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Abstract

We study the following problem that is motivated by Blockchains where “min-
ers” are serially given the monopoly for assembling transactions into the next block.
Our model has a single good that is sold repeatedly every day where new demand
for the good arrives every day. The novel element in our model is that all unsatis-
fied demand from one day remains in the system and is added to the new demand
of the next day. Every day there is a new monopolist that gets to sell a fixed sup-
ply s of the good and naturally chooses to do so at the monopolist’s price for the
combined demand. What will the dynamics of the prices chosen by the sequence of
monopolists be? What level of efficiency will be obtained in the long term?

We start with a non-strategic analysis of users’ behavior and our main result
shows that prices keep fluctuating wildly and this is an endogenous property of
the model and happens even when demand is stable with nothing stochastic in
the model. These price fluctuations underscore the necessity of an analysis under
strategic behavior of the users, which we show results in the prices being stable at
the market equilibrium price.

1 Motivation: Transaction Fees on Blockchains

Blockchain systems like Bitcoin [10] or Ethereum [2] sell “slots” on the blockchain to
users who wish to put their transactions on it. Every period a “leader” (miner, validator,
sequencer) is chosen to produce the next “block” in the blockchain, where the choice of
the leader is done using some mechanism that need not concern us here such as proof-of-
work or proof-of-stake. The size of each block is limited by the protocol in some way (e.g.,
bytes for Bitcoin or “gas” for Ethereum), and the leader gets to choose which transactions
will fill the block up to that limit. The blockchain’s transaction fee mechanism specifies
how much the users of chosen transactions pay and how much the leader receives (in
addition to a fixed “block reward”) and needs to take into account that both the users
and the leaders are strategic.

The mechanism used by the Bitcoin blockchain is simple “pay your bid”: users place
bids for their transactions and the leader (miner) gets to choose an arbitrary subset of
transactions and charges each of them exactly what was bid for it. Clearly a strategic
leader will accept the highest bidding transactions (normalized to their “size”) that fit
within the block size limitations. A strategic user will obviously shade his bid by an
amount that is not easy to calculate well.
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The Ethereum blockchain has a mechanism, known as EIP-1559 [3], that aims to
be more straightforward for users to bid. The mechanism’s most significant feature is
that it uses “dynamic posted prices” where the (“base-gas”) price for the next block is
determined by the protocol as a function of previous blocks. Each user bids a maximum
price and only transactions that bid at least the block’s price will be included in the
block, and they all pay the block’s fixed gas price (rather than their bid). A significant
additional feature of EIP-1559 is that all fees are “burnt” rather than going to the leader
who only gets a small additional first-price-like “tip”. Burning the fees is required to
ensure that leaders are not motivated to collude with users. Conceptually, since the
(base-gas) price of a block is deterministically determined by the protocol according to
the history, neither the leader nor the users have any advantage in manipulation. The
formula that determines the block prices increases them when there has recently been
more demand than supply and decreases them in the opposite case thus managing to
balance the satisfied demand with the average supply of slots in a block. The exact
incentives in this mechanism and related ones are formally defined and studied in [11]
and further in [4], an analysis of the block price dynamics appears in [9] and the general
class of “dynamic posted prices” mechanisms is studied in [5]. We will not delve deeper
into the details of this mechanism as for our purposes the simple conceptual description
above suffices.

The fee-burning part of this mechanism may be viewed as undesirable as it reduces
the Ethereum token supply which may or may not be desired from other points of view.
A third mechanism – that does not require fee burning – suggested in [1] and in [8] is
to use monopolist pricing: each leader is allowed to choose an arbitrary price for his
block and can then collect all transactions that are willing to pay this price (in [1] this is
called generalized second price). The rational leader will certainly choose the monopolist
price that maximizes the product of the resulting block size and the price. Intuitively,
as transactions are expected to be small relative to the total block size one may expect
users to be “price-takers” and thus not to have any significant incentive to shade their
bids. This mechanism was analyzed in [8, 12, 1], but again for our purposes this simple
intuition suffices.

A major difference between the monopolist pricing mechanism and the two previous
ones is in what they optimize for. The first two should reach (close to) the market
equilibrium and thus optimize “social welfare” – the total value of accepted transactions
subject to the blockchain capacity limitations1. The monopolist pricing optimizes the
leader’s revenue and may lead to unbounded losses of welfare. While not optimizing
social welfare is certainly a weakness of this mechanism, as [8] argues, optimizing revenue
may be an advantage for the security of the blockchain. In particular they note that
mechanisms that reach market equilibrium have the problematic property that if the
platform’s capacity suffices to handle all demand, then the prices would go down to 0
which may endanger the security of the blockchain.

All the discussion so far looked at a single block in isolation: it looked at the single
leader of the block and the set of users for that block and assumed that they all were
myopic i.e that their strategic considerations were only about the given block. This is the
case both for the intuitive explanations above and for the formal analysis in the papers
cited. While this assumption may be a good modeling choice for the leaders since in large
systems we expect a single miner to only be chosen to be leader infrequently, it is not at all

1While the exact analysis may depend on the model, intuitively both “pay your bid” and “EIP-1559”
should reach the market equilibrium.
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Figure 1: Simulation of serial monopoly on data from a sequence of 50 Ethereum blocks (10
minutes), comparing the series of monopolist prices to the true block gas prices with average
tips (actual price) and without tips (EIP-1559 base price).

realistic for the users since a transaction that is not accepted to one block remains in the
“mem-pool” and can be accepted into one of the next few blocks, potentially within less
than a minute. Indeed [8] left the analysis of “patient users”, as an open problem. Even
ignoring the strategic behavior of users, just the fact that the unsatisfied transactions
from one block remain as demand for future blocks, clearly leads to a nontrivial dynamic
in the sequence of blocks.2 Specifically, if a monopolist in some block has charged a high
price, leaving much unsatisfied demand, then the next block will get this pent-up demand
and thus see a heaver total demand at lower values which intuitively may cause the next
block’s price to be lower. Figure 1 shows a simulation of this dynamic on a data from
a typical “uneventful” sequence of 50 Ethereum blocks. The serial monopoly dynamics
extracted 12% more revenue on this sequence but lost 6.5% of total welfare (total sum of
values of transactions, counted according to their bids). The heart of this paper is trying
to analyze this behavior, understanding the fluctuations in prices, the welfare loss, and
the implied strategic considerations of the users.

