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Abstract

We study the inherent limitations of natural widely-used classes of ascending combinatorial auctions.
Specifically, we show that ascending combinatorial auctions that do not use both non-linear prices and
personalized prices cannot achieve social efficiency with general bidder valuations. We also show that the
loss of efficiency can be severe and that only a diminishing fraction of the social welfare may be captured.
This justifies the added complexity in the auctions suggested by, e.g., Parkes and Ungar (2000) [29] and
Ausubel and Milgrom (2002) [2].
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1. Introduction

Combinatorial auctions are a general name given to auctions in which multiple heteroge-
neous items are concurrently sold and in which bidders may place bids on combinations of items
rather than just on single items. Such combinatorial bidding is desired whenever items sold are
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complements or substitutes of each other, at least for some of the bidders. In such cases, the
combinatorial bidding allows the bidders to better express their complex preferences, allowing
the auction to achieve higher social welfare, and often (but not necessarily) higher revenue as
well. Combinatorial auctions have been used in many settings such as truckload transportation
(see [20,34]), airport slot allocation (see [30,12]), industrial procurement (see [6]), and, promi-
nently, spectrum auctions (see [13]).1 Additionally, combinatorial auctions serve as a common
abstraction for many resource allocation problems in decentralized computerized systems such
as the Internet, and may serve as a central building block of future electronic commerce systems.

The design of combinatorial auctions faces multiple types of complexities: informational,
cognitive, computational, and strategic. Indeed, the design of combinatorial auctions is still part
art and part science. While many aspects have been analyzed mathematically or empirically,
many other aspects remain an art form. In many cases the design is ad-hoc for a given appli-
cation, and it is usually not clear how well the existing design performs relative to the other
non-implemented alternatives. Indeed, when the US Federal Communications Commission held
a series of workshops addressing the intended design of their multi-billion dollar combinatorial
auctions for radio spectrum,2 there has been very little agreement among the participants. We
refer the reader to the recent books by Cramton et al. [10] and Milgrom [24] that elaborate on
various aspects, applications and suggestions for combinatorial auctions.

This paper concerns a large class of combinatorial auction designs which contains the vast
majority of implemented or suggested ones: ascending auctions. In this class of auctions, the
auctioneer publishes prices, initially set to zero (or some other minimum prices), and the bidders
repeatedly respond to the current prices by bidding on their most desired bundle of goods under
the current prices. The auctioneer then repeatedly updates the prices by increasing some of them
in some manner, until a level of prices is reached where the auctioneer can declare an allocation.
(Intuitively, prices related to over-demanded items are increased until the demand equals supply.)

Various definitions have been given in the literature to the term ascending auction. In this
paper we use a minimalist definition that does not consider all aspects of the auction, and the
strategic behavior of the bidders in particular. We would like to emphasize that this minimalist
definition actually works for us and strengthens our results, which are mainly hardness results.
These results hold for any such auction, regardless of the equilibrium concept or the rationality
level of the bidders. In this approach, we do not analyze a game in the game-theoretic meaning,
but actually treat combinatorial auctions as a value-discovery process. Nevertheless, our results
have immediate implications on the applicability of ascending-price dynamics in game-theoretic
models of combinatorial auctions (dealing with the incentives of the bidders are one central
reason that ascending auctions are so widely used).

There are several reasons for the popularity of ascending auctions, including their intuitive-
ness, the fact that private information need only be partially revealed, that they increase the trust
in the auctioneer as bidders see the prices gradually emerging, that it is clear that they will ter-
minate and that they may sometimes reduce the winner’s curse and increase the seller’s revenue
(see [25]). Another major advantage of ascending auctions is that they afford a price-discovery
process in markets where bidders do not know their exact valuations for every possible bundle,
and determining these values is costly in practice. Ascending auctions, however, guide the at-
tention of the bidders to bundles that are relevant to the allocation determination. Although their

1 More details on spectrum auctions in the US can be found in the web site of the Federal Communications Commission
(FCC) home page, http://www.fcc.gov.

2 See the Conferences page in http://wireless.fcc.gov/auctions.
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equilibrium analysis is not always clear, ascending auctions are usually preferred over sealed-
bid VCG auctions since the latter auctions suffer from several severe weaknesses, such as low
seller revenue and vulnerability to collusion and false-name bidding. A survey by Cramton [11]
describes in more details the advantages and disadvantages of ascending auctions, and papers
by Rothkopf et al. [32] and by Ausubel and Milgrom [5] discuss the practical flaws of VCG
auctions.

Ascending auctions may vary from each other in the bidding rules, in the price update scheme,
in the termination condition, etc. The most notable difference is in the types of prices used. Some
auctions attach a price to each item, and the price of each bundle of items is the sum of the item
prices. Such auctions are termed item-price auctions or linear-price auctions. A more general
class of auctions maintains a separate arbitrary price for each bundle of items. These are called
bundle-price auctions or non-linear price auctions. Some auctions present the same set of prices
to all bidders – these are called anonymous-price auctions. Others maintain a separate set of
prices for each bidder – these are called personalized price auctions (or non-anonymous price
auctions). It is clear that item-price auctions are preferable to bundle-price ones in terms of sim-
plicity, and similarly that anonymous-price ones are simpler than personalized-prices ones. This
simplicity is important in many respects, including the cognitive, computational, and communi-
cation burden placed on the bidders and on the auctioneer. In particular, such auctions tend to be
simpler to bid on, will run faster, and will require less communication and computation and thus
will be feasible for a larger number of items. The question is really whether the added expressive-
ness of the more complex types of auctions offers benefits that overcome the cost in complexity.
Indeed, presentations at the 2003 conference of the US Federal Communications Commission
reveal an interesting debate along these lines between the suggestions of David Porter, Stephen
Rassenti and Vernon Smith (on the simplicity side) and of Larry Ausubel, Peter Cramton and
Paul Milgrom (on the complexity side).

1.1. Ascending auctions and competitive equilibrium prices

Most of the literature on iterative combinatorial auctions centered on the existence of compet-
itive equilibria. It is known that both bundle prices and non-anonymous prices are required for
guaranteeing the existence of such competitive equilibria, see, e.g., [8,22,33]. Otherwise, strict
restriction on the preferences are necessary for obtaining competitive equilibria. In particular,
competitive equilibria with item prices exist when the bidders have substitutes valuations, see
Kelso and Crawford [19], and anonymous bundle-price competitive equilibria exist when the
bidders have complementarities, i.e., when all bidders have super-additive valuations,3 see the
work of Parkes [28]. However, in most settings one would not expect such homogeneity of the
preferences of the bidders. A bidder may consider some of the items as substitutes and some as
complements, or some bidders may have substitute valuations and the preferences of the other
may possess complementarities. In these cases, a competitive equilibria typically do not exist,
but ascending auction dynamics may still be desired. This paper analyzes auctions that run in
environments where competitive equilibria do not exist, and measures whether such auctions can
guarantee efficiency, or approximate efficiency. We consider a general model where the decisions
can be made using all the information that was collected during the course of the auction and
not only based on demand at the final price level.

