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Abstract

We show that any communication finding a value-maximizing allocation in a private-

information economy must also discover supporting prices (in general personalized and

nonlinear). In particular, to allocate L indivisible objects, a price must be revealed for

each of the 2L − 1 bundles. We prove that all monotonic prices must be used, hence

exponential communication in L is needed. Furthermore, exponential communication

is needed just to ensure a higher share of surplus than that realized by auctioning all

objects as a bundle, or even a higher expected surplus (for some probability distribution

over valuations). When the utilities are submodular, efficiency still requires exponential

communication (and fully polynomial approximation is impossible). When the objects

are homogeneous, arbitrarily good approximation is obtained with exponentially less

communication than exact efficiency.



1 Introduction

We have recently seen great interest in so-called combinatorial auctions, designed to

allocate L heterogeneous indivisible items among N bidders whose valuations for the

different items can be interdependent. Recent important applications include auctions

of FCC spectrum licenses and online procurement (see Vohra and de Vries (2002) for

an overview). The objective of an auction is to elicit enough information about bidders’

preferences so as to realize an efficient or approximately efficient allocation. The mecha-

nism design literature has used the Revelation Principle to ensure the bidders’ incentives

to reveal their preferences truthfully (e.g., using the Vickrey-Groves-Clarke transfers).

However, full revelation of a bidder’s preferences requires naming a willingness to pay

for each of the 2L − 1 bundles of items. Already with L = 30, this would involve the

communication of more than one billion numbers, which is beyond the capabilities of any

human or machine.

Recognition of the communication problem has prompted researchers to propose sim-

pler mechanisms, in which valuations are not fully revealed. For example, in many

proposed iterative auction designs, at each stage bidders only need to describe their pref-

erences over a small number of bundles (see, e.g., Parkes (1999), Bikhchandani et al.

(2001), Parkes and Ungar (2001), Ausubel and Milgrom (2002), Kwasnica et al. (2002),

Zinkevich et al. (2003)). The hope was that such designs could achieve or at least approx-

imate efficiency, while allowing bidders to communicate much less than their complete

preferences. This paper demonstrates that the hope is not justified.

We evaluate the communication requirements of allocation problems by establishing

the indispensable role of prices in finding efficient allocations in economies with distrib-

uted information. Intellectual origins of this idea lie in the early 20th-century debate

on central planning alternatives to the market system. Hayek (1945) argued that prices

succinctly summarize the knowledge of “particular circumstances of time and place,”

which is too enormous to be communicated to a central planner. Hurwicz (1960) and

Mount and Reiter (1974) formalized Hayek’s intuition by showing that in classical con-
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vex economies, the Walrasian price mechanism is “informationally efficient,” i.e., verifies

Pareto efficient allocations with the least amount of communication (as measured by

the dimensionality of the message space) among all mechanisms satisfying a continu-

ity restriction. Furthermore, Jordan (1982) showed that the Walrasian mechanism is

a unique individually rational mechanism having this property. These results were ex-

tended to convex economies with public goods and externalities (e.g., Sato (1981) and

Tian (2001,2004)).

However, the existing literature on the “informational efficiency” of price equilibria

does not apply to allocation problems in which the agents’ preferences may be nonconvex

and the goods may be indivisible, such as the combinatorial auction setting. First, the

litetature restricts attention to mechanisms that satisfy a continuity restriction, which

precludes the communication of discrete allocations. It does not rule out the possibil-

ity that mechanisms that do not satisfy this restriction could achieve efficiency without

revealing supporting prices. Second, the literature does not define a price equilibrium

concept for allocation problems in which a linear-price equilibrium need not exist.1 Fi-

nally, the literature only considers exact efficiency, and does not examine the potential

communication savings from allowing approximation.

The present paper addresses these questions in an allocation problem with privately

known preferences. We show that in any such problem, any communication mechanism

that finds surplus-maximizing allocation must also discover a price equilibrium support-

ing it, which in general involves nonlinear and personalized prices.2 This holds even if

the agents are truthful (follow the prescribed reporting strategies), thus the necessity of

discovering prices has nothing to do with the problem of providing agents with appro-

1The literature on public-good economies allows personalized (“Lindahl”) prices for the public goods,

but still restricts them to be linear, and ensures equilibrium existence by assuming convex preferences

over divisible public goods.
2A related result is obtained by Parkes (2002). He considers the combinatorial auction problem

and shows the necessity of revealing supporting prices by those communication languages that verify

efficiency while revealing so-called “outcome-independent” information. Our result is more general in

that it does not impose any restrictions on the communication language.
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priate incentives. The result also implies that the simpler “nondeterministic” problem of

verifying the efficiency of a proposed allocation is exactly that of announcing supporting

prices along with the allocation.

In the classical convex economy one could restrict attention to prices that are Wal-

rasian (i.e., anonymous and linear in consumption), which are much easier to communi-

cate than the agents’ preferences. In the combinatorial allocation problem, on the other

hand, we show that a huge price space must be used in order to ensure equilibrium ex-

istence. Specifically, we show that any possible
¡
2L − 1

¢
-dimensional price vector listing

the prices of all bundles of objects is a unique equilibrium price vector for some valuation

profile. Since any efficient mechanism must communicate such a vector, it follows that it

must be at least as extensive as a full revelation of one agent’s preferences.

Our approach can also be extended to the problem of approximating the maximum

total surplus within a constant. For this purpose, note that in the “discretized” problem

in which the valuations are restricted to be multiples of δ > 0, any misallocation loses at

least surplus δ. Therefore, approximating the maximum surplus within less than δ is at

least as hard as realizing exact efficiency in the discretized problem. Since the discretized

problem can always be solved with finite communication, the relevant measure of the

communication burden is the number of transmitted bits. Such discrete problems have

been examined in the computer science field of communication complexity, pioneered

by Yao (1979) and surveyed in Kushilevitz and Nisan (1997).3 Since exact efficiency in

the discretized problem still requires the communication of (discrete) prices, we are able

to show that guaranteeing a better approximation of efficiency than that achieved by

auctioning off all objects as a bundle still requires communicating a very large number

of bits, which grows exponentially with L.

3The general communication complexity problem is to compute a function (in our case, desired alloca-

tion) whose inputs (in our case, agents’ preferences) are distributed among agents. The communication

complexity literature has developed in parallel with, and shares many techniques with, the economic

literature on real-valued communication. For more detailed comparisons of the two literatures, see

Marschak (1996) and Van Zandt (1999).
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The concept of approximation used above required uniform approximation of maxi-

mum surplus across all states. Similarly, the communication burden was defined as the

maximum number of bits transmitted across states. Instead of using such “worst-case”

measures, one may assume a probability distribution over possible valuations, and ask

how many bits must be transmitted on expectation to realize a given expected surplus. We

show that, for some joint probability distribution over the agents’ valuations, achieving a

higher expected surplus than that from the bundled auction still requires communicating

an exponential expected number of bits.4

These results imply that the only hope to achieve or approximate efficiency without

enormous communication is by focusing on cases in which the agents’ preferences (or

probability distribution over them) are known a priori to lie in a certain class. One

example is given by valuations satisfying the “(gross) substitute property” of Kelso and

Crawford (1982) and Gul and Stacchetti (1999). With such valuations, a Walrasian

equilibrium with L per item prices exists, and as we show here, it can be found with

(truly) polynomial communication. However, the substitute property is very restric-

tive. We show that for the somewhat larger class of “submodular” valuations (i.e., those

exhibiting diminishing marginal utility of items), efficiency still requires very extensive

communication, and a fast (so-called “fully polynomial”) approximation is impossible.

Finally, we consider the case where the items are known to be homogeneous, and so

agents only care about the number of objects consumed. This case exhibits a drastic

difference between the communication requirements of exact and approximate efficiency.

Namely, exact efficiency again requires at least as much communication as a full descrip-

tion of one agent’s preferences, which in this case takes L numbers. On the other hand,

approximation within any given ε (more generally, fully polynomial approximation) is

achieved with only O (logL) bits. In the setting considered by Calsamiglia (1977), the

homogeneous good to be allocated is divisible, and exact efficiency requires infinitely-

dimensional communication, yet we construct a fully polynomial approximation that

4We prove this particular result using a different technique. The proof uses a lower bound on the

communication complexity of approximate set packing, which is derived in the Appendix.
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allocates the good in small discrete units (provided that the valuations satisfy a weak

smoothness condition). Thus, in this particular case an enormous savings in communi-

cation can be achieved with only a slight sacrifice in economic efficiency.

The paper is organized as follows. In Section 2 we describe the general allocation

problem, the model of communication, and the measures of the communication burden.

In Section 3 we characterize efficient communication as that discovering a price equilib-

rium. In Section 4 we use this characterization to derive a lower bound on the burden

of efficient communication. In Section 5 we define the concepts of approximation and

relate them to the analysis of discretized problems. In Section 6 we apply the results to

the combinatorial allocation problem. In Section 7 we examine the problem with several

restricted classes of valuations. Section 8 presents average-case analysis. Section 9 dis-

cusses the relation of our results to the computational complexity literature. Section 10

discusses how agents could be given the incentives to obey the suggested communication

protocols. Section 11 concludes.

2 The Allocation Problem and Communication

2.1 The allocation problem

Let N be the finite set of agents, and K be the set of allocations. (With a slight abuse of

notation, we will use the same letter to denote a set and its cardinality when this causes

no confusion.) An agent’s valuation assigns real values to all allocations, and is therefore

represented with a vector in RK . The class of possible valuations of agent i ∈ N is

denoted by Ui ⊂ RK . Agent i’s valuation ui ∈ Ui is assumed to be his privately observed

“type.” A state is a valuation profile (u1, . . . , uN) ∈ U ≡ U1 × . . .× UN ⊂ RNK.

The objective is to implement an allocation rule, which is a correspondence (relation)

F : U ³ K. For each state u ∈ U , the allocation rule describes the subset F (u) ⊂ K

of “desirable” allocations. For example, we may be interested in the efficient allocation

rule, which selects the allocations maximizing the sum of the agents’ valuations (total
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surplus):

F ∗(u) =argmax
k∈K

X
i∈N

uik ∀u ∈ U.

