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Abstract

Mechanism Design is a sub-field of game theory that aims to design games

whose equilibria have desired properties such as achieving high efficiency or high

revenue. Algorithmic Mechanism Design is a subfield that lies on the border of

Mechanism Design and Computer Science and deals with Mechanism Design in

algorithmically-complex scenarios that are often found in computational settings

such as the Internet.

The central challenge in Algorithmic Mechanism Design is the tension between

the computational constraints and the game-theoretic ones. This survey demon-

strates both the tension and ways of addressing it by focusing on a single simple

problem: multi-unit auctions. A variety of issues will be discussed: representation,

computational hardness, communication, convexity, approximations, VCG mech-

anisms and their generalizations, single-parameter settings vs. multi-parameter

settings, and the power of randomness.

1 Introduction

As the Internet was becoming ubiquitous in the 1990’s it became increasingly clear that

its understanding requires combining insights from Computer Science with those from

Game Theory and Economic Theory. On one hand, much economic activity was moving

to the Internet, and on the other hand many computational systems started involving

computers with different owners and goals. Computational implementations of familiar

economic institutions such as catalogs, markets, auctions, or stores opened up unprece-

dented new opportunities – and challenges – in terms of scale, size, speed, and complexity.
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As familiar computerized protocols were adapted to the Internet environment, the eco-

nomic aspects of the resulting cooperation and competition needed to be increasingly

taken into account. A new field of study for handling such combinations of computerized

and economic considerations was born, a field which is often termed Algorithmic Game

Theory. A textbook for this field is Nisan et al. [2007].

Perhaps the most natural sub-field of economics to be combined with computational

considerations is that of Mechanism Design. The field of Mechanism Design aims to

design economic institutions as to achieve various economic goals, most notably revenue

and social welfare. Combining the points of view of social choice and of game theory,

it aims to design games whose outcome will be as the game designer desires – whenever

rational players engage in them. The field was initiated by the seminal, Nobel prize

winning, work of Vickrey [1961], with an extensive amount of further work done over the

last half century. As argued in Roth [2003], the field of mechanism design may be viewed

as Engineering, aiming to create new “mechanisms” using its tools of the trade.

In the mid 1990’s researchers from several disciplines recognized that mechanism de-

sign could be relevant to computation over the Internet. Examples of influential discus-

sions along these lines include “Economic mechanism design for computerized agents”

written by an economist (Varian [1995]), “Rules of encounter: designing conventions for

automated negotiation among computers” written by Artificial Intelligence researchers

(Rosenschein and Zlotkin [1994]), and “Pricing in computer networks: Reshaping the re-

search agenda” written by computer network researchers (Shenkar et al. [1996]). By the

end of the millennium, formal theoretical models that combine mechanism design with

computation were introduced in Nisan and Ronen [2001] where the term Algorithmic

Mechanism Design was coined.

Before we dive into the special challenges of the combination of “Algorithmic” with

“Mechanism Design”, let us briefly present the basic point of view of each of these two

disciplines separately. The field of Mechanism Design considers a set of rational players,

where “rational” is defined to be – as usual in economic theory – utility-maximizing.

A social outcome that affects all these players needs to be chosen by a planner who

does not have full information, information needed for determining the “preferred” social

outcome. The planner’s goal is to design a mechanism – a protocol – that when played

by the rational agents results in an equilibrium that satisfies the planner’s goals.

In classical Computer Science there are no utilities. A problem describes an input-

output relationship and the goal is to produce the correct output for every given input.

The difficulty is that of computation: we would like to efficiently find the correct output,

where efficiency is measured in terms of computational resources: mostly computation

time, but also memory, communication, etc. Much work in computer science focuses

2



on distributed problems, where the input and output are distributed among multiple

computers who must communicate with each other. Such work on distributed systems

became very central as the Internet became the default computational platform.

The usual treatment of the distributed processors in Computer Science was that they

were either “obedient” – programmed and controlled by the designer-engineer – or that

they were “faulty” – in which case we have no control over their behavior within the

bounds of our fault models. However, for many Internet applications, none of these points

of view seemed to capture the essence of the situation. What seems to be the essence is

that the computers are simply trying to further the goals of their owners. While such

behavior is the bread and butter of economics and game-theory, it was certainly new

for Computer Scientists. Hence the rational modeling of participants was adopted into

computational settings and Mechanism Design was embraced as a paradigm for the design

of distributed computational protocols over the Internet.

2 Algorithmic Mechanism Design and This Survey

2.1 The Field of Algorithmic Mechanism Design

By now, the field called Algorithmic Mechanism Design is quite large and varied. More-

over, the dividing lines between it and “classical” economic fields of Mechanism Design,

Market Design, and Auction Design are very blurry. Some dividing line can be put ac-

cording to whether complexity and algorithms play a crucial role in the problem. We

can say that a problem is part of Algorithmic Mechanism Design whenever we have an

economic design challenge where a central essence of the problem is the multitude of

“input pieces” or “outcome possibilities”. In other words, whenever some combinato-

rial complexity is a key issue interacting with incentive issues. Thus, for example, while

auctioning a single item is the paradigmatic problem of Mechanism Design, auctioning

multiple (related) items would be the paradigmatic problem of Algorithmic Mechanism

Design. Market or auction design problems whose domain of application is computerized

(e.g. ad auctions) most usually fall into this category and considered to be part of Algo-

rithmic Mechanism Design. Finally, as the theory related to such scenarios has developed,

some “approaches” to Mechanism Design that are characteristic to Computer Scientists

have emerged, in particular a preference to “worst-case” analysis and a willingness to

accept approximate solutions.

This survey will not attempt to give a general overview of the field of Mechanism

Design, for which surveys can be found in textbooks such as Mas-Collel et al. [1995] or

Osborne and Rubistein [1994] or in the more comprehensive books Krishna [2002] and
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Milgrom [2004]. This survey will not even attempt covering the whole field of Algorithmic

Mechanism Design, a nearly impossible task due to its size, ill-defined borders and rapid

pace of change. Instead this survey will focus on the single key issue driving the field:

the clash between algorithmic considerations and incentive constraints. To this effect, we

will be limiting ourselves to the following choices:

1. Private Values: We will only be talking about scenarios where each participant

has full information about his own value for each possible outcome. In contrast,

a significant amount of classical Mechanism Design (see Krishna [2002], Milgrom

[2004]) as well as some recent Algorithmic Mechanism Design (e.g. Roughgarden

and Talgam-Cohen [2013]) considers situations where bidders have only partial

knowledge about their values.

2. Quasi-linear Utilities: We will assume that bidders’ values can be measured

in monetary units (money) that can be transferred to and from the auctioneer.

This assumption of quasi-linearity is quite common in general mechanism design,

although a very large body of work on matching markets does not require this

assumption, as do some other works in “Algorithmic Mechanism Design without

Money” (see e.g. Schummer and Vohra [2007] and Procaccia and Tennenholtz

[2009]).

3. Risk Neutrality: We will assume that all participants are risk neutral. There is

of course much work in Mechanism Design that concerns effects of risk aversion.

4. Focus on Efficiency: The two central goals of both Mechanism Design and Al-

gorithmic Mechanism Design are revenue and efficiency (social welfare). In this

survey we will completely ignore all revenue issues and exclusively consider the goal

of efficiency. See Hartline and Karlin [2007] and Hartline [2012] for surveys of work

in Algorithmic Mechanism Design that is focused on Revenue.

