes

t recursive calls on blocks of size
N
n × M

m and
M
m × K

k . During the

encoding phase, ALG performs qu arithmetic operations on blocks

of size
NM
nm and qv operations on blocks of size

MK
mk . During the

decoding phase, qw arithmetic operations are performed on blocks

of size
NK
nk . Therefore:

FALG (N ,M,K) =t · FALG

(N
n
,
M

m
,
K

k

)
+

qu ·

(NM

nm

)
+ qv ·

(MK

mk

)
+ qw ·

(NK

nk

)

Moreover, FALG (1, 1, 1) = 1 since multiplying two scalar values

requires a single arithmetic operation. Thus:

FALG (N ,M,K)

= t · FALG

(N
n
,
M

m
,
K

k

)
+ qu ·

(NM

nm

)
+ qv ·

(MK

mk

)
+ qw ·

(NK

nk

)
=

l−1∑
r=0

(( quNM

(nm)r+1
+

qvMK

(mk)r+1
+

qwNK

(nk)r+1

)
tr

)
+ t l · FALG (1, 1, 1)

=
quNM

nm

l−1∑
r=0

( t

nm

)
+
qvMK

mk

l−1∑
r=0

( t

mk

)
+
qwNK

nk

l−1∑
r=0

( t

nk

)
+ t l

= qu ·
t l − NM

t − nm
+ qv ·

t l −MK

t −mk
+ qw ·

t l − NK

t − nk
+ t l

=
( qu
t − nm

+
qv

t −mk
+

qw
t − nk

+ 1
)
· t l

−
qu

t − nm
· NM −

qv
t −mk

·MK −
qw

t − nk
· NK

□

Corollary 3.10. Denote q = qu + qv + qw . The arithmetic com-
plexity of an ⟨n,n,n; t⟩-algorithm is:( q

t − n2
+ 1

)
N loдn (t ) −

q

t − n2
· N 2

Proof. Observe that l = loдn (N ), thus t l = N loдn (t )
. Substitut-

ing this equality in Claim 3.9 and letting N = M = K , yields the
expression above. □

Claim 3.11. Let R be a ring and let φ1 : Rs1 → Rs2 be a linear
transformation, where s1 , s2. Denote by qφ the additive complexity
(as in Claim 2.11) of φ1. Let l ∈ N and denote S1 = (s1)

l , S2 = (s2)
l .

Let v ∈ RS1 be a vector. The arithmetic complexity of computing
φl (v) is:

Fφ (S1) =
qφ

s1 − s2
· (S1 − S2)

Proof. φl (v) is computed recursively. In each recursive call, φ1
is invoked on each of the s1 blocks of v , whose sizes are

S1
s1 . In each

call, φ1 performs qφ arithmetic operations on the resulting blocks,

whose sizes are
S2
s2 . Therefore:

Fφ (S1) = s1 · Fφ

(
S1
s1

)
+ qφ ·

S2
s2

Moreover, Fφ (1) = 0 since handling a single scalar value requires

no operations. Thus:

Fφ (S1) =
l−1∑
r=0

(s1)
r · qφ

S2
(s2)r+1

= qφ ·
S2
s2

·

l−1∑
r=0

(
s1
s2

)r
=

qφ · S2

s2
·

(
S1
S2

− 1

)
·

s2
s1 − s2

=
qφ

s1 − s2
· (S1 − S2)

The expression above holds for s1 , s2. If s1 = s2 the complexity is:

Fφ (S1) =
l−1∑
r=0

(s1)
r · qφ

S1
(s1)r+1

=
qφ

s1
· S1 · logs1 S1 □



We now compute the arithmetic complexity incurred by the

“core” of the algorithm; the recursive-bilinear ALG ⟨Uφ ,Vψ ,Wτ ⟩ .