Identification of efficiency with surplus-maximization is based on the ability to com-

pensate agents with monetary transfers, and the quasilinearity of their payoffs in these

transfers. Approximate efficient allocation rules will be defined in Section 5 below.

2.2 Communication

We now describe communication procedures that solve the allocation problem. It is well

known that communication can be shortened by letting agents send messages sequentially

rather than simultaneously. For example, an agent need not report his valuation for

allocation k if previous messages have made it clear that k stands no chance of being

efficient. Therefore, we must consider multi-stage communication protocols.

In the language of game theory, a general communication protocol is described with

an extensive-form message game as well as each agent’s strategy in this game (complete

action plan contingent on his type and observed history). Instead of payoffs, the game

assigns allocations to terminal nodes (and so is more properly called a “game form,”

or “mechanism”). The agents are assumed to follow the prescribed strategies (their

incentives to do so will be discussed in Section 10). Such communication protocols are

called “deterministic,” because the message sent by an agent at a given information set is

fully determined by his type and the preceding messages. A protocol realizes allocation

rule F if in every state u ∈ U it achieves a terminal node to which an allocation from

F (u) is assigned.

Dealing with deterministic communication protocols is quite cumbersome. Analysis

can be simplified by considering what is known as “nondeterministic communication” in

computer science and as the “verification scenario” in economics. Imagine an omniscient

oracle who knows the true state u, and consequently knows a “desirable” allocation

k ∈ F (u), but has to prove to an ignorant outsider that k is indeed desirable. He carries

out the proof by publicly announcing a message m ∈ M . Each agent i either accepts
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or rejects the message, doing this on the basis of his own type ui. The set of messages

acceptable to all agents in state u is described by the message correspondence µ(u). The

acceptance of message m by all agents must prove to the outsider that allocation k is

desirable. This communication is called “nondeterministic” because the oracle has to

“guess” an acceptable message, and there may be more than one such message in a given

state.

While nondeterministic communication is patently unrealistic, we consider it for the

following reasons:

1. Any deterministic communication can be represented as nondeterministic simply by

letting all the messages be sent by the oracle instead of the agents, and having each

agent accept the message sequence if and only all the messages sent in his stead

are consistent with his strategy given his type. The oracle’s message space M is

thus identified with the set of the protocol’s possible message sequences (terminal

nodes), and the message correspondence µ is single-valued. Therefore, any lower

bound on the communication requirements of nondeterministic protocols applies to

deterministic protocols as a particular case.

2. A famous economic example of nondeterministic communication is the Walrasian

equilibrium. The role of the oracle is played by the “Walrasian auctioneer,” who

announces the equilibrium prices and allocation. Each agent accepts the announce-

ment if and only if his allocated consumption bundle maximizes his utility within

the budget set given by the announced prices. The classical Welfare Theorems

imply that Walrasian equilibria can be used to verify Pareto efficiency in convex

exchange economies, and these results can be extended to more general price equi-

libria in more general allocation problems.

3. A nondeterministic protocol realizing choice correspondence F can often be used

as a basis for an iterative deterministic protocol approximating F . At each stage

of the iteration, a message m ∈ M is announced, and each agent reports the

direction in which the message should be adjusted to become “more acceptable” to

7



him. Such adjustment processes approximating Walrasian equilibria are known as

“tâtonnement.” Nondeterministic communication can then be viewed as a steady

state of the deterministic adjustment process.

Formally, we define nondeterministic communication as follows:

Definition 1 A nondeterministic communication protocol is a triple Γ = hM,µ, hi,

where M is the message set, µ : U ³M is the message correspondence, and h :M → K

is the outcome function, and the message correspondence µ has the following properties:

• Existence: µ(u) 6= ∅ for all u ∈ U ,

• Privacy Preservation: µ(u) = ∩iµi(ui) for all u ∈ U , where µi : Ui ³ M for all

i ∈ N .

Protocol Γ realizes choice correspondence F : U ³ K if h(µ(u)) ⊂ F (u) for all

u ∈ U .5

Existence means that an acceptable message exists in each state. Privacy Preservation

follows from the fact that each agent does not observe other agents’ types when making

his acceptance decision, thus the set of messages acceptable to him is a function µi(ui)

of his own type ui only.6 Finally, the definition of realization says that the acceptance of

a message m by all agents proves to the outsider that h (m) ∈ F (u).

Definition 1 has a nice interpretation in terms of geometric properties of the subsets

µ−1(m) of the state space U , each such subset being the event in which a given message

m occurs. In this interpretation, described in Kushilevitz and Nisan (1997), Existence

5According to this definition, F can be realized only if it is nonempty-valued. Alternatively, we could

view states in which F is empty-valued as “illegal,” and allow arbitrary alternatives to be realized in

such states.
6This is an established, if perhaps unfortunate, term in the economic literature. Privacy Preservation

reflects the fact that the agents do not observe each other’s types initially, but does not constrain the

revelation of types in the course of communication.
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requires that the collection {µ−1(m)}m∈M of such events cover the state space U . Privacy

Preservation requires that each element of the covering be a product set µ−11 (m)× . . .×

µ−1N (m)–a “rectangle” in computer science parlance. Realization requires that for each

rectangle µ−1(m) from the covering, a single outcome h (m) be “desirable” on the whole

rectangle (in computer science parlance, the rectangle is “monochromatic”).

2.3 The burden of discrete and continuous communication

The (nondeterministic) communication burden of an allocation rule is defined as the

minimum communication burden of a (nondeterministic) protocol realizing it. The com-

munication burden of a protocol is naturally defined as the length of the realized message

sequence, i.e., the number of messages sent in the course of the protocol. Since this num-

ber may vary across states, we focus on the “worst-case” communication burden–the

maximum length of the message sequence over all states (though see Section 8 below

for some average-case results). For this measure to be interesting, we must require all

communication to be encoded with “elementary” messages, bounding the amount of

information conveyed with an elementary message.

The computer science literature on communication complexity considers discrete com-

munication, in which the elementary messages convey a bit of information (see Kushile-

vitz and Nisan (1997)).7 In particular, in the nondeterministic case, the minimal binary

encoding of the oracle’s message from set M takes log |M | bits. (log will stand for the

binary logarithm to simplify notation).

In the case of continuous communication, agents are allowed to send real-valued el-

ementary messages. We also want to allow finite-valued messages (say, to communicate

discrete combinatorial allocations), but not count them toward the communication bur-

den. Thus, the worst-case burden of continuous communication is defined as the maxi-

mum number of real-valued elementary messages sent in the course of the protocol. In

7This is merely a normalization, because an elementary message in any finite alphabet could be coded

with a fixed number of bits.
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the nondeterministic case, we can identify the communication burden with the dimension

of the oracle’s message space M , for which purpose we must define a topology on M .

A well-known problem in continuous communication is the possibility of “smuggling”

multidimensional information in a one-dimensional message space, (e.g., using the inverse

Peano function). Note, however, that with such “smuggling,” a small error in the message

would yield a huge error in its meaning. To avoid this, we define a metric on messages

based on their meaning: the distance between messages m and m0 is defined as the

Hausdorff distance between the events µ−1 (m) and µ−1 (m0) in which they occur.8 The

metric dimension of spaceM in this metric, denoted by dimM , then serves as a measure

of the communication burden. (dimM can be defined as the Hausdorff dimension, the

box-counting dimension, or the packing index (Edgar (1990))–this would not affect the

results in this paper.) With this definition, any coding of messages from M with d real

numbers that prevents small errors in the code from drastically distorting the meaning

(formally, the inverse of the code is Lipszhitz continuous) must have d ≥ M ((Edgar

(1990, Exercise 6.1.9(1)). Thus, dimM is the relevant measure of communication burden

if the communication must be robust to small transmission errors, due either to analog

noise or to discretization (“quantization”). (See Proposition 4 below for a formal result

along these lines.)

Our approach to measuring continuous communication stands in contrast to the pre-

vious literature on continuous communication, in which the topology on the message

space is taken as given, and dimension smuggling is ruled out by requiring the commu-

nication protocol to satisfy a “regularity” restriction. The typical restriction, introduced

by Mount and Reiter (1974) and Walker (1977), is that the message correspondence µ

be “locally threaded”–i.e., have a continuous selection on a neighborhood of any point.

8Formally, the distance is defined as

ρM (m,m
0) = max

©
dM

¡
µ−1 (m) , µ−1 (m0)

¢
, dM

¡
µ−1 (m0) , µ−1 (m)

¢ª
, where

dM (A,B) = sup
R∈A

inf
R0∈B

ρU (R,R
0) for A,B ⊂ U ,

with ρU describing the given metric on the state space U .
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This restriction rules out a priori some important communication protocols, e.g., the

communication of discrete allocations (µ cannot have a continuous selection in a neigh-

borhood in which the allocation switches).

3 Efficient Communication and Supporting Prices

One particular way to verify the efficiency of an allocation is by announcing supporting

prices:

Definition 2 A pair (p, k) ∈ RNK × K, where k ∈ K is the proposed allocation and

p ∈ RNK is a list of personalized allocation prices, is a price equilibrium in state u ∈ U

if it satisfies the following inequalities:

uik − pik ≥ uik0 − pik0 for all i ∈ N , k0 ∈ K. (1)X
i∈N

pik ≥
X
i∈N

pik0 for all k0 ∈ K. (2)

(1) says that the proposed allocation maximizes each agent’s utility net of the an-

nounced prices. (2) can be interpreted as requiring that the proposed allocation maximize

the designer’s revenue given the announced prices. Denote the set of price equilibria in

state u by E (u), and let E : U ³ RNK×K denote the price equilibrium correspondence.

