
The communication complexity ofthreshold gatesNoam Nisan�November 2, 1994AbstractWe prove upper bounds on the randomized communication com-plexity of evaluating a threshold gate (with arbitrary weights). Forlinear threshold gates this is done in the usual 2 party communicationmodel, and for degree-d threshold gates this is done in the multipartymodel. We then use these upper bounds together with known lowerbounds for communication complexity in order to give very easy proofsfor lower bounds in various models of computation involving thresh-old gates. This generalizes several known bounds and answers severalopen problems.1 Introduction1.1 Threshold gatesA (linear) threshold gate is a boolean function on m boolean inputs x1 : : : xm,giving the value true ifPiwixi > �, where wi, the weights, and �, the thresh-old value, are real constants de�ning the gate. (For the input variables xiwe identify false with the real number 0, and true with the real number 1.)These types of functions have attracted much interest as computing elements([All89, GHR92, HHK91, HMP+87, HG91, MK61, SBKH91, RW92, SB91,�Dept. of CS, Hebrew University, Jerusalem. Supported by BSF 89-00126 and by aWolfson research award. 1



Smo90, MP88, Bei92], and many more). This interest has been sparked,among other reasons, because their natural interpretation as counting ele-ments and because of some similarity they have to real neurons.In some papers a generalization of these gates is considered: instead oftaking a weighted sum of the input variables, we are allowed weighted sums ofarbitrary functions of at most d variables each [MP88, Bru90, BS92, GHR92,HG91, Bei92, BRS91]. These generalized thresholds are sometimes calledthreshold gates of degree d or perceptrons of order d. It is not di�cult to seethat the following de�nition captures this generalization.De�nition 1 A boolean function is called a threshold gate of degree d (or inshort d-threshold gate) if it can be expressed as the sign of a real polynomialof degree at most d.When we say that a boolean function is represented by a sign of a poly-nomial we mean that a positive value is interpreted as true, a negative valueas false, and zero is never allowed. Notice that now linear threshold gatesare just threshold gates of degree 1.There have been several lower bounds in the literature on the numberof threshold elements needed (in various models of computation) in order tocompute certain functions [HMP+87, GT91, ROS93, Vat92, HG91, Smo90].In this paper we obtain these lower bounds in a uni�ed and simple mannerand in fact generalize each of these known lower bounds in at least one ofthree ways:1. We show a lower bound for general d-threshold gates while the knownlower bound held only for linear threshold gates.2. We show a lower bound for threshold gates whose weights may be arbi-trary real numbers while the known bounds only applied to thresholdgates with small integer weights.3. We show a lower bound for computing functions for which the knownlower bounds do not apply.1.2 Communication ComplexityIn this paper we will obtain all our lower bounds as corollaries to knownlower bounds in communication complexity models. We will use both the2



well studied two-party model of Yao [Yao79], and the somewhat less studiedmultipartymodel of Chandra, Furst and Lipton [CFL83]. De�nitions of thesemodels appear in section 2.The basic argument is the same in all cases: If a function with highcommunication complexity is computed by elements each having small com-munication complexity, then many of these elements are required in orderto compute the function. Arguments along these lines were used in varyinglevels of explicitness and in di�erent scenarios in [HMP+87, GT91, ROS93,Vat92, HG91, CG85, Vaz87].We will prove our lower bounds on the number of threshold gates re-quired to compute functions for which there are known \large" communica-tion complexity lower bounds. In order to derive our bounds we will thusrequire \small" upper bounds on the communication complexity of evaluatinga threshold gate. There are two di�culties which need to be overcome:1. The communication complexity even of a linear threshold gate maybe large. (Only if the weights are all polynomially bounded integersthen the communication complexity is guarentied to be small.) In or-der to overcome this di�culty we consider randomized communicationcomplexity.2. Even the randomized complexity of 2-threshold gates may be large. Inorder to overcome this di�culty, for d-threshold gates, we consider the(d+ 1)-party communication model.The main new technical result of this paper is thus the following upperbounds for the communication complexity of threshold gates.Theorem 1. The randomized communication complexity of a linear thresh-old gate with m inputs is O(logm). The (d + 1)-party randomized commu-nication complexity of a d-threshold gate on m variables is O(d log2m).The result regarding linear threshold gate was obtained jointly with MuliSafra. The result regarding multiparty complexity generalizes a result of[HG91] proving a stronger deterministic bound for the case of polynomiallybounded weights.Remark: These bounds are for two-sided error randomized complexity. Itis not di�cult to see that a linear threshold gate may have linear zero-error(or even one-sided error) randomized complexity.3



