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ABSTRACT

In most of microeconomic theory, consumers are assumed to
exhibit decreasing marginal utilities. This paper considers
combinatorial auctions among such buyers. The valuations
of such buyers are placed within a hierarchy of valuations
that exhibit no complementarities, a hierarchy that includes
also OR and XOR combinations of singleton valuations, and
valuations satisfying the gross substitutes property. While
we show that the allocation problem among valuations with
decreasing marginal utilities is NP-hard, we present an ef-
ficient greedy 2-approximation algorithm for this case. No
such approximation algorithm exists in a setting allowing
for complementarities. Some results about strategic aspects
of combinatorial auctions among players with decreasing
marginal utilities are also presented.

1. INTRODUCTION
1.1 Background

Recent years have seen a surge of interest in combinato-
rial (also called combinational) auctions, in which a number
of non-identical items are sold concurrently and bidders ex-
press preferences about combinations of items and not just
about single items. Thus, for example, a bidder may of-
fer $40 for the combination of a Tournedos Rossini and a
bottle of Chateau Lafitte, but offer only $10 for each of
those items alone. Similarly, a bidder may make an offer
of $10 for a blue and for a red shirt, but not be willing to
pay more than $10 even if he gets both shirts. In general,
a combinatorial auction allows bidders to express comple-
mentarities — where the value of a combination of packages
of items is worth more than the sum of the values of the
separate packages — and substitutabilities — where the value
of a combination of packages is less than the sum of the val-
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ues of the separate packages. Such combinatorial auctions
have been suggested for a host of auction situations such as
those for spectrum licenses, pollution permits, landing slots,
computational resources, and others. See [2] for a survey.

Implementation of combinatorial auctions faces several
challenges including the representational question of suc-
cinctly specifying the values of the different packages, the
algorithmic challenge of efficiently solving the resulting, NP-
hard, allocation problem, and the game-theoretic questions
of bidders’ strategies. These questions have been recently
approached by a host of researchers both in the general case
and in several interesting special cases [12, 23, 17, 20, 4, 22,
6, 10, 15].

Somewhat surprisingly, the special case that is most natu-
ral from an economic sense has received very little attention
from the computational point of view. In most of microeco-
nomic theory, consumers are assumed to exhibit diminishing
marginal utilities and they expect bulk discounts. In par-
ticular, such consumers exhibit no complementarities. In
fact many papers dealing with allocation in combinatorial
auctions focused on the dual case of no substitutes, i.e.,
much computational research assumes that a buyer places
bids for packages of items and is not interested in a sub-
package. In contrast, economists who dealt with auctions
did mostly consider auctions in which players expressed no
complementarities. For example, for multi-unit auctions,
Vickrey’s seminal paper [24] assumes downward sloping val-
uations for buyers. Recent papers dealing with combinato-
rial auctions such as [7, 8, 9, 1] usually assume the gross
substitutes property. Each of these notions implies lack of
complementarities.

In this paper, we study the three notions for lack of com-
plementarity found in the literature. In increasing level of
restrictiveness these notions are, informally:

e No Complementarities: The value of a combina-
tion of bundles is no more than the sum of the bundle
values.

e Decreasing Marginal Utilities: The marginal value
of an item decreases as the set of items already ac-
quired increases.

e Gross Substitutes: The demand for an item does
not decrease when the price of other items increases.

We pay special attention to the case of decreasing marginal
utilities, which is equivalent to submodularity of the valua-
tion functions.



1.2 Representationand Hierar chy

We first consider the question of how to represent bids
(i-e., valuations) that have no complementarities. They can
be represented by valuations constructed out of atomic val-
uations that offer a price for a single item, (singleton val-
uations), using the operations of OR and XOR. Using re-
stricted classes of such bidding languages we are able to
obtain a structural hierarchy of families of complement-free
valuations.

Theorem: Denote by CF — the class of complement-free
valuations; SM — the class of valuations with decreasing
marginal utilities (submodular valuations); GS — the class of
valuations that satisfy the gross substitutes property; XOS
— the class of XOR-of-OR~of-singleton valuations; OXS — the
class of OR-of-XOR-of-singleton valuations. Then:

OXSCGSCSM CX0OSCCF.

Further more, all these containments are strict.

1.3 Allocation

We then focus our attention on the question of allocation
among players with submodular valuations. We should first
stress the difference between this case and the more restric-
tive and well-studied case of allocation among valuations
satisfying the gross substitutes property. In the latter case,
it is known that a Walrasian equilibrium exists [9], while in
the former Walrasian equilibria do not necessarily exist [7].
Walrasian equilibria may be found in polynomial time and
are the basis of almost all known computationally efficient
allocation algorithms. One may thus say that the submod-
ular case is the first hard case from a computational point
of view?!.

We first show that the optimal allocation problem remains
NP-hard even among players of submodular types. Our
main positive algorithmic result is a simple greedy algorithm
that produces an allocation that is a 2-approximation, i.e.,
an allocation whose value is at least half of the optimal one.
This is in sharp contrast to the general case where it remains
NP-hard to find even a n'/?~“-approximation [19, 10].

Greedy Algorithm: Enumerate the items in arbitrary
order, and allocate each item to the bidder with highest
marginal valuation in the current partial allocation.

Theorem: If all bids are submodular then this algorithm
produces an allocation whose value is at least half the opti-
mal one.

We do not know if a better approximation ratio is possible,
nor do we know whether a polynomial time approximation
algorithm exists that works for all complement-free valua-
tions. As mentioned, the restricted case of valuations with
gross substitutes has a polynomial-time optimal solution
based on linear programming. The more restricted case of
OXS valuations has an optimal solution based on bipartite
matching. We note that for both of these algorithms, appro-
priate (and non-standard) access to the valuation functions

'A similar phenomena exists from the information trans-
fer point of view: any optimal allocation algorithm among
submodular valuations requires exponential communication,
while if the valuations satisfy the gross substitutes property
then polynomial communication suffices [16].

is needed.