A price equilibrium with N = 2 agents is illustrated in Figure 1. Without loss of

generality we normalize both agents’ utilities and prices for the equilibrium allocation k

to zero, and graph agent 1’s valuations and prices for all allocations in the downward

direction, and those of agent 2 in the upward direction. (The economic interpretation of

Figure 1 is as an “Edgeworth box” whose vertical dimension represents the split of money

between the two agents, and whose horizontal dimension represents the allocations. In

this interpretation, u1 and u2 depict the agents’ respective indifference curves passing

through the equilibrium point, and p1 and p2 depict the boundaries of their respective

budget sets.) (2) says that the curve representing p1 must lie above that representing p2,

and (1) that the curve representing u1 is above that for p1 and the curve representing u2

is below that for p2.
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This general notion of price equilibrium was first suggested by Mas-Colell (1980),

and later used by Bikhchandani and Mamer (1997) and Bikhchandani and Ostroy (2002)

for combinatorial allocation problems. These papers have made the observation that all

price equilibrium allocations are efficient, often referred to as the First Welfare Theorem.

In Figure 1, efficiency simply means that u1 must lie above u2.

The First Welfare Theorem allows to verify efficiency with a price protocol, whose

message space isM ⊂ RNK×K, whose message correspondence is µ (u) = E (u)∩M , and

whose outcome function is h (p, k) = k. Note that we allow many different price protocols

described by different message spaces, i.e., different feasible price-allocation pairs. Any

price protocol satisfies Privacy Preservation by construction, since each agent verifies

his inequality in (1) using his own type only, and any agent can verify (2). If we find a

message space M large enough to satisfy Existence (i.e., that a price equilibrium from

M exists in all states), the size of M provides an upper bound on the burden of efficient

communication. (Namely, it is log |M | bits for discrete communication, and dimM for

continuous communication).

One might think that among all possible efficient communication protocols, there

would be some that are distinct from, and perhaps much simpler than, price protocols.

However, we establish that this is not the case– any efficient communication protocol

must reveal supporting equilibrium prices:9

Proposition 1 Communication protocol Γ = hM,µ, hi realizes the efficient allocation

rule F ∗ if and only if there exists an assignment p : M → RNK of prices to messages

such that protocol hM,µ, hp, hii realizes the price equilibrium correspondence E.

Proof. The “if” statement obtains by adding up all inequalities (1) and (2). For

the “only if” statement, suppose protocol hM,µ, hi realizes F ∗. For each m ∈ M , let

k̂ = h (m), and let pik = supui∈µ−1i (m) [uik − uik̂] for all i ∈ N , k ∈ K. By construction,

9A similar result is established by Parkes (2002), but only for a restricted communication language.

12



³
p, k̂
´
satisfies (1) for each u ∈ µ−1 (m). At the same time, for all k ∈ K we can writeX

i

[pik − pik̂] =
X
i

sup
ui∈µ−1i (m)

[uik − uik̂] = sup
u∈µ−1(m)

X
i

[uik − uik̂] ≤ 0,

using Privacy Preservation and the fact that k̂ ∈ F ∗ (u) for each u ∈ µ−1 (m). Thus,³
p, k̂
´
also satisfies (2). Therefore,

³
p, k̂
´
is a price equilibrium in every state u ∈

µ−1 (m).

The “if” statement of the Proposition is the First Welfare Theorem. The “only if”

statement can be thought of as a strengthening of the traditional Second Welfare Theo-

rem, which says only that for any efficient allocation we can construct supporting prices

given full information about the economy. For general price equilibria, the construction

is trivial: for example, we can simply take prices pi = ui for all agents i. The Second

Welfare Theorem is not a very useful result, because with full information, an efficient

allocation can be implemented directly, without using prices. In contrast, Proposition 1

says not only that supporting prices exist, but also that they must be revealed by any

efficient communication, not just by full revelation.

The proof of the “only if” part of Proposition 1 for two agents is illustrated in Figure

2, which depicts the valuations in the same way as Figure 1. Suppose that a message

m has verified that allocation k is efficient. Consider the two agents’ valuations that are

consistent with message m. Due to Privacy Preservation, k must be efficient in any state

in which agent 1’s valuation is consistent with m and agent 2’s valuation is consistent

with m. Graphically, this means that any valuation curve of agent 1 consistent with m

(in Figure 2, u1 and u01) must lie above any valuation curve of agent 2 consistent with m

(in Figure 2, u2 and u02). Therefore, letting agent 1’s price curve p1 be the lower envelope

of his valuation curves consistent with m, and letting agent 2’s price curve p2 be the

upper envelope of his valuation curves consistent with m, p1 will lie above p2, thus the

prices will satisfy condition (2). Also, by construction, the prices will satisfy condition

(1) in all states consistent withm (states (u1, u2), (u01, u2), (u1, u
0
2), and (u

0
1, u

0
2) in Figure

1) Thus, on the basis of a message m verifying k we have constructed a price equilibrium

supporting k in all states in which m occurs.
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Proposition 1 implies that the nondeterministic communication burden of the efficient

correspondence F ∗ is exactly the minimum size of a price-allocation space M ensuring

the existence of an equilibrium fromM ⊂ RNK×K. While finding such a minimal space

is in general a hard problem, below we derive some upper and lower bounds for it in

specific cases (and in some of these cases the two bounds match).

4 A Lower Bound on Efficient Communication

Note that two utility functions that differ by a constant describe the same preferences. In

counting the states of the world, we will need to ensure that we do not count two different

states describing the same preferences. Similarly, in measuring the metric dimension of

(subsets of) the state space, we need to ensure that the dimensionality of utility functions

coincides with the dimensionality of preferences. For these purposes, we assume that any

two preferences that are “close” to each other are described by utility functions that are

close to each other:

Definition 3 The state space U is normalized if there exists C > 0 such that for all

u, u0 ∈ U ,10

ku0 − uk ≤ C sup
i∈N , j,k∈K

¯̄£
u0ij − uij

¤
− [u0ik − uik]

¯̄
.

In particular, a normalized state space U cannot contain two distinct states between

which each agent’s utility differs only by a constant. For example, normalization holds

(with C = 1) when each agent is always assigned zero utility to one of the allocations.

Now we can show that the subset of the state space on which all allocations are equally

efficient constitutes a “fooling set” for the price equilibrium correspondence. Namely,

letting

U∗ = {u ∈ U : F ∗ (u) = K} ,

we show that two distinct states from U∗ cannot have the same supporting prices:

10For definiteness, we let k·k represent the sup-norm on RNK , though in a finite-dimensional space U

all norms are known to be equivalent .
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Lemma 1 In a normalized quasilinear problem, for any u, u0 ∈ U∗ with u 6= u0, E (u) ∩

E (u0) = ∅.

Proof. Suppose in negation that
³
p, k̂
´
∈ E (u) ∩ E (u0). u ∈ U∗ means that the total

surplus
P

i uik does not depend on k ∈ K, and therefore (2) can be written in state u asX
i

[uik̂ − pik̂] ≤
X
i

[uik − pik] for all k ∈ K.

On the other hand, (1) means that

uik̂ − pik̂ ≤ uik − pik for all i ∈ N , k ∈ K.

Comparing the two displays, we see that for each i, uik − pik does not depend on k ∈ K.

Since by the same argument the same is true for u0ik − pik, we see that u0ik − uik does not

depend on k for all i. By normalization, this implies that u = u0 –a contradiction.

The proof of Lemma 1 for the case N = 2 can be illustrated graphically in Figure 1,

by observing that in any state from U∗, the two agents’ valuation curves coincide, and

the price curves are squeezed in-between. Therefore, both agents’ prices must coincide

with their utilities (up to a constant). Different states from U∗ will give rise to different

indifference curves and will therefore pin down different price curves.

We can now use Proposition 1 to conclude that any efficient communication protocol

must yield distinct messages in distinct states from U∗. This implies that the protocol

uses at least |U∗| distinct messages. A similar statement can be made for continuous

communication, though extra care should be taken to rule out “dimension smuggling”:

Proposition 2 In a normalized quasilinear problem, any efficient protocol transmits at

least log |U∗| bits, and the dimension of its message space is at least dimU∗.

Proof. Lemma 1 and Proposition 1 together imply that the restriction of the message

correspondence µ to U∗ has an injective selection σ : U∗ → µ (U∗). This implies the first

statement of the proposition. For the second statement, we will also show that σ−1 is

Lipschitz continuous. For this purpose, take any m,m0 ∈ µ (U∗), and let u = σ−1 (m),
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and u0 = σ−1 (m0). By the construction of the metric on messages (see footnote 8),

there exists u00 ∈ µ−1 (m0) such that ku00 − uk ≤ ρ (m0,m). Since u0 ∈ U∗, as shown

in the proof of Lemma 1, any equilibrium price vector p in state u0 coincides with u0

up to agent-dependent constants. By Proposition 1, price vector u0 must also support

allocation h (m0) = k̂ in state u00. (1) then implies that for all i ∈ N , k ∈ K,

u00ik − u00ik̂ ≤ u
0
ik − u0ik̂ = u

0
−i,k̂ − u

0
−i,k ≤ u00−i,k̂ − u

00
−i,k

(where u−i,k =
P

j 6=i ujk). Subtracting uik − uik̂ = u−i,k̂ − u−i,k, and taking the absolute

value implies:

¯̄
(u0ik − uik)− (u0ik̂ − uik̂)

¯̄
≤ max

n¯̄
(u00ik − uik)− (u00ik̂ − uik̂)

¯̄
,
¯̄̄
(u00−i,k − u−i,k)− (u00−i,k̂ − u−i,k̂)

¯̄̄o
≤ 2 (N − 1) ku00 − uk .

Now, using normalization and the triangle inequality,

ku0 − uk ≤ C sup
i∈N, j,k∈K

¯̄¡
u0ij − uij

¢
− (u0ik − uik)

¯̄
≤ 2C sup

i∈N, k∈K

¯̄
(u0ik − uik)− (u0ik̂ − uik̂)

¯̄
≤ 4C (N − 1) ku00 − uk ≤ 4C (N − 1) ρ (m0,m) .

Thus, σ−1 is Lipschitz continuous, which implies that dimM ≥ dimσ (U∗) ≥ dimU∗ (see

Edgar (1990, Exercise 6.1.9(1)).

The simplest application of Proposition 2 is to the case N = 2:

Corollary 1 Suppose that in a normalized quasilinear problem with N = 2, for each

u1 ∈ U1 there exists a “dual utility” u2 ∈ U2 such that u1k + u2k does not depend on

k. Then any efficient protocol transmits at least log |U1| bits and has the message space

dimension of at least dimU1.