3 A valuation v is super-additive if for every two disjoint bundles S,T we have that w(S) + w(T ) � w(S ∪ T ).
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Consider, for example, one of the most successful family of combinatorial auctions – Simulta-
neous Ascending Auctions (SAA). These auctions have been running by the US FCC beginning
in 1994, and they have been adopted for dozens of spectrum auctions worldwide. They were pro-
posed to the FCC by Paul Milgrom, Robert Wilson and Preston McAfee and they are a natural
extension of “Deferred-Acceptance Mechanisms” from the literature on matching (see the survey
[31]). One of the main reasons for their success is their simplicity: all items are sold simultane-
ously, and the bidders can bid on any item; the auction increases the price of over-demanded items
until every item is demanded by at most one bidder. SAA were theoretically analyzed in the work
of Kelso and Crawford [19], Demange et al. [15], Gul and Stacchetti [16] and Milgrom [22]. The
basic theorem shows that if all bidders have (gross) substitutes valuations,4 then this converges
to a competitive (Walrasian) equilibrium and thus leads to social efficiency. The restriction to
having (gross) substitutes valuations is known to be critical; for example, [16] showed that for
any bidder whose preferences fail the substitutes condition we can add a set of unit-demand bid-
ders such that the resulting economy has no Walrasian equilibrium. However, empirical results
by Ausubel et al. [4] show that in the US spectrum market there are clear evidences that bidders
have synergies (or complementarities) for neighboring licenses, proving that the substitutes con-
dition does not hold. Therefore, Simultaneous Ascending Auctions are not guaranteed to end up
in any sort of competitive equilibrium in the FCC auctions. Our work studies whether such auc-
tions and their variants can be efficient, or approximately efficient, despite the lack of competitive
equilibria.

Another family of ascending auctions that should be mentioned in this context was introduced
in the work of Parkes and Ungar [29] and Ausubel and Milgrom [2]. These auctions always end
up with a socially-efficient allocation and use personalized bundle prices. The main idea here is
that the auctioneer computes, at each stage, an optimal tentative allocation, and then losers in
this tentative allocation are allowed to increase their bids. The basic theorem states that when
no loser wants to increase his bid, then an optimal allocation has been reached. This holds for
arbitrary bidder valuations.

1.2. Our contribution

The fundamental question that we address is whether the added complexities of bundle prices
and of personalized prices are indeed necessary for achieving efficient results by ascending-price
auctions. We present a strong affirmative answer on both counts. We prove that no ascending
item price auction (using anonymous or personalized prices) can always reach a socially-efficient
allocation among arbitrary bidder valuations. Similarly, we prove that no ascending anonymous-
price auction (using either item prices or bundle prices) can always reach the socially optimal
allocation. Our basic theorems are proved by analyzing two very simple scenarios in which we
show that the appropriate type of auction can simply not gather sufficient information from the
bidders.

We then prove several stronger variants of our theorems showing that our impossibility results
are very robust is several senses. We show that not only is it impossible for an ascending item-
price auction to obtain the social optimum, but even if we allow multiple, sub-exponentially
many, “ascending paths” (e.g., as used in [3]), then the impossibility remains. We also show
that the loss of welfare is extreme both for item price auctions (even non-anonymous) and for

4 See formal definition in Definition 7 in Appendix B.
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anonymous-price auctions (even with bundle prices), and that only a vanishingly small fraction
of the social welfare may be captured.5 This fact is somewhat surprising, especially for auctions
that use anonymous bundle prices that seem to have a substantial expression power. This last
pair of results is proved using a sophisticated combinatorial construction of valuations that are
“hard to elicit” by these restricted types. We also show that our examples are not “unusual” by
showing that for any set of substitutes bidders, it is possible to add a single extra bidder making
it impossible to find the social optimum by item-price auctions. Recall that in environments with
substitutes preferences, item-price Simultaneous Ascending Auctions are known to be able to de-
termine the efficient allocation. Actually, our results contribute to the notion, originate in [1,19],
that item-price ascending auction essentially work only with bidder valuations that satisfy the
(gross) substitutes property. Our results are stronger than the existing results, as they allow using
all the information that is elicited in the course of the auction, study multiple ascending prices
paths, and analyze how the rate in which inefficiency intensify.

All of our results are in a very general setting: they do not rely on any incentive constraints and
hold even if bidders simply bid “as told”. As long as their response at every stage is just a function
of their desired bundles at the current prices, or any subset of those bundles, the impossibilities
hold. In particular the impossibilities do not rely on any inter-dependencies between the bidders’
valuations and hold for simple private values. Our impossibility results do not assume that any
particular type of competitive equilibrium will be achieved upon termination, and hold whether or
not any competitive equilibrium is achieved – they allow taking into account the whole amount of
information obtained during the auction. The results do not rely on any computational limitations
or limitations on the amount of communication that is transmitted, and hold even if unbounded
(and unrealistic) computation and communication capabilities are available to the auctioneer and
bidders. Our analysis works for all price increments, even infinitesimal.

In our analysis we use a worst-case approach, approach which is widely used in computer
science and related fields. Worst-case hardness often implies that the problem at hand admits
structural difficulties which would be hard to solve in practice. Also, we use this approach in the
absence of standard Bayesian models for combinatorial auctions that models the complexity of
the preferences of the bidders.

The bottom line of our paper is a formal analysis showing that simple combinatorial auction
schemes that use only item prices or that use only anonymous prices do have severe informa-
tional limitations. This will not allow them to match the performance guarantees of the more
complex schemes. The exact tradeoff between these limitations and the significant costs of the
more complex scheme remains part of the “art” of combinatorial auction construction.

1.3. More related work

While most previous work on combinatorial auctions has actually studied specific types of
auctions, a few other impossibility results have been shown that should be compared to ours.
First, are the known theorems (see, e.g., [8,33,19,7,23,14]) that for general, non-substitutes val-
uations, certain types of competitive equilibria cannot be found without personalized bundle
prices. Note that item-price auctions with non-ascending prices can obtain the social optimum,
despite the lack of item-price competitive equilibrium for general valuations [9]. Other related
results were proved by Nisan and Segal [27] showing that exponential communication is required

5 Formally, we show that no better than a 4/
√

m fraction of welfare may be captured by each auction type, where m is
the number of items.
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by any type of combinatorial auction for obtaining the optimum. These results are quantitative
and are not delicate enough to qualitatively distinguish between different types of auctions, as we
do here. Additionally, such lower bounds on the amount of the transmitted communication can-
not be applied in our setting, as we show in the paper’s body that an amount of information that is
exponentially greater than the number of items can be elicited by ascending auctions, even with
item prices. In other words, our results cannot be concluded from any existing computational or
information-theoretic hardness results.