In our model we have a series of monopolists where each of them is faced with all the
pent-up demand from previous blocks as well as some new flow of demand and then gets
to chose his monopolist price. We start by analyzing the dynamics assuming that bidders
are non-strategic or, equivalently, act myopically as previously studied, even though their
valuation is really patient, i.e. they get the value of their transaction even if it is scheduled
at later blocks.3

2This is somewhat in the spirit of, e.g., [6, 7] in a different context.
3Our analysis focuses on “fully patient” bidders whose value for the transaction does not decay with

time. This also models well scenarios where value decay happens at time scales that are significantly
larger than the block times, a situation that seems to fit most transactions on the blockchain with notable
exceptions being MEV and some DeFi. One may certainly also consider intermediate levels of patience
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There are several reasons for exploring such myopic behavior by non-myopic users.
First, this is a natural first step before continuing with a strategic analysis. This is
especially true in this case where previous argumentation as well as intuition may suggest
that users are close to being “price takers” and gain little, if at all, from strategizing.
Second, this can explain simulations, such as that given in figure 1, that are run on
existing data. Finally, this analysis will turn out to have implications for the strategic
analysis that we will do later.

We will formally describe our model and results in the next subsection but, for now,
let us state their intuitive implications for blockchains. Our main, and surprising, result
is that monopolist pricing dynamics leads to never-ending price fluctuations and this hap-
pens endogenously without any stochastic element in the model and when the exogenous
conditions are completely stable. In this respect serial monopoly completely sacrifices
one of the main desiderata for a fee mechanism, that of price stability. Even worse, once
prices fluctuate, users are motivated to shade their bids and wait for lower prices. This
happens even when bidders are small and each one of them does not affect prices at all.
Despite being a price taker within a single block, shading bids is highly beneficial across
blocks.

We do find some silver lining here regarding the social welfare achieved. Recall that
a main concern regarding monopolist pricing is that it sacrifices efficiency since leaders
do not fill block completely. We do, however, show that the social welfare (total value
of accepted transactions) achieved by the serial monopoly rule (still with users bidding
non-strategically) is mathematically guaranteed to be at least one half of the optimal
social welfare. As usual when one can prove a formal guarantee, things are better in
most specific cases. E.g., for transaction values that are uniform in [0, 1] we calculate
the loss of social welfare to be only 6.25%. And, nicely, this happens while gaining on
revenue.

As mentioned, this finding of price fluctuations strongly suggests that patient users
should bid strategically and so calls for an analysis under strategic bids by the users.
Continuing to analyze “fully-patient” users, but now acting strategically, we find that,
in equilibrium, users shade their bids so that the system is always at the market prices
without any price fluctuations. However, as this shading requires information about the
market conditions, optimal bidding may be difficult.

We are thus back where we started, having reached essentially the same outcome
and difficulties as the pay-your-bid mechanism. I.e., once strategic patience is taken into
account the main motivations of [8] of near incentive-compatibility and of better revenue
are lost. While one may view this as an overall negative conclusion given the original
motivation, the outcome reached by serial monopoly should be the same as that reached
by the pay-our-bid mechanism, and so it does look like a completely viable alternative
for a fee mechanism. More refined comparison of the serial monopoly mechanism to the
“vanilla” pay-your-bid mechanism may require experimentation and one may speculate
that bidding can be easier for serial monopoly since, at equilibrium, my own payment
does not depend on my own bid.

where a transaction’s value decays with time at some rate, and such cases would be expected to lie
between the fully myopic and full patient extremes.
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2 Serial Monopoly: Model and Results

We now formalize and analyze our model in abstract terms of a “serial monopoly” that
may be of more general interest.

2.1 The (Non-Strategic) Model

So here is our model: At each time step t = 1, 2, ... some demand for some homogeneous
good arrives into the market. The daily demand is specified by a fixed demand function
Q(p) that specifies the demanded quantity at each price level p. For ease of exposition
we will assume that Q is continuous and strictly decreasing.

Every day a new monopolist with a fixed daily supply s is chosen. This monopolist
sees in front of him the total current demand Dt() which is the sum of the pent-up
demand from previous time steps and the new daily demand and chooses a price level pt

that maximizes his revenue. Specifically the price chosen by the monopolist at day t is
the price pt that maximizes the revenue p ·min(s,Dt(p)) and the quantity supplied is thus
qt = Dt(pt) ≤ s. The pent-up demand after this amount is supplied is given by a demand
function Zt(p) = Dt(p) − qt for p ≤ pt and Zt(p) = 0 for p ≥ pt. The total demand for
the next time step is obtained by adding the daily demand Q() to this pent-up demand.
So, to summarize, here is the formal dynamics we study:

� A continuous and strictly decreasing demand function Q() and a fixed supply
amount s are given.

� There is initially no pent-up demand: Z0(p) = 0 for all p.

� For every time step t = 1...:

– The day t demand function is given by Dt(p) = Zt−1(p) +Q(p).

– The day t monopolist price and quantity are given by pt = argmaxp(p ·
min(s,Dt(p))) and qt = Dt(pt).

– The pent-up demand function after day t is given by Zt(p) = Dt(p) − qt for
p ≤ pt and Zt(p) = 0 for p ≥ pt.

This model simplifies matters as much as possible, in particular assuming (1) a fixed
flow of demand, i.e. that the same demand distribution arrives every day, (2) that each
monopolist has the same fixed supply amount, (3) that monopolists never repeat, i.e. are
completely myopic and thus naturally behave as a simple monopolists, (4) the demand
is “infinitely patient” so values do not decay with time and (5) that the daily demand
is fixed, not chosen strategically, and fully known by the monopolist. Also note that the
model is completely deterministic.