Our lower bounds will be proven for the following functions for whichstrong (linear) randomized communication complexity lower bounds are known.IPn(x1 : : : xn; y1 : : : yn) = Pi xiyi (mod 2)DISJn(x1 : : : xn; y1 : : : yn) = Vi(xi = 0 or yi = 0)GIPk;n(x11:::x1n; :::; xk1:::xkn) = PiQj xji (mod 2)1.3 New lower boundsCircuitsThe �rst model of computation we consider is simply a circuit composed ofthreshold gates. The size of the circuit is the number of gates, and since eachgate may have unbounded fanin, no super-constant lower bound is trivial.This model was considered in [Smo90] where an 
(n= log n) lower bound isproved for several functions (including IP ) for the case of linear thresholdgates with small integer weights. In [ROS93] this was improved to a linearlower bound (for IP ) for linear threshold gates with arbitrary weights. Wederive a somewhat weaker bound, but that also applies to DISJ (even forthe case of arbitrary weights as opposed to the techniques of [ROS93],) andthat also applies to d-threshold gates.Theorem 2. Any circuit of linear threshold gates computing IPn or DISJnrequires 
(n= log n) gates. Any circuit of d-threshold gates computingGIPd+1;nrequires 
(cdn=log2n) gates, where cd = d�34�d.Decision treesThe second model we consider is that of decision trees, where each querymay be a threshold function. (The decision tree computes a boolean functionof the boolean inputs.) This model was considered in [GT91] who prove alinear lower bound (for IP) for linear threshold gates and in [Vat92] who provea near-linear lower bound (for GIP ) for d-threshold gates with small integerweights. We prove a slightly weaker bound but which applies also to DISJ(for which the techniques of [GT91] do not apply,) and which applies alsoto d-threshold gates with arbitrary weights. This answers an open problemposed in [GT91] and in [Vat92].Theorem 3. Any decision tree of linear threshold gates computing IPn orDISJn requires depth 
(n=logn). Any decision tree of d-threshold gatescomputing GIPd+1;n requires depth 
(cdn=log2n), where cd = d�34�d.Remark: Theorem 1 may in fact be obtained as a corollary of this theorem.Majority vote 4



The third model we consider is that of a depth two circuit, the top gatebeing a simple majority gate, and the bottom gates being threshold gates.In other words, the model is a majority vote of threshold gates. This modelwas considered in [HMP+87] who prove an exponential lower bound for linearthreshold gates with small integer weights, and in [HG91] who prove expo-nential lower bounds for d-threshold gates with small integer weights. Weprove this bound also for threshold gates with arbitrary weights, answeringa question of [ROS93].Theorem 4. Any majority vote of linear threshold gates computing IPn re-quires size 2
(n). Any majority vote of d-threshold gates computing GIPd+1;nrequires size 2
(cdn= logn), where cd = d�34�d.Remark:Proving super-polynomial lower bounds for the power of a linearthreshold gate of linear threshold gates, both layers with arbitrary weights,is still an open problem.2 Preliminaries2.1 Communication complexityYao [Yao79] considered the following model where two players, one holdingx1 : : : xn, and the other holding y1 : : : yn, wish to evaluate a boolean functionf(x1 : : : xn; y1 : : : yn). The two players exchange messages with each otheraccording to some pre-de�ned protocol, and at the end of the protocol bothof them must know the value of f . The communication complexity of f isde�ned to be the number of bits that need to be exchanged in the worst caseby the best protocol for computing f . This model was extensively studied inthe literature ([Yao79, BFS86, CG85, DGS84, FKN91, HR88, MS82, NW91,Raz90, AUY83], and many more).In this paper we also deal with boolean functions f(x1 : : : xm), where thepartition of the input bits to the two players is not prede�ned. In this case wede�ne the communication complexity of f as the maximum over all possiblepartitions of the communication complexity under that partition.5