Claim 3.12. Let R be a ring and let U ,V andW be the matrices
of an ⟨n,m,k ; t⟩-algorithm, where U ∈ Rt×nm , V ∈ Rt×mk ,W ∈

Rt×nk , and let Uφ ,Vψ ,Wτ ,φ,ψ ,τ be a decomposition of U , V ,W
with levels ru ,rv ,rw , as in Definition 3.5. Let quφ , qvψ , qwτ be the
additive complexities of Uφ ,Vψ ,Wτ , correspondingly. Let l ∈ N and
denote (mu ,mv ,mw ) = (t − ru , t − rv , t − rw ) and (Mu ,Mv ,Mw ) =

(mu
l ,mv

l ,mw
l ). Similarly, denote (N ,M,K) = (nl ,ml ,kl ). Let A ∈

RN×M , B ∈ RM×K and denote Ã = φl (A) ∈ RMu , B̃ = ψl (B) ∈ RMv .
Let ALG ⟨Uφ ,Vψ ,Wτ ⟩ be a recursive-bilinear algorithm defined by the
matricesUφ , Vψ andWτ .

The arithmetic complexity of ALG ⟨Uφ ,Vψ ,Wτ ⟩(Ã, B̃) is:

FALG (Mu ,Mv ) =(
quφ

ru
+
qvψ

rv
+
qwτ
rw
+ 1

)
· t l −

quφ

ru
·Mu −

qvψ

rv
·Mv −

qwτ
rw

·Mw

Proof. ALG ⟨Uφ ,Vψ ,Wτ ⟩ is a recursive algorithm. In each step,

ALG ⟨Uφ ,Vψ ,Wτ ⟩ performs t recursive calls (multiplications) of blocks

of size
Mu
mu
, Mv
mv

, producing blocks of size
Mw
mw

. EncodingU requires

quφ arithmetic operations on blocks of size
Mu
mu

. Similarly, encoding

V requires qvψ arithmetic operations on blocks of size
Mv
mv

. Decod-

ing the multiplicands requires qwτ arithmetic operations on blocks

of size
Mw
mw

. Therefore:

FALG (Mu ,Mv ) = t · FALG

(Mu
mu
,
Mv
mv

)
+ quφ ·

Mu
mu
+ qvψ ·

Mv
mv
+ qwτ ·

Mw
mw

Furthermore, observe that FALG (1, 1) = 1 since multiplying

scalar values requires a single arithmetic operation. Therefore:

FALG (Mu ,Mv ) =

[ l−1∑
r=0

(
quφ

Mu

mr+1
u
+ qvψ

Mv

mr+1
v
+ qwτ

Mw

mr+1
w

)
· tr

]
+
quφMu

ru

(
t l

Mu
− 1

)
+
qvψMv

rv

(
t l

Mv
− 1

)
+
qwτMw

rw

(
t l

Mw
− 1

)
+ t l

=

(
quφ

ru
+
qvψ

rv
+
qwτ
rw
+ 1

)
· t l −

quφ

ru
·Mu

−
qvψ

rv
·Mv −

qwτ
rw

·Mw

□

Theorem 3.13. Let R be a ring. Let l ∈ N and denote N = nl ,M =
ml ,K = kl . Let A ∈ RN×M ,B ∈ RM,K be two matrices. Let DRB
be as defined in Algorithm 2, and let Uφ ,Vψ ,Wτ ,φ,ψ ,τ be a de-
composition of U , V , W with levels ru ,rv ,rw , as in Definition 3.5.
Let ALG ⟨Uφ ,Vψ ,Wτ ⟩ be a recursive-bilinear algorithm defined by the

matricesUφ ,Vψ ,Wτ . The arithmetic complexity of DRB(A,B) is:

FDRB (N ,M,K) = Fφ (NM) + Fψ (MK) + FALG (Mu ,Mv ) + Fτ (Mw )