We would like to analyze what happens when this dynamics reaches an equilibrium:
which prices and quantities would be reached and what is the resulting efficiency? We
are in for an unpleasant surprise: the dynamics do not reach an equilibrium, but instead
get some complex non-cyclic pattern of ever changing prices. Here is a typical example.
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Figure 2: Serial monopoly prices for demand that is uniform on {1,2,...,10000}

2.2 Example

Assume that the daily demand is generated by user valuations that are uniform in [0, 1],
i.e. the daily demand function is given by Q(p) = 1 − p (for 0 ≤ p ≤ 1) and let us
assume that the fixed daily supply is s = 1. The market equilibrium is at price = 0 and
quantity = 1, which give a total social welfare of 1/2, and revenue of 0. The monopolist
aims to maximize p · (1− p) which happens for for price = 0.5 and quantity = 0.5 with
sub-optimal social welfare of 3/8 and monopolist’s revenue of 1/4. So let us follow the
serial monopolists step by step.

1. Day 1: There is no pent-up demand so the first monopolist will indeed choose the
monopoly price of p1 = 0.5 with quantity q1 = 0.5 obtaining revenue of 1/4. The
pent-up demand after the first step is given by 1/2 − p for p ≤ 1/2 (and 0 for
p ≥ 1/2).

2. Day 2: The total demand at this stage is 3/2−2p for p ≤ 1/2 and is 1−p for p ≥ 1/2.
The monopolist now can do better than choosing the original monopoly price by
choosing p2 = 3/8 = 0.375 with quantity q2 = 3/4 and revenue of 9/32 > 1/4. The
pent-up demand now is 3/4− 2p for p ≤ 3/8 (and 0 for p ≥ 3/8).

3. Day 3: the total demand is now given by 7/4− 3p for p ≤ 3/8 (and the usual 1− p
for p ≥ 3/8). The optimal price turns out to be p3 = 7/24 = 0.29... with quantity
q3 = 7/8. Pent-up demand is 7/8− 3p for p ≤ 7/24.

4. Day 4: now we have a total demand of 15/8− 4p for p ≤ 7/24 (and the usual 1− p
for p ≥ 7/24). Surprisingly, the pent-up demand does not help the monopolist: the
demand at price 7/32 is already 1 so the highest revenue obtainable in the range
p ≤ 7/24 is at this price which would give revenue of only 7/32 < 1/4 so the optimal
revenue is obtained at the original monopolist price of p4 = 0.5.

5. A simulation of the first 60 steps with discretized values appears in figure 1 where
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Figure 3: The Supply and demand curves with the market equilibrium, monopoly, and serial
monopoly (price,quantity) points. Different areas that depict parts of the social welfare at these
points are given labels.

we see that the prices keep irregularly oscillating. We wish to emphasize that the
observed irregularity is not an artifact of the discretization or of the simulation.

2.3 Results

We first show that even though the prices keep oscillating irregularly, we can provide
sufficient analysis of the price dynamics, in particular showing that there exists a price pser

such that all demand above it is satisfied within a bounded time and all demand below it is
never supplied at all. We show that this price is given by the formula pser = pmon ·qmon/s,
where pmon is the monopoly price of Q() and qmon the monopoly quantity. Thus, despite
the lack of any convergence to equilibrium, pser can be viewed as the one “reached” by
the dynamics in this sense of which demand gets supplied. The following theorem applies
to any (strictly decreasing and continuous) demand function Q() and supply amount s
for which the monopolist revenue is strictly higher than the market equilibrium revenue.

Theorem 1. The dynamics of the the daily prices pt behave as follows:

1. They are sandwiched between the price pser = pmon · qmon/s and the monopolist
price pmon, i.e., for all t we have that pser ≤ pt ≤ pmon. In particular, no demand
at prices lower than pser is ever supplied. Furthermore, these bounds are tight even
in the limit and pser = lim inft→∞ p

t and pmon = lim supt→∞ p
t.

2. For every price p > pser there exists a constant ∆p such that in every consecutive
∆p steps we have at least some pt ≤ p and thus all demand at a price above pser is
eventually supplied and furthermore this happens within a bounded time lag (where
the bound ∆p depends on the price).

We then analyze the social welfare achieved by this dynamic. The “social welfare” is
the sum (integral) of the values of the users whose demand is supplied. It is well known
that monopolist pricing may cause an unbounded loss of social welfare. Surprisingly, we
show that the social welfare achieved by serial monopolists approximates the optimum
well! Since our analysis above shows that all demand above price pser is supplied, the aver-
age long term social welfare is depicted by the total area of regions A+B+C+D+E+F+G
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in figure 3. This welfare is obviously bounded by the optimal possible social welfare (de-
picted as the total areas of regions A+B+C+D+E+F+G+H+I in figure 3), but turns
out to be not far from it.

Theorem 2. The social welfare obtained by by the serial monopoly is at least one half
of the optimal social welfare. This bound is tight as there exists some daily demand Q()
where the ratio is exactly 1/2.

This is a worst case result and for specific distributions the bounds are better. In
particular, for the uniform distribution the ratio is 15/16 while for the “equal revenue”
distribution, the classic example with a large gap between monopolist social welfare and
optimal social welfare, serial monopoly turns out to yield optimal social welfare.

2.4 Strategic Analysis

All the analysis so far was for a fixed demand function and only analyzed the rational
actions of the monopolists. If we imagine the demand coming from a continuum of
utility-maximizing bidders (as in our motivating application) then this translates to these
bidders acting in a myopic, non-strategic, way as in [8]. However the fact that, as we
show, intra-block prices fluctuate wildly puts this modeling assumption in question as
even price-taking bidders will likely be “patient”, preferring to wait for cheaper blocks.
Intuitively, patient users are motivated to strategically shade their bids down to (almost)
pser which is the lowest price that they can get in any block. Once they all do so,
the distribution that the monopolist sees in front of him is no longer Q() but rather a
strategically declared lower distribution and as he can only optimize his revenue relative
to this distribution, intuitively leading to a lower serial price p′ser, further reducing the
bids of the users, etc.