Probably the closest result to ours, in spirit, is by Gul and Stacchetti [17] who showed that
ascending anonymous item-price auctions cannot come up with VCG prices even for (gross)-
substitutes valuations, despite the fact that the social optimum can be achieved in such cases. In
contrast, our impossibility is for just finding the optimum, or even a reasonable approximation,
rather than calculating a particular set of prices. Additionally, in contrast to our results, the im-
possibility in [17] is very delicate, and stops holding if multiple ascending rounds are allowed, as
in [3]. Another close result is the recent paper by Mishra and Parkes [26], who presented a class
of efficient bundle-price non-anonymous ascending auctions that compute VCG payments. Their
auctions terminate with a special competitive equilibrium prices (they call Universal Competitive
Equilibrium) from which the VCG payments can be calculated.

The structure of the rest of the paper is as follows: in Section 2 we formally present our model
and definitions. Section 3 gives the impossibility results for item-price auctions, while Section 4
gives the impossibility results for anonymous-price auctions. In the body of the paper we provide
the full (and simple) proofs of the basic impossibility theorems; the proofs of the stronger variants
are postponed to the appendix. Appendix A contains some definition to be used in proofs that
appear later in Appendices B and C.

2. The model

A seller wishes to sell a set M of m heterogeneous indivisible items to a set of n bidders. Each
bidder i has a valuation function vi : 2M → R+ that attaches a non-negative real value vi(S)

for any bundle S ⊆ M . We assume two conventional assumptions on the preferences: (i) Free
disposal (monotonicity), i.e., if S ⊂ T then vi(S) � vi(T ). (ii) Normalization, i.e., vi(∅) = 0 for
every bidder i.

The goal of the auctioneer is to find an efficient allocation of the items, that is, to find a
partition S1, . . . , Sn of the items that maximizes the social welfare,

∑n
i=1 vi(Si), over all possible

partitions. We do not study revenue maximization in this paper.
In this work, we concentrate on iterative auctions where, at each stage, the auctioneer pub-

lishes a set of prices p for the bundles, and each bidder responds with her demand given the pub-
lished prices, that is, a bundle S that maximizes her (quasilinear) utility ui(S,p) = vi(S)−p(S),
where p(S) denotes the price of S under the price level p.6 The stages of the auction are ordered
by time, and at each stage, a single set of prices is presented to each bidder. The prices can be
presented in different ways. For example, the seller can explicitly publish a price for each bundle,
or use a succinct representation for the prices (e.g., by only publishing item prices). We touch on
several common representations below.

6 All our results hold for any consistent tie-breaking rule by the bidders or by the auctioneer. Moreover, our result will
also hold if every bidder i reports, at each stage, all the bundles that maximize her utility, i.e., her whole demand set
{S ⊆ M | vi (S) − p(S) � vi (T ) − p(T ) for every T ⊆ M}. An equivalent model allows the bidders to raise their “bids”
on their desired bundles.
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The specific auction is determined by the method that the auctioneer determines which prices
will be presented to the bidders at each stage. The seller can determine the prices adaptively,
i.e., as a function of the history of the published prices and responses. The seller can also use
information gained from the responses of one bidder for determining the future prices for other
bidders. At the end of the auction, the auctioneer analyzes the information received during the
auction, and determines the final allocation accordingly. That is, the data that is available to the
auctioneer at the end of the auction is exactly {(pt

i , S
t
i ) | for every bidder i and every stage t},

where St
i denotes the demand of bidder i at stage t under the price vector pt

i . To strengthen our
results, and as opposed to most of the existing literature, we consider a general model where
the allocation can be determined by all the information gathered during the auction, and not only
according the demands at the final stage of the auction. Note that, to strengthen our results, we do
not assume any limitations on the power of the participants, except for information limitations.
In particular, the auctioneer may be computationally unbounded (including, e.g., the ability to
solve hard problems classified as “NP-hard” in the computer-science terminology).

This paper centers on auctions with non-decreasing prices:

Definition 1. A pricing scheme p in a combinatorial auction for a set of items M is a function
p : 2M → R+.

In an ascending auction, each bidder responds with his demand under every price level pre-
sented to him, and prices presented to the same bidder can only increase in time.

Definition 2 (Ascending auctions). Consider auctions that present a series of pricing schemes to
each bidder, and we denote the pricing schemes presented to bidder i at each stage, sorted by
time, by (pi

1,p
i
2, . . . , p

i
t , . . .). Such an auction is an ascending auction if for every player i and

for all sets S ⊆ M , if t ′ > t we have pi
t ′(S) � pi

t (S).

Two highly important factors in the design of ascending combinatorial auctions concern the
representation of the prices. First, the seller might choose to present only prices for the individual
items, or, with greater expressiveness, publish a price per every possible bundle. Another pricing
decision is whether to present personalized prices for each bidder, or present every price level to
all bidders.

Definition 3 (Item/bundle prices). An auction uses item prices (or linear prices) if, at each stage,
the auctioneer presents a pricing scheme p such that there exist numbers p1, . . . , pm, and the
price of each bundle S ⊆ M is additive: p(S) = ∑

j∈S pj . We say that an auction uses bundle
prices (or non-linear prices) if each bundle S may have a different price p(S) (which is not
necessarily equal to the sum of the prices of the items in S).

Definition 4 (Anonymous/non-anonymous prices). An auction uses anonymous prices, if the
prices seen by the bidders at any stage in the auction are the same, i.e., whenever a pricing
scheme is presented to some bidder, the same pricing scheme is also presented to all other bid-
ders. In auctions with non-anonymous ( personalized) prices, each bidder i is presented with a
personalized series of pricing schemes denoted by pi .7

7 Note that a non-anonymous auction can clearly be simulated by n parallel anonymous auctions.
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v(ab) v(a) v(b)

Bidder 1 2 α ∈ (0,1) β ∈ (0,1)

Bidder 2 2 2 2

Fig. 1. This example shows that no item-price ascending auction can always determine the optimal allocation: no such
auction can tell whether α is greater than β or vice versa.

Observe that a pricing scheme with item prices can be simply presented by the item prices
p1, . . . , pm. With bundle prices, however, the number of distinct prices presented by the seller
at each stage may be exponentially greater than the number of items (a price per every subset
of items). Consequently, such auctions may be practically infeasible when selling more than few
items.

3. Item-price ascending auctions

Before describing their limitations, we would like to demonstrate that item-price ascending
auctions are not trivial in their power. The most prominent example is their ability to end up
with a Walrasian equilibrium (which is, in particular, efficient) for environments with (gross)
substitutes valuations, see [19,16].

We would also like to point out that despite using a linear number of item prices, ascending
auctions may elicit a very large amount of information from the bidders. In particular, if small
enough increments are allowed, such auctions can determine the optimal allocation in cases
where this task requires exchanging an amount of information which exceeds the number of
items by an exponential factor. This is shown in Example 1 in Appendix B. Example 1 actually
shows that our results are incomparable with the hardness results in [27], as item-price ascending
auctions in our model can elicit an exponential amount of information.