=

(
quφ

ru
+
qvψ

rv
+
qwτ
rw
+ 1

)
· t l

+

(
qφ

t − ru − nm
−
quφ

ru

)
· (t − ru )

l

+

(
qψ

r − rv −mk
−
qvψ

rv

)
· (t − rv )

l

+

(
qτ

t − rw − nk
−
qwτ
rw

)
· (t − rw )l

−
qφ · NM

t − ru − nm
−

qψ ·MK

t − rv −mk
−

qτ · NK

t − rw − nk

Proof. We compute the arithmetic complexity by adding up

the complexities of each stage. We use Claim 3.11 to compute the

complexities of the two initial transformations φl ( ®A) andψl ( ®B), and
of the final transformation τl (C̃). Using Claim 3.12 we compute

the arithmetic complexity of ALG ⟨Uφ ,Vψ ,Wτ ⟩(Ã, B̃). Adding up all

terms yields the expression above. □

Corollary 3.14. The leading coefficient of DRB is:
quφ

ru
+
qvψ

rv
+
qwτ
rw
+ 1

3.6 IO-Complexity
We next analyze the IO-Complexity of the fast recursive transforma-

tions (Subsection 3.1). Our analysis corresponds to the sequential

model with two memory levels, where the fast memory is of size

M . In this model the IO Complexity captures the number of trans-

fers between the memory hierarchy, namely to and from the fast

memory. Results of computations can be written out directly to the

main memory without necessitating transfers from fast memory.

Claim 3.15. (Generalization of [18]). Let R be a ring, and let φ1 :
Rs1 → Rs2 be a linear transformation. Denote by qφ the additive
complexity of φ1. Let l ∈ N and denote S1 = (s1)

l , S2 = (s2)
l . Let v ∈

RS1 be a vector. Let f = logs1
S1√
M
2

. The IO-Complexity of computing

φl (v) is:

IOφ (S1,M) =

(
3qφ

s1 − s2
·

((
s1
s2

) f
− 1

))
· S2 +

(
2 ·

M + (s2)
f

M

)
· S1

Proof. The proof is similar to that of the arithmetic complexity

(Claim 3.11), the main difference being the halting criteria and

the complexity at the base-case. φl is computed recursively. At

each step, φl−1 is applied s1 times to vectors of size
S1
s1 , producing

vectors of size
S2
s2 . When 2S1 ≤ M , two input blocks fit inside the

fast memory, requiring only M read operations, and the output

is written out requiring S2 writes. When the problem does not fit

inside fast memory, each addition requires at most 3 data transfers:

2 reads for the inputs, and one write for the output. Therefore:

IOφ (S1,M) ≤

{
s1 · IOφ

(
S1
s1 ,M

)
+ 3qφ ·

S2
s2 2S1 > M

M + S2 2S1 ≤ M



Solving the recurrence we obtain:

IOφ (S1,M) ≤

f −1∑
r=0

(
3qφ ·

(s1)
r

(s2)l−r−1

)
+ (M + (s2)

f ) ·
2S1
M

= 3qφ · (s2)
l−1

f −1∑
r=0

(
s1
s2

)r
+ (M + (s2)

f ) ·
2S1
M

=

(
3qφ

s1 − s2
·

((
s1
s2

) f
− 1

))
· S2 +

(
2 ·

M + (s2)
f

M

)
· S1

□

4 FULL DECOMPOSITION
In Section 3.3 we demonstrated a decomposition in which each

of the encoding/decoding matrices of an ⟨n,m,k ; t⟩-algorithm is

split into a pair of matrices. We refer to such a decomposition as

a first-order decomposition. First-order decompositions allowed a

reduction of the leading coefficient, at the cost of introducing new

low-order monomials. The same approach can then be repeatedly

applied to the output of the decomposition, thus also reducing the

coefficients of low-order monomials (see Figure 2).

