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Introduction to Mechanism Design
(for computer Scientists)

Noam Nisan

Abstract

We give an introduction to the micro-economic field of Mechanism Design
slightly biased towards a computer-scientist’s point of view.

1.1 Introduction

Mechanism Design is a sub-field of economic theory that is rather unique
within economics in having an engineering perspective. It is interested in
designing economic mechanisms, just like computer scientists are interested
in designing algorithms, protocols, or systems. It is best to view the goals
of the designed mechanisms in the very abstract terms of social choice. A
social choice is simply an aggregation of the preferences of the different
participants towards a single joint decision. Mechanism Design attempts
implementing desired social choices in a strategic setting – assuming that
the different members of society each act rationally in a game theoretic
sense. Such strategic design is necessary since usually the preferences of the
participants are private.

This high-level abstraction of aggregation of preferences may be seen as
a common generalization of a multitude of scenarios in economics as well as
in other social settings such as political science. Here are some basic classic
examples:

• Elections: In political elections each voter has his own preferences be-
tween the different candidates, and the outcome of the elections is a single
social choice.

• Markets: Classical economic theory usually assumes the existence and
functioning of a “perfect market”. In reality, of course, we only have in-
teractions between people, governed by some protocols. Each participant
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in such an interaction has his own preferences, but the outcome is a single
social choice: the re-allocation of goods and money.

• Auctions: Generally speaking, the more buyers and sellers there are in
a market, the more the situation becomes close to the perfect market
scenario. An extreme opposite case is where there is only a single seller –
an auction. The auction rules define the social choice: the identity of the
winner.

• Government Policy: Governments routinely have to make decisions
that affect a multitude of people in different ways: Should a certain bridge
be built? How much pollution should we allow? How should we regulate
some sector? Clearly each citizen has a different set of preferences but a
single social choice is made by the government.

As the influence of the Internet grew, it became clear that many scenarios
happening there can also be viewed as instances of social choice in strategic
settings. The main new ingredient found in the Internet is that it is owned
and operated by different parties with different goals and preferences. These
preferences, and the behavior they induce, must then be taken into account
by every protocol in such an environment. The protocol should thus be
viewed as taking the preferences of the different participants and aggregating
them into a social choice: the outcome of the run of the protocol.

Conceptually, one can look at two different types of motivations, those
that use economics to solve computer science issues and those that use com-
puter science to solve economic issues:

• Economics for CS: Consider your favorite algorithmic challenge in a
computer network environment: routing of messages, scheduling of tasks,
allocation of memory, etc. When running in an environment with multiple
owners of resources or requests, this algorithm must take into account the
different preferences of the different owners. The algorithm should func-
tion well assuming strategic selfish behavior of each participant. Thus we
desire a Mechanism Design approach for a multitude of algorithmic chal-
lenges – leading to a field that has been termed Algorithmic Mechanism
Design.

• CS for Economics: Consider your favorite economic interaction: some
type of market, an auction, a supply chain, etc. As the Internet becomes
ubiquitous, this interaction will often be implemented over some comput-
erized platform. Such an implementation enables unprecedented sophis-
tication and complexity, handled by hyper-rationally designed software.
Designing these is often termed Electronic Market Design.
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Thus, both Algorithmic Mechanism Design and Electronic Market De-
sign can be based upon the field of Mechanism Design applied in complex
algorithmic settings.

This chapter provides an introduction to classical Mechanism Design, in-
tended for computer scientists. While the presentation is not very differ-
ent from the standard economic approach, it is somewhat biased towards a
worst-case (non-Bayesian) point of view common in computer science.

Section 1.2 starts with the general formulation of the social choice prob-
lem, points out the basic difficulties formulated by Arrow’s famous impossi-
bility results, and deduces the impossibility of a general strategic treatment,
i.e. of Mechanism Design in the general setting. Section 1.3 then considers
the important special case where “money” exists, and describes a very gen-
eral positive result, the incentive-compatible Vickrey-Clarke-Grove mecha-
nism. Section 1.4 puts everything in a wider formal context of implementa-
tion in dominant strategies. Section 1.5 provides several characterizations
of dominant strategy mechanisms. All the sections up to this point have
considered dominant-strategies, but the prevailing economic point of view
is a Bayesian one that assumes a priori known distributions over private
information. Section 1.6 introduces this setting and the notion of Bayesian-
Nash equilibrium that fits it. All the treatment in this chapter is in the
very basic “private value” model, and section 1.7 shortly points out several
extensions to the model. Finally, section 1.8 provides bibliographic notes
and references.

1.2 Social Choice

This section starts with the general social choice problem and continues with
the strategic approach to it. The main message conveyed is that there are
unavoidable underlying difficulties. We phrase things in the commonly used
terms of political elections, but the reader should keep in mind that the
issues are abstract and apply to general social choice.

1.2.1 Condorcet’s paradox

Consider an election with two candidates, where each voter has a preference
for one of them. If society needs to jointly choose one of the candidates,
intuitively it is clear that taking a majority vote would be a good idea. But
what happens if there are three candidates? In 1785, The Marquis de Con-
dorcet pointed out that the natural application of majority is problematic:
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consider three candidates: a, b, and c, and three voters with the following
preferences:

(i) a �1 b �1 c

(ii) b �2 c �2 a

(iii) c �3 a �3 b

(The notation a �i b means that voter i prefers candidate a to candidate
b.) Now, notice that a majority of voters (1 and 3) prefer candidate a to
candidate b. Similarly, a majority (1 and 2) prefers b to c, and, finally, a
majority (2 and 3) prefers c to a. The joint majority choice is thus a � b �
c � a which not consistent. In particular for any candidate that is jointly
chosen, there will be a majority of voters who would want to change the
chosen outcome.

This immediately tells us that in general a social choice cannot be taken
simply by the natural system of taking a majority vote. Whenever there
are more than two alternatives we must design some more complex “voting
method” to undertake a social choice.

1.2.2 Voting Methods

A large number of different voting methods – ways of determining the out-
come of such multi-candidate elections – have been suggested. Two of the
simpler ones are plurality (the candidate that was placed first by the largest
number of voters wins) and Borda count (each candidate among the n can-
didates gets n− i points for every voter who ranked him in place i, and the
candidate with most points wins). Each of the suggested voting methods
has some “nice” properties but also some problematic ones.

One of the main difficulties encountered by voting methods is that they
may encourage strategic voting. Suppose that a certain voter’s preferences
are a �i b �i c, but he knows that candidate a will not win (as other voters
hate him). Such a voter may be motivated to strategically vote for b instead
of a, so that b is chosen which he prefers to c. Such strategic voting is
problematic as it is not transparent, depends closely on the votes of the
other voters, and the interaction of many strategic voters is complex. The
main result of this section is the Gibbard-Satterthwaite theorem that states
that this strategic vulnerability is unavoidable. We will prove the theorem
as a corollary of Arrow’s impossibility theorem that highlights the general
impossibility of designing voting methods with certain natural good desired
properties.

Formally, we will consider a set of alternatives A (the candidates) and
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a set of n voters I. Let us denote by L the set of linear orders on A (L
is isomorphic to the set of permutations on A). Thus for every ≺∈ L, ≺
is a total order on A (anti-symmetric and transitive). The preferences of
each voter i are formally given by �i∈ L, where a �i b means that i prefers
alternative a to alternative b.

Definition 1.1 • A function F : Ln → L is called a social welfare function.
• A function f : Ln → A is called a social choice function.

Thus a social welfare function aggregates the preferences of all voters into
a common preference, i.e. into a total social order on the candidates, while
a social choice function aggregates the preferences of all voters into a social
choice of a single candidate. Arrow’s theorem states that social welfare
functions with “nice” properties must be trivial in a certain sense.

1.2.3 Arrow’s Theorem

Here are some natural properties desired from a social welfare function.

Definition 1.2 • A social welfare function F satisfies unanimity if for every
≺∈ L, F (≺, ...,≺) =≺. I.e. if all voters have identical preferences then
the social preference is the same.

• Voter i is a dictator in social welfare function F if for all ≺1 ... ≺n∈ L,
F (≺1 ... ≺n) =≺i. The social preference in a dictatorship is simply that
of the dictator, ignoring all other voters. F is not a dictatorship if no i is
a dictator in it.

• A social welfare function satisfies independence of irrelevant alternatives
if the social preference between any two alternatives a and b only depends
on the voters’ preferences between a and b. Formally, for every a, b ∈ A

and every ≺1 ... ≺n,≺′
1 ... ≺′

n∈ L, if we denote ≺= F (≺1 ... ≺n) and ≺′=
F (≺′

1 ... ≺′
n) then a ≺i b ⇔ a ≺′

i b for all i implies that a ≺ b ⇔ a ≺′ b.

The first two conditions are quite simple to understand and we would
certainly want any good voting method to satisfy the unanimity condition
and not to be a dictatorship. The third condition is trickier. Intuitively,
indeed, independence of irrelevant alternatives seems quite natural: why
should my preferences about c have anything to do with the social ranking
of a and b? More careful inspection will reveal that this condition in some
sense captures some consistency property of the voting system. As we will
see, lack of such consistency enables strategic manipulation.
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Theorem 1.3 (Arrow): Every social welfare function over a set of more
than 2 candidates (|A| ≥ 3) that satisfies unanimity and independence of
irrelevant alternatives is a dictatorship.

Over the years a large number of proofs have been found for Arrow’s
theorem. Here is a short one.

Proof For the rest of the proof, fix F that satisfies unanimity and inde-
pendence of irrelevant alternatives. We start with a claim showing that the
same social ranking rule is taken within any pair of alternatives.

Claim (pairwise neutrality): Let �1 ... �n and �′
1 ... �′

n be two player
profiles such that for every player i, a �i b ⇔ c �′

i d. Then a � b ⇔ c �′ d,
where �= F (�1 ... �n) and �′= F (�′

1 ... �′
n).

By renaming we can assume without loss of generality that a � b and
that c 6= b. Now we merge each �i and �′

i into a single preference �i by
putting c just above a (unless c = a) and d just below b (unless d = b) and
preserving the internal order within each of the pairs (a, b) and (c, d). Now
using unanimity we have that c � a and b � d, and by transitivity c � d.
This concludes the proof of the claim.

We now continue with the proof of the theorem. Take any a 6= b ∈ A, and
for every 0 ≤ i ≤ n define a preference profile πi in which exactly the first i

players rank a above b, i.e. in πi, a �j b ⇔ j ≤ i (the exact ranking of the
other alternatives does not matter). By unanimity, in F (π0), we have b � a,
while in F (πn) we have a � b. By looking at π0, π1, ..., πn, at some point
the ranking between a and b flips, so for some i∗ we have that in F (πi∗−1),
b � a, while in F (πi∗), a � b. We conclude the proof by showing that i∗ is
a dictator.