2.2 Randomized complexityIn this paper we will be interested in randomized complexity. We will onlyconsider in the 2-sided error case, where a small probability of error is allowedon any input. A randomized protocol for computing f is a distribution overdeterministic protocols, and we de�ne the cost of the randomized protocolas the worst case number of bits sent over all possible inputs and over allchoices of the deterministic protocol.De�nition 2 The randomized �-error complexity of a boolean function f ,R�(f), is de�ned to be the cost of the best randomized protocol for f thatcomputes the correct answer with probability 1 � �. (Probability taken overthe random choices of the protocol, but for the worst case input.)We will also use two abbreviations:De�nition 3 R(f) = R1=3(f): R[�](f) = R1=2��(f):The notation R[�] is useful in cases where the protocol is correct withprobability only slightly greater than 1=2.Remark: Changing the de�nition of the cost to be the expected number ofbits sent (expectation taken over the random choices) changes the complexityby only a constant factor.Remark: We can view this type of randomized protocol as a protocol wherethe two parties share a common random string viewed by both (public coinsmodel). This string tells them which deterministic protocol to run. A di�er-ent de�nition often used is to allow each party separately to ip coins (privatecoins model). This obviously weakens the power of the players, but [New91]shows that the complexity increases by at most an additive O(log n) factor.Remark: As stated previously, for functions f(x1 : : : xm), where the parti-tion of the variables to the two players is not pre-de�ned, R(f) is de�ned tobe the randomized complexity under the worst case partition.Finally, we will introduce the following notation for the communicationcomplexity of families of functions.De�nition 4 Let G be a set of functions, then we de�ne R�(G) = supg2GR�(g).6



2.3 Known lower boundsA lower bound of 
(pn) for the randomized complexity of DISJ is givenin [BFS86], this was improved to a tight �(n) in [KS87], and the proof wassimpli�ed in [Raz90].Theorem A. R(DISJn) = �(n)2 A lower bound of 
(log2 n) for the randomized complexity of IP wasproven in [Yao83]. The bound was improved to 
(n= log n) in [Vaz87] andthen to a tight �(n) in [CG85]. These lower bounds show in fact that �(n)bits are needed even to be correct with probability slightly better than 1=2.Theorem B. R[�](IPn) � n=2 � log ��122.4 Multiparty protocolsWe will also consider the multiparty model of Chandra, Furst and Lipton[CFL83] which was also studied in [BNS89, HG91, NW91]. In this model afunction of k n-bit strings, f( ~x1::: ~xk), is to be evaluated by k players, whereeach player i knows the values of all xj except xi. The players communicateaccording to a �xed protocol by taking turns writing on a blackboard viewedby all. The cost of the protocol is the number of bits that are written in theworst case in order to evaluate f . Note that for k = 2 this model becomesthe communication complexity model of Yao.As in the two party case, for a function f(x1 : : : xm), where the partition ofthe bits into k subsets is not prede�ned, we de�ne the k-way communicationcomplexity of f as the maximum over all partitions into k subsets of thecomplexity relative to the partition. As in the two party case we considerrandomized protocols, in the public coins model, and which are allowed two-sided error.De�nition 5 The randomized �-error k-way complexity of f , Rk� (f), is thecost of the best randomized k-party protocol which computes f correctly withprobability 1� � on every input. As before we use the abbreviations Rk(f) =Rk1=3(f) and Rk[�](f) = Rk1=2��(f). 7



A lower bound for GIP is proven in [BNS89].Theorem C. Rk[�](GIPk;n) � n=4k � log ��1:3 Communication complexity of thresholdgatesIn this section we give upper bounds to the communication complexity ofthreshold gates: for linear threshold gates in the 2-party model, and forhigher degree thresholds in the multiparty model. The �rst step we musttake is to limit somehow the range of the weights (i.e. of the coe�cients ofthe polynomial). By de�nition, the weights of the inputs to the thresholdgate may be arbitrary reals. However it is known that for linear thresholdgates, without loss of generality, we may assume that all the weights areO(m logm) bit integers, where m is the number of input variables. This factseems to be folklore, and a proof can be found in [GHR92]. From this weeasily also deduce:Lemma 1 Given an arbitrary d-threshold gate on m variables, there existsan equivalent d-threshold gate in which all weights are O(mdd logm)-bit in-tegers.Proof: A d-threshold gate on m variables may also be viewed as a linearthreshold gate whose inputs are all the possible monomials of degree at mostd out of m variables. There are at most O(md) such monomials, and thelemma thus follows from the statement regarding linear threshold gates. 23.1 The two-party caseIn this section we provide a randomized protocol for evaluating a linearthreshold gate.Our protocol uses as a black box an equality testing protocol. Whileit is known that in the private coins model, randomized equality testing ofn-bit strings requires �(log n) bits of communication, it is also known thatusing public coins O(1) bits su�ce (this result is attributed in [RW89] to M.Karchmer). For completeness we give a proof. Denote by EQn the problem8



