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1 Introduction

Nisan and Segal (forthcoming) show that when verifying the e¢ ciency of a
combinatorial allocation, without increasing the communication burden one
can restrict attention to announcing a price equilibrium. We �nd that a
parallel conjecture for deterministic communication fails: We demonstrate
a class of valuations for which the restriction to �demand queries,� which
ask agents to report their preferred allocations at given (possibly nonlinear)
allocation prices, brings about an exponential blowup in the communication
burden of �nding an e¢ cient allocation. Namely, for this class, an e¢ cient
mechanism exists that uses a number of bits that is proportional to the num-
ber of objects, but any demand-query mechanism that achieves e¢ ciency, or
even any improvement upon the �dictatorial�allocation of all the objects to
one agent, must use an exponential number of demand queries. We also show
a parallel average-case result: We construct a joint probability distribution
over the agents�valuations from this class for which any improvement in the
expected surplus over the dictatorial allocation requires using an exponential
expected number of demand queries.
Our results bring into question the usefulness of combinatorial auction

mechanisms such as �iterative auctions,�and other �preference elicitation�
mechanisms that use demand queries or value queries. Of course, the results
still open the possibility that demand-query mechanisms work well on some
classes of valuations, or on average for some �realistic�probability distribu-
tions of valuations, but such cases are yet to be characterized.
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2 The Valuation Class

Consider the problem of allocating items from set M between two agents,
with jM j = m. Let K denote the set of allocations in which the two agents
receive the same number of items, and so k � jKj =

�
m
m=2

�
(for simplicity

let m be even). Suppose we know that each agent i�s valuation satis�es
vi(S) 2 f0; 1g for all S �M , with vi(S) = 0 for jSj � m=2 and vi(S) = 1 for
jSj � m=2.
Let

A1 = fS �M : jSj = m=2, v1 (S) = 1g ;
A2 = fS �M : jSj = m=2, v2 (NnS) = 1g :

We suppose that it is a priori known that jA1j; jA2j > k=2, hence A1\A2 6= ?
and an allocation (S;NnS) with surplus 2 exists. Then e¢ ciency is equivalent
to �nding such an allocation. On the other hand, without �nding such an
allocation we achieve at most surplus 1, which could have been achieved by
giving all the objects to agent 1.

3 A Fast E¢ cient Protocol

Proposition 1 There exists a protocol �nding an e¢ cient allocation using
no more than 4 (log2 k)

2 bits of communication.1

Proof. Consider the following protocol: At each step r, we maintain a set
Kr � K with the property that

jA1 \Krj+ jA2 \Krj > jKrj ; (1)

and therefore A1 \ A2 \Kr 6= ?. Initialize with K0 = K, which satis�es (*)
by assumption. At each step r, partition Kr (arbitrarily) into two subsets
B1 and B2 such that jjB1j � jB2jj � 1, and ask each agent i = 1; 2 to report
aij = jAi \Bjj for each j = 1; 2. Then take Kr+1 = Bj for the j that has
the higher value of a1j + a2j � jBjj, which guarantees that Kr+1 satis�es (*).

1In fact, there exists an e¢ cient protocol that uses no more than 5:3 log2K bits of
communication. This follows from the fact that this communication problem turns out to
be equivalent to the monotone depth of the majority function (Karchmer and Wigderson,
1988), and Valiant�s (1984) celebrated construction of such formulae.
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Each step requires communicating no more than 4 dlog2 jKje bits, and in no
more than dlog2 jKje steps Kr becomes a singleton, which by (*) must be an
element of A1 \ A2.

4 Demand-Query Protocols

Now we restrict to demand-query protocols: at each step, an agent i is o¤ered
a price vector p : 2M ! R and an ordering � over 2M , both of which can
be functions of the agents�previous messages, and reports the �rst element
of argmaxS�M (vi (S)� p (S)) in ordering � . Note the importance of �xing
a tie-breaking ordering in advance: If agent i�s tie-breaking were allowed
to depend directly on his valuation vi, then his choice from a known tie
could communicate arbitrary information about vi, and so the restriction to
demand-query protocols would not have any bite.
Another often-used type of query is a �value query,�which asks an agent

i to report his valuation vi (S) for a given bundle S � M . Note that in
our simple model such a query is equivalent to a demand query with proces
p (S) = 0 and p (T ) = 1=2 for all T 6= S (S will be demanded if and only if
vi(S) = 1). Thus, lower communication bounds for demand-query protocols
will also apply to protocols that use value queries.