Claim: Take any c 6= d ∈ A. If c �i∗ d then c � d where �= F (�1 ... �n).

Take some alternative e which is different from c and d. For i < i∗ move
e to the top in �i, for i > i∗ move e to the bottom in �i, and for i∗ move e

so that c �i∗ e �i∗ d – using independence of irrelevant alternatives we have
not changed the social ranking between c and d. Now notice that players’
preferences for the ordered pair (c, e) are identical to their preferences for
(a, b) in πi∗ , but the preferences for (e, d) are identical to the preferences for
(a, b) in πi∗−1 and thus using the pairwise neutrality claim, socially c � e

and e � d, and thus by transitivity c � d.
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1.2.4 The Gibbard-Satterthwaite theorem

It turns out that Arrow’s theorem has devastating strategic implications.
We will study this issue in the context of social choice functions (rather
than social welfare functions as we have considered until now). Let us start
by defining strategic manipulations.

Definition 1.4 A social choice function f can be strategically manipulated
by voter i if for some ≺1 ... ≺n∈ L and some ≺′

i∈ L we have that a ≺i a′

where a = f(≺1 ... ≺i ... ≺n) and a′ = f(≺1 ... ≺′
i ... ≺n). I.e. voter i

that prefers a′ to a can ensure that a′ gets socially chosen rather than a by
strategically mis-representing his preferences to be ≺′

i rather than ≺i. f is
called incentive compatible if it cannot be manipulated.

The following is a more combinatorial point of view of the same notion:

Definition 1.5 A social choice function f is monotone if f(≺1 ... ≺i ... ≺n

) = a 6= a′ = f(≺1 ... ≺′
i ... ≺n) implies that a′ ≺i a and a ≺′

i a′. I.e., if the
social choice changed from a to a′ when a single voter i changed his vote
from ≺i to ≺′

i then it must be because he switched his preference between
a and a′.

Proposition 1.6 A social choice function is incentive compatible if and
only if it is monotone.

Proof Take ≺1 ... ≺i−1,≺i+1 ... ≺n out of the quantification. Now, logi-
cally, “NOT monotone between ≺i and ≺′

i” is equivalent to “A voter with
preference ≺ can strategically manipulate f by declaring ≺′” OR “A voter
with preference ≺′ can strategically manipulate f by declaring ≺”.

The obvious example of an incentive compatible social choice function over
two alternatives is taking the majority vote between them. The main point
of this section is, however, that when the number of alternatives is larger
than two, only trivial social choice functions are incentive compatible.

Definition 1.7 Voter i is a dictator in social choice function f if for all
≺1 ... ≺n∈ L, ∀b 6= a, a �i b ⇒ f(≺1 ... ≺n) = a. f is called a dictatorship
if some i is a dictator in it.

Theorem 1.8 (Gibbard-Satterthwaite) Let f be an incentive compatible so-
cial choice function onto A, where |A| ≥ 3, then f is a dictatorship.
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Note the requirement that f is onto, as otherwise the bound on the size
of A has no bite. To derive the theorem as a corollary of Arrow’s theorem
we will construct a social welfare function F from the social choice function
f . The idea is that in order to decide whether a ≺ b, we will “move” a and
b to the top of all voters’ preferences, and then see whether f chooses a or
b. Formally:

Definition 1.9 • Notation: Let S ⊂ A and ≺∈ L. Denote by ≺S the order
obtained by moving all alternatives in S to the top in ≺. Formally, for
a, b ∈ S, a ≺S b ⇔ a ≺ b; for a, b 6∈ S, also a ≺S b ⇔ a ≺ b; but for a 6∈ S

and b ∈ S, a ≺S b.
• The social welfare function F that extends the social choice function f is

defined by F (≺1 ... ≺n) =≺, where a ≺ b iff f(≺{a,b}
1 ... ≺{a,b}

n ) = b.

We first have to show that F is indeed a social choice function, i.e. that
it is anti-symmetric and transitive.

Lemma 1.10 If f is an incentive compatible social choice function onto A

then the extension F is a social welfare function.

To conclude the proof of the theorem as a corollary of Arrow’s it then
suffices to show:

Lemma 1.11 If f is an incentive compatible social choice function onto
A which is not a dictatorship then the extension F satisfies unanimity and
independence of irrelevant alternatives and is not a dictatorship.

Proof (of Lemmas 1.10 and 1.11) We start with a general claim which holds
under the conditions on f :

Claim: For any ≺1 ... ≺n and any S, f(≺S
1 ... ≺S

n) ∈ S.

Take some a ∈ S and since f is onto, for some ≺′
1 ... ≺′

n, f(≺′
1 ... ≺′

n) = a.
Now, sequentially, for i = 1...n, change ≺′

i to ≺S
i . We claim that at no point

during this sequence of changes will f output any outcome b 6∈ S. At every
stage this is simply due to monotonicity since b ≺S

i a′ for a′ ∈ S being the
previous outcome. This concludes the proof of the claim.

We can now prove all properties needed for the two lemmas:

• Anti-symmetry is implied by the claim since f(≺{a,b}
1 ... ≺{a,b}

n ) ∈
{a, b}.
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• Transitivity: assume for contradiction that a ≺ b ≺ c ≺ a (where ≺=
F (≺1 ... ≺n)). Take S = {a, b, c} and using the claim assume without
loss of generality that f(≺S

1 ... ≺S
n) = a. Sequentially changing ≺S

i to
≺{a,b}

i for each i, monotonicity of f implies that also f(≺{a,b}
1 ... ≺{a,b}

n

) = a, and thus a � b.
• Unanimity: If for all i, b ≺i a, then (≺{a,b}

i ){a} =≺{a,b}
i and thus by

the claim f(≺{a,b}
1 ... ≺{a,b}

n ) = a.
• Independence of irrelevant alternatives: If for all i, b ≺i a ⇔ b ≺′

i

a, then f(≺{a,b}
1 ... ≺{a,b}

n ) = f(≺′{a,b}
1 ... ≺′{a,b}

n ) since when we,
sequentially for all i, flip ≺{a,b}

i into ≺′{a,b}
i , the outcome does not

change due to monotonicity and the claim.
• Non-dictatorship: obvious.

The Gibbard-Satterthwaite theorem seems to quash any hope of designing
incentive compatible social choice functions. The whole field of Mechanism
Design attempts escaping from this impossibility result using various mod-
ifications in the model. The next section describes how the addition of
“money” offers an escape route. Chapter ?? offers other escape routes that
do not rely on money.

1.3 Mechanisms With Money

In the previous section, we modeled a voter’s preference as an order on the
alternatives. a �i b implies that i prefers a to b, but we did not model “by
how much” is a preferred to b. “Money” is a yardstick that allows measuring
this. Moreover, money can be transferred between players. The existence of
money with these properties is an assumption, but a fairly reasonable one
in many circumstances, and will allow us to do things that we could not do
otherwise.

Formally, in this section we re-define our setting. We will still have a set of
alternatives A and a set of n players I (which we will no longer call voters).
The preference of a player i is now given by a valuation function vi : A → <,
where vi(a) denotes the “value” that i assigns to alternative a being chosen.
This value is in terms of some currency, i.e. we assume that if a is chosen
and then player i is additionally given some quantity m of money, then i’s
utility is ui = vi(a)+m, this utility being the abstraction of what the player
desires and aims to maximize. Utilities of this form are called quasilinear
preferences, denoting the separable and linear dependence on money.
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1.3.1 Vickrey’s second price auction

Before we proceed to the general setting, in this subsection we study a basic
example: a simple auction. Consider a single item that is auctioned for sale
among n players. Each player i has a scalar value wi that he is “willing to
pay” for this item. More specifically, if he wins the item, but has to pay
some price p for it, then his utility is wi − p, while if someone else wins
the item then i’s utility is 0. Putting this scenario into the terms of our
general setting, the set of alternatives here is the set of possible winners,
A = {i–wins|i ∈ I}, and the valuation of each bidder i is vi(i–wins) = wi

and vi(j–wins) = 0 for all j 6= i. A natural social choice would be to
allocate the item to the player who values it highest: choose i–wins where
i = argmaxjwj . However, the challenge is that we do not know the values wi

but rather each player knows his own value, and we want to make sure that
our mechanism decides on the allocation – the social choice – in a way that
cannot be strategically manipulated. Our degree of freedom is the definition
of the payment by the winner.

Let us first consider the two most natural choices of payment and see why
they do not work as intended:

• No payment: In this version we give the item for free to the player with
highest wi. Clearly, this method is easily manipulated: every player will
benefit by exaggerating his wi, reporting a much larger w′

i >> wi that
can cause him to win the item, even though his real wi is not the highest.

• Pay your bid: An attempt of correction will be to have the winner pay
the declared bid. However, this system is also open to manipulation: a
player with value wi who wins and pays wi gets a total utility of 0. Thus it
is clear that he should attempt declaring a somewhat lower value w′

i < wi

that still wins. In this case he can still win the item getting a value of
wi (his real value) but paying only the smaller w′

i (his declared value),
obtaining a net positive utility ui = wi − w′

i > 0. What value w′
i should

i bid then? Well, if i knows the value of the second highest bid, then he
should declare just above it. But what if he does not know?

Here is the solution:

Definition 1.12 Vickrey’s second price auction: Let the winner be
the player i with the highest declared value of wi, and let i pay the second
highest declared bid p∗ = maxj 6=iwj .

Now it turns out that manipulation never can increase any players’ utility.
Formally
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Proposition 1.13 (Vickrey): For every w1...wn and every w′
i, Let ui be i’s

utility if he bids wi and u′i his utility if he bids w′
i. Then, ui ≥ u′i.

Proof Assume that by saying wi he wins, and that the second highest
(reported) value is p∗, then ui = wi − p∗ ≥ 0. Now, for an attempted
manipulation w′

i > p∗, i would still win if he bids w′
i and would still pay p∗,

thus u′i = ui. On the other hand for w′
i ≤ p∗, i would lose so u′i = 0 ≤ ui.

If i loses by bidding wi, then ui = 0. Let j be the winner in this case,
and thus wj ≥ wi. For w′

i < wj , i would still lose and so u′i = 0 = ui.
For w′

i ≥ wj , i would win, but would pay wj , thus his utility would be
u′i = wi − wj ≤ 0 = ui.