Definition 4.1. Let Q ∈ Rt×s be an encoding or decoding ma-

trix of an ⟨n,m,k ; t⟩-algorithm. The c-order decomposition of Q is

defined as:

Q = Qφ · φ(1) · φ(2) ·... ·φ
(c) = Qφ ·

c∏
i=1

φ(i)

Where φ(i) ∈ Rhi×hi+1 , and ∀i ∈ [c] : hi > hi+1. Furthermore,

hc = s .

Interestingly, full decompositions may result in zero coefficients

for some of the lower-order monomials. In the first-order decompo-

sition, the decomposition level (see Definition 3.5) determines the

degree of the lower-order monomial; higher decomposition levels

yield lower-degree monomial incurred by the transformation cost

(Claim 3.11). In a full decomposition, some lower-order monomials

might cancel out altogether, as their transformation costs may can-

cel out some terms telescopically. See Table 2 for an example of the

full decomposition of the ⟨3, 3, 3; 23⟩-algorithm.

5 LOWER BOUNDS
5.1 Optimal Decomposition
We decomposed the matrices corresponding to several matrix mul-

tiplication algorithms. Some algorithms exhibited an optimal de-
composition, namely the leading coefficient of their arithmetic

complexity is 2. This is optimal, as shown in the following claim:

Claim 5.1. Let U ,V ,W be the encoding/decoding matrices of an
⟨n,m,k ; t⟩-algorithm. W.l.o.g, none of U ,V ,W contain an all-zero
row 2. The leading coefficient of the arithmetic complexity of DRB
(Algorithm 2) is at least 2.

Proof. Let Uφ ,Vψ ,Wτ ,φ,ψ ,τ be a decomposition of U , V ,W
with levels ru ,rv ,rw , as in Definition 3.5. By Claim 2.11, the additive

2
Otherwise an ⟨n,m, k ; t − 1⟩-algorithm is automatically implied, see Claim 5.2

Figure 2: Full Decomposition Scheme

complexities satisfy:

quφ = nnz(Uφ ) + nns(Uφ ) − rows(Uφ )

qvψ = nnz(Vψ ) + nns(Vψ ) − rows(Vψ )

qwτ = nnz(Wτ ) + nns(Wτ ) − cols(Wτ )

As U ,V ,W do not have all-zero rows, neither can Uφ , Vψ ,Wτ .

Consequently, Uφ , Vψ ,Wτ all have at least one non-zero element

in every row:

nnz(Uφ ) ≥ rows(Uφ )

nnz(Vψ ) ≥ rows(Vψ )

nnz(Wτ ) ≥ rows(Wτ )

Therefore:

quφ ≥ 0, qvψ ≥ 0

qwτ ≥ rows(Wτ ) − cols(Wτ ) = rw

The proof now follows from Corollary 3.14. □

We note that all classical multiplication algorithms optimally

decompose. However, the leading coefficient of classical algorithms

is already 2 without decompositions, the minimal leading coeffi-

cient. Therefore, their decomposition does not allow for any further

acceleration.

5.2 A Lower-Bound on the Leading Coefficient
of ⟨2, 2, 2; 7⟩-algorithms

Probert [27] and Bshouty [7] showed that 15 additions are necessary

for any ⟨2, 2, 2; 7⟩-algorithm, assuming the input and output are

given in the standard basis. Karstadt and Schwartz proved a lower-

bound of 12 arithmetic operations for any ⟨2, 2, 2; 7⟩-algorithm,

regardless of the input and output bases, thus showing their algo-

rithm obtains the optimum.

In the decomposed matrix multiplication regime, the input and

output are given in bases of a different dimension. This could have



Figure 3: Comparing the Arithmetic Complexity of the
classical algorithm, ⟨3, 3, 3; 23⟩-algorithm [3, 17, 20], al-
ternative basis ⟨3, 3, 3; 23⟩-algorithm [18], decomposed
⟨3, 3, 3; 23⟩-algorithm [here], and fully decomposed
⟨3, 3, 3; 23⟩-algorithm [here]

allowed for sidestepping the aforementioned lower bound, by re-

quiring a smaller number of linear operations and thus, perhaps,

a smaller leading coefficient. We prove that this is not the case.