5. Dominant Strategy Analysis: The standard way of modeling lack of informa-

tion in economics (and most scientific fields) is using a Bayesian prior, and looking

at probabilities and expected values over the possible “states of the world”. In

Computer Science, however, there is a general mistrust in our ability to correctly

capture real world distributions, and the standard approach is to use worst-case

analysis. While being more limited, worst case analysis is more robust as well as

usually technically simpler. In our context, the worst-case point of view favored

by Computer Scientists translates to a focus on dominant strategy equilibria that
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makes no distributional assumptions1. While much of the classical work in Mecha-

nism Design is in the Bayesian setting, this survey will stick to the simpler dominant

strategy analysis. For a survey of the growing body of recent work in Algorithmic

Mechanism Design that uses Bayesian notions or intermediate ones, see Hartline

[2012].

All these limiting choices are made as to allow us to focus on the central issue in

the field of Algorithmic Mechanism Design, the very basic clash between incentives and

computation. We should perhaps say explicitly that we consider the algorithmic issues

to include many facets of the complexity of implementation like communication or de-

scription costs.

2.2 Our Example: Multi-unit Auctions

Even after we make all the restrictions specified above, and after deciding to focus on

the clash between incentives and computation, we are still left with quite a large body

of work which is hard to survey in an organized manner. The choice we have made

is to take a single representative problem and demonstrate all the basic issues just on

it. The problem we have chosen for this is “Multi-unit Auctions” – an auction of a

multiple homogenous goods. Beyond its importance as of itself, it allows us to go over

many of the common themes in Algorithmic Mechanism Design, covering issues that arise

when addressing many other problems such as the paradigmatic combinatorial auctions

covered from various aspects in Cramton et al. [2006], Milgrom [2004], Blumrosen and

Nisan [2007], or de Vries and Vohra [2003]. There are two main reasons for the choice

of this specific problem. The first is its relative combinatorial simplicity: almost all

the issues that we deal with are technically simpler in the case of multi-unit auctions

than they are in most other problems, and thus allow us to focus in the cleanest way

on the basic concepts. The second reason is personal: the author has simply worked

much on this problem and thus finds it easier to demonstrate general concepts with it.

The reader should be warned however that this problem is not the most striking one in

practical terms: the computational issues become a real world bottleneck only for very

large numbers of items; this is in contrast to other applications such as combinatorial

auctions for which the computational bottlenecks are biting starting with the modest

numbers of items that occur in most practical settings.

So here is the multi-unit auction problem:

1Or, more generally, ex-post Nash equilibria, which in independent private-value settings is essentially
equivalent to dominant strategy equilibria (see Nisan [2007]).
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• We have m identical indivisible units of a single good to be allocated among n

strategic players also called bidders.

• Each bidder i has a privately known valuation function vi : {0, ...,m} → <+, where

vi(k) is the value that this bidder has for receiving k units of the good. We assume

that vi(0) = 0 and free disposal: vi(k) ≤ vi(k + 1) (for all 0 ≤ k < m).

• Our goal (as the auctioneer) is to allocate the units among the bidders in a way

that optimizes social welfare: each bidder i gets mi units and we aim to maximize∑
i vi(mi), where the feasibility constraint is that

∑
imi ≤ m.

Our goal is to develop a computationally-efficient mechanism for this problem. Effi-

ciency in the computational sense here should imply a protocol that can be realistically

implemented even for large numbers of bidders and goods. There may be different quan-

titative notions of computational-efficiency, but we will see that (for our problem as well

as many others) the answer will be quite robust to the exact choice. A Mechanism here

means a protocol that ensures that the required outcome is achieved when the bidders

act rationally. Again, as mentioned in the problem description, the required outcome is

the socially-efficient allocation of resources.

There are basically three types of difficulties we need to overcome here:

1. Representation: The representation of the “input” to this problem, i.e. the vector

of bidders’ valuations, contains m numbers. We are interested in large values of m,

where communicating or handling such a large amount of data is infeasible. We

will thus need to cleverly find more succinct representations.

2. Algorithmic: Even for the simplest types of valuations, it turns outs that just

computing the optimal allocation is computationally intractable. This will lead us

to considering also relaxations of our economic efficiency goals, settling for approx-

imate optimization.

3. Strategic: In order to achieve our social efficiency goal, the auctioneer would need

to know the valuations of the bidders. However, the bidders’ valuations are private

information. So how can the auctioneer access them?

Combinatorial Auctions and Beyond

As we present the issues for our problem of multi-unit auctions, we will also shortly

point out the corresponding issues for combinatorial auctions. In a combinatorial auction

we are selling m heterogenous items to n bidders. The valuation function of each bidder

thus needs to assign a value for each subset of the items and so is captured by 2m − 1
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numbers vi(S) for every non empty set S of the items (we assume v(∅) = 0.) Free disposal

is usually assumed, i.e. S ⊆ T implies vi(S) ≤ vi(T ). The first goal considered is, as

in the multi-unit auction case, the socially-efficient allocation of resources. These same

three issues are the ones that arise in the treatment of combinatorial auctions. As we

go along we will point out some early or central references, but for more information on

these issues in the context of combinatorial auctions, the reader is referred to the surveys

Cramton et al. [2006] or Blumrosen and Nisan [2007]. We will sometimes also very shortly

mention the situation for other algorithmic mechanism design problems.

2.3 Where are we Going?

Before taking the journey into the analysis of our problem, let us first take a high-level

view of the map of this coming journey.

In the first part of the journey – sections 3 and 4 – we will just be laying the foundations

for our representational and algorithmic treatment. These are far from trivial due to

the large “input” size. We start this part of the journey by describing the two basic

approaches to handling such “large inputs”: via bidding languages and via queries, the

most general of which are usefully viewed in terms of communication. We then continue

by looking at algorithms for the problem, starting with one that it is not computationally-

efficient. While for convex settings a computationally-efficient algorithm can be designed,

we demonstrate that this is not possible in general. We present two different intractability

proofs of this last fact, that correspond to the choices made in input representation. At

this point we reach the culmination of the algorithmic part of the trip, a computationally-

efficient algorithm for approximating the optimal allocation arbitrarily well.

Up to this point we have not really touched any strategic or incentive issues, and this is

what we do in the second part of the journey – section 5 – where we study the introduction

of incentives that will motivate rational bidders to interact with the algorithms of the

first part in a way that will lead to the desired results. We start by presenting the classic

VCG mechanisms which would solve the problem, had there not been any computational

concerns. We then show how this solution clashes with the computational constraints,

and study in detail the subclass of Maximum-in-Range Mechanisms where no such clash

exists. For the special single parameter case we present a good non-VCG mechanism,

and then discuss the difficulties in obtaining such for general multi parameter settings.

We conclude by demonstrating that randomization in Mechanisms can help.
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3 Representation

Any process that solves a problem, must certainly get access to the data specifying the

problem requirements. In our case this is to the valuation functions of the n players.

Now, each valuation function v is specified by m numbers, v(1), v(2), ..., v(m). In some

cases, where m is of moderate size, these numbers can just be listed, and we have a full

representation of the problem (consisting of mn real numbers), but in other cases we may

want to consider huge values of m, in which case a full listing of m numbers is infeasible.

Economic examples of this flavor may include auctions of bonds or other financial instru-

ments, where often billions of identical units are sold. Examples in computerized systems

may include auctions for communication bandwidth in a computer network where we

may imagine selling the billions of communication packets over a communication link in

a single second or selling millions of online ad slots of a certain type. This case, of a large

value of m, is the one that we deal with here. Alternatively, and essentially equivalently,

one may wish to model a huge number of identical items as a single infinitely divisible

good, in which case m would just correspond to the precision that we can handle of

specifying the fractions of the good.