This very simple and elegant idea achieves something that is quite re-
markable: it reliably computes a function (argmax) of n numbers (the wi’s)
that are each held secretly by a different self-interested player! Taking a
philosophical point of view, this may be seen as the mechanics for the im-
plementation of Adam Smith’s invisible hand: despite private information
and pure selfish behavior, social welfare is achieved. All the field of Mecha-
nism Design is just a generalization of this possibility.

1.3.2 Incentive Compatible Mechanisms

In a world with money our mechanisms will not only choose a social alterna-
tive but will also determine monetary payments to be made by the different
players. The complete social choice is then composed of the alternative cho-
sen as well as of the transfer of money. Never the less, we will refer to each
of these part separately, calling the alternative chosen the social choice, not
including in this term the monetary payments.

Formally, a mechanism needs to socially choose some alternative from A,
as well as to decide on payments. The preference of each player i is modeled
by a valuation function vi : A → <, where vi ∈ Vi. Throughout the rest
of this chapter Vi ⊆ <A is a commonly known set of possible valuation
functions for player i.

Starting at this point and for the rest of this chapter, it will be convenient
to use the following standard notation:

Notation: Let v = (v1...vn) be an n-dimensional vector. We will denote
the (n − 1)-dimensional vector in which the i’th coordinate is removed by
v−i = (v1...vi−1, vi+1, ...vn). Thus we have three equivalent notations: v =
(v1...vn) = (vi, v−i). Similarly, for V = V1 × ... × Vn, we will denote V−i =
V1 × ...× Vi−1 × Vi+1 × ...× Vn. Similarly we will use t−i, x−i, X−i, etc.
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Definition 1.14 A (direct revelation) mechanism is a social choice function
f : V1 × ... × Vn → A and a vector of payment functions p1...pn, where
pi : V1 × ...× Vn → < is the amount that player i pays.

The qualification “direct revelation” will become clear in section 1.4 where
we will generalize the notion of a mechanism further. We are now ready for
the key definition in this area, incentive compatibility also called strategy-
proofness or truthfulness.

Definition 1.15 A mechanism (f, p1...pn) is called incentive compatible if
for every player i, every v1 ∈ V1, ..., vn ∈ Vn and every v′i ∈ Vi, if we denote
a = f(vi, v−i) and a′ = f(v′i, v−i), then vi(a)−pi(vi, v−i) ≥ vi(a′)−pi(v′i, v−i).

Intuitively this means that player i whose valuation is vi would prefer
“telling the truth” vi to the mechanism rather than any possible “lie” v′i,
since this gives him higher (in the weak sense) utility.

1.3.3 Vickrey–Clarke–Groves mechanisms

While in the general setting without money, as we have seen, nothing non-
trivial is incentive compatible, the main result in this setting is positive
and provides an incentive compatible mechanism for the most natural social
choice function: optimizing the social welfare. The social welfare of an alter-
native a ∈ A is the sum of the valuations of all players for this alternative,∑

i vi(a).

Definition 1.16 A mechanism (f, p1...pn) is called a Vickrey-Clarke-Groves
(VCG) mechanism if:

• f(v1...vn) ∈ argmaxa∈A

∑
i vi(a). I.e. f maximizes the social welfare.

• for some functions h1...hn, where hi : V−i → < (i.e. hi does not depend
on vi), we have that for all v1 ∈ V1, ..., vn ∈ Vn: pi(v1...vn) = hi(v−i) −∑

j 6=i vj(f(v1...vn)).

The main idea lies in the term −
∑

j 6=i vj(f(v1...vn)) which means that
each player is paid an amount equal to the sum of the values of all other
players. When this term is added to his own value vi(f(v1...vn)), the sum
becomes exactly the total social welfare of f(v1...vn). Thus this mechanism
aligns all players’ incentives with the social goal of maximizing social welfare,
which is exactly archived by telling the truth. The other term in the payment
hi(vi) has no strategic implications for player i since it does not depend in
any way on what he says, and thus from player i’s point of view it is just
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a constant. Of course, the choice of hi does change significantly how much
money is paid and in which direction, but we will postpone this discussion.
What we have just intuitively explained is:

Theorem 1.17 (Vickrey–Clarke–Groves) Every VCG mechanism is incen-
tive compatible.

Let us prove it formally

Proof Fix i, v−i, vi, and v′i. We need to show that for player i with val-
uation vi, the utility when declaring vi is not less than the utility when
declaring v′i. Denote a = f(vi, v−i) and a′ = f(v′i, v−i). The utility of i

when declaring vi is vi(a) +
∑

j 6=i vj(a) − hi(v−i), but when declaring v′i is
vi(a′) +

∑
j 6=i vj(a′) − hi(v−i). But since a = f(vi, v−i) maximizes social

welfare over all alternatives, vi(a) +
∑

j 6=i vj(a) ≥ vi(a′) +
∑

j 6=i vj(a′) and
thus the same inequality holds when subtracting the same term hi(v−i) from
both sides.

1.3.4 Clarke Pivot Rule

Let us now return to the question of choosing the “right” hi’s. One possi-
bility is certainly choosing hi = 0. This has the advantage of simplicity but
usually does not make sense since the mechanism pays here a great amount
of money to the players. Intuitively we would prefer that players pay money
to the mechanism, but not more than the gain that they get. Here are two
conditions that seem to make sense, at least in a setting where all valuations
are non-negative:

Definition 1.18 • A mechanism is (ex-post) individually rational if players
always get non-negative utility. Formally if for every v1...vn we have that
vi(f(v1...vn))− pi(v1...vn) ≥ 0.

• A mechanism has no positive transfers if no player is ever paid money.
Formally if for every v1...vn and every i, pi(v1...vn) ≥ 0.

The following choice of hi’s provides these two properties:

Definition 1.19 (Clarke pivot rule) The choice hi(v−i) = maxb∈A
∑

j 6=i vi(b)
is called the Clarke pivot payment. Under this rule the payment of player i

is pi(v1...vn) = maxb
∑

j 6=i vi(b)−
∑

j 6=i vi(a), where a = f(v1...vn).

Intuitively, i pays an amount equal to the total damage that he causes
the other players – the difference between the social welfare of the others
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with and without i’s participation. In other words, the payments make each
player internalize the externalities that he causes.

Lemma 1.20 A VCG mechanism with Clarke pivot payments makes no
positive transfers. If vi(a) ≥ 0 for every vi ∈ Vi and a ∈ A then it is also
individually rational.

Proof Let a = f(v1...vn) be the alternative maximizing
∑

j vj(a) and b be
the alternative maximizing

∑
j 6=i vj(b). To show individual rationality, the

utility of player i is vi(a)+
∑

j 6=i vj(a)−
∑

j 6=i vj(b) ≥
∑

j vj(a)−
∑

j vj(b) ≥
0, where the first inequality is since vi(b) ≥ 0 and the second is since a was
chosen as to maximize

∑
j vj(a). To show no positive transfers note that

pi(v1...vn) =
∑

j 6=i vi(b)−
∑

j 6=i vi(a) ≥ 0, since b was chosen as to maximize∑
j 6=i vj(b).

As stated, the Clarke pivot rule does not fit many situations where valua-
tions are negative, i.e. when alternatives have costs to the players. Indeed,
with the Clarke pivot rule players always pay money to the mechanism,
while the natural interpretation in case of costs would be the opposite. The
spirit of the Clarke pivot rule in such cases can be captured by a modified
rule that chooses b as to maximize the social welfare “when i does not par-
ticipate” where the exact meaning of this turns out to be quite natural in
most applications.

1.3.5 Examples

1.3.5.1 Auction of a single item

The Vickrey auction that we started our discussion with is a special case of
a VCG mechanism with the Clarke pivot rule. Here A = {i–wins|i ∈ I}.
Each player has value 0 if he does not get the item, and may have any
positive value if he does win the item, thus Vi = {vi|vi(i–wins) ≥ 0 and∀j 6=
i, vi(j–wins) = 0}. Notice that finding the player with highest value is
exactly equivalent to maximizing

∑
i vi(i) since only a single player gets

non-zero value. VCG payments using the Clarke pivot rule give exactly
Vickrey’s second price auction.

1.3.5.2 Reverse Auction

In a reverse auction (procurement auction) the bidder wants to procure an
item from the bidder with lowest cost. In this case the valuation spaces are
given by Vi = {vi|vi(i–wins) ≤ 0 and ∀j 6= i vi(j–wins) = 0}, and indeed
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procuring the item from the lowest cost bidder is equivalent to maximizing
the social welfare. The natural VCG payment rule would be for the mecha-
nism to pay to the lowest bidder an amount equal to the second lowest bid,
and pay nothing to the others. This may be viewed as capturing the spirit
of the pivot rule since the second lowest bid is what would happen “without
i”.

1.3.5.3 Bilateral trade

In the bilateral trade problem a seller holds an item and values it at some
0 ≤ vs ≤ 1 and a potential buyer values it at some 0 ≤ vb ≤ 1. (The con-
stants 0 and 1 are arbitrary and may be replaced with any commonly known
constants 0 ≤ vl ≤ vh.) The possible outcomes are A = {no–trade, trade}
and social efficiency implies that trade is chosen if vb > vs and no–trade if
vs > vb. Using VCG payments and decreeing that no payments be made in
case of no − trade, implies that in case of trade the buyer pays vs and the
seller is paid vb. Notice that since in this case vb > vs, the mechanism sub-
sidizes the trade. As we will see below in section 1.5.5, this is unavoidable.

1.3.5.4 Multi-unit auctions

In a multi-unit auction, k identical units of some good are sold in an auction
(where k < n). In the simple case each bidder is interested in only a single
unit. In this case A = {S–wins|S ⊂ I, |S| = k}, and a bidder’s valuation
vi gives some fixed value v∗ if i gets an item, i.e. vi(S) = v∗ if i ∈ S and
vi(S) = 0 otherwise. Maximizing social welfare means allocating the items
to the k highest bidders, and in the VCG mechanism with the pivot rule,
each of them should pay the k + 1’st highest offered price. (Losers pay 0.)

In a more general case bidders may be interested in more than a single unit
and have a different value for each number of units obtained. The next level
of sophistication comes when the items in the auction are heterogeneous,
and valuations can give a different value to each combination of items. This
is called a combinatorial auction and is studied at length in chapter ??.