Without restricting the prices to be ascending, analyzing the demand of the bidders under
different price levels enables the auctioneer to easily determine the efficient allocation in any
combinatorial auction (see [9]). However, as we show in this section, this is no longer true when
the prices are restricted to be ascending, even for settings with only two items and two bidders.
After proving this negative result, we strengthen it in several directions: in Theorem 1a, we
show that the number of ascending trajectories of prices that are required for finding the efficient
allocation is exponentially larger than the number of items. Then, in Theorem 1b, we show
that a single item-price ascending auction can only guarantee a small fraction of the optimal
welfare, a fraction that diminishes with the number of items. Finally, Theorem 1c indicates that
inefficiencies may rise for every profile of bidders with substitutes preferences following an
addition of a single bidder.

Our basic hardness result is given using the combinatorial auction setting in Fig. 1. In this
example, for determining the efficient allocation, the auctioneer has to know which one of the
two singleton bundles has a greater value for Bidder 1. However, an ascending auction can only
elicit information about one of the singletons, so the efficient outcome cannot be obtained. The
basic idea is that in order to gain any information about one of the singletons, the price of the
other item must be increased significantly, otherwise the bidder will continue demanding the
whole bundle.

This theorem is easy, but we will prove it in details since it delivers the main intuition behind
the more complicated proofs later in the paper.
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Theorem 1. No item-price ascending auction can determine the efficient allocation for all pro-
files of bidder valuations.

Proof. Consider the two valuations described in Fig. 1. All the values are known to the auc-
tioneer, except for the values α and β (between (0,1)) that Bidder 1 attaches to the singletons
a and b, respectively. For such preferences, the only way to achieve a welfare greater than 2 is
to allocate one singleton to Bidder 1 and the other to Bidder 2. Therefore, the identity of the
efficient allocation depends on which of the two singletons gains a greater value for Bidder 1.
We prove that a single ascending trajectory of item prices can reveal information only on one of
these values. We first claim that no information is elicited as long as both prices are low.

Claim 1. As long as pa and pb are both below 1, Bidder 1 demands the whole bundle {ab}.

Proof. For every price level p in which both prices are smaller than 1, Bidder 1’s utility from the
bundle ab will be strictly greater than the utility from either a or b separately. For example, we
show that u1(ab,p) > u1(a,p) (the same statement for the singleton b can be similarly shown):

u1(ab,p) = 2 − (pa + pb) (3.1)

= 1 − pa + 1 − pb (3.2)

> v1(a) − pa + 1 − pb (3.3)

> u1(a,p). (3.4)

Where Eq. (3.1) is due to the linearity of the prices, Eq. (3.3) holds since v1(a) is smaller than 1,
and Eq. (3.4) follows from the assumption that pb is smaller than 1. �

Thus, in order to gain any information about the unknown values α and β , the auctioneer must
arbitrarily (i.e., without any new information) choose one of the items (w.l.o.g., a) and increase
its price to be greater than 1. But then, since the prices are ascending, the singleton a will not be
demanded by Bidder 1 throughout the auction, thus no information at all will be gained about α.
Hence, the auctioneer will not be able to identify the efficient allocation.

Since the valuation of one of the bidders is fully known in advance to the auctioneer, the
theorem holds even for non-anonymous item-price ascending auctions. �

The proof of Theorem 1 describes a profile of preferences for which no ascending trajectory
of prices can elicit enough information for determining the optimal allocation. This would hold
even if the auctioneer had some exogenous information (or a good guess) telling him what is the
“right” way to increase the prices.8 Similar arguments show that this hardness result also holds
for the similar family of descending-price auctions (otherwise, the “reversed” price trajectory
would be an ascending auction that finds the optimal allocation).

Theorem 1 is proved as a worst-case result, but it also holds for a wide range of probability
distributions. For example, for any distribution of α and β between [0,1], and also when we draw
any number of additional bidders from such distributions. It is easy to see that for the uniform
distribution (on α and β) the optimal ascending auction with two bidders will raise the price

8 Protocols that allow the usage of an exogenous data are often named “non-deterministic” protocols in the computer-
science literature.
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of one of the items (say, a) until v1(b) is determined, and then allocate b to Bidder 1 if and
only if v1(b) � 1/2. Although the expected inefficiency of such an auction is relatively low (less
than 2 percent), we expect the inefficiency to get worse as the number of items increase and the
informational difficulty of the seller becomes more severe. Later, in Theorem 1b, we will show
an extreme scenario where this inefficiency is very significant.

While Theorem 1 proved that a single ascending trajectory of prices cannot guarantee finding
the efficient allocation, it does not rule out the possibility that a small number of trajectories will
achieve this goal. For instance, a similar question was studied regarding the number of ascending
auctions that are required for calculating VCG prices for bidders with substitutes preferences:
A negative result by Gul and Stacchetti [17] showed that the VCG payments for substitutes val-
uations cannot be found by a single ascending-price trajectory; However, Ausubel [3] presented
an (n + 1)-trajectory ascending auction that achieved this task. Below, we extend the result pre-
sented in Theorem 1 and show that for guaranteeing that an efficient allocation will be discovered,
for all profiles of valuations, an exponential number (in the number of items) of ascending-price
trajectories is required.

We define a k-trajectory ascending auction as an auction in which the price vectors presented
to the bidders at the different stages of the auction can be partitioned into up to k sets, ordered ac-
cording to the time they were published, where the prices published within each set only increase
in time (for a formal definition, see Definition 8 in Appendix B). Note that we use a general def-
inition; It allows the trajectories to run in parallel or sequentially, and to use information elicited
in some trajectories for determining the future queries in other trajectories.

The theorem is proved by presenting preferences for two bidders, where the efficient allo-
cation depends on the identity of a particular m

2 -sized bundle that gains one of the bidders a
high value. For eliciting information about the value of some m

2 -sized bundle S, the prices of all
the items that are not in S should be very high, otherwise a larger bundle would be demanded.
Therefore, every ascending auction can only reveal information on a single m

2 -sized bundle. Since
an exponential number of such bundles exists, the theorem follows. The proof can be found in
Appendix B.

Theorem 1a. The number of ascending item-price trajectories needed for revealing the efficient
allocation, for every profile of bidder valuations, must be exponentially greater than the number
of items.

Implicit in the proof of Theorem 1a is that an exponential number of ascending item-price
trajectories is necessary for guaranteeing more than a 2

3 -fraction of the optimal welfare. Our
next result presents a much stronger bound on the rate in which the welfare in any single-
trajectory ascending auction diminishes as the number of items and bidders grow. Formally, no
item-price ascending auction can guarantee a fraction of the efficient welfare that is greater than
max{ 4

n
, 4√

m
}. We emphasize that this result even holds for non-anonymous item-price ascending

auctions, that is, auctions with a personalized ascending trajectory of prices per each bidder.
A sketch of the proof: we create a profile of valuations for the n bidders with certain com-

binatorial properties that make them hard to be elicited by any ascending auction. This is done
by defining a set of bundles that form a special combinatorial structure: we divide the items to
several partitions; Every two bundles from different partitions intersect (“mutually-intersecting
partitions”), and therefore achieving the optimal allocation is possible only by partitioning the
items according to one of these partitions. The values that each bidder attaches for these bundles
are unknown to the auctioneer and are either 0 or 1. To gain any information about one of these
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bundles, the prices of every bundle from all the other partitions must exceed 1 (since the bidders
have a value of 2 for some larger bundles). It follows that the bundles from the other partitions
will not be demanded any more during the ascending-price auction. This way, the auctioneer can
elicit information about bundles from at most one partition for each bidder. This is shown to be
insufficient for achieving a reasonable approximation for the social welfare. The proof appears
in Appendix B.