This leads us to an equilibrium analysis of this system where both users and leaders
are strategic. We stick with our simple non-stochastic deterministic model with price-
taking bidders and have the daily demand distribution Q() and supply amount s being
common knowledge. We consider a game between multiple users and leaders: for each
time step t we have a (new) continuum of infinitely-small users and a single (new) leader.
Each of our users has a true value v, where v is chosen for each user in the continuum of
users every time step according to the demand distribution Q. In each step t, each user
with true value v declares a a value ṽ according to some strategic manipulation function
that can be a function of his particulars: his value and the time, ṽ = mt(v). The declared
demand at time t, Q̃t, is generated by the distribution of ṽ at time t. The leader at each
time t may choose a price pt and a dominant strategy is to choose the monopolist price
for the declared current demand.4

We will focus on equilibria where the users’ manipulation function is time-invariant,
i.e. mt(v) = m(v) for some fixed manipulation function m, and where leaders all use
their dominant (only non-weakly-dominated) strategy of monopoly pricing. This would
be an equilibrium if for every bidder that is born in time t with value v, m(v) is indeed a
best reply to all the other users bidding according to m and all the leaders choosing the
monopoly price.

4Since the leader may only collect a fee that is bounded by the declared value, the leader’s knowledge
of the true demand and even true values does not allow him to do any better.
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It turns out that such an equilibrium of serial monopoly just goes back to the market
equilibrium of the true demand, hence loosing the price fluctuations, optimizing social
welfare, and giving up on any revenue optimization.

Theorem 3. There exists an equilibrium in un-dominated strategies with time-invariant
manipulation where pt = peq and qt = s for every t, where peq denotes the market equi-
librium price, i.e. Q(peq) = s. In this equilibrium users bid ṽ = m(v) = min(v, peq) and
leaders charge monopoly prices.

Furthermore, in every equilibrium in un-dominated strategies with time-invariant ma-
nipulation we have that pt = peq and qt = s for every t.

As in the non-strategic case, this analysis continued to consider bidders that “fully
patient”, i.e. assumed that user values do not decay with time. The next three sections
are devoted, respectively, to the proofs of the three theorems, where most of the technical
work is in the analysis of the dynamics in section 3.

3 Analysis of the Dynamics

This section gradually analyzes the (non-strategic) price dynamics in our model. All
proofs of lemmas appear in the appendix.

3.1 The Evolution of Pent-up Demand

We will analyze the pent-up demand within intervals of prices, i.e., for p′ > p, we are
interested in Dt(p)−Dt(p′). The pent-up demand in the range [p, p′] evolves as follows:
First, every time step a new amount of Q(p) − Q(p′) is added to the pent-up demand.
Whenever some pt is smaller than p then all of this demand is supplied and the pent-up
demand for time t + 1 is zero. When pt is larger than p′ all of the pent-up demand just
remains for the next step and whenever p < pt < p′ then some of this demand is supplied
and some is remains for the next step. Let us write this down formally.

When pt−1 < p < p′ we will have no pent-up demand Zt−1(p) = Zt−1(p′) = 0 and thus
Dt(p)−Dt(p′) = Q(p)−Q(p′). When pt−1 > p′ > p we have that Zt−1(p) = Dt−1(p)−qt−1

and Zt−1(p′) = Dt−1(p′) − qt−1 so Zt−1(p) − Zt−1(p′) = Dt−1(p) −Dt−1(p′) and Dt(p) −
Dt(p′) = (Dt−1(p)−Dt−1(p′)) + (Q(p)−Q(p′)). Finally, when p ≤ pt−1 ≤ p′ we will have
Zt−1(p′) = 0 while Zt−1(p) = Dt−1(p)− qt−1 and, since Dt−1(p′) ≤ qt−1 = Dt−1(pt−1), we
have Zt−1(p)− Zt−1(p′) ≤ Dt−1(p)−Dt−1(p′). Note that the last inequality holds in all
three cases.

Summing this up over a prefix of times {1, 2, ...t}, or over a range of times {T +1, T +
2, ...t} we get the following lemma.

Lemma 4. For every p ≤ p′ we have that:

1. For every t we have that Dt(p)−Dt(p′) ≤ t · (Q(p)−Q(p′)).

2. For all T and t > T we have that: Dt(p) − Dt(p′) ≤ (t − T ) · (Q(p) − Q(p′)) +
(ZT (p)− ZT (p′)).

3. For all T and t > T , if for all t′ such that T < t′ < t we also have that pt
′ ≥ p′ > p

then in fact we have equality Dt(p)−Dt(p′) = (t− T ) · (Q(p)−Q(p′)) + (ZT (p)−
ZT (p′)).
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4. For all T such that pT ≤ p < p′ (or T = 0) and all t > T we have that Dt(p) −
Dt(p′) ≤ (t− T ) · (Q(p)−Q(p′)).

5. For all T such that pT ≤ p < p′ (or T = 0), if for all t′ such that T < t′ < t we also
have that pt

′ ≥ p′ > p, then Dt(p)−Dt(p′) = (t− T ) · (Q(p)−Q(p′)).

3.2 The Serial Monopoly Price and Quantity

Let us start by looking at the two basic (price,quantity) points of the daily market with
demand Q() and supply s: the market equilibrium and the monopolist pricing.

The market equilibrium point is when supply equals demand. i.e. at the price peq =
P (s) = Q−1(s) (where P () is the inverse function of Q(), at which point qeq = Q(peq) = s,
and the social welfare SW eq =

∫ s

0
P (q)dq is maximized. In figure 3 the social welfare at

equilibrium is visualized the sum of the areas of regions A+B+C+D+E+F+G+H+I.
The revenue at that point is REV eq = peq · s which is visualized as the sum of regions
D+G+I.

