The communication complexity of
threshold gates

Noam Nisan*

November 2, 1994

Abstract

We prove upper bounds on the randomized communication com-
plexity of evaluating a threshold gate (with arbitrary weights). For
linear threshold gates this is done in the usual 2 party communication
model, and for degree-d threshold gates this is done in the multiparty
model. We then use these upper bounds together with known lower
bounds for communication complexity in order to give very easy proofs
for lower bounds in various models of computation involving thresh-
old gates. This generalizes several known bounds and answers several
open problems.

1 Introduction

1.1 Threshold gates

A (linear) threshold gate is a boolean function on m boolean inputs @1 ... 2,
giving the value true if 3, w;x; > 0, where w;, the weights, and 0, the thresh-
old value, are real constants defining the gate. (For the input variables «;
we identify false with the real number 0, and true with the real number 1.)
These types of functions have attracted much interest as computing elements

([AlI89, GHR92, HHK91, HMP*87, HG91, MK61, SBKH91, RW92, SBII,
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Smo90, MP88, Bei92], and many more). This interest has been sparked,
among other reasons, because their natural interpretation as counting ele-
ments and because of some similarity they have to real neurons.

In some papers a generalization of these gates is considered: instead of
taking a weighted sum of the input variables, we are allowed weighted sums of
arbitrary functions of at most d variables each [MP88, Bru90, BS92, GHR92,
HGY91, Bei92, BRSI1]. These generalized thresholds are sometimes called
threshold gates of degree d or perceptrons of order d. It is not difficult to see
that the following definition captures this generalization.

Definition 1 A boolean function is called a threshold gate of degree d (or in
short d-threshold gate) if it can be expressed as the sign of a real polynomial
of degree at most d.

When we say that a boolean function is represented by a sign of a poly-
nomial we mean that a positive value is interpreted as true, a negative value
as false, and zero is never allowed. Notice that now linear threshold gates
are just threshold gates of degree 1.

There have been several lower bounds in the literature on the number
of threshold elements needed (in various models of computation) in order to
compute certain functions [HMP*87, GT91, ROS93, Vat92, HG91, Smo90].
In this paper we obtain these lower bounds in a unified and simple manner
and in fact generalize each of these known lower bounds in at least one of
three ways:

1. We show a lower bound for general d-threshold gates while the known
lower bound held only for linear threshold gates.

2. We show a lower bound for threshold gates whose weights may be arbi-
trary real numbers while the known bounds only applied to threshold
gates with small integer weights.

3. We show a lower bound for computing functions for which the known

lower bounds do not apply.

1.2 Communication Complexity

In this paper we will obtain all our lower bounds as corollaries to known
lower bounds in communication complexity models. We will use both the
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well studied two-party model of Yao [Yao79], and the somewhat less studied
multiparty model of Chandra, Furst and Lipton [CFL83]. Definitions of these
models appear in section 2.

The basic argument is the same in all cases: If a function with high
communication complexity is computed by elements each having small com-
munication complexity, then many of these elements are required in order
to compute the function. Arguments along these lines were used in varying
levels of explicitness and in different scenarios in [HMP*87, GT91, ROS93,
Vat92, HGI91, CG85, Vaz87].

We will prove our lower bounds on the number of threshold gates re-
quired to compute functions for which there are known “large” communica-
tion complexity lower bounds. In order to derive our bounds we will thus
require “small” upper bounds on the communication complexity of evaluating
a threshold gate. There are two difficulties which need to be overcome:

1. The communication complexity even of a linear threshold gate may
be large. (Only if the weights are all polynomially bounded integers
then the communication complexity is guarentied to be small.) In or-
der to overcome this difficulty we consider randomized communication
complexity.

2. Even the randomized complexity of 2-threshold gates may be large. In
order to overcome this difficulty, for d-threshold gates, we consider the
(d + 1)-party communication model.

The main new technical result of this paper is thus the following upper
bounds for the communication complexity of threshold gates.
Theorem 1. The randomized communication complexity of a linear thresh-
old gate with m inputs is O(log m). The (d + 1)-party randomized commu-
nication complexity of a d-threshold gate on m variables is O(dlog” m).
The result regarding linear threshold gate was obtained jointly with Muli
Safra. The result regarding multiparty complexity generalizes a result of
[HGI1] proving a stronger deterministic bound for the case of polynomially
bounded weights.
Remark: These bounds are for two-sided error randomized complexity. It
is not difficult to see that a linear threshold gate may have linear zero-error
(or even one-sided error) randomized complexity.