Theorem 1b. No item-price ascending auction (even with non-anonymous prices) can guarantee
better than a fraction of max{ 4

n
, 4√

m
} of the efficient welfare for all profiles of bidder valuations.

Our final result regarding item-price ascending auctions illustrates that inefficiencies may oc-
cur even for preferences that are slightly away from having the substitutes property. Substitutes
preferences are, informally, preferences with the property that when a bidder demands a certain
bundle, and some of the prices in this bundle increase, then the bidder will still demand the other
items in this bundle (an exact definition is presented in Definition 7 in Appendix B). As men-
tioned, it is well known that item-price ascending auctions can determine the efficient allocation
for substitutes valuations. We show that for every profile of bidders with substitutes valuations,
the efficient outcome cannot be found after an addition of a single player. The proof takes ad-
vantage of the fact that the aggregate demand of n substitutes valuations also has the substitutes
property. Therefore, the marginal contributions of bundles to the welfare of the n bidders must
exhibit complementarities. We construct a valuation for the new player that obtains a greater
value than the marginal values for some of the bundles. Due to the presence of complementari-
ties, we argue that an ascending auction will not be able to determine which bundle obtains the
highest additional gain.

This result applies for every profile of substitutes valuations, except for the degenerate case
where the aggregation of these bidders forms an additive valuation (i.e., where for every two
disjoint bundles S,T , the aggregate valuation exhibits exactly v(S) + v(T ) = v(S ∪ T )).9

Theorem 1c. For every n, and for every profile of n substitutes valuations that their aggregation
is not an additive valuation, there exists an additional bidder such that no item-price ascending
auction can determine the efficient allocation among the n + 1 bidders.

4. Anonymous ascending auctions

All the ascending auctions in the literature that are proved to find the optimal allocation for
unrestricted valuations are non-anonymous bundle-price auctions (e.g., iBundle(3) in [29] and
the “Proxy Auction” in [2]). Yet, several anonymous ascending auctions with bundle prices have
been suggested (e.g., AkBA in [35], the PAUSE auction in [18], and iBundle(2) in [29]). The
power of such anonymous auctions is not trivial, as they can reach an efficient outcome for
super-additive preferences (see [28]). We first show that no anonymous ascending auction can
always find the efficient solution for general valuations, even for environments with only two
bidders and four items, and even if it is allowed to use bundle prices. Later in this section, we
extend this negative result and show that such auctions can only guarantee a diminishing fraction
of the social welfare.

9 A valuation w is called the aggregation of the valuations v1, . . . , vn if for every bundle S, w(S) equals the optimal
welfare achieved by allocating the items in S over the n bidders.
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Bidder 1 v1(ac) = 2 v1(bd) = 2 v1(cd) = α ∈ (0,1)

Bidder 2 v2(ab) = 2 v2(cd) = 2 v2(bd) = β ∈ (0,1)

Fig. 2. This example shows that anonymous ascending auctions cannot always determine the efficient allocation. The
value of every bundle that is not explicitly specified equals to the maximal value of a bundle it contains.

In Fig. 2, we present a class of valuations for which the efficient allocation cannot be de-
termined by any anonymous bundle-price ascending auction. The basic idea: In the example,
Bidder 1 and Bidder 2 have unknown values for some bundles S1 and S2, respectively. However,
Bidder 1 also has a high value for S2 and Bidder 2 has a high value for S1. Therefore, in order to
reveal information about v1(S1), the price of S2 must be increased significantly, and thus “hide”
the value v2(S2). Similarly, for gaining information about v2(S2) the price of S1 must increase,
“hiding” the value v1(S1). This stems from the anonymity of the auction – the bidders face the
same ascending trajectory of prices. Consequently, the auctioneer will only be able to attain
information about both values, what will prevent him from identifying the efficient allocation.

Theorem 2. No anonymous bundle-price ascending auction can determine the efficient alloca-
tion for all profiles of bidder valuations.

Proof. Consider the pair of valuations described in Fig. 2. Each bidder has a value of 2 for
two 2-item bundles, and some unknown value, between 0 and 1, for a third 2-item bundle. The
values of the other bundles equals the maximal value of a bundle that they contain. For finding
the optimal allocation the auctioneer must know whether α is greater than β or vice versa: If
α > β , the optimal allocation will allocate cd to Bidder 1 and ab to Bidder 2. Otherwise, it
should allocate bd to Bidder 2 and ac to Bidder 1. Notice that since each item can be allocated
only once, at most one bidder can gain a value of 2.

In an anonymous ascending auction, however, one can only elicit information on one of the
values α and β: as long as the prices of both cd and bd are below 1, both bidders will clearly
demand their high-valued bundles (that gain them utilities greater than 1). Therefore, in order
to elicit any information, the auctioneer must raise one of these prices to be greater than 1,
w.l.o.g., the price of bd . Thus, since the prices cannot decrease, no information will be gained
about β . �

We now strengthen the impossibility result above by showing that anonymous auctions, even
with bundle prices, cannot guarantee more than a vanishing fraction of the social welfare, namely,
at most a 4√

m
-fraction of the efficient welfare. Using bundle prices may be appealing when

each bidder is interested in a small number of bundles, but this pricing method may become
impractical due the exponential number of potential prices. Note that a similar fraction of the
optimal welfare, O( 1√

m
), can be achieved using a significantly smaller amount of prices (that is,

with polynomial-sized communication – see, e.g., [9]).
For proving the limitations of anonymous auctions, we build a profile of valuations that, due

to certain combinatorial properties, cannot be solved by anonymous ascending auctions. These
preferences are different than those used in Theorem 1b. Nevertheless, we use the same com-
binatorial construction of mutually-intersecting partitions that was introduced in the proof for
Theorem 1b. Recall that mutually-intersecting partitions are a set of partitions of the items with
the property that every two bundles from different partitions have at least one item in common.
We show that for the class of valuations that we build, before the auctioneer elicits any informa-
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tion, the prices of all the bundles from some partition should exceed 1. Since all the unknown
values are below 1, an anonymous ascending auction will gain no information about the values
that the bidders have for the bundles in this partition. Allocating bundles from this partition to
different bidders may form an efficient allocation, but the auctioneer will not have enough in-
formation to correctly match those bundles to the bidders. We refer the reader to the full proof
in Appendix C.