Before we continue, let us get one hurdle out of the way: the representation of real

numbers. In principle we would need infinite precision to represent even a single real

number. From such a point of view we can never implement anything dealing with real

numbers over any computer system. In practice this is never an issue: the standard 64-bit

precision in a standard personal computer is more than enough for representing the world

GDP in micro-penny precision. The usual formal treatment in Computer Science is to

allow finite representations in the form of rational numbers and count the number of bits

in the representation as part of the input size. Almost equivalently, and as we do here, is

to ignore the issue and assume that real numbers are represented directly at the required

precision. Usually, and as is the case here, this merely modifies all complexity calculations

by a factor that is the number of bits of precision that we require, a modification that

does not matter significantly.

So how can we succinctly represent a valuation when m is too large? The simple

answer is that we can’t: in an information-theoretic sense the valuation cannot be com-

pressed to less than m numbers.2 However, there are two useful approaches for such a

representation: the first one is by means of fixing a “bidding language” – a formalism

for succinctly representing “useful” types of valuations, and the second is by means of

2One may always encode an arbitrary finite number of real numbers by a single real number since
<m and < have the same cardinality. This however completely breaks down in any finite representation.
When working formally in a model of direct representation of real numbers, some technical dimension-
preserving condition is taken to rule out such unrealistic encodings. See e.g. Nisan and Segal [2006].
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a “queries” that specify the type of interactions possible with the valuation. We will

describe these two approaches below.

3.1 Bidding Languages

The first approach for specifying valuations is to fix some syntactic formalism for doing

so. Such a formalism is a “language” where we need to specify the syntax as well as the

semantics, the latter being a mapping from strings of characters to valuations. Specifying

languages is a standard concept in Computer Science, and the usual tradeoff is between

the dual goals of expressiveness and simplicity. On one hand, we would like to be able

to succinctly express as many as possible “interesting” types of valuations, and on the

other hand we want to make sure that it is “easy” to handle valuations expressed in such

a language. Here “ease” may have multiple meanings, both regarding conceptual ease

for humans and regarding technical ease for computers. Here are three common bidding

languages, in increasing order of expressiveness:

1. Single Minded Bids: This language allows only representing “step functions”,

valuations of the form v(k) = 0 for k < k∗ and v(k) = w∗ for k ≥ k∗. Clearly

to represent such a valuation we only need to specify two numbers: k∗ and w∗.

Clearly, also, this is a very limited class of valuations.

2. Step Functions: This language allows specifying an arbitrary sequence of pairs

(k1, w1), (k2, w2), . . . , (kt, wt) with 0 < k1 < k2 · · · < kt and 0 < w1 < w2 < · · · < wt.

In this formalism v(k) = wj for the maximum j such that k ≥ kj. Thus, for example,

the bid ((2, 7), (5, 23)) would give a value of $0 to 0 or 1 items, a value of $7 to

2, 3, or 4 items, and a value of $23 to 5 or more items. Every valuation can be

represented this way, but most valuations will take length m. Simple ones – ones

that have only a few “steps” – will be succinctly represented.

3. Piece-Wise Linear: This language allows specifying a sequence of marginal values

rather than of values. Specifically, a sequence (k1, p1), (k2, p2), . . . , (kt, pt) with 0 <

k1 < k2 · · · < kt and pj ≥ 0 for all j. In this formalism pj is the marginal value

of item k for kj ≤ k < kj+1. Thus v(k) =
∑k

l=1 ul with ul = pj for the largest j

such that l ≥ kj. In this representation, the bid ((2, 7), (5, 23)) would give a value

of $7 to 1 item, $14 to 2 items, $37 to 3 items, $60 to 4 items, and $83 to 5 or more

items.

Languages can often be compared to each other in terms of their expressiveness. It

is clear that the Step Function language is more expressive than the Single Minded Bid
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language since it contains the latter as a special case but may represent a larger class

of valuations. However, we may also say that the Piece-wise Linear language is more

expressive than the Step Function language: every valuation expressed as a Step Function

((k1, w1)...(kt, wt)) can be expressed also in the Piece-sise linear form by converting each

step (kj, wj) into two marginal values: (kj, wj − wj−1) and (kj + 1, 0). This only mildly

increases the size of expressing the valuation (by a factor of 2), but a similar mild increase

would not be possible had we wanted the opposite emulation. The Piece-wise Linear bid

(m, 1) which represents the valuation v(k) = k may be represented as a Step Function

but only by listing all possible m steps (k, k), blowing up the size of the representation

by an unacceptable factor of m.

The choice of a language is somewhat arbitrary and there are various reasonable ways

to strike the expressiveness vs. simplicity tradeoff, depending on the application. For

maximum bite, we would like to prove positive results for the strongest language that we

can handle, while proving negative results for the weakest language for which they still

hold. This will be the case for the results we show in this chapter.

Of course, one may easily think of even more expressive (and less simple) languages

such as allowing Piece-wise quadratic functions, or arbitrary expressions, etc. The ex-

treme expressive language in this sense is to allow the expression of an arbitrary compu-

tation. To be concrete, one may take a general purpose programming language and allow

expressing a valuation v by a program in this programming language. While it would

seem that it would not be easy to manipulate valuations presented in such general form,

we will see below that even this is not hopeless, and in fact there is much we can do even

with such “black box” access that provides the value v(k) for any given “query” k.

Combinatorial Auctions

Taking the wider perspective of combinatorial auctions, there is very large space of

possible bidding languages, striking various balances between simplicity and power. The

simplest “Single Minded Bid” language, allows the specification of a value for a single

target subset of the items. More complicated variants allow various ways of combining

such simple bids. A survey of bidding languages for combinatorial auctions appears in

Cramton et al. [2006], Chapter 9.

3.2 Query Access to the Valuations

A more abstract way of representing the input valuations is by treating them as opaque

“black boxes”. In this approach we do not concern ourselves with how the valuations are

represented but rather only with the interface they provide to the algorithm or mecha-

nism. This has the advantage of leaving significant freedom in the actual representation of
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the valuation, decoupling the algorithm design from the representation issue. Of course,

the choice of interface – the set of “queries” that the black box needs to answer – is

important here. If this interface is too weak then we will have a hard time construct-

ing computationally-efficient algorithms using this weak set of queries while if the set of

allowed queries is too strong then we will have difficulties in implementing them with

realistic representations. Never the less, even un-realistically strong sets of queries are

interesting for proving “lower bounds” – limits on what computationally-efficient algo-

rithms or mechanisms may achieve: any limitation of mechanisms or algorithms that are

allowed to use even strong unrealistic queries will certainly apply also to mechanisms that

only use more realistic ones. In general, one usually attempts using the strongest possible

set of queries when proving “lower bounds” and attempts using the weakest possible set

of queries when proving “upper bounds” – actual algorithms or mechanisms. This is what

we will also do here, use the realistic and weak “value queries” for upper bounds and use

the unrealistically strong and general “communication queries” for lower bounds.

3.2.1 Value Queries

A value query to a valuation v : {0, . . . ,m} → <+ gets a number of items k and simply

returns the value v(k).

The requirement that a certain bidding language be able to answer value queries essen-

tially means that it has an effective implementation. I.e. that there is a computationally-

efficient algorithm that takes as input is a valuation represented in the language as well as

a query k and produces as output the value v(k). That the algorithm is computationally-

efficient means that it runs in time that is polynomial in its input size, i.e. in the repre-

sentation length. Note that all the bidding languages suggested in the previous section

can indeed answer such queries easily.