Our lower bounds will be proven for the following functions for which
strong (linear) randomized communication complexity lower bounds are known.
TP (1. 2p, 91 Yn) = 25 23y (mod 2)

DIST (x1...20,y1 ... yn) = Ni(xzi =0o0ry, =0)
GIPy (211150, ooy Tt Tpn ) = 25 [1; 256 (mod 2)

1.3 New lower bounds

Circuits

The first model of computation we consider is simply a circuit composed of
threshold gates. The size of the circuit is the number of gates, and since each
gate may have unbounded fanin, no super-constant lower bound is trivial.
This model was considered in [Smo90] where an Q(n/logn) lower bound is
proved for several functions (including I P) for the case of linear threshold
gates with small integer weights. In [ROS93] this was improved to a linear
lower bound (for IP) for linear threshold gates with arbitrary weights. We
derive a somewhat weaker bound, but that also applies to DIS.J (even for
the case of arbitrary weights as opposed to the techniques of [ROS93],) and
that also applies to d-threshold gates.
Theorem 2. Any circuit of linear threshold gates computing I P, or DI1S.J,
requires {2(n/log n) gates. Any circuit of d-threshold gates computing G P4,
requires Q(cyn/log?n) gates, where ¢g = d=2471.
Decision trees

The second model we consider is that of decision trees, where each query
may be a threshold function. (The decision tree computes a boolean function
of the boolean inputs.) This model was considered in [GT91] who prove a
linear lower bound (for IP) for linear threshold gates and in [Vat92] who prove
a near-linear lower bound (for GIP) for d-threshold gates with small integer
weights. We prove a slightly weaker bound but which applies also to DISJ
(for which the techniques of [GT91] do not apply,) and which applies also
to d-threshold gates with arbitrary weights. This answers an open problem
posed in [GT91] and in [Vat92].
Theorem 3. Any decision tree of linear threshold gates computing [P, or
DISJ, requires depth Q(n/logn). Any decision tree of d-threshold gates
computing GI Py, requires depth Q(cyn/log*n), where ¢y = d=347%.
Remark: Theorem 1 may in fact be obtained as a corollary of this theorem.
Majority vote



The third model we consider is that of a depth two circuit, the top gate
being a simple majority gate, and the bottom gates being threshold gates.
In other words, the model is a majority vote of threshold gates. This model
was considered in [HMP*87] who prove an exponential lower bound for linear
threshold gates with small integer weights, and in [HG91] who prove expo-
nential lower bounds for d-threshold gates with small integer weights. We
prove this bound also for threshold gates with arbitrary weights, answering
a question of [ROS93].

Theorem 4. Any majority vote of linear threshold gates computing I P, re-
quires size 2", Any majority vote of d-threshold gates computing G Py,
requires size 2%¢a®/1087) where ¢ = d=3471.

Remark:Proving super-polynomial lower bounds for the power of a linear
threshold gate of linear threshold gates, both layers with arbitrary weights,
is still an open problem.

2 Preliminaries

2.1 Communication complexity

Yao [Yao79] considered the following model where two players, one holding
x1...x,, and the other holding y; ... y,, wish to evaluate a boolean function
flzr...xn;y1...yn). The two players exchange messages with each other
according to some pre-defined protocol, and at the end of the protocol both
of them must know the value of f. The communication complexity of f is
defined to be the number of bits that need to be exchanged in the worst case
by the best protocol for computing f. This model was extensively studied in
the literature ([Yao79, BFS86, CG85, DGS84, FKN91, HR88, MS82, NWOl,
Raz90, AUY83], and many more).

In this paper we also deal with boolean functions f(x1...x,,), where the
partition of the input bits to the two players is not predefined. In this case we
define the communication complexity of f as the maxzimum over all possible
partitions of the communication complexity under that partition.



2.2 Randomized complexity

In this paper we will be interested in randomized complexity. We will only
consider in the 2-sided error case, where a small probability of error is allowed
on any input. A randomized protocol for computing f is a distribution over
deterministic protocols, and we define the cost of the randomized protocol
as the worst case number of bits sent over all possible inputs and over all
choices of the deterministic protocol.

Definition 2 The randomized e-error complexity of a boolean function f,
R.(f), is defined to be the cost of the best randomized protocol for f that
computes the correct answer with probability 1 — €. (Probability taken over
the random choices of the protocol, but for the worst case input.)