Theorem 2a. No anonymous ascending auction can guarantee better than a fraction of
max{ 4

n
, 4√

m
} of the efficient welfare for all profiles of bidder valuations, even when it uses bundle

prices.

A slight variation of the preferences in the proof of Theorem 2a – when only one of the low-
valued bundles has a positive value – shows an instance where at least n ascending bundle-price
trajectories are required in order to find the efficient allocation. This gives an easy bundle-price
equivalent to Theorem 1a. This result is tight, as there exist efficient non-anonymous bundle-price
auctions; such auctions are clearly composed of n price trajectories.

5. Conclusion

This article considered ascending-price auctions for combinatorial auctions. It presented sev-
eral impossibility results, providing insights about the power of different pricing models for such
auctions. The paper showed that both bundle prices and personalized prices are necessary in or-
der to achieve efficient, or even approximately efficient, outcomes by ascending combinatorial
auctions. Proposals for other kinds of ascending auctions carry the burden of proof for showing
that good results can occur in their particular settings.

Appendix A. Critical price levels

In this section we give a simple, formal argument, to be used in the proofs of the impossibility
results, saying that if an auction does not give an opportunity for a bidder to demand some bundle
S, by presenting relevant pricing schemes (“critical price levels”), then the auction reveals no
information at all about the value of S.

Some notations that describe the uncertainty of the auctioneer regarding the bidders: Denote
the set of all the possible valuations for bidder i by Vi . Also denote the set of all possible values
for the bundle S in Vi by Qi(S) = {vi(S) | vi ∈ Vi}. Finally, denote the set of the possible values
for the bundle S, given that the realization of the value of some other bundle T is cT , by Qi(S |
vi(T ) = cT ) = {vi(S) | vi ∈ V and vi(T ) = cT }.

First we define informationally-independent classes of valuations – valuations where obtain-
ing information regarding any set of bundles adds no new information about the possible values
of other bundles.

Definition 5. We say that a set Vi of valuations for bidder i is informationally independent, if for
any bundle S, and any realization of the values of the other bundles {cT }T �=S , the set of possible
values for S remains unchanged. Namely, for every S ⊆ M ,

Qi(S) = Qi

(
S

∣∣ vi(T ) = cT for every T �= S
)
.
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Definition 6. Denote the class of all possible valuations of bidder i by Vi . We say that the pricing
scheme p is critical for bidder i with respect to the bundle S, if for some vi ∈ Vi , bidder i

demands the bundle S under p.

The next easy proposition implies that if no critical price vector is presented to a bidder regard-
ing some bundle S, then no information at all will be elicited on the value of this bundle when
the valuations are informationally independent. The proposition also holds for non-ascending
auctions, and for all pricing schemes.

Proposition 1. Consider a bidder i, with an informationally-independent set of possible valua-
tions Vi . If an auction reaches no critical price level for bidder i with respect to a bundle S, then,
at the end of the auction, no information is revealed on the value of S, that is, the set of possible
values for S remains Qi(S).

Proof. The proof is straightforward: Since no critical price level with respect to the bundle S

is presented to bidder i, then the data accumulated throughout the auction is completely inde-
pendent of the value vi(S). Since the demands of the other bidders are also unchanged, and
these demands are the only data that is available to the auctioneer, the auctioneer will not be
able to differentiate between different values of vi(S). Therefore, no value of vi(S) can be
ruled out. �
Appendix B. Item-price ascending auctions

Example 1. This example shows that a single item-price auction can elicit an exponential amount
of information. Consider two bidders in a combinatorial auction with preferences of the following
type: v(S) = 1 for every bundle S with more than m

2 items, v(S) = 0 if |S| < m
2 and every S such

that |S| = m
2 has an unknown value of either 0 or 1. As proved in [27], for determining the

efficient allocation in this environment, the bidders may be required to communicate an amount
of information which is exponentially larger than the number of items. However, using small
enough increments, it is easy to determine the values of all the bundles of size m

2 by an ascending
auction.10 This information clearly suffices for determining the optimal allocation.

Definition 7. (See Kelso and Crawford [19].) A valuation v is said to satisfy the substitutes (or
gross-substitutes) property if for every pair of item-price vectors �q � �p (coordinatewise compar-
ison), if S = {j ∈ M | pj = qj } and A maximizes the bidder’s utility under the price vector �p,
then there exists a bundle B that maximizes the bidder’s utility under the price vector �q such that
S ∩ A ⊆ B .

Definition 8 (k-Trajectory ascending auctions). Consider an auction A, and denote the set of all
the price vectors presented to bidder i in A by Pi .11 We say that A is a k-trajectory ascending
auction if for every bidder i, the set Pi can be divided into k ascending trajectories of prices

10 This can be done by enumerating on all the different bundles of size m
2 , and for each bundle S set the prices of the

items in S to some value λ and set the prices of the items not in S to λ + ε for sufficiently small ε. Clearly, the bundle
S will be demanded if and only if vi(S) = 1. Using exponentially small increments, we can construct such vectors of
prices during a single ascending path of prices.
11 Recall that each price vector p specifies a price p(S) for every bundle S ⊆ M .
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Pi (1), . . . , Pi (k). Formally,
⋃k

j=1 Pi (j) = Pi and for every j ∈ {1, . . . , k}, and for every two
price vectors p,q ∈ Pi (j) such that q was presented to bidder i at a later stage in A than p, and
for every bundle S ⊆ M , we have that q(S) � p(S).

B.1. Proof of Theorem 1a

Proof. Consider a single agent whose valuation has the following properties: for every bundle S

such that |S| > m
2 we have v(S) = 2, and for every |S| � m

2 we have v(S) = 0, except for a single
unknown bundle T of size m

2 that either has a value of 1 − δ (for some small δ > 0) or 0. We first
show that finding the hidden bundle T requires an exponential number of ascending item-price
trajectories, even if the auctioneer knows these properties of the valuations.

Recall that under a “critical” price level with respect to the bundle S, the player demands S for
some realization of his valuation (see Definition 6 in Appendix A). We first prove the following
claim:

Claim 2. In an ascending auction, if the bidder is presented with a critical price vector for some
bundle S of size m

2 , then no critical price vector will be published at later stages of the ascending
auction with respect to any other m

2 -sized bundle.