Take for instance the strongest one suggested above, the Piece-wise Linear bidding lan-

guage. Given a valuation v represented in this language as ((k1, p1), (k2, p2), . . . , (kt, pt))

and a query k, how can we efficiently compute the value of v(k)? Directly applying the

definition of Piece-wise Linear valuations requires summing the k marginal values, an

operation whose running time may be significantly larger than the input size that is pro-

portional to t (rather than k which may be as big as the number of items m). However, a

quick inspection will reveal that one can replace the repeated addition of equal marginal

values by multiplication, calculating v(k) =
∑l−1

j=1 kjpj + (k−
∑l−1

j=1 kj) · pl, where l is the

largest integer such that
∑l−1

j=1 kj ≤ k. This now takes time that is polynomial in the

input size, as required.
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3.2.2 General Communication Queries

The strongest imaginable set of queries to a valuation is to simply allow all possible

queries. This means that we could allow all functions on the set of valuations.

Even in this general setting two key restrictions remain: the first is that a query may

only address a single valuation function and may not combine several. Thus for example

a query “find the odd k that maximized vi(k)−k2” would be allowed, but “find the k that

maximizes v1(k) + v2(m − k)” can not be a single query since it combines two separate

valuations. The second is that the reply from a query needs to be small, we shouldn’t

for example be able to ask for an extremely long string that encodes the whole valuation.

To be completely precise we should require that the reply to a query is always a single

bit (i.e. a yes/no answer), but equivalently we can allow arbitrary answers, counting the

number of answer bits instead of the number of queries.

When thinking about an algorithm or mechanism that makes such general queries to

the valuations, it is best to think about it in the completely equivalent model of communi-

cation. In such a model the algorithm is really a protocol for communication between the

valuation black boxes which we now think of as the bidders themselves. An algorithmic

query to a valuation is interpreted as the protocol specifying that the appropriate bidder

communicate (to the algorithm) the answer to the query – an answer that obviously de-

pends on the valuation that the bidder has, but not on any other information (beyond

the state of the protocol). Under this interpretation, the total number of queries that an

algorithm makes is exactly the total number of communicated “numbers” made by the

protocol.

Combinatorial Auctions

For combinatorial auctions, there are a variety of natural specific query models, the

simplest of which is that of value queries, and the strongest of which is the communication

model. Another very natural query model is that of “demand queries”, where a query

specifies a price vector (p1, ..., pm) and the response is the demanded set of items under

these prices, i.e. a set S that maximizes the utility v(S)−
∑

i∈S pi. A systematic discussion

of query models for combinatorial auctions appears in Blumrosen and Nisan [2010], while

a discussion of communication appears in Nisan and Segal [2006].

4 Algorithms

By now we have only discussed how our “input” may be represented or accessed by the

algorithm or mechanism. At this point we can start discussing the algorithmic challenge

of optimally allocating the items:
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The Allocation Problem

Input: The sequence of valuations of the players: v1, . . . , vn.

Output: An allocation m1, . . . ,mn with
∑n

i=1mi ≤ m that maximizes
∑n

i=1 vi(mi).

Combinatorial Auctions

For the case of combinatorial auctions, the valuations vi provide a value for each

subset of the items, and the required output is an allocation (S1...Sn) that maximizes∑
i vi(Si), where the constraint is that Si ∩ Sj = ∅ for i 6= j.

4.1 Algorithmic Efficiency

Our basic requirement from the algorithm is that it be “computationally-efficient”. Specif-

ically, for every input we would want the algorithm to provide an output “quickly”. As

usual, the running time is a function of the input size parameters n and m. Also as

usual, the running time may depend on the precise definition of the model of computa-

tion, but this dependence is very minor, and the running time will be almost the same

under all reasonable definitions. Thus, as usual, we will just formally require that the

running time is polynomial in the input size. In all cases in this survey a polynomial run-

ning time will actually have reasonably small degrees and small hidden constants while

a non-polynomial running time will actually be exponential.

In case that we are dealing with the input presented in a certain bidding language

the interpretation of this is the completely standard one: we want an algorithm whose

running time is polynomial in the sum of lengths of the representations of the input

valuations. In the case where the input valuations are given by query access to “black

boxes” there is no explicit representation of the input, so what we will require is that the

running time is polynomial in the numbers of bidders, n, and the number of bits required

to represent a basic quantity in the system: logm bits to represent a number of items,

and the maximum number of bits of precision of a value, denoted by t.

Let us reflect further on why we do not view a running time that is polynomial in m

as computationally-efficient. First, consider that the black box query model is intended

to give an abstract way of considering a wide class of representations. For none of these

representations do we envision its size to be “trivial” – of an order of magnitude similar

to m – but rather we expect it to be significantly smaller, and thus a run time that

is polynomial in m will not be polynomial in the input size under this representation.

Second, consider the query model as an abstraction of some protocol between the players.

A run time that is polynomial in m allows sending complete valuations, completely loosing
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the point of the abstraction. Third, it is not uncommon to have multi-unit auctions of

millions or billions of items (e.g. treasury bonds or web ad impressions). While all of

the algorithms and mechanisms presented below that have a run time that is polynomial

in logm and n can be practically applied in these cases, algorithms whose run time is

polynomial in m will probably be too slow.

Let us start with a non-computationally-efficient but still not-trivial dynamic pro-

gramming3 algorithm for solving this problem. We will present the algorithm in the

value-queries model. Presenting it in this weak model ensures that it applies also to all

the other models presented above. The basic idea is to use dynamic programming to fill

up a table that for any 0 ≤ i ≤ n and 0 ≤ k ≤ m holds the optimal total value that

can be achieved by allocating k items among the first i bidders. An entry in this table

can be filled using the values of previously filled entries, and this information suffices for

actually reconstructing the optimal allocation itself.

General Allocation Algorithm

1. Fill the (n+ 1) ∗ (m+ 1) table s, where s(i, k) is the maximum value achievable

by allocating k items among the first i bidders:

(a) For all 0 ≤ k ≤ m: s(0, k) = 0

(b) For all 0 ≤ i ≤ n: s(i, 0) = 0

(c) For 0 < i ≤ n and 0 < k ≤ m: s(i, k) = max0≤j≤k[vi(j) + s(i− 1, k − j)]

2. The total value of the optimal allocation is now stored in s(n,m)

3. To calculate the mi’s themselves, start with k = m and for i = n down to 1 do:

(a) Let mi be the value of j that achieved s(i, k) = vi(j) + s(i− 1, k − j)

(b) k = k −mi

The running time of this algorithm is O(nm2): the calculation of each of the mn cells

in the table s requires going over at most m different possibilities. Note that while the

dependence of the running time on n is acceptable, the dependence on m is not so since

we required a polynomial dependence on logm. Thus, we do not consider this algorithm

to be computationally-efficient and indeed it would likely not be practical when handling

even as few as a million items. We have thus proved:

3Dynamic Programming is a common algorithmic paradigm that builds up a table of partial results,
each of which is computed using previous ones.
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Theorem 1 There exists an algorithm for the multi-unit allocation problem (in any of

the models we considered) whose running time is polynomial in n and m (rather than in

logm).

Combinatorial Auctions

In the case of combinatorial auctions, the valuations hold information that is expo-

nential in m. In this case computationally-efficient algorithms are allowed a running time

that is polynomial in both n and m, rather than grow exponentially in m. Mirroring the

case for multi-unit auctions, it is not difficult to come up with a dynamic programming

algorithm for combinatorial auctions whose running time is polynomial in n and 2m.

4.2 Downward Sloping Valuations

At this point, it would perhaps be a good idea to see an example of a computationally-

efficient algorithm. We can provide such an algorithm for the special case of “downward

sloping valuations”, those that exhibit diminishing marginal values, i.e. that satisfy

vi(k+ 1)− vi(k) ≤ vi(k)− vi(k− 1) for all bidders i and number of items 1 ≤ k ≤ m− 1.