1.4 FalseNameBids

Our next concern is with the issue of false-name bids that
was identified and analyzed in a sequence of papers [18, 25,
26, 27). This concerns the following problem that is inherent
in combinatorial auctions that use the Vickrey-Clark-Groves
payment rules [12] — the only choice, if one requires incen-
tive compatibility and efficiency. These rules dictate that a
player that is allocated a set S of items pays the external
cost to society. A disturbing observation made in [18] is that
in many cases a bidder can manipulate a VCG combinato-
rial auction and reduce his payment by splitting his bid and
placing two separate bids under false-names. For example,
if two items A and B are offered and my valuation for the
pair {A, B} is 6, while another bidder values the pair at 5,
the VCG rules will set my payment to 5. If, instead, I place
two separate bids, {A} for 4 and {B} for 4, then one may
easily calculate that each of these false-name bidders pays
1 =5 —4 for a total payment of 2. In [18] it is shown that,
in the case of single-item multi-unit auctions, this type of
savings cannot occur when all bids are downward sloping.
It is claimed in there (without proof and without precise
definitions) that this generalizes to combinatorial auctions
when all bidders have no complementarities. We show that
this is not exactly the case?, but rather the generalization to
combinatorial auctions requires that the combined valuation
of other bidders has decreasing marginal utilities.

Theorem: False-name bids cannot reduce payments in a
combinatorial auction using the VCG rules, whenever the
combined valuation of all other players is submodular.

There is no requirement on the valuation of the player
placing false-name bids. The requirement of submodularity
is on the combined valuations of all other players. We pro-
vide an example showing that requiring each player be of a
submodular type is not sufficient. In particular, we observe,
this result implies the result of [18] regarding single-item
multi-unit auctions.

1.5 Paper Structure

In section 2 we present the basic definitions of the classes
of valuations that we discuss. Section 3 discusses representa-
tions of valuations using OR and XOR expressions, and pro-
vides a structural hierarchy of subclasses of complement-free
valuations. Section 4 provides many examples of complement-
free and submodular valuations, both natural ones, and var-
ious negative examples. Section 5 discusses allocation (win-
ner determination) algorithms. Section 6 discusses false-
name bids. Finally, section 7 shortly mentions an extension
to valuations with bounded complementarities.

2. DEFINITIONS

2.1 Preliminaries

In this paper we consider a combinatorial auction of non-
identical goods: There is a set X of items for sale by a
single auctioneer in a single combinatorial auction. We will
denote the number of items |X| = m. There are n bidders
who all desire these items. Each bidder ¢ has its own private

2We have contacted the authors of this paper and they have
confirmed a bug in their unpublished proof.



valuation function, v;, that specifies his valuation for each
possible subset of items that he may get: i.e. for a subset
A C X of items, v;(A) is the amount of money at which
bidder ¢ values this subset A of items. For a singleton set {z}
we will use v;(z) as a shorthand for v;({z}). This notation
makes two important assumptions:

e Quasi-linearity: Bidders’ utilities can be measured
in terms of “money”, i.e. are linear in the “money”.

e No Externalities: The bidders’ valuation depends
only on the set of items he wins: the valuation function
v; is v; = vi(A), where A is the set of items won by
bidder ¢, not on the identity of the bidders who get the
items not in A.

In addition, we assume that these valuations all satisfy the
following conditions:

e Free disposal: Items have non-negative value. Thus
v; satisfies v;(A) < v;(B), whenever A C B.

e Normalization: v; (@) = 0.
The auctioneer’s aim is to find an optimal allocation.

DEFINITION 1. An Allocation is a partition of X into pair
wise disjoint sets of items S1...Sn. An allocation is optimal
if it mazimizes Y, v;(S;).

The auction rules must also define the payments received
from each bidder.

2.2 Marginal Valuations

A central notion that we will be using is that of the
marginal valuation. It describes how a player would value
sets of remaining items if he were already given some items.

DEFINITION 2. Given a valuation v on a set X of items
and a set W C X of items, the marginal valuation of a set
ACX —W given W is defined by:

v(A|W) =v(AUW) —v(W).

One may consider the marginal valuation of a single ele-
ment, v(z|), as a discrete analog for the partial derivative
of v in direction z.

2.3 No Complementarities

DEFINITION 3. A waluation v is called complement-free if
it satisfies:

v(A) +v(B) > v(AUB)

for all sets A, B C X. The class CF is the set of all com-
plement free valuations.

While this notion is clearly natural, it turns out that valu-
ations with this property can still have “hidden complemen-
tarities”. We could expect consumers to exhibit no comple-
mentarities even once they have acquired some items. Ex-
ample 4 shows that even if v is in CF, the valuation v(-|W)
need not be —i.e. once a set of items W is already acquired,
complementarities surface. Indeed, as example 4 shows, this
condition of complement-freedom is not the right analog of
downward-sloping valuations. It is therefore only natural to
turn to those valuations that have no such “hidden comple-
mentarities”. It turns out that these are exactly the sub-
modular valuations.

2.4 DecreasingMar ginal Utilities — Submod-
ular Valuations

DEFINITION 4. A wvaluation v is called submodular if for
every two sets of items S CT and element z, v(z|T) <
v(z|S). Submodular valuations are also called valuations
with decreasing marginal utilities. The class SM is the set
of all submodular valuations.

Thus we require that the marginal utility of an element
decreases as the set of items already acquired increases.
Submodular functions are well-known and heavily used in
combinatorics [14]. If we extend the analogy between the
marginal valuation and the derivative discussed in section
2.2, then we see why submodular valuations are considered a
discrete analog of convex functions — the “derivative” v(z|-)
is decreasing. Here, we consider only valuations: mono-
tone, positive submodular functions. In the literature, sub-
modular functions have been generally been considered in a
wider setting. Many equivalent characterizations of decreas-
ing marginal utilities are well-known.

THEOREM 1. (see for ezample [13, 14]) A valuation v is
submodular if and only if any one of the following equivalent
propositions holds.

e For any z,y € X and S C X: v(z|S) > v(z|SU{y}).
e ForanyS,T,V C X, such that S CT: v(V|S) > v(V|T).
e Forany A,B C X: v(A) +v(B) >v(AUB)+v(ANB).