Corollary 1 will be a workhorse for the subsequent results on the combinatorial al-

location problem. We will apply it also to N > 2 agents by letting agents i > 2 have

constant utilities over all allocations k. Also, Corollary 1 can be applied to some cases in
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which the two agents can have dual utilities only on some subset K̃ ⊂ K of allocations,

by restricting attention to a subclass of utilities for which allocations from K\K̃ are

never efficient (see Subsection 7.1).

5 Approximation and Discretized Problems

One may hope that approximate efficiency could be achieved with less communication

than exact efficiency. In this section we discuss how to analyze the communication

burden of approximate efficiency. To be consistent with the computer science literature

on approximation (see, e.g., Vazirani (2001)), we use an approximation measure that is

invariant to the units of measurement (see, e.g., Vazirani (2001)). Namely, defining the

maximum surplus available in state u by

S (u) = max
k∈K

X
i

uik,

we define the choice correspondence F ∗r realizing approximation ratio r ∈ [0, 1] as fol-

lows:11

F ∗r (u) =

(
k ∈ K :

X
i

uik ≥ rS(u)
)
.

By construction, F ∗1 = F ∗ (the exactly efficient correspondence), and the set F ∗r (u) is

nonincreasing in r for all u.

11This is a “worst-case” definition, since it requires uniform approximation across all states. The

weaker requirement of “average-case” approximation given some probability distribution over states is

considered in Section 8 below.
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For the study of approximation, we need to assume12

S ≡ sup
u∈U

S (u) <∞, S ≡ inf
u∈U :S(u)6=0

S (u) > 0. (3)

The communication burden of F ∗r can be evaluated by examining the communication

burden of the exactly efficient correspondence F ∗ in a discretized problem. In computer

science, discrete problems are usually considered in their own right (the inputs are re-

stricted to be integers), but we will use them as a stepping stone for the analysis of

approximation in the continuous problem.

For each state u ∈ U , let uδ denote the state in which all utilities are rounded off

to multiples of δ > 0. Define the upper δ-discretized problem as the problem with the

discrete state space U δ =
©
uδ : u ∈ U

ª
. Suppose that we have a protocol Γ realizing

exact efficiency for problem U δ. We can then ask the agents to round off their utilities

to multiples of δ and follow protocol Γ. Since the sum of rounded-off utilities for every

allocation is within Nδ/2 from the true surplus at this allocation, the maximization of

this sum results in a surplus loss of at most Nδ. Since the maximum available surplus is

bounded below by S, we realize approximation ratio 1−Nδ/S, using as much communi-

cation as in Γ. In particular, full revelation of valuations rounded off with a sufficiently

fine precision achieves an approximation ratio arbitrarily close to 1.

Examination of a discretized problem also allows to bound the communication burden

of approximation from below. For this purpose, define the lower δ-discretized problem

as the problem with the discrete state space U δ ∩ U . This state space consists of those

valuations from U that are multiples of δ. (In most applications considered in this paper,

12Both inequalities are needed to ensure that approximation can be achieved with finite communica-

tion. For example, consider the problem of allocating one object between two agents whose valuations

lie in [0, 1], and so S = 0. Pick r ∈ (0, 1), and consider the restricted problem in which both agents’

valuations lie in the set {rn}∞n=0 ⊂ [0, 1]. In this restricted problem, realizing an approximation ratio

higher than r is equivalent to exact efficiency, and Corollary 1 implies that this requires a countable

message space. Since arbitrary r ∈ (0, 1) can be chosen, this implies that no positive approximation can

be achieved with finite communication. The same conclusion is reached when the agents’ valuations lie

in [1,∞] (and so S =∞), by considering the restricted problem {r−n}∞n=0.
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U δ ⊂ U , hence the lower and upper discretized problems coincide, in which case we will

simply call them the discretized problem.) Since any misallocation in problem U δ ∩ U

loses at least surplus δ, and the maximum available surplus is bounded above by S̄,

realizing an approximation ratio higher than 1− δ/S̄ in problem U δ ∩U is equivalent to

realizing exact efficiency. Realizing the same approximation ratio in problem U requires

at least as much communication. This observation will allow us to bound below the

communication burden of approximating efficiency in problem U by applying Corollary

1 to the upper discretized problem. To summarize:

Proposition 3 In a quasilinear problem in which (3) holds, (i) realizing approximation

ratio 1 − δN/S does not require more communication than realizing exact efficiency in

the upper discretized problem U δ, and (ii) realizing an approximation ratio higher than

1−δ/S̄ requires at least as much communication as realizing exact efficiency in the lower

discretized problem U δ ∩ U .

We want to characterize the dependence of the communication burden on the desired

approximation, as well as on the parameters of the problem. For this purpose, we use

the following three concepts, listed from weaker to stronger, which are standard in the

computer science literature on approximation algorithms (see, e.g., Vazirani (2001)):

• A Polynomial Approximation Scheme (PAS) in some parameters is a protocol that

for any given ε > 0 realizes approximation ratio 1− ε using a number of bits that

is polynomial in the parameters.

• A Fully Polynomial Approximation Scheme (FPAS) in some parameters is a pro-

tocol that for any ε > 0 realizes approximation ratio 1− ε using a number of bits

that is polynomial in ε−1 and the parameters.

• A Truly Polynomial Approximation Scheme (TPAS) in some parameters is a pro-

tocol that for any ε > 0 realizes approximation ratio 1− ε using a number of bits

that is polynomial in log ε−1 and the parameters.
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PAS achieves an arbitrarily close approximation with polynomial communication, but

does not stipulate how the communication burden depends on the approximation error.

In contrast, in FPAS and TPAS, the error must shrink sufficiently fast with the number

of bits transmitted. An economic example of FPAS is an ascending-bid auction for one

unit with a minimum bid increment ε. Suppose that the agents’ valuations for the unit lie

in [1, 2]. At each price level starting from p = 1, the auction asks each agent to send one

bit–“in” or “out.” If at least one agent sends “in,” the price is incremented by ε. The

auction stops when all agents send “out,” assigning the object to (one of) the agent(s)

who sent “in” in the previous stage. Suppose that the agents behave “truthfully”–send

“in” if and only if their valuations exceed the current price. Then the auction is exactly

efficient for the discretized problem U ε, and therefore, by Proposition 3(i), it realizes

approximation ratio 1 − ε. Since the maximum number of price increments is ε−1, the

auction’s worst-case complexity is Nε−1.

TPAS requires a much faster approximation than FPAS–the error must now shrink

exponentially with the number of bits transmitted. An economic example of TPAS is a

sealed-bid auction of a single unit, in which the agents submit their valuations rounded

off to a multiple of ε. Suppose the agents’ valuations for the unit lie in [1, 2]. Since the

auction is exactly efficient for the upper discretized problem U ε, by Proposition 3(i), it

realizes approximation ratio 1 − ε. Since it takes log ε−1 bits to transmit a valuation

rounded off to a multiple of ε, the total number of bits transmitted is N log ε−1.

Note that our TPAS example was obtained by taking a fully efficient continuous

protocol and asking the agents to round off their messages. This technique can be

generalized: given a d-dimensional continuous protocol realizing approximation ratio

r, rounding off the messages yields a TPAS to approximation ratio r that is linear in

d. Intuitively, a message round-off error that is small in the Hausdorff metric defined in

footnote 8 yields an allocation that is desirable for some state that is not too far from

the true state, and therefore a small efficiency loss. Formally, we have

Proposition 4 In a quasilinear problem satisfying (3), if there exists a protocol realizing
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approximation ratio r with a message space of upper box dimension d > 0,13 then for any

ε > 0 there exists a protocol realizing approximation ratio r − ε using C (ε) bits, with

C (ε) ∼ d log ε−1 as ε→ 0.

Proof. Suppose that Γ = hM,µ, hi is an efficient protocol. By the definition of upper

box dimension, for each δ > 0 there exists a covering of M by balls of radius δ centered

at points Mδ ⊂ M , with log |Mδ| ∼ d log δ−1. For each m ∈ M , we can choose a point

rδ (m) ∈Mδ such that ρ (m, rδ (m)) ≤ δ. Let µδ (u) = rδ (µ (u)).

Consider the protocol Γδ = hMδ, µδ, hi. Note that Γδ inherits Existence and Privacy

Preservation from Γ. Take any state u ∈ U and any mδ ∈ µδ (u). By construction,

mδ = rδ (m) for some m ∈ µ (u). By the construction of the Hausdorff metric ρ on

messages (see footnote 8), there exists u0 ∈ µ−1 (mδ) such that ku0 − uk ≤ ρ (m,mδ) ≤ δ.

This implies that (i) S (u) ≤ S (u0) + δ, and (ii)
P

i ui (h (mδ)) ≥
P

i u
0
i (h (mδ)) − δ.

Thus, we can writeP
i ui (h (mδ))

S (u)
≥
P

i u
0
i (h (mδ))− δ

S (u0) + δ
≥
P

i u
0
i (h (mδ))− 2δ
S (u0)

≥ r − 2δ/S,

where the last inequality uses the fact that Γ realizes approximation ratio r, hence

h (mδ) ∈ F ∗r (u0). Therefore, taking δ (ε) = εS/2 ensures that Γδ(ε) realizes approxi-

mation ratio r − ε. The number of bits communicated by Γδ(ε) is

log
¯̄
Mδ(ε)

¯̄
∼ d log δ (ε)−1 = d log ε−1 + d log (2/S) ∼ d log ε−1 as ε→ 0.

In particular, the Proposition implies that if we discretize two efficient continuous

protocols with message spaces of dimension d1 and d2 respectively to guarantee approx-

imation error ε, then the worst-case complexities of the two discretized protocols are

related as d1/d2 asymptotically as ε→ 0.14 Thus, the dimension of the continuous mes-

sage space based on the Hausdorff metric over messages is indeed a relevant measure of

13The upper box dimension coincides with the Hausdorff dimension for most “well-behaved” sets, but

could exceed it for some sets (see Edgar (1990)).
14Conversely, if a given large number of bits C is to be transmitted in both cases, then the ratio of

the approximation errors of the two protocols will grow exponentially with C when d2 < d1. This is

consistent with the findings of Hurwicz and Marschak (2003a,b).
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communication even if real-life communication is discrete. The result also implies that if

we have continuous communication that is polynomial in some parameters and realizes

approximation ratio r, then the discretized protocol is a TPAS for r in the same para-

meters. In such a case we will simply say that the discretized protocol is a “polynomial

protocol realizing approximation ratio r.”

