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Abstract

Natural Language Processing (NLP) is concerned with the theoretical and
applicative aspects of the automatic analysis of text and speech. Advances
in NLP are increasingly noticeable in everyday life, with applications such
as machine translation and free-text search engines. Machine learning ap-
proaches have dominated NLP in the past two decades, with the supervised
approach being the most widely used one, despite the significant amounts of
manually annotated data it requires.

Semantic structures take a central role in NLP and are widely used in
various guises in a multitude of NLP tasks. Examples of semantic structures
include semantic role labeling structures and first order logic semantic for-
mulas. However, despite the major advances in the field, determining what
type of data NLP can utilize for learning and predicting elaborate semantic
structures remains an open question.

State of the art algorithms for predicting semantic structures often rely
on highly elaborate semantic and syntactic training data. Compiling corpora
annotated with such elaborate annotation is a difficult task for humans for
two reasons. First, constructing an annotation scheme requires detecting
and defining the categories and structures that it annotates. Performing this
manually is highly challenging, even for an expert, due to the variety and
intricateness of linguistic phenomena. Second, annotating text corpora using
the resulting schemes generally requires the employment of highly proficient
annotators with strong background in linguistics.

This thesis aims to facilitate the annotation process required for learning
semantic structure by basing it on two more accessible sources of informa-
tion: (1) distributional information acquired by automatic pattern recogni-
tion methods, (2) semantic information introduced through manual corpus
annotation that reflects the meaning of the text as understood by the reader.
Relying on these relatively accessible sources of information reduces the need
for manual labour and experts, and thereby addresses the two challenges pre-
sented above.

I discuss two complementary lines of work. The first explores an unsu-
pervised approach that receives only plain text as input, treating language
as an ordered collection of semantically-void symbols. I present three novel
algorithms that effectively apply this minimalistic approach to tasks at the
syntax-semantics interface. The tasks include the induction of part of speech
tags (Abend, Reichart and Rappoport, ACL 2010), the identification of ver-
bal arguments (Abend, Reichart and Rappoport, ACL 2009) and their clas-
sification into cores and adjuncts (Abend and Rappoport, ACL 2010). All
algorithms obtained state of the art results for the unsupervised setting at
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their time of publication.
Unsupervised methods are appealing in their attempt to reduce reliance

on manual annotation. However, the poverty of the information they use lim-
its their performance. Indeed, the performance of fully unsupervised mod-
els still lags considerably behind their supervised counterparts. The second
part of this thesis therefore discusses manual semantic representation. It
presents Universal Conceptual Cognitive Annotation (UCCA) (Abend and
Rappoport, ACL 2013; IWCS 2013) — a novel semantic scheme, inspired
by leading typological (Dixon, 2005, 2010a,b, 2012) and cognitive linguistics
(Langacker, 2008) theories. UCCA covers many of the most important ele-
ments and relations present in linguistic utterances using cross-linguistically
motivated categories. Notably, it represents the argument structure of var-
ious types of predicates and the linkage between them. Much of the infor-
mation UCCA provides has been shown to be useful for downstream appli-
cations, such as machine translation, information extraction and question
answering. I also present ongoing work on compiling a UCCA-annotated
corpus, currently containing more than 80K annotated tokens. The corpus
compilation demonstrates that UCCA can be applied to the large-scale an-
notation of plain text and indicates that the UCCA scheme, unlike most
commonly used syntactic schemes, can be effectively learned by annotators
without any background in linguistics. Finally, I briefly discuss how UCCA
can be learned using standard supervised structure prediction algorithms
widely used in NLP.

To summarize, the contribution of this thesis lies in proposing novel meth-
ods for learning and representing semantic structures. Its algorithmic con-
tribution is in presenting three novel algorithms for inducing semantic and
grammatical structure from plain text, and its contribution to semantic rep-
resentation is in presenting an annotation scheme that is accessible to human
annotators and not tailored to a specific language or domain.
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Chapter 1

Introduction

Natural Language Processing (NLP) is an interdisciplinary field concerned
with the automatic analysis and understanding of language. The field focuses
both on real-world applications for text understanding, and on the computa-
tional modelling of human language. The study of semantic representation
is central to NLP due to its theoretical importance and its applicative value
for a wide variety of tasks, ranging from question answering to automatic
summarization and machine translation.

Semantic structures come in various forms and degrees of complexity1.
The simplest forms often reflect one particular aspect of semantics, such as
semantic roles (Palmer et al., 2005), coreference (Deemter and Kibble, 2000)
or temporal relations (Verhagen et al., 2007). Due to the complexity of gen-
eral semantic representation, more elaborate semantic schemes are usually
restricted to a relatively narrow domain, such as geographical queries (Zelle
and Mooney, 1996) or air travel information (Price, 1990). Recently, several
attempts have been made to construct more general schemes that are ap-
plicable to a wider domain, while still reflecting a wide range of phenomena
(Dorr et al., 2010; Basile et al., 2012).

However, despite recent advances, it is still an open question what seman-
tic distinctions are required for NLP applications, and what input is required
to learn them. This is the fundamental question this thesis addresses.

Most annotation schemes in NLP today construct their structures on top
of a primary syntactic layer that constrains them. For instance, the Prop-
Bank scheme for semantic role labeling (Palmer et al., 2005) is built on top
of the syntactic trees of the Penn Treebank annotation (Marcus et al., 1993).

1In this thesis we use the term semantic structure to refer to the semantics of phrases,
sentences and texts, and not individual words. The latter is usually considered lexical
semantics, and is largely besides the scope of this work (see below).
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Syntactic schemes are usually focused on distributional regularities, and are
committed first and foremost to representing the formal patterns of language,
and not necessarily their meaning. For instance, virtually all syntactic an-
notation schemes are sensitive to the structural difference between “John
showered” and “John took a shower”, while few are sensitive to the semantic
difference between “John took a shower” and “John took my book”. Indeed,
the annotation of the latter pair is identical under the two most widely used
syntactic annotation schemes for English (see Chapter 7).

Representing semantic distinctions more directly can have considerable
practical value. Consider machine translation, one of the core tasks of NLP.
Representing the similarity between “John took a shower” and “John show-
ered” is directly useful when translating into a target language that does not
allow both sentence forms. Question answering applications can benefit from
distinguishing between “John took my book” and “John took a shower”, as
this knowledge would help them recognize “my book” as a much more plau-
sible answer than “a shower” to the question “what did John take?”.

The coupling of semantic and syntactic structure in NLP is also apparent
in their learning. The dominant approach in NLP for predicting semantic
structure applies a syntactic parser as a preprocessing step. Therefore, the
training of a semantic structure prediction algorithm typically requires ample
amounts of data annotated with syntactic as well as semantic annotation.

Obtaining such elaborate annotations in large magnitudes is difficult for
two reasons. First, defining the annotation scheme requires defining the set
of syntactic and semantic structures to be annotated. This is not an easy
task, even for an expert, given the range and intricateness of phenomena the
schemes should cover2. Second, the elaborateness of the schemes and their
reliance on linguistic theory requires the employment of highly proficient
annotators (Marcus et al., 1993; Böhmová et al., 2003).

This thesis proposes a domain-independent approach to semantic repre-
sentation which relies on accessible sources of information. It explores two
main lines of work. The first are unsupervised methods that aim to directly
induce semantic and syntactic regularities from large amounts of plain text.
The proposed methods rely on little to no domain-specific knowledge, and
receive highly accessible input, which primarily consists of large amounts
of plain text. The second line proposes a novel scheme for semantic repre-
sentation — Universal Conceptual Cognitive Annotation (UCCA). UCCA
aims to abstract away from specific syntactic forms and to directly express

2For a discussion of this point in the context of subcategorization frames, see (Boguraev
and Briscoe, 1989).
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semantic distinctions. Building on typological theory, UCCA aims to pro-
pose a cross-linguistically valid approach. I demonstrate that UCCA can
be effectively applied in several domains and that it is accessible to annota-
tors with no background in linguistics. I also present the compilation of a
UCCA-annotated corpus.

The rest of the introduction is constructed as follows. It first provides a
general survey of semantic and syntactic annotation schemes used in NLP
and turns to discussing the unsupervised line of work explored in this thesis.
Finally, it presents the UCCA annotation scheme and corpus, and touches
on methods for its automatic learning.

Background

Lexical Semantics. Lexical semantics addresses the meaning of words and
multi-word expressions, and often views them in the type-level, schematized
over their particular instances. Lexical resources come in many forms, and
are often termed lexicons or ontologies. Semantic information for the lexical
entries is often given by their (typed) relations to other entities in the lexicon,
and by semantic features or meaning components ascribed to them (Vossen,
2003).

WordNet (Miller, 1995) is a large lexical resource for English which fo-
cuses on representing taxonomical relations. The EuroWordNet (Vossen,
1998) extends WordNet to other European languages. Verb lexicons, such
as COMLEX (Grishman et al., 1994) and VerbNet (Schuler, 2005), often
use a combination of the allowed sub-categorization frames as well seman-
tic information. For a somewhat different approach, see FrameNet (below).
Many lexical relations can be discovered to a reasonable accuracy using ma-
chine learning methods. Examples include (Pantel and Pennacchiotti, 2006;
Schulte Im Walde, 2006; Davidov et al., 2007; Sun and Korhonen, 2009).

Lexical resources are used in virtually every field of NLP. Linguistic phe-
nomena tend to demonstrate a Zipfian behavior, where a small number of
phenomena account for most instances. This information can be beneficially
represented in a lexicon. Indeed, methods that use extensive lexical informa-
tion have been beneficially applied to spell correction (Agirre et al., 1998),
semantic role labeling (Swier and Stevenson, 2004), summarization (Barzi-
lay et al., 1997) and information extraction (Riloff and Jones, 1999). In
addition, some of the leading grammatical approaches use rich lexical infor-
mation, either through elaborate feature structures (Pollard and Sag, 1994)
or multi-tags (Joshi and Schabes, 1997; Steedman, 2001).

By and large, the work presented in this thesis is complementary to these
efforts. With the possible exception of Chapter 3, most of the work presented
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here focuses on the patterns in which words combine to form composite
utterances and not on the idiosyncrasies of specific words. Nevertheless, the
semantic representation presented in the second part of this thesis supports
the representation of increasingly finer distinctions, ultimately reaching a
single word granularity. This will be addressed in future work (see Chapter 8).

In some cases it is beneficial to focus on the lexical information of the
individual words and to disregard any information about their relative po-
sition. Such methods are often termed bag of words, and are successfully
applied to tasks that do not require deep semantic analysis of the text. Ex-
amples include search engines (Croft et al., 2010) and topic models (Blei
et al., 2003).

However, bag of words models miss much of the structural information
present in linguistic utterances. Examples of such information include the
number and identity of events the text describes (e.g., “I have this book to
read” vs. “I have to read this book”), the roles of each of the participants
in the events (e.g., “man bites dog” vs. “dog bites man”), and the scope of
relations (e.g., “he stupidly replied” vs. “he replied stupidly”). Indeed, tasks
that require a deeper understanding of the text generally use more elaborate
structural information. Examples include machine translation (Yamada and
Knight, 2001), question answering (Wang et al., 2007) and information ex-
traction (Banko et al., 2007). Representing and learning linguistic structure
is the focus on this work.

Syntactic Representation. Part of Speech (POS) tags are the simplest
form of syntactic representation used in NLP. POS tags apply to individual
words, and are considered a basic layer of annotation by most theories of
syntax. Common categories include nouns, verbs, adjectives, prepositions,
adverbs, determiners and conjunctions.

Hierarchical structures apply to sentences and commonly come in the form
of either a constituency or a dependency structures. The most commonly
used treebank for English is the Penn Treebank constituency annotation
(Marcus et al., 1993), and the dependency treebank automatically derived
from it (Buchholz and Marsi, 2006). Other commonly-used English tree-
banks include the Brown corpus (Greene and Rubin, 1971), and the Prague
Dependency Treebank (Böhmová et al., 2003).

A constituency structure hierarchically binds words and previously estab-
lished phrases, resulting in a tree. In the first level of the tree, words are com-
bined into phrases, which may in turn be combined into higher level phrases.
Common phrasal categories include noun phrases (NPs), verb phrases (VPs)
and prepositional phrases (PPs). The leaves of the tree correspond to the
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words of the sentence and are tagged with their POS tags. A dependency
structure assigns each word with a head word, which is typically the word
that it modifies, or the predicate it is an argument of. For instance, adjectives
are dependents of the nouns they modify, and verbs are heads to their ar-
guments. Dependency structures are often represented as trees whose nodes
correspond to the words of the sentence (and their POS) and whose edges
link head words to their dependents.

More elaborate formalisms aim to better account for a more fine-grained
set of phenomena, often for the relations between the syntactic annota-
tion and their corresponding semantic annotations. Examples include Lex-
ical Functional Grammar (LFG) (Kaplan and Bresnan, 1981), Head-driven
Phrase Structure Grammar (HPSG) (Pollard and Sag, 1994), Combinatory
Categorial Grammar (CCG) (Steedman, 2001) and Tree Adjoining Grammar
(TAG) (Joshi and Schabes, 1997).

Syntactic structure reflects first and foremost the syntactic patterns used
for constructing phrases and sentences, and only indirectly reflect semantics.
The formal patterns are sometimes referred to as “distributional regularities”
in the sense that they reflect the distribution of environments in which a word
or a phrase may appear. However, semantic and syntactic considerations are
tightly coupled, as the formal patterns of language are regularly associated
with a semantic interpretation, if only a very schematized and abstract one
(Goldberg, 1995).

Semantic Representation. There are many types of semantic representa-
tions used in NLP. Due to their richness and variety, most semantic schemes
focus on one specific aspect of semantics (e.g., semantic roles), or on a highly
restricted domain (e.g., geographical queries). In this section we focus on the
schemes most immediately relevant to the work presented in this thesis.

Semantic role labeling schemes aim to identify the arguments of the var-
ious predicates that appear in the text and classify them according to their
semantic roles. Put differently, given a sentence, SRL structures reflect who
did what to whom, when, where and why. For example:

[The surgeon]Agent operated [on his colleague]Patient [in the hospital]Location

The two most widely used schemes are PropBank (Palmer et al., 2005)
and FrameNet (Baker et al., 1998). PropBank builds its annotation on top
of the Penn Treebank annotation, and is generally more coupled with the
syntax of its target language (usually English). The set of roles defined by
PropBank provides a different set of semantic roles for each verb. Inter-verb
consistency is maintained through the indexation of the roles, where the more
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agent-like argument is labeled Arg0 and the more patient-like argument is
labeled Arg1 (see (Dowty, 1991) for a more elaborate discussion of Proto-
Agents and Patients)3.

FrameNet offers a different approach. It uses the notion of frames, which
are schematic representations of situations involving various participants and
other conceptual roles. The set of semantic roles is defined relative to a frame
and is therefore fairly fine-grained. For instance, the above example evokes
the Frame medical interaction scenario, in which the surgeon receives the
role medic, the colleague the role patient and the hospital the role medical
center.

In general, the above schemes differ from UCCA in their focus specifi-
cally on argument structure phenomena, in contrast to UCCA’s attempt to
represent a wider range of phenomena.

Complementary lines of work explore the argument structure of other
kinds of semantic relations, such as prepositions (Litkowski and Hargraves,
2005; Srikumar and Roth, 2013), commas (Srikumar et al., 2008) and dis-
course relations (Prasad et al., 2008).

More elaborate semantic schemes are often annotated as a secondary
layers on top of a syntactic annotation. The Groningen Meaning Bank (Basile
et al., 2012) builds on Combinatory Categorial Grammar (CCG). The Lingo-
redwoods corpus (Oepen et al., 2004) uses Minimal Recursion Semantics
representations (Copestake et al., 2005) as the semantic representation on
top of an HPSG annotated corpus. While constructing a scheme that jointly
represents syntax and semantics makes the relation between them explicit, it
also mutually constrains the two levels of representation, and increases the
annotation costs incurred by such elaborate schemes.

A different line of work aims to form abstract representation divorced
from any specific language. Such a representation necessarily abstracts away
not only from syntactic variation, but also from the lexicon. Examples of such
works include AMR (Banarescu et al., 2013) and IAMTC (Dorr et al., 2010).
UCCA differs from these lines of work in two major respects. First, UCCA’s
representation does not abstract away from the lexicon. Second, UCCA
provides a coarse-grained annotation which can be open-endedly refined, in
contrast to the fairly elaborate annotations of the above approaches.

A more elaborate comparison of UCCA to other semantic schemes can
be found in Chapter 7.

3PropBank covers the argument structure of verbs. A similar scheme which covers
nouns is NomBank (Meyers et al., 2004).
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Unsupervised Learning of Syntactic and Semantic Structure

Unsupervised learning methods attempt to find an underlying structure with-
out relying on annotated data. The algorithms often assume that some hid-
den structure governs the regularities observed in the unannotated data, and
aim to discover this structure. In recent years increasingly sophisticated ap-
proaches have been proposed and applied to a wide range of tasks, including
parsing (Seginer, 2007), verb clustering (Sun and Korhonen, 2009), induc-
tion of POS categories (Abend et al., 2010), lexical semantics (Davidov et al.,
2007), and many others.

Despite the challenges that such a minimalist setting poses, unsupervised
algorithms carry much potential as they can be applied to any language
or genre for which adequate raw text resources are available, and entirely
avoid any annotation costs. They also bear theoretical promise for their
ability to recover novel, valuable information in textual data and to expose
underlying relations between form and various linguistic phenomena. This
thesis includes work on the unsupervised learning of three major aspects of
syntactic and semantic structure. I will turn to reviewing them in detail.

POS Induction. Part of Speech tags are essential to most theories of
grammar and to a great variety of NLP applications. The task of inducing
parts of speech from plain text is one of the most frequently tackled in un-
supervised NLP. Many different methods were proposed, and the output of
these algorithms has been shown effective to subsequent tasks (Finkel and
Manning, 2009; Spitkovsky et al., 2011).

In the context of unsupervised learning, a POS is defined in strictly formal
terms. Two words are said to share the same category if they may appear
in similar syntactic and morphological patterns. For instance, the words
“happy”, “strong”, “brown” and “thin” can be considered to be in the same
category by virtue of appearing interchangeably in these patterns:

1. A dog

2. The dog is

3. Very

4. / +er / +est

Some linguistic theories indeed view POS categories as purely syntactic
in nature, and construe them as constraining the syntactic constructions in
which the word may appear (Jackendoff, 1994, p. 68–69). Cognitive linguis-
tics theories on the other hand (e.g., (Croft, 2001)) view constructions as
pairings of form and meaning, and underscore the semantic considerations

7



underlying their definition. Langacker (1987, 1991) goes as far as claim-
ing that grammatical categories, POS categories among them, can be fully
characterized semantically.

Several algorithmic approaches were previously applied to this task. Many
works addressed it as a type-level task, where a word type (and not each
specific instance) is assigned a category. Although different instances of the
same word are known to receive different categories in different contexts (e.g.,
“chair” can be both a noun and a verb), experiments show that on average a
great majority of a word’s instances belong to the same category (see Chap-
ter 3). Examples of works that apply type-level clustering include (Schütze,
1995; Clark, 2003; Lamar et al., 2010; Christodoulopoulos et al., 2011). Other
approaches model the POS assignment task as an instance-level task and use
sequential graphical models, such as Hidden Markov Model (HMM) (John-
son, 2007), discriminative sequential models (Smith and Eisner, 2006; Moon
et al., 2010) and Bayesian approaches (Goldwater and Griffiths, 2007; Gao
and Johnson, 2008).

The feature set for this task is based on distributional and morpholog-
ical regularities. Distributional features are almost unexceptionally based
on the distribution of words appearing immediately before and immediately
after the word in question. The morphological representation captures the
set of inflections a word has (i.e., the set of forms it appears in), thereby
complementing the distributional representation which focuses on the word’s
neighboring words. Most works use simple features based on terminal let-
ter sequences (e.g., (Smith and Eisner, 2006; Haghighi and Klein, 2006)).
More language-general approaches include (Clark, 2003) that models the en-
tire letter sequence as an HMM and uses it for defining a prior distribution,
as well as words that use external unsupervised morphological analyzers to
derive their morphological features. Examples include (Dasgupta and Ng,
2007; Christodoulopoulos et al., 2011) and the work presented in this thesis.
Segmentation models provide strong results on several languages without re-
quiring language-specific tuning (Goldsmith, 2001; Creutz and Lagus, 2005).

Chapter 3 presents a novel algorithm for unsupervised POS induction.
The algorithm uses morphological and distributional information, which re-
flects syntactic but also semantic information. For example, our distribu-
tional repsentation is adapted from the unsupervised CCL parser (Seginer,
2007), and reflects the tendency of a word to receive (or “select”) a certain
modifier or argument4. The algorithm is inspired by the cognitive theory
of prototypes (Taylor, 2003). The output of the algorithm is used in later
chapters as input for an unsupervised system for identifying shallow semantic

4Such tendencies are often termed selectional preferences.
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structures (see below).
The presented algorithm is unique in two respects. First, it employs a

novel unsupervised algorithm that discovers prototypes in a fully unsuper-
vised manner and maps the rest of the words according to their association
with the prototypes. Haghighi and Klein (2006) used a similar notion of pro-
totypes, but defined them manually. Second, the work uses a distributional
representation that has been developed for the purposes of unsupervised pars-
ing, thereby employing the strong link between POS tags and hierarchical
syntactic structure. The presented algorithm is also exceptional in using a
morphological representation suitable for any affixal language, and based on
the notion of signatures (Goldsmith, 2001).

We present extensive evaluation using six different evaluation measures
and obtain the best reported results on the standard evaluation corpus, com-
paring against two different gold standard annotations. We also demonstrate
the applicability of our algorithm to German, evaluating it against a state of
the art tagger and obtaining superior results.

Argument Identification. Semantic role labeling (SRL) is one of the core
tasks in NLP and is in wide use in various types of applications, including in-
formation extraction (Surdeanu et al., 2003), question answering (Narayanan
and Harabagiu, 2004) and summarization (Melli et al., 2004). In addition to
its applicative value, the identification of arguments and their classification
is a core component in many theories of grammar (Levin and Hovav, 2005).
SRL is often tackled in two subsequent stages. In the first stage, the argu-
ments of the given predicate are delineated (argument identification) and in
the second they are assigned specific semantic roles (argument classification).
It has been shown that these two tasks indeed require somewhat different sets
of features (Pradhan et al., 2008).

Chapter 4 presents work that addresses the first and the more challenging
stage of the two (Màrquez et al., 2008). Our work is one of the first on un-
supervised SRL, and the very first on unsupervised argument identification.
Previous works include (Grenager and Manning, 2006), which strictly ad-
dressed argument classification (the second stage of the two) and assumed a
supervised argument identification, and (Swier and Stevenson, 2004), which
additionally employed a verb lexicon. Since the publication of this work in
2009, the topic of unsupervised SRL has attracted considerable attention. For
example, Lang and Lapata (2010) addressed the classification of arguments
to their semantic roles using a variant of a latent-variable variant of a logistic
classifier. Titov and Klementiev (2012) presented a Bayesian non-parametric
model for the same task.

Our algorithm works as follows. It first parses the text using a state-of-
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the-art unsupervised parser, the CCL parser (Seginer, 2007). It then detects
the minimal clause containing the verb, using an unsupervised clause de-
tection algorithm developed for the purposes of this work. While not all
verbal arguments are contained in the minimal clause, this has proven to
be a reasonable and tractable approximation. Finally, the algorithm filters
out spurious arguments by identifying verb-argument pairs that correlate
negatively.

We evaluated our algorithm on two languages, English and Spanish, and
compared our results to a simpler baseline based on the CCL parser. In both
languages we showed a substantial improvement over the baseline.

Core-Adjunct Distinction. The distinction between core arguments and
adjuncts is at the basis on most theories of grammar. The distinction sepa-
rates core arguments, which are obligatory and whose semantic role is highly
dependent on the identity of the verb, and adjuncts, which are optional and
whose semantic role is independent of the verb. Consider our previous ex-
ample:

[The surgeon]Agent operated [on his colleague]Patient [in the hospital]Location

The role of “the surgeon” and “on his colleague” is very much dependent
on the identity of the predicate (“operated”), as can be seen by their markedly
different roles in the sentence “the surgeon counted on his colleague”. “in the
hospital” is an adjunct, as it can be used with a similar role with a variety
of other verbs, for instance “the surgeon ate his lunch in the hospital”.

The core-adjunct distinction was previously addressed by many learning
approaches, both supervised (e.g., as part of the SRL task (Màrquez et al.,
2008)) and semi-supervised (e.g., (Korhonen, 2002)). However, to the best of
my knowledge, all works used supervised parsers in order to construct a syn-
tactic parse tree for the sentence prior to the classification of its arguments
into cores and adjuncts. The employment of such tools can greatly bias the
results to agree with the manual distinctions incorporated into these parsers
through their training data. Indeed, most syntactic annotation schemes re-
flect the core-adjunct distinction implicitly or explicitly. See Chapter 5 for a
more elaborate survey of related work.

This thesis presents the first work that takes a completely unsupervised
approach to this task. The presented classifier applies three corpus-based
measures that correlate with the core-adjunct distinction and combines them
using an ensemble method. It uses the unsupervised POS tagger and un-
supervised argument identification algorithm presented in Chapter 3 and
Chapter 4, in addition to an unsupervised parser (Seginer, 2007). Our algo-
rithm obtains about 70% prediction accuracy (compared to the chance-level
accuracy of 50%) and outperforms several simpler baseline algorithms.
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To recap, the first section of this thesis presents novel unsupervised meth-
ods for discovering syntactic and semantic structure. Its results demonstrate
that much valuable information can be obtained using as little as plain text.

However, the output of such algorithms often differs substantially from
analogous manually annotated distinctions. For example, in the task of POS
induction, after two decades of research, accuracy is no more than 80% when
compared to a manually defined gold standard, even when using a rather
a relaxed evaluation measure. In comparison, supervised algorithms obtain
more than 95% accuracy on this task (Toutanova et al., 2003).

Part of this gap can be explained by noting that there is more than one
way to formulate a grammatical distinction. An unsupervised algorithm that
is not exposed to annotated data, may therefore find an equally plausible al-
ternative that substantially differs from the gold standard. Cases of multiple
plausible annotations are in fact very frequent (Schwartz et al., 2011).