It follows, in particular, from the last characterization
that any valuation with decreasing marginal utilities has no
complementarities.

COROLLARY 1. A waluation with decreasing marginal util-
ities is complement-free.

The converse is not true and in example 4 below we exhibit
a valuation that has no complementarities yet its marginal
utilities are not decreasing. It turns out that valuations
with decreasing marginal utilities are exactly the valuations
without any “hidden” complementarities.

LEMMA 1. A valuation v is submodular if and only if for
every subset of items R, the marginal valuation function
v(-|R) has no complementarities.

PrOOF. For the if direction, use the third characteri-
zation from theorem 1, so we need to show that for all
A,B: v(AUB) +v(ANB) < v(A)+ v(B). Now set R =
ANB, AA = A— R, and B® = B — R, and we have,
v(A4) = v(A'|R) + v(R), v(B) = v(B'|R) +v(R), v(AUB) =
v(A" U B'|R) + v(R), and v(AN B) = v(R). Thus the con-
dition v(A U B) + v(A N B) < v(A) + v(B) is equivalent
to v(A' U B’'|R) < v(A'|R) + v(B'|R), which is true due to
v(-|R) being complement-free.

For the only if direction, we now need to prove that for
all R and A',B’ C R®: v(A' U B’'|R) < v(A'|R) + v(B’|R).
Now set A = A’ UR, and B = B’ UR, and so again, v(A) =
v(A'|R) +v(R), v(B) = v(B'|R) + v(R), v(AUB) = v(A"U
B'|R) + v(R), and v(A N B) = v(R). Thus the condition
v(A' U B'|R) < v(A'|R) + v(B'|R) is equivalent to v(A U
B) + v(AN B) < v(A) + v(B) which is true due to v being
submodular. [



In particular we get the corollary.

COROLLARY 2. If v is submodular, then for every subset
R of items the marginal valuation function v(-|R) is submod-
ular.

PROOF. All the marginal valuation functions of v(:|R) are
also marginal valuation functions of v and thus have no com-
plementarities. []

2.5 GrossSubstitutes

In order to define the gross substitutes property we first
need to consider the effect of putting prices on items. We
think of what happens to the valuation of v of a set S, when
the price of all items in S must be paid. All the definitions
and theorems in this subsection are from [9, 7] (we have
sometimes slightly modified the terminology and notation).

DEFINITION 5. Given a wvector of real item prices p =
(p1...pm), the surplus of a set of items S relative to these
prices is defined as v(S|P) = v(S) — D ;cgpi- A set S isa
preferred set of v at prices p’ if v(S|p) = maxr v(T|p). i.e.
S mazimizes the surplus. The demand set of v at prices
P is the set of all preferred sets D(v|p) = {S | v(S|p) =
maxr v(T|p).

The gross substitutes property mandates that increasing
the price of an item will not decrease the demand for any
other item. Le. if an item ¢ is in a preferred set at prices p,
then increasing p; for some j # 4, will still have item ¢ in a
preferred set.

DEFINITION 6. A wvaluation v is said to satisfy the gross
substitutes property if for any item i, any price vector p and
any price vector ¢ > p (point wise comparison) with p; = qi,
we have that if i € A where A € D(v|p), then there exists
A" € D(v|q) such that i € A'. The class GS is set of all
valuations that satisfy the gross substitutes property.

An equivalent condition is called the single improvement
property. This condition states that a non-preferred set can
always be improved (in terms of its surplus) by deleting at
most one element from it and inserting at most one element
into it.

LEMMA 2. [7] A valuation v satisfies the gross substitutes
property if and only if for any ¥ and A ¢ D(v|p), there
exists A’ such that |A' — A < 1 and |[A— A'| < 1 and
v(A'|p) > v(Alp).

The gross substitutes property is stronger than submod-
ularity.

LEMMA 3. [7] A valuation that satisfies the gross substi-
tutes property is submodular.

The key property that makes valuations with the gross
substitutes property so convenient is that in an auction with
such valuations, Walrasian equilibria exist. A Walrasian
equilibrium is a vector of prices on the items and an al-
location such that every bidder receives a preferred set at
these prices.

DEFINITION 7. A Walrasian equilibrium in an auction with
valuations vi...vy, is a price vector p and an allocation A;...A,
such that for all bidders j: A; € D(v;|p).

THEOREM 2. [9] Any auction with valuations v;...v, that
satisfy the gross substitutes property has a Walrasian equi-
librium.

It turns out that this is essentially also a necessary con-
dition.

THEOREM 3. [7] If vi does not satisfy the gross substi-
tutes property then there exist valuations va...v, that do sat-
isfy the gross substitutes property® and the auction with vi...v,
does not have a Walrasian equilibrium.

It is easy to verify the “first Welfare theorem” in this con-
text: any Walrasian equilibrium gives an optimal allocation,
i.e. one that maximizes ), v;(4;).

3. REPRESENTATION AND STRUCTURE
3.1 Elementsof Representation

The question of representation of valuations, i.e., how to
succinctly describe a valuation without listing explicitly the
values for each of the 2™ subsets of items, must be addressed
before valuations can be efficiently treated in any allocation
algorithm. How can we represent complement-free valua-
tions succinctly? We may consider representing such valua-
tions by combining s¢mple valuations by suitable operators.

The basic syntactic elements from which valuations are
usually constructed, sometimes called atomic bids, are a dec-
laration of a certain price for a specific set of elements. They
correspond to the single-minded valuations of [10]. The only
single-minded valuations in CF are valuations in which only
a single item is valued at a positive value. It is therefore
expected that those singleton valuations will play a central
role in describing CF valuations.

DEFINITION 8. For an item ¢ € X and a price p, the
singleton valuation €% is a valuation giving the same value
p to all sets containing x and the value 0 to all sets that do
not include x.

The operators commonly used for representing valuations
are those introduced in [20]: OR and XOR. They are often
understood as prescriptions concerning the compatibility of
bids, but the following presentation, as operations on valu-
ations, is more convenient.