Proof. Let �p be a critical price vector presented to the bidder with respect to some bundle S,
|S| = m

2 . Thus, for some possible value of v(S) and for any item x ∈ M \ S, the bidder (weakly)
prefers the bundle S over the bundle {S ∪ x}, i.e., v(S ∪ x) − p(S ∪ x) � v(S) − p(S). Since the
prices are linear, and since v(S) is always smaller than 1, it follows that: px � v(S ∪x)− v(S) >

2 − v(S) > 1. Thus, the price of any item in M \ S is strictly greater than 1. Since the prices are
ascending, it follows that the bidder will not demand any bundle of size m

2 containing an item
from M \S at later stages of the auction. (Clearly, the only bundle of size m

2 that does not contain
any item from M \ S is S.) �

Due to Claim 2, an ascending path of prices can only contain critical price levels with respect
to one of the m

2 -sized bundles. Therefore, this ascending trajectory will be independent of the
values of all the other m

2 -sized bundles, and no new information will be elicited on them (this
holds since the valuations are informationally independent – see Proposition 1). It follows that
in each ascending trajectory, the auctioneer has to arbitrarily decide which m

2 -sized bundle will
be checked. An adversary (or “nature”) may choose a valuation such that the last (or before
last) bundle to be checked is the bundle T . Since the number of m

2 -item bundles is exponen-
tial in m,12 an exponential number of ascending trajectories is required for finding the hidden
bundle.

Now, consider a second bidder that has a value of 2 for every bundle of size m
2 or more. The

optimal allocation will clearly allocate the bundle T to Bidder 1, and the other m
2 items to the

second bidder. Finding the efficient allocation for these two bidders is equivalent to finding the
bundle T . The theorem follows. �
12 According to Stirling’s formula, the number of distinct bundles of size m

2 , out of m distinct items, is approximately√
2 · 2m.
πm



1218 L. Blumrosen, N. Nisan / Journal of Economic Theory 145 (2010) 1203–1223
B.2. Proof of Theorem 1b

Proof. Consider n bidders and n2 items for sale, and assume that n is prime.13 We construct
a total of n2 distinct bundles with the following properties: for each bidder i (1 � i � n), we
define a partition Si = (Si

1, . . . , S
i
n) of the n2 items to n bundles, such that any two bundles from

different partitions intersect (i.e., for every two bidders i �= j , and every k, l we have Si
k ∩S

j
l �= ∅).

We call this combinatorial structure mutually-intersecting partitions. In Appendix D, we show an
explicit construction of mutually-intersecting partitions using the properties of linear functions
over finite fields. The rest of the proof is independent of the specific construction.

We now build a set of valuations for the bidders, and prove that they are hard to elicit by
item-price ascending auctions. Each bidder i will have a value of 2 for every bundle that contains
a union of two bundles from different partitions, and an unknown value of either 0 or 1 − δ (for
some small δ > 0) for bundles that contain only a single bundle from a partition (henceforth, the
“low-valued” bundles). More formally, each bidder will have the following valuation (the value
of any other bundle is the maximal value of a bundle that it contains):

• A value of 2 for the bundle S
j ′
k ∪ S

j
l , for every k, l and every j ′ �= j .

• A value of either 0 or 1 − δ (unknown to the seller) for the bundle S
j
k , for every j, k.

Note that at most one bidder can gain a value of 2, since every two 2-valued bundles contain
bundles from different partitions and thus must intersect. Therefore, for achieving more than
a welfare of 2, we must allocate low-valued bundles. However, as the following claim shows,
the demand of a bidder during a single ascending auction can only reveal information about his
values for bundles from a single partition.

Claim 3. If a bidder is presented with a critical price vector with respect to a bundle from one
partition, no critical price levels will be presented to this bidder with respect to bundles from
other partitions at later stages of the ascending auction.

Proof. Let p be a critical price level for bidder i with respect to his low-valued bundle S
j
k . Then,

for every bundle Sl
k from a different partition (i.e., l �= k), we have:

v
(
S

j
k

) − p
(
S

j
k

)
� v

(
S

j
k ∪ Sl

k

) − p
(
S

j
k ∪ Sl

k

)
. (B.1)

Since the prices are linear, it follows that:

p
(
Sl

k

)
� p

(
S

j
k ∪ Sl

k

) − p
(
S

j
k

)
� v

(
S

j
k ∪ Sl

k

) − v
(
S

j
k

)
> 1, (B.2)

where the final inequality holds since v(S
j
k ) < 1. Hence, the bundle Sl

k will not be demanded
before the auction concludes. �

It follows from the claim above that every ascending trajectory of prices will be independent
of the values of every bidder to bundles from all the partitions, except at most one partition.

13 Due to the celebrated Bertrand Conjecture from 1845 (proved by Chebyshev in 1850), for every natural number n

there exists at least one prime number between n and 2n. Therefore, we can assume that n is prime, where the number
of items is at most twice the original number. This will result in an additional factor of 2 in our approximation result.
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Hence, for each bidder, the auctioneer will gain information about at most one partition of the n

partitions. Therefore, for every ascending auction, there must exist a partition j (i.e., S
j

1 , . . . , S
j
n )

for which at most one bidder revealed some information. An adversary (“nature”) can set the
values of the bundles in all the other partitions such that any way of allocating them will result in
a total value of at most 2. In addition, the total value of the bidders to bundles in partition j may
be arbitrary close to n (that is, n − nδ) – each bidder will have a value of 1 − δ for one distinct
bundle from this partition. The auctioneer does not have any information on the values that the
bidders (except, maybe, one) have for bundles in this partition, and therefore the auctioneer will
not be able to correctly match the bundles in this partition to the bidders; The auctioneer can only
guarantee a value of 2 by allocating all items to a single bidder, as opposed to the optimal welfare
that can be arbitrarily close to n (and here, n = √

m ). The theorem follows (as mentioned, we
lose an additional factor of 2 since we assumed that n is prime). �
B.3. Proof of Theorem 1c

Proof. Let w be the valuation that aggregates the preferences of the n original bidders. Since
all the original valuations hold the substitutes property, then their aggregation, w, also has the
substitutes property, (see, e.g., [21]). Substitutes valuations are, in particular, sub-additive – that
is, for every two bundles S,T we have that w(S) + w(T ) � w(S ∪ T ). Due to the assumption
that the w is not additive, there are two bundles S and T for which the inequality is strict,

w(S) + w(T ) > w(S ∪ T ). (B.3)

Substitute valuations are also submodular, and thus exhibit diminishing marginal valuations (see,
e.g., [21]). Therefore, the marginal contribution of M \ (S ∪ T ) in Eq. (B.3) is greater for T than
for S ∪ T , thus,

w(S) + w(M \ S) > w(M). (B.4)

Denote ε = w(S) + w(M \ S) − w(M). Now, consider the “dual” valuation to w denoted by w,
i.e., for every bundle X, w(X) = w(M)−w(M \X). The dual valuation specifies the contribution
of the bundle X to the welfare of the n bidders, given that they already hold the other items.
Clearly, if an additional player has a value for S that exceeds w(S), allocating this bundle to
her will increase the total welfare. Using Eq. (B.4), we thus have that the bundles S and M \ S

are complements with respect to w (i.e., the value of their union is smaller than the sum of the
separate values),

w(S) + w(M \ S) (B.5)

= w(M) − w(M \ S) + w(M) − w(S) (B.6)

= w(M) − (
w(M \ S) + w(S) − w(M)

)
(B.7)

= w(M) − ε. (B.8)

We define an additional bidder k with the valuation vk(·) for which vk(M) = w(M) (which
also equals w(M)), and the values vk(S) and vk(M \ S) are unknown to the auctioneer and may
take the following values: vk(S) ∈ {w(S),w(S) + ε

6 ,w(S) + ε
3 } and vk(M \ S) ∈ {w(M \ S),

w(M \ S) + ε
6 ,w(M \ S) + ε

3 }.
The values of all the other bundles is the maximal value of a bundle, from the above bundles,

that they contain.
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An efficient auction clearly has to determine which of the bundles S and M \ S adds more
value for the new bidder with respect to w. We will show that an ascending item-price auction
will not be able to find this bundle using the following claim. (The concept of critical price levels
is defined in Definition 6 in Appendix A.)