Namely, we prove that while 12 arithmetic operations are not re-
quired in this model (indeed 4 suffice), the leading coefficient of

any ⟨2, 2, 2; 7⟩-algorithm remains at least 5, regardless of the de-

composition level used.

Lemma 5.2. LetQ be an encoding/decoding matrix of a ⟨2, 2, 2; 7⟩-
algorithm. Q has no all-zero rows.

Proof. Winograd showed [38] the minimal number of multipli-

cations for any ⟨2, 2, 2⟩-algorithm is 7. Assume towards a contra-

diction that Q is an encoding matrix with an all zeros row. Thus,

the corresponding multiplicand is zero, allowing the output to be

computed using only 6 multiplications, in contradiction to Wino-

grad’s lower bound. Similarly, if Q is a decoding matrix with an

all zeros row, the corresponding multiplicand would always be dis-

carded, once again allowing 6 multiplications, in contradiction to

Winograd’s lower bound. □

Corollary 5.3. Qφ has no all-zero rows, since a zero row in Qφ
implies such a row in Q .

Lemma 5.4. ([16]) Let Q be an encoding/decoding matrix of a
⟨2, 2, 2; 7⟩-algorithm. Q has no duplicate rows.

Corollary 5.5. Qφ has no duplicate rows, since duplicate rows
in Qφ imply duplicates in Q .

Claim 5.6. Let ALG be a ⟨2, 2, 2; 7⟩-algorithm. The leading coeffi-
cient of ALG is 5.

Proof. LetU ,V ,W ∈ R7×4 be the encoding/decoding matrices

of ALG. Denote their decomposition as follows:

Uφ ∈ R7×(t−ru )

Vψ ∈ R7×(t−rv )

Wτ ∈ R7×(t−rw )

φ ∈ R(7−ru )×4

ψ ∈ R(7−rv )×4

τ ∈ R(7−rw )×4

ru ∈ [3]

rv ∈ [3]

rw ∈ [3]

For r = 3, the matrices φ,ψ ,τ are square, therefore this case

is identical to the Alternative Basis model, in which each encod-

ing/decoding matrix must have at-least 10 non-zero elements [18],

therefore:

quφ = nnz(Uφ ) − rows(Uφ ) ≥ 10 − 7 = 3

qvψ = nnz(Vψ ) − rows(Vψ ) ≥ 10 − 7 = 3

qwτ = nnz(Wτ ) − cols(Wτ ) ≥ 10 − 4 = 6

Next, we handle the decomposition level r = 2. Let Q be an en-

coding/decodingmatrix of a ⟨2, 2, 2; 7⟩-algorithm, and letQ = Qφ ·φ,

where Qφ ∈ R7×5, φ ∈ R5×4. By Corollary 5.3, each of Qφ ’s rows
contain at least a single non-zero element. However, by Corollary

5.5, there are at most 5 such rows, therefore the remaining two

rows must contain at-least two non-zero elements. Consequently:

nnz(Qφ ) ≥ 5 + 2 + 2 = 9

Thus, the corresponding additive complexities satisfy:

quφ = nnz(Uφ ) − rows(Uφ ) ≥ 9 − 7 = 2

qvψ = nnz(Vψ ) − rows(Vψ ) ≥ 9 − 7 = 2

qwτ = nnz(Wτ ) − cols(Wτ ) ≥ 9 − 5 = 4

Lastly, we handle the decomposition level r = 1. Let Q be an

encoding/decoding matrix of a ⟨2, 2, 2; 7⟩-algorithm. Q = Qφ · φ,

where Qφ ∈ R7×6, φ ∈ R6×4. Once again, by Corollaries 5.3 and

5.5, Qφ has no duplicate rows, and at least one non-zero element

in each row. Therefore, 6 of Qφ ’s rows have at least one non-zero
element, and the remaining row must contain at least 2 non-zeros.