6 The Combinatorial Allocation Problem

We now specialize to the Combinatorial Allocation (CA) problem, in which the allocation

is that of L items among the N agents. Formally, the allocation space is K = NL, and

k(l) denotes the agent holding item l ∈ L in allocation k ∈ K.

We impose several standard restrictions on valuations (which can only reduce the

communication burden):

• No Externalities (NE): For each i and each ui ∈ Ui, there exists vi : 2L → R

such that uik = vi(k−1(i)) for each k ∈ K.

In words, each agent i’s utility is a function vi of the bundle k−1(i) allocated to him.

We will call vi the agent’s valuation, and let Vi ⊂ R2
L
denote the class of his possible

valuations. The state space can then be represented by V = V1 × . . .× VN .

Each vi ∈ Vi is also assumed to satisfy the following restrictions:

• Normalization (N): vi(∅) = 0.

• Monotonicity (M): vi(S) is nondecreasing in S ⊂ L.

• Boundedness (B): Either vi(L) = 0 or vi(L) ∈ [γ, 1].

(N) is without loss of generality, and it serves to rule out distinct valuations that

differ only by a constant, thus describing the same preferences. It also ensures the

Normalization assumption above. (M) and (B) are not needed for the analysis of exact

efficiency, but will be used in the analysis of approximation (in particular, (B) ensures
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condition (3) above). Given that the analysis is invariant to scale, the choice of the upper

bound as 1 is arbitrary. The lower bound γ can be viewed as a parameter of the problem

along with N and L, but its value will be irrelevant for most results. Let Vgen ⊂ R2
L

denote the class of all valuations satisfying (NE), (N), (M), and (B). (We will consider

additional restrictions on valuations in Section 7.)

To apply Corollary 1, for each valuation v ∈ Vgen define the dual valuation ṽ ∈ Vgen
by

ṽ(S) = v(L)− v(L\S) for all S ⊂ L. (4)

When N = 2 and the two agents’ valuations are v and ṽ, all allocations have the same

surplus v(L). Thus, we can use Corollary 1 to obtain

Proposition 5 In the combinatorial allocation problem with general valuations, the di-

mension of the message space in any efficient protocol is at least dimVgen = 2L − 1.

Therefore, the communication burden of efficiency is at least as large as a full de-

scription of one agent’s valuations. Recall from the discussion in Section 3 that this

lower bound is essentially tight for N = 2. A more general upper bound is given by

(N − 1)
¡
2L − 1

¢
numbers (all agents but one fully reveal their valuations), but the exact

communication burden for N > 2 remains an open problem.15

To bound below the communication burden of approximation, we apply the same

logic to the discretized problem V δ
gen ⊂ Vgen with δ = 1 (i.e., the problem in which the

agents’ valuations for all bundles are either 0 or 1). Corollary 1 implies that any efficient

protocol for the discretized problem transmits at least log
¯̄
V 1gen

¯̄
bits. Only counting those

15To see that the upper bound is not tight either, consider the case where N > L. In this case, in

any allocation at most L agents receive non-empty bundles, therefore it cannot be efficient to allocate a

bundle to an agent who does not hold one of the top L valuations for it. Thus, efficiency can be verified

by announcing only the L highest valuations for each bundle (and the agents holding them), and having

each agent i accept the communication if for each bundle S ⊂ L, either his valuation for S is announced

correctly, or it does not exceed any of the L announced valuations. Therefore, when N > L, efficiency

can be verified using only L
¡
2L − 1

¢
real numbers. We are obliged to Moshe Babayoff for bringing this

to our attention.
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valuations in V 1gen that have v(S) = 0 for |S| < L/2 and v(S) = 1 for |S| > L/2, we

see that log
¯̄
V 1gen

¯̄
≥
¡
L
L/2

¢
.16 Thus, already with N = 2, by Proposition 3(ii) we obtain

a lower bound on the communication burden of realizing a higher approximation ratio

than 1− δ/N = 1/2:

Proposition 6 In the combinatorial allocation problem with general valuations, any pro-

tocol realizing an approximation ratio higher than 1/2 communicates at least log
¯̄
V 1gen

¯̄
≥¡

L
L/2

¢
bits.

Observe that approximation ratio 1/N can be realized by auctioning off all objects as

a bundle to the highest bidder. (Indeed, the bundled auction realizes surplus maxi vi (L),

while no individual agent can have a higher utility than that at any allocation.) Thus,

Proposition 6 means that for N = 2, any improvement upon the bundled auction still

requires very extensive communication, which still grows exponentially with L.17 In fact,

we can prove a similar statement for N > 2, though using a different proving technique:

Proposition 7 In the combinatorial allocation problem with general valuations, real-

izing an approximation ratio higher than 1/N requires communicating at least ln 2 ·

exp {L/ (2N2)− 2 lnN} bits.

Proof. In the Appendix we consider the following set packing problem: Each of the N

agents holds a collection of subsets of L, and the goal is to approximate the maximum

packing number–the number of subsets in the union of their collections that are packed

together, i.e., are pairwise disjoint. The set packing problem is reduced to the combi-

natorial allocation problem by letting, for each agent i, vi (S) be the maximum number

of subsets in his collection that can be packed into S. We prove a lower bound on the

16Note that
¯̄
V 1gen

¯̄
is the number of monotone boolean functions of L boolean variables. The problem

of counting these functions is known as “Dedekind’s problem,” which is unsolved, though its asymptotic

behavior is obtained by Korshunov (1981).
17Indeed, by Stirling’s formula, the communication burden¡
L
L/2

¢
∼
p
2/ (πL) · 2L as L→∞.

24



communication complexity of any protocol realizing an approximation ratio higher than

1/N for the maximum packing number, which applies even when each agent i’s individual

packing number (corresponding to vi (L)) is restricted to be at most 1. This lower bound

is given in the Proposition.

This result should be contrasted with the findings of Lehmann et al. (1999) and

Holzman et al. (2001), who suggest “simple” protocols improving upon the bundled

auction. For example, Holzman et al. (2001) note that auctioning off the objects in two

equal-sized bundles achieves approximation ratio r (L) = 2/L for any N , thus improving

upon the bundled auction when N > L/2 (splitting L into more bundles allows further

improvement). Lehmann et al. (1999) propose a polynomial approximation algorithm

that can be adapted to the following protocol: At each stage of the protocol, each agent

i who is not yet allocated any items announces a subset Si of yet unallocated items that

maximizes the ratio vi(Si)/
p
|Si|, along with the maximum ratio itself. The agent who

announces the highest ratio receives the requested bundle and quits. In the course of this

protocol, agents announce N (N + 1) /2 valuations and bundles. Lehmann et al. (1999)

show that this algorithm realizes approximation ratio r(L) = 1/
√
L, which is higher than

that realized by the bundled auction when N >
√
L.

Observe that these improvements over the bundled auction do no contradict Propo-

sition 7. Intuitively, the proposition implies that in large problems in which the number

N of agents is “substantially smaller” than the number L of items (e.g., smaller than

L1/2−ε), “simple” protocols (e.g., polynomial in L) cannot improve over the bundled auc-

tion. When N is either comparable with or larger than L, simple protocols can improve

over bundled auctions, though both bundled auctions and all other simple protocols

realize a vanishing share of the available surplus as N,L→∞.
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7 Restricted Valuations

7.1 Submodular Valuations

Here each agent’s valuation space Vi = Vsm is the set of all valuations v ∈ Vgen that satisfy

v(S ∪ T ) + v(S ∩ T ) ≤ v(S) + v(T ) for all S, T ⊂ L.

An equivalent definition of submodularity is that the marginal benefit of each item l ∈ L,

v(S ∪ l)− v(S), is nonincreasing in S ⊂ L.

Corollary 1 cannot be applied to this case directly, since the dual (4) of a submodu-

lar valuation is typically not submodular (unless both are additive–see Subsection 7.3

below). We get around this problem by defining duality in such a way that the surplus

is constant only on the allocations involving even splits of objects:

K̃ =
©
k ∈ K :

¯̄
k−1(1)

¯̄
=
¯̄
k−1(2)

¯̄
= L/2

ª
.

Namely, consider the set Ṽ of valuations v ∈ R2L satisfying

• v(S) = 2|S|/L for |S| < L/2,

• v(S) = 1 for |S| > L/2,

• v(S) ∈ [1− 1/L, 1] for |S| = L/2,

• 1

|K̃|
P

S⊂L:|S|=L/2 v (S) = 1− 1/ (2L).

One can easily verify that Ṽ ⊂ Vsm.

Note that in any state (v1, v2) ∈ Ṽ × Ṽ , all efficient allocations lie in K̃. (Indeed, the

last bullet implies that the average surplus of all allocations from K̃ is 2 − 1/L, while

any other allocation has a surplus of at most 2− 2/L, and thus is dominated by at least

one allocation from K̃.) The last bullet above ensures that thus constructed valuation

class with allocations restricted to K̃ is normalized.

For each v ∈ Ṽ , define its “quasi-dual” bv ∈ Ṽ as follows:
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• bv(S) = 2− 1/L− v(L\S) for |S| = L/2,
• bv(S) = 2|S|/L for |S| < L/2.
• bv(S) = 1 for |S| > L/2,
By construction, the set of efficient allocations in any state (v,bv) ∈ Ṽ × Ṽ is exactly

K̃. Thus, we can apply Corollary 1 with the two agents’ valuations restricted to Ṽ and

the allocations restricted to K̃, which yields

Proposition 8 In the combinatorial allocation problem with submodular valuations, the

dimension of the message space in any efficient protocol is at least dim Ṽ =
¯̄̄
K̃
¯̄̄
− 1 =¡

L
L/2

¢
− 1.