A manual inspection of the results reveals that this explanation only par-
tially explains the performance gap. Even to the naked eye, the quality of
the output of unsupervised algorithms is far from pleasing. This is partic-
ularly true in semantic tasks such as argument identification. The reason
for that may be found in the poverty of the input unsupervised algorithms
rely on, which does not allow them to effectively address the semantic and
communicative qualities of language. In the second part of this thesis we de-
velop a semantic annotation scheme that aims to provide the complementary
information required to learn semantic structure.

Manual Semantic Annotation

The second part of this thesis (chapters 6 and 7) presents a novel framework
for semantic representation called Universal Conceptual Cognitive Annota-
tion (UCCA). UCCA aims to provide a domain-general semantic annotation
to be used by NLP applications. The main principles of UCCA are as follows:

1. Abstracting away from syntactic variation and directly representing
semantics. For instance, in the sentences “John made an appearance”
and “John appeared”, UCCA would emphasize their semantic similar-
ity, disregarding their syntactic differences.

2. Incorporating distinctions that are difficult to induce automatically.
Specifically, argument identification which has been shown to be a par-
ticularly difficult task is manually annotated.

3. Domain-generality. UCCA is constructed to be applicable to a wide
range of domains and to be able to express a large scope of distinctions.

11



The scheme is constructed as a multi-layered structure and aims to accom-
modate a wide spectrum of semantic distinctions required for NLP applica-
tions. The foundational layer of UCCA is highly coarse-grained and therefore
has the ability to capture coarse-grained similarities between markedly dif-
ferent domains. The layered structure allows the extension of the scheme in
order to address the ever expanding needs of the NLP community.

UCCA has several advantages from an NLP perspective. First, coarse-
grained semantic distinctions tend to be less domain specific, as languages
tend to differ more substantially in terms of their syntactic inventory than
in terms of their coarse-grained semantics. Thereby, UCCA addresses one of
the core challenges of NLP, i.e., constructing systems that are robust across
different domains and languages (e.g., (Blitzer et al., 2006; Reichart and
Rappoport, 2007)).

A second advantage is in the accessibility of semantic annotation schemes
to annotators with no background in linguistics. Indeed, while syntactic an-
notation schemes usually require the employment of linguistic experts (Mar-
cus et al., 1993; Böhmová et al., 2003), this thesis shows that in the an-
notation of UCCA, there is no persistent advantage to annotators with no
background in linguistics.

While the learning of UCCA is not the focus of this thesis, there are
strong preliminary indications that the UCCA structures can be effectively
learned using variants of existing NLP and machine learning methods. The
structured prediction of syntactic structures, most often in the form of de-
pendency or constituency trees, is one of the central issues the field addresses
(McDonald et al., 2005; Cohen et al., 2013, inter alia). The task of super-
vised prediction of semantic structure in its various forms is also well studied
(Zettlemoyer and Collins, 2005; Wong and Mooney, 2007, inter alia).

Recently, two major developments have been made in the field of seman-
tic parsing which are directly relevant to UCCA. Naradowsky et al. (2012)
proposed an algorithm for learning semantic role labeling without assuming
manually annotated syntactic data. Instead, they assumed a hidden depen-
dency structure and marginalized over it (see also (Chang et al., 2010)).
Their SRL results are comparable to the state of the art results obtained us-
ing a supervised syntactic parser, and in some cases even exceed them. This
supports the claim advocated by this thesis that in order to best support
NLP applications, existing manually annotated schemes are not necessarily
optimal (cf. (Schwartz et al., 2012)). A second relevant development is the
machine learning methods for learning DAG-based semantic representations
(such as UCCA’s) (Sagae and Tsujii, 2008; Jones et al., 2012). This shows
that it is possible to extend existing parsing technology, which is mostly
focused on trees, to DAGs.

12



Chapter 6 introduces the UCCA framework, its rationale and long-term
goals, and provides a detailed account of UCCA’s foundational layer. Chap-
ter 7 motivates the use of UCCA from an applicative standpoint and presents
a corpus annotated with UCCA’s foundational layer. It also discusses the an-
notation process and demonstrates UCCA’s accessibility to annotators with
no background in linguistics. The previous work surveyed by the two chap-
ters is somewhat complementary. Chapter 6 focuses on comparable syntactic
schemes (notably, dependency schemes), while Chapter 7 focuses on compa-
rable semantic schemes. As these chapters were separately published, they
inevitably contain a good deal of overlap, especially in their technical details.

The intellectual roots of UCCA lie in two strands of theoretical linguistics.
In its general approach, UCCA builds on Basic Linguistic Theory (BLT)
(Dixon, 2005, 2010a,b, 2012), a typological approach to grammar that has
been used for the description of a wide variety of languages. Similarly to BLT,
UCCA emphasizes semantic criteria for defining grammatical constructions,
and is committed to cross-linguistically valid notions.

UCCA is also influenced by the cognitive linguistics tradition (Croft and
Cruse, 2004) that relates linguistic phenomena to general non-linguistic cog-
nitive processes and abilities. This influence can be seen in two major re-
spects. First, the notions forming UCCA’s annotation scheme are derived
from extra-linguistic abilities, such as visual perception. In this we follow pre-
vious work on cognitive linguistics (Langacker, 1987, 1991; Talmy, 2000a,b,
inter alia), that emphasizes the relation between the grammatical structure
of an utterance and its conceptualization. Second, UCCA’s motivation to
learn syntax automatically given semantic and textual input is in line with
much cognitive linguistics work that challenges linguistic nativism, an ap-
proach that holds that language is too complex to be learned from experience
(Clark and Lappin, 2010).

Summary of Research Goals

The basic goal of this thesis is to characterize the type of input that is required
to represent semantics in NLP. The thesis advances the claim that the basic
semantic representation required for NLP applications can be founded on two
main elements: manually encoded semantic structure that abstracts away
from the specific characteristics of individual languages and unsupervised
and semi-supervised machine learning methods that statistically learn the
mapping between these structures and the text, and generalize it to unseen
texts. This proposal stands in contrast to the common approach in NLP
today which explicitly represents the syntax of indivual languages and applies
supervised methods to learn them.

13



To support its claim, the thesis explores two complementary approaches.
In its first part, the thesis presents three novel unsupervised algorithms

for core syntactic and semantic NLP tasks. Unsupervised algorithms rely on
plain text, and can therefore be applied to any domain where large corpora
of plain text are available. Such algorithms are also appealing in that they do
not require any manual annotation, thereby addressing the almost prohibitive
costs required to compile the necessary resources for supervised semantic
structure prediction algorithms.

In its second part, the thesis proposes a novel semantic annotation scheme
— UCCA. The goal of this scheme is to provide a semantic representation
that can be effectively used in a large range of domains and languages, and
that can be easily learned by annotators with no background in linguistics.
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Chapter 2

Methodology

The great majority of methodological details are given in the individual chap-
ters. I discuss here several additional issues.

Unsupervised Learning Experiments. The three unsupervised algo-
rithms presented in this thesis were evaluated on the standard benchmark
corpora for their respective tasks: the Penn Treebank (Marcus et al., 1993)
in the case of PoS induction and PropBank (Palmer et al., 2005) in the case
of semantic role labeling (Chapters 4 and 5).

The evaluation of induced POS categorizations is notoriously difficult for
several reasons. First, there are several POS schemes in common use in
English NLP, a difficulty we address by evaluating our results against two
common schemes. Second, the evaluation is often dependent on the number
of induced clusters, which in most induction algorithms has to be prespec-
ified. We therefore used several several different evaluation methods, each
highlighting different qualities of the examined clustering. Third, punctua-
tion marks account for a large portion of the tokens, but have trivial POS
tags (usually a special POS tag is given to them). Including punctuation
marks in the evaluation therefore artificially boosts the results. To address
this issue, we report results both excluding and including punctuation. Fi-
nally, there are several mathematical measures for comparing two different
clusterings. We use four leading evaluation measures and show superior re-
sults over previous works in all of them. A more complete survey of existing
approaches to clustering evaluation can be found in Chapter 3.

The evaluation of the SRL algorithms poses less difficulties. For the ar-
gument identification (Chapter 4), we use a strict measure and compute the
number of predicted arguments matching in their boundaries with the Prop-
Bank gold standard. Dividing the number of matches by the total number of
predicted arguments yields a precision score (P), and dividing it by the total
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number of gold standard arguments yields a recall score (R). Their harmonic
mean (F–score) is reported as well. For the evaluation of the core-adjunct
classifier (Chapter 5), we use the simple accuracy measure the reflects the
number of arguments for which the correct label was predicted, again com-
paring against the PropBank gold standard.

To the best of our knowledge, there are no previous works that tackled
the argument identification and core-adjunct classification tasks. In order to
assess the quality of our results we compared them against simple baseline
algorithms and to partial versions of our algorithms, which include only part
of the algorithmic components. By this we were able to ensure that each of
the components is required to reach a maximal performance.

One of the major advantages of unsupervised algorithms is their applica-
bility to a wide variety of domains and languages. To test the cross-linguistic
applicability of our algorithms, we tested them on German (Chapter 3) and
Spanish (Chapter 4). We evaluate against standard resources, the NEGRA
corpus for German POS tags (Brants, 1997) and the Semeval semantic an-
notation for Spanish semantic role labeling (Màrquez et al., 2007).

Manual Semantic Annotation (UCCA). The UCCA annotation scheme
is constructed to be highly coarse-grained, while still retaining coverage and
interpretability. The development process of the scheme consisted of several
iterations, where in each an annotation scheme was proposed and applied
to several texts. Cases that did not fall under the set of categories were
assembled and modifications were consequently made to the scheme.

We conducted two pilot sessions before embarking in the annotation pro-
cess. The first included 7 annotators, who volunteered to take part. Prior to
the annotation, they were given a short frontal tutorial that lasted roughly
two hours. Each annotator was given five short passages (1000 tokens in to-
tal) to annotate. We collected feedback from the annotators for the various
components of the tutorial, the annotation scheme and the web-application.
A second more restricted pilot was conducted two months afterwards. Four
annotators (a sub-set of the annotators in the first pilot) participated in this
round, and were given 3–6 short passages. The requested feedback mostly
focused on the modifications made since the previous pilot.

The annotation of the corpus was conducted by four (different) annotators
with varying levels of background in linguistics in order to measure the effect
of previous acquaintance on the quality of the annotation. The training
process began with a frontal tutorial of 4 hours. The annotators were then
given seven passages, one at the time, and received feedback for each passage.
A three hour tutorial session was then conducted, and focused on difficult
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cases. To conclude their training, two additional training passages were given
to each annotator. As this was the first large scale annotation effort with
UCCA, the guidelines were somewhat modified during the training period.
See Chapter 7 for a more elaborate discussion.
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Abstract

We present a novel fully unsupervised al-
gorithm for POS induction from plain text,
motivated by the cognitive notion of proto-
types. The algorithm first identifiesland-
mark clusters of words, serving as the
cores of the induced POS categories. The
rest of the words are subsequently mapped
to these clusters. We utilize morpho-
logical and distributional representations
computed in a fully unsupervised manner.
We evaluate our algorithm on English and
German, achieving the best reported re-
sults for this task.

1 Introduction

Part-of-speech (POS) tagging is a fundamental
NLP task, used by a wide variety of applications.
However, there is no single standard POS tag-
ging scheme, even for English. Schemes vary
significantly across corpora and even more so
across languages, creating difficulties in using
POS tags across domains and for multi-lingual
systems (Jiang et al., 2009). Automatic induction
of POS tags from plain text can greatly alleviate
this problem, as well as eliminate the efforts in-
curred by manual annotations. It is also a problem
of great theoretical interest. Consequently, POS
induction is a vibrant research area (see Section 2).

In this paper we present an algorithm based
on the theory of prototypes (Taylor, 2003), which
posits that some members in cognitive categories
are more central than others. These practically de-
fine the category, while the membership of other
elements is based on their association with the

∗ Omri Abend is grateful to the Azrieli Foundation for
the award of an Azrieli Fellowship.

central members. Our algorithm first clusters
words based on a fine morphological representa-
tion. It then clusters the most frequent words,
defining landmark clusters which constitute the
cores of the categories. Finally, it maps the rest
of the words to these categories. The last two
stages utilize a distributional representation that
has been shown to be effective for unsupervised
parsing (Seginer, 2007).

We evaluated the algorithm in both English and
German, using four different mapping-based and
information theoretic clustering evaluation mea-
sures. The results obtained are generally better
than all existing POS induction algorithms.

Section 2 reviews related work. Sections 3 and
4 detail the algorithm. Sections 5, 6 and 7 describe
the evaluation, experimental setup and results.

2 Related Work

Unsupervised and semi-supervised POS tagging
have been tackled using a variety of methods.
Scḧutze (1995) applied latent semantic analysis.
The best reported results (when taking into ac-
count all evaluation measures, see Section 5) are
given by (Clark, 2003), which combines dis-
tributional and morphological information with
the likelihood function of the Brown algorithm
(Brown et al., 1992). Clark’s tagger is very sen-
sitive to its initialization. Reichart et al. (2010b)
propose a method to identify the high quality runs
of this algorithm. In this paper, we show that
our algorithm outperforms not only Clark’s mean
performance, but often its best among 100 runs.
Most research views the task as a sequential la-
beling problem, using HMMs (Merialdo, 1994;
Banko and Moore, 2004; Wang and Schuurmans,
2005) and discriminative models (Smith and Eis-
ner, 2005; Haghighi and Klein, 2006). Several



techniques were proposed to improve the HMM
model. A Bayesian approach was employed by
(Goldwater and Griffiths, 2007; Johnson, 2007;
Gao and Johnson, 2008). Van Gael et al. (2009)
used the infinite HMM with non-parametric pri-
ors. Graça et al. (2009) biased the model to induce
a small number of possible tags for each word.

The idea of utilizing seeds and expanding them
to less reliable data has been used in several pa-
pers. Haghighi and Klein (2006) use POS ‘pro-
totypes’ that are manually provided and tailored
to a particular POS tag set of a corpus. Fre-
itag (2004) and Biemann (2006) induce an ini-
tial clustering and use it to train an HMM model.
Dasgupta and Ng (2007) generate morphological
clusters and use them to bootstrap a distributional
model. Goldberg et al. (2008) use linguistic con-
siderations for choosing a good starting point for
the EM algorithm. Zhao and Marcus (2009) ex-
pand a partial dictionary and use it to learn dis-
ambiguation rules. Their evaluation is only at the
type level and only for half of the words. Ravi
and Knight (2009) use a dictionary and an MDL-
inspired modification to the EM algorithm.

Many of these works use a dictionary provid-
ing allowable tags for each or some of the words.
While this scenario might reduce human annota-
tion efforts, it does not induce a tagging scheme
but remains tied to an existing one. It is further
criticized in (Goldwater and Griffiths, 2007).

Morphological representation. Many POS in-
duction models utilize morphology to some ex-
tent. Some use simplistic representations of termi-
nal letter sequences (e.g., (Smith and Eisner, 2005;
Haghighi and Klein, 2006)). Clark (2003) models
the entire letter sequence as an HMM and uses it
to define a morphological prior. Dasgupta and Ng
(2007) use the output of theMorfessorsegmenta-
tion algorithm for their morphological representa-
tion. Morfessor(Creutz and Lagus, 2005), which
we use here as well, is an unsupervised algorithm
that segments words and classifies each segment
as being a stem or an affix. It has been tested on
several languages with strong results.

Our work has several unique aspects. First,
our clustering method discovers prototypes in a
fully unsupervised manner, mapping the rest of
the words according to their association with the
prototypes. Second, we use a distributional repre-
sentation which has been shown to be effective for
unsupervised parsing (Seginer, 2007). Third, we

use a morphological representation based on sig-
natures, which are sets of affixes that represent a
family of words sharing an inflectional or deriva-
tional morphology (Goldsmith, 2001).

3 Distributional Algorithm

Our algorithm is given a plain text corpus and op-
tionally a desired number of clustersk. Its output
is a partitioning of words into clusters. The al-
gorithm utilizes two representations, distributional
and morphological. Although eventually the latter
is used before the former, for clarity of presenta-
tion we begin by detailing the base distributional
algorithm. In the next section we describe the mor-
phological representation and its integration into
the base algorithm.

Overview. The algorithm consists of two main
stages: landmark clusters discovery, and word
mapping. For the former, we first compute a dis-
tributional representation for each word. We then
cluster the coordinates corresponding to high fre-
quency words. Finally, we definelandmark clus-
ters. In the word mapping stage we map each word
to the most similar landmark cluster.

The rationale behind using only the high fre-
quency words in the first stage is twofold. First,
prototypical members of a category are frequent
(Taylor, 2003), and therefore we can expect the
salient POS tags to be represented in this small
subset. Second, higher frequency implies more re-
liable statistics. Since this stage determines the
cores of all resulting clusters, it should be as accu-
rate as possible.

Distributional representation. We use a sim-
plified form of the elegant representation of lexi-
cal entries used by the Seginer unsupervised parser
(Seginer, 2007). Since a POS tag reflects the
grammatical role of the word and since this rep-
resentation is effective to parsing, we were moti-
vated to apply it to the present task.

Let W be the set of word types in the corpus.
The right context entry of a wordx ∈ W is a pair
of mappingsr intx : W → [0, 1] and r adjx :
W → [0, 1]. For eachw ∈ W , r adjx(w) is an
adjacency score ofw to x, reflectingw’s tendency
to appear on the right hand side ofx.

For eachw ∈ W , r intx(w) is an interchange-
ability score ofx with w, reflecting the tendency
of w to appear to the left of words that tend to ap-
pear to the right ofx. This can be viewed as a



similarity measure between words with respect to
their right context. The higher the scores the more
the words tend to be adjacent/interchangeable.

Left context parametersl intx and l adjx are
defined analogously.

There are important subtleties in these defini-
tions. First, for two wordsx,w ∈ W , r adjx(w)
is generally different froml adjw(x). For exam-
ple, if w is a high frequency word andx is a low
frequency word, it is likely thatw appears many
times to the right ofx, yielding a highr adjx(w),
but thatx appears only a few times to the left ofw
yielding a lowl adjw(x). Second, from the defi-
nition of r intx(w) andr intw(x), it is clear that
they need not be equal.

These functions are computed incrementally by
a bootstrapping process. We initialize all map-
pings to be identically 0. We iterate over the words
in the training corpus. For every word instancex,
we take the word immediately to its righty and
updatex’s right context usingy’s left context:

∀w ∈ W : r intx(w) +=
l adjy(w)

N(y)

∀w ∈ W : r adjx(w) +=

{
1 w = y
l inty(w)
N(y) w 6= y

The division byN(y) (the number of timesy
appears in the corpus before the update) is done in
order not to give a disproportional weight to high
frequency words. Also,r intx(w) andr adjx(w)
might become larger than 1. We therefore nor-
malize them after all updates are performed by the
number of occurrences ofx in the corpus.

We updatel intx andl adjx analogously using
the wordz immediately to the left ofx. The up-
dates of the left and right functions are done in
parallel.

We define the distributional representation of a
word typex to be a4|W | + 2 dimensional vector
vx. Each wordw yields four coordinates, one for
each direction (left/right) and one for each map-
ping type (int/adj). Two additional coordinates
represent the frequency in which the word appears
to the left and to the right of a stopping punc-
tuation. Of the4|W | coordinates corresponding
to words, we allow only2n to be non-zero: the
n top scoring among the right side coordinates
(those ofr intx andr adjx), and then top scoring
among the left side coordinates (those ofl intx
andl adjx). We usedn = 50.

The distance between two words is defined to
be one minus the cosine of the angle between their

representation vectors.

Coordinate clustering. Each of our landmark
clusters will correspond to a set of high frequency
words (HFWs). The number of HFWs is much
larger than the number of expected POS tags.
Hence we should cluster HFWs. Our algorithm
does that by unifying some of the non-zero coordi-
nates corresponding to HFWs in the distributional
representation defined above.

We extract the words that appear more thanN
times per million1 and apply the following proce-
dureI times (5 in our experiments).

We run average link clustering with a threshold
α (AVGLINK α, (Jain et al., 1999)) on these words,
in each iteration initializing every HFW to have
its own cluster.AVGLINK α means running the av-
erage link algorithm until the two closest clusters
have a distance larger thanα. We then use the in-
duced clustering to update the distributional rep-
resentation, by collapsing all coordinates corre-
sponding to words appearing in the same cluster
into a single coordinate whose value is the sum
of the collapsed coordinates’ values. In order to
produce a conservative (fine) clustering, we used a
relatively lowα value of0.25.

Note that theAVGLINK α initialization in each
of the I iterations assigns each HFW to a sepa-
rate cluster. The iterations differ in the distribu-
tional representation of the HFWs, resulting from
the previous iterations.

In our English experiments, this process re-
duced the dimension of the HFWs set (the num-
ber of coordinates that are non-zero in at least one
of the HFWs) from 14365 to 10722. The aver-
age number of non-zero coordinates per word de-
creased from 102 to 55.

Since all eventual POS categories correspond to
clusters produced at this stage, to reduce noise we
delete clusters of less than five elements.

Landmark detection. We define landmark clus-
ters using the clustering obtained in the final iter-
ation of the coordinate clustering stage. However,
the number of clusters might be greater than the
desired numberk, which is an optional parame-
ter of the algorithm. In this case we select a sub-
set ofk clusters that best covers the HFW space.
We use the following heuristic. We start from the
most frequent cluster, and greedily select the clus-

1We usedN = 100, yielding 1242 words for English and
613 words for German.



ter farthest from the clusters already selected. The
distance between two clusters is defined to be the
average distance between their members. A clus-
ter’s distance from a set of clusters is defined to
be its minimal distance from the clusters in the
set. The final set of clusters{L1, ..., Lk} and their
members are referred to aslandmark clustersand
prototypes, respectively.

Mapping all words. Each wordw ∈ W is as-
signed the clusterLi that contains its nearest pro-
totype:

d(w,Li) = minx∈Li{1− cos(vw, vx)}
Map(w) = argminLi{d(w,Li)}

Words that appear less than 5 times are consid-
ered asunknown words. We consider two schemes
for handling unknown words. One randomly maps
each such word to a cluster, using a probabil-
ity proportional to the number of unique known
words already assigned to that cluster. However,
when the numberk of landmark clusters is rela-
tively large, it is beneficial to assign all unknown
words to a separate new cluster (after running the
algorithm withk− 1). In our experiments, we use
the first option whenk is below some threshold
(we used 15), otherwise we use the second.

4 Morphological Model

The morphological model generates another word
clustering, based on the notion of a signature.
This clustering is integrated with the distributional
model as described below.

4.1 Morphological Representation

We use theMorfessor(Creutz and Lagus, 2005)
word segmentation algorithm. First, all words in
the corpus are segmented. Then, for each stem,
the set of all affixes with which it appears (itssig-
nature, (Goldsmith, 2001)) is collected. The mor-
phological representation of a word type is then
defined to be its stem’s signature in conjunction
with its specific affixes2 (See Figure 1).

We now collect all words having the same rep-
resentation. For instance, if the wordsjoined and
paintedare found to have the same signature, they
would share the same cluster since both have the
affix ‘ ed’. The wordjoinsdoes not share the same
cluster with them since it has a different affix, ‘s’.
This results in coarse-grained clusters exclusively
defined according to morphology.

2A word may contain more than a single affix.

Types join joins joined joining
Stem join join join join

Affixes φ s ed ing
Signature {φ, ed, s, ing}

Figure 1:An example for a morphological representation,
defined to be the conjunction of its affix(es) with the stem’s
signature.

In addition, we incorporate capitalization infor-
mation into the model, by constraining all words
that appear capitalized in more than half of their
instances to belong to a separate cluster, regard-
less of their morphological representation. The
motivation for doing so is practical: capitalization
is used in many languages to mark grammatical
categories. For instance, in English capitalization
marks the category of proper names and in Ger-
man it marks the noun category . We report En-
glish results both with and without this modifica-
tion.

Words that contain non-alphanumeric charac-
ters are represented as the sequence of the non-
alphanumeric characters they include, e.g., ‘vis-à-
vis’ is represented as(“-”, “-”) . We do not as-
sign a morphological representation to words in-
cluding more than one stem (likeweatherman), to
words that have a null affix (i.e., where the word
is identical to its stem) and to words whose stem
is not shared by any other word (signature of size
1). Words that were not assigned a morphologi-
cal representation are included as singletons in the
morphological clustering.

4.2 Distributional-Morphological Algorithm

We detail the modifications made to our base
distributional algorithm given the morphological
clustering defined above.

Coordinate clustering and landmarks. We
constrainAVGLINK α to begin by forming links be-
tween words appearing in the same morphologi-
cal cluster. Only when the distance between the
two closest clusters gets aboveα we remove this
constraint and proceed as before. This is equiv-
alent to performingAVGLINK α separately within
each morphological cluster and then using the re-
sult as an initial condition for anAVGLINK α coor-
dinate clustering. The modified algorithm in this
stage is otherwise identical to the distributional al-
gorithm.

Word mapping. In this stage words that are not
prototypes are mapped to one of the landmark



clusters. A reasonable strategy would be to map
all words sharing a morphological cluster as a sin-
gle unit. However, these clusters are too coarse-
grained. We therefore begin by partitioning the
morphological clusters into sub-clusters according
to their distributional behavior. We do so by apply-
ing AVGLINK β (the same asAVGLINK α but with a
different parameter) to each morphological clus-
ter. Since our goal is clusterrefinement, we use a
β that is considerably higher thanα (0.9).

We then find the closest prototype to each such
sub-cluster (averaging the distance across all of
the latter’s members) and map it as a single unit
to the cluster containing that prototype.

5 Clustering Evaluation

We evaluate the clustering produced by our algo-
rithm using an external quality measure: we take
a corpus tagged by gold standard tags, tag it using
the induced tags, and compare the two taggings.
There is no single accepted measure quantifying
the similarity between two taggings. In order to
be as thorough as possible, we report results using
four known measures, two mapping-based mea-
sures and two information theoretic ones.

Mapping-based measures. The induced clus-
ters have arbitrary names. We define two map-
ping schemes between them and the gold clus-
ters. After the induced clusters are mapped, we
can compute a derived accuracy. TheMany-to-1
measure finds the mapping between the gold stan-
dard clusters and the induced clusters which max-
imizes accuracy, allowing several induced clusters
to be mapped to the same gold standard cluster.
The 1-to-1 measure finds the mapping between
the induced and gold standard clusters which max-
imizes accuracy such that no two induced clus-
ters are mapped to the same gold cluster. Com-
puting this mapping is equivalent to finding the
maximal weighted matching in a bipartite graph,
whose weights are given by the intersection sizes
between matched classes/clusters. As in (Reichart
and Rappoport, 2008), we use the Kuhn-Munkres
algorithm (Kuhn, 1955; Munkres, 1957) to solve
this problem.