Therefore nnz(Qφ ) ≥ 8, and:

quφ = nnz(Uφ ) − rows(Uφ ) ≥ 8 − 7 = 1

qvψ = nnz(Vψ ) − rows(Vψ ) ≥ 8 − 7 = 1

qwτ = nnz(Wτ ) − cols(Wτ ) ≥ 8 − 6 = 2

Putting the above terms together, we observe that irrespective

of the decomposition dimension, the arithmetic costs satisfy:

cost(Uφ ) =
quφ

ru
=

ru=3

3

3

=
ru=2

2

2

=
ru=1

1

1

= 1

cost(Vψ ) =
qvψ

rv
=

rv=3

3

3

=
rv=2

2

2

=
rv=1

1

1

= 1

cost(Wτ ) =
qwτ
rw

=
rw=3

6

3

=
rw=2

4

2

=
rw=1

2

1

= 2

Thus by Corollary 3.14, in all cases the leading coefficient is:

cost(Uφ ) + cost(Vψ ) + cost(Wτ ) + 1 = 5 □



6 FINDING SPARSE DECOMPOSITIONS
As the additive complexity of an ⟨n,m,k ; t⟩-algorithm is determined

by the number of non-zero and non-singleton elements in its en-

coding/decoding matrices (see Claim 2.11), we seek sparse decom-

positions of the aforementioned matrices, preferably containing

only singletons.

Formally, let Q ∈ Rt×n be an encoding or decoding matrix, and

let r ∈ [t−n]. We seek a decomposition ofQ intoQφ ∈ Rt×(t−r ),φ ∈

R(t−r )×n , satisfying:

minimize :

subject to :

nnz(Qφ ) + nns(Qφ )

Q = Qφ · φ

We focus here on minimizing non-zeros, for two main reasons.

First, many encoding/decoding matrices contain only singleton

values, and moreover our resulting decompositions have only sin-

gletons. Furthermore, minimizing the number of non-zeros also

bounds the number of non-singletons, as nns(A) ≤ nnz(A).
The optimization problem above whose objective is minimizing

only the number of non-zeros is known as the Dictionary Learning

problem, which is NP-Hard and hard to approximate [14, 35] within

a factor of 2
log

1−ϵ m
, ∀ϵ > 0 (unless NP ⊆ DTIME

(
mpoly(logm)

)
).

Nevertheless, due to the relatively small dimensions of many prac-

tical ⟨n,m,k ; t⟩-algorithm base cases, the aforementioned prob-

lem can feasibly be tackled with currently available computational

power.

Claim 6.1. LetQ be an encoding or decodingmatrix of an ⟨n,m,k ; t⟩-
algorithm, and let r ∈ N be the level decomposition we seek to obtain
for Q . If Q has no all-zero rows, then Qφ has non-zeros in every row
and every column.

Proof. By Corollary 5.3, ifQ does not contain zero rows, neither

does Qφ . Assume towards a contradiction there exists an all-zero

column in Qφ . Then an r − 1 decomposition is implied, since:

©«
i

U
′

φ 0 U
′′

φ
ª®®¬©« ª®¬

φ
′

vi
φ
′′

=
©« U

′

φ U
′′

φ
ª®¬
(
φ
′

φ
′′

)

Thus Qφ has non-zeros in every row and every column. □

The sparsest structure with non-zeros in every row and every

column is a (possibly permuted) diagonal matrix D(t−r ). Since we

seek to minimize both the number of non-zeros and the number

of non-singletons, we assume Qφ contains a (possibly permuted)

identity matrix. Let Pπ be the permutation matrix which permutes

Qφ ’s rows such that the first t − r rows contain the identity matrix.

Then multiplying by Pπ we get:

Pπ ·Q = Pπ ·Qφ · φ =

©«
1

. . .