1.3.5.5 Public Project

The government is considering undertaking a public project (e.g. building a
bridge). The project has a commonly known cost C, and is valued by each
citizen i at (a privately known) value vi (We usually think that vi ≥ 0, but
allowing vi < 0, i.e. citizens that are hurt by the project is also covered.)
Social efficiency means that the government will undertake this project iff∑

i vi > C. (This is not technically a sub case of our definition of maximizing
the social welfare, since our definition did not assume any costs or values for
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the designer, but becomes so by adding an extra player “government” whose
valuation space is the singleton valuation, giving cost C to undertaking
the project and 0 otherwise.) The VCG mechanism with the Clarke pivot
rule means that a player i with vi ≥ 0 will pay a non-zero amount only
if he is pivotal:

∑
j 6=i vj ≤ C but

∑
j vj > C in which case he will pay

pi = C−
∑

j 6=i vj . (A player with vi < 0 will make a non-zero payment only
if

∑
j 6=i vj > C but

∑
j vj ≤ C in which case he will pay pi =

∑
j 6=i vj −C.)

One may verify that
∑

i pi < C (unless
∑

i vi = C), and thus the payments
collected do not cover the project’s costs. As we will see in section 1.5.5,
this is unavoidable.

1.3.5.6 Buying a path in a network

Consider a communication network, modeled as a directed graph G = (V,E),
where each link e ∈ E is owned by a different player, and has a cost ce ≥ 0 if
his link is used for carrying some message. Suppose that we wish to procure
a communication path between two specified vertices s, t ∈ V , i.e. the set of
alternatives is the set of all possible s− t paths in G, and player e has value
0 if the path chosen does not contain e and value −ce if the path chosen does
contain e. Maximizing social welfare means finding the shortest path p (in
terms of

∑
e∈p ce). A VCG mechanism, that makes no payments to edges

that are not in p, will pay to each e0 ∈ p the quantity
∑

e∈p′ ce−
∑

e∈p−{e0} ce

where p is the shortest s − t path in G and p′ is the shortest s − t path in
G that does not contain the edge e (for simplicity assume that G is 2-edge
connected so such a p′ always exists). This corresponds to the spirit of the
pivot rule since “without e” the mechanism can simply not use paths that
contain e.

1.4 Implementation in Dominant Strategies

In this section our aim is to put the issue of incentive compatibility in a
wider context. The mechanisms considered so far extract information from
the different players by motivating them to “tell the truth”. More generally,
one may think of other, indirect, methods of extracting sufficient informa-
tion from the participants. Perhaps one may devise some complex protocol
that achieves the required social choice when players act strategically. This
section will formalize these more general mechanisms, and the associated
notions describing what happens when “players act strategically”.

Deviating from the common treatment in economics, in this section we will
describe a model that does not involve any distributional assumptions. Many
of the classical results of Mechanism Design are captured in this framework,
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including most of the existing applications in computational settings. In
section 1.6 we will add this ingredient of distributional assumptions reaching
the general “Bayesian” models.

1.4.1 Games with strict incomplete information

How do we model strategic behavior of the players when they are missing
some of the information that specifies the game? Specifically in our setting
a player does not know the private information of the other players, infor-
mation that determines their preferences. The standard setting in Game
Theory supposes on the other hand that the “rules” of the game, including
the utilities of all players, are public knowledge.

We will use a model of games with independent private values and strict
incomplete information. Let us explain the terms: “independent private
values” means that the utility of a player depends fully on his private infor-
mation and not on any information of others as it is independent from his
own information. Strict incomplete information is a (not completely stan-
dard) term that means that we will have no probabilistic information in the
model. An alternative term sometimes used is “pre-Bayesian”. From a CS
perspective, it means that we will use a worst case analysis over unknown
information. So here is the model:

Definition 1.21 A game with (independent private values and) strict in-
complete information for a set of n players is given by the following ingre-
dients:

(i) For every player i, a set of actions Xi.
(ii) For every player i, a set of types Ti. A value ti ∈ Ti is the private

information that i has.
(iii) For every player i, a utility function ui : Ti×X1× ...×Xn → <, where

ui(ti, x1...xn) is the utility achieved by player i, if his type (private
information) is ti, and the profile of actions taken by all players is
x1...xn.

The main idea that we wish to capture with this definition is that each
player i must choose his action xi when knowing ti but not the other tj ’s.
Note that the tj ’s do not affect his utility, but they do affect how the other
players behave. Thus the interplay between the different xi’s is more delicate
than in “regular” games. The total behavior of player i in such a setting
is captured by a function that specifies which action xi is taken for every
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possible type ti – this is termed a strategy. It is these strategies that we
want to be in equilibrium.

Definition 1.22 • A strategy of a player i is a function si : Ti → Xi.
• A profile of strategies s1...sn is an ex-post-Nash equilibrium if for every

t1...tn we have that the actions s1(t1)...sn(tn) are in Nash equilibrium in
the full information game defined by the ti’s. Formally: For all i, all
t1...tn, and all x′i we have that ui(ti, si(ti), s−i(t−i)) ≥ ui(ti, x′i, s−i(t−i)).

• A strategy si is a (weakly) dominant strategy if for every ti we have
that the action si(ti) is a dominant strategy in the full information game
defined by ti. Formally: for all ti, all x−i and all x′i we have that
ui(ti, si(ti), x−i) ≥ ui(ti, x′i, x−i). A profile s1...sn is called a dominant
strategy equilibrium if each si is a dominant strategy.

Thus the notion of ex-post Nash requires that si(ti) is a best response to
si(t−i) for every possible value of t−i, i.e. without knowing anything about
t−i but rather only knowing the forms of the other players’ strategies s−i

as functions. The notion of dominant strategy requires that si(ti) is a best
response to any x−i possible – i.e. without knowing anything about t−i or
about s−i. Both of these definitions seem too good to be true: how likely
is it that a player has a single action that is a best response to all x−i or
even to all s−i(t−i)? Indeed in usual cases one does not expect games with
strict incomplete information to have any of these equilibria. However, in
the context of Mechanism Design – where we get to design the game – we
can sometimes make sure that they do exist.

While at first sight the notion of dominant strategy equilibrium seems
much stronger than ex-post-Nash, this is only due to actions that are never
used:

Proposition 1.23 Let s1...sn be an ex-post-Nash equilibrium of a game
(X1...Xn;T1...Tn;u1...un). Define X ′

i = {si(ti)|ti ∈ Ti} (i.e. X ′
i is the ac-

tual range of si in Xi), then s1...sn is a dominant strategy equilibrium in the
game (X ′

1...X
′
n;T1...Tn;u1...un).

Proof Let xi = si(ti) ∈ X ′
i, x′i ∈ X ′

i, and for every j 6= i xj ∈ X ′
j . By

definition of X ′
j , for every j 6= i, there exists t′j ∈ Tj such that sj(tj) =

xj . Since s1...sn is an ex-post-Nash equilibrium, ui(ti, si(ti), s−i(t−i)) ≥
ui(ti, x′i, s−i(t−i)), and as x−i = s−i(t−i) we get exactly ui(ti, si(ti), x−i) ≥
ui(ti, x′i, x−i) as required in the definition of dominant strategies.
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1.4.2 Mechanisms

We are now ready to formalize the notion of a general – non direct revelation
– mechanism. The idea is that each player has some private information
ti ∈ Ti that captures his preference over a set of alternatives A, i.e. vi(ti, a)
is the value that player i assigns to a when his private information is ti.
We wish to “implement” some social choice function f : T1...Tn → A that
aggregates these preferences. We design a “mechanism” for this purpose:
this will be some protocol for interaction with the players, specifying what
each can “say” and what is done in each case. Formally, we can specify a set
of possible actions Xi for each player, an outcome function a : X1×...×Xn →
A that chooses an alternative in A for each profile of actions, and payment
functions p : X1 × ... × Xn → < that specify the payment of each player
for every profile of actions. Now the players are put in a game with strict
incomplete information and we may expect them to reach an equilibrium
point (if such exists).

Definition 1.24 • A mechanism for n players is given by (a) players’ type
spaces T1...Tn, (b) players’ action spaces X1...Xn, (c) an alternative set
A, (d) players’ valuations functions vi : Ti × A :→ <, (e) an outcome
function a : X1 × ...×Xn → A, and (f) payment functions p1...pn, where
pi : X1 × ... × Xn → <. The game with strict incomplete information
induced by the mechanism is given by using the types spaces Ti, the action
spaces Xi, and the utilities ui(ti, x1...xn) = vi(ti, a(x1...xn))− pi(x1...xn).

• The mechanism implements a social choice function f : T1 × Tn → A

in dominant strategies if for some dominant strategy equilibrium s1...sn

of the induced game, where si : Ti → Xi, we have that for all t1...tn,
f(t1...tn) = a(s1(t1)...sn(tn)).

• Similarly we say that the mechanism implements f in ex-post-equilibrium
if for some ex-post equilibrium s1...sn of the induced game we have that
for all t1...tn, f(t1...tn) = a(s1(t1)...sn(tn)).

Clearly every dominant strategy implementation is also an ex-post Nash
implementation. Note that our definition only requires that for some equi-
librium f(t1...tn) = a(s1(t1)...sn(tn)) and allows other equilibria to exist.
A stronger requirement would be that all equilibria have this property, or
stronger still, that only a unique equilibrium point exists.
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1.4.3 The Revelation Principle

At first sight it seems that the more general definition of mechanisms will
allow us to do more than is possible using incentive compatible direct reve-
lation mechanisms introduced in section 1.3. This turns out to be false: any
general mechanism that implements a function in dominant strategies can
be converted into an incentive compatible one.

Proposition 1.25 (Revelation principle) If there exists an arbitrary mech-
anism that implements f in dominant strategies, then there exists an incen-
tive compatible mechanism that implements f . The payments of the players
in the incentive compatible mechanism are identical to those, obtained at
equilibrium, of the original mechanism.

Proof The proof is very simple: the new mechanism will simply simu-
late the equilibrium strategies of the players. I.e. Let s1...sn be a domi-
nant strategy equilibrium of the original mechanism, we define a new di-
rect revelation mechanism: f(t1...tn) = a(s1(t1)...sn(tn)) and p′i(t1...tn) =
pi(s1(t1)...sn(tn)). Now, since each si is a dominant strategy for player i,
then for every ti, x−i, x

′
i we have that vi(ti, a(si(ti), x−i))− pi(si(ti), x−i) ≥

vi(ti, a(x′i, x−i)) − pi(x′i, x−i). Thus in particular this is true for all x−i =
s−i(t−i) and any x′i = si(t′i), which gives the definition of incentive compat-
ibility of the mechanism (f, p′1...p

′
n).