Consider now the discretized problem Ṽ δ ⊂ Ṽ with δ = 1/L and N = 2. Applying

Corollary 1 with the two agents’ valuations restricted to Ṽ δ and the outcomes restricted

to K̃ implies that the number of bits communicated by an efficient protocol for the

discretized problem is at least log
¯̄̄
Ṽ δ
¯̄̄
=
¯̄̄
K̃
¯̄̄
− 1. Proposition 3(ii) then implies

Proposition 9 With submodular valuations, realizing an approximation ratio higher

than 1− 1/ (2L) requires communicating at least
¡
L
L/2

¢
− 1 bits.

Note that if we had a FPAS in L, then it could be used to realize approximation

ratio 1 − 1/ (2L) using polynomial communication in L, contradicting Proposition 9.

Therefore, we have

Corollary 2 With submodular valuations, FPAS in L is impossible.

This result implies, for example, that an ascending-bid auction with L per-item prices

and bid increment ε cannot approximate efficiency within ε, because the auction’s worst-

case complexity would be NLε−1, and so it would be a FPAS. Yet, we have been unable

to rule out PAS — i.e., achieving any approximation ratio with polynomial communication

inN,L. We do know from Lehmann et al. (2001) that approximation ratio 1/2 is realized
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by the (deterministic) “greedy” protocol that allocates the objects in a fixed order to the

agents who announce the highest current marginal benefit for them, and so communicates

only NL numbers.

7.2 Homogeneous Valuations

Here each agent’s valuation space Vi = Vh is the set of valuations v ∈ Vgen that satisfy

v(S) = φ(|S|) for all S ⊂ L, where φ : {0, . . . , L} → R. That is, agents care only about

the number of items they receive.

Since the dual (4) of a homogeneous valuation is homogeneous, Corollary 1 implies

Proposition 10 In the combinatorial allocation problem with homogeneous valuations,

the dimension of the message space in any efficient protocol is at least dimVh = L.

Now consider the discretized problem V δ
h ⊂ Vh, with δ = 1/R for some R. By

Corollary 1, exact efficiency in this problem requires communicating at least log
¯̄
V δ
h

¯̄
bits.

Note that
¯̄
V δ
h

¯̄
is the number of monotone functions φ : {1, . . . , L} → {0, . . . , R} such

that φ (L) ≥ γR. If we fix φ (L) = R for simplicity, then the number of such functions is

exactly the number of ways thatR indistinguishable balls (corresponding to the function’s

unit jumps) can be partitioned into L urns (corresponding to the jump points). This

number is
¡
R+L−1
L−1

¢
.18 Therefore, exact efficiency in problem V δ

h requires communicating

at least log
¡
δ−1+L−1
L−1

¢
bits. By Proposition 3(ii), at least as much communication is needed

to realize an approximation ratio higher than 1− δ/2 when N = 2.

On the other hand, the full revelation protocol in the discretized problem V δ
h uses

at most Nδ−1 log (L+ 1) bits. Indeed, each agent needs only to communicate δ−1 jump

points in {0, . . . , L}, each of which is communicated with log (L+ 1) bits. By Propo-

sition 3(i), this communication realizes approximation ratio 1 − δ/γ in the continuous

18This is proven by putting all the R balls in a row with L − 1 dividers, and letting urn l = 1, .., L

contain the balls lying between dividers l − 1 and l. Thus, the different allocations of balls into urns

correspond to the different positions that the L− 1 dividers can occupy in a row of R+ L− 1 objects.
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problem (note that the round-off error arises only on agents with non-null valuations).

Summarizing the results, we have

Proposition 11 In the combinatorial allocation problem with homogeneous valuations,

for any δ > 0, (i) realizing an approximation ratio higher than 1− δ/2 requires commu-

nicating at least log
¡
δ−1+L−1
L−1

¢
bits, and (ii) approximation ratio 1− δ/γ is realized by full

revelation of valuations rounded off to multiples of δ, which takes at most Nδ−1 log (L+ 1)

bits.

Corollary 3 In the combinatorial allocation problem with homogeneous valuations, (i)

TPAS in logL is impossible even for N = 2 and γ = 1, but (ii) full revelation of rounded

off valuations is a FPAS in parameters logL, N , and γ−1.

Proof. (i) If there existed a TPAS in logL, then realizing approximation ratio 1−1/ (4L)

would take only polynomial communication in logL. By Proposition 11(i), however, it

requires communicating at least log
¡
2L+L−1
L−1

¢
= log (3L−1)!

(2L)!(L−1)! ≥ L− 1 bits.

(ii) By Proposition 11(ii), full revelation of valuations rounded off to multiples of εγ

realizes approximation ratio 1− ε using at most Nε−1γ−1 log (L+ 1) bits.

By Proposition 11(ii) means, in particular, that we can achieve any given positive ap-

proximation error using O (logL) bits. As L grows, this amount of communication is pro-

portional to that of simply announcing an allocation (which takes roughly N log (L+ 1)

bits). On the other hand, Corollary 3(i) means that the extra communication burden

needed to guarantee halving the approximation error (regardless of the starting error)

is exponential in logL. Intuitively, this means that when the number L of objects is

large, and we have a protocol that achieves a close approximation of efficiency, a small

reduction in inefficiency requires an enormous increase in communication.

Our analysis can also be related to the model of Calsamiglia (1977), in which instead

of L indivisible goods there is one unit of an infinitely divisible good. In this case, V

is the space of nondecreasing functions v : [0, 1] → [0, 1], and so dimV = ∞. Corollary

1 then implies that efficiency requires an infinite-dimensional message space, re-deriving
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Calsamiglia’s (1977) result.19 ,20 However, Calsamiglia’s model allows a FPAS, provided

that the agents’ valuation functions satisfy

|v(x0)− v(x)| ≤ (− log |x0 − x|)−A for all x, x0 ∈ [0, 1]

for some A > 0. Under this mild strengthening of continuity (for example, implied by

Hölder continuity of any degree), restricting agents to consume the good in L = 2(εγ)
−1/A

identical discrete units reduces the surplus by at most N (logL)−A = Nεγ. Running the

protocol described in Corollary 3(ii) on this discretized allocation space will approximate

the maximum surplus within 2Nεγ, and so realize approximation ratio 1 − 2ε, while

communicating only Nε−1 log (L+ 1) ≈ Nε−1 (εγ)−1/A bits. Thus, we have a FPAS,

even though exact efficiency in this case requires infinite-dimensional communication.

7.3 Substitute Valuations

Here each agent’s valuation space Vi = Vsub is the set of valuations v ∈ Vgen whose indirect

utility function w (p) = maxS⊂L
¡
v (S)−

P
l∈S pl

¢
is submodular in p ∈ RL+. This is one

of the many equivalent definitions of the substitute property–see Gul and Stacchetti

(1999) and Milgrom (2000).21

Since Vsub ⊂ Vsm (see Gul and Stacchetti (1999)), the dual (4) of a substitute valuation

is not one, except when both are additive, i.e., take the form v (S) =
P

l∈S φl for some

φ ∈ RL. Let Vadd denote the class of additive valuations. Since Vadd ⊂ Vsub, and the dual

of an additive valuation is itself, Corollary 1 yields

19Calsamiglia (1977) restricts the valuation of agent 1 to be concave and that of agent 2 to be convex.

Since the dual of a concave valuation is convex, the analysis goes through without modification. Similarly,

the agents’ valuations can be restricted to be arbitrarily smooth, since smoothness is preserved under

duality.
20In contrast, when both agents’ valuations are known to be concave, a Walrasian equilibrium with a

single real-valued price exists and realizes efficiency (regardless of whether the good is divisible or not).
21The property is more widely known as “gross substitutes,” which is redundant because in the asbence

of wealth effects the concepts of gross and net substitutability coincide.
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Proposition 12 In the combinatorial allocation problem with additive or substitute val-

uations, the dimension of the message space in any efficient protocol is at least dimVadd =

L.

This lower bound is attained by the Walrasian equilibrium with per-object prices,

which always exists with substitute valuations (Kelso and Crawford 1982, Gul and Stac-

chetti 1999).

A major disadvantage of the Walrasian protocol is that it is nondeterministic, leaving

open the question of how to find an equilibrium. Deterministic protocols achieving this

were proposed by Gul and Stachetti (2000) and Ausubel (2002). These protocols are

variations on the ascending-bid auction with prices quoted for individual items, and so

they are only FPAS. This is in fact true of all proposed approximation protocols based

on the primal-dual schema (see, e.g., Bikhchandani et al. (2001)).

We improve upon the proposed auction designs by describing a TPAS for this setting.

For this purpose, we write the efficient allocation problem as an integer programming

problem, letting xiS = 1 if agent i’s allocation k−1 (i) = S and xiS = 0 otherwise. As

shown by Bikhchandani and Mamer (1997), if a Walrasian equilibrium exists then any

efficient allocation must also solve the relaxed surplus-maximization program in which

fractional allocations xiS are allowed:

max
x∈RN·2L+

X
i∈N,S⊂L

xiSvi (S) (P)

s.t.
X

i∈N,S3l
xiS ≤ 1 for all objects l ∈ L,X

S⊂L
xiS ≤ 1 for all agents i ∈ N .

Linear program (P) has onlyN+L constraints but an exponential number of variables,

so it would be hard to solve it directly. It is easier to solve the dual program

min
p∈RL+,w∈RN+

X
l∈L
pj +

X
i∈N

wi (D)
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s.t. wi −
"
vi (S)−

X
S3l
pl

#
≥ 0 for all i ∈ N , S ⊂ L,

where pl and wi denote the Lagrange multipliers with the constraints in (P) associated

with object l and agent i respectively. Examination of the complementary slackness con-

dition shows that a vector (x, p, w) ∈ RN ·2L × RL × RN is comprised of solutions to (P)

and (D) if and only if it describes a Walrasian equilibrium, with x being the (possibly

fractional) equilibrium allocation, p the price vector, and w the vector of agents’ utili-

ties. We proceed under the assumption that an integral Walrasian equilibrium allocation

exists.