1

. . .

ª®®®®¬
· φ

Thus ∀i ∈ [t − r ] : φi = (Pπ ·Q)i , and therefore φ is uniquely deter-

mined by the location of the identity matrix’s rows. Put together,

the sparsification process works as follows:

(1) Choose the location of the identity matrix rows in Qφ
(2) Compute φ based on the above selection

(3) For every remaining row of vi of Qφ , solve:

vi = argmin

®x ∈Rt−r

({
nnz(®x) : φT · xT = (Qi )

T })
The latter optimization problem is known as the Compressed Sens-

ing problem, which is NP-Hard [13, 14]. Nevertheless, many algo-

rithms (such as Basis Pursuit [9] and Orthogonal Matching Pursuit

[26]) attempt to solve relaxations of the above problem. While these

algorithms’ optimization goals are different to that of Compressed

Sensing, their outputs may converge under some conditions (i.e.,

the null-space property).

Due to the relatively small dimensions of the encoding/decoding

matrices, we iterated through all possible placements of non-zero

elements in ®x , solving the corresponding least-squares instance

for each such choice. This approach, while far slower than the

aforementioned algorithms, resulted in far sparser solutions, as

quite large portions of the solution-space were enumerated.

7 DISCUSSION
Our method for reducing the hidden constant of the arithmetic

complexity of fast matrix multiplication utilizes a richer set of

decompositions compared to [18], allowing for even faster practi-

cal algorithms. We inherit the same asymptotic complexity of the

original fast matrix multiplication algorithms, while significantly

improving their leading coefficients (Table 1).

Highly optimized implementations of the “classical” algorithm

often outperform fast matrix multiplication algorithms for suffi-

ciently small matrices. We have obtained fast matrix multiplication

algorithms whose leading coefficients match that of the classical

algorithm (Subsection 5.1), and may therefore outperform the clas-

sical algorithm even for relatively small matrices.

Iteratively applying the decomposition scheme (recall Section 4)

allows us to reduce the coefficients of lower-order monomials. For

algorithms in which the degrees of lower-order monomials are quite

close to that of the leading monomial, this further optimization can

significantly improve the arithmetic complexity (see Table 2 and

Figure 3).

Our algorithm relies on a recursive divide-and-conquer strat-

egy. Thus, the straight-forward serial recursive implementation (cf.

[12]) matches the communication cost lower-bounds. For parallel

implementations, the BFS-DFS method can be used to attain these

lower bounds [2, 22, 23].

An optimal decomposition (see Section 5.1) of the ⟨3, 3, 3; 23⟩-

algorithm [3, 17, 20] can be found in Appendix A. Thanks to its

leading coefficient of 2, the decomposed ⟨3, 3, 3; 23⟩-algorithm can

outperform the ⟨2, 2, 2; 7⟩-algorithm on small matrices, despite its

larger exponent. The ⟨3, 3, 3; 23⟩-algorithm for which we present

an optimal decomposition is due to Ballard and Benson [3]. All

three encoding/decoding matrices contain duplicate rows, and thus

optimally decompose (Subsection 5.1). In contrast, the ⟨3, 3, 3; 23⟩-

algorithm due to Laderman [20] contains no duplicate rows in any

of the matrices, and therefore exhibits a leading coefficient of at-

least 5 for any level of decomposition. Johnson andMcLoughlin [17]

described a parametric family of ⟨3, 3, 3; 23⟩-algorithms. Any choice

of parameters results in duplicate rows in the encoding matrices,



and moreover choosing x = y = z = 1 yields duplicate rows

in all three matrices, thus resulting in an optimally decomposing

algorithm, similar to that of Ballard and Benson.

In addition to Smirnov’s ⟨6, 3, 3; 40⟩-algorithm [30], we decom-

posed a ⟨6, 3, 3; 40⟩-algorithm, of Tichavskỳ and Kováč [34]. The

original algorithm has a leading coefficient of 79.28. We improved it

to 7 (a reduction by 91.1%), the same leading coefficient we obtained

for Smirnov’s algorithm.