Information theoretic measures. These are
based on the observation that a good clustering re-
duces the uncertainty of the gold tag given the in-
duced cluster, and vice-versa. Several such mea-
sures exist; we useV (Rosenberg and Hirschberg,

2007) andNVI (Reichart and Rappoport, 2009),
VI’s (Meila, 2007) normalized version.

6 Experimental Setup

Since a goal of unsupervised POS tagging is in-
ducing an annotation scheme, comparison to an
existing scheme is problematic. To address this
problem we compare to three different schemes
in two languages. In addition, the two English
schemes we compare with were designed to tag
corpora contained in our training set, and have
been widely and successfully used with these cor-
pora by a large number of applications.

Our algorithm was run with the exact same pa-
rameters on both languages:N = 100 (high fre-
quency threshold),n = 50 (the parameter that
determines the effective number of coordinates),
α = 0.25 (cluster separation during landmark
cluster generation),β = 0.9 (cluster separation
during refinement of morphological clusters).

The algorithm we compare with in most detail
is (Clark, 2003), which reports the best current
results for this problem (see Section 7). Since
Clark’s algorithm is sensitive to its initialization,
we ran it a 100 times and report its average and
standard deviation in each of the four measures.
In addition, we report the percentile in which our
result falls with respect to these 100 runs.

Punctuation marks are very frequent in corpora
and are easy to cluster. As a result, including them
in the evaluation greatly inflates the scores. For
this reason we do not assign a cluster to punctua-
tion marks and we report results using this policy,
which we recommend for future work. However,
to be able to directly compare with previous work,
we also report results for the full POS tag set.
We do so by assigning a singleton cluster to each
punctuation mark (in addition to thek required
clusters). This simple heuristic yields very high
performance on punctuation, scoring (when all
other words are assumed perfect tagging) 99.6%
(99.1%) 1-to-1 accuracy when evaluated against
the English fine (coarse) POS tag sets, and 97.2%
when evaluated against the German POS tag set.

For English, we trained our model on the
39832 sentences which constitute sections 2-21 of
the PTB-WSJ and on the 500K sentences from
the NYT section of the NANC newswire corpus
(Graff, 1995). We report results on the WSJ part
of our data, which includes 950028 words tokens
in 44389 types. Of the tokens, 832629 (87.6%)



English Finek=13 Coarsek=13 Finek=34
Prototype Clark Prototype Clark Prototype Clark

Tagger µ σ % Tagger µ σ % Tagger µ σ %
Many–to–1 61.0 55.1 1.6 100 70.0 66.9 2.1 94 71.6 69.8 1.5 90

55.5 48.8 1.8 100 66.1 62.6 2.3 94 67.5 65.5 1.7 90
1–to–1 60.0 52.2 1.9 100 58.1 49.4 2.9 100 63.5 54.5 1.6 100

54.9 46.0 2.2 100 53.7 43.8 3.3 100 58.8 48.5 1.8 100
NVI 0.652 0.773 0.027 100 0.841 0.972 0.036 100 0.663 0.725 0.018 100

0.795 0.943 0.033 100 1.052 1.221 0.046 100 0.809 0.885 0.022 100
V 0.636 0.581 0.015 100 0.590 0.543 0.018 100 0.677 0.659 0.008 100

0.542 0.478 0.019 100 0.484 0.429 0.023 100 0.608 0.588 0.010 98
German k=17 k=26

Prototype Clark Prototype Clark
Tagger µ σ % Tagger µ σ %

Many–to-1 64.6 64.7 1.2 41 68.2 67.8 1.0 60
58.9 59.1 1.4 40 63.2 62.8 1.2 60

1–to–1 53.7 52.0 1.8 77 56.0 52.0 2.1 99
48.0 46.0 2.3 78 50.7 45.9 2.6 99

NVI 0.667 0.675 0.019 66 0.640 0.682 0.019 100
0.819 0.829 0.025 66 0.785 0.839 0.025 100

V 0.646 0.645 0.010 50 0.675 0.657 0.008 100
0.552 0.553 0.013 48 0.596 0.574 0.010 100

Table 1:Top: English. Bottom: German. Results are reported for our model (Prototype Tagger), Clark’s average score (µ),
Clark’s standard deviation (σ) and the fraction of Clark’s results that scored worse than our model (%). For the mapping based
measures, results are accuracy percentage. ForV ∈ [0, 1], higher is better. For high quality output,NV I ∈ [0, 1] as well, and
lower is better. In each entry, the top number indicates the score when including punctuation and the bottom number the score
when excluding it. In English, our results are always better than Clark’s.In German, they are almost always better.

are not punctuation. The percentage of unknown
words (those appearing less than five times) is
1.6%. There are 45 clusters in this annotation
scheme, 34 of which are not punctuation.

We ran each algorithm both withk=13 and
k=34 (the number of desired clusters). We com-
pare the output to two annotation schemes: the fine
grained PTB WSJ scheme, and the coarse grained
tags defined in (Smith and Eisner, 2005). The
output of thek=13 run is evaluated both against
the coarse POS tag annotation (the‘Coarsek=13’
scenario) and against the full PTB-WSJ annotation
scheme (the‘Fine k=13’ scenario). Thek=34 run
is evaluated against the full PTB-WSJ annotation
scheme (the‘Fine k=34’ scenario).

The POS cluster frequency distribution tends to
be skewed: each of the 13 most frequent clusters
in the PTB-WSJ cover more than 2.5% of the to-
kens (excluding punctuation) and together 86.3%
of them. We therefore chosek=13, since it is both
the number of coarse POS tags (excluding punctu-
ation) as well as the number of frequent POS tags
in the PTB-WSJ annotation scheme. We chose
k=34 in order to evaluate against the full 34 tags
PTB-WSJ annotation scheme (excluding punctua-
tion) using the same number of clusters.

For German, we trained our model on the 20296
sentences of the NEGRA corpus (Brants, 1997)
and on the first 450K sentences of the DeWAC

corpus (Baroni et al., 2009). DeWAC is a cor-
pus extracted by web crawling and is therefore
out of domain. We report results on the NEGRA
part, which includes 346320 word tokens of 49402
types. Of the tokens, 289268 (83.5%) are not
punctuation. The percentage of unknown words
(those appearing less than five times) is 8.1%.
There are 62 clusters in this annotation scheme,
51 of which are not punctuation.

We ran the algorithms withk=17 andk=26.
k=26 was chosen since it is the number of clus-
ters that cover each more than 0.5% of the NE-
GRA tokens, and in total cover 96% of the (non-
punctuation) tokens. In order to test our algo-
rithm in another scenario, we conducted experi-
ments withk=17 as well, which covers 89.9% of
the tokens. All outputs are compared against NE-
GRA’s gold standard scheme.

We do not report results fork=51 (where the
number of gold clusters is the same as the number
of induced clusters), since our algorithm produced
only 42 clusters in the landmark detection stage.
We could of course have modified the parame-
ters to allow our algorithm to produce 51 clusters.
However, we wanted to use the exact same param-
eters as those used for the English experiments to
minimize the issue of parameter tuning.

In addition to the comparisons described above,
we present results of experiments (in the ‘Fine



B B+M B+C F(I=1) F
M-to-1 53.3 54.8 58.2 57.3 61.0
1-to-1 50.2 51.7 55.1 54.8 60.0
NVI 0.782 0.720 0.710 0.742 0.652
V 0.569 0.598 0.615 0.597 0.636

Table 2: A comparison of partial versions of the model in
the ‘Finek=13’ WSJ scenario. M-to-1 and 1-to-1 results are
reported in accuracy percentage. Lower NVI is better.B is the
strictly distributional algorithm,B+M adds the morphologi-
cal model,B+C adds capitalization toB, F(I=1) consists of
all components, where only one iteration of coordinate clus-
tering is performed, andF is the full model.

M-to-1 1-to-1 V VI
Prototype 71.6 63.5 0.677 2.00

Clark 69.8 54.5 0.659 2.18
HK – 41.3 – –
J 43–62 37–47 – 4.23–5.74

GG – – – 2.8
GJ – 40–49.9 – 4.03–4.47
VG – – 0.54-0.59 2.5–2.9

GGTP-45 65.4 44.5 – –
GGTP-17 70.2 49.5 – –

Table 4:Comparison of our algorithms with the recent fully
unsupervised POS taggers for which results are reported. The
models differ in the annotation scheme, the corpus size and
the number of induced clusters (k) that they used. HK:
(Haghighi and Klein, 2006), 193K tokens, fine tags,k=45.
GG: (Goldwater and Griffiths, 2007), 24K tokens, coarse
tags,k=17. J : (Johnson, 2007), 1.17M tokens, fine tags,
k=25–50. GJ: (Gao and Johnson, 2008), 1.17M tokens, fine
tags,k=50. VG: (Van Gael et al., 2009), 1.17M tokens, fine
tags,k=47–192. GGTP-45: (Graça et al., 2009), 1.17M to-
kens, fine tags,k=45. GGTP-17: (Graça et al., 2009), 1.17M
tokens, coarse tags,k=17. Lower VI values indicate better
clustering. VI is computed usinge as the base of the loga-
rithm. Our algorithm gives the best results.

k=13’ scenario) that quantify the contribution of
each component of the algorithm. We ran the base
distributional algorithm, a variant which uses only
capitalization information (i.e., has only one non-
singleton morphological class, that of words ap-
pearing capitalized in most of their instances) and
a variant which uses no capitalization information,
defining the morphological clusters according to
the morphological representation alone.

7 Results

Table 1 presents results for the English and Ger-
man experiments. For English, our algorithm ob-
tains better results than Clark’s in all measures and
scenarios. It is without exception better than the
average score of Clark’s and in most cases better
than the maximal Clark score obtained in 100 runs.

A significant difference between our algorithm
and Clark’s is that the latter, like most algorithms
which addressed the task, induces the clustering
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Figure 2: POS class frequency distribution for our model
and the gold standard, in the ‘Finek=34’ scenario. The dis-
tributions are similar.

by maximizing a non-convex function. These
functions have many local maxima and the specific
solution to which algorithms that maximize them
converge strongly depends on their (random) ini-
tialization. Therefore, their output’s quality often
significantly diverges from the average. This issue
is discussed in depth in (Reichart et al., 2010b).
Our algorithm is deterministic3.

For German, in thek=26 scenario our algorithm
outperforms Clark’s, often outperforming even its
maximum in 100 runs. In thek=17 scenario, our
algorithm obtains a higher score than Clark with
probability 0.4 to 0.78, depending on the measure
and scenario. Clark’s average score is slightly bet-
ter in the Many-to-1 measure, while our algorithm
performs somewhat better than Clark’s average in
the 1-to-1 and NVI measures.

The DeWAC corpus from which we extracted
statistics for the German experiments is out of do-
main with respect to NEGRA. The correspond-
ing corpus in English, NANC, is a newswire cor-
pus and therefore clearly in-domain with respect
to WSJ. This is reflected by the percentage of un-
known words, which was much higher in German
than in English (8.1% and 1.6%), lowering results.

Table 2 shows the effect of each of our algo-
rithm’s components. Each component provides
an improvement over the base distributional algo-
rithm. The full coordinate clustering stage (sev-
eral iterations, F) considerably improves the score
over a single iteration (F(I=1)). Capitalization in-
formation increases the score more than the mor-
phological information, which might stem from
the granularity of the POS tag set with respect to
names. This analysis is supported by similar ex-
periments we made in the ‘Coarsek=13’ scenario
(not shown in tables here). There, the decrease in
performance was only of 1%–2% in the mapping

3The fluctuations inflicted on our algorithm by the random
mapping of unknown words are of less than 0.1% .



Excluding Punctuation Including Punctuation Perfect Punctuation
M-to-1 1-to-1 NVI V M-to-1 1-to-1 NVI V M-to-1 1-to-1 NVI V

Van Gael 59.1 48.4 0.999 0.530 62.3 51.3 0.861 0.591 64.0 54.6 0.820 0.610
Prototype 67.5 58.8 0.809 0.608 71.6 63.5 0.663 0.677 71.6 63.9 0.659 0.679

Table 3:Comparison between theiHMM: PY-fixedmodel (Van Gael et al., 2009) and ours with various punctuation assign-
ment schemes. Left section: punctuation tokens are excluded. Middle section: punctuation tokens are included. Right section:
perfect assignment of punctuation is assumed.

based measures and 3.5% in the V measure.
Finally, Table 4 presents reported results for all

recent algorithms we are aware of that tackled the
task of unsupervised POS induction from plain
text. Results for our algorithm’s and Clark’s are
reported for the ‘Fine,k=34’ scenario. The set-
tings of the various experiments vary in terms of
the exact annotation scheme used (coarse or fine
grained) and the size of the test set. However, the
score differences are sufficiently large to justify
the claim that our algorithm is currently the best
performing algorithm on the PTB-WSJ corpus for
POS induction from plain text4.

Since previous works provided results only for
the scenario in which punctuation is included, the
reported results are not directly comparable. In
order to quantify the effect various punctuation
schemes have on the results, we evaluated the
‘iHMM: PY-fixed’ model (Van Gael et al., 2009)
and ours when punctuation is excluded, included
or perfectly tagged5. The results (Table 3) indi-
cate that most probably even after an appropriate
correction for punctuation, our model remains the
best performing one.

8 Discussion

In this work we presented a novel unsupervised al-
gorithm for POS induction from plain text. The al-
gorithm first generates relatively accurate clusters
of high frequency words, which are subsequently
used to bootstrap the entire clustering. The dis-
tributional and morphological representations that
we use are novel for this task.

We experimented on two languages with map-
ping and information theoretic clustering evalua-
tion measures. Our algorithm obtains the best re-
ported results on the English PTB-WSJ corpus. In
addition, our results are almost always better than
Clark’s on the German NEGRA corpus.

4Graça et al. (2009) report very good results for 17 tags in
the M-1 measure. However, their 1-1 results are quite poor,
and results for the common IT measures were not reported.
Their results for 45 tags are considerably lower.

5We thank the authors for sending us their data.

We have also performed a manual error anal-
ysis, which showed that our algorithm performs
much better on closed classes than on open
classes. In order to asses this quantitatively, let
us define a random variable for each of the gold
clusters, which receives a value corresponding to
each induced cluster with probability proportional
to their intersection size. For each gold cluster,
we compute the entropy of this variable. In ad-
dition, we greedily map each induced cluster to a
gold cluster and compute the ratio between their
intersection size and the size of the gold cluster
(mapping accuracy).

We experimented in the ‘Finek=34’ scenario.
The clusters that obtained the best scores were
(brackets indicate mapping accuracy and entropy
for each of these clusters) coordinating conjunc-
tions (95%, 0.32), prepositions (94%, 0.32), de-
terminers (94%, 0.44) and modals (93%, 0.45).
These are all closed classes.

The classes on which our algorithm performed
worst consist of open classes, mostly verb types:
past tense verbs (47%, 2.2), past participle verbs
(44%, 2.32) and the morphologically unmarked
non-3rd person singular present verbs (32%, 2.86).
Another class with low performance is the proper
nouns (37%, 2.9). The errors there are mostly
of three types: confusions between common and
proper nouns (sometimes due to ambiguity), un-
known words which were put in the unknown
words cluster, and abbreviations which were given
a separate class by our algorithm. Finally, the al-
gorithm’s performance on the heterogeneous ad-
verbs class (19%, 3.73) is the lowest.

Clark’s algorithm exhibits6 a similar pattern
with respect to open and closed classes. While
his algorithm performs considerably better on ad-
verbs (15% mapping accuracy difference and 0.71
entropy difference), our algorithm scores consid-
erably better on prepositions (17%, 0.77), su-
perlative adjectives (38%, 1.37) and plural proper
names (45%, 1.26).

6Using average mapping accuracy and entropy over the
100 runs.



Naturally, this analysis might reflect the arbi-
trary nature of a manually design POS tag set
rather than deficiencies in automatic POS induc-
tion algorithms. In future work we intend to ana-
lyze the output of such algorithms in order to im-
prove POS tag sets.

Our algorithm and Clark’s are monosemous
(i.e., they assign each word exactly one tag), while
most other algorithms are polysemous. In order to
assess the performance loss caused by the monose-
mous nature of our algorithm, we took the M-1
greedy mapping computed for the entire dataset
and used it to compute accuracy over the monose-
mous and polysemous words separately. Results
are reported for the English ‘Finek=34’ scenario
(without punctuation). We define a word to be
monosemous if more than 95% of its tokens are
assigned the same gold standard tag. For English,
there are approximately 255K polysemous tokens
and 578K monosemous ones. As expected, our
algorithm is much more accurate on the monose-
mous tokens, achieving 76.6% accuracy, com-
pared to 47.1% on the polysemous tokens.

The evaluation in this paper is done at the token
level. Type level evaluation, reflecting the algo-
rithm’s ability to detect the set of possible POS
tags for each word type, is important as well. It
could be expected that a monosemous algorithm
such as ours would perform poorly in a type level
evaluation. In (Reichart et al., 2010a) we discuss
type level evaluation at depth and propose type
level evaluation measures applicable to the POS
induction problem. In that paper we compare the
performance of our Prototype Tagger with lead-
ing unsupervised POS tagging algorithms (Clark,
2003; Goldwater and Griffiths, 2007; Gao and
Johnson, 2008; Van Gael et al., 2009). Our al-
gorithm obtained the best results in 4 of the 6
measures in a margin of 4–6%, and was second
best in the other two measures. Our results were
better than Clark’s (the only other monosemous
algorithm evaluated there) on all measures in a
margin of 5–21%. The fact that our monose-
mous algorithm was better than good polysemous
algorithms in a type level evaluation can be ex-
plained by the prototypical nature of the POS phe-
nomenon (a longer discussion is given in (Reichart
et al., 2010a)). However, the quality upper bound
for monosemous algorithms is obviously much
lower than that for polysemous algorithms, and
we expect polysemous algorithms to outperform

monosemous algorithms in the future in both type
level and token level evaluations.

The skewed (Zipfian) distribution of POS class
frequencies in corpora is a problem for many POS
induction algorithms, which by default tend to in-
duce a clustering having a balanced distribution.
Explicit modifications to these algorithms were in-
troduced in order to bias their model to produce
such a distribution (see (Clark, 2003; Johnson,
2007; Reichart et al., 2010b)). An appealing prop-
erty of our model is its ability to induce a skewed
distribution without being explicitly tuned to do
so, as seen in Figure 2.
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Abstract

The task of Semantic Role Labeling
(SRL) is often divided into two sub-tasks:
verb argument identification, and argu-
ment classification. Current SRL algo-
rithms show lower results on the identifi-
cation sub-task. Moreover, most SRL al-
gorithms are supervised, relying on large
amounts of manually created data. In
this paper we present an unsupervised al-
gorithm for identifying verb arguments,
where the only type of annotation required
is POS tagging. The algorithm makes use
of a fully unsupervised syntactic parser,
using its output in order to detect clauses
and gather candidate argument colloca-
tion statistics. We evaluate our algorithm
on PropBank10, achieving a precision of
56%, as opposed to 47% of a strong base-
line. We also obtain an 8% increase in
precision for a Spanish corpus. This is
the first paper that tackles unsupervised
verb argument identification without using
manually encoded rules or extensive lexi-
cal or syntactic resources.

1 Introduction

Semantic Role Labeling (SRL) is a major NLP
task, providing a shallow sentence-level semantic
analysis. SRL aims at identifying the relations be-
tween the predicates (usually, verbs) in the sen-
tence and their associated arguments.

The SRL task is often viewed as consisting of
two parts: argument identification (ARGID) and ar-
gument classification. The former aims at identi-
fying the arguments of a given predicate present
in the sentence, while the latter determines the

type of relation that holds between the identi-
fied arguments and their corresponding predicates.
The division into two sub-tasks is justified by
the fact that they are best addressed using differ-
ent feature sets (Pradhan et al., 2005). Perfor-
mance in theARGID stage is a serious bottleneck
for general SRL performance, since only about
81% of the arguments are identified, while about
95% of the identified arguments are labeled cor-
rectly (Màrquez et al., 2008).

SRL is a complex task, which is reflected by the
algorithms used to address it. A standard SRL al-
gorithm requires thousands to dozens of thousands
sentences annotated with POS tags, syntactic an-
notation and SRL annotation. Current algorithms
show impressive results but only for languages and
domains where plenty of annotated data is avail-
able, e.g., English newspaper texts (see Section 2).
Results are markedly lower when testing is on a
domain wider than the training one, even in En-
glish (see the WSJ-Brown results in (Pradhan et
al., 2008)).

Only a small number of works that do not re-
quire manually labeled SRL training data have
been done (Swier and Stevenson, 2004; Swier and
Stevenson, 2005; Grenager and Manning, 2006).
These papers have replaced this data with the
VerbNet (Kipper et al., 2000) lexical resource or
a set of manually written rules and supervised
parsers.

A potential answer to the SRL training data bot-
tleneck are unsupervised SRL models that require
little to no manual effort for their training. Their
output can be used either by itself, or as training
material for modern supervised SRL algorithms.

In this paper we present an algorithm for unsu-
pervised argument identification. The only type of
annotation required by our algorithm is POS tag-



ging, which needs relatively little manual effort.
The algorithm consists of two stages. As pre-

processing, we use a fully unsupervised parser to
parse each sentence. Initially, the set of possi-
ble arguments for a given verb consists of all the
constituents in the parse tree that do not contain
that predicate. The first stage of the algorithm
attempts to detect the minimal clause in the sen-
tence that contains the predicate in question. Us-
ing this information, it further reduces the possible
arguments only to those contained in the minimal
clause, and further prunes them according to their
position in the parse tree. In the second stage we
use pointwise mutual information to estimate the
collocation strength between the arguments and
the predicate, and use it to filter out instances of
weakly collocating predicate argument pairs.

We use two measures to evaluate the perfor-
mance of our algorithm, precision and F-score.
Precision reflects the algorithm’s applicability for
creating training data to be used by supervised
SRL models, while the standard SRL F-score mea-
sures the model’s performance when used by it-
self. The first stage of our algorithm is shown to
outperform a strong baseline both in terms of F-
score and of precision. The second stage is shown
to increase precision while maintaining a reason-
able recall.

We evaluated our model on sections 2-21 of
Propbank. As is customary in unsupervised pars-
ing work (e.g. (Seginer, 2007)), we bounded sen-
tence length by 10 (excluding punctuation). Our
first stage obtained a precision of 52.8%, which is
more than 6% improvement over the baseline. Our
second stage improved precision to nearly 56%, a
9.3% improvement over the baseline. In addition,
we carried out experiments on Spanish (on sen-
tences of length bounded by 15, excluding punctu-
ation), achieving an increase of over 7.5% in pre-
cision over the baseline. Our algorithm increases
F–score as well, showing an 1.8% improvement
over the baseline in English and a 2.2% improve-
ment in Spanish.

Section 2 reviews related work. In Section 3 we
detail our algorithm. Sections 4 and 5 describe the
experimental setup and results.

2 Related Work

The advance of machine learning based ap-
proaches in this field owes to the usage of large
scale annotated corpora. English is the most stud-

ied language, using the FrameNet (FN) (Baker et
al., 1998) and PropBank (PB) (Palmer et al., 2005)
resources. PB is a corpus well suited for evalu-
ation, since it annotates every non-auxiliary verb
in a real corpus (the WSJ sections of the Penn
Treebank). PB is a standard corpus for SRL eval-
uation and was used in the CoNLL SRL shared
tasks of 2004 (Carreras and Màrquez, 2004) and
2005 (Carreras and M̀arquez, 2005).

Most work on SRL has been supervised, requir-
ing dozens of thousands of SRL annotated train-
ing sentences. In addition, most models assume
that a syntactic representation of the sentence is
given, commonly in the form of a parse tree, a de-
pendency structure or a shallow parse. Obtaining
these is quite costly in terms of required human
annotation.

The first work to tackle SRL as an indepen-
dent task is (Gildea and Jurafsky, 2002), which
presented a supervised model trained and evalu-
ated on FrameNet. The CoNLL shared tasks of
2004 and 2005 were devoted to SRL, and stud-
ied the influence of different syntactic annotations
and domain changes on SRL results.Computa-
tional Linguisticshas recently published a special
issue on the task (M̀arquez et al., 2008), which
presents state-of-the-art results and surveys the lat-
est achievements and challenges in the field.

Most approaches to the task use a multi-level
approach, separating the task to anARGID and an
argument classification sub-tasks. They then use
the unlabeled argument structure (without the se-
mantic roles) as training data for theARGID stage
and the entire data (perhaps with other features)
for the classification stage. Better performance
is achieved on the classification, where state-
of-the-art supervised approaches achieve about
81% F-score on the in-domain identification task,
of which about 95% are later labeled correctly
(Màrquez et al., 2008).

There have been several exceptions to the stan-
dard architecture described in the last paragraph.
One suggestion poses the problem of SRL as a se-
quential tagging of words, training an SVM clas-
sifier to determine for each word whether it is in-
side, outside or in the beginning of an argument
(Hacioglu and Ward, 2003). Other works have in-
tegrated argument classification and identification
into one step (Collobert and Weston, 2007), while
others went further and combined the former two
along with parsing into a single model (Musillo



and Merlo, 2006).

Work on less supervised methods has been
scarce. Swier and Stevenson (2004) and Swier
and Stevenson (2005) presented the first model
that does not use an SRL annotated corpus. How-
ever, they utilize the extensive verb lexicon Verb-
Net, which lists the possible argument structures
allowable for each verb, and supervised syntac-
tic tools. Using VerbNet along with the output of
a rule-based chunker (in 2004) and a supervised
syntactic parser (in 2005), they spot instances in
the corpus that are very similar to the syntactic
patterns listed in VerbNet. They then use these as
seed for a bootstrapping algorithm, which conse-
quently identifies the verb arguments in the corpus
and assigns their semantic roles.

Another less supervised work is that
of (Grenager and Manning, 2006), which presents
a Bayesian network model for the argument
structure of a sentence. They use EM to learn
the model’s parameters from unannotated data,
and use this model to tag a test corpus. However,
ARGID was not the task of that work, which dealt
solely with argument classification.ARGID was
performed by manually-created rules, requiring a
supervised or manual syntactic annotation of the
corpus to be annotated.

The three works above are relevant but incom-
parable to our work, due to the extensive amount
of supervision (namely, VerbNet and a rule-based
or supervised syntactic system) they used, both in
detecting the syntactic structure and in detecting
the arguments.