Claim 4. If a critical price level is presented to player k with respect to the bundle S, no critical
price levels will be presented with respect to the bundle M \ S at later stages of the ascending
auction.

Proof. Let p be a critical price level with respect to the bundle S. Then for some value of vk(S)

the player will prefer this bundle to the whole bundle: vk(S) − p(S) � vk(M) − p(M). Due to
the linearity of the prices and the definition of vk(·) it follows that:

p(M \ S) � vk(M) − vk(S) � w(M) − w(S) − ε

3
(B.9)

> w(M \ S) + ε − ε

3
> vk(M \ S). (B.10)

Where Eq. (B.10) follows from Eq. (B.8). The price of the bundle M \ S is greater than all
its possible values, and this bundle will not be demanded at future stages since the prices are
ascending. �

Similarly, we can also show that if a critical price is presented with respect to M \ S, then all
future price levels will be independent of the value of S. Therefore, the auctioneer will be able to
elicit information only on one of the bundles S and M \S, and the optimal allocation will remain
unknown. �
Appendix C. Anonymous ascending auctions

C.1. Proof of Theorem 2a

Proof. Consider n bidders and n2 items, and assume that n is prime.14 Consider n2 distinct
bundles defined by mutually-intersecting partitions (see Theorem 1b), that is, for each bidder, we
define a partition Si = (Si

1, . . . , S
i
n) of the n2 items to n bundles, such that any two bundles from

different partitions intersect. (As mentioned, an explicit construction is given in Appendix D.)
Using these n2 bundles we define the following distribution over the bidders’ preferences.

The preferences are drawn uniformly at random from the following class of valuations with the
following properties:

• Each bidder i has a value 2 for every bundle Si
j in his partition.

• There exists one player k such that all the elements Sk
j in his partition gain the other bidders

a value of 1 − ε for some small ε.
• All the bidders i �= k gain a zero value from the bundles in player i’s partition, i.e., vi(S

k
j ) = 0

for every j .

14 We can assume this and lose a factor of two in the approximation ratio. See the proof of Theorem 1b.
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Using these n2 bundles we construct the following valuations. We will define the values that
the bidders have for each one of these n2 bundles, and again, the value of any other bundle is the
maximal value of a bundle that it contains. A bidder i has a value of 2 for any bundle Si

j in his
partition (i.e., the ith partition). For all the bundles in the other partitions, he has a value of either
0 or of 1 − δ (for some small δ > 0), and these values are unknown to the auctioneer. Since every
pair of bundles from different partitions intersect, at most one bidder can receive a bundle with
a value of 2. Nonetheless, for some realizations of the bidders’ preferences, we may allocate the
bundles of a particular partition, one bundle per each bidder, such that one bidder gains a value
of 2 and all the others receive a value of 1 − δ.

Consider the valuations described above. In every anonymous ascending auction, a bidder will
not demand one of his low-valued bundle as long as the price of at least one of his high-valued
bundles is below 1 (which gains him a utility greater than 1 for this bundle). Therefore, for
eliciting any information about low-valued bundles, the auctioneer should first arbitrarily choose
a bidder (w.l.o.g., Bidder 1) and raise the prices of all the bundles S1

1 , . . . , S1
n to be greater than 1.

Since the prices cannot decrease, no critical price level (see Definition 6) will be presented with
respect to any of these bundles at later stages of the auction for any bidder. Since the valuations
are informationally independent, no information at all will be gained by the auctioneer on the
values of these bundles (see Definition 5 and Proposition 1). It might happen that the low values
of all the bidders for the bundles not in Bidder 1’s partition are zero (i.e., vi(S

k
j ) = 0 for every

bidder i and any partition k �= 1 and every bundle j in it). However, allocating each bidder a
different bundle from Bidder 1’s partition, might achieve a welfare of n + 1 − (n − 1)δ (Bidder
1’s valuation is 2, and 1−δ for all other bidders). The auctioneer has no information on the values
that the other bidders have for these bundles. Therefore, for every decision the auctioneer makes
about the allocation, an adversary (“nature”) may choose a profile of valuations for which no
more than a welfare of 2 is achieved (2 for Bidder 1’s high-valued bundle, 0 for all other bidders).
We conclude that no anonymous bundle-price ascending auction can guarantee a welfare greater
than 2 for this class, where the optimal welfare can be arbitrarily close to n + 1. The theorem
follows. �
Appendix D. Constructing mutually-intersecting partitions

We now present an explicit construction for the combinatorial structure used in Theorem 1b.
We also use this combinatorial structure when we prove the inefficiency of anonymous bundle-
price ascending auctions in Theorem 2a. We assume that there are n bidders and n2 items (n is
prime). For every bidder i, we define a partition Si = (Si

1, . . . , S
i
n) of the n2 items to n bundles

of size n, such that any two bundles from different partitions intersect (i.e., Si
j ∩Sk

l �= ∅ for every
i �= k and every l, j ). Fig. 3 describes such a construction for 3 bidders and 9 items.

We use the properties of linear functions over finite fields (for that, we denote the bidders by
0, . . . , n − 1):

Recall that Zn = {0, . . . , n − 1} is a field if (and only if) n is prime. Denote the n2 items for
sale by pairs of numbers in Zn. Each linear function ax + b over the finite field Zn denotes an
n-item bundle (a total of n2 bundles where a, b ∈ Zn). The items in each bundle are the pairs
(x, ax + b) for every x ∈ Zn. The bundles assigned to bidder i are the n bundles ix + b where
b ∈ Zn (that is, all the parallel linear functions with a slope i). We need to show that the bundles
assigned to bidder i form a partition, and indeed the functions ix+b1 and ix+b2 cannot intersect
when b1 �= b2. It is also easy to see that every two bundles that are assigned to different bidders
do intersect: consider the functions ix + b1 and jx + b2. Since zn is a field, clearly an x exist
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Fig. 3. Mutually-intersecting partitions for 3 bidders and 9 items. Each large square defines a partition of the items (small
squares with the same color in the same large square form a bundle). Indeed, every two bundles from different partitions
intersect. The partition are defined by parallel linear functions over the relevant finite field.

such that x(j − i) = (b1 − b2) when j �= i for any b1, b2. The j th bundle of bidder i is therefore,
Si

j = {(0, i · 0 + j), . . . , (n − 1, i · (n − 1) + j)}.
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