We will also use two abbreviations:

Definition 3 R(f) = Ri/3(f). Riq(f) = Rija—e(f).

The notation R[q is useful in cases where the protocol is correct with
probability only slightly greater than 1/2.
Remark: Changing the definition of the cost to be the expected number of
bits sent (expectation taken over the random choices) changes the complexity
by only a constant factor.
Remark: We can view this type of randomized protocol as a protocol where
the two parties share a common random string viewed by both (public coins
model). This string tells them which deterministic protocol to run. A differ-
ent definition often used is to allow each party separately to flip coins (private
coins model). This obviously weakens the power of the players, but [New91]
shows that the complexity increases by at most an additive O(logn) factor.
Remark: As stated previously, for functions f(xy...2,), where the parti-
tion of the variables to the two players is not pre-defined, R(f) is defined to
be the randomized complexity under the worst case partition.

Finally, we will introduce the following notation for the communication
complexity of famalies of functions.

Definition 4 Let G be a set of functions, then we define R(G) = supeq Re(g).



2.3 Known lower bounds

A lower bound of Q(y/n) for the randomized complexity of DIS.J is given
in [BFS86], this was improved to a tight ©(n) in [KS87], and the proof was
simplified in [Raz90].
Theorem A.
R(DISJ,) = 0(n)

O

A lower bound of Q(log®n) for the randomized complexity of IP was
proven in [Yao83]. The bound was improved to (n/logn) in [Vaz87] and
then to a tight ©(n) in [CG85]. These lower bounds show in fact that ©(n)
bits are needed even to be correct with probability slightly better than 1/2.
Theorem B.

Riq(IP,) > n/2 —log ¢!

a

2.4 Multiparty protocols

We will also consider the multiparty model of Chandra, Furst and Lipton
[CFL83] which was also studied in [BNS89, HG91, NW91]. In this model a
function of k n-bit strings, f(21...4%), is to be evaluated by k players, where
each player ¢ knows the values of all ; except x;. The players communicate
according to a fixed protocol by taking turns writing on a blackboard viewed
by all. The cost of the protocol is the number of bits that are written in the
worst case in order to evaluate f. Note that for & = 2 this model becomes
the communication complexity model of Yao.

As in the two party case, for a function f(x1 ... a.,), where the partition of
the bits into k subsets is not predefined, we define the k-way communication
complexity of f as the maximum over all partitions into k subsets of the
complexity relative to the partition. As in the two party case we consider
randomized protocols, in the public coins model, and which are allowed two-
sided error.

Definition 5 The randomized e-error k-way complexity of f, R*(f), is the
cost of the best randomized k-party protocol which computes f correctly with
probability 1 — ¢ on every input. As before we use the abbreviations R¥(f) =

R]f/:a(f) and Rﬁ](f) = le/z—e(f)'



A lower bound for G'IP is proven in [BNS89].
Theorem C.
Rﬁ](G]Pkm) > n/4k —log ¢!,

3 Communication complexity of threshold
gates

In this section we give upper bounds to the communication complexity of
threshold gates: for linear threshold gates in the 2-party model, and for
higher degree thresholds in the multiparty model. The first step we must
take is to limit somehow the range of the weights (i.e. of the coefficients of
the polynomial). By definition, the weights of the inputs to the threshold
gate may be arbitrary reals. However it is known that for linear threshold
gates, without loss of generality, we may assume that all the weights are
O(mlogm) bit integers, where m is the number of input variables. This fact
seems to be folklore, and a proof can be found in [GHR92]. From this we
easily also deduce:

Lemma 1 Given an arbitrary d-threshold gate on m variables, there exists
an equivalent d-threshold gate in which all weights are O(m®dlogm)-bit in-
tegers.

Proof: A d-threshold gate on m variables may also be viewed as a linear
threshold gate whose inputs are all the possible monomials of degree at most
d out of m variables. There are at most O(m?) such monomials, and the
lemma thus follows from the statement regarding linear threshold gates. O

3.1 The two-party case

In this section we provide a randomized protocol for evaluating a linear
threshold gate.

Our protocol uses as a black box an equality testing protocol. While
it is known that in the private coins model, randomized equality testing of
n-bit strings requires ©(logn) bits of communication, it is also known that
using public coins O(1) bits suffice (this result is attributed in [RW89] to M.
Karchmer). For completeness we give a proof. Denote by EQ, the problem



of testing whether two n-bit strings are equal (where each party recieves one
of the two strings).