of testing whether two n-bit strings are equal (where each party recieves oneof the two strings).Lemma 2 R�(EQn) = O(log ��1).Proof: The two parties share k random n-bit strings, ~r1::: ~rk, where k =log ��1. Each party computes the inner product of its string with each ofthe random strings, and the parties compare inner products (mod 2). (Thisrequires k bits of communication as one party must send the k bits denotingthe inner products to the other party.) It is clear that if the two stringswere equal then all inner products will be equal. Elementary linear algebrain GF (2) will also reveal that if the two strings were not equal then theprobability that all inner products are equal is exactly 2�k. 2We are now ready to give a protocol for evaluating a linear threshold gate.Theorem 1a. Let g(x1 : : : xm) be a linear threshold function, then R�(g) �O(logm+ log ��1).Proof: Assume, without loss of generality, that g is given by Pmi=1 wixi > �,where � and all wi are O(m logm)-bit integers. Them inputs to the thresholdgate are partitioned between the two parties, say the �rst party holds x1:::xk,and the second xk+1:::xm. The �rst party privately computes y =Pki=1 wixi,and the second privately computes z = � � Pmi=k+1 wixi. The problem isnow reduced to testing whether y > z, where y and z are n-bit integers andn = O(m logm). By adding 2n to y and to z, we can assume without loss ofgenerality that both y and z are positive.The players will solve this question by �nding the most signi�cant bit,isig, in which y and z di�er (or \none"). (This of course su�ces in orderto decide which is the larger integer.) Finding isig will be done by binarysearch on the n bits. Let us �rst describe a very simple but not quite optimalprotocol, and then describe how to improve it.The simple protocol performs a binary search on 1:::n by �rst decidingwhether isig > n=2 and then recursively searching in the correct half of thebits. Each query needed in this binary search is of the form \isig > i?", andis implemented by testing whether the �rst i bits of y are equal to the �rsti bits of z using the equality protocol described above. The probability oferror of the equality tests must be kept small enough so that when we sumthe error probabilities of all equality checks made during the binary searchprocess (log n of them), the combined error is still �.9



In order to obtain the more e�cient protocol we will always use equalitytests which may err with constant probability (1=4) and thus require onlyO(1) bits of communication. We are now in the situation of searching for anumber, isig, in the range 1::n using queries of the form \isig > i?", whereeach answer may be incorrect with a small constant probability. This situ-ation has been studied in the literature, and [FPRU90] show how it can bedone, with probability of error �, using O(log n+ log ��1) queries. 2Remark: The improved protocol is not really needed for any of the applica-tions, without it we would simply loose another log n factor in all our lowerbounds.Remark: The upper bound is in fact tight.3.2 The multiparty caseIn this section we give a randomized protocol for k = d + 1 parties in themultiparty model for evaluating a d-threshold gate.We will �rst need to consider the complexity of two problems in thefollowing simpler scenario: k parties which to evaluate a function of k n-bitintegers x1:::xk, where the i'th party knowns only xi.Equality of the sumThe players need to determine whether Pi xi = �, where � is some �xedinteger known to all parties.Equality of the sum protocolThe parties jointly choose a random prime p uniformly from the �rstnO(1) primes. Each party broadcasts the value (xi mod p), and then eachparty tests whether Pi(xi mod p) = � (mod p). It is clear that if inequalityis found then Pi xi 6= �. It is also easy to see that if indeed Pi xi 6= � thenthe protoocl may �nd equality for at most O(n) di�erent primes p, i.e. withprobability O(n�
(1)). We have thus obtained an O(k log n)-bit randomizedprotocol which has probability of error O(n�
(1)).Remark: As opposed to the two-party case we do not know whether anO(1) bit protocol is possible.Threshold of the sumThe players need to determine whether Pi xi > �, again where � is some�xed integer known to all parties.Threshold of the sum protocol 10