Corollary 1.26 If there exists an arbitrary mechanism that ex-post-Nash
implements f , then there exists an incentive compatible mechanism that im-
plements f . Moreover, the payments of the players in the incentive compati-
ble mechanism are identical to those, obtained in equilibrium, of the original
mechanism.

Proof We take the ex-post implementation and restrict the action space of
each player, as in proposition 1.23, to those that are taken, for some input
type, in the ex-post equilibrium s1...sn. Proposition 1.23 states that now
s1...sn is a dominant strategy equilibrium of the game with the restricted
spaces, and thus the mechanism with the restricted action spaces is an im-
plementation in dominant strategies. We can now invoke the revelation
principle to get an incentive compatible mechanism.

The revelation principle does not mean that indirect mechanisms are use-
less. In particular, general mechanisms may be adaptive (multi-round),
significantly reducing the communication (or computation) burden of the
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players or of the auctioneer relative to a non-adaptive direct mechanism.
An example is the case of combinatorial auctions studied in chapter ??.

1.5 Characterizations of Incentive Compatible Mechanisms

In section 1.3 we saw how to implement the most natural social choice
function: maximization of the social welfare. The question that drives this
section is: what other social choice functions can we implement? In eco-
nomic settings, the main reasons for attempting implementations of other
social choice functions are increasing the revenue or introducing some kind
of fairness. In computerized settings there are many natural optimization
goals and we would like to be able to implement each of them. For exam-
ple in scheduling applications, a common optimization goal is that of the
“makespan” – completion time of the last job. This is certainly a social
choice function that is very different than maximizing the total social wel-
fare – how can it be implemented? Another major motivation for social
choice functions that do not maximize social welfare comes from compu-
tational considerations. In many applications the set of alternatives A is
complex, and maximizing social welfare is a hard computational problem
(NP-complete). In many of these cases there are computationally efficient
algorithms that approximate the maximum social welfare. Such an algorithm
in effect gives a social choice function that approximates social welfare max-
imization, but is different from it. Can it be implemented?

Chapter ?? and parts of chapter ?? address these issues specifically. This
section limits itself to laying the foundations by providing basic character-
izations of implementable social choice functions and their associated pay-
ments.

Due to the revelation principle, we can restrict ourselves again to look
at incentive compatible mechanisms. Thus, in this section we revert to
the notation used in subsection 1.3.3: A mechanism M = (f, p1...pn) over
domain of preferences V1× ...× Vn (Vi ⊆ <A) is composed of a social choice
function f : V1 × ... × Vn → A and payment functions p1...pn, where pi :
V1× ...×Vn → < is the amount that player i pays. In the rest of the section
we will provide characterizations of when such mechanisms are incentive
compatible.

1.5.1 Direct Characterization

We start by stating explicitly the required properties from an incentive com-
patible mechanism.
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Proposition 1.27 A mechanism is incentive compatible if and only if it
satisfies the following conditions for every i and every v−i:

(i) The payment pi does not depend on vi, but only on the alternative
chosen f(vi, v−i). I.e., for every v−i, there exist prices pa ∈ <, for
every a ∈ A, such that for all vi with f(vi, v−i) = a we have that
p(vi, v−i) = pa.

(ii) The mechanism optimizes for each player. I.e. for every vi, we have
that f(vi, v−i) ∈ argmaxa(vi(a)−pa), where the quantification is over
all alternatives in the range of f(·, v−i).

Proof (if part) Denote a = f(vi, v−i), a′ = f(v′i, v−i), pa = p(vi, v−i), and
pa′ = p(v′i, v−i). The utility of i when telling the truth is vi(a)−pa, which is
not less than the utility when declaring v′i, vi(a′)− pa′ , since the mechanism
optimizes for i, i.e. a = f(vi, v−i) ∈ argmaxa(vi(a)− pa).

(only-if part; first condition) If for some vi, v
′
i, f(vi, v−i) = f(v′i, v−i) but

pi(vi, v−i) > pi(v′i, v−i) then a player with type vi will increase his utility by
declaring v′i.

(only-if part; second condition) If f(vi, v−i) 6∈ argmaxa(vi(a) − pa), fix
a′ ∈ argmaxa(vi(a)−pa) in the range of f(·, v−i), and thus for some v′i, a′ =
f(v′i, v−i). Now a player with type vi will increase his utility by declaring
v′i.

1.5.2 Weak Monotonicity

The previous characterization involves both the social choice function and
the payment functions. We now provide a partial characterization that only
involves the social choice function. In section 1.5.5 we will see that the social
choice function usually determines the payments essentially uniquely.

Definition 1.28 A social choice function f satisfies Weak Monotonicity
(WMON) if for all i, all v−i we have that f(vi, v−i) = a 6= b = f(v′i, v−i)
implies that vi(a)− vi(b) ≥ v′i(a)− v′i(b).

I.e. WMON means that if the social choice changes when a single player
changes his valuation, then it must be because the player increased his value
of the new choice relative to his value of the old choice.

Theorem 1.29 If a mechanism (f, p1...pn) is incentive compatible then f

satisfies WMON. If all domains of preferences Vi are convex sets (as subsets
of an Euclidean space) then for every social choice function that satisfies
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WMON there exists payment functions p1...pn such that (f, p1...pn) is in-
centive compatible.

The first part of the theorem is easy and we will bring it completely, the
second part is quite involved, and will not be given here. It is known that
WMON is not a sufficient condition for incentive compatibility in general
non-convex (more precisely, non-simply-connected) domains.

Proof (First part) Assume first that (f, p1...pn) is incentive compatible, and
fix i and v−i in an arbitrary manner. Proposition 1.27 implies the existence
of fixed prices pa for all a ∈ A (that do not depend on vi) such that whenever
the outcome is a then bidder i pays exactly pa. Now assume f(vi, v−i) = a 6=
b = f(v′i, v−i). Since a player with valuation vi does not prefer declaring v′i
we have that vi(a)−pa ≥ vi(b)−pb. Similarly since a player with valuation v′i
does not prefer declaring vi we have that v′i(a)−pa ≤ v′i(b)−pb. Subtracting
the second inequality from the first we get vi(a) − vi(b) ≥ v′i(a) − v′i(b), as
required.

While WMON gives a pretty tight characterization of implementable so-
cial choice functions, it still leaves something to be desired as it is not in-
tuitively clear what exactly are the WMON functions. The problem is that
the WMON condition is a local condition for each player separately and
for each v−i separately. Is there a global characterization? This turns out
to depend intimately on the domains of preferences Vi. For two extreme
cases there are good global characterizations: when Vi is “unrestricted” i.e.
Vi = <A, and when Vi is severely restricted as to be essentially single dimen-
sional. These two cases are treated in the next two subsections below. The
intermediate range where the Vi’s are somewhat restricted, a range in which
most computationally interesting problems lie, is still wide open. More on
this appears in chapter ??.

1.5.3 Weighted VCG

It turns out that when the domain of preferences is unrestricted, then the
only incentive compatible mechanisms are simple variations of the VCG
mechanism. These variations allow giving weights to the players, weights to
the alternatives, and allow restricting the range. The resulting social choice
function is an “affine maximizer”:

Definition 1.30 A social choice function f is called an affine maximizer if
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for some subrange A′ ⊂ A, for some player weights w1...wn ∈ <+ and for
some outcome weights ca ∈ < for every a ∈ A′, we have that f(v1...vn) ∈
argmaxa∈A′(ca +

∑
i wivi(a)).

It is easy to see that VCG mechanisms can be generalized to affine maxi-
mizers:

Proposition 1.31 Let f be an affine maximizer. Define for every i, pi(v1...vn) =
hi(v−i)−

∑
j 6=i(wj/wi)vj(a)− ca/wi, where hi is an arbitrary function that

does not depend on vi. Then, (f, p1..pn) is incentive compatible.

Proof First, we can assume wlog that hi = 0. The utility of player i if
alternative a is chosen is vi(a) +

∑
j 6=i(wj/wi)vj(a) + ca/wi. By multiplying

by wi > 0, this expression is maximized when ca +
∑

j wjvj(a) is maximized
which is what happens when i reports vi truthfully.

Roberts’ theorem states that for unrestricted domains with at least 3
possible outcomes, these are the only incentive compatible mechanisms.

Theorem 1.32 (Roberts) If |A| ≥ 3, f is onto A, Vi = <A for every i, and
(f, p1...pn) is incentive compatible then f is an affine maximizer.

The proof of this theorem is not trivial and is given in chapter ??. It is
easy to see that the restriction |A| ≥ 3 is crucial (as in Arrow’s theorem),
since the case |A| = 2 falls into the category of “single parameter” domains
discussed below, for which there do exist incentive compatible mechanisms
beyond weighted VCG. It remains open to what extent can the restriction
of Vi = <A be relaxed.

1.5.4 Single-parameter domains

The unrestricted case Vi = <A basically means that the valuation space
has full dimensionality. The opposite case is when the space Vi is single-
dimensional, i.e. there is a single real parameter that directly determines
the whole vector vi. There are several possible levels of generality in which
to formalize this, and we will consider one of intermediate generality which
is simple and yet suffices for most applications. In our setting each bidder
has a private scalar value for “winning”, with “losing” having value of 0.
This is modeled by some commonly-known subset of winning alternatives
Wi ⊆ A. The main point is that all winning alternatives are equivalent to
each other for player i; and similarly all losing outcomes are equivalent to
each other. All the examples in section 1.3.5 fall into this category. A simple
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example is an auction of one item where Wi is the single outcome where i

wins. A more complex example is the setting of buying a path in a network
(subsection 1.3.5.6), where Wi is the set of all paths that contain edge i.

Definition 1.33 A single parameter domain Vi is defined by a (publicly
known) Wi ⊂ A and a range of values [t0, t1]. Vi is the set of vi such that
for some t0 ≤ t ≤ t1, vi(a) = t for all a ∈ Wi and vi(a) = 0 for all a 6∈ Wi.
In such settings we will abuse notation and use vi as the scalar t.

For this setting it is quite easy to completely characterize incentive com-
patible mechanisms.

Definition 1.34 A social choice function f on a single parameter domain
is called monotone in vi if for every v−i and every vi ≤ v′i ∈ < we have that
f(vi, v−i) ∈ Wi implies that f(v′i, v−i) ∈ Wi. I.e. if valuation vi makes i win,
then so will every higher valuation v′i ≥ vi.

For a monotone function f , for every v−i for which player i can both win
and lose, there is always a critical value below which i loses and above which
he wins. E.g. in a second price auction the critical value for each player is
highest declared value among the other players.