Work has been carried out in a few other lan-
guages besides English. Chinese has been studied
in (Xue, 2008). Experiments on Catalan and Span-
ish were done in SemEval 2007 (Màrquez et al.,
2007) with two participating systems. Attempts
to compile corpora for German (Burdchardt et al.,
2006) and Arabic (Diab et al., 2008) are also un-
derway. The small number of languages for which
extensive SRL annotated data exists reflects the
considerable human effort required for such en-
deavors.

Some SRL works have tried to use unannotated
data to improve the performance of a base su-
pervised model. Methods used include bootstrap-
ping approaches (Gildea and Jurafsky, 2002; Kate
and Mooney, 2007), where large unannotated cor-
pora were tagged with SRL annotation, later to
be used to retrain the SRL model. Another ap-

proach used similarity measures either between
verbs (Gordon and Swanson, 2007) or between
nouns (Gildea and Jurafsky, 2002) to overcome
lexical sparsity. These measures were estimated
using statistics gathered from corpora augmenting
the model’s training data, and were then utilized
to generalize across similar verbs or similar argu-
ments.

Attempts to substitute full constituency pars-
ing by other sources of syntactic information have
been carried out in the SRL community. Sugges-
tions include posing SRL as a sequence labeling
problem (M̀arquez et al., 2005) or as an edge tag-
ging problem in a dependency representation (Ha-
cioglu, 2004). Punyakanok et al. (2008) provide
a detailed comparison between the impact of us-
ing shallow vs. full constituency syntactic infor-
mation in an English SRL system. Their results
clearly demonstrate the advantage of using full an-
notation.

The identification of arguments has also been
carried out in the context of automatic subcatego-
rization frame acquisition. Notable examples in-
clude (Manning, 1993; Briscoe and Carroll, 1997;
Korhonen, 2002) who all used statistical hypothe-
sis testing to filter a parser’s output for arguments,
with the goal of compiling verb subcategorization
lexicons. However, these works differ from ours
as they attempt to characterize the behavior of a
verb type, by collecting statistics from various in-
stances of that verb, and not to determine which
are the arguments of specific verb instances.

The algorithm presented in this paper performs
unsupervised clause detection as an intermedi-
ate step towards argument identification. Super-
vised clause detection was also tackled as a sepa-
rate task, notably in the CoNLL 2001 shared task
(Tjong Kim Sang and D̀ejean, 2001). Clause in-
formation has been applied to accelerating a syn-
tactic parser (Glaysher and Moldovan, 2006).

3 Algorithm

In this section we describe our algorithm. It con-
sists of two stages, each of which reduces the set
of argument candidates, which a-priori contains all
consecutive sequences of words that do not con-
tain the predicate in question.

3.1 Algorithm overview

As pre-processing, we use an unsupervised parser
that generates an unlabeled parse tree for each sen-



tence (Seginer, 2007). This parser is unique in that
it is able to induce a bracketing (unlabeled pars-
ing) from raw text (without even using POS tags)
achieving state-of-the-art results. Since our algo-
rithm uses millions to tens of millions sentences,
we must use very fast tools. The parser’s high
speed (thousands of words per second) enables us
to process these large amounts of data.

The only type of supervised annotation we
use is POS tagging. We use the taggers MX-
POST (Ratnaparkhi, 1996) for English and Tree-
Tagger (Schmid, 1994) for Spanish, to obtain POS
tags for our model.

The first stage of our algorithm uses linguisti-
cally motivated considerations to reduce the set of
possible arguments. It does so by confining the set
of argument candidates only to those constituents
which obey the following two restrictions. First,
they should be contained in the minimal clause
containing the predicate. Second, they should be
k-th degree cousins of the predicate in the parse
tree. We propose a novel algorithm for clause de-
tection and use its output to determine which of
the constituents obey these two restrictions.

The second stage of the algorithm uses point-
wise mutual information to rule out constituents
that appear to be weakly collocating with the pred-
icate in question. Since a predicate greatly re-
stricts the type of arguments with which it may
appear (this is often referred to as “selectional re-
strictions”), we expect it to have certain character-
istic arguments with which it is likely to collocate.

3.2 Clause detection stage

The main idea behind this stage is the observation
that most of the arguments of a predicate are con-
tained within the minimal clause that contains the
predicate. We tested this on our development data
– section 24 of the WSJ PTB, where we saw that
86% of the arguments that are also constituents
(in the gold standard parse) were indeed contained
in that minimal clause (as defined by the tree la-
bel types in the gold standard parse that denote
a clause, e.g.,S, SBAR). Since we are not pro-
vided with clause annotation (or any label), we at-
tempted to detect them in an unsupervised manner.
Our algorithm attempts to find sub-trees within the
parse tree, whose structure resembles the structure
of a full sentence. This approximates the notion of
a clause.

L

L

DT

The

NNS

materials

L

L

IN

in

L

DT

each

NN

set

L

VBP

reach

L

L

IN

about

CD

90

NNS

students

L

L L

L L

VBP L

L

VBP L

Figure 1: An example of an unlabeled POS tagged
parse tree. The middle tree is theST of ‘reach’
with the root as the encoded ancestor. The bot-
tom one is theST with its parent as the encoded
ancestor.

Statistics gathering. In order to detect which
of the verb’s ancestors is the minimal clause, we
score each of the ancestors and select the one that
maximizes the score. We represent each ancestor
using itsSpinal Tree(ST ). The ST of a given
verb’s ancestor is obtained by replacing all the
constituents that do not contain the verb by a leaf
having a label. This effectively encodes all thek-
th degree cousins of the verb (for everyk). The
leaf labels are either the word’s POS in case the
constituent is a leaf, or the generic label “L” de-
noting a non-leaf. See Figure 1 for an example.

In this stage we collect statistics of the occur-
rences ofSTs in a large corpus. For everyST in
the corpus, we count the number of times it oc-
curs in a form we consider to be a clause (positive
examples), and the number of times it appears in
other forms (negative examples).

Positive examples are divided into two main
types. First, when theST encodes the root an-
cestor (as in the middle tree of Figure 1); second,
when the ancestor complies to a clause lexico-
syntactic pattern. In many languages there is a
small set of lexico-syntactic patterns that mark a
clause, e.g. the English ‘that’, the German ‘dass’
and the Spanish ‘que’. The patterns which were
used in our experiments are shown in Figure 2.

For each verb instance, we traverse over its an-



English

TO + VB. The constituent starts with “to” followed by
a verb in infinitive form.

WP. The constituent is preceded by a Wh-pronoun.

That. The constituent is preceded by a “that” marked
by an “IN” POS tag indicating that it is a subordinating
conjunction.

Spanish

CQUE. The constituent is preceded by a word with the
POS “CQUE” which denotes the word “que” as a con-
junction.

INT. The constituent is preceded by a word with the
POS “INT” which denotes an interrogative pronoun.

CSUB.The constituent is preceded by a word with one
of the POSs “CSUBF”, “CSUBI” or “CSUBX”, which
denote a subordinating conjunction.

Figure 2: The set of lexico-syntactic patterns that
mark clauses which were used by our model.

cestors from top to bottom. For each of them we
update the following counters:sentence(ST ) for
the root ancestor’sST , patterni(ST ) for the ones
complying to thei-th lexico-syntactic pattern and
negative(ST ) for the other ancestors1.

Clause detection. At test time, when detecting
the minimal clause of a verb instance, we use
the statistics collected in the previous stage. De-
note the ancestors of the verb withA1 . . . Am.
For each of them, we calculateclause(STAj )
and total(STAj ). clause(STAj ) is the sum
of sentence(STAj ) and patterni(STAj ) if this
ancestor complies to thei-th pattern (if there
is no such pattern,clause(STAj ) is equal to
sentence(STAj )). total(STAj ) is the sum of
clause(STAj ) andnegative(STAj ).

The selected ancestor is given by:

(1)Amax = argmaxAj

clause(STAj
)

total(STAj
)

An ST whosetotal(ST ) is less than a small
threshold2 is not considered a candidate to be the
minimal clause, since its statistics may be un-
reliable. In case of a tie, we choose the low-
est constituent that obtained the maximal score.

1If while traversing the tree, we encounter an ancestor
whose first word is preceded by a coordinating conjunction
(marked by the POS tag “CC”), we refrain from performing
any additional counter updates. Structures containing coor-
dinating conjunctions tend not to obey our lexico-syntactic
rules.

2We used 4 per million sentences, derived from develop-
ment data.

If there is only one verb in the sentence3 or if
clause(STAj ) = 0 for every 1 ≤ j ≤ m, we
choose the top level constituent by default to be
the minimal clause containing the verb. Other-
wise, the minimal clause is defined to be the yield
of the selected ancestor.

Argument identification. For each predicate in
the corpus, its argument candidates are now de-
fined to be the constituents contained in the min-
imal clause containing the predicate. However,
these constituents may be (and are) nested within
each other, violating a major restriction on SRL
arguments. Hence we now prune our set, by keep-
ing only the siblings of all of the verb’s ancestors,
as is common in supervised SRL (Xue and Palmer,
2004).

3.3 Using collocations

We use the following observation to filter out some
superfluous argument candidates: since the argu-
ments of a predicate many times bear a semantic
connection with that predicate, they consequently
tend to collocate with it.

We collect collocation statistics from a large
corpus, which we annotate with parse trees and
POS tags. We mark arguments using the argu-
ment detection algorithm described in the previous
two sections, and extract all (predicate, argument)
pairs appearing in the corpus. Recall that for each
sentence, the arguments are a subset of the con-
stituents in the parse tree.

We use two representations of an argument: one
is the POS tag sequence of the terminals contained
in the argument, the other is its head word4. The
predicate is represented as the conjunction of its
lemma with its POS tag.

Denote the number of times a predicatex
appeared with an argumenty by nxy. Denote
the total number of (predicate, argument) pairs
by N . Using these notations, we define the
following quantities:nx = Σynxy, ny = Σxnxy,
p(x) = nx

N , p(y) =
ny

N andp(x, y) =
nxy

N . The
pointwise mutual information ofx andy is then
given by:

3In this case, every argument in the sentence must be re-
lated to that verb.

4Since we do not have syntactic labels, we use an approx-
imate notion. For English we use the Bikel parser default
head word rules (Bikel, 2004). For Spanish, we use the left-
most word.



(2) PMI(x, y) = log p(x,y)
p(x)·p(y) = log

nxy

(nx·ny)/N

PMI effectively measures the ratio between
the number of timesx andy appeared together and
the number of times they were expected to appear,
had they been independent.

At test time, when an(x, y) pair is observed, we
check ifPMI(x, y), computed on the large cor-
pus, is lower than a thresholdα for either ofx’s
representations. If this holds, for at least one rep-
resentation, we prune all instances of that(x, y)
pair. The parameterα may be selected differently
for each of the argument representations.

In order to avoid using unreliable statistics,
we apply this for a given pair only ifnx·ny

N >
r, for some parameterr. That is, we consider
PMI(x, y) to be reliable, only if the denomina-
tor in equation (2) is sufficiently large.

4 Experimental Setup

Corpora. We used the PropBank corpus for de-
velopment and for evaluation on English. Section
24 was used for the development of our model,
and sections 2 to 21 were used as our test data.
The free parameters of the collocation extraction
phase were tuned on the development data. Fol-
lowing the unsupervised parsing literature, multi-
ple brackets and brackets covering a single word
are omitted. We exclude punctuation according
to the scheme of (Klein, 2005). As is customary
in unsupervised parsing (e.g. (Seginer, 2007)), we
bounded the lengths of the sentences in the cor-
pus to be at most 10 (excluding punctuation). This
results in 207 sentences in the development data,
containing a total of 132 different verbs and 173
verb instances (of the non-auxiliary verbs in the
SRL task, see ‘evaluation’ below) having 403 ar-
guments. The test data has 6007 sentences con-
taining 1008 different verbs and 5130 verb in-
stances (as above) having 12436 arguments.

Our algorithm requires large amounts of data
to gather argument structure and collocation pat-
terns. For the statistics gathering phase of the
clause detection algorithm, we used 4.5M sen-
tences of the NANC (Graff, 1995) corpus, bound-
ing their length in the same manner. In order
to extract collocations, we used 2M sentences
from the British National Corpus (Burnard, 2000)
and about 29M sentences from the Dmoz cor-
pus (Gabrilovich and Markovitch, 2005). Dmoz
is a web corpus obtained by crawling and clean-

ing the URLs in the Open Directory Project
(dmoz.org). All of the above corpora were parsed
using Seginer’s parser and POS-tagged by MX-
POST (Ratnaparkhi, 1996).

For our experiments on Spanish, we used 3.3M
sentences of length at most 15 (excluding punctua-
tion) extracted from the Spanish Wikipedia. Here
we chose to bound the length by 15 due to the
smaller size of the available test corpus. The
same data was used both for the first and the sec-
ond stages. Our development and test data were
taken from the training data released for the Se-
mEval 2007 task on semantic annotation of Span-
ish (Màrquez et al., 2007). This data consisted
of 1048 sentences of length up to 15, from which
200 were randomly selected as our development
data and 848 as our test data. The development
data included 313 verb instances while the test
data included 1279. All corpora were parsed us-
ing the Seginer parser and tagged by the “Tree-
Tagger” (Schmid, 1994).

Baselines. Since this is the first paper, to our
knowledge, which addresses the problem of unsu-
pervised argument identification, we do not have
any previous results to compare to. We instead
compare to a baseline which marks allk-th degree
cousins of the predicate (for everyk) as arguments
(this is the second pruning we use in the clause
detection stage). We name this baseline the ALL

COUSINS baseline. We note that a random base-
line would score very poorly since any sequence of
terminals which does not contain the predicate is
a possible candidate. Therefore, beating this ran-
dom baseline is trivial.

Evaluation. Evaluation is carried out using
standard SRL evaluation software5. The algorithm
is provided with a list of predicates, whose argu-
ments it needs to annotate. For the task addressed
in this paper, non-consecutive parts of arguments
are treated as full arguments. A match is consid-
ered each time an argument in the gold standard
data matches a marked argument in our model’s
output. An unmatched argument is an argument
which appears in the gold standard data, and fails
to appear in our model’s output, and an exces-
sive argument is an argument which appears in
our model’s output but does not appear in the gold
standard. Precision and recall are defined accord-
ingly. We report an F-score as well (the harmonic
mean of precision and recall). We do not attempt

5http://www.lsi.upc.edu/∼srlconll/soft.html#software.



to identify multi-word verbs, and therefore do not
report the model’s performance in identifying verb
boundaries.

Since our model detects clauses as an interme-
diate product, we provide a separate evaluation
of this task for the English corpus. We show re-
sults on our development data. We use the stan-
dard parsing F-score evaluation measure. As a
gold standard in this evaluation, we mark for each
of the verbs in our development data the minimal
clause containing it. A minimal clause is the low-
est ancestor of the verb in the parse tree that has
a syntactic label of a clause according to the gold
standard parse of the PTB. A verb is any terminal
marked by one of the POS tags of type verb ac-
cording to the gold standard POS tags of the PTB.

5 Results

Our results are shown in Table 1. The left section
presents results on English and the right section
presents results on Spanish. The top line lists re-
sults of the clause detection stage alone. The next
two lines list results of the full algorithm (clause
detection + collocations) in two different settings
of the collocation stage. The bottom line presents
the performance of the ALL COUSINSbaseline.

In the “Collocation Maximum Precision” set-
ting the parameters of the collocation stage (α and
r) were generally tuned such that maximal preci-
sion is achieved while preserving a minimal recall
level (40% for English, 20% for Spanish on the de-
velopment data). In the “Collocation Maximum F-
score” the collocation parameters were generally
tuned such that the maximum possible F-score for
the collocation algorithm is achieved.

The best or close to best F-score is achieved
when using the clause detection algorithm alone
(59.14% for English, 23.34% for Spanish). Note
that for both English and Spanish F-score im-
provements are achieved via a precision improve-
ment that is more significant than the recall degra-
dation. F-score maximization would be the aim of
a system that uses the output of our unsupervised
ARGID by itself.

The “Collocation Maximum Precision”
achieves the best precision level (55.97% for
English, 21.8% for Spanish) but at the expense
of the largest recall loss. Still, it maintains a
reasonable level of recall. The “Collocation
Maximum F-score” is an example of a model that
provides a precision improvement (over both the

baseline and the clause detection stage) with a
relatively small recall degradation. In the Spanish
experiments its F-score (23.87%) is even a bit
higher than that of the clause detection stage
(23.34%).

The full two–stage algorithm (clause detection
+ collocations) should thus be used when we in-
tend to use the model’s output as training data for
supervised SRL engines or supervisedARGID al-
gorithms.

In our algorithm, the initial set of potential ar-
guments consists of constituents in the Seginer
parser’s parse tree. Consequently the fraction
of arguments that are also constituents (81.87%
for English and 51.83% for Spanish) poses an
upper bound on our algorithm’s recall. Note
that the recall of the ALL COUSINS baseline is
74.27% (45.75%) for English (Spanish). This
score emphasizes the baseline’s strength, and jus-
tifies the restriction that the arguments should be
k-th cousins of the predicate. The difference be-
tween these bounds for the two languages provides
a partial explanation for the corresponding gap in
the algorithm’s performance.

Figure 3 shows the precision of the collocation
model (on development data) as a function of the
amount of data it was given. We can see that
the algorithm reaches saturation at about 5M sen-
tences. It achieves this precision while maintain-
ing a reasonable recall (an average recall of 43.1%
after saturation). The parameters of the colloca-
tion model were separately tuned for each corpus
size, and the graph displays the maximum which
was obtained for each of the corpus sizes.

To better understand our model’s performance,
we performed experiments on the English cor-
pus to test how well its first stage detects clauses.
Clause detection is used by our algorithm as a step
towards argument identification, but it can be of
potential benefit for other purposes as well (see
Section 2). The results are 23.88% recall and 40%
precision. As in theARGID task, a random se-
lection of arguments would have yielded an ex-
tremely poor result.

6 Conclusion

In this work we presented the first algorithm for ar-
gument identification that uses neither supervised
syntactic annotation nor SRL tagged data. We
have experimented on two languages: English and
Spanish. The straightforward adaptability of un-



English (Test Data) Spanish (Test Data)
Precision Recall F1 Precision Recall F1

Clause Detection 52.84 67.14 59.14 18.00 33.19 23.34
Collocation Maximum F–score 54.11 63.53 58.44 20.22 29.13 23.87
Collocation Maximum Precision 55.97 40.02 46.67 21.80 18.47 20.00

ALL COUSINSbaseline 46.71 74.27 57.35 14.16 45.75 21.62

Table 1:Precision, Recall and F1 score for the different stages of our algorithm. Results are given for English (PTB, sentences
length bounded by 10, left part of the table) and Spanish (SemEval 2007 Spanish SRL task, right part of the table). The results
of the collocation (second) stage are given in two configurations, Collocation Maximum F-score and Collocation Maximum
Precision (see text). The upper bounds on Recall, obtained by taking all arguments output by our unsupervised parser, are
81.87% for English and 51.83% for Spanish.
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Figure 3:The performance of the second stage on English
(squares) vs. corpus size. The precision of the baseline (trian-
gles) and of the first stage (circles) is displayed for reference.
The graph indicates the maximum precision obtained for each
corpus size. The graph reaches saturation at about 5M sen-
tences. The average recall of the sampled points from there
on is 43.1%. Experiments were performed on the English
development data.

supervised models to different languages is one
of their most appealing characteristics. The re-
cent availability of unsupervised syntactic parsers
has offered an opportunity to conduct research on
SRL, without reliance on supervised syntactic an-
notation. This work is the first to address the ap-
plication of unsupervised parses to an SRL related
task.

Our model displayed an increase in precision of
9% in English and 8% in Spanish over a strong
baseline. Precision is of particular interest in this
context, as instances tagged by high quality an-
notation could be later used as training data for
supervised SRL algorithms. In terms of F–score,
our model showed an increase of 1.8% in English
and of 2.2% in Spanish over the baseline.

Although the quality of unsupervised parses is
currently low (compared to that of supervised ap-
proaches), using great amounts of data in identi-
fying recurring structures may reduce noise and
in addition address sparsity. The techniques pre-
sented in this paper are based on this observation,
using around 35M sentences in total for English

and 3.3M sentences for Spanish.
As this is the first work which addressed un-

supervisedARGID, many questions remain to be
explored. Interesting issues to address include as-
sessing the utility of the proposed methods when
supervised parses are given, comparing our model
to systems with no access to unsupervised parses
and conducting evaluation using more relaxed
measures.

Unsupervised methods for syntactic tasks have
matured substantially in the last few years. No-
table examples are (Clark, 2003) for unsupervised
POS tagging and (Smith and Eisner, 2006) for un-
supervised dependency parsing. Adapting our al-
gorithm to use the output of these models, either to
reduce the little supervision our algorithm requires
(POS tagging) or to provide complementary syn-
tactic information, is an interesting challenge for
future work.
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Abstract

The core-adjunct argument distinction is a
basic one in the theory of argument struc-
ture. The task of distinguishing between
the two has strong relations to various ba-
sic NLP tasks such as syntactic parsing,
semantic role labeling and subcategoriza-
tion acquisition. This paper presents a
novel unsupervised algorithm for the task
that uses no supervised models, utilizing
instead state-of-the-art syntactic induction
algorithms. This is the first work to tackle
this task in a fully unsupervised scenario.

1 Introduction

The distinction between core arguments (hence-
forth, cores) and adjuncts is included in most the-
ories on argument structure (Dowty, 2000). The
distinction can be viewed syntactically, as one
between obligatory and optional arguments, or
semantically, as one between arguments whose
meanings are predicate dependent and indepen-
dent. The latter (cores) are those whose function in
the described event is to a large extent determined
by the predicate, and are obligatory. Adjuncts are
optional arguments which, like adverbs, modify
the meaning of the described event in a predictable
or predicate-independent manner.

Consider the following examples:

1. The surgeon operated [on his colleague].

2. Ron will drop by [after lunch].

3. Yuri played football [in the park].

The marked argument is a core in 1 and an ad-
junct in 2 and 3. Adjuncts form an independent
semantic unit and their semantic role can often be
inferred independently of the predicate (e.g., [af-
ter lunch] is usually a temporal modifier). Core

∗ Omri Abend is grateful to the Azrieli Foundation for
the award of an Azrieli Fellowship.

roles are more predicate-specific, e.g., [on his col-
league] has a different meaning with the verbs ‘op-
erate’ and ‘count’.

Sometimes the same argument plays a different
role in different sentences. In (3), [in the park]
places a well-defined situation (Yuri playing foot-
ball) in a certain location. However, in “The troops
are based [in the park]”, the same argument is
obligatory, since being based requires a place to
be based in.

Distinguishing between the two argument types
has been discussed extensively in various formu-
lations in the NLP literature, notably in PP attach-
ment, semantic role labeling (SRL) and subcatego-
rization acquisition. However, no work has tack-
led it yet in a fully unsupervised scenario. Unsu-
pervised models reduce reliance on the costly and
error prone manual multi-layer annotation (POS
tagging, parsing, core-adjunct tagging) commonly
used for this task. They also allow to examine the
nature of the distinction and to what extent it is
accounted for in real data in a theory-independent
manner.

In this paper we present a fully unsupervised al-
gorithm for core-adjunct classification. We utilize
leading fully unsupervised grammar induction and
POS induction algorithms. We focus on preposi-
tional arguments, since non-prepositional ones are
generally cores. The algorithm uses three mea-
sures based on different characterizations of the
core-adjunct distinction, and combines them us-
ing an ensemble method followed by self-training.
The measures used are based on selectional prefer-
ence, predicate-slot collocation and argument-slot
collocation.

We evaluate against PropBank (Palmer et al.,
2005), obtaining roughly 70% accuracy when
evaluated on the prepositional arguments and
more than 80% for the entire argument set. These
results are substantially better than those obtained
by a non-trivial baseline.



Section 2 discusses the core-adjunct distinction.
Section 3 describes the algorithm. Sections 4 and
5 present our experimental setup and results.

2 Core-Adjunct in Previous Work

PropBank. PropBank (PB) (Palmer et al., 2005)
is a widely used corpus, providing SRL annotation
for the entire WSJ Penn Treebank. Its core labels
are predicate specific, while adjunct (or modifiers
under their terminology) labels are shared across
predicates. The adjuncts are subcategorized into
several classes, the most frequent of which are
locative, temporal and manner1.

The organization of PropBank is based on
the notion of diathesis alternations, which are
(roughly) defined to be alternations between two
subcategorization frames that preserve meaning or
change it systematically. The frames in which
each verb appears were collected and sets of al-
ternating frames were defined. Each such set was
assumed to have a unique set of roles, named ‘role-
set’. These roles include all roles appearing in any
of the frames, except of those defined as adjuncts.

Adjuncts are defined to be optional arguments
appearing with a wide variety of verbs and frames.
They can be viewed as fixed points with respect to
alternations, i.e., as arguments that do not change
their place or slot when the frame undergoes an
alternation. This follows the notions of optionality
and compositionality that define adjuncts.

Detecting diathesis alternations automatically
is difficult (McCarthy, 2001), requiring an initial
acquisition of a subcategorization lexicon. This
alone is a challenging task tackled in the past us-
ing supervised parsers (see below).

FrameNet. FrameNet (FN) (Baker et al., 1998)
is a large-scale lexicon based on frame semantics.
It takes a different approach from PB to semantic
roles. Like PB, it distinguishes between core and
non-core arguments, but it does so for each and
every frame separately. It does not commit that a
semantic role is consistently tagged as a core or
a non-core across frames. For example, the se-
mantic role ‘path’ is considered core in the ‘Self
Motion’ frame, but as non-core in the ‘Placing’
frame. Another difference is that FN does not al-
low any type of non-core argument to attach to
a given frame. For instance, while the ‘Getting’

1PropBank annotates modals and negation words as mod-
ifiers. Since these are not arguments in the common usage of
the term, we exclude them from the discussion in this paper.

frame allows a ‘Duration’ non-core argument, the
‘Active Perception’ frame does not.

PB and FN tend to agree in clear (prototypical)
cases, but to differ in others. For instance, both
schemes would tag “Yuri played football [in the
park]” as an adjunct and “The commander placed
a guard [in the park]” as a core. However, in “He
walked [into his office]”, the marked argument is
tagged as a directional adjunct in PB but as a ‘Di-
rection’ core in FN.

Under both schemes, non-cores are usually con-
fined to a few specific semantic domains, no-
tably time, place and manner, in contrast to cores
that are not restricted in their scope of applica-
bility. This approach is quite common, e.g., the
COBUILD English grammar (Willis, 2004) cate-
gorizes adjuncts to be of manner, aspect, opinion,
place, time, frequency, duration, degree, extent,
emphasis, focus and probability.