The monopolist chooses a price pmon that maximizes REV mon = pmon · qmon, where
qmon = Q(pmon) which on the graph is given by the sum of regions B+C+D. The social

welfare at this point is SWmon =
∫ qmon

0
P (q)dq which in figure reffig:sup-dem is given by

the sum of regions A+B+C+D. As we assume that the monopolists revenue is strictly
larger than the market equilibrium revenue REV mon > REV eq, we must have pmon >
peq, qmon < qeq, and SWmon < SW eq. The gap between REV mon and REV eq can be
unbounded as the latter may even be 0 (if the demand is bounded by s, i.e. when P (s) =
0). The gap between SWmon and SW eq is also known to be potentially unbounded.
Specifically, setting H = P (0)/P (s), the gap can be large as ln(H), but no more.

We now define the “serial monopoly” point. While there is not going to be any
convergence of the prices pt, we will still be able to focus on a meaningful definition of
(pser, qser) that captures useful information about the prices and quantities in the long
term of the dynamic. We will define pser as the price at which selling all the supply would
give the monopoly revenue.

Definition 3.1. The serial monopoly price and quantity are defined as pser = pmon ·
qmon/s; qser = Q(pser).

Since qmon < s we have that pser < pmon and qser > qmon. We also have pser > peq and
qser < s since otherwise we would have peq · s = pser · s = pmon · qmon, contradicting our
assumption that the monopolist’s revenue is strictly larger than the equilibrium revenue.

Comment: In the more general case where Q() is not strictly decreasing, the definition of
pser should be corrected to be the largest value pser such that Q(pser) = Q(pmon · qmon/s);
we will continue to assume that Q is strictly decreasing so for us this complication is
superfluous.

3.3 Basics of Price Dynamics

The first easy lemma states that pser is a clear lower bound for any pt. This also provides
the intuition for the particular choice of pser.

Lemma 5. For every t we have that pt ≥ pser.
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Using lemma 4 (5) with T = 0 we see that all demand below pser remains as pent-up
demand.

Corollary 6. For every p < pser and for all t, Dt(p)−Dt(pser) = t · (Q(p)−Q(pser)).

We next analyze the price movement, where the easy, but perhaps surprising obser-
vations is that prices always decrease, unless they “jump up” to the monopoly price (and
then start decreasing again).

Lemma 7. For every t either pt = pmon or pt < pt−1.

This in particular implies that prices never go above pmon.

Corollary 8. For all t: pt ≤ pmon.

The next lemma shows that whenever there is sufficient pent-up demand above pser

then the price cannot go up to pmon and furthermore the decrease in the prices is significant
- when measured in terms of of the density of the demand.

Lemma 9. Assume that for some p > pser we have that Dt(p) ≥ s then pt < pt−1 and
(Q(pt)−Q(pt−1)) ≥ (t− 1)−1 · s · (p− pseq)/pmon. Furthermore, if for some T < t we had
pT ≤ pt then actually (Q(pt)−Q(pt−1)) ≥ (t− 1− T )−1 · s · (p− pser)/pmon.

3.4 Sequences of decreasing price steps

The first simple lemma states that as long as prices remain above some threshold p′ then
the demand for all lower prices p just keeps being pent-up until it reaches as high a
quantity as we desire which in our case is s.

Lemma 10. For every p < p′ there exists ∆0 such that for all T and all ∆ ≥ ∆0 we have
that either (a) there exists T ≤ t ≤ T + ∆ with pt < p′ or (b) DT+∆(p) ≥ s.

We now reach the key part of the characterization showing that prices indeed approach
pser (decreasing from above).

Lemma 11. For every p∗ > pser there exists ∆ such that for every T there exists some
T < t ≤ T + ∆ with pt ≤ p∗.

Let us say a word of intuition. Lemma 9 shows that when we are in a sequence of
decreasing prices pt, each time the rate of decrease – when measured in terms of Q() –
is proportional to 1/t (or even 1/(t− T ) where T is the last time the price was below a
threshold that we are aiming for). Thus, as the series 1/t diverges, we cannot have an
infinite sequence of decreasing prices until we go below our desired threshold. The formal
proof appears in the appendix.

3.5 Prices need to jump up

We start by stating the obvious fact that demand that was not supplied remains as
pent-up demand:

Lemma 12. For any time T we have that
∑T−1

t=1 q
t ≥ T ·Q(p)−DT (p). If p ≤ mint<T p

t

then we have equality.

In particular,
∑T−1

t=1 q
t = T ·Q(pser)−DT (pser). We are now ready to show that prices

must jump up to pmon infinitely often.

Lemma 13. There exists infinitely many t such that pt = pmon.

11



3.6 Putting it all Together

Let us now see how we have proved theorem 1.

Proof. (of Theorem 1) Lemma 5 and 8 provide the upper and lower bounds on pt while
lemmas 11 and 13 prove that these are tight as t→∞.

Lemma 11 provides the bound on the number of steps during which pt can lie above
p. Clearly once pt ≤ p the demand at this price is completely supplied, Zt(p) = 0.

4 Welfare Analysis

As we have so far been able to prove the demand that is supplied by the serial monopoly
dynamics is exactly that with p > pser, we get that the social welfare achieved is given
by

∫ qser

0
P (q)dq, depicted in figure 3 by the sum of regions A+B+C+D+E+F+G. Using

the way we defined pser we now get an approximate welfare result.

Lemma 14. For every demand function Q and supply level s we have that the welfare
obtained by serial monopoly is at least half of the social welfare at equilibrium.

Proof. In figure 3, the social welfare at equilibrium is given by the areas of regions
A+B+C+D+E+F+G+H+I, while the social welfare at the serial monopoly point is given
by regions A+B+C+D+E+F+G. It thus suffices to show that the area of H+I is bounded
from above by A+B+C+D+E+F+G. In fact it is even true that C+D+F+G+H+I+J is
bounded by B+C+D. That is true since the area of the former is pser · s while the latter
is pmon · qmon which are equal.