Future work includes exploring Pan’s Trilinear Aggregating [24,

25] methods and their generated algorithms. We have optimally

decomposed several of the aforementioned algorithms, including

⟨70, 70, 70; 143640⟩-algorithm and ⟨44, 44, 44; 39952⟩-algorithm. We

intend to apply the same approach to more of Pan’s algorithms,

including ⟨44, 44, 44; 36133⟩-algorithm [25].

Our current sparsification efforts were performed using modest

computational power, thereby restricting the depth of decomposi-

tion explored. In future work, we intend to harness larger compu-

tational power in order to apply our methods and find additional

practical matrix multiplication algorithms.
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A OPTIMAL DECOMPOSITION OF <3,3,3;23>-ALGORITHM [3, 17, 20]
The following is a decomposition of the ⟨3, 3, 3; 23⟩-algorithm due to Ballard and Benson [3]. See Section 7 for a brief discussion on the

differences between this algorithm and the algorithms due to Laderman [20] and Johnson and McLoughlin [17].

Uφ ∈ R23×21©«

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

ª®®®®®®®®®®®®®®®®®®®®®®®®¬

Vψ ∈ R23×21

©«

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

ª®®®®®®®®®®®®®®®®®®®®®®®®¬

Wτ ∈ R23×21©«

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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φ ∈ R21×9©«

0 −1 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0

0 0 0 1 −1 0 1 −1 0

−1 0 −1 0 0 0 −1 0 0

0 0 0 1 −1 0 0 0 1

0 0 0 0 0 0 1 0 0

0 0 −1 −1 1 1 0 0 0

0 0 0 0 0 0 0 0 −1
0 1 0 −1 0 0 0 0 0

0 0 0 −1 0 −1 0 0 −1
0 0 0 1 −1 0 0 −1 0

0 0 0 0 0 −1 0 0 −1
1 −1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0

1 −1 0 0 0 0 1 0 0

0 0 0 1 −1 0 0 0 0

−1 1 0 0 0 0 −1 1 1

0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 1
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ψ ∈ R21×9©«

0 0 1 0 0 1 0 1 −1
1 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 0

0 0 0 0 0 −1 0 1 0

−1 −1 1 0 0 0 0 0 0

0 0 −1 0 0 −1 0 0 1

1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 −1 0 0 1

0 1 0 0 1 0 0 0 0

0 0 0 0 0 0 0 −1 1

1 0 0 0 −1 1 0 0 0

0 0 0 0 0 0 −1 0 0

1 0 0 0 0 0 0 0 0

0 0 0 1 1 −1 0 0 0

0 1 −1 0 1 −1 0 −1 1

1 1 0 0 0 1 0 0 0

0 0 0 0 −1 0 0 1 0

0 0 0 0 0 1 0 0 0

1 0 0 1 0 0 0 0 0

0 0 0 0 0 −1 1 1 0
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τ ∈ R21×9©«

1 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 0 0

0 0 0 0 0 0 1 −1 0

0 0 −1 0 0 0 0 0 0
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0 0 −1 0 0 0 0 0 1
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0 1 0 0 0 0 0 0 0
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1 −1 0 0 0 0 0 0 0
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0 1 0 0 1 0 0 0 0

0 0 −1 0 0 0 0 1 1

0 0 0 −1 1 0 1 −1 0

0 0 0 0 0 0 0 1 1

0 0 0 1 0 0 0 0 0

0 0 0 −1 0 0 1 0 0
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B ILLUSTRATION OF ENCODING/DECODING DIMENSIONS

Figure 4: Dimensions of Encoding/Decoding Transformations of Recursive-Bilinear, Alternative Basis [18], Decomposed
[Here] and Fully Decomposed [Here] algorithms
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