Lemma 2 R.(EQ,) = O(loge™).

Proof: The two parties share k& random n-bit strings, r1...7, where k =
loge!. Each party computes the inner product of its string with each of
the random strings, and the parties compare inner products (mod 2). (This
requires k bits of communication as one party must send the & bits denoting
the inner products to the other party.) It is clear that if the two strings
were equal then all inner products will be equal. Elementary linear algebra
in GF(2) will also reveal that if the two strings were not equal then the
probability that all inner products are equal is exactly 27%. a

We are now ready to give a protocol for evaluating a linear threshold gate.

Theorem 1la. Let g(xy...2,,) be a linear threshold function, then R.(g) <
O(logm + log ™).
Proof: Assume, without loss of generality, that ¢ is given by >, w;z; > 0,
where 6 and all w; are O(m log m)-bit integers. The m inputs to the threshold
gate are partitioned between the two parties, say the first party holds z;...xy,
and the second @jyi...2,,. The first party privately computes y = S°% | w;z;,
and the second privately computes z = 6 — 377, w;x;. The problem is
now reduced to testing whether y > z, where y and z are n-bit integers and
n = O(mlogm). By adding 2" to y and to z, we can assume without loss of
generality that both y and z are positive.

The players will solve this question by finding the most significant bit,
isig, in which y and z differ (or “none”). (This of course suffices in order
to decide which is the larger integer.) Finding ¢y, will be done by binary
search on the n bits. Let us first describe a very simple but not quite optimal
protocol, and then describe how to improve it.

The simple protocol performs a binary search on 1...n by first deciding
whether ¢4, > n/2 and then recursively searching in the correct half of the
bits. Each query needed in this binary search is of the form “¢,, > 77, and
is implemented by testing whether the first ¢ bits of y are equal to the first
¢ bits of z using the equality protocol described above. The probability of
error of the equality tests must be kept small enough so that when we sum
the error probabilities of all equality checks made during the binary search
process (logn of them), the combined error is still e.



In order to obtain the more efficient protocol we will always use equality
tests which may err with constant probability (1/4) and thus require only
O(1) bits of communication. We are now in the situation of searching for a
number, 74,4, in the range 1..n using queries of the form “i,;, > 7”7, where
each answer may be incorrect with a small constant probability. This situ-
ation has been studied in the literature, and [FPRU90] show how it can be
done, with probability of error €, using O(logn + log e™') queries. O
Remark: The improved protocol is not really needed for any of the applica-
tions, without it we would simply loose another logn factor in all our lower
bounds.

Remark: The upper bound is in fact tight.

3.2 The multiparty case

In this section we give a randomized protocol for k& = d + 1 parties in the
multiparty model for evaluating a d-threshold gate.

We will first need to consider the complexity of two problems in the
following simpler scenario: k parties which to evaluate a function of k n-bit
integers xy...xy, where the ¢’th party knowns only ;.

Equality of the sum

The players need to determine whether Y, x; = 0, where 4 is some fixed

integer known to all parties.
Equality of the sum protocol

The parties jointly choose a random prime p uniformly from the first
(M) primes. BEach party broadcasts the value (x; mod p), and then each
party tests whether 3 ;(x; mod p) = 0 (mod p). It is clear that if inequality
is found then 3, x; # 6. It is also easy to see that if indeed >, x; # 6 then
the protoocl may find equality for at most O(n) different primes p, i.e. with
probability O(n™*"). We have thus obtained an O(klog n)-bit randomized
protocol which has probability of error O(n=%1)).
Remark: As opposed to the two-party case we do not know whether an
O(1) bit protocol is possible.
Threshold of the sum

The players need to determine whether >~ x; > 6., again where 8 is some
fixed integer known to all parties.
Threshold of the sum protocol

n
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The parties will, as in the 2-party case, try to perform a binary search
to find the most significant bit in which Y, z; and 8 differ. It is simpler to
describe the protocol recursively: Let M and zF denote, respectively, the
most significant and least significant halfs of 2;, and similarly for ¥ and 6%.
The players first perform the following set of tests:

fow = GM?,
1

fowzeM—l?,

ceey

STaM = oM — k2

If equality is detected anywhere, say, 3, #M = M — h, then the players need
only recursively solve 3, 2 > (0% 4+ h - 27/2)?. If no equality was detected
then the players need only recursively solve 3°; 2™ > 0?7, as the carry from
the least significant half of the bits cannot be more than k.