While (D) has an exponential number of constraints, each of the constraints depends

on the valuation of a single agent. This allows to solve (D) with a separation-based lin-

ear programming algorithm, such as the ellipsoid method (see, e.g., Karloff (1991)). The

method uses an oracle, who, presented with a candidate solution, produces a violated in-

equality whenever one exists. Consider a protocol running a separation-based algorithm,

but instead of each oracle query, asking each agent i to report a bundle S that gives him

a higher net utility than his “utility target” wi at the current price vector p. If such a

report is made by one of the agents, the protocol continues. It is known that when the

inputs (valuations) are discrete multiples of δ, the separation-based algorithm produces

a solution within a number of steps that is polynomial in the number of variables (in

our case N + L) and log δ−1 (the size of each “input” number). Since at each step there

are at most N numbers and bundles announced by the agents, the whole protocol uses

polynomial communication in N , L, and log δ−1. Thus, we have a polynomial procedure

to calculate the value of δ-discretized program (P), which approximates the true value of

(P) to within Nδ/2. An approximate integer solution to (P) can then be deduced using

standard computational techniques of self-reduction, yielding a TPAS.22

22Indeed, since (P) has an integer solution, there exists an allocation of item 1 that does not reduce its

value, and so does not reduce the value of the δ-discretized (P) by more than Nδ. Thus, let us find an

agent such that upon allocating item 1 to him, the value of the δ-discretized (P) does not fall by more
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8 Average-case Analysis

Suppose that we are given a probability distribution over the states of the world. Then we

can relax the notion of approximation to the requirement that only the expected surplus

be close to optimal. At the same time, we can count the expected rather than worst-case

number of bits transmitted, which allows a savings from coding more frequent messages

with fewer bits (as in Shannon’s (1948) information theory). The communication measure

that uses such average-case counting is called “distributional communication complexity,”

since the results clearly depend on the assumed joint distribution of the states of the

world. For example, if the distribution puts all weight on a single state, then an efficient

outcome is known and can be implemented with no communication. Thus, it is only

interesting to consider distributions that are sufficiently diffuse so that no outcome has a

high a priori probability of being efficient. It turns out that for some such distributions,

the communication complexity of approximating efficient combinatorial allocations still

grows exponentially with the number of objects:

Proposition 13 In the combinatorial allocation problem, there exists a sequence of joint

probability distributions over valuation profiles
¡
v1, . . . , vN

¢
for each N and L such that

for any ε > 0, realizing fraction 1/N + ε of the maximum expected surplus requires

transmitting an expected number of bits that is at least c exp {L/ (2N2)− 5 lnN}, for

some fixed c > 0.

Proof. Consider the set packing problem described in the proof of Proposition 7. In the

Appendix we prove a lower bound on the communication complexity of distinguishing

between the states in which N subsets can be packed from those in which only one subset

can be packed (and each agent’s individual packing number is at most 1), which applies

to randomized protocols with any bounded error. Using the equivalence of randomized

than Nδ. Such allocation of item 1 may not be exactly optimal, but it will not reduce the value of (P)

by more than 2Nδ. Then allocate item 2 in the same fashion, then item 3, etc. Since we try allocating

each item to each agent, we will use NL calls to the polynomial procedure solving the δ-discretized (P).

Since the accumulated loss of surplus is at most L · 2Nδ, we have a TPAS.
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complexity and distributional complexity (which follows from the Minimax Theorem–

see Kushilevitz and Nisan (1997, Section 3.4)), it follows that for some sequence of

distributions over states, our lower bound applies to the “Discrimination Problem” of

distinguishing the states with surplus S(v) = N from those with S(v) = 1 correctly with

probability at least 1/2 + ε/4. In particular, we must have Pr {S (v) = N} ≤ 1/2 + ε/4,

for otherwise declaring “N” would solve the Discrimination Problem.

Now consider the conditional distribution on states with S (v) = N (assigning proba-

bility zero to all other states), so that the maximum expected surplus is N . Any protocol

Γ that achieves fraction 1/N + ε of it on the conditional distribution must realize a

surplus greater than 1 with probability at least ε. We can adapt Γ to solve the Dis-

crimination Problem for the original distribution as follows: Run Γ and ask the agents

to announce their utilities at the realized allocation. Declare “N” if the sum of the

announcements exceeds 1, declare “1” otherwise. The probability of error is at most

Pr {S (v) = N} (1− ε) ≤ (1/2 + ε/4) (1− ε) < 1/2− ε/4, hence the protocol solves the

Discrimination Problem. This implies that Γ must satisfy our lower bound, which is

stated in the Proposition.

Since the bundled auction guarantees share 1/N of the expected surplus, the Propo-

sition implies that for some joint distribution over the agents’ valuations, achieving a

higher expected surplus than the bundled auction still requires expected communication

that is exponential in L.

In the distribution constructed in the above proposition, the valuations are not nec-

essarily independently distributed. We can obtain a (weaker) lower bound on approxi-

mation for independently distributed valuations using the distributional lower bounds of

Babai, Frankl, and Simon (1986):

Proposition 14 In the combinatorial allocation problem with N = 2 agents, there exists

a sequence of probability distributions pairs D1, D2 over valuations for each L such that

realizing fraction c of the maximum expected surplus (for some fixed c < 1) when the

agents’ valuations are distributed independently according to D1, D2, respectively, requires
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communication of an expected number of bits that is exponential in L.

Proof. We will use a reduction to the “disjointness problem” from communication

complexity theory (See Kushilevitz and Nisan 1997). In this problem, each agent i = 1, 2

is given a subset Xi a set M , and the objective is to decide whether X1 ∩ X2 = ∅.

Babai, Frankl, and Simon (1986) prove a lower bound on the distributional complexity

of disjointness for product distributions:

Theorem 1 (Babai, Frankl, and Simon (1986)) There exists a distribution D on

subsets of M with |M | = m, and a fixed d > 0, such if the two agents’ sets are drawn

according to D, then any protocol that communicates in expectation at most d
√
m bits

must err with at least 1% probability when attempting to solve the disjointness problem.

We will now show that any protocol for combinatorial allocation that achieves 99.5%

expected efficiency when the agents’ valuations are drawn independently according to

distributions D1,D2 (to be defined below) can be used to obtain a protocol for the

disjointness problem for m =
¡
L
L/2

¢
that errs on at most 1% of inputs drawn according to

D. Thus the lower bound of d
√
m = d

q¡
L
L/2

¢
(which is exponential in L) communication

applies to the combinatorial allocation problem.

Distributions D1, D2 of the two agents’ valuations are defined as follows: Let M =

{S ⊂ L : |S| = L/2}, hence |M | = m. For each i = 1, 2, the valuation vi of agent i is

chosen by first choosing a random subset Xi ⊂M according to the distribution D in the

above theorem. We define vi(S) = 0 for |S| < L/2; vi(S) = 1 for |S| > L/2. For agent 1,

we define for |S| = L/2, v1(S) = 1 if S ∈ X1 and v1(S) = 0 otherwise. For agent 2, we

define for |S| = L/2, v2(S) = 1 if L\S ∈ X2 and v2(S) = 0 otherwise. Now in order to

solve the disjointness problem on X1 and X2, the two parties can each create a valuation

according to the rule specified above, solve the combinatorial allocation problem, and

declare that X1 and X2 are not disjoint when the obtained allocation has value 2, and

disjoint otherwise. Observe that finding an allocation with surplus 2 means finding a

partition of L into two sets (S,L\S) of size L/2 each such that S ∈ X1 and S ∈ X2,
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thus proving that X1 and X2 are not disjoint. Thus, the declaration of non-disjointness

is always correct. On the other hand, since any inefficient allocation loses at least half

the available surplus, an allocation protocol that loses at most 0.5% of expected surplus

cannot produce an inefficient allocation with probability more than 1%. Therefore, the

probability of falsely declaring disjointness is at most 1%.

The proof is done for c = 99.5%, which is derived from a constant quoted in Babai,

Frankl, and Simon (1986). No optimization of the constant was attempted and it seems

likely that a substantial strengthening is possible.

9 Comparison with Computational Complexity

The communication problem examined here is different from the previously considered

problem of computing an efficient or approximately efficient allocation when all the val-

uations are known. The computational complexity of a problem is defined relative to its

input size, but in the combinatorial allocation problem the size of the input–a descrip-

tion of the valuations–is itself exponential in the number L of items. For this reason, the

computational complexity literature has tended to focus on cases in which the input size

is small, such as that of “single-minded preferences,” in which each agent values only a

single bundle of items. Even in such simple cases from the viewpoint of communication,

the efficient combinatorial allocation problem has been shown to be NP-complete.

Nevertheless, we believe that the communication bottleneck is more severe in prac-

tice than the computational one. Recall that NP-completeness only indicates that the

problem may be exponential asymptotically as the number L of items goes to infinity,

and that only if P 6= NP , which is considered likely but not proven. In practice, compu-

tational complexity can be handled for up to hundreds of items (and thousands of bids)

optimally (Vohra and de Vries 2002, Sandholm et al. 2001) and thousands of items (with

tens of thousand of bids) near-optimally (Zurel and Nisan 2001). In contrast, we derive

exact lower bounds on communication complexity for any given L. For example, with

general valuations, Proposition 5 establishes that exact efficiency requires communicat-
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ing at least one price for each of the 2L − 1 possible bundles of objects, and Corollary 6

establishes that with two bidders any improvement over the bundled auction still requires

communicating at least
¡
L
L/2

¢
bits. For example, with L = 50 items, any improvement

would require the bidders to send at least
¡
50
25

¢
' 1.3×1014 bits ' 500 Gigabytes of data,

which roughly corresponds to 250 million typewritten pages.23

A model of computational complexity that is designed to handle large inputs is “black

box complexity.” In the general model, the algorithm can ask a “black box” (oracle) an

arbitrary query about an agent’s valuation vi. (More restricted models define which

queries the black box for vi will answer–e.g., in the “valuation oracle” model only allows

the requests to report of the agents’ valuations vik for particular outcomes k.) It is easy

to see that the number of queries in the general black box model is bounded below by

the deterministic communication complexity of the problem.

10 Incentives

So far we have ignored the agents’ incentives to follow the prescribed strategies. If the

agents behave in their self-interest, the designer faces additional “incentive-compatibility”

constraints requiring that the agents’ strategies constitute an equilibrium of the commu-

nication game. In this section, we show how in the quasilinear case, these constraints

may be satisfied using monetary transfers.