DEFINITION 9  ([15]). Let v1 and vz be two valuations
on the set X of items. The valuations vi ®v2 (XOR) and
the valuation v1 V va (OR) are defined by:

(v1 @ v2)(S) = maz(v1(S5),v2(5)),
(v1 Vu2)(S) = max (01(T) + v2(S = T)).

The OR (V) of two valuations represents the valuation of
an agent representing both valuations, bidding on their be-
half and sharing the result between them. An OR of two
valuations is the valuation obtained by partitioning the set
of goods obtained optimally between these valuations. The
XOR (@) of two valuations represents the valuation of a
single bidder capable of choosing between two possible but
incompatible personalities after the auction. His value for
a set S is the largest of the two values of the component
valuations. The operations OR and XOR are obviously as-
sociative and commutative.

3In fact, [7] prove that ve...v, may be unit demand functions
— an even more restricted notion.



3.2 A Syntactic Hierar chy

It is now natural to study the hierarchy of valuations ob-
tained by combining singleton valuations by the OR and
XOR operations. Here are the levels of the hierarchy

1. Singleton valuations.

2. OS —wvaluations: The family of valuations that can be
described by OR of singletons is precisely the family
of (separately) additive valuations: those valuations
which value any set at the sum of the values of its
elements. They exhibit no complementarity and no
substitutability.

3. XS — valuations: The family of valuations that can
be described by XOR of singletons is usually called
the family of unit-demand valuations [7]: those valu-
ations that value any set of elements at the value of
the element of the set that is most valued. This family
of types has been considered central by Vickrey and
since.

4. OX S — valuations: The family of OR’s of XS valua-
tions represents the aggregated valuation of multiple
unit-demand players.

5. XOS — valuations: The family of XOR’s of additive
valuations turns out to subsume the whole hierarchy.
This follows from the simple observation that OR dis-
tributes over XOR:

(a@b)V(cpd)=(aVe)d(avd)d (bVe)d (bVa).

Therefore XOS is closed under OR (it is obviously
closed under XOR). It follows that any expression that
uses combinations of OR and XOR operations on sin-
gleton valuations can be represented as a simple XOS
expression.

3.3 Closure Theorems

Once we have defined the operations of OR and XOR it
is natural to ask whether the classes of valuations defined
semantically (CF, SM, and GS) are closed under these op-
erations.

331 CF
THEOREM 4. The class CF is closed under OR and XOR.
PRrOOF. Let v1 and vz be complement free then:
(v1i ®v2)(SUT) =maz(vi(SUT),v2(SUT)) <
maz(vi(S) + vi1(T),v2(S) + v2(T)) <
maz(v1(S) + v2(S)) + maz(vi(T) + v2(T)) =

(v1 @ v2)(8) + (v1 © v2(T)).

Similarly fix partitions (S; : S2) of S and (71 : T») of T,
such that (v1 V v2)(S) = v1(S1) + v2(S2) and (v1 V v2)(T)) =
v1(T1) + v2(T2). Now,

(’U1 V’Uz)(SUT) < U1(S1 UT1) + 1)2(52 UTz) <
v1(S1) + v1(T1) + v2(S2) + v2(12)) =
(1}1 \% 1)2)(5) + ('Ul \Y Uz)(T).

332 SM

The class of submodular valuations is not closed under
neither OR nor XOR. It is not closed under XOR as it con-
tains the class OS of additive valuations, but example 3
shows that it does not contain the class XOS which is XORs
of additive valuations. The fact that it is not closed under
OR is given by example 5.

333 GS

The class GS is not closed under XOR as it contains the
class OS of additive valuations, but example 3 shows that
even its superset SM does not contain the class XOS which
is XORs of additive valuations. It is however closed under
the OR operation.

THEOREM 5. Ifu and w satisfy the gross substitutes prop-
erty then so does u V w.

ProoF. We will prove it indirectly applying theorems 3
and 2. Using theorem 3, it suffices to show that for all val-
uations vs...v, that satisfy the gross substitutes property,
an auction with bidders u V w, va...v, has a Walrasian equi-
librium. Theorem 2 states that an auction with bidders
u, W, V2, -.., Uy, has a Walrasian equilibrium: vector of prices
p with allocation A,, Ay, A2,...A,. We claim that § with
the allocation A, U Ay, A2, ...A, is a Walrasian equilibrium
for bidders u V w, va...vp.

The only thing that needs to be verified is that (A4, U
Aw) € D(uV w|p). This is so since for any set S, let S, and
S be a partition of S such that (uVw)(S) = u(S,)+w(Sy)-
Thus also (u V w)(S|p) = u(Su|p) + w(Sw|p). Now, since
Ay € D(u|p) we have that u(Sy|p) < u(Au.|p), and similarly
for w. Clearly u(Ay) +w(Aw) < (uVw)(Ay U Ay), and so
also u(Au|p) + w(Aw|p) < (uV w)(Aw U Ay|p). Thus

(uVw)(S]P) = w(Sulp) + w(Swlp) <

< u(Au|p) + w(Au|P) < (uV w)(Ay U Ay|p).
(|

3.4 The CompleteHierarchy

We have seen by now five significant classes of valuations.
Three of them were defined semantically: complement-free
(CF), submodular (SM), and those with the gross substi-
tutes property (GS). Two of them were defined syntactically:
ORs of XORs of singletons (OXS) and XORs of ORs of sin-
gletons (XOS). We now can state the relationships between
these classes.

THEOREM 6.
OXSCGSCSM cCXOScCCF.

All containments are strict.

PrOOF. We will prove the containments from left to right.
The fact that they are strict will follow from the examples
below, in Section 4.2.

1. OXS C GS: This follows from theorem 5 since GS
contains all unit demand valuations (XS-valuations)
[7], and thus also contains ORs of XS valuations.