This is the case of a “convex economy”, a case which turns out to be algorithmically

easy. A simple intuitive algorithm will allocate the m items one after another in a greedy

fashion, at each point giving it to the player that has highest marginal value for it (given

what it was already allocated). As stated, this algorithm takes time that increases linearly

in m rather than in logm as desired, but its simple greedy nature allows us to use binary

search4 to convert it to a computationally-efficient one.

The idea here is that with downward sloping valuations we have a market equilibrium:

a clearing price p, and an allocation (m1, ...,mn) with
∑
mi = m that has the property

that for each i, mi is i’s demand under price p, i.e. that vi(mi) − vi(mi−1) ≥ p >

vi(mi+1)−vi(mi) which implies that vi(mi)−mip ≥ vi(k)−kp for all k. The First Welfare

Theorem in this context states that such a market equilibrium must maximize
∑

i vi(mi),

since for any other allocation (k1, ..., kn) with
∑
ki ≤ m we have that

∑
i vi(mi)−mp =∑

i(vi(mi)−mip) ≥
∑

i(vi(ki)− kip) ≥
∑

i vi(ki)−mp.
Algorithmically, given a potential price p, we can calculate players’ demands using

binary search to find the point where the marginal value decreases below p. This allows us

to calculate the total demand for a price p, determining whether it is too low or too high,

and thus search for the right price p using binary search. For clarity of exposition we will

assume below that all values of items are distinct, vi(k) 6= vi′(k
′) whenever (i, k) 6= (i′, k′).

4Binary Search is a common algorithmic paradigm used to find a target value within a given range
by repeatedly splitting into two sub-ranges and determining which one contains the desired target. The
key point is that this process requires only time that is only logarithmic in the range size.
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(This is without loss of generality since we can always add values εi,k to vi(k) to achieve

this.) This assumption also makes it evident that a clearing price p exists: for the proof

imagine starting with price p = 0 and then increasing p gradually. Since the total demand

starts high and decreases by a single unit at each price-point vi(k), at some point it will

reach exactly m units and the market will clear.

Allocation Algorithm for Downward Sloping Valuations

1. Using binary search, find a clearing price p in the range [0, V ], where V =

maxi[vi(1)]:

(a) For each 1 ≤ i ≤ n, use binary search over the range {0, 1, ...,m}, to find

mi such that vi(mi)− vi(mi−1) ≥ p > vi(mi+1)− vi(mi)

(b) If
∑

imi > m then p is too low; if
∑

imi < m then p is too high, otherwise

we have found the right p.

2. The optimal allocation is given by (m1, ...,mn).

The important point is that this algorithm is computationally-efficient: the binary

search for p requires only t rounds, where t is the number of bits of precision used to

represent a value. Similarly the binary search for mi requires only logm rounds. We have

thus shown:

Theorem 2 There exists an algorithm for the multi-unit allocation problem among down-

ward sloping valuations (in any of the models we considered) whose running time is poly-

nomial in n, logm, and the number of bits of precision.

Combinatorial Auctions

In the case of combinatorial auctions, there is a corresponding class of “convex”

valuations, called “substitutes” valuations. For this class, equilibrium prices are known to

exists (Gul and Stacchetti [1999]) and the optimal allocation among such valuations can

be found computationally-efficiently (Gul and Stacchetti [2000], Blumrosen and Nisan

[2010]).

4.3 Intractability

Now the natural question is whether one can get a computationally-efficient algorithm

even for the general case, not just the downward sloping one. It turns out that it is quite

easy to show that this is impossible in the valuequeries model.
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Consider such a hypothetical algorithm even just for the special case of two players.

For any two valuations v1 and v2 it outputs the optimal allocation (m1,m2). Now let us

follow this algorithm when it accepts as input the two linear valuations v1(k) = k and

v2(k) = k for all k. The algorithm keeps querying the two valuations at various values

and for each query k gets as a response the value k. After some limited amount of queries

it must produce an answer (m1,m2). Now the critical thing is that if the algorithm was

computationally-efficient and thus in particular made less than 2m − 2 queries then it

had to produce the answer without querying some value (even excluding m1,m2 which

it may or may not have queried). Without loss of generality let us say that it never

queried v1(z) (with z 6∈ {m1,m2}). Now we may consider a different input where we

increase the value of v1(z) by one, i.e. v′1(k) = k except for v′1(z) = z + 1. Note that

this v′1 is still a proper valuation, as monotonicity was maintained. Note also that now

the unique optimal allocation is (z,m− z) which gives value v′1(z) + v2(m− z) = m+ 1,

while any other allocation only gives a total value of m. Our poor algorithm, however,

has no way to know that we are now in the case of (v′1, v2) rather than (v1, v2) since the

only difference between the two cases is for the query z, a query which it did not make,

so it will provide the same answer (m1,m2) as before, an answer which is not optimal.

We have thus shown:

Theorem 3 Every algorithm for the multi-unit allocation problem, in the value-queries

model, needs to make at least 2m− 2 queries for some input.

This argument concludes the impossibility result for the weakest black-box model, the

one that only allows value queries. It is already quite interesting, exhibiting a significant

computational gap between the “convex economy” case where a computationally-efficient

algorithm exists and the general case for which it does not. It turns out that the same

impossibility result is true even in stronger (and more interesting) models. We now bring

two different intractability results, one for the case where the valuations are given in a

bidding language – even the weakest possible such language, and the other one for query

models – even for the strongest one that allows communication queries.

4.3.1 NP-completeness

Let us consider the simplest possible bidding language, that of Single Minded Bids. In

this language each valuation vi is represented as (ki, pi) with the meaning that for k < k∗

we have vi(k) = 0 and for k ≥ ki we have vi(k) = pi. The optimal allocation will thus need

to choose some subset of the players S ⊆ {1 . . . n} which it would satisfy. This would give

total value
∑

i∈S pi with the constraint that
∑

i∈S ki ≤ m. This optimization problem is a

very well known problem called the knapsack problem, and it is one of a family of problems
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known to be “NP-complete”. In particular, no computationally-efficient algorithm exists

for solving the knapsack problem unless “P=NP”, which is generally conjectured not to

be the case (the standard reference is still Garey and Johnson [1979]). It follows that

no computationally-efficient algorithm exists for our problem when the input valuations

are presented in any of the bidding languages mentioned above all of which contain the

single-minded one as special cases. We thus have:

Theorem 4 Assuming P 6= NP , there is no polynomial-time algorithm for the multi-

unit allocation problem, in any of the bidding language models.

We should mention that this intractability result does rely on the unproven assumption

of P 6= NP . On the other hand the allocation problem – for any effective bidding language

– is clearly an optimization variant of an NP problem. Thus, if it turns out that P = NP

then a computationally-efficient allocation algorithm does exists.

4.3.2 Communication Complexity

When the valuations are given in any effective bidding language, our allocation problem

is a “normal” computational problem and we cannot hope for unconditional answers as

our problem is equivalent to the P = NP problem. However, when the input to our

problem is given as black boxes, we are really looking for algorithms whose running time

should be sub-linear in “true” input size, and for this we have techniques for proving

unconditional impossibility results. In particular we have already seen that there is no

sub-linear algorithm that uses only value queries to access the input valuations. Here we

extend this result and show that it holds even when allowing arbitrary queries to each

of the input valuations, i.e. in the communication model. The “proper way” of proving

this is by using the well known results from the theory of communication complexity

(surveyed in Kushilevitz and Nisan [1997]) and deducing from them impossibilities in

this situation (as was done in Nisan and Segal [2006]). Here we give, however, a self-

contained treatment that uses the simplest technique from the field of communication

complexity (“fooling sets”) directly on our problem.