Suppose that after running the protocol, we ask each agent to report his payoff ui

at the resulting allocation, and pay each agent i a transfer ti =
P

j 6=i ui. This transfer

scheme (first proposed by Reichelstein (1984, pp.45-46)) ensures that each agent’s total

payoff equals the total surplus, and so converts the communication game into one of

common interest. (In the terminology of Marschak and Radner (1972), the agents become

a “team”). If the protocol is efficient, then obeying the prescribed strategies constitutes

23Note also that while the computational burden may be distributed among the bidders, e.g., by asking

them to suggest allocations or matches to their package (Banks et al. 1989, Nisan and Ronen 2000), all

the communication in a combinatorial auction passes through the auctioneer.
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an ex post equilibrium under the described transfer scheme: no unilateral deviation by

an agent can increase his payoff in any state.24

But what if the protocol is not exactly but only approximately efficient? The behavior

of rational agents in such a protocol will depend on their beliefs. Let us make the standard

assumption in economics that the agents have a common prior over the states of the

world, and that they play a Bayesian-Nash Equilibrium (BNE) of the game defined by

the protocol. Since the game is one of common interest under the proposed transfer

scheme, the strategy profile maximizing the expected surplus constitutes a BNE of the

game. In particular, this BNE cannot have a lower expected surplus than that achieved by

the original protocol. In other words, if the agents coordinate on this BNE, it will achieve

the best average-case approximation consistent with the game.25 Of course, this relies

heavily on the agents’ rationality–both individual (being able to calculate an optimal

strategy profile) and collective (being able to coordinate on it). But if agents are not

fully rational, it is not clear how to consider their incentives in the first place.

A possible criticism of the proposed transfer scheme is that it is very costly. The

cost can be covered with lump-sum participation fees, but these fees may be restricted

by the agents’ participation constraints. The largest fee that still guarantees agent i’s

participation is the surplus that could be achieved in his absence. (This makes an agent

indifferent about participating when he does not contribute anything to the surplus, and

strictly prefer to participate otherwise.) Together with the transfer scheme, this gives

each agent his Vickrey-Groves-Clarke (VCG) payoff. As noted by Reichelstein (1984)

and Ausubel (2002), calculation of the participation fees requires running the protocol

with successively removing each agent, which multiplies the communication burden by

24In general, obedience will not be a dominant strategy, since an agent i may gain from a deviation if

he expects another agent j to use a strategy that is not consistent with any type uj .
25To take this observation to its extreme, under our transfer scheme, rational agents need not be

offered a protocol at all! Namely, given an explicit expression for communication costs, the agents could

be made to internalize these costs (e.g., by paying for sending bits). Then if the agents play some “free

form” game in which they can individually send messages and implement an allocation, the protocol

that maximizes the expected surplus net of communication costs will constitute a BNE of the game.
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N +1. However, some efficient protocols (such as those in Feigenbaum et al. (2000) and

Bikhchandani et al. (2001)) yield the VCG transfers as a side product, which provides a

substantial communication savings when N is large.

11 Conclusion

Price mechanisms are the most commonly observed and the best studied economic allo-

cation mechanisms. However, until now there has not been a complete understanding of

their role. To be sure, the Welfare Theorems show that the Walrasian price mechanism

produces efficient allocations in convex economies. Still, the possibility remained that

other mechanisms also produce efficient allocations in convex economies, or that non-

price mechanisms perform better than price mechanisms in nonconvex economies. The

designers of combinatorial auctions have proposed numerous designs that purport to find

efficient allocations without finding all the prices supporting them.

The present paper has shown that in fact, any efficient mechanism is “essentially”

a price mechanism, in the sense that it must reveal supporting prices along with the

efficient allocation itself. Thus, the indispensable role of prices for implementing efficient

allocations is now made clear. This result holds regardless of the agents’ incentives, even

if the agents report truthfully.

In the combinatorial allocation problem, efficient communication must name (at least)

one price for each of the 2L − 1 possible bundles, where L is the number of objects. We

demonstrate that all possible monotonic price vectors must be used, hence the required

communication is at least as extensive as full revelation of one agent’s preferences. Even

if we only require a better approximation of efficiency than that obtained by auctioning

off all objects as a bundle, we must still use at least
¡
L
L/2

¢
bits in a two-bidder auction.

With L = 50 (a realistic number), this amount of information roughly corresponds to

more than 250 million typewritten pages. We also show that even if approximation is

required only on expectation, for some probability distribution over valuations, it still

requires exponential communication in L. These results imply that for realistic values of
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L, any combinatorial auction design or other “preference elicitation” scheme suggested

in the literature would either run for a prohibitively long time, or, if stopped after some

reasonable time, would not produce an efficient or even approximately efficient allocation.

Our results should not be taken to imply that all real-life combinatorial auctions are

useless, any more than Arrow’s impossibility theorem implies that all real-life institution

are useless. Rather, by showing that no institution is guaranteed to achieve good results

on the universal preference domain, Arrow’s theorem has led researchers to examine the

performance of specific institutions on restricted domains. Similarly, by showing that

there does not exist a practical auction design that works well for all possible combi-

natorial preferences over many objects, we hope to motivate auction designers to focus

on specific classes of preferences or probability distributions over them. However, the

burden should be on the proposer of a particular design to characterize the environments

on which it works well. The tools developed in the present paper will be useful for this

purpose, as we have demonstrated by examining the communication burden for the cases

of submodular, homogeneous, and substitute valuations.

Finally, we have clarified the validity of measuring the communication burden of effi-

ciency with the dimension of the required message space, as is common in the economic

literature. The key question is whether this measure accurately reflects the difficulty of

approximating efficiency with a discretized mechanism. We find that the dimensional-

ity of message space is indicative of the complexity of achieving a “truly polynomial”

approximation of efficiency. On the other hand, a somewhat slower but still practical

“fully polynomial” approximation is sometimes achieved with much less communica-

tion. In such cases, the economic measure may seriously overstate the “hardness” of the

communication problem. A dramatic example of this is offered by Calsamiglia’s (1977)

model of allocating a homogeneous divisible good, in which exact efficiency requires

infinite-dimensional communication, but we demonstrate a fully polynomial approxima-

tion mechanism.
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Appendix: A Set Packing Lower Bound

Our lower bound for the set packing problem will use a reduction from the following

“approximate-disjointness” problem which was studied in Alon et al. (1999):

The Approximate Disjointness Problem: Each player i ∈ N holds a subset Bi ⊂ T

of a finite set T . We are required to distinguish between the following two extreme

cases:

• Negative: ∩i∈NBi 6= ∅,

• Positive: for every i 6= j, Bi ∩Bj = ∅.

A lower bound on the required communication of cT/N4 for some fixed constant

c > 0 was given in Alon et al. (1999) for randomized protocols (with two-sided error).

The lower bound was improved by Jaikumar Radhakrishnan and Venkatesh Srinivasan

to ln 2 · T/N for deterministic and nondeterministic protocols.

Let us now define the approximate set packing problem. Each agent i ∈ N agents

holds a collection Ai ⊂ 2L. The objective is to approximate the packing number–the

number of subsets in ∪i∈NAi that are packed together, i.e., are pairwise disjoint. We

will prove a lower bound on the communication complexity of distinguishing between the

case where the packing number is 1 (i.e, any two sets Si ∈ Ai and Sj ∈ Aj for i, j ∈ N

intersect) and the case where there exist N disjoint sets S1 ∈ A1, ..., SN ∈ AN , and so

the packing number is N .

We reduce this problem from the approximate-disjointness problem on a family T of

partitions of set L into N subsets. That is, each t ∈ T is a partition (t1, . . . , tN) of L.

We require family T to have the following property:

Definition 4 A family T of partitions of set L among N agents has the pairwise-

intersection property if for every t0, t00 ∈ T such that t0 6= t00 we have t0i ∩ t00j 6= ∅ for

every i, j ∈ N , i.e., any two elements of different partitions intersect.
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Lemma 2 There exists a family of partitions of set L among N agents with the pairwise-

intersection property of size eL/(2N
2)/N .

Proof. We use the probabilistic method: Construct each partition t = 1, . . . T randomly,

by randomly and independently placing each element of L with equal probability in one of

the parts of t. Perform this construction independently for all ṫ. Now, for given i, j ∈ N

and t0, t00 = 1, ..., T such that t0 6= t00,

Pr
©
t0i ∩ t00j = ∅

ª
=
Y
l∈L
Pr
©
l /∈ t0i ∩ t00j

ª
=
¡
1− 1/N2

¢L ≤ e−L/N2

.

The probability that t0i ∩ t00j = ∅ for some i, j ∈ N and t0, t00 = 1, ..., T such that t0 6= t00

is at most N2T 2 times that number. Therefore, when N2T 2e−L/N
2
< 1, with a positive

probability we obtain a family of partitions with the pairwise-intersection property, hence

such a family must exist.

We can now specify the reduction of approximate disjointness on a set T to the

approximate set packing problem. Set T is taken to represent a family of partitions of L

among N with the pairwise intersection property. Agent i receiving as input a set Bi ⊂ T

constructs the collection Ai = {ti|t ∈ Bi}. Now, if there exists t ∈ ∩iBi, then (t1, . . . , tN)

constitutes an N-packing. If, on the other hand, Bi ∩ Bj = ∅ for all i 6= j, then for

any two sets t0i ∈ Ai and t00j ∈ Aj we have t0 6= t00 and thus by the pairwise intersection

property, t0i ∩ t00j 6= ∅ for every i, j ∈ N , hence the packing number is at most 1.

From the lower bounds described above for the approximate disjointness problem we

obtain the following lower bounds for the set packing problem:

Theorem 2 Any N-player protocol (deterministic or nondeterministic) realizing an ap-

proximation ratio higher than 1/N for the set packing problem communicates at least

ln 2 · eL/(2N2)−2 lnN bits. A randomized protocol achieving this communicates, on expecta-

tion, at least ceL/(2N
2)−5 lnN bits, for some fixed c > 0.
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