2. GS C SM: This was shown in [7].



3. SM C XOS: each submodular valuation may be rep-
resented by a long XOR expression. For each permu-
tation 7 of the items we will have an OR clause —
the XOS expression will be the XOR, of all these OR
clauses. The OR clause for the permutation 7 will offer
for each item ¢ the marginal price of ¢ assuming that
all items preceding it in the permutation 7 have al-
ready been obtained. Formally, for ¢ = (), the price
is v(i|{m(1),...,7(5 —1)}). To see that the XOS ex-
pression indeed represents the submodular valuation,
consider a submodular v and a set A of items. For any
permutation 7 of the items in which the items of A
are placed first, the value given to A by the OR clause
for 7 is exactly v(A). All other OR clauses give to A
a value that is smaller or equal, since v has decreasing
marginal utilities.

4. X0OS C CF By Theorem 4.

4. EXAMPLES OF SUBMODULAR VALU-
ATIONS

4.1 Natural Examples

The simplest and most common natural examples of valu-
ations with no complementarities are the additive valuations
(the class OS) and the unit demand valuations (the class XS)
mentioned in section 3.2. These valuations are both trivially
in subclasses of OXS and thus clearly satisfy the gross sub-
stitutes property, and are also submodular. We now mention
some other natural valuations that are submodular.

411 Symmetric valuations

Symmetric valuations are ones where v(S) depends only
on the size of S, | S |. These cases fit auctions of multi-
ple identical items. Symmetric valuations may be described
by a sequence of marginal values: numbers p; ...pm where
pi =v(T) —v(S) for any sets T and S of sizes ¢ and 7 — 1
respectively. We then have: v(S) = E‘ZS ' p; for any set S.
The following set of symmetric valuations has received con-
siderable attention. For example Vickrey’s multi-unit auc-
tion [24] only considers such valuations.

DEFINITION 10. A symmetric valuation is downward slop-
ing iff for all i, piv1 < p;.

As expected, these are exactly the symmetric submodular
valuations.

PROPOSITION 1. A symmetric valuation is downward slop-
ing if and only if it is submodular.

PROOF. For a symmetric valuation v, for z € S, v(z|S) =
P|s|+1, and the equivalence is immediate. []

It is known [7] that downward sloping symmetric valuations
also satisfy the gross substitutes property and in fact can
be represented in the class OXS [15]. On the other hand,
the complement-free symmetric valuations are a wider class
— see below examples 4 and 3.

4.1.2 Additive valuations with a budget limit

Our second class of examples is composed of valuations
that are additive-up-to-a-budget-limit. In these valuations,
a set is valued at the sum of the values of its items, unless
this sum is larger than a budget limit. In this last case it is
valued at the budget limit.

DEFINITION 11. A waluation v is called additive with a

budget limit if there exists a constant b, the budget limit, such
that for all sets S of items, v(S) = min(b, Y, s v({i}))-

PROPOSITION 2. Every additive valuation with a budget
limit is submodular.

PROOF. Assume S C T and z ¢ T. We have
v(2|T) = min(b,v(T) + v({z})) — v(T) =

min(b —v(T), v({z})) < min(b - v(S),v({z})) = v(@|S).
O

These type of valuations do not necessarily satisfy the gross
substitutes property — see below example 2.

4.1.3 Valuations based an underlying measure

The third class of valuations we want to present consists
of valuations based on some underlying set with a measure
on it. Let us first start with a concrete example. Consider
a combinatorial auction for a set of spectrum licenses in
overlapping geographical regions. Each geographical region
contains a certain population, and a reasonable valuation
for a set of licenses is the total population in the geographic
area covered by the regions in the set. It turns out that such
valuations are submodular. More generally, the overlapping
regions may be arbitrary sets in some underlying base set,
and the population count may be replaced by any measure
on the base set.

DEFINITION 12. A waluation v is said to be based on the
underlying measure p on a base set T if there are sets I ... I,
T such that for each set S of goods, v(S) = u(Uiesl;).

LEMMA 4. Every valuation that is based on an underlying

measure s submodular.

PrOOF. Consider S C T, and an item z. Denote S =
Uiesl;, and similarly 7. Clearly S CT. We now have
v(@|$) = p(Lz — $) > u(lo = T) = v(@[T). O
4.2 SeparationExamples
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EXAMPLE 1. Consider a set X of four items: X = {a,b,c,d}

and the valuation v defined by: the value of any singleton is
10 and the value of any other set is 19, except for the two
sets {a,c} and {b,d} the value of which is 15.

CLAIM 1. The valuation v is not in OXS.



PROOF. Suppose v = v1 V...V v,. Since v({a}) = 10,
there is some ¢ with v;({a}) = 10. Without loss of gener-
ality, assume ¢ = 1. Since v({b}) = 10, there is some 7 with
v;({b}) = 10. Since v({a,b}) < 20, for any ¢ # 1, v; < 10.
We conclude that v1 ({b}) = 10. Similarly, v; ({c¢}) = v1({d}) =

10. Consider now that v({a,c}) = 15, therefore, since vi({a}) =

10, for any ¢ > 1, vi({c}) < 5. Similarly, for any item z
and any ¢ > 1, v;({z}) < 5. But v({a,b}) =19 and there-
fore there must be i # j such that v;({a}) + v; ({b}) =19, a
contradiction. [

CLAIM 2. The valuation v is in GS.

ProoOF. (sketch) We will use the single improvement prop-
erty (lemma 2). Let p be any price vector and consider any
non-preferred set A. Let D € D(v|p) be a preferred set.
We need to show that we can improve the surplus of A by
deleting at most one element and inserting at most one ele-
ment. This requires a tedious case by case analysis that we
omit, except for the only nontrivial case where A = D° and
both are of size 2, e.g. A = {a,b} and D = {c,d}. In this
case either {a,d} or {b,c} will have a surplus greater than
As. O
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EXAMPLE 2. Consider the additive valuation with budget
limit 4 on three elements: v(1) = v(2) = 2, v(3) = 4. Since
the budget limit is 4, each set that contains at least two ele-
ments has a valuation of 4.

This valuation is submodular by Proposition 2, but it does
not satisfy the gross substitutes property. Consider the price
vector p1 = 0,p2 = 1,ps = 2. At these prices the preferred
subset is {1, 2} giving a surplus of 3. However, if we increase
the price of item 1 to p1 = 2, then the preferred subset is
{3} giving a surplus of 2, where any set that contains item
2 will have a surplus of at most 1. Thus we have reduced
the demand for item 2.