Definition 1.35 The critical value of a monotone social choice function f

on a single parameter domain is ci(v−i) = supvi:f(vi,v−i) 6∈Wi
vi. The critical

value at v−i is undefined if {vi|f(vi, v−i) 6∈ Wi} is empty.

We will call a mechanism on a single parameter domain “normalized” if the
payment for losing is always 0, i.e. for every vi, v−i such that f(vi, v−i) 6∈ Wi

we have that pi(vi, v−i) = 0. It is not difficult to see that every incentive
compatible mechanism may be easily turned into a normalized one, so it
suffices to characterize normalized mechanisms.

Theorem 1.36 A normalized mechanism (f, p1...pn) on a single parameter
domain is incentive compatible if and only if the following conditions hold:

(i) f is monotone in every vi.
(ii) Every winning bid pays the critical value. (Recall that losing bids pay

0.) Formally, For every i, vi, v−i such that f(vi, v−i) ∈ Wi, we have
that pi(vi, v−i) = ci(v−i). (If ci(v−i) is undefined we require instead
that for every v−i, there exists some value ci, such that pi(vi, v−i) = ci

for all vi such that f(vi, v−i) ∈ Wi.)
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Proof (If part) Fix i, v−i, vi. For every declaration made by i, if he wins his
utility is vi− ci(v−i) and if he loses his utility is 0. Thus he prefers winning
if vi > ci(v−i) and losing if vi < ci(v−i) , which is exactly what happens
when he declares the truth.

(Only-if part, first condition) If f is not monotone then for some v′i > vi

we have that f(v′i, v−i) loses while f(vi, v−i) wins and pays some amount
p = pi(vi, v−i). Since a bidder with value vi is not better off bidding v′i and
losing we have that vi− p ≥ 0. Since a bidder with value v′i is not better off
bidding vi and winning we have that v′i − p ≤ 0. Contradiction.

(Only-if part, second condition) Assume that some winning vi pays p >

ci(v−i) then, using proposition 1.27, all winning bids will make the same
payment, including a winning v′i with ci(v−i) < v′i < p. But such a bidder is
better off losing which he can do by bidding some value vlose < c(v−i). In
the other direction if vi pays p < c(v−i) then a losing v′i with c(v−i) > v′i > p

is better of wining and paying p, which will happen if he bids vi.

Notice that this characterization leaves ample space for non-affine-maximization.
For example we can implement social functions such as maximizing the eu-
clidean norm argmaxa

∑
i vi(a)2 or maximizing the minimum value argmaxa mini vi(a).

Indeed in many cases this flexibility allows the design of computationally ef-
ficient approximation mechanisms for problems whose exact optimization is
computationally intractable – an example is given in chapter ??.

1.5.5 Uniqueness of prices

This section has so far focused on characterizing the implementable so-
cial choice functions. What about the payment functions? It turns out
that the payment function is essentially uniquely determined by the social
choice function. “Essentially” means that if we take an incentive compati-
ble mechanisms with payments pi and modify the payments to p′i(v1...vn) =
pi(v1...vn) + hi(v−i) for an arbitrary function hi that does not depend on
vi, then incentive compatibility remains. It turns out that this is the only
leeway in the payment:

Theorem 1.37 Assume that the domains of preference Vi are connected
sets in the usual metric in the Euclidean space. Let (f, p1...pn) be an in-
centive compatible mechanism. The mechanism with modified payments
(f, p′1...p

′
n) is incentive compatible if and only if for some functions hi :

V−i → < we have that p′i(v1...vn) = pi(v1...vn) + hi(v−i) for all v1...vn.
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Proof The “if” part is clear since hi has no strategic implications for player
i, so we need only prove the only-if part. Assume that (f, p′1...p

′
n) is incentive

compatible, and for the rest of the proof fix some i and some v−i.
For every a ∈ A denote V a = {vi ∈ Vi|f(vi, v−i) = a}. Using proposition

1.27, the payment p(vi, v−i) is identical for all vi ∈ V a and will be denoted
by pa. Similarly we denote p′a = p′(vi, v−i) for some vi ∈ V a. It now suffices
to show that for every a, b ∈ A, pa − pb = p′a − p′b.

For a, b ∈ A we will say that a and b are close if for every ε > 0 there exist
va
i , vb

i ∈ Vi such that ||va
i −vb

i || = maxc∈A|va
i (c)−vb

i (c)| ≤ ε, and f(va
i , v−i) =

a and f(vb
i , v−i) = b. We will first prove the required pa − pb = p′a − p′b for

close a, b. Fix va
i , vb

i ∈ Vi as in the definition of closeness. Since a bidder
with type va

i does not gain by declaring vb
i with payments p, we have that

va
i (a)−pa ≥ va

i (b)−pb, and since a bidder with vb
i does not gain by declaring

va
i we have that vb

i (a)−pa ≤ vb
i (b)−pb. Putting together and rearranging we

have that va
i (b)−va

i (a) ≤ pb−pa ≤ vb
i (b)−vb

i (a). Similarly, by considering the
mechanism with payments p′ we have va

i (b)−va
i (a) ≤ p′b−p′a ≤ vb

i (b)−vb
i (a).

But now recall that ||va
i − vb

i || ≤ ε and thus the upper bound and the
lower bound for pb − pa and for p′b − p′a are at most 2ε apart and thus
|(pb − pa)− (p′b − p′a)| ≤ 2ε. Since ε was arbitrary pb − pa = p′b − p′a.

To show pb − pa = p′b − p′a for general (not necessarily close) a and b,
consider B = {b ∈ A|pb − pa = p′b − p′a}. Since pb − pa = p′b − p′a and
pc − pb = p′c − p′b implies pc − pa = p′c − p′a we have that no alternative
in A − B can be close to any alternative in B. Thus V B =

⋃
b∈B V b has

positive distance from its complement V A−B =
⋃

b6∈B V b contradicting the
connectedness of V .

It is not difficult to see that the assumption that Vi is connected is es-
sential, as for example, if the valuations are restricted to be integral, then
modifying pi by any small constants ε < 1/2 will not modify incentive com-
patibility.

From this, and using the revelation principle, we can directly get many
corollaries:

(i) The only incentive compatible mechanisms that maximize social wel-
fare are those with VCG payments.

(ii) In the bilateral trade problem (section 1.3.5.3) the only incentive
compatible mechanism which maximizes social welfare and makes no
payments in case of no-trade is the one shown there which subsidizes
the trade. More generally, if a mechanism for bilateral trade satisfies
ex-post individual rationality, then it cannot dictate positive pay-
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ments from the players in case of no-trade and thus it must subsidize
trade.

(iii) In the public project problem (section 1.3.5.5) no ex-post individually
rational mechanism that maximizes social welfare can recover the
cost of the project. Again, the uniqueness of payments imply that
if players with value 0 pay 0 (which is as much as they can pay
maintaining individual rationality) then their payments in case of
building the project must be identical to those obtained using the
Clarke pivot rule.

In section 1.6.3 we will see a similar theorem in the Bayesian setting, a
theorem that will strengthen all of these corollaries as well to that setting.

1.5.6 Randomized Mechanisms

All of our discussion so far considered only deterministic mechanisms. It is
quite natural to allow also randomized mechanisms. Such mechanisms would
be allowed to produce a distribution over alternatives and a distribution
over payments. Alternatively, but specifying slightly more structure, we can
allow distributions over deterministic mechanisms. This will allow us to
distinguish between two notions of incentive compatibility.

Definition 1.38 • A randomized mechanism is a distribution over deter-
ministic mechanisms (all with the same players, types spaces Vi, and out-
come space A.)

• A randomized mechanism is incentive compatible in the universal sense
if every deterministic mechanism in the support is incentive compatible.

• A randomized mechanism is incentive compatible in expectation if truth
is a dominant strategy in the game induced by expectation. I.e. if for
all i, all vi, v−i, and v′i, we have that E[vi(a) − pi] ≥ E[vi(a′) − p′i],
where (a, pi), and (a′, p′i) are random variables denoting the outcome and
payment when i bids, respectively, vi and v′i, and E[·] denotes expectation
over the randomization of the mechanism.

It is clear that incentive compatibility in the universal sense implies incen-
tive compatibility in expectation. For most purposes incentive compatibility
in expectation seems to be the more natural requirement. The universal defi-
nition is important if players are not risk neutral (which we do not consider in
this chapter) or if the mechanism’s internal randomization is not completely
hidden from the players. As we will see in chapters ?? and ?? randomized
mechanisms can often be useful and achieve more than deterministic ones.
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We will now characterize randomized incentive compatible mechanisms
over single parameter domains. Recall the single parameter setting and
notations from section 1.5.4. We will denote the probability that i wins by
wi(vi, v−i) = Pr[f(vi, v−i) ∈ Wi] (probability taken over the randomization
of the mechanism) and will use pi(vi, v−i) to directly denote the expected
payment of i. In this notation the utility of player i with valuation vi when
declaring v′i is vi · w(v′i, v−i)− pi(v′i, v−i). For ease of notation we will focus
on normalized mechanisms in which the lowest bid v0

i = t0 loses completely
wi(v0

i , v−i) = 0 and pays nothing pi(v0
i , v−i) = 0.

Theorem 1.39 A normalized randomized mechanism in a single parameter
domain is incentive compatible in expectation if and only if for every i and
every fixed v−i we have that

(i) The function wi(vi, v−i) is monotonically non decreasing in vi.
(ii) pi(vi, v−i) = vi · w(vi, v−i)−

∫ vi

v0
i

w(t, v−i)dt.

Proof In the proof we will simplify notation by removing the index i and
the fixed argument v−i everywhere. In this notation, to show incentive
compatibility we need to establish that vw(v) − p(v) ≥ vw(v′) − p(v′) for
every v′. Plugging in the formula for p we get

∫ v
v0 w(t)dt ≥

∫ v′

v0 w(t)dt− (v′−
v)w(v′). For v′ > v this is equivalent to (v′ − v)w(v′) ≥

∫ v′

v w(t)dt which
is true due to the monotonicity of w. For v′ < v we get (v − v′)w(v′) ≤∫ v
v′ w(t)dt which again is true due to the monotonicity of w.
In the other direction, combining the incentive constraint at v, vw(v) −

p(v) ≥ vw(v′) − p(v′), with the incentive constraint at v′, v′w(v) − p(v) ≤
v′w(v′) − p(v′), and subtracting the inequalities, we get (v′ − v)w(v) ≤
(v′ − v)w(v′) which implies monotonicity of w.