Semantic Role Labeling. Work in SRL does
not tackle the core-adjunct task separately but as
part of general argument classification. Super-
vised approaches obtain an almost perfect score
in distinguishing between the two in an in-domain
scenario. For instance, the confusion matrix in
(Toutanova et al., 2008) indicates that their model
scores 99.5% accuracy on this task. However,
adaptation results are lower, with the best two
models in the CoNLL 2005 shared task (Carreras
and Màrquez, 2005) achieving 95.3% (Pradhan et
al., 2008) and 95.6% (Punyakanok et al., 2008) ac-
curacy in an adaptation between the relatively sim-
ilar corpora WSJ and Brown.

Despite the high performance in supervised sce-
narios, tackling the task in an unsupervised man-
ner is not easy. The success of supervised methods
stems from the fact that the predicate-slot com-
bination (slot is represented in this paper by its
preposition) strongly determines whether a given
argument is an adjunct or a core (see Section 3.4).
Supervised models are provided with an anno-
tated corpus from which they can easily learn the
mapping between predicate-slot pairs and their
core/adjunct label. However, induction of the
mapping in an unsupervised manner must be based
on inherent core-adjunct properties. In addition,
supervised models utilize supervised parsers and
POS taggers, while the current state-of-the-art in
unsupervised parsing and POS tagging is consid-
erably worse than their supervised counterparts.

This challenge has some resemblance to un-



supervised detection of multiword expressions
(MWEs). An important MWE sub-class is that
of phrasal verbs, which are also characterized by
verb-preposition pairs (Li et al., 2003; Sporleder
and Li, 2009) (see also (Boukobza and Rappoport,
2009)). Both tasks aim to determine semantic
compositionality, which is a highly challenging
task.

Few works addressed unsupervised SRL-related
tasks. The setup of (Grenager and Manning,
2006), who presented a Bayesian Network model
for argument classification, is perhaps closest to
ours. Their work relied on a supervised parser
and a rule-based argument identification (both dur-
ing training and testing). Swier and Stevenson
(2004, 2005), while addressing an unsupervised
SRL task, greatly differ from us as their algorithm
uses the VerbNet (Kipper et al., 2000) verb lex-
icon, in addition to supervised parses. Finally,
Abend et al. (2009) tackled the argument identi-
fication task alone and did not perform argument
classification of any sort.

PP attachment. PP attachment is the task of de-
termining whether a prepositional phrase which
immediately follows a noun phrase attaches to the
latter or to the preceding verb. This task’s relation
to the core-adjunct distinction was addressed in
several works. For instance, the results of (Hindle
and Rooth, 1993) indicate that their PP attachment
system works better for cores than for adjuncts.

Merlo and Esteve Ferrer (2006) suggest a sys-
tem that jointly tackles the PP attachment and the
core-adjunct distinction tasks. Unlike in this work,
their classifier requires extensive supervision in-
cluding WordNet, language-specific features and
a supervised parser. Their features are generally
motivated by common linguistic considerations.
Features found adaptable to a completely unsuper-
vised scenario are used in this work as well.

Syntactic Parsing. The core-adjunct distinction
is included in many syntactic annotation schemes.
Although the Penn Treebank does not explicitly
annotate adjuncts and cores, a few works sug-
gested mapping its annotation (including func-
tion tags) to core-adjunct labels. Such a mapping
was presented in (Collins, 1999). In his Model
2, Collins modifies his parser to provide a core-
adjunct prediction, thereby improving its perfor-
mance.

The Combinatory Categorial Grammar (CCG)

formulation models the core-adjunct distinction
explicitly. Therefore, any CCG parser can be used
as a core-adjunct classifier (Hockenmaier, 2003).

Subcategorization Acquisition. This task spec-
ifies for each predicate the number, type and order
of obligatory arguments. Determining the allow-
able subcategorization frames for a given predi-
cate necessarily involves separating its cores from
its allowable adjuncts (which are not framed). No-
table works in the field include (Briscoe and Car-
roll, 1997; Sarkar and Zeman, 2000; Korhonen,
2002). All these works used a parsed corpus in
order to collect, for each predicate, a set of hy-
pothesized subcategorization frames, to be filtered
by hypothesis testing methods.

This line of work differs from ours in a few
aspects. First, all works use manual or super-
vised syntactic annotations, usually including a
POS tagger. Second, the common approach to the
task focuses on syntax and tries to identify the en-
tire frame, rather than to tag each argument sep-
arately. Finally, most works address the task at
the verb type level, trying to detect the allowable
frames for each type. Consequently, the common
evaluation focuses on the quality of the allowable
frames acquired for each verb type, and not on the
classification of specific arguments in a given cor-
pus. Such a token level evaluation was conducted
in a few works (Briscoe and Carroll, 1997; Sarkar
and Zeman, 2000), but often with a small num-
ber of verbs or a small number of frames. A dis-
cussion of the differences between type and token
level evaluation can be found in (Reichart et al.,
2010).

The core-adjunct distinction task was tackled in
the context of child language acquisition. Villav-
icencio (2002) developed a classifier based on
preposition selection and frequency information
for modeling the distinction for locative preposi-
tional phrases. Her approach is not entirely corpus
based, as it assumes the input sentences are given
in a basic logical form.

The study of prepositions is a vibrant research
area in NLP. A special issue ofComputational Lin-
guistics, which includes an extensive survey of re-
lated work, was recently devoted to the field (Bald-
win et al., 2009).



3 Algorithm

We are given a (predicate, argument) pair in a test
sentence, and we need to determine whether the
argument is a core or an adjunct. Test arguments
are assumed to be correctly bracketed. We are al-
lowed to utilize a training corpus of raw text.

3.1 Overview

Our algorithm utilizes statistics based on the
(predicate, slot, argument head) (PSH) joint dis-
tribution (a slot is represented by its preposition).
To estimate this joint distribution, PSH samples
are extracted from the training corpus using unsu-
pervised POS taggers (Clark, 2003; Abend et al.,
2010) and an unsupervised parser (Seginer, 2007).
As current performance of unsupervised parsers
for long sentences is low, we use only short sen-
tences (up to 10 words, excluding punctuation).
The length of test sentences is not bounded. Our
results will show that the training data accounts
well for the argument realization phenomena in
the test set, despite the length bound on its sen-
tences. The sample extraction process is detailed
in Section 3.2.

Our approach makes use of both aspects of the
distinction – obligatoriness and compositionality.
We define three measures, one quantifying the
obligatoriness of the slot, another quantifying the
selectional preference of the verb to the argument
and a third that quantifies the association between
the head word and the slot irrespective of the pred-
icate (Section 3.3).

The measures’ predictions are expected to coin-
cide in clear cases, but may be less successful in
others. Therefore, an ensemble-based method is
used to combine the three measures into a single
classifier. This results in a high accuracy classifier
with relatively low coverage. A self-training step
is now performed to increase coverage with only a
minor deterioration in accuracy (Section 3.4).

We focus on prepositional arguments. Non-
prepositional arguments in English tend to be
cores (e.g., in more than 85% of the cases in
PB sections 2–21), while prepositional arguments
tend to be equally divided between cores and ad-
juncts. The difficulty of the task thus lies in the
classification of prepositional arguments.

3.2 Data Collection

The statistical measures used by our classifier
are based on the (predicate, slot, argument head)

(PSH) joint distribution. This section details the
process of extracting samples from this joint dis-
tribution given a raw text corpus.

We start by parsing the corpus using the Seginer
parser (Seginer, 2007). This parser is unique in its
ability to induce a bracketing (unlabeled parsing)
from raw text (without even using POS tags) with
strong results. Its high speed (thousands of words
per second) allows us to use millions of sentences,
a prohibitive number for other parsers.

We continue by tagging the corpus using
Clark’s unsupervised POS tagger (Clark, 2003)
and the unsupervised Prototype Tagger (Abend et
al., 2010)2. The classes corresponding to preposi-
tions and to verbs are manually selected from the
induced clusters3. A preposition is defined to be
any word which is the first word of an argument
and belongs to a prepositions cluster. A verb is
any word belonging to a verb cluster. This manual
selection requires only a minute, since the number
of classes is very small (34 in our experiments).
In addition, knowing what is considered a prepo-
sition is part of the task definition itself.

Argument identification is hard even for super-
vised models and is considerably more so for un-
supervised ones (Abend et al., 2009). We there-
fore confine ourselves to sentences of length not
greater than 10 (excluding punctuation) which
contain a single verb. A sequence of words will
be marked as an argument of the verb if it is a con-
stituent that does not contain the verb (according
to the unsupervised parse tree), whose parent is
an ancestor of the verb. This follows the pruning
heuristic of (Xue and Palmer, 2004) often used by
SRL algorithms.

The corpus is now tagged using an unsupervised
POS tagger. Since the sentences in question are
short, we consider every word which does not be-
long to a closed class cluster as a head word (an
argument can have several head words). A closed
class is a class of function words with relatively
few word types, each of which is very frequent.
Typical examples include determiners, preposi-
tions and conjunctions. A class which is not closed
is open. In this paper, we define closed classes to
be clusters in which the ratio between the number
of word tokens and the number of word types ex-

2Clark’s tagger was replaced by the Prototype Tagger
where the latter gave a significant improvement. See Sec-
tion 4.

3We also explore a scenario in which they are identified
by a supervised tagger. See Section 4.



ceeds a thresholdT 4.
Using these annotation layers, we traverse the

corpus and extract every (predicate, slot, argument
head) triplet. In case an argument has several head
words, each of them is considered as an inde-
pendent sample. We denote the number of times
that a triplet occurred in the training corpus by
N(p, s, h).

3.3 Collocation Measures

In this section we present the three types of mea-
sures used by the algorithm and the rationale be-
hind each of them. These measures are all based
on the PSH joint distribution.

Given a (predicate, prepositional argument) pair
from the test set, we first tag and parse the argu-
ment using the unsupervised tools above5. Each
word in the argument is now represented by its
word form (without lemmatization), its unsuper-
vised POS tag and its depth in the parse tree of the
argument. The last two will be used to determine
which are the head words of the argument (see be-
low). The head words themselves, once chosen,
are represented by the lemma. We now compute
the following measures.

Selectional Preference (SP). Since the seman-
tics of cores is more predicate dependent than the
semantics of adjuncts, we expect arguments for
which the predicate has a strong preference (in a
specific slot) to be cores.

Selectional preference induction is a well-
established task in NLP. It aims to quantify the
likelihood that a certain argument appears in a
certain slot of a predicate. Several methods have
been suggested (Resnik, 1996; Li and Abe, 1998;
Schulte im Walde et al., 2008).

We use the paradigm of (Erk, 2007). For a given
predicate slot pair(p, s), we define its preference
to the argument headh to be:

SP (p, s, h) =
∑

h′∈Heads

Pr(h′|p, s) · sim(h, h′)

Pr(h|p, s) = N(p, s, h)

Σh′N(p, s, h′)

sim(h, h′) is a similarity measure between argu-
ment heads.Heads is the set of all head words.

4We use sections 2–21 of the PTB WSJ for these counts,
containing 0.95M words. OurT was set to 50.

5Note that while current unsupervised parsers have low
performance on long sentences, arguments, even in long sen-
tences, are usually still short enough for them to operate well.
Their average length in the test set is 5.1 words.

This is a natural extension of the naive (and sparse)
maximum likelihood estimatorPr(h|p, s), which
is obtained by takingsim(h, h′) to be 1 ifh = h′

and 0 otherwise.
The similarity measure we use is based on the

slot distributions of the arguments. That is, two
arguments are considered similar if they tend to
appear in the same slots. Each head wordh is as-
signed a vector where each coordinate corresponds
to a slots. The value of the coordinate is the num-
ber of timesh appeared ins, i.e. Σp′N(p′, s, h)
(p′ is summed over all predicates). The similarity
measure between two head words is then defined
as the cosine measure of their vectors.

Since arguments in the test set can be quite long,
not every open class word in the argument is taken
to be a head word. Instead, only those appearing in
the top level (depth = 1) of the argument under its
unsupervised parse tree are taken. In case there are
no such open class words, we take those appearing
in depth 2. The selectional preference of the whole
argument is then defined to be the arithmetic mean
of this measure over all of its head words. If the ar-
gument has no head words under this definition or
if none of the head words appeared in the training
corpus, the selectional preference is undefined.

Predicate-Slot Collocation. Since cores are
obligatory, when a predicate persistently appears
with an argument in a certain slot, the arguments
in this slot tends to be cores. This notion can be
captured by the(predicate, slot) joint distribu-
tion. We use the Pointwise Mutual Information
measure (PMI) to capture the slot and the predi-
cate’s collocation tendency. Letp be a predicate
ands a slot, then:

PS(p, s) = PMI(p, s) = log
Pr(p, s)

Pr(s) · Pr(p)
=

= log
N(p, s)Σp′,s′N(p′, s′)
Σs′N(p, s′)Σp′N(p′, s)

Since there is only a meager number of possi-
ble slots (that is, of prepositions), estimating the
(predicate, slot) distribution can be made by the
maximum likelihood estimator with manageable
sparsity.

In order not to bias the counts towards predi-
cates which tend to take more arguments, we de-
fine hereN(p, s) to be the number of times the
(p, s) pair occurred in the training corpus, irre-
spective of the number of head words the argu-
ment had (and not e.g.,ΣhN(p, s, h)). Argu-



ments with no prepositions are included in these
counts as well (withs = NULL), so not to bias
against predicates which tend to have less non-
prepositional arguments.

Argument-Slot Collocation. Adjuncts tend to
belong to one of a few specific semantic domains
(see Section 2). Therefore, if an argument tends to
appear in a certain slot in many of its instances, it
is an indication that this argument tends to have a
consistent semantic flavor in most of its instances.
In this case, the argument and the preposition can
be viewed as forming a unit on their own, indepen-
dent of the predicate with which they appear. We
therefore expect such arguments to be adjuncts.

We formalize this notion using the following
measure. Letp, s, h be a predicate, a slot and a
head word respectively. We then use6:

AS(s, h) = 1−Pr(s|h) = 1− Σp′N(p′, s, h)
Σp′,s′N(p′, s′, h)

We select the head words of the argument as
we did with the selectional preference measure.
Again, the AS of the whole argument is defined
to be the arithmetic mean of the measure over all
of its head words.

Thresholding. In order to turn these measures
into classifiers, we set a threshold below which ar-
guments are marked as adjuncts and above which
as cores. In order to avoid tuning a parameter for
each of the measures, we set the threshold as the
median value of this measure in the test set. That
is, we find the threshold which tags half of the ar-
guments as cores and half as adjuncts. This relies
on the prior knowledge that prepositional argu-
ments are roughly equally divided between cores
and adjuncts7.

3.4 Combination Model

The algorithm proceeds to integrate the predic-
tions of the weak classifiers into a single classi-
fier. We use an ensemble method (Breiman, 1996).
Each of the classifiers may either classify an argu-
ment as an adjunct, classify it as a core, or ab-
stain. In order to obtain a high accuracy classifier,
to be used for self-training below, the ensemble
classifier only tags arguments for which none of

6The conditional probability is subtracted from 1 so that
higher values correspond to cores, as with the other measures.

7In case the test data is small, we can use the median value
on the training data instead.

the classifiers abstained, i.e., when sufficient infor-
mation was available to make all three predictions.
The prediction is determined by the majority vote.

The ensemble classifier has high precision but
low coverage. In order to increase its coverage, a
self-training step is performed. We observe that a
predicate and a slot generally determine whether
the argument is a core or an adjunct. For instance,
in our development data, a classifier which assigns
all arguments that share a predicate and a slot their
most common label, yields 94.3% accuracy on the
pairs appearing at least 5 times. This property of
the core-adjunct distinction greatly simplifies the
task for supervised algorithms (see Section 2).

We therefore apply the following procedure: (1)
tag the training data with the ensemble classifier;
(2) for each test samplex, if more than a ratio ofα
of the training samples sharing the same predicate
and slot withx are labeled as cores, tagx as core.
Otherwise, tagx as adjunct.

Test samples which do not share a predicate and
a slot with any training sample are considered out
of coverage. The parameterα is chosen so half
of the arguments are tagged as cores and half as
adjuncts. In our experimentsα was about 0.25.

4 Experimental Setup

Experiments were conducted in two scenarios. In
the ‘SID’ (supervised identification of prepositions
and verbs) scenario, a gold standard list of prepo-
sitions was provided. The list was generated by
taking every word tagged by the preposition tag
(‘IN’ ) in at least one of its instances under the
gold standard annotation of the WSJ sections 2–
21. Verbs were identified using MXPOST (Ratna-
parkhi, 1996). Words tagged with any of the verb
tags, except of the auxiliary verbs (‘have’, ‘be’ and
‘do’) were considered predicates. This scenario
decouples the accuracy of the algorithm from the
quality of the unsupervised POS tagging.

In the ‘Fully Unsupervised’ scenario, preposi-
tions and verbs were identified using Clark’s tag-
ger (Clark, 2003). It was asked to produce a tag-
ging into 34 classes. The classes corresponding
to prepositions and to verbs were manually identi-
fied. Prepositions in the test set were detected with
84.2% precision and 91.6% recall.

The prediction of whether a word belongs to an
open class or a closed was based on the output of
the Prototype tagger (Abend et al., 2010). The
Prototype tagger provided significantly more ac-



curate predictions in this context than Clark’s.
The 39832 sentences of PropBank’s sections 2–

21 were used as a test set without bounding their
lengths8. Cores were defined to be any argument
bearing the labels ‘A0’ – ‘A5’, ‘C-A0’ – ‘C-A5’
or ‘R-A0’ – ‘R-A5’. Adjuncts were defined to
be arguments bearing the labels ‘AM’, ‘C-AM’ or
‘R-AM’. Modals (‘AM-MOD’) and negation mod-
ifiers (‘AM-NEG’) were omitted since they do not
represent adjuncts.

The test set includes 213473 arguments, 45939
(21.5%) are prepositional. Of the latter, 22442
(48.9%) are cores and 23497 (51.1%) are adjuncts.
The non-prepositional arguments include 145767
(87%) cores and 21767 (13%) adjuncts. The aver-
age number of words per argument is 5.1.

The NANC (Graff, 1995) corpus was used as a
training set. Only sentences of length not greater
than 10 excluding punctuation were used (see Sec-
tion 3.2), totaling 4955181 sentences. 7673878
(5635810) arguments were identified in the ‘SID’
(‘Fully Unsupervised’) scenario. The average
number of words per argument is 1.6 (1.7).

Since this is the first work to tackle this task
using neither manual nor supervised syntactic an-
notation, there is no previous work to compare
to. However, we do compare against a non-trivial
baseline, which closely follows the rationale of
cores as obligatory arguments.

Our Window Baselinetags a corpus using MX-
POST and computes, for each predicate and
preposition, the ratio between the number of times
that the preposition appeared in a window ofW
words after the verb and the total number of
times that the verb appeared. If this number ex-
ceeds a certain thresholdβ, all arguments hav-
ing that predicate and preposition are tagged as
cores. Otherwise, they are tagged as adjuncts. We
used 18.7M sentences from NANC of unbounded
length for this baseline.W andβ were fine-tuned
against the test set9.

We also report results for partial versions of
the algorithm, starting with the three measures
used (selectional preference, predicate-slot col-
location and argument-slot collocation). Results
for the ensemble classifier (prior to the bootstrap-
ping stage) are presented in two variants: one

8The first 15K arguments were used for the algorithm’s
development and therefore excluded from the evaluation.

9Their optimal value was found to beW=2,β=0.03. The
low optimal value ofβ is an indication of the noisiness of this
technique.

in which the ensemble is used to tag arguments
for which all three measures give a prediction
(the ‘Ensemble(Intersection)’ classifier) and one
in which the ensemble tags all arguments for
which at least one classifier gives a prediction (the
‘Ensemble(Union)’ classifier). For the latter, a tie
is broken in favor of the core label. The ‘Ensem-
ble(Union)’ classifier is not a part of our model
and is evaluated only as a reference.

In order to provide a broader perspective on the
task, we compare the measures in the basis of our
algorithm to simplified or alternative measures.
We experiment with the following measures:

1. Simple SP– a selectional preference measure
defined to bePr(head|slot, predicate).

2. Vast Corpus SP– similar to ‘Simple SP’
but with a much larger corpus. It uses roughly
100M arguments which were extracted from the
web-crawling based corpus of (Gabrilovich and
Markovitch, 2005) and the British National Cor-
pus (Burnard, 2000).

3.Thesaurus SP– a selectional preference mea-
sure which follows the paradigm of (Erk, 2007)
(Section 3.3) and defines the similarity between
two heads to be the Jaccard affinity between their
two entries in Lin’s automatically compiled the-
saurus (Lin, 1998)10.

4. Pr(slot|predicate)– an alternative to the used
predicate-slot collocation measure.

5. PMI(slot, head)– an alternative to the used
argument-slot collocation measure.

6. Head Dependence– the entropy of the pred-
icate distribution given the slot and the head (fol-
lowing (Merlo and Esteve Ferrer, 2006)):

HD(s, h) = −ΣpPr(p|s, h) · log(Pr(p|s, h))

Low entropy implies a core.
For each of the scenarios and the algorithms,

we report accuracy, coverage and effective accu-
racy. Effective accuracy is defined to be the ac-
curacy obtained when all out of coverage argu-
ments are tagged as adjuncts. This procedure al-
ways yields a classifier with 100% coverage and
therefore provides an even ground for comparing
the algorithms’ performance.

We see accuracy as important on its own right
since increasing coverage is often straightforward
given easily obtainable larger training corpora.

10Since we aim for a minimally supervised scenario,
we used the proximity-based version of his thesaurus
which does not require parsing as pre-processing.
http://webdocs.cs.ualberta.ca/∼lindek/Downloads/sims.lsp.gz



Collocation Measures Ensemble + Cov.
Sel. Preference Pred-Slot Arg-Slot Ensemble(I) Ensemble(U) E(I) + ST

SIDScenario Accuracy 65.6 64.5 72.4 74.1 68.7 70.6
Coverage 35.6 77.8 44.7 33.2 88.1 74.2
Eff. Acc. 56.7 64.8 58.8 58.8 67.8 68.4

Fully Unsupervised Accuracy 62.6 61.1 69.4 70.6 64.8 68.8
Scenario Coverage 24.8 59.0 38.7 22.8 74.2 56.9

Eff. Acc. 52.6 57.5 55.8 53.8 61.0 61.4

Table 1: Results for the various models. Accuracy, coverage and effective accuracy are presented in percents. Effective
accuracy is defined to be the accuracy resulting from labeling each out of coverage argument with an adjunct label. The
rows represent the following models (left to right): selectional preference, predicate-slot collocation, argument-slot collocation,
‘Ensemble(Intersection)’, ‘ Ensemble(Union)’ and the ‘Ensemble(Intersection)’ followed by self-training (see Section 3.4). ‘En-
semble(Intersection)’ obtains the highest accuracy. The ensemble + self-training obtains the highest effective accuracy.

Selectional Preference Measures Pred-Slot Measures Arg-Slot Measures
SP∗ S. SP V.C. SP Lin SP PS∗ Pr(s|p) Window AS∗ PMI(s, h) HD

Acc. 65.6 41.6 44.8 49.9 64.5 58.9 64.1 72.4 67.5 67.4
Cov. 35.6 36.9 45.3 36.7 77.8 77.8 92.6 44.7 44.7 44.7

Eff. Acc. 56.7 48.2 47.7 51.3 64.8 60.5 65.0 58.8 56.6 56.6

Table 2:Comparison of the measures used by our model to alternative measures in the ‘SID’ scenario. Results are in percents.
The sections of the table are (from left to right): selectional preferencemeasures, predicate-slot measures, argument-slot mea-
sures and head dependence. The measures are (left to right): SP∗, Simple SP, Vast Corpus SP, Lin SP, PS∗, Pr(slot|predicate),
Window Baseline, AS∗, PMI(slot, head) and Head Dependence. The measures marked with∗ are the ones used by our model.
See Section 4.

Another reason is that a high accuracy classifier
may provide training data to be used by subse-
quent supervised algorithms.

For completeness, we also provide results for
the entire set of arguments. The great majority of
non-prepositional arguments are cores (87% in the
test set). We therefore tag all non-prepositional as
cores and tag prepositional arguments using our
model. In order to minimize supervision, we dis-
tinguish between the prepositional and the non-
prepositional arguments using Clark’s tagger.

Finally, we experiment on a scenario where
even argument identification on the test set is
not provided, but performed by the algorithm of
(Abend et al., 2009), which uses neither syntactic
nor SRL annotation but does utilize a supervised
POS tagger. We therefore run it in the ‘SID’ sce-
nario. We apply it to the sentences of length at
most 10 contained in sections 2–21 of PB (11586
arguments in 6007 sentences). Non-prepositional
arguments are invariably tagged as cores and out
of coverage prepositional arguments as adjuncts.

We report labeled and unlabeled recall, preci-
sion and F-scores for this experiment. An un-
labeled match is defined to be an argument that
agrees in its boundaries with a gold standard ar-
gument and a labeled match requires in addition
that the arguments agree in their core/adjunct la-
bel. We also report labeling accuracy which is the
ratio between the number of labeled matches and

the number of unlabeled matches11.

5 Results

Table 1 presents the results of our main experi-
ments. In both scenarios, the most accurate of the
three basic classifiers was the argument-slot col-
location classifier. This is an indication that the
collocation between the argument and the prepo-
sition is more indicative of the core/adjunct label
than the obligatoriness of the slot (as expressed by
the predicate-slot collocation).

Indeed, we can find examples where adjuncts,
although optional, appear very often with a certain
verb. An example is ‘meet’, which often takes a
temporal adjunct, as in ‘Let’s meet [in July]’. This
is a semantic property of ‘meet’, whose syntactic
expression is not obligatory.

All measures suffered from a comparable dete-
rioration of accuracy when moving from the ‘SID’
to the ‘Fully Unsupervised’ scenario. The dete-
rioration in coverage, however, was considerably
lower for the argument-slot collocation.

The ‘Ensemble(Intersection)’ model in both
cases is more accurate than each of the basic clas-
sifiers alone. This is to be expected as it combines
the predictions of all three. The self-training step
significantly increases the ensemble model’s cov-

11Note that the reported unlabeled scores are slightly lower
than those reported in the 2009 paper, due to the exclusion of
the modals and negation modifiers.