5 The Worst-Case Result

Proposition 2 Any demand-query protocol that achieves a higher surplus
than that from giving all items to one agent must ask at least k=2�1 queries
(in the worst case).

Proof. Take any protocol that uses less than k=2 � 1 demand queries. We
describe an �adversary algorithm�for answering a sequence of queries made
by the protocol and then constructing valuations consistent with all the an-
swers, for which the total surplus for the protocol�s outputted allocation is
at most 1. (While choosing the valuations after the queries have been made
seems like �cheating,�the point is that they could have been the valuations
from the outset.)
The adversary algorithm at each step maintains sets B1; B2 � K (with

the interpretation that Bi is the allocations inK for which agent i �could still
have�value 1). The two sets are initialized with B1 = B2 = K. At each step
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of the protocol, if agent i = 1; 2 is queried, the adversary returns a bundle
S� as though the agent�s valuation is described by Ai = Bi. Furthermore, if
S� 2 Bi, then S� is removed from B�i. Proceed to the next step. Suppose
that the protocol ultimately outputs allocation T . Then, for each i = 1; 2,
if T 2 Bi, T is removed from B�i. Finally, the adversary sets Ai = Bi for
i = 1; 2.
Since the protocol has less than k=2� 1 steps, at each of which each jBij

is reduced by at most 1, and the outputted allocation reduces jBij by at most
1, in the end we have jAij > jKj =2 for i = 1; 2, so the constructed inputs
are feasible. Furthermore, by construction we have T =2 A1 \ A2. What
remains to show is that the demands reported by the agents at each stage
are consistent with the constructed inputs A1; A2. To see this, note �rst that
the sets Bi are nonincreasing and thus at each stage, Ai � Bi. This implies
that if at some stage bundle S� =2 Bi was demanded by type Bi, it will also
by demanded by type Ai at the same prices and the same tie-breaking rule.
On the other hand, if a bundle S� 2 Bi was demanded for type Bi, then
it was removed from B�i, and so by construction it always remains in Bi.
Then S� 2 Ai and so S� will also be demanded by type Ai at the same prices
and the same tie-breaking rule. Hence, the constructed type Ai will indeed
induce the same demands as those constructed by the adversary.
Since by Stirling�s formula k =

�
m
m=2

�
�
p
2= (�m) � 2m as m ! 1,

the result means that any demand-query protocol improving upon giving all
objects to one agent requires an exponential number of queries inm, while by
Proposition 1 there exists a di¤erent protocol that achieves e¢ ciency using
O (m2) bits.

Remark 3 Sandholm and Boutilier (forthcoming) consider protocols using
�rank queries,�which ask an agent to report the bundle of rank r in the order
of his valuations, with ties broken according to some a priori ordering � . Such
queries prove more powerful than demand queries for our valuation class.
For example, such a query reveals whether the �rst q bundles in ordering �
contain at least r value-1 bundles. Using bisection on r between 1 and q, we
�nd the number of value-1 bundles with among the �rst q bundles with at most
log2 q rank queries. Then we can use the protocol described in Proposition
1 doing this at each step, and so the total number of order queries is at
most 4 (log2 k)

3. On the other hand, for other valuation classes rank queries
may not achieve e¢ ciency at all because they do not elicit the strength of
the agents�preferences: For example, with only one object, an agent would
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always ranks the object higher than not having it, and we would never learn
which agent has the highest valuation for the object.

6 An Average-Case Result

We start by de�ning a joint probability distribution D over valuation pairs
(A1; A2) as the uniform distribution over pairs (A1; A2) such that jA1j =
jA2j = k=2 + 1 and jA1 \ A2j = 2.2

Proposition 4 For the joint probability distribution D, any demand-query
protocol obtaining an expected surplus of at least 1 + � must use at least
T (�) = maxf�;1=12gk�2

7 ln k
queries in the worst case, and at least (�=2)T (�=2)

queries in the average case.