423 SM#X0S

ExXAMPLE 3. Consider the symmetric valuation on three
elements defined by p1 =2, po =0, ps =1: a set of one or
two elements is valued at 2, while the set of all three elements
is valued at 3.

By definition, it is not downward sloping, therefore not sub-
modular, by Proposition 1, but it is obtained by the follow-
ing XOR-of-OR-of-singletons:

{1}:2)eo({2}:2)® ({3} : 2)w
where w = ({1} : 1) vV ({2} : 1) v ({3} : 1).
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EXAMPLE 4. Assume a set X of three items and v(S) = 2
if|S|=1,v(S)=34i|S|=2 and v(S) =5 if | S |=3.

The valuation v is in CF since 2+2 >3 and 2+ 3 > 5.
We shall show that it cannot be expressed as a XOR-of-
ORs-of-singletons. Assume that it is, and consider the OR
clause that provides the valuation of 5 to the set of all three
elements. This OR clause contains (at most) three singleton

bids for the three items; if we take the two highest bids of
these three we must get a valuation of at least 5-2/3 > 3,
in contradiction to the valuation of any two elements being
3.

This is also an example for the fact that the class CF is not
closed under marginal valuations. The marginal valuation
vw, where W contains any single item, gives vw (S) =1 if
| S|=1and vw(S) =3if | S |=2 and is not in CF.
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The following example will show that SM is not closed
under OR.

EXAMPLE 5. Let u(1l) = 3, u(2) =5 and u(3) = 3, where
u has a budget limit of 6. Let w be the additive valuation:
w(l) =1, w(2) =2, w(3) =0. Let v=uV w.

The valuation « is submodular by Proposition 2. One can
see that: v({1,2}) = 6 (u gets both), v({2,3}) =6 (u gets
both). Therefore v({1,2}) + v({2,3}) = 12. Butv({1,2,3})
8 (u gets 1 and 3 and w gets 2), v(2) =5 (u gets it), and
8 +5 > 12 and v is not submodular.

5. ALLOCATION

We now turn to the computational problem of allocating
the items in a combinatorial auction in which all bidders
are submodular. As a computational problem, we must first
consider the format of the input, i.e. how are the valua-
tion functions vj...v, presented to the algorithm. In the
most general case representing a valuation may require ex-
ponential size (in m, the number of items). We, on the
other hand, are looking for algorithms that are polynomial
in the relevant parameters, n and m. There are two possi-
ble approaches for obtaining efficient algorithms despite the
exponential size of the input.

The first approach considers the general case, but where
the valuations are presented to the algorithm as “valuation
oracles” — black boxes that can be queried for the valuation
of a set S, returning its valuation v(S). In a mechanism,
this corresponds to allowing bidders to send an arbitrary
representation of the valuation function, as long as the val-
uations of sets can be efficiently computed from it*. The
second approach fixes a representation, and provides allo-
cation algorithms that require polynomial time in the size
of the representation of the valuations in this format. Such
algorithms will generally be as interesting as the strength of
the representation format.

We present our main positive result, in section 5.3, in
the general terms of valuation oracles. Our main negative
result, the NP-completeness of allocation for submodular
valuations, presented in subsection 5.2, holds for a special
case (additive valuations with a budget limit) that has a
simple short representation. Concrete lower bounds for the
valuation oracle representation are derived in [16].

5.1 The Caseof GrossSubstitutes

The case of a combinatorial auction where all valuations
satisfy the gross substitutes property is considered easy.
Since Walrasian equilibria exist in this case [9] (see defi-
nition 7 and theorem 2 above), they can be found and an
optimal allocation results. let us look more closely at the

4Surprisingly, this is not totally trivial — see section 3.6 of
15].



computational process of finding this Walrasian equilibrium.
The following procedure of [9] yields prices and an allocation
that is arbitrarily close to optimal:

1. Initialize all item prices to 0.

2. Repeat the following procedure: compute a preferred
set for each bidder at these prices and increase by
a small amount e the price of all items that are de-
manded by more than one bidder.

3. Stop when each item is demanded by at most one bid-
der, and let the allocation be the preferred sets at these
prices.

This procedure produces an allocation whose distance from
optimal depends only on € and whose running time is polyno-
mial in n,m,e”'. This algorithm is naturally implemented
as a mechanism, in some cases is actually incentive com-
patible, and in the general case can serve as a basis for an
incentive compatible mechanism [1]. We wish to consider
two computational issues here.

The first issue is the fact that this procedure only provides
an approximation (it is actually a “FPAS” — fully polyno-
mial approximation scheme) and not an exact solution. We
observe® that an exact solution can also be computed effi-
ciently using linear programming. A slight difficulty exists
since the natural linear programming formulation of the al-
location problem has an exponential number of variables,
but one can solve it using a separation-based algorithm on
the dual. See [16] for more details.

The second issue to consider is how the valuations are
presented to the algorithm. This procedure requires the
computation of preferred sets. This may be termed as access
to a demand oracle for v — accepting as input a price vector
P and outputting a preferred set S € D(v|p) at these prices.
It turns out that this demand oracle is also exactly what
is needed for finding the exact solution using a separation
based linear programming algorithm. It is not clear how to
obtain such a demand oracle given only a valuation oracle for
the valuations. The proof of theorem 7 actually implies that
there is no general transformation, as computing a preferred
set for an additive valuation with a budget limit is NP-hard.

Open problem: Can an optimal or near-optimal allocation
be found in polynomial time among GS valuations that are
given by valuation oracles?

A special case of interest is when all valuations in the auc-
tion are OXS valuations. If these valuations are given using
the OR of XOR of singletons representation, then the alloca-
tion problem reduces to a matching problem in a bipartite
graph and can thus be computed in polynomial time [21,
3]. We do not know whether an optimal allocation can be
computed efficiently given only valuation oracles even if all
valuations are known to be in OXS.