Precision Recall F-score lAcc.
Unlabeled 50.7 66.3 57.5 –
Labeled 42.4 55.4 48.0 83.6

Table 3: Unlabeled and labeled scores for the experi-
ments using the unsupervised argument identification system
of (Abend et al., 2009). Precision, recall, F-score and label-
ing accuracy are given in percents.

erage (with some loss in accuracy), thus obtaining
the highest effective accuracy. It is also more accu-
rate than the simpler classifier ‘Ensemble(Union)’
(although the latter’s coverage is higher).

Table 2 presents results for the comparison to
simpler or alternative measures. Results indicate
that the three measures used by our algorithm
(leftmost column in each section) obtain superior
results. The only case in which performance is
comparable is the window baseline compared to
the Pred-Slot measure. However, the baseline’s
score was obtained by using a much larger corpus
and a careful hand-tuning of the parameters12.

The poor performance ofSimple SPcan be as-
cribed to sparsity. This is demonstrated by the
median value of 0, which this measure obtained
on the test set. Accuracy is only somewhat better
with a much larger corpus (Vast Corpus SP). The
Thesaurus SPmost probably failed due to insuffi-
cient coverage, despite its applicability in a similar
supervised task (Zapirain et al., 2009).

The Head Dependence measure achieves a rel-
atively high accuracy of 67.4%. We therefore at-
tempted to incorporate it into our model, but failed
to achieve a significant improvement to the overall
result. We expect a further study of the relations
between the measures will suggest better ways of
combining their predictions.

The obtained effective accuracy for the entire
set of arguments, where the prepositional argu-
ments are automatically identified, was 81.6%.

Table 3 presents results of our experiments with
the unsupervised argument identification model
of (Abend et al., 2009). The unlabeled scores
reflect performance on argument identification
alone, while the labeled scores reflect the joint per-
formance of both the 2009 and our algorithms.
These results, albeit low, are potentially benefi-
cial for unsupervised subcategorization acquisi-
tion. The accuracy of our model on the entire
set (prepositional argument subset) of correctly
identified arguments was 83.6% (71.7%). This is

12We tried about 150 parameter pairs for the baseline. The
average of the five best effective accuracies was 64.3%.

somewhat higher than the score on the entire test
set (‘SID’ scenario), which was 83.0% (68.4%),
probably due to the bounded length of the test sen-
tences in this case.

6 Conclusion

We presented a fully unsupervised algorithm for
the classification of arguments into cores and ad-
juncts. Since most non-prepositional arguments
are cores, we focused on prepositional arguments,
which are roughly equally divided between cores
and adjuncts. The algorithm computes three sta-
tistical measures and utilizes ensemble-based and
self-training methods to combine their predictions.

The algorithm applies state-of-the-art unsuper-
vised parser and POS tagger to collect statistics
from a large raw text corpus. It obtains an accu-
racy of roughly 70%. We also show that (some-
what surprisingly) an argument-slot collocation
measure gives more accurate predictions than a
predicate-slot collocation measure on this task.
We speculate the reason is that the head word dis-
ambiguates the preposition and that this disam-
biguation generally determines whether a preposi-
tional argument is a core or an adjunct (somewhat
independently of the predicate). This calls for
a future study into the semantics of prepositions
and their relation to the core-adjunct distinction.
In this context two recent projects,The Preposi-
tion Project(Litkowski and Hargraves, 2005) and
PrepNet (Saint-Dizier, 2006), which attempt to
characterize and categorize the complex syntactic
and semantic behavior of prepositions, may be of
relevance.

It is our hope that this work will provide a better
understanding of core-adjunct phenomena. Cur-
rent supervised SRL models tend to perform worse
on adjuncts than on cores (Pradhan et al., 2008;
Toutanova et al., 2008). We believe a better under-
standing of the differences between cores and ad-
juncts may contribute to the development of better
SRL techniques, in both its supervised and unsu-
pervised variants.
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Abstract

Syntactic annotation is an indispensable input for many semantic NLP applications. For instance,
Semantic Role Labelling algorithms almost invariably apply some form of syntactic parsing as pre-
processing. The categories used for syntactic annotation in NLP generally reflect the formal patterns
used to form the text. This results in complex annotation schemes, often tuned to one language or
domain, and unintuitive to non-expert annotators. In this paper we propose a different approach and
advocate substituting existing syntax-based approaches with semantics-based grammatical annota-
tion. The rationale of this approach is to use manual labor where there is no substitute for it (i.e.,
annotating semantics), leaving the detection of formal regularities to automated statistical algorithms.
To this end, we propose a simple semantic annotation scheme, UCCA for Universal Conceptual Cog-
nitive Annotation. The scheme covers many of the most important elements and relations present in
linguistic utterances, including verb-argument structure, optional adjuncts such as adverbials, clause
embeddings, and the linkage between them. The scheme is supported by extensive typological cross-
linguistic evidence and accords with the leading Cognitive Linguistics theories.

1 Introduction

Syntactic annotation is used as scaffolding in a wide variety of NLP applications. Examples include
Machine Translation (Yamada and Knight, 2001), Semantic Role Labeling (SRL) (Punyakanok et al.,
2008) and Textual Entailment (Yuret et al., 2010). Syntactic structure is represented using a combinato-
rial apparatus and a set of categories assigned to the linguistic units it defines. The categories are often
based on distributional considerations and reflect the formal patterns in which that unit may occur.

The use of distributional categories leads to intricate annotation schemes. As languages greatly differ
in their inventory of constructions, such schemes tend to be tuned to one language or domain. In addition,
the complexity of the schemes requires highly proficient workforce for its annotation. For example, the
Penn Treebank project (PTB) (Marcus et al., 1993) used linguistics graduates as annotators.

In this paper we propose a radically different approach to grammatical annotation. Under this ap-
proach, only semantic distinctions are manually annotated, while distributional regularities are induced
using statistical algorithms and without any direct supervision. This approach has four main advantages.
First, it facilitates manual annotation that would no longer require close acquaintance with syntactic the-
ory. Second, a data-driven approach for detecting distributional regularities is less prone to errors and to
the incorporation of implicit biases. Third, as distributional regularities need not be manually annotated,
they can be arbitrarily intricate and fine-grained, beyond the capability of a human annotator to grasp and
apply. Fourth, it is likely that semantic tasks that rely on syntactic information would be better served by
using a semantics-based scheme.

We present UCCA (Universal Conceptual Cognitive Annotation), an annotation scheme for encoding
semantic information. The scheme is designed as a multi-layer structure that allows extending it open-
endedly. In this paper we describe the foundational layer of UCCA that focuses on grammatically-
relevant information. Already in this layer the scheme covers (in a coarse-grained level) major semantic

∗Omri Abend is grateful to the Azrieli Foundation for the award of an Azrieli Fellowship.
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Figure 1: Demonstrating the difference between distributional and semantic representations. The central example
is formally more similar to the example on the right, but semantically more similar to the example on the left.

phenomena including verbal and nominal predicates and their arguments, the distinction between core
arguments and adjuncts, adjectives, copula clauses, and relations between clauses.

This paper provides a detailed description of the foundational layer of UCCA. To demonstrate
UCCA’s value over existing approaches, we examine two major linguistic phenomena: relations be-
tween clauses (linkage) and the distinction between core arguments and adjuncts. We show that UCCA
provides an intuitive coarse-grained analysis in these cases.

UCCA’s category set is strongly influenced by “Basic Linguistic Theory” (BLT) (Dixon, 2005, 2010),
a theoretical framework used for the description of a great variety of languages. The semantic approach
of BLT allows it to draw similarities between constructions, both within and across languages, that share
a similar meaning. UCCA takes a similar approach.

The UCCA project includes the compilation of a large annotated corpus. The first distribution of the
corpus, to be released in 2013, will consist of about 100K tokens, of which 10K tokens have already been
annotated. The annotation of the corpus is carried out mostly using annotators with little to no linguistic
background. Details about the corpus and its compilation are largely besides the scope of this paper.

The rest of the paper is constructed as follows. Section 2 explains the basic terms of the UCCA
framework. Section 3 presents UCCA’s foundational layer. Specifically, Section 3.1 describes the anno-
tation of simple argument structures, Section 3.2 delves into more complex cases, Section 3.3 discusses
the distinction between core arguments and adjuncts, Section 3.4 discusses linkages between different
structures and Section 3.5 presents a worked-out example. Section 4 describes relevant previous work.

2 UCCA: Basic Terms

Distributional Regularities and Semantic Distinctions. One of the defining characteristics of UCCA
is its emphasis on representing semantic distinctions rather than distributional regularities. In order to
exemplify the differences between the two types of representations, consider the phrases “dozens of par-
liaments”, “thirty parliaments” and “chairmen of parliaments”. Their PTB annotations are presented
in Figure 1. The annotation of “dozens of parliaments” closely resembles that of “chairmen of parlia-
ments”, and is considerably different from that of “thirty parliaments”. A more semantically-motivated
representation would have probably emphasized the similarity between “thirty” and “dozens of” and the
semantic dissimilarity between “dozens” and “chairmen”.

Formalism. UCCA’s semantic representation consists of an inventory of relations and their arguments.
We use the term terminals to refer to the atomic meaning-bearing units. UCCA’s foundational layer
treats words and fixed multi-word expressions as its terminals, but this definition can easily be extended
to include morphemes. The basic formal elements of UCCA are called units. A unit may be either (i) a
terminal or (ii) several elements that are jointly viewed as a single entity based on conceptual/cognitive
considerations. In most cases, a non-terminal unit will simply be comprised of a single relation and its
arguments, although in some cases it may contain secondary relations as well (see below). Units can be
used as arguments in other relations, giving rise to a hierarchical structure.

UCCA is a multi-layered formalism, where each layer specifies the relations it encodes. For example,
consider “big dogs love bones” and assume we wish to encode the relations given by “big” and “love”.
“big” has a single argument (“dogs”), while “love” has two (“big dogs” and “bones”). Therefore, the
units of the sentence are the terminals (always units), “big dogs” and “big dogs love bones”. The latter

2



Abb. Category Short Definition

Scene Elements
P Process The main relation of a Scene that evolves in time (usually, action or movement).
S State The main relation of a Scene that does not evolve in time.
A Participant A participant in a Scene in a broad sense (including locations, abstract entities and Scenes serving

as arguments).
D Adverbial A secondary relation in a Scene (including temporal relations).

Elements of Non-Scene Relations
E Elaborator A relation (which is not a State or a Process) which applies to a single argument.
N Connector A relation (which is not a State or a Process) which applies to two or more arguments.
R Relator A secondary relation that pertains to a specific entity and relates it to some super-ordinate relation.
C Center An argument of a non-Scene relation.

Inter-Scene Relations
L Linker A relation between Scenes (e.g., temporal, logical, purposive).
H Parallel

Scene
A Scene linked to other Scenes by a Linker.

G Ground A relation between the speech event and the described Scene.

Other
F Function Does not introduce a relation or participant. Required by some structural pattern.

Table 1: The complete set of categories in UCCA’s foundational layer.

two are units by virtue of corresponding to a relation along with its arguments.
We can compactly annotate the unit structure using a directed graph. Each unit is represented as a

node, and descendants of non-terminal units are the sub-units comprising it. Non-terminal nodes in the
graph only represent the fact that their descendant units form a unit, and hence do not bear any features.
Edges bear labels (or more generally feature sets) that express the descendant unit’s role in the relation
represented by the parent unit. Therefore, the internal structure of the unit is represented by its outbound
edges and their features, while the roles a unit plays in relations it participates in are represented by
its inbound edges. Figure 2(a) presents the graph representation for the above example “big dogs love
bones”. The labels on the figure’s edges are explained in Section 3.

Extendability. Extendability is a necessary feature for an annotation scheme given the huge number of
features required to formally represent semantics, and the ever-expanding range of distinctions used by
the NLP community. UCCA’s formalism can be easily extended with new annotation layers introducing
new types of semantic distinctions and refining existing types. For example, a layer that represents
semantic roles can refine a coarse-grained layer that only distinguishes between arguments and adjuncts.
A layer that represents coreference relations between textual entities can be built on top of a more basic
layer that simply delineates those entities.

3 The Foundational Layer of UCCA

This section presents an in-depth description of the foundational set of semantic distinctions encoded by
UCCA. The three desiderata for this layer are: (i) covering the entire text, so each terminal is a part of
at least one unit, (ii) representing argument structure phenomena of both verbal and nominal predicates,
(iii) representing relations between argument structures (linkage). Selecting argument structures and their
inter-relations as the basic objects of annotation is justified both by their centrality in many approaches
for grammatical representation (see Section 4), and their high applicative value, demonstrated by the
extensive use of SRL in NLP applications.

Each unit in the foundational layer is annotated with a single feature, which will be simply referred
to as its category1. In the following description, the category names appear italicized and accompanied
by an abbreviation. The categories are described in detail below and are also summarized in Table 1.

1Future extensions of UCCA will introduce more elaborate feature structures.
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3.1 Simple Scene Structure

The most basic notion in this layer is the Scene. A Scene can either describe some movement or action, or
otherwise a temporally persistent state. A Scene usually has a temporal and a spatial dimension. It may
be specific to a particular time and place, but may also describe a schematized event which jointly refers
to many occurrences of that event in different times and locations. For example, the Scene “elephants
eat plants” is a schematized event, which presumably occurs each time an elephant eats a plant. This
definition is similar to the definition of a clause in BLT. We avoid the term “clause” due to its syntactic
connotation, and its association specifically with verbal rather than nominal predicates.

Every Scene contains one main relation, which is marked as a Process (P) if the Scene evolves in
time, or otherwise as a State (S). The main relation in an utterance is its “anchor”, its most conceptually
important aspect of meaning. We choose to incorporate the Process-State distinction in the foundational
layer because of its centrality, but it is worth noting this distinction is not necessary for the completeness
of the scheme.

A Scene contains one or more Participants (A), which can be either concrete or abstract. Embedded
Scenes are also considered Participants (see Section 3.4). Scenes may also include secondary relations,
which are generally marked as Adverbials (D) using the standard linguistic term. Note that for brevity,
we do not designate Scene units as such, as this information can be derived from the categories of its
sub-units (i.e., a unit is a Scene if it has a P or an S as a sub-unit).

As an example, consider “Woody generally rides his bike home”. The sentence contains a single
Scene with three A’s: “Woody”, “his bike” and “home”. It also contains a D: “generally” (see Fig-
ure 2(b)).

Non-Scene Relations. Not all relation words evoke a Scene. We distinguish between several types of
non-Scene relations. Elaborators (E) apply to a single argument, while Connectors (N) are relations that
apply to two or more entities in a way that highlights the fact that they have a similar feature or type. The
arguments of non-Scene relations are marked as Centers (C).

For example, in the expression “hairy dog”, “hairy” is an E, and “dog” is a C. In “John and Mary”,
“John” and “Mary” are C’s, while “and” is an N. Determiners are considered E’s in the foundational
layer, as they relate to a single argument.

Finally, any other type of relation between two or more units that does not evoke a Scene is a Relator
(R). R’s have two main varieties. In one, R’s relate a single entity to other relations or entities in the same
context. For instance, in “I saw cookies in the jar”, “in” relates “the jar” to the rest of the Scene. In the
other, R’s relate two units pertaining to different aspects of the same entity. For instance, in “bottom of
the sea”, “of” relates “bottom” and “the sea”, two units that ultimately refer to the same entity.

As for notational conventions, in the first case we place the R inside the boundaries of the unit it
relates (so “in the jar” would be an A in “I saw cookies in the jar”). In the second case, we place the R as
a sibling of the related units (so “bottom”, “of” and ”sea” would all be siblings in “bottom of the sea”).

Function Units. Some terminals do not refer to a participant or relation. They function only as a part
of the construction they are situated in. We mark such terminals as Function (F). Function units usually
cannot be substituted by any other word. For example, in the sentence “it is likely that John will come
tomorrow”, the “it” does not refer to any specific entity or relation and is therefore an F.

Words whose meaning is not encoded in the foundational layer of annotation are also considered F’s.
For instance, auxilliary verbs in English (“have”, “be” and “do”) are marked as F’s in the foundational
layer of UCCA, as features such as voice or tense are not encoded in this layer.

Consider the sentence “John broke the jar lid”. It describes a single Scene, where “broke” is the main
(non-static) relation. The Participants are “John” and ”the jar lid”. “the jar lid” contains a part-whole
relation, where “jar” describes the whole, and “lid” specifies the part. In such cases, UCCA annotates
the “part” as an E and the “whole” as a C. The determiner “the” is also annotated as an E. In more
refined layers of annotation, special categories will be devoted to annotating part-whole relations and the
semantic relations described by determiners. Figure 2(c) presents the annotation of this example.
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3.2 Beyond Simple Scenes

Nominal Predicates. The foundational layer of UCCA annotates the argument structure of nominal
predicates much in the same fashion as that of verbal predicates. This accords with the standard practice
in several NLP resources, which tend to use the same formal devices for annotating nominal and verbal
argument structure (see, e.g., NomBank (Meyers et al., 2004) and FrameNet (Baker et al., 1998)). For
example, consider “his speech against the motion”. “speech” evokes a Scene that evolves in time and is
therefore a P. The Scene has two Participants, namely “his” and “against the motion”.

Multiple Parents. In general, a unit may participate in more than one relation. To this end, UCCA
allows a unit to have multiple parents. Recall that in UCCA, a non-terminal node represents a relation,
and its descendants are the sub-units comprising it. A unit’s category is a label over the edge connecting
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Figure 2: Examples of UCCA annotations.
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it to its parent, that reflects the unit’s role in the parent relation. A unit that participates in several relations
(i.e., has several parents) may thus receive different categories in each of these relations.

For example, consider the sentence “John convinced Mary to come”. The relation “convinced” has
“John”, “Mary” and “Mary to come” as Participants (Scenes may also be Participants, see below). The
relation “come” has one Participant, namely “Mary”. The resulting graph is presented in Figure 2(d).

The use of multiple parents leads to overlaps between the terminals of different units. It is sometimes
convenient to define one of the terminal’s parents as its base parent and the others as remote parents. In
this paper we do not make this distinction.

Implicit Units. In some cases a relation or argument are clearly described in the text, but do not appear
in it overtly. Formally, this results in a unit X that lacks one or more of its descendants. We distinguish
between two cases. If that argument or relation corresponds to a unit Y that is placed in some other point
in the text, we simply assign that Y as a descendant of X (using UCCA’s capacity to represent multiple
parents). Otherwise, if this argument or relation never appears in the text, we add an empty leaf node and
assign it as X’s descendant. We call such units “Implicit Units”. Other than not corresponding to any
stretch of text, an implicit unit is similar to any other unit.

As an example, consider the sentence “Writing essays is hard”. The participant who writes the
essays is clearly present in the interpretation of the sentence, but never appears explicitly in the text. It is
therefore considered an implicit A in this Scene (see Figure 2(f))2.

3.3 The Core-Adjunct Distinction

The distinction between core arguments and adjuncts is central in most formalisms of grammar. Despite
its centrality, the distinction lacks clear theoretical criteria for defining it, resulting in many borderline
cases. This has been a major source of difficulty for establishing clear annotation guidelines. Indeed, the
PTB describes the core-adjunct distinction as “very difficult” for the annotators, resulting in a significant
slowdown of the annotation Process (Marcus et al., 1993).

Dowty (2003) claims that the pre-theoretic notions underlying the core-adjunct distinction are a con-
junction of syntactic and semantic considerations. The syntactic distinction separates “optional ele-
ments” (adjuncts), and “obligatory elements” (cores). The semantic criterion distinguishes elements that
“modify” or restrict the meaning of the head (adjuncts) and elements that are required by the meaning
of the head, without which its meaning is incomplete (cores). A related semantic criterion distinguishes
elements that have a similar semantic content with different predicates (adjuncts), and elements whose
role is highly predicate-dependent (cores).

Consider the following opposing examples: (i) “Woody walked quickly” and (ii) “Woody cut the
cake”. “quickly” meets both the syntactic and the semantic criteria for an adjunct: it is optional and it
serves to restrict the meaning of “walked”. It also has a similar semantic content when appearing with
different verbs (“walk quickly”, “eat quickly”, “talk quickly” etc.). “the cake” meets both the syntactic
and the semantic criteria for a core: it is obligatory, and completes the meaning of “cut”. However, many
other cases are not as obvious. For instance, in “he walked into his office”, the boldfaced argument is a
core according to Framenet, but an adjunct according to PropBank (Abend and Rappoport, 2010).

The core-adjunct distinction in UCCA is translated into the distinction between D’s (Adverbials) and
A’s (Participants). UCCA is a semantic scheme and therefore the syntactic criterion of “obligatoriness”
is not applicable, and is instead left to be detected by statistical means. Instead, UCCA defines A’s as
units that introduce a new participant to the Scene and D’s as units that add more information to the
Scene without introducing a participant.

Revisiting our earlier examples, in “Woody cut the cake”, “the cake” introduces a new participant
and is therefore an A, while in “Woody walked quickly”, “quickly” does not introduce a new participant
and is therefore a D. In the more borderline example “Woody walked into his office”, “into his office” is
clearly an A under UCCA’s criteria, as it introduces a new participant, namely “his office”.

2Note the internal structure of the unit “is hard”. The semantically significant sub-unit (“hard”) is a C, while the other sub-
unit (“is”), which does not convey relevant semantic information, is marked as an F. In general, if a unit has a single sub-unit
which contributes virtually all relevant semantic information, that unit is marked as a C while all other units are marked as F’s.
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Note that locations in UCCA are almost invariably A’s, as they introduce a new participant, namely
the location. Consider “Woody walked in the park”. “in the park” introduces the participant “the park”
and is therefore an A. Unlike many existing approaches (including the PTB), UCCA does not distinguish
between obligatory locations (e.g., “based in Europe”) and optional locations (e.g., “walked in the park”),
as this distinction is mostly distributional in nature and can be detected by automatic means.

Two cases which do not easily fall into either side of this distinction are subordinated clauses and
temporal relations. Subordinated clauses are discussed as part of a general discussion of linkage in
Section 3.4. The treatment of temporal relations requires a more fine-grained layer of representation.
For the purposes of the foundational layer, we follow common practice and mark them as D’s.

3.4 Linkage

Linkage in UCCA refers to the relation between Scenes. Scenes are invariably units, as they include a
relation along with all its arguments. The category of the Scene units is determined by the relation they
are situated in, as is the case with any other unit. The foundational layer takes a coarse-grained approach
to inter-Scene relations and recognizes three types of linkage. This three-way distinction is adopted from
Basic Linguistic Theory and is valid cross-linguistically.

First, a Scene can be a Participant in another Scene, in which case the Scene is marked as an A. For
example, consider “writing essays is hard”. It contains a main temporally static relation (S) “is hard” and
an A “writing essays”. The sentence also contains another Scene “writing essays”, which has an implicit
A (the one writing) and an explicit A (“essays”). See Figure 2(f) for the annotation of this Scene (note
the empty node corresponding to the implicit unit).

Second, a Scene may serve as an Elaborator of some unit in another Scene, in which case the Scene
is marked as an E. For instance, “eagles that fly swim”. There are two Scenes in this sentence: (1) one
whose main relation is “swim” and its A is “eagles that fly”, (2) and another Scene whose main relation
is “fly”, and whose A is “eagles”. See Figure 2(g) for the annotation graph of this sentence.

The third type of linkage covers inter-Scene relations that are not covered above. In this case, we
mark the unit specifying the relation between the Scenes as a Linker (L) and its arguments as Parallel
Scenes (H). The Linker and the Parallel Scenes are positioned in a flat structure, which represents the
linkage relation. For example, consider “When John saw Mary, he immediately knew” (Figure 2(e)). The
sentence is composed of two Scenes “John saw Mary” and ”he immediately knew” marked by H’s and
linked by the L “when”. More fine-grained layers of annotation can represent the coreference relation
between “John” and “he”, as well as a more refined typology of linkages, distinguishing, e.g., temporal,
logical and purposive linkage types.

UCCA does not allow annotating a Scene as an Adverbial within another Scene. Instead it represents
temporal, manner and other relations between Scenes often represented as Adverbials (or sub-ordinate
clauses), as linked Scenes. For instance, the sentence “I’m here because I wanted to visit you” is anno-
tated as two Parallel Scenes (“I’m here” and “I wanted to visit you”), linked by the Linker “because”.

Linkage is handled differently in other NLP resources. SRL formalisms, such as FrameNet and
PropBank, consider a predicate’s argument structure as the basic annotation unit and do not represent
linkage in any way. Syntactic annotation schemes (such as the PTB) consider the sentence to be the
basic unit for annotation and refrain from annotating inter-sentential relations, which are addressed only
as part of the discourse level. However, units may establish similar relations between sentences as those
expressed within a sentence. Another major difference between UCCA and other grammatical schemes is
that UCCA does not recognize any type of subordination between clauses except for the cases where one
clause serves as an Elaborator or as a Participant in another clause (see above discussion). In all other
cases, linkage is represented by the identity of the Linker and, in future layers, by more fine-grained
features assigned to the linkage structure.

Ground. Some units express the speaker’s opinion of a Scene, or otherwise relate the Scene to the
speaker, the hearer or the speech event. Examples include “in my opinion”, “surprisingly” and “rumor
has it”. In principle, such units constitute a Scene in their own right, whose participants (minimally
including the speaker) are implicit. However, due to their special characteristics, we choose to designate
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a special category for such cases, namely Ground (G). For example, “Surprisingly” in “Surprisingly,
Mary didn’t come to work today” is a G linked to the Scene “Mary didn’t come to work today”.

Note that the distinction between G’s and fully-fledged Scenes is a gradient one. Consider the above
example and compare it to “I think Mary didn’t come today” and “John thinks Mary didn’t come today”.
While “John thinks” in the last example is clearly not a G, “I think” is a more borderline case. Gradience
is a central phenomenon in all forms of grammatical representation, including UCCA. However, due to
space limitations, we defer the discussion of UCCA’s treatment of gradience to future work.

3.5 Worked-out Example

Consider the following sentence3:

After her parents’ separation in 1976, Jolie and her brother lived with their mother,
who gave up acting to focus on raising her children.

There are four Scenes in this sentence, with main relations “separation”, “lived”, “gave up acting”
and “focus on raising”. Note that “gave up acting” and “focus on raising” are composed of two relations,
one central and the other dependent. UCCA annotates such cases as a single P. A deeper discussion of
these issues can be found in (Dixon, 2005; Van Valin, 2005).