Let us consider the following set of valuations: for every set S ⊆ {1, . . .m − 1, } let

vS(k) = k + 1k∈S, i.e. for k 6∈ S we have vS(k) = k while for k ∈ S we get one more,

vS(k) = k + 1. Now let us consider a two-player situation when player 1 gets vS and

player 2 gets the “dual” valuation vS∗ , where S∗ = {0 < k < m|m − k 6∈ S}. The dual

valuation was defined so that any allocation between vS and vS∗ would have only value

exactly vS(k) + vS∗(m − k) = m. Now there are 2m−1 possible pairs of input valuations

(vS, vS∗) that we are considering, and the main point of the proof will show that for

no two of these pairs can the algorithm see exactly the same sequence of answers from
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the two black-boxes (i.e., in terms of communication, exactly the same sequence of bits

communicated between the two parties). It follows that the total number of possible

sequences of answers is at least 2m−1 and thus at least one of them requires at least m−1

bits to write down. As each answer to a query is “short” – say at most t bits, for some

small t – the total number of queries made by the algorithm must be at least (m− 1)/t

for at least one of these input pairs (in fact, for most of them), and this is a lower bound

on the number of queries made by the algorithm (communication protocol) and thus on

its running time.

We are left with showing that indeed for no two pairs of valuations (vS, vS∗) and

(vT , vT ∗) with S 6= T the algorithm cannot receive the same sequence of answers. The

main observation is that, had this been the case, then the algorithm would also see the

same sequence of answers on the “mixed’ pairs (vS, vT ∗) and (vT , vS∗). Consider the

algorithm when running on the input pair (vS, vT ∗). It starts by making some query, a

query which is also the first query it made on both (vS, vS∗) and (vT , vT ∗). If it queries

the first player then it gets the same answer as it did on input (vS, vS∗) (since it has the

same valuation for the first player) while if it queries the second player then it gets the

same answer as in (vT , vT ∗). In both cases it gets the same information as in the original

cases (vS, vS∗) and (vT , vT ∗) and thus continues to make the next query exactly as it has

made the next query in those cases. Again, it must get the same answer for this new

query, and as it continues getting the same answers and thus making the same queries

as in the original cases, it never observes a deviation from these two cases and thus ends

up with the same final outcome as it did in the original cases. The same is true for the

other mixed pair (vT , vS∗) for which it gives again the same final outcome. This however

contradicts the optimality of the algorithm since an outcome allocation that is optimal

for (vS, vT ∗) is never optimal for (vT , vS∗). To see this fact just note that since S 6= T

there exists some k in the symmetric difference, say, wlog, k ∈ S − T . In this case notice

that vS(k) + vT ∗(m − k) = m + 1 and thus the optimal allocation would give at least

(actually, exactly) this total value. However any k which gives an optimal allocation

for (vS, vT ∗), i.e., vS(k) + vT ∗(m − k) = m + 1 would give a sub-optimal allocation for

(vT , vS∗), since vS(k) + vS∗(m− k) + vT (k) + vT ∗(m− k) = 2m, and thus we would have

vT (k) + vS∗(m− k) = m− 1. We have thus shown:

Theorem 5 (Nisan and Segal [2006]) Every algorithm for the multi-unit allocation prob-

lem, in any query model, needs to ask queries whose total answer length is at least m− 1

in the worst case.

The argument presented above also holds in the stronger model where the algorithm is

given “for free” the optimal allocation and only needs to verify it, a model known as “non-

deterministic protocols”. This can be viewed as a lower bound on the “number of prices”
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needed to support an equilibrium. Informally, and taking a very broad generalization,

a generalized equilibrium specifies some “generalized pricing information” for a market

situation, information that allows each player to independently of the other players decide

on the set of goods that is allocated to him. The above argument then actually provides

a lower bound on the number “generalized prices” required in any general notion of

equilibrium. See Nisan and Segal [2006] for more details.

Combinatorial Auctions

Going back again to combinatorial auctions, similar NP-hardness results are known for

bidding language models (Sandholm [1999]) as well as query and communication models

(Nisan and Segal [2006]), showing that a running time that is polynomial in m is not

possible.

4.4 Approximation

At this point we seem to have very strong and general impossibility results for algorithms

attempting to find the optimal allocation. However, it turns out that if we just slightly

relax the optimality requirement and settle for “approximate optimality” then we are in

much better shape. Specifically, an approximation scheme for an optimization problem

is an algorithm that receives, in addition to the input of the optimization problem, a

parameter ε which specifies how close to optimal do we want to solution to be. For

a maximization optimization problem (like our allocation problem) this would mean a

solution whose value is at least 1 − ε times the value of the optimal solution. It turns

out that this is possible to do, computationally-efficiently, for our problem using dynamic

programming.

The basic idea is that there exists an optimal algorithm whose running time is poly-

nomial in the range of values. (This is a different algorithm than the one presented in

section 4.1 whose running time was polynomial in the number of items m.) Our approx-

imation algorithm will thus truncate all values vi(k) so that they become small integer

multiples of some δ and run this optimal algorithm on the truncated values. Choosing

δ = εV/n where V = maxi[vi(m)] strikes the following balance: on one hand, all values

are truncated to an integer multiple wδ for an integer 0 ≤ w ≤ n/ε, and so the range of

the total value is at most the sum of n such terms, i.e. at most n2/ε. On the other hand,

the total additive error that we make is at most nδ ≤ εV . Since V is certainly a lower

bound on the total value of the optimal allocation this implies that the fraction of total

value that we loose is at most (εV )/V = ε as required.

The allocation algorithm among the truncated valuations uses dynamic programming,

and fills a (n + 1) ∗ (W + 1)-size table K, where W = n2/ε. The entry K(i, w) holds
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the minimum number of items that, when allocated optimally between the first i players,

yields total value of at least wδ. Each entry in the table can be computed efficiently from

the previous ones, and once the table is filled we can recover the actual allocation.

Approximation Scheme

1. Fix δ = εV/n where V = maxi[vi(m)], and fix W = n2/ε.

2. Fill an (n + 1) ∗ (W + 1) table K, where K(i, w) holds the minimum number

of items that, when allocated optimally between the first i players, yields total

value of at least wδ:

(a) For all 0 ≤ i ≤ n: K(i, 0) = 0

(b) For all w = 1, . . . ,W : K(0, w) =∞

(c) For all i = 1, . . . , n and w = 1, . . . ,W compute K(i, w) = min0≤j≤wval(j),

for val(j) defined by:

i. Use binary search to find minimum number of items k such that

vi(k) ≥ jδ

ii. val(j) = k +K(i− 1, w − j)

3. Let w be the maximum index such that K(n,w) ≤ m

4. For i going from n down to 1:

(a) Let j be so that K(i, w) = val(j) (as computed above)

(b) Let mi be the minimum value of k such that vi(k) ≥ jδ

(c) Let w = w - j

Our algorithm’s running time is dominated by the time required to fill the table K

which is of size n×n2/ε where filling each entry in the table requires going over all possible

n/ε values j and for each performing a binary search that takes O(logm) queries. Thus

the total running time is polynomial in the input size as well as in the precision parameter

ε which often called a fully polynomial time approximation scheme. For most realistic

optimization purposes such an arbitrarily good approximation is essentially as good as

an optimal solution. We have thus obtained:

Theorem 6 There exists an algorithm for the approximate multi-unit allocation problem

(in any of the models we considered) whose running time is polynomial in n, logm, and
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ε−1. It produces an allocation (m1, ...,mn) that satisfies
∑

i vi(mi) ≥ (1 − ε)
∑

i vi(opti),

where (opt1, ..., optn) is the optimal allocation.