5.2 NP-hardnessof exactsolution

The problem of finding an optimal allocation in combina-
torial auctions is known [17] to be NP-hard even if bidders
are single-minded, i.e., place only one bid each. Is the prob-
lem any easier if the bidders are assumed to have submodu-
lar valuations? The answer is negative. Finding an optimal

5This observation was independently made by Rakesh
Vohra.

allocation is still an NP-hard problem, even if all valuations
are additive with budget limit. Note that, in such a case,
all players valuations may be succinctly expressed.

THEOREM 7. Finding an optimal allocation in a combi-
natorial auction with two valuations that are additive with o
budget limit is NP-hard.

ProOOF. We will reduce from the well-known NP-complete
problem “Knapsack” [5]: Given a sequence of integers a;...am,
and a desired total ¢, determine whether there exists some
subset S of the integers whose sum is ¢, Eie sai; =t. Given
an input of this form, construct the following two valuations
on m items:

e The first valuation is additive giving the price a; to
each item 4: v1(S) =3 ;g Gi.

e The second valuation is additive with a budget limit
of 2t, and gives the price 2a; to each item i: v2(S) =
2 min(t, ), 5 i)

Fix an allocation of S to valuation 2 and S° to valuation
1 and consider the 3 cases: ), ga; <t, Y ;.ga; =t, and
Yies@ > t. Denote f = > .a;. If Y7, ca; =t then
t4+) cge @i = fand v1(S°)+v2(S) =, cge ai+2t = f+t.
If),csai <tthenvi(S°)+v2(S) = cge@i+2) ,cgai =
FH+Yiesai <f+t. MY ga;>tthen Y, cca;i+t<f,
and v1(5°)+v2(S) = 3, cgc @i +2t < f+t. Thus we see that
the auction has an allocation (S°¢ : S) with value f+1 if the
knapsack problem has a positive answer S, and otherwise
the allocation has a lower value. []

5.3 A 2-approximation

Our main algorithmic result is a 2-approximation algo-
rithm for combinatorial auctions in which all valuations are
submodular. The result does not rely on any specific rep-
resentation of submodular functions: it only assumes that
one can effectively compute the values of singletons and the
marginal valuations of a given valuation.

Input: vi,...,v, - submodular valuations, given as black
boxes.

Output: An allocation (partition of the items) Si,...,S,
which is a 2-approximation to the optimal allocation
Algorithm

1. Set51252=...25n<—®.

2. For x = 1...m do:

(a) Let j be the bidder with highest value of v; (|S;).
(b) Allocate z to bidder j, i.e. S; + S; U {z}.

The algorithm obviously requires only a polynomial num-
ber of operations and calls to valuation oracles for v; since
v (2]S;5) = v;(S; U{z}) —v;(5;).

THEOREM 8. The greedy algorithm above provides a 2-
approzimation to the optimal one.

PROOF. Let Q be the original problem and define Q' to
be the problem on the m — 1 remaining items after item 1 is
removed: i.e., item 1 is unavailable and v; is replaced by v';
with v';(S) = v(S|{1}) = v(SU{1}) —v({1}), where j is the



player to which item 1 was allocated. All other valuations v;,
i # j are unchanged. Notice that the algorithm above may
be viewed as first allocating item 1 to j and then allocating
the other elements using a recursive call on Q’.

Let us denote by ALG(Q) the value of the allocation pro-
duced by this algorithm, and by OPT(Q) the value of the
optimal allocation. Let p = v;({1}). By the definition of @',
it is clear that ALG(Q) = ALG(Q') + p. We will now show
that OPT(Q) < OPT(Q') + 2p. Let S1,..., S, be the allo-
cation optimal for ), and assume that ¢ € S, i.e., item 1 is
allocated to bidder k by the algorithm above. Let S’ be the
allocation of items 2,...,m that is similar to S. This is a
possible solution to Q’. Let us compute its value, by compar-
ing it to OPT(Q). All players except k get the same alloca-
tion and all players except j have the same valuation. With-
out loss of generality, assume k # j. Player k looses at most
v ({1}) since vy is submodular. But v, ({1}) <v;({1}) =p
and player k looses at most p. Player j looses at most p since,
by monotonicity of v;, v;(S;) = v;(S; U {1}) —v;({1}) >
vj(S;)—p. Therefore OPT(Q') > OPT(Q) — 2 p. The proof
is concluded by induction on @’ since, by lemma 1, Q' also
consists of submodular valuations:

OPT(Q) <OPT(Q)+2p<

2ALG(Q") +2p =2 ALG(Q).
|

Looking at the proof one may see that many variants of
the above algorithm also produce a 2-approximation. In
particular the items x may be enumerated in any order in the
outer loop. One may think of several heuristics for choosing
the next . For example: take the item z that maximizes the
difference between the first and second values of v;(z|S;).

It is easy to see that the algorithm above may provide only
a 2-approximation even for submodular valuations: take
vi({1}) = vi({2}) = ©1({1,2}) = v2({1}) = v2({1,2}) =1
and v2({2}) = 0.

Open Problem: Does any polynomial algorithm provide
a better approximation ratio?

The results of [16] show that achieving an approximation
ratio of better than 1+ 1/m requires an exponential number
of queries to the valuation oracles.

5.4 Strategic considerations

The approximation algorithm presented above may be
viewed as a simple sequence of auctions of the single items,
one by one. Simplistic bidders whose strategies do not take
the future into account should indeed value an item i at its
current marginal value for the bidder. Thus if each auc-
tion in this sequence is designed to be incentive compat-
ible (e.g. a second price auction) and if all bidders fol-
low this simplistic bidding strategy (myopic bidders) then
the desired 2-approximate allocation would be obtained. In
this subsection we ask whether there is a payment scheme
to be used with this allocation algorithm that guarantees
incentive-compatibility of the complete auction, i.e. that
will reach this allocation when the bidders are rational and
not myopic. The answer is negative.

An example will show that no payment scheme can make
the greedy allocation scheme for sub-modular combinatorial
auctions a truthful mechanism. In this example, the greedy

scheme allocates the most expensive items first. We do not
know whether the result may be generalized to any greedy
scheme. The spirit of the proof is similar to that of Section
12 in [11].