For k < n°®M, the parties can implement all k equality tests simulta-
neously, by one run of the “equality of the sum” protocol, and thus using
O(klogn) bits with total error probability n=**Y. The recursion depth is
O(logn), so the total communication is O(klog®n), and the total error is
n =),

We now return to the usual multiparty model, and to d-threshold gates.

Theorem 1b. Let g be a d-threshold gate on m variables then R (g) =
O(d® log mlog(m/e)).
Proof: Assume g is defined by the degree d polynomial p(xy ...x,) > 0. We
assume without loss of generality that all coefficients of p are n-bit integers
where n = O(mddlog m). The bits #1 ...z, are partitioned somehow into
k = d + 1 sets, where each of the £ players knows the values of all the bits
except those in one of the sets.

Notice that the value of each monomial of p depends on at most d vari-
ables, and thus on variables in at most d sets, and thus some player can
compute by itself the value of the monomial. We fix some assignment of
monomials to players such that each monomial is assigned to some player
that can compute its value. At this point each player ¢ computes s;, the sum
of all monomials that were assigned to it. We have now reduced the prob-
lem of evaluating g to determining whether >~; s; > 0. This can be done by
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the “threshold of the sum” protocol and requires O(k log® n) bits with error
probability n=1). To reduce the error probability to ¢ (for ¢ = n=%(1)) we
repeat the protocol O(log(e™')/logm) times and take a majority vote. O

4 Applications

4.1 Circuits

Lemma 3 Let G be a family of functions. If a function f can be computed
by a circuil consisting of s gates from G then, for all k, R*(f) < SRIf/(SS)(G).

Proof: In order to evaluate f the k£ parties will simulate the circuit. The
gates will be simulated in a topological order, and each gate with error prob-
ability of 1/(3s). The inputs to each gate are either input variables, dis-
tributed somehow between the &k parties, or outputs of previous gates known
to all. Thus each gate can be simulated using at most R’f/(?)s)(G) bits of
communication. O
Remark: Clearly a similar lemma holds for deterministic communication
complexity.

Combining this lemma, the upper bounds from theorem 1 and the lower
bounds from theorems A, B and C, we immediately get:
Theorem 2. Any circuit of linear threshold gates computing I P, or DI1S.J,
requires {2(n/log n) gates. Any circuit of d-threshold gates computing G P4,
requires Q(cyn/log?n) gates, where ¢g = d=2471.

4.2 Decision trees

Lemma 4 Let G be a family of functions. If a function f can be computed
by a decision tree of height h over queries from G then R¥(f) < hR’f/(Sh)(G).

Proof: In order to evaluate f the parties will simulate the decision tree.
FEach query along the path taken can be simulated, with error 1/(3%), using
at most R’f/(%)(G) bits of communication. O
Combining this lemma, the upper bounds from theorem 1 and the lower
bounds from theorems A.B and C, we get:
Theorem 3. Any decision tree of linear threshold gates computing [P, or
DISJ, requires depth Q(n/logn). Any decision tree of d-threshold gates
computing GI Py, requires depth Q(cyn/log*n), where ¢y = d=347%.
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4.3 Majority vote

As opposed to previous two cases where we can get simulations of f with small
probability of error, in this case we can only get a small bias on computing f,
i.e. can only compute f correctly with probability slightly better than 1/2.
This, however, still suffices for proving lower bounds since the lower bounds
we have for I P and GIP hold even if we only want a small bias.

Lemma 5 Let GG be a family of boolean functions. If f can be computed as
the majority vote of s functions from G then Rﬁ/(%)](f) < R’f/(4s)(G).

Proof: The k parties will choose uniformly at random one of the s functions
from G and will evaluate it (with probability of error of 1/(4s)). The parties
will predict that this is the value of f. Let us now compute a lower bound
on the probability that the prediction is correct. Since f is the majority of
s functions, the values of at least (s + 1)/2 of these functions are equal to
f. The probability that one of these functions was chosen is thus at least
(s+1)/(2s) =1/2+1/(2s). The probability that the prediction is correct is
thus this value minus the probability that the randomly chosen function was
computed incorrectly. a
From this lemma, the upper bounds from theorem 1 and the lower bounds
from theorems A and C, we get:
Theorem 4. Any majority vote of linear threshold gates computing I P, re-
quires size 2", Any majority vote of d-threshold gates computing G Py,
requires size 2%¢a®/1087) where ¢ = d=3471.
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