While the proof implies various stronger bounds such as SW ser ≥ max(SWmon, SW eq−
REV mon), the bound is tight as can be seen from the following example:

Example 1. Assume that the demand is for M − 1 units at price 1 plus an additional
unit at price M + 1 for some large M and assume that the supply is exactly s = M .
(This example is discrete giving a non-continuous and only weakly decreasing demand
function, but it is easy to add to it ε mass making it continuous and strictly decreasing as
in our analysis.) The equilibrium point is at price = 1 and quantity = M where the social
welfare is 2M . The monopolist would chose pmon = M+1 and qmon = 1 obtaining welfare
of only M + 1. The serial monopoly price would be chosen as pser = (M + 1)/M > 1 and
thus qser = 1 achieving social welfare of M + 1 rather than the possible 2M .

So we now have essentially proved theorem 2:

Proof. (of Theorem 2) The combination of example 1 and lemma 14 is exactly the
statement of the Theorem.

In “typical” scenarios the loss is significantly lower as is demonstrated by the following
examples.

Example 2. Consider a demand that comes from the uniform distribution on [0, 1],
i.e. Q(p) = 1 − p for 0 ≤ p ≤ 1 and supply of s = 1. The inverse function is given
by P (q) = 1 − q, the equilibrium price is peq = 0 with qeq = 1 giving total welfare of∫ 1

0
(1 − q)dq = 1/2. The monopoly price is pmon = 1/2 with qmon = 1/2 obtaining social

welfare of only
∫ 1/2

0
(1− q)dq = 3/8. The serial monopoly price would be pser = 1/4 with

qser = 3/4, so the total welfare would be
∫ 3/4

0
(1−q)dq = 15/32, which is only 6.25% lower

than the optimal 1/2.
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Example 3. Consider a demand that comes from an “equal revenue” distribution: Q(p) =
1/p for p ∈ [1, H] (with Q(p) = 1 for p ≤ 1 and Q(p) = 0 for p > H) and supply
s = 1. The inverse function is given by P (q) = 1/q for q ∈ [1/H, 1] (and P (q) = H
for q < 1/H). Equilibrium price is peq = 1 where qeq = 1 at which the social welfare is∫ 1

0
P (q)dq =

∫ 1/H

0
H · dq +

∫ 1

1/H
q−1dq = 1 + lnH. The monopoly price is pmon = H with

qmon = 1/H (assuming ties are broken in the worst way, which could be ensured with a
small perturbation) for which the social welfare is only 1. The serial monopoly price is
pser = 1 identical to the equilibrium price and so obtains full welfare of 1 + lnH. (Here
we had pser = peq which can happen since in this example we have Reveq = Revmon. With
a tiny perturbation we could have Reveq < Revmon as assumed in our analysis of the
dynamics which would then result in pser > peq but arbitrarily close to it, still obtaining
that the serial monopoly social welfare is arbitrarily close to the equilibrium welfare.)

5 Strategic Equilibrium Analysis

In this section we attempt analyzing the dynamic behavior of this serial monopoly when
the users are now strategic and “patient”. I.e. while all of our previous analysis above
assumed that each serial monopolist was faced with the true demand, we will now assume
that the monopolists are faced with the demand that is declared by the users.

5.1 The Model

We stick with our simple non-stochastic deterministic model with price-taking bidders
and with the continuous and strictly decreasing daily demand distribution Q and the
supply s being common knowledge. We consider a game between users and monopolists:
for each time step t we have a (newly born) continuum of infinitely-small users and a
single (new) leader. Each of our users has a true value v, where, at each time step, v is
chosen according to the demand distribution Q. Our game proceeds in time steps where
at each time t we have two stages. In the first stage, each of the users “born” at this
time declare a bid ṽ where each user with true value v bids according to some strategic
manipulation function ṽ = mt(v). We assume that users put their bid ṽ once when they
first enter the market rather than being able to change their bid every step. Our users are
fully patient and a user born at time t with value v gets utility v − pt′ for the first t′ ≥ t
with pt

′ ≤ ṽ (and 0 if no such t′ exists). The declared daily demand Q̃t() is generated by
the distribution of these ṽ’s and is added to the (declared) pent up demand to obtain the
total declared demand D̃t faced by the leader at time t. In the second stage of this time
step, the (newly born) leader of time t gets to choose a price pt for the current block and
his reward for price pt is pt ·min(s, D̃t(pt)).5

5Technically, our model allows the leaders to choose a price pt that leads to over-demand D(pt) > s,
and this definition of utility of the users satisfies all the – more than s quantity – of users who bid at
least pt which may not be realistic. We could define precisely a quantity of exactly s who get satisfied in
such a case, but we do not have to worry about this here as our leaders will never (in any equilibrium)
choose such pt since their own utility could be strictly increased by choosing p′ > pt with D(p′) = s
which gets higher revenue.
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5.2 An Equilibrium

Let us start by identifying a natural equilibrium of this game: First, the strategy of
choosing p̃t to be the monopolist price for the declared total demand D̃t() at day t is
clearly a dominant strategy for the leader of day t so our equilibrium will fix this strategy
for the leaders6. We will have a fixed (time-independent) manipulation strategy for users:
ṽ = m(v). Once this user time-independent strategy function m is chosen, the true
demand distribution Q() from which v is chosen defines a declared demand distribution
Q̃() induced by m(v). The dynamics of the game then proceed as in our analysis in
the previous sections but according to the declared distribution Q̃() rather than the true
distribution Q().

Example 4. The user’s strategy functions m(v) = min(v, peq) are in equilibrium with
the leader’s monopolist pricing for each day, where peq is the equilibrium price of the
true distribution Q(). In this equilibrium the daily prices and quantities do not fluctuate:
pt = peq and qt = s for all t.