To derive the formula for p, we can re-arrange the two incentive constraints
as

v · (w(v′)− w(v)) ≤ p(v′)− p(v) ≤ v′ · (w(v′)− w(v)).

Now by letting v′ = v + ε, dividing throughout by ε, and taking the limit,
both sides approach the same value, v ·dw/dv, and we get dp/dv = v ·dw/dv.
Thus, taking into account the normalization condition p(v0) = 0, we have
that p(vi) =

∫ vi

v0 v · w′(v)dv, and integrating by parts completes the proof.
(This seems to require the differentiability of w, but as w is monotone this
holds almost everywhere, which suffices since we immediately integrate.)
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We should point out explicitly that the randomization in a randomized
mechanism is completely controlled by the mechanism designer and has
nothing to do with any distributional assumptions on players’ valuations
as will be discussed in the next section.

1.6 Bayesian-Nash Implementation

So far in this chapter we have only considered implementation in dominant
strategies (and the very similar ex-post-Nash). As mentioned in section
1.4 this is usually considered too strict a definition in economic theory. It
models situations where each player has no information at all about the
private information of the others – not even a prior distribution – and must
operate under a “worst case” assumption. The usual working definition in
economic theory takes a Bayesian approach, assumes some commonly known
prior distribution, and assumes that a player that lacks some information
will optimize in a Bayesian sense according to the information that he does
have. The formalization of these notions, mostly by Harsanyi, was a major
development in economic theory in the 1960s and 1970s, and is certainly still
the dominant approach to handling lack of information in economic theory.
In this section we will give these basic notions in the context of mechanism
design, again limiting ourselves to settings with independent private values.

1.6.1 Bayesian-Nash Equilibrium

Definition 1.40 A game with (independent private values and) incomplete
information on a set of n players is given by the following ingredients:

(i) For every player i, a set of actions Xi.
(ii) For every player i, a set of types Ti, and a prior distribution Di on

Ti. A value ti ∈ Ti is the private information that i has, and Di(ti)
is the a priori probability that i gets type ti.

(iii) For every player i, a utility function ui : Ti×X1× ...×Xn → <, where
ui(ti, x1...xn) is the utility achieved by player i, if his type (private
information) is ti, and the profile of actions taken by all players is
x1...xn.

The main idea that we wish to capture with this definition is that each
player i must choose his action xi when knowing ti but not the other tj ’s
but rather only knowing the prior distribution Dj on each other tj . The
behavior of player i in such a setting is captured by a function that specifies
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which action xi is taken for every possible type ti – this is termed a strategy.
It is these strategies that we would want to be in equilibrium.

Definition 1.41 A strategy of a player i is a function si : Ti → Xi. A profile
of strategies s1...sn is a Bayesian-Nash equilibrium if for every player i and
every ti we have that si(ti) is the best response that i has to s−i() when his
type is ti, in expectation over the types of the other players. Formally: For
all i, all ti, and all x′i: ED−i [ui(ti, si(ti), s−i(t−i))] ≥ ED−i [ui(ti, x′i, s−i(t−i))]
(where ED−i [] denotes the expectation over the other types t−i being chosen
according to distribution D−i).

This now allows us to define implementation in the Bayesian sense:

Definition 1.42 A Bayesian mechanism for n players is given by (a) play-
ers’ type spaces T1...Tn and prior distributions on them D1...Dn, (b) players’
action spaces X1...Xn, (c) an alternative set A, (d) players’ valuations func-
tions vi : Ti × A :→ <, (e) an outcome function a : X1 × ...×Xn → A, and
(f) payment functions p1...pn, where pi : X1 × ...×Xn → <.

The game with incomplete information induced by the mechanism is given
by using the type spaces Ti with prior distributions Di, the action spaces
Xi, and the utilities ui(ti, x1...xn) = vi(ti, a(x1...xn))− pi(x1...xn).

The mechanism implements a social choice function f : T1 × ... × Tn →
A in the Bayesian sense if for some Bayesian-Nash equilibrium s1...sn of
the induced game (si : Ti → Xi) we have that for all t1...tn, f(t1...tn) =
a(s1(t1)...sn(tn)).

In particular it should be clear that every ex-post-Nash implementation
is by definition also a Bayesian implementation for any distributions Di. In
general, however, being a Bayesian implementation depends on the distri-
butions Di and there are many cases where a Bayesian-Nash equilibrium
exists even though no dominant-strategy one does. A simple example – a
first price auction – is shown in the next subsection. Just like in the case of
dominant-strategy implementations, Bayesian implementations can also be
turned into ones that are truthful in a Bayesian sense.

Definition 1.43 A mechanism is truthful in the Bayesian sense if (a) it
is “direct revelation” i.e. the type spaces are equal to the action spaces
Ti = Xi, and (b) the truthful strategies si(ti) = ti are a Bayesian-Nash
equilibrium.

Proposition 1.44 (Revelation principle) If there exists an arbitrary mech-
anism that implements f in the Bayesian sense, then there exists a truthful
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mechanism that implements f in the Bayesian sense. Moreover, the ex-
pected payments of the players in the truthful mechanism are identical to
those, obtained in equilibrium, in the original mechanism.

The proof is similar to the proof of the same principle in the dominant-
strategy setting given in proposition 1.25.

1.6.2 First price auction

As an example of Bayesian analysis we study the standard first price auction
in a simple setting: a single item is auctioned between two players, Alice
and Bob. Each has a private value for the item: a is Alice’s value and b is
Bob’s value. While we already saw that a second price auction will allocate
the item to the one with higher value, here we ask what would happen if the
auction rules are the usual first-price ones: the highest bidder pays his bid.
Certainly Alice will not bid a since if she does even if she wins her utility
will be 0. She will thus need to bid some x < a, but how much lower? If
she knew that Bob would bid y, she would certainly bid x = y + ε (as long
as x ≤ a). But she does not know y or even b which y would depend on –
she only knows the distribution DBob over b.

Let us now see how this situation falls in the Bayesian-Nash setting
described above: The type space TAlice of Alice and TBob of Bob is the
non-negative real numbers, with tAlice denoted by a and tBob denoted by
b. The distributions over the type space are DAlice and DBob. The ac-
tion spaces XAlice and XBob are also the non-negative real numbers, with
xAlice denoted by x and xBob denoted by y. The possible outcomes are
{Alice-wins,Bob-wins}, with vAlice(Bob-wins) = 0 and vAlice(Alice-wins) =
a (and similarly for Bob). The outcome function is that Alice-wins if x ≥ y

and Bob-wins otherwise (we arbitrarily assume here that ties are broken
in favor of Alice). Finally, the payment functions are pAlice = 0 whenever
Bob-wins and pAlice = x whenever Alice-wins , while pBob = y whenever
Bob-wins and pBob = 0 whenever Alice-wins. Our question translates into
finding the Bayesian-Nash equilibrium of this game? Specifically we wish
to find a strategy sAlice for Alice, given by a function x(a), and a strategy
sBob for Bob, given by the function y(b), that are in Bayesian equilibrium,
i.e. are best-replies to each other.

In general, finding Bayesian-Nash equilibria is not an easy thing. Even
for the this very simple first price auction the answer is not clear for gen-
eral distributions DAlice and DBob. However, for the symmetric case where
DAlice = DBob, the situation is simpler and a closed form expression for
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the equilibrium strategies may be found. We will prove it for the special
case of uniform distributions on the interval [0, 1]. Similar arguments work
for arbitrary non-atomic distributions over the valuations as well as for any
number of bidders.

Lemma 1.45 In a first price auction among two players with prior distribu-
tions of the private values a, b uniform over the interval [0, 1], the strategies
x(a) = a/2 and y(b) = b/2 are in Bayesian-Nash equilibrium.

Note that in particular x < y if and only if a < b thus the winner is also
the player with highest private value. This means that the first price auction
also maximizes social welfare, just like a second-price auction.

Proof Let us consider which bid x is Alice’s optimal response to Bob’s
strategy y = b/2, when Alice has value a. The utility for Alice is 0 if
she loses and a − x if she wins and pays x, thus her expected utility from
bid x is given by uAlice = Pr[Alice wins with bid x] · (a − x), where the
probability is over the prior distribution over b. Now Alice wins if x ≥ y,
and given Bob’s strategy y = b/2, this is exactly when x ≥ b/2. Since b is
distributed uniformly in [0, 1] we can readily calculate this probability: 2x

for 0 ≤ x ≤ 1/2, 1 for x ≥ 1/2, and 0 for x ≤ 0. It is easy to verify that
the optimal value of x is indeed in the range 0 ≤ x ≤ 1/2 (since x = 1/2
is clearly better than any x > 1/2, and since any x < 0 will give utility
0). Thus to optimize the value of x we need to find the maximum of the
function 2x(a−x) over the range 0 ≤ x ≤ 1/2. The maximum may be found
by taking the derivative with respect to x and equating it to 0, which gives
2a− 4x = 0, whose solution is x = a/2 as required.

1.6.3 Revenue Equivalence

Let us now attempt comparing the first price auction and the second price
auction. The social choice function implemented is exactly the same: giving
the item to the player with highest private value. How about the payments?
Where does the auctioneer get higher revenue? One can readily express the
revenue of the second-price auction as min(a, b) and the revenue of the first-
price auction as max(a/2, b/2), and it is clear that each of these expressions
is higher for certain values of a and b.

But which is better on the average – in expectation over the prior distri-
butions of a and b? Simple calculations will reveal that the expected value
of min(a, b) when a and b are chosen uniformly in [0, 1] is exactly 1/3. Simi-
larly the expected value of max(a/2, b/2) when a and b are chosen uniformly
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in [0, 1] is also exactly 1/3. Thus both auctions generate equivalent revenue
in expectation! This is no coincidence. It turns out that in quite general
circumstances every two Bayesian-Nash implementations of the same social
choice function generate the same expected revenue.

Theorem 1.46 (The Revenue Equivalence Principle): Under certain
weak assumptions (to be detailed in the proof body), for every two Bayesian-
Nash implementations of the same social choice function f , we have that if
for some type t0i of player i, the expected (over the types of the other players)
payment of player i is the same in the two mechanisms, then it is the same
for every value of ti. In particular, if for each player i there exists a type
t0i where the two mechanisms have the same expected payment for player i,
then the two mechanisms have the same expected payments from each player
and their expected revenues are the same.

Thus, for example, all single item auctions that allocate (in equilibrium)
the item to the player with highest value and in which losers pay 0, will have
identical expected revenue.