Combinatorial Auctions

When going to the wider class of combinatorial auctions, such a good approximation

scheme is not possible. The best possible polynomial time approximations loose a factor of

O(
√
m) and no better is possible. Significant work has been done on obtaining improved

approximation factors for various sub-classes of valuations. See Blumrosen and Nisan

[2007] for survey and references.

5 Payments, Incentives, and Mechanisms

Up to this point we have treated the bidders in the auction as doing no more than

providing their inputs to the allocation algorithm. A realistic point of view would consider

them as economic agents that act rationally to maximize their own profits. To formalize

such a setting we would need to make assumption about what exactly is it that the players

are aiming to maximize. The simplest, most natural, such model will having bidder i

rationally maximize his net utility: ui = vi(mi)−pi where mi is the number of units he is

allocated and pi is the price that he is asked to pay for these items. Notice how we already

went beyond the pure algorithmic question that only involved the allocation (m1...mn)

and went into an economic setting which explicitly deals with the payments (p1...pn) for

these items. The assumption that bidders make payments pi and that bidders’ utilities

(which each aims to maximize) are the simple differences ui = vi(mi) − pi (rather than

some more complicated function of mi and pi) is often called “quasi-linear utilities” and

is essentially equivalent to the existence of a common currency that allows comparison

and transfer of utilities between players.

At this point we will apply the basic notions of Mechanism Design and define a (di-

rect revelation) mechanism for our setting: this is just an algorithm that is adorned with

payment information. In our case the input to a mechanism will be the n-tuple of valu-

ations (v1, ..., vn) and the output will consist of both the allocation (m1, ...,mn) and the

vector of payments (p1, ..., pm). So here is the strategic setup that we are considering:

the auctioneer gets to specify a mechanism, which is public knowledge (“power of com-

mitment”.) Each bidder i privately knows his valuation functions vi. The bidders then

interact with the mechanism transmitting to it their “bids” and are hence put in a game

whose outcome is the resulting allocation and payment. In this game the players are

acting strategically as to optimize their resulting utility. In particular the “bids” that

they will report to the mechanism need not necessarily be their true valuations but rather
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whatever optimizes their utility. The equilibrium outcome of a given mechanism for the

input valuations (v1, ..., vn) will be its allocation (m1, ...,mn) and payments (p1, ..., pn) as

calculated for the equilibrium bids (rather than as calculated for the true valuations.)

At this point we need to further specify our equilibrium notion which will of course

depend on our informational assumptions: what do players know about each other’s

valuation and behavior. There are two main notions in the literature here. The Bayesian

setup assumes that bidder’s valuations vi come from some known distribution F on

valuation tuples. The players (and mechanism designer) have common knowledge of

F and of each others’ rationality, but each player i only knows the realization of his own

vi and not the realization of the other vj’s. The second notion is more robust as well as

technically simpler, and makes a very strong requirement: that the equilibrium be robust

to any information that players may have. This is the definition that we will use here.

Notations: A mechanism M = (m(·), p(·)) accepts as input an n-tuple of valuations

(v1, ..., vn) and outputs an allocation (m1, ...,mn) and payments (p1, ..., pn). Both the

allocation and payments are functions of the n-tuple of vi’s and are denoted using

mi(v1, ..., vn) and pi(v1, ..., vi). We will also use the abbreviation (v−i, wi) to denote the

n-tuple of valuations where i’s valuation is wi and j’s valuation for j 6= i is vj.

Definition: We say that a mechanism M = (m(·), p(·)) is truthful (in dominant strate-

gies) if for every (v1, ..., vn), every i, and every ṽi we have that ui ≥ u′i where ui =

vi(mi(vi, v−i))− pi(vi, v−i) and u′i = vi(mi(ṽi, v−i))− pi(ṽi, v−i). Truthful mechanisms are

equivalently called strategy-proof or incentive compatible.

What this means is that in no case will a player have any motivation to report to

the mechanism anything other than his true valuation vi; any other bid ṽi that he may

attempt to report instead can never give him higher utility. For such mechanisms we may

realistically assume that all bidders will indeed report their private valuations truthfully

to the mechanism who may then come up with a good outcome.

This requirement may seem quite excessive and even unrealistic. First, the informa-

tional assumptions are quite strict: players strategic behavior does not depend on any

information about the others, i.e., strategically all players have dominant strategies. Sec-

ond, this dominant strategy is not arbitrary but is to report their true valuations. While

the first assumption has significant bite and is what gives the high robustness to this

notion relative to Bayesian notions mentioned above, the second point turns out to be

without loss of generality. One can convert any mechanism with dominant strategies to

an equivalent incentive compatible one by internalizing the dominant strategies into the

mechanism. This is also true for general mechanisms with arbitrary protocols (not just

getting the vi’s as input): as long as dominant strategies exist they can be incorporated
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into the mechanism, with the result being a truthful mechanism; this is known as the

“revelation principle”.

5.1 Vickrey-Clarke-Groves Mechanisms

The basic general positive result of mechanism design applies to our situation. This result,

originally suggested by Vickrey [1961] and then generalized further by Clarke [1971] and

Groves [1973], elucidates the following simple idea: if we charge each participant an

amount that is equal to his externality on the others then we effectively align all users’

interests with the total social welfare, and thus ensure that they behave truthfully as long

as our mechanism maximizes social welfare. Specifically, here is this mechanism applied

to Multi-unit auctions:

VCG Mechanism

1. Each Player reports a valuation ṽi.

2. The mechanism chooses the allocation (m1, ...,mn) that maximizes
∑

j ṽj(mj)

and outputs it.

3. For each player i:

(a) The mechanism finds the allocation (m′1, ...,m
′
n) that maximizes∑

j 6=i ṽj(m
′
j).

(b) Player i pays pi =
∑

j 6=i ṽj(m
′
j)−

∑
j 6=i ṽj(mj).

The main property of this mechanism is that it is incentive compatible. To see this,

first notice that the term
∑

j 6=i ṽj(m
′
j) in the calculation of pi has no strategic implications

since its value does not depend in any way on the valuation ṽi reported by i and thus

it does not effect in any way i’s incentives (for any fixed value of v−i). So to analyze i’s

strategic behavior we can simply assume that the first term is 0, i.e. that he is getting

paid the amount
∑

j 6=i ṽj(mj) and thus trying to maximize vi(mi)+
∑

j 6=i ṽj(mj). However

notice that as long as i indeed reports ṽi = vi the mechanism is performing exactly this

optimization! Thus i can not do better than by being truthful. The reader may wonder

why is the term
∑

j 6=i ṽj(m
′
j) used at all in the calculation of payments since, if we

only care about truthfulness, it can be eliminated or replaced by an arbitrary expression

that does not depend on vi. However, this term is usually added as it ensures that the

payments are always “in the right ballpark”, satisfying “no positive transfers”, pi ≥ 0, as

well as “individual rationality”, vi − pi ≥ 0. We have thus proved:
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Theorem 7 (Vickrey [1961], Groves [1973]) There exists a truthful mechanism for the

multi-unit allocation problem.

The central problem with this mechanism is its computational efficiency. The alloca-

tion algorithm it uses is supposed to find the optimal allocation, and this we have already

seen is impossible to do computationally in an efficient way. Now, for the special case of

downward sloping valuations we did see, in section 4.2, a computationally-efficient optimal

allocation algorithm, and thus for this special case we get a truthful computationally-

efficient mechanism. This is the case that was dealt with in the seminal paper Vickrey

[1961]. This however does not hold for the general problem. The basic difficulty in

the field of Algorithmic Mechanism Design is to simultaneously achieve both incentive

compatibility and computational efficiency. We will now continue trying to do so for

multi-unit auctions.