The parties will, as in the 2-party case, try to perform a binary searchto �nd the most signi�cant bit in which Pi xi and � di�er. It is simpler todescribe the protocol recursively: Let xMi and xLi denote, respectively, themost signi�cant and least signi�cant halfs of xi, and similarly for �M and �L.The players �rst perform the following set of tests:Xi xMi = �M?;Xi xMi = �M � 1?;:::;Xi xMi = �M � k?If equality is detected anywhere, say, Pi xMi = �M �h, then the players needonly recursively solve Pi xLi > (�L + h � 2n=2)?. If no equality was detectedthen the players need only recursively solve Pi xMi > �M?, as the carry fromthe least signi�cant half of the bits cannot be more than k.For k � nO(1), the parties can implement all k equality tests simulta-neously, by one run of the \equality of the sum" protocol, and thus usingO(k log n) bits with total error probability n�
(1). The recursion depth isO(log n), so the total communication is O(k log2 n), and the total error isn�
(1).We now return to the usual multiparty model, and to d-threshold gates.Theorem 1b. Let g be a d-threshold gate on m variables then Rd+1� (g) =O(d3 logm log(m=�)).Proof: Assume g is de�ned by the degree d polynomial p(x1 : : : xm) > 0. Weassume without loss of generality that all coe�cients of p are n-bit integerswhere n = O(mdd logm). The bits x1 : : : xm are partitioned somehow intok = d + 1 sets, where each of the k players knows the values of all the bitsexcept those in one of the sets.Notice that the value of each monomial of p depends on at most d vari-ables, and thus on variables in at most d sets, and thus some player cancompute by itself the value of the monomial. We �x some assignment ofmonomials to players such that each monomial is assigned to some playerthat can compute its value. At this point each player i computes si, the sumof all monomials that were assigned to it. We have now reduced the prob-lem of evaluating g to determining whether Pi si > 0. This can be done by11



the \threshold of the sum" protocol and requires O(k log2 n) bits with errorprobability n�
(1). To reduce the error probability to � (for � = n�!(1)) werepeat the protocol O(log(��1)= logm) times and take a majority vote. 24 Applications4.1 CircuitsLemma 3 Let G be a family of functions. If a function f can be computedby a circuit consisting of s gates from G then, for all k, Rk(f) � sRk1=(3s)(G).Proof: In order to evaluate f the k parties will simulate the circuit. Thegates will be simulated in a topological order, and each gate with error prob-ability of 1=(3s). The inputs to each gate are either input variables, dis-tributed somehow between the k parties, or outputs of previous gates knownto all. Thus each gate can be simulated using at most Rk1=(3s)(G) bits ofcommunication. 2Remark: Clearly a similar lemma holds for deterministic communicationcomplexity.Combining this lemma, the upper bounds from theorem 1 and the lowerbounds from theorems A, B and C, we immediately get:Theorem 2. Any circuit of linear threshold gates computing IPn or DISJnrequires 
(n= log n) gates. Any circuit of d-threshold gates computingGIPd+1;nrequires 
(cdn=log2n) gates, where cd = d�34�d.4.2 Decision treesLemma 4 Let G be a family of functions. If a function f can be computedby a decision tree of height h over queries from G then Rk(f) � hRk1=(3h)(G).Proof: In order to evaluate f the parties will simulate the decision tree.Each query along the path taken can be simulated, with error 1=(3h), usingat most Rk1=(3h)(G) bits of communication. 2Combining this lemma, the upper bounds from theorem 1 and the lowerbounds from theorems A,B and C, we get:Theorem 3. Any decision tree of linear threshold gates computing IPn orDISJn requires depth 
(n= log n). Any decision tree of d-threshold gatescomputing GIPd+1;n requires depth 
(cdn=log2n), where cd = d�34�d.12



4.3 Majority voteAs opposed to previous two cases where we can get simulations of f with smallprobability of error, in this case we can only get a small bias on computing f ,i.e. can only compute f correctly with probability slightly better than 1=2.This, however, still su�ces for proving lower bounds since the lower boundswe have for IP and GIP hold even if we only want a small bias.Lemma 5 Let G be a family of boolean functions. If f can be computed asthe majority vote of s functions from G then Rk[1=(4s)](f) � Rk1=(4s)(G).Proof: The k parties will choose uniformly at random one of the s functionsfrom G and will evaluate it (with probability of error of 1=(4s)). The partieswill predict that this is the value of f . Let us now compute a lower boundon the probability that the prediction is correct. Since f is the majority ofs functions, the values of at least (s + 1)=2 of these functions are equal tof . The probability that one of these functions was chosen is thus at least(s+1)=(2s) = 1=2 +1=(2s). The probability that the prediction is correct isthus this value minus the probability that the randomly chosen function wascomputed incorrectly. 2From this lemma, the upper bounds from theorem 1 and the lower boundsfrom theorems A and C, we get:Theorem 4. Any majority vote of linear threshold gates computing IPn re-quires size 2
(n). Any majority vote of d-threshold gates computing GIPd+1;nrequires size 2
(cdn= logn), where cd = d�34�d.5 AcknowledgementsI thank Muli Safra for his collaboration on theorem 1a. I thank Avi Wigder-son for his comments on an earlier version of this paper.References[All89] E. Allender. A note on the power of threshold circuts. In Proceed-ings of the 30th IEEE Symposium on Foundations of ComputerScience, pages 580{584, 1989.13
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