The similarity to theorem 1.37 should be noted: in both cases it is shown
that the allocation rule determines the payments, up to a normalization. In
the case of dominant strategy implementation, this is true for every fixed
type of the other players, while in the case of Bayesian-Nash implementation,
this is true in expectation over that types of the others. The proofs of the
two theorems look quite different due to technical reasons. The underlying
idea is the same: take two “close” types, then the equations specifying that
for neither type does a player gain by mis-representing himself as the other
type, put together, determine the difference in payments in terms of the
social choice function.

Proof Using the revelation principle, we can first limit ourselves to mecha-
nisms that are truthful in the Bayesian-Nash sense. Let us denote by Vi the
space of valuation functions vi(ti, ·) over all ti.

Assumption 1: Each Vi is convex. (Note that this holds for essentially
every example we had so far. This condition can be replaced by path-
connectedness, and the proof becomes just slightly messier.)

Take any type t1i ∈ Ti. We will derive a formula for the expected payment
for this type that depends only on the expected payment for type t0i and on
the social choice function f . Thus any two mechanisms that implement the
same social choice function and have identical expected payments at t0i will
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also have identical expected payments at t1i . For this, let us now introduce
some notations:

• v0 is the valuation v(t0i , ·). v1 is the valuation v(t1i , ·). We will look at
these as vectors (in Vi ⊆ <A), and look at their convex combinations
vλ = v0 + λ(v1 − v0). The convexity of Vi implies that vλ ∈ Vi and
thus there exists some type tλi such that vλ = v(tλi , ·).

• pλ is the expected payment of player i at type tλi : pλ = Et−ipi(ti, t−i).
• wλ is the probability distribution of f(tλi , ·), i.e. for every a ∈ A

wλ(a) = Prt−i [f(tλi , t−i) = a].

Assumption 2: wλ is continuously differentiable in λ. (This assumption
is not really needed, but allows us to simply take derivatives and integrals
as convenient.)

Once we have this notation in place, the proof is easy. Note that under
these notations the expected utility of player i with type tλi that declares
tλ

′
i is given by the expression vλ · wλ′ − pλ′ . Since a player with type tλi

prefers reporting the truth rather than tλ+ε
i we have that vλ · wλ − pλ ≥

vλ · wλ+ε − pλ+ε. Similarly, a player with type tλ+ε
i prefers reporting the

truth rather than tλi , so we have vλ+ε · wλ − pλ ≤ vλ+ε · wλ+ε − pλ+ε. Re-
arranging and putting together, we get

vλ(wλ+ε − wλ) ≤ pλ+ε − pλ ≤ vλ+ε(wλ+ε − wλ)

Now divide throughout by ε and let ε approach 0. vλ+ε approaches vλ,
(wλ+ε −wλ)/ε approaches the vector dwλ/dλ = w′(λ) and thus we get that
(pλ+ε− pλ)/ε) approaches vλ ·w′(λ), and thus the derivative of pλ is defined
and is continuous. Integrating, we get p1 = p0 +

∫ 1
0 vλ · w′(λ)dλ.

Thus the revenue equivalence theorem tells us that we cannot increase
revenue without changing appropriately the allocation rule (social choice
function) itself. In particular, all the corollaries in section 1.5.5 apply, in
the sense of expectation, to all Bayesian-Nash implementations. However,
if we are willing to modify the social choice function, then we can certainly
increase revenue. Here is an example for the case of an auction with two
bidders with valuations distributed uniformly in [0, 1]: Put a reservation
price of 1/2, and then sell to the highest bidder for a price that is the
maximum of the low bid and the reservation price, 1/2. If both bidders bid
below the reservation price, then none of them wins. First, it is easy to
verify that this rule is incentive compatible. Then a quick calculation will
reveal that the expected revenue of this auction is 5/12 which is more than
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the 1/3 obtained by the regular second price or first price auctions. Chapter
?? discusses revenue maximization further.

1.7 Further models

This chapter has concentrated on basic models. Here we shortly mention
several model extensions which address issues ignored by the basic models
and have received attention in economic theory.

1.7.1 Risk Aversion

All of our discussion in the Bayesian model assumed that players are risk-
neutral: obtaining a utility of 2 with probability 1/2 is equivalent to ob-
taining a utility of 1 with probability 1. This is why we could just compute
players’ utilities by taking expectation. In reality, players are often risk-
averse, preferring a somewhat lower utilities if they are more certain. A
significant body of work in economic theory deals with formalizing and an-
alyzing strategic behavior of such players. In our context, a particularly
interesting observation is that the revenue equivalence principle fails and
that with risk-averse bidders different mechanisms that implement the same
social choice function may have different revenue. As an example it is known
that first price auctions generate more revenue than second price auctions
if the bidders are risk-averse.

1.7.2 Interdependent Values

We have only considered independent private value models: the types of
the players are chosen independently of each other and each players’ valua-
tion depends only on his own private information. In a completely general
setting, there would be some joint distribution over “states of the world”
where such a state determines the valuations of all players. Players would
not necessarily get as private information their own valuation, but rather
each would get some “signal” – partial information about the state of the
world – that provide some information about his own valuation and some
about the valuations of others. Most of the results in this chapter cease
holding for general models with interdependent values.

A case that is in the extreme opposite to the private value model is the
“common value” model. In an auction of a single item under this model,
we assume that the object in question has exactly the same value for all
bidders. The problem is that none of them knows exactly what this value is
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and each players’ signal only provides some partial information. An example
is an auction for financial instruments such as bonds. Their exact value is
not completely known as it depends on future interest rates, the probability
of default, etc. What is clear though, is that whatever value the bonds will
turn out to have, it will be the same for everyone. In such settings, an
auction really serves as an information aggregation vehicle, reaching a joint
estimate of the value by combining all players’ signals. A common pitfall in
such cases is the “winner’s curse”: if each bidder bids their own estimate of
the object’s common value, as determined from their own signal, then the
winner will likely regret winning – the fact that a certain bidder won means
that other signals implied a lower value, which likely means that the real
value is lower than the estimate of the winner. Thus in equilibrium bidders
must bid an estimate that is also conditioned on the fact that they win.

A commonly considered formalization that takes into account both a pri-
vate value component and a common value component is that of affiliated
signals. Roughly speaking, in such models each player gets a signal that is
positively correlated (in a strong technical sense called affiliation) not only
with his own value but also with the values of other players. In such settings,
ascending English auctions are “better” (generate more revenue) than the
non-adaptive second price auction (which is equivalent to an English auc-
tion in private value models): as the bidding progresses, each bidder gets
information from the other bidders that increases his estimate of his value.

1.7.3 Complete information models

Our main point of view was that each player has its own private information.
Some models consider a situation where all players have complete informa-
tion about the game; it is only the mechanism designer who is lacking such
information. A prototypical instance is that of King Solomon: two women,
each claiming that the baby is hers. The women both know who the real
mother is, but not King Solomon – he must design a mechanism that elicits
this information from their different preferences. Several notions of imple-
mentation in such setting exists, and in general, mechanism design is much
easier in this setting. In particular many implementations without money
are possible.

1.7.4 Hidden Actions

All of the theory of Mechanism Design attempts overcoming the problem
that players have private information that is not known to the mechanism
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designer. In many settings a different stumbling block occurs: players may
perform hidden actions that are not visible to the “mechanism”. This com-
plementary difficulty to the private information difficulty has been widely
studied in economics and has recently started to be considered in computer
science settings.

1.8 Notes

Most of the material in this chapter can be found in graduate textbooks
on micro-economics such as [MCWG95]. The books [Kri02, Kle04] on Auc-
tion theory contain more detail. As the Internet gained influence, during
the 1990’s, researchers in AI, Computer networks, and economics started
noticing that Mechanism Design can be applied in computational settings.
This was put forward in a general way in [NR01] who also coined the term
Algorithmic Mechanism Design.

The earliest work on voting methods including that of Condorcet and
Borda goes back to the late 18th century, appropriately around the time of
the French Revolution. The modern treatment of social choice theory origi-
nates with the seminal work of [Arr51] where Arrow’s theorem also appears.
Over the years many proofs for Arrow’s theorem have been put forward; we
bring one of those in [Gea05]. The Gibbard-Satterthwaite theorem is due to
[Gib73, Sat75]. The computational difficulty of manipulation of voting rules
was first studied in [BTT89].

The positive results in Mechanism Design in the quasi-linear setting orig-
inate with the seminal work of [Vic61] who in particular studied single item
auctions and multi-unit auctions with downward sloping valuations. The
public project problem problem was studied in [Cla71] who also suggested
the pivot rule, and the general formulation of what is now called VCG
mechanisms appears in [Gro73]. The Bilateral Trade problem was studied
in [MS83], and the application of buying a path in a network was put forward
in [NR01].

The general framework of Mechanism Design and its basic notions have
evolved in micro-economic theory mostly in the 1970s, and mostly in the
general Bayesian setting which we only get to in section 1.6. Among the
Influential papers in laying out the foundations are [Vic61, Cla71, Gro73,
Sat75, GL77, DHM79, Mye81].

Early papers in algorithmic Mechanism Design, such as [NR01, LOS02],
pointed out the necessity and difficulty of implementing social choice func-
tions other than welfare maximization, due to other optimization goals or
due to computational hardness. Characterizations of incentive compatible
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mechanisms have been previously obtained in economic theory as interme-
diate steps on the way to theorems with clear economic motivation. The
discussion here tries to put it all together independently of particular in-
tended applications. The weak monotonicity condition is from [BCL+06]
and the sufficiency of this condition in convex domains is from [SY05]. The
affine-maximization characterization in complete domains is from [Rob79],
and [LMN03] attempts generalization to other domains. The uniqueness of
pricing is the analog of the revenue equivalence theorem in the Bayesian
setting which is due to [Mye81]; [GL77] showed it in the dominant strategy
setting for welfare maximizing social choice functions. The corollary of the
impossibility of budget-balanced bilateral trade appears in [MS83] in the
Bayesian setting.

The Bayesian setting is currently the main vehicle of addressing lack of
information in economic theory, and this development has mostly happened
during the 1960s, with the main influence being the seminal work of [Har68].
As mentioned previously, most of development of the field of Mechanism
Design noted above was in this setting. The revenue equivalence theorem,
the form of the expected payment in single-parameter domains, as well as
an analysis of revenue-maximizing auctions is from [Mye81].

Risk-averse bidders in (reverse) auctions are analyzed by [Hol80]. Auc-
tions in the common value model are analyzed in [Wil77, Mil81]. The gen-
eral model of interdependent valuations with affiliated signals was studied
in [MW82]. Mechanism Design in complete information models is discussed
in [Mas85, MR88].
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