To show that this an equilibrium we first show that pt = peq is indeed the monopoly
price for every leader. Since with the declared demand induced by this m, the new
daily declared demand at price peq exactly exhausts the daily supply of the monopolist,
Q̃(peq = s, and all pent-up demand is at lower values, maximizing revenue according to
D̃t is the same as maximizing revenue according to Q̃ which is peq for which the declared
demand is clearly s. I.e. in this case peq is also the monopolist price of the declared Q̃
and thus there are no daily fluctuations in price but rather we always have pt = peq. Now
notice that the users’ strategy function m(v) = min(v, peq) is indeed a best response since
users with v < peq are not being served and they can only be served by paying peq which
they they are not willing to, while users with v ≥ peq are being served at price peq and
that is optimal for them.

5.3 Characterization

Technically, the equilibrium above is not the only Nash equilibrium point as, for example,
we can have an equilibrium where everyone “pretends” that the supply is smaller than
it really is s′ < s, where all leaders only supply s′ and all bidders bid according to
m′(v) = p′eq if v ≥ p′eq and m′(v) = 0 if v < p′eq, where p′eq is the equilibrium price of
the daily demand Q() with the smaller pretended supply s′. Note that with the given
declared supply there is never more than s′ demand at a strictly positive price and so
the leaders are best responding, while with these leader strategies there is a “declared
supply” of only s′ and thus the users are best-replying. This equilibrium is certainly
artificial since leaders are not using their dominant strategies.

We will thus restrict ourselves to characterizing equilibria in un-dominated strategies,
in which leaders will always use their dominant strategy of choosing the monopolist
price (of the declared total demand at their day). Furthermore we will concentrate on
manipulation strategies that are time-invariant, i.e. where for all t the daily manipulation
functions are the same mt(v) = m(v) for some fixed m(v) (as in the example above)7 The

6Since the leaders get paid according to the declared values, the leader’s knowledge of the true demand
does not allow him to do any better.

7This time-invariance allows us to easily employ our analysis of the myopic case in section 3, but our
characterization does not seem to really require it.
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strategy of users born at time t will be given by the mapping ṽ = m(v) thus the induced
declared new demand distribution at time t is a fixed Q̃. I.e. be an equilibrium if for
every bidder that is born in time t with value v, m(v) is indeed a best reply to all the
other users bidding according to m and all the leaders choosing the monopoly price. So
we have:

Definition 5.1. An equilibrium in un-dominated strategies with time-invariant manip-
ulation is a manipulation function m() such that for every user born at time t with value
v, the bid m(v) is a best reply to all the other users bidding according to m() and all the
leaders using monopolist pricing.

We now start analyzing the properties of such equilibria.

Lemma 15. In every equilibrium in un-dominated strategies with time-invariant manip-
ulation m(), we have that that for all t: pt = p̃eq = p̃mon where p̃eq and p̃mon are defined
with respect to the distribution Q̃ induced by m.

Proof. Un-dominated strategies (monopoly pricing) for the leaders and time-invariant
manipulations (m()) for the users lead us to exactly the myopic dynamics studied previ-
ously for the distribution Q̃ induced by m(). Let (p̃ser, q̃ser) be the serial monopoly price
and quantity of the declared distribution. Our analysis in section 3 shows the dynamics
with the declared demand will essentially sell the quantity q̃ser (per day) at prices that
fluctuate between p̃mon and p̃ser. At equilibrium, price fluctuations cannot occur since a
bidder will never be willing to pay a higher price if he can later get a lower price. But as
shown, such fluctuations will occur unless the equilibrium price p̃eq already gives the mo-
nopolist’s revenue. It follows that at equilibrium m() must induce a demand distribution
Q̃ such that p̃eq = p̃mon in which case we will have a fixed sale price pt = p̃eq for all t.

Lemma 16. In every equilibrium in un-dominated strategies with time-invariant manip-
ulation m() we have that for all v < p̃eq we have m(v) < p̃eq and for all v > p̃eq we have
m(v) ≥ p̃eq. Hence Q̃(p̃eq) = Q(p̃eq).

Proof. A bidder with v < p̃eq would rather lose than pay pt = p̃eq so, as his bid does not
affect the price pt, he will have to bid lower than p̃eq for that to happen. The same (but
opposite) is true for v > p̃eq.

We are now ready to prove theorem 3.

Proof. (of theorem 3) The first part of the theorem was shown in the example in the
previous subsection. We now prove the second part.

As shown in lemma 15, in any such equilibrium we have a fixed sale price pt = p̃eq

for all t and thus it suffices to show that p̃eq = peq. Since p̃eq is the equilibrium price of
Q̃() then Q̃(p̃eq) = s and since, by the previous lemma, Q̃(p̃eq) = Q(p̃eq) we also have
Q(p̃eq) = s. But since peq is the market equilibrium price of Q we also have Q(peq) = s
and since Q was assumed to be strictly decreasing we must have thus peq = p̃eq.
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[6] Jason Gaitonde and Éva Tardos. Stability and learning in strategic queuing systems.
In Proceedings of the 21st ACM Conference on Economics and Computation, EC ’20,
page 319–347, New York, NY, USA, 2020. Association for Computing Machinery.
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Appendix: Postponed proofs of lemmas

Proof. (of lemma 4) We can prove (1) and (2) by induction on t: when moving from
step t − 1 to t we have that Dt(p) − Dt(p′) = (Zt−1(p) − Zt−1(p′)) + (Q(p) − Q(p′)) ≤
(Dt−1(p)−Dt−1(p′))+(Q(p)−Q(p′)) and thus the LHS increases by at most ((Q(p)−Q(p′))
which is exactly how the RHS increases. The base of the induction holds as for part A,
t = 1, we have Z0(p) = Z0(p′) = 0, while for part B, t = T + 1, we have Dt(p)−Dt(p′) =
(Q(p)−Q(p′)) + (ZT (p)− ZT (p′)).
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For (3), note that when pt−1 ≥ p′ > p we have that Zt−1(p) = Dt−1(p) − qt−1 and
Zt−1(p′) = Dt−1(p′)− qt−1 so Dt(p)−Dt(p′) = (Dt−1(p)−Dt−1(p′)) + (Q(p)−Q(p′)) and
thus we get equalities throughout the induction.