ExXAMPLE 6. Two goods: a and b. Two sub-modular play-
ers: Red and Green. Red declares 10 for a, 6 for b and 11
for the set {a,b}. Notice this is a sub-modular declaration,
but this is not crucial. Green has two personalities:

o Greenl declares 11 for a, 10 for b and 18 for the set
{a, b}.

o Green2 declares 9 for a, 10 for b and 19 for the set
{a, b}.

Notice both are sub-modular declarations.

The allocation between Red and Greenl goes in the follow-
ing way: a is allocated first to Greenl (Green’s 11 vs. Red’s
10) and then b is allocated to Greenl (Green’s 18-11 vs.
Red’s 6). Notice that if b had been allocated first Green
would have obtained b but not a. Greenl is therefore allo-
cated the set {a,b} and pays a sum p. Notice that, since all
declarations are fixed, p is a number; it does not depend on
anything. The allocation between Red and Green2 goes a
different way: any ordering gives a to Red and b to Green.
Green2 pays ¢ (just a number).

If the mechanism is truthful and Green is Greenl, it must
be the case that Green cannot gain by disguising himself
as Green2: 18 —p > 10 —q. If the mechanism is truthful
and Green is Green2, it must be the case that Green cannot
gain by disguising himself as Greenl: 10 —¢>19 —p. A
contradiction.

6. FALSE-NAME BIDS

We now turn to consider a Generalized Vickrey Auction
among submodular players. In [18], a serious problem with
Generalized Vickrey Auctions has been put in evidence: a
player may benefit by sending two straw players to bid on
his behalf. The reader should consult [18, 25, 26, 27] on
this problem. We shall show that no such problem exists if
the combined valuation of all other players is submodular.
We then discuss this condition and show that the result is
sharp.

THEOREM 9. A player cannot benefit from placing false
name bids in a combinatorial auction using the VCG rules,
whenever the combined valuation of all other players is sub-
modular.

ProOF. We shall show that two players, one of them bid-
ding a valuation v; and the other a valuation vy will pay no
less than a single player bidding v; V v, as long as the com-
bined valuation function of the other players is submodular.

Consider the set of bids v1, v2, u1, . .., U, and let S1 be the
set allocated to player 1, S> be the set allocated to player 2,
and T be the set allocated to all the u; bidders together: thus
the total set of goods is TU S1 U S2. Let u = u1 V... V Up.

The VCG rules (GVA auction) specify that player 1 will
pay:

(wVv2)(TUS1US2) — (uVwu)(TUS2).

Since the optimal allocation of 7"U S> among the valua-
tions w and v2 allocates T' to w and S2 to v2, we have that



(uVv2)(TUS2) = u(T) + v2(S2). By considering the allo-
cation of S» to v2 and T'U S; to u, we can bound

(uVu)(TUS1US2) > u(TUS1) + v (T).

We thus get that player 1 pays at least w(T U S1) — u(T).
Similarly player 2 will pay at least (7' U S2) — u(T).
Consider, on the other hand what happens when instead
of v1 and v2 a single v1 V v2 bid is submitted. The allocation
to this bidder is exactly S1 + S2. The VCG payment of this
player will be (T U S1 US2) — u(T). The submodularity of
u directly implies that this is less than or equal to the sum
of the payments of players 1 and 2 in the previous case. [l

COROLLARY 3. A player cannot benefit from placing false
name bids in a combinatorial auction using the VCG rules,
where all valuations satisfy the gross substitutes property.

PROOF. According to theorem 5, the combined valuation
(OR) of GS valuations is GS and thus is also submodu-
lar. O

This in particular implies the result of [18] showing that
in a Vickrey multi-unit auction of identical items in which
all players have a downward sloping valuations, no player
could benefit from placing false-name bids.

Could Theorem 9 assume, instead, that all players have
a submodular valuation? The following example shows that
this is not the case. The following example builds on Ex-
ample 5 and presents an auction in which each player is
submodular, but the combined valuation of the opponents
is not and one can benefit from false name bids.

EXAMPLE 7. Red has budget limit 6 and values: red(a) =

red(c) = 3, red(b) = 5. Blue has unbounded budget: blue(a) =1,

blue(b) = 2 blue(c) = 0. Let v be the combined valuation,
v =redV blue. We have that v(abc) = 8, v(ab) = v(ac) =

v(bc) = 6. Green has unbounded budget: green(a) = 2, green(b) =

0, green(c) = 5.

If Green acts as himself, he gets {a,c} (utility 7) and Red
gets {b} (utility 5) for a total of 12, unbeatable. Green pays:
8-5 = 3.

But, assume that Green acts under two different identities
G1(a) = 2 and G2(c) = 5. Obviously G1 gets {a} and G2
gets {c}. G1 pays: 11-10=1. G2 pays: 8-7=1. On the whole
G1 and G2 together pay only 2 which is strictly less than 3.

7. BOUNDED COMPLEMENT ARITY

This section generalizes some of our results to classes of
valuations outside CF. The definitions and results of Sec-
tion 2.4 can be generalized to deal with valuations that
exhibit a limited amount of complementarity. We assume
a > 1 is a real number.

DEFINITION 13. A waluation v is said to ezhibit a-bounded
complementarities if, for any set A and item x:

(AU {z}) < v(A) + a v({z}).
DEFINITION 14. A wvaluation v is said to be a-modular if

and only if for every subset W of items, the valuation vw
erhibits a-bounded complementarities.

The proofs of the following results are similar to those of
Section 2.4.

PROPOSITION 3. A waluation v is a-modular if and only
if one of the following equivalent propositions holds.

e For any x € X and S,T C X, such that SCT and
z & T: vs(z) > avr(zx).

e Forany S, T,V C X, such that S CT: vs(V) > avr(V).

e Forany A,BC X: v(A)+av(B) >v(AUB)+av(ANB).

The 2-approximation result of Section 5 generalizes to a
1 + a-approximation.

THEOREM 10. The greedy algorithm provides a (1 + a)
approzimation to the optimal one if all valuations are a-
submodular.
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