Proof. Consider �rst a demand-query protocol asking at most t queries
in the worst case. We allow agents to reveal even more information than
the demanded bundle. For a given demand query hp; �i, de�ne ordering �
over allocations de�ned by increasing prices, with ties broken according to � .
When agent i is asked such a query, let him reveal his valuations for the top r
allocations in ordering � out of those that have not been revealed yet, and let
the other agent reveal his valuations for the same allocations (where r � 1
is a �xed integer). Furthermore, if agent i has valuation zero for all such
allocations, let him say �bingo," and both agents reveal all their valuations.
This response is more informative than answering the demand query: even
if agent i did not say "bingo" and so his valuations are not fully known,
his demand would be the highest value-1 allocation in ordering �, which has
been revealed.
The probability that an agent said "bingo" in response to one of the

queries is bounded above by t
�

k=2
k�rT

�r
, since the fraction bounds above the

2It is important that the two agents�valuations are jointly distributed. If the valuations
were drawn independently from the uniform distribution over valuations described by
jAij = k=2 + 1, we could achieve e¢ ciency with a small expected number of demand
queries, by announcing allocations from K in any �xed order and stopping as soon as we
�nd an e¢ cient allocation (which is veri�ed with two value queries, which are equivalent
to demand queries). The probability that a given allocation has value 1 to a given agent
is at least 1=2,(higher when more allocations have been checked), and so it is e¢ cient with
probability at least 1=4. Thus, the expected number of allocations that need to be checked
before �nding e¢ ciency is at most 4, and so the expected number of demand queries is at
most 8 (regardless of k).
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proportion of either agent�s zero-valuation allocations among those that have
not been revealed, and for "bingo" we need all the top r allocations in or-
dering � to be such allocations. Also, if "bingo" has not been said and the
protocol outputs some allocation, the probability that this is an e¢ cient al-
location is bounded above by (rt+ 1) 2

k
, since this is the probability that at

least one of the two e¢ cient allocations is either one of rt allocations revealed
by the agents or in some other allocation outputted by the protocol. Thus,
the probability of �nding an e¢ cient allocation is bounded above by

t

�
k=2

k � rt

�r
+ (rt+ 1)

2

k

We can choose any integer r � 1, and to (roughly) minimize this expression
we choose r = 3 ln k.
Suppose T � � K

lnK
, with � � 1

12
Then the probability of e¢ ciency is at

most

�
k

ln k

�
1

2 (1� 3�)

�3 ln k
+ 6� +

2

k

� �
k

k3 ln(3=2) ln k
+ 6� +

2

k
� 7� + 2=k:

Thus, to get prob. of e¢ ciency at least � we need at least T (�) = maxf�;1=12gk�2
7 ln k

queries.
Suppose now we have a demand-query protocol with an expected number

t of queries that �nds e¢ ciency with probability �. Then we can terminate
it after 2t=� queries (and in this case output a random allocation from k).
The probability that the protocol is terminated is at most �=2, and so we
still have a protocol that �nds e¢ ciency with probability �=2 at most 2t=�
queries in the worst case. By the previous result, 2t=� � T (�=2), and so
t � (�=2)T (�=2).

Remark 5 If we restricted our valuation class to have jAij � 2k=3 for
i = 1; 2, we could always achieve e¢ ciency with a small expected number
of demand queries. Indeed, consider again the randomized protocol that picks
an allocation from K uniformly at random and stops as soon as it �nds an
e¢ cient allocation (which is veri�ed with two value queries, which are equiv-
alent to demand queries). Since there are at least k=3 e¢ cient allocations,
the probability of �nding one in each step is at least 1=3, hence the expected
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number of queries before stopping is at most 6 (regardless of k). By the Mini-
max Theorem, this also implies that for every probability distribution on such
valuation pairs, there exists an e¢ cient deterministic demand-query protocol
whose expected number of queries is 6. Thus, in this case we obtain a di-
vergence between the average-case and worst-case communication complexity
of demand-query protocols. (For the latter, note that Proposition 2 is easily
extended to this case to show that any demand-query protocol that achieves a
surplus greater than 1 must still ask at least k=3 queries in the worst case.)

7 Conclusion

We have shown a simple example in which a restriction to demand queries
brings about an exponential blowup in the communication required to achieve
or approximate e¢ ciency. A natural direction for further research is to char-
acterize the valuation classes for which this does not happen. Another im-
portant question is whether there exists a su¢ ciently restricted �universal
query class�to which we can restrict attention without causing an exponen-
tial communication blowup of �nding e¢ ciency on any valuation class. The
results of Nisan and Segal (forthcoming) imply that demand queries do form
a universal class for nondeterministic communication, but a parallel question
for deterministic communication remains open. Suggesting a universal query
class would useful for designing practical deterministic mechanisms, while
proving that it does not exist would suggest that the practical mechanisms
should be very dependent on the valuation class at hand.
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