For (4) and (5), just note that pT ≤ p < p′ (or T = 0) we actually have ZT (p) =
ZT (p′) = 0 and then apply (2) and (3) respectively.

Proof. (of lemma 5) The maximum revenue that is achievable from a price p is p · s and
when p < pser we have that p · s < pmon · qmon and that revenue can be achieved at any
step using the monopolist price.

Proof. (of lemma 7) For p ≥ pt−1 we have that Dt(p) = Q(p) so the maximal revenue
obtained by possible p ≥ pt−1 is exactly the monopolist’s revenue that is obtained at
pt = pmon (we assume that ties in maximum revenue are broken consistently). So, unless
pt = pmon then we must obtain the maximum revenue in the range p < pt−1.

Proof. (of lemma 9) We will prove the first part of the lemma. First we cannot have
pt = pmon as the revenue obtained from p would be higher: p · s > pser · s = pmon · qmon.

As pt gives better revenue than p i.e., we have that pt ·Dt(pt) ≥ p · s = (p− pser) · s+
pser · s = (p− pser) · s+ pmon · qmon.

Separating the total demand at time t to its two components we get pt · Dt(pt) =
pt · Zt−1(pt) + pt ·Q(pt) ≤ pt · Zt−1(pt) + pmon · qmon ≤ pmon · Zt−1(pt) + pmon · qmon.

Putting these together we get that (p − pser) · s ≤ pmon · Zt−1(pt). Now Zt−1(pt) =
Zt−1(pt) − Zt−1(pt−1) ≤ Dt−1(pt) − Dt−1(pt−1) ≤ (t − 1) · (Q(pt) − Q(pt−1) so it follows
that (p − pser) · s ≤ (t − 1) · pmon · (Q(pt) − Q(pt−1) and thus (Q(pt) − Q(pt−1) ≥ (t −
1)−1 · s · (p− pser)/pmon.

The second part of the lemma is similar after taking into account that Dt−1(pt) −
Dt−1(pt−1) is actually bounded by (t− 1− T ) · (Q(pt)−Q(pt−1).

Proof. (of lemma 10) If we have that pt ≥ p′ for all T ≤ t ≤ T + ∆, then using lemma
4(3) we have DT+∆(p) ≥ DT (p) − DT (p′) = ∆ · (Q(p) − Q(p′)) + (ZT (p) − ZT (p′)) ≥
∆ · (Q(p)−Q(p′)). So just choose ∆0 = s/(Q(p)−Q(p′)).

Proof. (of lemma 11) Assume not, ant let T be some time step at which pt ≤ p∗ or T = 0
and let p = (p∗ + pser)/2 so pser < p < p∗ and p∗ − pser = 2 · (p − pser). By lemma
10 there exists ∆0 after which Dt(p) ≥ s for all t ≥ T + ∆0 until the first time that
pt ≤ p∗. Fix any ∆ > ∆0 so that pt > p∗ for all T + ∆0 < t ≤ T + ∆. using lemma
9 we get a decreasing sequence of prices pT+∆0 > pT+∆0+1 > pT+∆0+2 > · · · pT+∆ with
(Q(pt+1)−Q(pt)) ≥ (t−T )−1·s·(p−pser)/pmon. Summing up over all T+∆0 < t ≤ T+∆ we
get Q(pT+∆)−Q(pT+∆0) ≥ (

∑T+∆
t=T+∆0+1(t− T )−1) · s · (p− pser)/pmon. We now estimate∑T+∆

t=T+∆0+1(t − T )−1 =
∑∆

i=∆0+1 i
−1 ≥ ln(∆/(1 + ∆0)). So Q(pT+∆) − Q(pT+∆0) ≥

ln(∆/(1 + ∆0)) · s · (p − pser)/pmon. Since Q(pT+∆) − Q(pT+∆0) ≤ Q(pser) − Q(pmon),
whenever Q(pser) − Q(pmon) < ln(∆/(1 + ∆0)) · s · (p − pser)/pmon then we to get a
contradiction. I.e. if we choose ∆ so that ln(∆) > ln(1 + ∆0) + 2 · (Q(pser)−Q(pmon)) ·
pmon/(s · (p∗ − pser)) then at some step T + ∆0 ≤ t ≤ T + ∆ we must have pt ≤ p∗.

Proof. (of lemma 12) The proof is by induction on T . For T = 1, the LHS is 0 and the
RHS is 0. When moving from step T − 1 to T , the LHS grows by exactly qT−1. The first
term on the RHS grows by Q(p) and ZT (p) ≥ DT−1(p)− qT−1 and thus the second term
on the RHS, DT (p) = ZT (p) + Q(p), grows by at least Q(p) − qT−1, as needed. When
p ≤ pT−1 then we have that ZT (p) = DT−1(p) − qT−1 and the second term grows by
exactly the required amount.
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Proof. (of lemma 13) Assume by way of contradiction that that there is some last time
where pt = pmon and thus by lemma 7 after this time the prices pt are a monotone
decreasing sequence and so by lemma 11 they approach pser. Let qser < q∗ < s (see
section 3.2), let p∗ > pser be so that p∗ · q∗ < pser · s = pmon · qmon (such a value for p∗

must exist since Q() is continuous), and let T0 be a point for which for every t > T0 we
have pt < p∗ (which must exist according to lemma 11).

Since pt optimizes revenue at time t we also must have pt ·qt ≥ p∗ ·q∗ and since pt < p∗

for t > T0 we must have qt > q∗ for all t > T0. It follows that the total supplied quantity
up to some large time T > T0 is

∑T
t=1 q

t ≥ (T − T0) · q∗. We now apply lemma 12 to

get
∑T

t=1 q
t = (T + 1) · Q(pser) − DT (pser) ≤ (T + 1) · qser. Putting these together we

have that (T − T0) · q∗ ≤ (T + 1) · qser which is a contradiction for large enough T since
q∗ > qser.
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