The Linkers are “after” (linking “separation” and “lived”), and “to” (linking “gave up acting” and
“focus on raising”). The unit “who gave up acting to focus on raising her children” is an E, and therefore
“who” is an R. We start with the top-level structure and continue by analyzing each Scene separately
(non-Scene relations are not analyzed in this example):

• “AfterL [her parents’ separation in 1976]H , [Jolie and her brother lived with their mother, [whoR
[gave up acting]H toL [focus on raising her children]H ]E ]H”

• “[her parents’]A separationP [in 1976]D”

• “[Jolie and her brother]A livedP [with their mother who abandoned ... children]A”

• “motherA ... [gave up acting]P ”

• “motherA ... [focus on raising]P [her children]A”

4 Previous Work

Many grammatical annotation schemes have been proposed over the years in an attempt to capture the
richness of grammatical phenomena. In this section, we focus on approaches that provide a sizable corpus
of annotated text. We put specific emphasis on English corpora, which is the most studied language and
the focus language of this paper.

Semantic Role Labeling Schemes. The most prominent schemes to SRL are FrameNet (Baker et al.,
1998), PropBank (Palmer et al., 2005) and VerbNet (Schuler, 2005) for verbal predicates and Nom-
Bank for nominal predicates (Meyers et al., 2004). They share with UCCA their focus on semantically-
motivated rather than distributionally-motivated distinctions. However, unlike UCCA, they annotate each
predicate separately, yielding shallow representations which are hard to learn directly without using syn-
tactic parsing as preprocessing (Punyakanok et al., 2008). In addition, UCCA has a wider coverage than
these projects, as it addresses both verbal, nominal and adjectival predicates.

Recently, the Framenet Constructicon project (Fillmore et al., 2010) extended FrameNet to more
complex constructions, including a representation of relations between argument structures. However,
the project is admittedly devoted to constructing a lexical resource focused on specific cases of interest,
and does not attempt to provide a fully annotated corpus of naturally occurring text. The foundational
layer of UCCA can be seen as being complementary to Framenet and Framenet Constructicon, as the
UCCA foundational layer focuses on a high coverage, coarse-grained annotation, while Framenet focuses
on more fine-grained distinctions at the expense of coverage. In addition, the projects differ in terms of
their approach to linkage.

3Taken from “Angelina Jolie” article in Wikipedia (http://http://en.wikipedia.org/wiki/Angelina Jolie).
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Penn Treebank. The most influential syntactic annotation in NLP is probably the PTB. The PTB has
spawned much subsequent research both in treebank compilation and in parsing technology. However,
despite its tremendous contribution to NLP, the corpus today does not meet the community’s needs in
two major respects. First, it is hard to extend, both with new distinctions and with new sentences (due to
its complex annotation that requires expert annotators). Second, its interface with semantic applications
is far from trivial. Even in the syntactically-oriented semantic task of argument identification for SRL,
results are of about 85% F-score for the in-domain scenario (Màrquez et al., 2008; Abend et al., 2009).

Dependency Grammar. An alternative approach to syntactic representation is Dependency Grammar.
This approach is widely used in NLP today due to its formal and conceptual simplicity, and its ability
to effectively represent fundamental semantic relations, notably predicate-argument and head-modifier
relations. UCCA is similar to dependency grammar both in terms of their emphasis on representing
predicate-argument relations and in terms of their formal definition4. The formal similarity is reflected
in that they both place features over the graph’s edges rather than over its nodes, and in that they both
form a directed graph. In addition, neither formalism imposes contiguity (or projectivity in dependency
terms) on its units, which facilitates their application to languages with relatively free word order.

However, despite their apparent similarity, the formalisms differ in several major respects. Depen-
dency grammar uses graphs where each node is a word. Despite the simplicity and elegance of this
approach, it leads to difficulties in the annotation of certain structures. We discuss three such cases:
structures containing multiple heads, units with multiple parents and empty units. Cases where there is
no clear dependency annotation are a major source of difficulty in standardizing, evaluating and creating
clear annotation guidelines for dependency annotation (Schwartz et al., 2011). UCCA provides a natural
solution in all of these cases, as is hereby detailed.

First, UCCA rejects the assumption that every structure has a unique head. Formally, instead of
selecting a single head whose descendants are (the heads of) the argument units, UCCA introduces a
new node for each relation, whose descendants are all the sub-units comprising that relation, including
the predicate and its arguments. The symmetry between the descendants is broken through the features
placed on the edges.

Consider coordination structures as an example. The difficulty of dependency grammar to capture
such structures is exemplified by the 8 possible annotations in current use in NLP (Ivanova et al., 2012).
In UCCA, all elements of the coordination (i.e., the conjunction along with its conjuncts) are descendants
of a mutual parent, where only their categories distinguish between their roles. For instance, in “John
and Mary”, “John”, “Mary” and “and” are all listed under a joint parent. Discontiguous conjunctions
(such as “either John or Mary”) are also handled straightforwardly by placing “either” and “or” under
a single parent, which in turn serves as a Connector (Figure 2(h)). Note that the edges between “either”
and “or” and their mutual parent have no category labels, since the unit “either ... or” is considered
an unanalyzable terminal. A related example is inter-clause linkage, where it is not clear which clause
should be considered the head of the other. See the discussion of UCCA’s approach with respect to clause
subordination in Section 3.4.

Second, a unit in UCCA can have multiple parents if it participates in multiple relations. Multiple
parents are already found in the foundational layer (see, e.g., Figure 2(d)), and will naturally multiply
with the introduction of new annotation layers introducing new relations. This is prohibited in standard
dependency structures.

Third, UCCA allows implicit units, i.e., units that do not have any corresponding stretch of text. The
importance of such “empty” nodes has been previously recognized in many formalisms for grammatical
representation, including the PTB.

At a more fundamental level, the difference between UCCA and most dependency structures used
in NLP is the latter’s focus on distributional regularities. One example for this is the fact the most
widely used scheme for English dependency grammar is automatically derived from the PTB. Another

4Dependency structures appear in different contexts in various guises. Those used in NLP are generally trees in which each
word has at most one head and whose nodes are the words of the sentence along with a designated root node (Ivanova et al.,
2012). We therefore restrict our discussion to dependency structures that follow these restrictions.
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example is the treatment of fixed expressions, such as phrasal verbs and idioms. In these cases, several
words constitute one unanalyzable semantic unit, and are treated by UCCA as such. However, they are
analyzed up to the word level by most dependency structures. Finally, a major divergence of UCCA from
standard dependency representation is UCCA’s multi-layer structure that allows for the extension of the
scheme with new distinctions.

Linguistically Expressive Grammars. Numerous approaches to grammatical representation in NLP
have set to provide a richer grammatical representation than the one provided by the common phrase
structure and dependency structures. Examples include Combinatory Categorial Grammar (CCG) (Steed-
man, 2001), Tree Adjoining Grammar (TAG) (Joshi and Schabes, 1997), Lexical Functional Grammar
(LFG) (Kaplan and Bresnan, 1981) and Head-driven Phrase Structure Grammar (HPSG) (Pollard and
Sag, 1994). One of the major motivations for these approaches is to provide a formalism for encod-
ing both semantic and distributional distinctions and the interface between them. UCCA diverges from
these approaches in its focus on annotating semantic information, leaving distributional regularities to be
detected automatically.

A great body of work in formal semantics focuses on compositionality, i.e., how the meaning of a unit
is derived from its syntactic structure along with the meaning of its sub-parts. Compositionality forms a
part of the mapping between semantics and distribution, and is therefore modeled statistically by UCCA.
A more detailed comparison between the different approaches is not directly relevant to this paper.

5 Conclusion

In this paper we proposed a novel approach to grammatical representation. Under this approach, only
semantic distinctions are manually annotated, while distributional regularities are detected by automatic
means. This approach greatly facilitates manual annotation of grammatical phenomena, by focusing the
manual labor on information that can only be annotated manually.

We presented UCCA, a multi-layered semantic annotation scheme for representing a wide variety of
semantic information in varying granularities. In its foundational layer, the scheme encodes verbal and
nominal argument structure, copula clauses, the distinction between core arguments and adjuncts, and the
relations between different predicate-argument structures. The scheme is based on basic, coarse-grained
semantic notions, supported by cross-linguistic evidence.

Preliminary results show that the scheme can be learned quickly by non-expert annotators. Con-
cretely, our annotators, including some with no linguistic background in linguistics, have reached a
reasonable level of proficiency after a training period of 30 to 40 hours. Following the training period,
our annotators have been found to make only occasional errors. These few errors are manually corrected
in a later review phase. Preliminary experiments also show that the scheme can be applied to several
languages (English, French, German) using the same basic set of distinctions.

Two important theoretical issues were not covered this paper due to space considerations. One is
UCCA’s treatment of cases where there are several analyses that do not exclude each other, each high-
lighting a different aspect of meaning of the analyzed utterance (termed Conforming Analyses). The
other is UCCAs treatment of cases where a unit of one type is used in a relation that normally receives
a sub-unit of a different type. For example, in “John’s kick saved the game”, “John’s kick” describes
an action but is used as a subject of “saved”, a slot usually reserved for animate entities. Both of these
issues will be discussed in future works.

Current efforts are devoted to creating a corpus of annotated text in English. The first distribution
of the corpus consisting of about 100K tokens, of which 10K tokens have already been annotated, will
be released during 2013. A parallel effort is devoted to constructing a statistical analyzer, trained on
the annotated corpus. Once available, the analyzer will be used to produce UCCA annotations that will
serve as input to NLP applications traditionally requiring syntactic preprocessing. The value of UCCA
for applications and the learning algorithms will be described in future papers.
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Abstract

Syntactic structures, by their nature, re-
flect first and foremost the formal con-
structions used for expressing meanings.
This renders them sensitive to formal vari-
ation both within and across languages,
and limits their value to semantic ap-
plications. We present UCCA, a novel
multi-layered framework for semantic rep-
resentation that aims to accommodate the
semantic distinctions expressed through
linguistic utterances. We demonstrate
UCCA’s portability across domains and
languages, and its relative insensitivity
to meaning-preserving syntactic variation.
We also show that UCCA can be ef-
fectively and quickly learned by annota-
tors with no linguistic background, and
describe the compilation of a UCCA-
annotated corpus.

1 Introduction

Syntactic structures are mainly committed to rep-
resenting the formal patterns of a language, and
only indirectly reflect semantic distinctions. For
instance, while virtually all syntactic annotation
schemes are sensitive to the structural difference
between (a) “John took a shower” and (b) “John
showered”, they seldom distinguish between (a)
and the markedly different (c) “John took my
book”. In fact, the annotations of (a) and (c) are
identical under the most widely-used schemes for
English, the Penn Treebank (PTB) (Marcus et al.,
1993) and CoNLL-style dependencies (Surdeanu
et al., 2008) (see Figure 1).

∗ Omri Abend is grateful to the Azrieli Foundation for
the award of an Azrieli Fellowship.

Underscoring the semantic similarity between
(a) and (b) can assist semantic applications. One
example is machine translation to target languages
that do not express this structural distinction (e.g.,
both (a) and (b) would be translated to the same
German sentence “John duschte”). Question An-
swering applications can also benefit from dis-
tinguishing between (a) and (c), as this knowl-
edge would help them recognize “my book” as a
much more plausible answer than “a shower” to
the question “what did John take?”.

This paper presents a novel approach to gram-
matical representation that annotates semantic dis-
tinctions and aims to abstract away from specific
syntactic constructions. We call our approachUni-
versal Conceptual Cognitive Annotation (UCCA).
The word “cognitive” refers to the type of cate-
gories UCCA uses and its theoretical underpin-
nings, and “conceptual” stands in contrast to “syn-
tactic”. The word “universal” refers to UCCA’s
capability to accommodate a highly rich set of se-
mantic distinctions, and its aim to ultimately pro-
vide all the necessary semantic information for
learning grammar. In order to accommodate this
rich set of distinctions, UCCA is built as a multi-
layered structure, which allows for its open-ended
extension. This paper focuses on the foundational
layer of UCCA, a coarse-grained layer that rep-
resents some of the most important relations ex-
pressed through linguistic utterances, including ar-
gument structure of verbs, nouns and adjectives,
and the inter-relations between them (Section 2).

UCCA is supported by extensive typologi-
cal cross-linguistic evidence and accords with
the leading Cognitive Linguistics theories. We
build primarily on Basic Linguistic Theory (BLT)
(Dixon, 2005; 2010a; 2010b; 2012), a typological
approach to grammar successfully used for the de-



scription of a wide variety of languages. BLT uses
semantic similarity as its main criterion for cate-
gorizing constructions both within and across lan-
guages. UCCA takes a similar approach, thereby
creating a set of distinctions that is motivated
cross-linguistically. We demonstrate UCCA’s rel-
ative insensitivity to paraphrasing and to cross-
linguistic variation in Section 4.

UCCA is exceptional in (1) being a semantic
scheme that abstracts away from specific syntactic
forms and is not defined relative to a specific do-
main or language, (2) providing a coarse-grained
representation which allows for open-ended ex-
tension, and (3) using cognitively-motivated cat-
egories. An extensive comparison of UCCA to ex-
isting approaches to syntactic and semantic repre-
sentation, focusing on the major resources avail-
able for English, is found in Section 5.

This paper also describes the compilation of a
UCCA-annotated corpus. We provide a quanti-
tative assessment of the annotation quality. Our
results show a quick learning curve and no sub-
stantial difference in the performance of annota-
tors with and without background in linguistics.
This is an advantage of UCCA over its syntactic
counterparts that usually need annotators with ex-
tensive background in linguistics (see Section 3).

We note that UCCA’s approach that advocates
automatic learning of syntax from semantic super-
vision stands in contrast to the traditional view of
generative grammar (Clark and Lappin, 2010).

2 The UCCA Scheme
2.1 The Formalism

UCCA uses directed acyclic graphs (DAGs) to
represent its semantic structures. The atomic
meaning-bearing units are placed at the leaves of
the DAG and are calledterminals. In the founda-
tional layer, terminals are words and multi-word
chunks, although this definition can be extended
to include arbitrary morphemes.

The nodes of the graph are calledunits. A unit
may be either (i) a terminal or (ii) several ele-
ments jointly viewed as a single entity according
to some semantic or cognitive consideration. In
many cases, a non-terminal unit is comprised of a
single relation and the units it applies to (its argu-
ments), although in some cases it may also contain
secondary relations. Hierarchy is formed by using
units as arguments or relations in other units.

Categories are annotated over the graph’s edges,

and represent the descendant unit’s role in forming
the semantics of the parent unit. Therefore, the in-
ternal structure of a unit is represented by its out-
bound edges and their categories, while the roles
a unit plays in the relations it participates in are
represented by its inbound edges.

We note that UCCA’s structures reflect a single
interpretation of the text. Several discretely dif-
ferent interpretations (e.g., high vs. low PP at-
tachments) may therefore yield several different
UCCA annotations.

UCCA is a multi-layered formalism, where
each layer specifies the relations it encodes. The
question of which relations will be annotated
(equivalently, which units will be formed) is de-
termined by the layer in question. For example,
consider “John kicked his ball”, and assume our
current layer encodes the relations expressed by
“kicked” and by “his”. In that case, the unit “his”
has a single argument1 (“ball”), while “kicked”
has two (“John” and “his ball”). Therefore, the
units of the sentence are the terminals (which are
always units), “his ball” and “John kicked his
ball”. The latter two are units by virtue of express-
ing a relation along with its arguments. See Fig-
ure 2(a) for a graph representation of this example.

For a brief comparison of the UCCA formalism
with other dependency annotations see Section 5.

2.2 The UCCA Foundational Layer

The foundational layer is designed to cover the
entire text, so that each word participates in at
least one unit. It focuses on argument structures
of verbal, nominal and adjectival predicates and
the inter-relations between them. Argument struc-
ture phenomena are considered basic by many ap-
proaches to semantic and grammatical representa-
tion, and have a high applicative value, as demon-
strated by their extensive use in NLP.

The foundational layer views the text as a col-
lection of Scenes. A Scene can describe some
movement or action, or a temporally persistent
state. It generally has a temporal and a spatial di-
mension, which can be specific to a particular time
and place, but can also describe a schematized
event which refers to many events by highlight-
ing a common meaning component. For example,
the Scene “John loves bananas” is a schematized
event, which refers to John’s disposition towards
bananas without making any temporal or spatial

1The anaphoric aspects of “his” are not considered part of
the current layer (see Section 2.3).



John took a shower -ROOT-

ROOT

SBJ
OBJ

NMOD

(a)

John showered -ROOT-

ROOTSBJ

(b)

John took my book -ROOT-

ROOT

SBJ
OBJ

NMOD

(c)

Figure 1: CoNLL-style dependency annotations. Note that (a) and (c),which have different semantics but superficially similar
syntax, have the same annotation.

Abb. Category Short Definition

Scene Elements
P Process The main relation of a Scene that evolves in time (usually an action or movement).
S State The main relation of a Scene that does not evolve in time.
A Participant A participant in a Scene in a broad sense (including locations, abstract entities and Scenes serving

as arguments).
D Adverbial A secondary relation in a Scene (including temporal relations).

Elements of Non-Scene Units
C Center Necessary for the conceptualization of the parent unit.
E Elaborator A non-Scene relation which applies to a single Center.
N Connector A non-Scene relation which applies to two or more Centers, highlighting a common feature.
R Relator All other types of non-Scene relations. Two varieties: (1) Rs that relate aC to some super-ordinate

relation, and (2) Rs that relate two Cs pertaining to different aspects of theparent unit.

Inter-Scene Relations
H Parallel

Scene
A Scene linked to other Scenes by regular linkage (e.g., temporal, logical, purposive).

L Linker A relation between two or more Hs (e.g., “when”, “if”, “in order to”).
G Ground A relation between the speech event and the uttered Scene (e.g., “surprisingly”, “in my opinion”).

Other
F Function Does not introduce a relation or participant. Required by the structural pattern it appears in.

Table 1: The complete set of categories in UCCA’s foundational layer.

specifications. The definition of a Scene is moti-
vated cross-linguistically and is similar to the se-
mantic aspect of the definition of a “clause” in Ba-
sic Linguistic Theory2.

Table 1 provides a concise description of the
categories used by the foundational layer3. We
turn to a brief description of them.
Simple Scenes. Every Scene contains one main
relation, which is the anchor of the Scene, the most
important relation it describes (similar to frame-
evoking lexical units in FrameNet (Baker et al.,
1998)). We distinguish between static Scenes, that
describe a temporally persistent state, and proces-
sual Scenes that describe a temporally evolving
event, usually a movement or an action. The main
relation receives the categoryState (S) in static and
Process (P) in processual Scenes. We note that
the S-P distinction is introduced here mostly for
practical purposes, and that both categories can be
viewed as sub-categories of the more abstract cat-
egory Main Relation.

A Scene contains one or moreParticipants (A).

2As UCCA annotates categories on its edges, Scene nodes
bear no special indication. They can be identified by examin-
ing the labels on their outgoing edges (see below).

3Repeated here with minor changes from (Abend and
Rappoport, 2013), which focuses on the categories them-
selves.

This category subsumes concrete and abstract par-
ticipants as well as embedded Scenes (see be-
low). Scenes may also contain secondary rela-
tions, which are marked asAdverbials (D).

The above categories are indifferent to the syn-
tactic category of the Scene-evoking unit, be it a
verb, a noun, an adjective or a preposition. For in-
stance, in the Scene “The book is in the garden”,
“is in” is the S, while “the book” and “the garden”
are As. In “Tomatoes are red”, the main static re-
lation is “are red”, while “Tomatoes” is an A.

The foundational layer designates a separate set
of categories to units that do not evoke a Scene.
Centers (C) are the sub-units of a non-Scene unit
that are necessary for the unit to be conceptualized
and determine its semantic type. There can be one
or more Cs in a non-Scene unit4.

Other sub-units of non-Scene units are catego-
rized into three types. First, units that apply to a
single C are annotated asElaborators (E). For in-
stance, “big” in “big dogs” is an E, while “dogs” is
a C. We also mark determiners as Es in this coarse-
grained layer5. Second, relations that relate two or

4By allowing several Cs we avoid the difficulties incurred
by the common single head assumption. In some cases the
Cs are inferred from context and can be implicit.

5Several Es that apply to a single C are often placed in



more Cs, highlighting a common feature or role
(usually coordination), are calledConnectors (N).
See an example in Figure 2(b).

Relators (R) cover all other types of relations
between two or more Cs. Rs appear in two main
varieties. In one, Rs relate a single entity to a
super-ordinate relation. For instance, in “I heard
noise in the kitchen”, “in” relates “the kitchen”
to the Scene it is situated in. In the other, Rs re-
late two units pertaining to different aspects of the
same entity. For instance, in “bottom of the sea”,
“of” relates “bottom” and “the sea”, two units that
refer to different aspects of the same entity.

Some units do not introduce a new relation or
entity into the Scene, and are only part of the for-
mal pattern in which they are situated. Such units
are marked asFunctions (F). For example, in the
sentence “it is customary for John to come late”,
the “it” does not refer to any specific entity or re-
lation and is therefore an F.

Two example annotations of simple Scenes are
given in Figure 2(a) and Figure 2(b).

More complex cases. UCCA allows units to
participate in more than one relation. This is a nat-
ural requirement given the wealth of distinctions
UCCA is designed to accommodate. Already in
the foundational layer of UCCA, the need arises
for multiple parents. For instance, in “John asked
Mary to join him”, “Mary” is a Participant of both
the “asking” and the “joining” Scenes.

In some cases, an entity or relation is prominent
in the interpretation of the Scene, but is not men-
tioned explicitly anywhere in the text. We mark
such entities asImplicit Units. Implicit units are
identical to terminals, except that they do not cor-
respond to a stretch of text. For example, “playing
games is fun” has an implicit A which corresponds
to the people playing the game.

UCCA annotates inter-Scene relations (linkage)
and, following Basic Linguistic Theory, distin-
guishes between three major types of linkage.
First, a Scene can be an A in another Scene. For
instance, in “John said he must leave”, “he must
leave” is an A inside the Scene evoked by “said”.
Second, a Scene may be an E of an entity in an-
other Scene. For instance, in “the film we saw yes-
terday was wonderful”, “film we saw yesterday” is
a Scene that serves as an E of “film”, which is both
an A in the Scene and the Center of an A in the

a flat structure. In general, the coarse-grained foundational
layer does not try to resolve fine scope issues.

John

A
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P
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E

ball

C

A

(a)
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C
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C
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E
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(b)
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P
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D

E
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F

wonderful

C

S

E C

(c)

Figure 2: Examples of UCCA annotation graphs.

Scene evoked by “wonderful” (see Figure 2(c)).
A third type of linkage covers all other cases,

e.g., temporal, causal and conditional inter-Scene
relations. The linked Scenes in such cases are
marked asParallel Scenes (H). The units speci-
fying the relation between Hs are marked asLink-
ers (L)6. As with other relations in UCCA, Linkers
and the Scenes they link are bound by a unit.

Unlike common practice in grammatical anno-
tation, linkage relations in UCCA can cross sen-
tence boundaries, as can relations represented in
other layers (e.g., coreference). UCCA therefore
annotates texts comprised of several paragraphs
and not individual sentences (see Section 3).

Example sentences. Following are complete
annotations of two abbreviated example sentences
from our corpus (see Section 3).

“Golf became a passion for his oldest daughter:
she took daily lessons and became very good,
reaching the Connecticut Golf Championship.”

This sentence contains four Scenes, evoked by
“became a passion”, “took daily lessons”, “be-
came very good” and “reaching”. The individual
Scenes are annotated as follows:

1. “GolfA [becameE aE passionC ]P [forR hisE
oldestE daughterC ]A”

6It is equally plausible to include Linkers for the other two
linkage types. This is not included in the current layer.



2. “sheA [tookF [dailyE lessonsC ]C ]P ”

3. “sheA ... [becameE [veryE goodC ]C ]S”

4. “sheA ... reachingP [theE ConnecticutE
GolfE ChampionshipC ]A”

There is only one explicit Linker in this sen-
tence (“and”), which links Scenes (2) and (3).
None of the Scenes is an A or an E in the other, and
they are therefore all marked as Parallel Scenes.
We also note that in the case of the light verb
construction “took lessons” and the copula clauses
“became good” and “became a passion”, the verb
is not the Center of the main relation, but rather
the following noun or adjective. We also note that
the unit “she” is an A in Scenes (2), (3) and (4).

We turn to our second example:
“Cukor encouraged the studio to

accept her demands.”
This sentence contains three Scenes, evoked by

“encouraged”, “accept” and “demands”:

1. CukorA encouragedP [theE studioC ]A [toR

[accept her demands]C ]A
2. [the studio]A ... acceptP [her demands]A
3. herA demandsP IMP A

Scenes (2) and (3) act as Participants in Scenes
(1) and (2) respectively. In Scene (2), there is
an implicit Participant which corresponds to what-
ever was demanded. Note that “her demands” is a
Scene, despite being a noun phrase.

2.3 UCCA’s Multi-layered Structure

Additional layers may refine existing relations or
otherwise annotate a complementary set of dis-
tinctions. For instance, a refinement layer can
categorize linkage relations according to their se-
mantic types (e.g., temporal, purposive, causal) or
provide tense distinctions for verbs. Another im-
mediate extension to UCCA’s foundational layer
can be the annotation of coreference relations. Re-
call the example “John kicked his ball”. A coref-
erence layer would annotate a relation between
“John” and “his” by introducing a new node whose
descendants are these two units. The fact that
this node represents a coreference relation would
be represented by a label on the edge connecting
them to the coreference node.

There are three common ways to extend an an-
notation graph. First, by adding a relation that re-
lates previously established units. This is done by
introducing a new node whose descendants are the
related units. Second, by adding an intermediate

Passage #
1 2 3 4 5 6

# Sents. 8 20 23 14 13 15
# Tokens 259 360 343 322 316 393

ITA 67.3 74.1 71.2 73.5 77.8 81.1
Vs. Gold 72.4 76.7 75.5 75.7 79.5 84.2

Correction 93.7

Table 2: The upper part of the table presents the number of
sentences and the number of tokens in the first passages used
for the annotator training. The middle part presents the av-
erage F-scores obtained by the annotators throughout these
passages. The first row presents the average F-score when
comparing the annotations of the different annotators among
themselves. The second row presents the average F-score
when comparing them to a “gold standard”. The bottom row
shows the average F-score between an annotated passage of
a trained annotator and its manual correction by an expert. It
is higher due toconforming analyses (see text). All F-scores
are in percents.

unit between a parent unit and some of its sub-
units. For instance, consider “he replied foolishly”
and “he foolishly replied”. A layer focusing on
Adverbial scope may refine the flat Scene structure
assigned by the foundational layer, expressing the
scope of “foolishly” over the relation “replied” in
the first case, and over the entire Scene in the sec-
ond. Third, by adding sub-units to a terminal. For
instance, consider “gave up”, an expression which
the foundational layer considers atomic. A layer
that annotates tense can break the expression into
“gave” and “up”, in order to annotate “gave” as the
tense-bearing unit.

Although a more complete discussion of the for-
malism is beyond the scope of this paper, we note
that the formalism is designed to allow different
annotation layers to be defined and annotated in-
dependently of one another, in order to facilitate
UCCA’s construction through a community effort.

3 A UCCA-Annotated Corpus
The annotated text is mostly based on English
Wikipedia articles for celebrities. We have chosen
this genre as it is an inclusive and diverse domain,
which is still accessible to annotators from varied
backgrounds.

For the annotation process, we designed and im-
plemented a web application tailored for UCCA’s
annotation. A sample of the corpus containing
roughly 5K tokens, as well as the annotation ap-
plication can be found in our website7.

UCCA’s annotations are not confined to a sin-
gle sentence. The annotation is therefore carried
out in passages of 300-400 tokens. After its an-

7www.cs.huji.ac.il/ ˜ omria01



notation, a passage is manually corrected before
being inserted into the repository.

The section of the corpus annotated thus far
contains 56890 tokens in 148 annotated passages
(average length of 385 tokens). Each passage con-
tains 450 units on average and 42.2 Scenes. Each
Scene contains an average of 2 Participants and 0.3
Adverbials. 15% of the Scenes are static (contain
an S as the main relation) and the rest are dynamic
(containing a P). The average number of tokens in
a Scene (excluding punctuation) is 10.7. 18.3%
of the Scenes are Participants in another Scene,
11.4% are Elaborator Scenes and the remaining
are Parallel Scenes. A passage contains an aver-
age of 11.2 Linkers.

Inter-annotator agreement. We employ 4 an-
notators with varying levels of background in lin-
guistics. Two of the annotators have no back-
ground in linguistics, one took an introductory
course and one holds a Bachelor’s degree in lin-
guistics. The training process of the annotators
lasted 30–40 hours, which includes the time re-
quired for them to get acquainted with the web
application. As this was the first large-scale trial
with the UCCA scheme, some modifications to the
scheme were made during the annotator’s training.
We therefore expect the training process to be even
faster in later distributions.

There is no standard evaluation measure for
comparing two grammatical annotations in the
form of labeled DAGs. We therefore converted
UCCA to constituency trees8 and, following stan-
dard practice, computed the number of brackets in
both trees that match in both span and label. We
derive an F-score from these counts.

Table 2 presents the inter-annotator agreement
in the training phase. The four annotators were
given the same passage in each of these cases. In
addition, a “gold standard” was annotated by the
authors of this paper. The table presents the av-
erage F-score between the annotators, as well as
the average F-score when comparing to the gold
standard. Results show that although it repre-
sents complex hierarchical structures, the UCCA
scheme is learned quickly and effectively.

We also examined the influence of prior linguis-
tic background on the results. In the first passage
there was a substantial advantage to the annotators

8In cases a unit had multiple parents, we discarded all but
one of its incoming edges. This resulted in discarding 1.9%
of the edges. We applied a simple normalization procedure to
the resulting trees.

who had prior training in linguistics. The obtained
F-scores when comparing to a gold standard, or-
dered decreasingly according to the annotator’s
acquaintance with linguistics, were 78%, 74.4%,
69.5% and 67.8%. However, this performance gap
quickly vanished. Indeed, the obtained F-scores,
again compared to a gold standard and averaged
over the next five training passages, were (by the
same order) 78.6%, 77.3%, 79.2% and 78%.

This is an advantage of UCCA over other syn-
tactic annotation schemes that normally require
highly proficient annotators. For instance, both
the PTB and the Prague Dependency Treebank
(Böhmov́a et al., 2003) employed annotators with
extensive linguistic background. Similar findings
to ours were reported in the PropBank project,
which successfully employed annotators with var-
ious levels of linguistic background. We view
this as a major advantage of semantic annotation
schemes over their syntactic counterparts, espe-
cially given the huge amount of manual labor re-
quired for large syntactic annotation projects.

The UCCA interface allows for multiple non-
contradictory (“conforming”) analyses of a stretch
of text. It assumes that in some cases there is
more than one acceptable option, each highlight-
ing a different aspect of meaning of the analyzed
utterance (see below). This makes the computa-
tion of inter-annotator agreement fairly difficult.
It also suggests that the above evaluation is exces-
sively strict, as it does not take into account such
conforming analyses. To address this issue, we
conducted another experiment where an expert an-
notator corrected the produced annotations. Com-
paring the corrected versions to the originals, we
found that F-scores are typically in the range of
90%–95%. An average taken over a sample of
passages annotated by all four annotators yielded
an F-score of 93.7%.

It is difficult to compare the above results to the
inter-annotator agreement of other projects for two
reasons. First, many existing schemes are based
on other annotation schemes or heavily rely on
automatic tools for providing partial annotations.
Second, some of the most prominent annotation
projects do not provide reliable inter-annotator
agreement scores (Artstein and Poesio, 2008).

A recent work that did report inter-annotator
agreement in terms of bracketing F-score is an an-
notation project of the PTB’s noun phrases with
more elaborate syntactic structure (Vadas and Cur-



ran, 2011). They report an agreement of 88.3% in
a scenario where their two annotators worked sep-
arately. Note that this task is much more limited
in scope than UCCA (annotates noun phrases in-
stead of complete passages in UCCA; uses 2 cat-
egories instead of 12 in UCCA). Nevertheless, the
obtained inter-annotator agreement is comparable.
Disagreement examples. Here we discuss two
major types of disagreements that recurred in the
training process. The first is the distinction be-
tween Elaborators and Centers. In most cases this
distinction is straightforward, particularly where
one sub-unit determines the semantic type of the
parent unit, while its siblings add more informa-
tion to it (e.g., “truckE companyC” is a type of a
company and not of a truck). Some structures do
not nicely fall into this pattern. One such case is
with apposition. In the example “the Fox drama
Glory days”, both “the Fox drama” and “Glory
days” are reasonable candidates for being a Cen-
ter, which results in disagreements.

Another case is the distinction between Scenes
and non-Scene relations. Consider the example
“[John’s portrayal of the character] has been de-
scribed as ...”. The sentence obviously contains
two scenes, one in which John portrays a charac-
ter and another where someone describes John’s
doings. Its internal structure is therefore “John’sA

portrayalP [of the character]A”. However, the
syntactic structure of this unit leads annotators at
times into analyzing the subject as a non-Scene re-
lation whose C is “portrayal”.

Static relations tend to be more ambiguous be-
tween a Scene and a non-Scene interpretation.
Consider “Jane Smith (née Ross)”. It is not at all
clear whether “ńee Ross” should be annotated as a
Scene or not. Even if we do assume it is a Scene,
it is not clear whether the Scene it evokes is her
Scene of birth, which is dynamic, or a static Scene
which can be paraphrased as “originally named
Ross”. This leads to several conforming analyses,
each expressing a somewhat different conceptual-
ization of the Scene. This central notion will be
more elaborately addressed in future work.

We note that all of these disagreements can be
easily resolved by introducing an additional layer
focusing on the construction in question.

4 UCCA’s Benefits to Semantic Tasks

UCCA’s relative insensitivity to syntactic forms
has potential benefits for a wide variety of seman-

tic tasks. This section briefly demonstrates these
benefits through a number of examples.

Recall the example “John took a shower” (Sec-
tion 1). UCCA annotates the sentence as a sin-
gle Scene, with a single Participant and a proces-
sual main relation: “JohnA [tookF [aE showerC ]C
]P ”. The paraphrase “John showered” is anno-
tated similarly: “JohnA showeredP ”. The struc-
ture is also preserved under translation to other
languages, such as German (“JohnA duschteP ”,
where “duschte” is a verb), or Portuguese “JohnA

[tomouF banhoC ]P ” (literally, John took shower).
In all of these cases, UCCA annotates the example
as a Scene with an A and a P, whose Center is a
word expressing the notion of showering.

Another example is the sentence “John does
not have any money”. The foundational layer
of UCCA annotates negation units as Ds, which
yields the annotation “JohnA [doesF ]S- notD
[haveC ]-S [anyE moneyC ]A” (where “does ...
have” is a discontiguous unit)9. This sentence can
be paraphrased as “JohnA hasP noD moneyA”.
UCCA reflects the similarity of these two sen-
tences, as it annotates both cases as a single Scene
which has two Participants and a negation. A syn-
tactic scheme would normally annotate “no” in the
second sentence as a modifier of “money”, and
“not” as a negation of “have”.

The value of UCCA’s annotation can again be
seen in translation to languages that have only one
of these forms. For instance, the German transla-
tion of this sentence, “JohnA hatS keinD GeldA”,
is a literal translation of “John has no money”. The
Hebrew translation of this sentence is “eyn le john
kesef” (literally, “there-is-no to John money”).
The main relation here is therefore “eyn” (there-
is-no) which will be annotated asS. This yields
the annotation “eynS [leR JohnC ]A kesefA”.

The UCCA annotation in all of these cases is
composed of two Participants and a State. In En-
glish and German, the negative polarity unit is rep-
resented as a D. The negative polarity of the He-
brew “eyn” is represented in a more detailed layer.

As a third example, consider the two sentences
“There are children playing in the park” and “Chil-
dren are playing in the park”. The two sentences
have a similar meaning but substantially different
syntactic structures. The first contains two clauses,
an existential main clause (headed by “there are”)

9The foundational layer places “not” in the Scene level to
avoid resolving fine scope issues (see Section 2).



and a subordinate clause (“playing in the park”).
The second contains a simple clause headed by
“playing”. While the parse trees of these sentences
are very different, their UCCA annotation in the
foundational layer differ only in terms of Function
units: “ChildrenA [areF playingC ]P [inR theE
parkC ]A” and “ThereF areF childrenA [playing]P
[inR theE parkC ]A”10.

Aside from machine translation, a great vari-
ety of semantic tasks can benefit from a scheme
that is relatively insensitive to syntactic variation.
Examples include text simplification (e.g., for sec-
ond language teaching) (Siddharthan, 2006), para-
phrase detection (Dolan et al., 2004), summariza-
tion (Knight and Marcu, 2000), and question an-
swering (Wang et al., 2007).

5 Related Work

In this section we compare UCCA to some of the
major approaches to grammatical representation in
NLP. We focus on English, which is the most stud-
ied language and the focus of this paper.

Syntactic annotation schemes come in many
forms, from lexical categories such as POS tags
to intricate hierarchical structures. Some for-
malisms focus particularly on syntactic distinc-
tions, while others model the syntax-semantics in-
terface as well (Kaplan and Bresnan, 1981; Pollard
and Sag, 1994; Joshi and Schabes, 1997; Steed-
man, 2001; Sag, 2010,inter alia). UCCA diverges
from these approaches in aiming to abstract away
from specific syntactic forms and to only represent
semantic distinctions. Put differently, UCCA ad-
vocates an approach that treats syntax as a hidden
layer when learning the mapping between form
and meaning, while existing syntactic approaches
aim to model it manually and explicitly.

UCCA does not build on any other annotation
layers and therefore implicitly assumes that se-
mantic annotation can be learned directly. Recent
work suggests that indeed structured prediction
methods have reached sufficient maturity to allow
direct learning of semantic distinctions. Examples
include Naradowsky et al. (2012) for semantic role
labeling and Kwiatkowski et al. (2010) for seman-
tic parsing to logical forms. While structured pre-
diction for the task of predicting tree structures
is already well established (e.g., (Suzuki et al.,

10The two sentences are somewhat different in terms of
their information structure (Van Valin Jr., 2005), which is rep-
resented in a more detailed UCCA layer.

2009)), recent work has also successfully tackled
the task of predicting semantic structures in the
form of DAGs (Jones et al., 2012).

The most prominent annotation scheme in NLP
for English syntax is the Penn Treebank. Many
syntactic schemes are built or derived from it. An
increasingly popular alternative to the PTB are
dependency structures, which are usually repre-
sented as trees whose nodes are the words of the
sentence (Ivanova et al., 2012). Such represen-
tations are limited due to their inability to natu-
rally represent constructions that have more than
one head, or in which the identity of the head
is not clear. They also face difficulties in repre-
senting units that participate in multiple relations.
UCCA proposes a different formalism that ad-
dresses these problems by introducing a new node
for every relation (cf. (Sangati and Mazza, 2009)).

Several annotated corpora offer a joint syntac-
tic and semantic representation. Examples in-
clude the Groningen Meaning bank (Basile et al.,
2012), Treebank Semantics (Butler and Yoshi-
moto, 2012) and the Lingo Redwoods treebank
(Oepen et al., 2004). UCCA diverges from these
projects in aiming to abstract away from syntac-
tic variation, and is therefore less coupled with a
specific syntactic theory.

A different strand of work addresses the con-
struction of an interlingual representation, often
with a motivation of applying it to machine trans-
lation. Examples include the UNL project (Uchida
and Zhu, 2001), the IAMTC project (Dorr et al.,
2010) and the AMR project (Banarescu et al.,
2012). These projects share with UCCA their
emphasis on cross-linguistically valid annotations,
but diverge from UCCA in three important re-
spects. First, UCCA emphasizes the notion of
a multi-layer structure where the basic layers are
maximally coarse-grained, in contrast to the above
works that use far more elaborate representations.
Second, from a theoretical point of view, UCCA
differs from these works in aiming to represent
conceptual semantics, building on works in Cog-
nitive Linguistics (e.g., (Langacker, 2008)). Third,
unlike interlingua that generally define abstract
representations that may correspond to several dif-
ferent texts, UCCA incorporates the text into its
structure, thereby facilitating learning.

Semantic role labeling (SRL) schemes bear
similarity to the foundational layer, due to their
focus on argument structure. The leading SRL ap-



proaches are PropBank (Palmer et al., 2005) and
NomBank (Meyers et al., 2004) on the one hand,
and FrameNet (Baker et al., 1998) on the other. At
this point, all these schemes provide a more fine-
grained set of categories than UCCA.

PropBank and NomBank are built on top of the
PTB annotation, and provide for each verb (Prop-
Bank) and noun (NomBank), a delineation of their
arguments and their categorization into semantic
roles. Their structures therefore follow the syn-
tax of English quite closely. UCCA is generally
less tailored to the syntax of English (e.g., see sec-
ondary verbs (Dixon, 2005)).

Furthermore, PropBank and NomBank do not
annotate the internal structure of their arguments.
Indeed, the construction of the commonly used se-
mantic dependencies derived from these schemes
(Surdeanu et al., 2008) required a set of syntactic
head percolation rules to be used. These rules are
somewhat arbitrary (Schwartz et al., 2011), do not
support multiple heads, and often reflect syntac-
tic rather than semantic considerations (e.g., “mil-
lions” is the head of “millions of dollars”, while
“dollars” is the head of “five million dollars”).

Another difference is that PropBank and Nom-
Bank each annotate only a subset of predicates,
while UCCA is more inclusive. This difference
is most apparent in cases where a single complex
predicate contains both nominal and verbal com-
ponents (e.g., “limit access”, “take a shower”). In
addition, neither PropBank nor Nomabnk address
copula clauses, despite their frequency. Finally,
unlike PropBank and NomBank, UCCA’s founda-
tional layer annotates linkage relations.

In order to quantify the similarity between
UCCA and PropBank, we annotated 30 sentences
from the PropBank corpus with their UCCA anno-
tations and converted the outcome to PropBank-
style annotations11. We obtained an unlabeled
F-score of 89.4% when comparing to PropBank,
which indicates that PropBank-style annotations
are generally derivable from UCCA’s. The dis-
agreement between the schemes reflects both an-
notation conventions and principle differences,
some of which were discussed above.

The FrameNet project (Baker et al., 1998)

11The experiment was conducted on the first 30 sentences
of section 02. The identity of the predicates was determined
according to the PropBank annotation. We applied a simple
conversion procedure that uses half a dozen rules that are not
conditioned on any lexical item. We used a strict evaluation
that requires an exact match in the argument’s boundaries.

proposes a comprehensive approach to semantic
roles. It defines a lexical database of Frames, each
containing a set of possible frame elements and
their semantic roles. It bears similarity to UCCA
both in its use of Frames, which are a context-
independent abstraction of UCCA’s Scenes, and
in its emphasis on semantic rather than distribu-
tional considerations. However, despite these sim-
ilarities, FrameNet focuses on constructing a lex-
ical resource covering specific cases of interest,
and does not provide a fully annotated corpus of
naturally occurring text. UCCA’s foundational
layer can be seen as a complementary effort to
FrameNet, as it focuses on high-coverage, coarse-
grained annotation, while FrameNet is more fine-
grained at the expense of coverage.

6 Conclusion

This paper presented Universal Conceptual Cog-
nitive Annotation (UCCA), a novel framework
for semantic representation. We described the
foundational layer of UCCA and the compilation
of a UCCA-annotated corpus. We demonstrated
UCCA’s relative insensitivity to paraphrases and
cross-linguistic syntactic variation. We also dis-
cussed UCCA’s accessibility to annotators with no
background in linguistics, which can alleviate the
almost prohibitive annotation costs of large syn-
tactic annotation projects.

UCCA’s representation is guided by conceptual
notions and has its roots in the Cognitive Linguis-
tics tradition and specifically in Cognitive Gram-
mar (Langacker, 2008). These theories represent
the meaning of an utterance according to the men-
tal representations it evokes and not according to
its reference in the world. Future work will ex-
plore options to further reduce manual annotation,
possibly by combining texts with visual inputs
during training.

We are currently attempting to construct a
parser for UCCA and to apply it to several seman-
tic tasks, notably English-French machine trans-
lation. Future work will also discuss UCCA’s
portability across domains. We intend to show
that UCCA, which is less sensitive to the idiosyn-
crasies of a specific domain, can be easily adapted
to highly dynamic domains such as social media.
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Chapter 8

Discussion

This dissertation addresses the representation of semantic structure in NLP,
the resources required to represent it and its unsupervised induction. The
criteria set out by this thesis for evaluating a semantic representation are (1)
domain generality and cross-linguistic applicability, (2) the ability to express
a wide range of semantic distinctions, (3) the learnability of the proposed
structures using statistical methods, (4) the annotation costs required for
obtaining such a representation, and (5) the constraints imposed on such a
scheme by other (notably syntactic) schemes. This thesis is a step towards
the formulation of a semantic representation that fully complies to these
criteria. It explores two complementary lines of work:

1. Completely unsupervised induction of grammatical and semantic dis-
tinctions (chapters 3, 4 and 5). This section explores the extent to
which such distinctions can be induced given sufficient amounts of text,
but without any manual annotation. These methods are appealing both
for their applicability to a wide variety of domains and for the minimal
manual effort they require.

2. Manual semantic annotation (chapters 6 and 7). In this section I
present UCCA, a manual annotation scheme that addresses many of
the desiderata defined above. I also demonstrate that the scheme can
be consistently applied to naturally occurring text.

The thesis presents unsupervised algorithms for three core NLP tasks,
namely the induction of POS categories (Chapter 3), the identification of
verbal arguments (Chapter 4) and their classification into core arguments
and adjuncts (Chapter 5). It presents novel algorithms for the three tasks,
and in the latter two chapters, presents the first work to tackle a scenario
where no supervised syntactic parsers are used.
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Chapter 3 presents a novel algorithm for the part of speech induction
task. The contribution of Chapter 3 is four-fold. First, the algorithm ob-
tains the best reported results for this core task at the time of publication.
Second, the algorithm is novel in using a distributional representation de-
rived from the internal representation of an unsupervised parser (Seginer,
2007). This representation has previously been applied to the task of un-
supervised parsing, and we demonstrate its applicability to POS induction
as well. Third, we use a non-heuristic morphological representation based
on morphological signatures (Goldsmith, 2001) derived from an unsupervised
morphological model, Morfessor (Creutz and Lagus, 2005). Fourth, we apply
a novel two-step algorithm inspired by the cognitive theory of prototypes
(Taylor, 2003).

Chapter 4 presents an unsupervised algorithm for identifying verbal argu-
ments. This is the first work that tackles this task in an unsupervised setting.
The algorithm works in two steps. It first detects the minimal clause that
contains the verb using a novel unsupervised clause detection algorithm. It
then employs a selectional preferences module that filters out spurious ar-
guments if they are negatively correlated with the verb in question. Our
algorithm outperforms a strong baseline in the two tested languages, English
and Spanish.

Chapter 5 presents the first completely unsupervised algorithm for clas-
sifying verbal arguments into cores and adjuncts. This task has been tackled
in the past using supervised and semi-supervised methods, but never in a
completely unsupervised scenario. The work defines several measures that
can be computed from plain text, and provide a quantitative measure that
correlates with the distinction. As the distinction between cores and adjuncts
is never a fast and hard one (Dowty, 2000), using quantitative measures can
assist in defining this distinction more coherently using data-driven methods.

Despite the appeal of unsupervised methods, they are limited by the im-
poverished input they receive. In using only plain text, unsupervised methods
focus only on the distributional aspects of language, and ignore much of its
semantic and communicative aspects. However, unsupervised methods still
provide valuable information and are effectively used as components in semi-
supervised parsing systems (Koo et al., 2008) and in our current efforts to
construct a UCCA parser (see below). They are also used in state of the art
application systems (Uszkoreit and Brants, 2008; Oh et al., 2012).

In order to complement unsupervised methods, the second part of this
thesis discusses manual semantic annotation. It presents UCCA, a novel se-
mantic scheme that aims to accommodate rich semantic and abstract away
from syntactic variation. UCCA is supported by extensive typological and
cognitive linguistic theory. In terms of typological theory, UCCA builds on
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Basic Linguistic Theory (BLT) (Dixon, 2005, 2010a,b, 2012), a descriptive
framework whose principles were previously applied to a wide variety of lan-
guages (Dryer, 2006). The framework uses a combination of syntactic and
semantic criteria for defining its constructions, and uses cross-linguistically
motivated notions. UCCA generally adopts the semantic component of these
definitions in the definition of its categories, leaving the syntactic (or distri-
butional) categorizations to be automatically discovered in subsequent work.
UCCA also shares many of the motivations discussed in the cognitive linguis-
tics literature. First, UCCA bases many of its notions on conceptual rather
than extensional semantics. Extensional semantics relates text to the entities
and the relations it describes in the some reference world and is more inclined
to objectivist descriptions. On the other hand, conceptual semantics focuses
on the mental images and scenes a text evokes and their subjective construal
(Langacker, 2008). Second, if successful, the UCCA project would support
the claim that grammatical regularities are semantically motivated and that
the role of syntactic bias in the acquisition of grammar is limited (Clark
and Lappin, 2010). This motivation is shared by much work in cognitive
linguistics (e.g., (Tomasello, 2009)).

Chapter 6 presents the UCCA framework and discusses UCCA’s ratio-
nale and the representational as well as the algorithmic approach it advo-
cates. Concretely, it advances the approach that only semantic distinctions
should be manually annotated, while distributional regularities should be
automatically induced. The chapter further provides a detailed description
of UCCA’s foundational layer. The foundational layer covers many of the
most basic semantic components conveyed through linguistic utterances, in-
cluding predicate-argument structure and the linkage relations between such
structures. The foundational layer is designed to be highly coarse-grained,
thereby exposing similarities even between relatively distant domains. The
UCCA framework is extendable and is able to accommodate a large range
of semantic distinctions. The chapter provides a comparison of the UCCA
formalism to the standard dependency formalism, as well as a discussion of
UCCA’s treatment of the core-adjunct distinction.

Chapter 7 further discusses the UCCA framework, but focuses on the
compilation UCCA-annotated corpus and its potential applicability to sev-
eral core semantic applications. It also discusses the structure of the corpus,
its compilation process and demonstrates that unlike common syntactic an-
notation schemes, UCCA can be effectively annotated by annotators with
no background in linguistics. It also demonstrates that UCCA can be effec-
tively learned in a reasonable time, yielding high agreement rates between
its annotators. Last, the chapter provides a detailed comparison of UCCA
with other semantically annotated corpora used in NLP.
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Conclusion and Future Prospects

The focus of this thesis is on highly coarse-grained distinctions. It is my
view that semantic representation should rely on a rich set of features, con-
veying fine-grained lexical and structural information. Current efforts by my
colleagues and me are focused on constructing layers for encoding semantic
roles, information and focus structure phenomena, and a finer categorization
of inter-scene and discourse relations. In order to allow for the extension
of UCCA through community effort, we are currently developing a formal
and algorithmic framework for the distributed design of the scheme. We are
also planning to integrate UCCA to the extensive lexical resources available
to the NLP community (e.g., FrameNet (Baker et al., 1998) and VerbNet
(Schuler, 2005)), in order to exploit the rich semantic information they offer.

In addition, we are devoting efforts to the development of a statistical
UCCA parser. Current work is focused on applying conditional random
fields (Lafferty et al., 2001) to the sub-task of identifying the Scenes and
their components, and we intend to further proceed to the prediction of the
full hierarchical structures. We are also pursuing the development of a clas-
sifier for identifying scene-evoking elements, i.e., words or expressions that
constitute the main relation of a scene.

In another strand of work, we are compiling a English-French parallel cor-
pus, thereby examining UCCA’s cross-linguistic validity. We intend to use
the corpus to train a machine translation system. More generally, we intend
to demonstrate the applicability of UCCA to applications that can bene-
fit from elaborate grammatical and semantic information, such as question
answering, paraphrase detection and textual entailment.

Finally, I intend to explore whether UCCA can be used to better model
the information accessible to an infant during language acquisition. An ap-
pealing direction is to use UCCA to annotate the CHILDES (MacWhinney,
2000) corpus of child-directed speech, and to automatically induce grammat-
ical and lexical information from it (cf. (Chang, 2009; Connor et al., 2010;
Kwiatkowski et al., 2012)). If successful, such experiments could demonstrate
that coarse-grained semantic information, accompanied by a strong statisti-
cal system, are sufficient for inducing complex grammatical regularities.

The field of semantic representation is one of the pillars of natural lan-
guage processing, and is increasingly used in a wide variety of applications.
The research presented in this thesis outlines an alternative to the common
approach in NLP for semantic representation, both in its characterization
and in its learning. I hope this work will constitute another step towards the
ambitious goal of constructing a universal, cognitively-motivated, automati-
cally learnable and easily accessible semantic representation.
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