5.2 The Clash Between Approximation and Incentives

As we have already seen in section 4.3 that no computationally-efficient algorithm can

always find the optimal allocation, adding yet another requirement – that of truthfulness

– would seem totally hopeless. However, we have also seen in section 4.4 that one may

computationally-efficiently obtain approximately optimal allocations, and we could simi-

larly hope for arbitrarily good truthful approximation mechanisms. Specifically, we would

desire a truthful computationally-efficient mechanism that for every given ε > 0 produces

an allocation whose total value is at least 1− ε fraction of the optimal one. We may even

settle for weaker approximation guarantees, settling for an allocation whose total value

is fraction α, for as large as possible fixed value of α.

The natural approach to this goal would be to simply replace in the previous algo-

rithm the step of “find an allocation that maximizes
∑

j ṽj(mj)” by “find an allocation

that approximately maximizes
∑

j ṽj(mj)”. This we would do for all n+ 1 optimizations

problems encountered by the mechanism: the global optimization to determine the al-

location, as well as the n personalized ones, needed to compute the payments of the n

bidders. We can call such a mechanism VCG-based. It would seem natural to assume

that this would maintain truthfulness, but this is not the case.

Let us present a simple example of an approximation algorithm where if we use its

results instead of the optimal ones we would lose truthfulness. Consider the allocation of

two items between two players, both of whose valuations are: v(1) = 1.9 and v(2) = 3.1.

The optimal allocation would allocate one item to each bidder, giving each a value of

1.9, and requesting from each a payment of 1.2 = 3.1 − 1.9 which is the difference for

the other between getting a single item or both. Now consider the case where we use

25



an approximation algorithm that first truncates the values down to integer values and

then finds the optimal allocation. Let us first consider the case where both players

bid truthfully, (1.9, 3.1). The approximation algorithm would truncate these values to

v(1) = 1 and v(2) = 3, for which the optimal allocation is to give both items to one

of the players. His payment will be the loss of the other player from not getting both

items which is 3.1, giving our player zero (real) utility. Had our player been non-truthful

bidding ṽ(1) = ṽ(2) = 3 then the approximation algorithm would choose the allocation

that assigns a single item to each player, charging our non-truthful one 1.2 = 3.1 − 1.9

giving him a net positive utility. (This calculation used the reported (unrounded) values

for calculations of payments; using the rounded values will not restore truthfulness either.)

This example is in no way unusual. Not only is such a truncation algorithm essentially

the approximation algorithm of section 4.4, but also it turns out that essentially every

approximation algorithm will exhibit this non-truthfulness if we just plug it into the VCG

payment calculation (Nisan and Ronen [2007], Dobzinski and Nisan [2007]). There is a

small, almost trivial, set of approximation algorithms for which this is not the case and

we study them in the next subsection.

Combinatorial Auctions and Beyond

Taking a wider look at the whole field of Algorithmic Game Theory, this clash between

incentives and computation, is a main occurring theme. For many other algorithmic

mechanism design problems we have reasonable approximation algorithms even though

finding the optimal solution is not computationally feasible. In all of these cases, we are

not able to apply the VCG technique as to obtain a computationally-efficient truthful

mechanism. The central problem of this form is combinatorial auctions that has been

the focal point such investigations since the early Lehmann et al. [2002]. There is yet

another well-studied type of problems in algorithmic mechanism design where the main

challenge is the lack of applicability of VCG mechanisms. These are problems where the

optimization goal itself is not the maximization of social welfare, but rather some other

computational goal. A central problem of this form is that of machine scheduling where

the bidders correspond to machines that can execute jobs for a fee and a standard goal

is the minimization of the the “makespan” – time that the last job is finished (Nisan and

Ronen [2001]).

At this point one may naturally attempt to deal with the non-truthfulness that approx-

imation algorithms cause by slightly relaxing the notion of truthfulness. One approach

would be to require only “approximate truthfulness” in some sense. A major problem

with this approach is that players’ utilities and payments are differences between quan-

tities. A good approximation of each quantity does not imply a good approximation of
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the difference.5 Another relaxation approach would be to notice that lying is worthwhile

only if it improves the overall allocation, something which is supposedly computationally

hard. However, it is not completely clear how to define such “bounded-computational”-

truthfulness, sensibly quantifying over different running times of different algorithms on

different inputs. None of these approaches seems to be “clean” enough in general, so

we will continue with the basic definition of exact truthfulness and continue studying

whether it may be achieved.

5.3 Maximum in Range Mechanisms

The optimal VCG mechanism requires maximization of
∑

i vi(mi) over all possible al-

locations (m1, ...,mn). One can think about a “restricted” version of VCG which does

not aim to maximize over all possible allocations but rather only over some pre-specified

range of possible allocations. The smaller the range, the easier, potentially, it will be

to optimize over it, but the less good will the best allocation in this limited range be.

To take an extreme case, we could limit ourself in advance to bundle all the m items.

This means that we will only maximize over the range of n possible allocations that have

mi = m for a single agent i and mj = 0 for all other j. This optimization is easy to

do computationally (just check which i has the largest vi(m)), but clearly it may only

recover a 1/n fraction of possible welfare (e.g., when each bidder is willing to pay 1 for a

single item, but no more than 1 even if he gets all items).

Mechanisms that take this approach are called Maximum-in-Range: such a mechanism

fixes in advance a range of possible allocations; completely optimizes over this range; and

then uses a VCG-like payments where everything is computed just over this range. The

important point is that such mechanisms will always be truthful: the proof of truthfulness

of the usual VCG mechanisms as given above directly applies also to every VCG-based

mechanism. To see this, note the truthfulness of VCG mechanism was due to the fact

that it aligned the utility of each player with that of the social welfare. This remains,

and nothing that a bidder can do will take the result outside the range of allocations

over which the mechanism already optimized. As mentioned, these turn out to be that

the only approximation mechanisms that become truthful when simply using the VCG

payment rule.

While the family of VCG-based mechanisms seems to be a trivial extension of VCG

mechanisms we can still get non-trivial mileage from it. The trick would be to carefully

5An example of this phenomena exists in the recent FCC “incentive auctions” for buying back Spec-
trum from TV broadcasters. This auction requires sophisticated optimization and while the FCC’s
optimization programs were able to provably reach 97% efficiency, when these were plugged into the
VCG formula, nonsensical results were obtained, including e.g. negative payments.
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choose the range so that on one hand it is simple enough so we can effectively optimize

over it, and on the other hand is rich enough so that optimizing over it guarantees some

non-trivial level of approximation. For multi-unit auctions such a range will be obtained

by pre-bundling the items into a small number of “bundles”. For simplicity of presentation

we will assume without loss of generality that m is an integer multiple of n2:

Approximation Mechanism

1. Split the m items into n2 equi-sized bundles of size m/n2 each

2. Run the optimal VCG mechanism with the items being the n2 bundles, using

the general allocation algorithm from section 4.1

Note that this mechanism is Maximum-in-Range and hence truthful since be are

completely optimizing over allocations that correspond to the pre-bundling. The point is

that this mechanism is also computationally-efficient since it is just an auction with n2

items (the bundles), which we have already seen in section 4.1 can be done in time that

is polynomial in the number of items, which is now just polynomial in n.

The quality of allocations produced by this mechanism is that they always have at

least 1/2 the total value of the optimal one:
∑

i vi(mi) ≥ 1
2

∑
i vi(m

′
i), where (m1, ...,mn)

is the optimal allocation that respects this bundling (which is the one the mechanism

produces) and (m′1, ...,m
′
n) is any other allocation. To see this, start with the optimal

allocation (m′1, ...,m
′
n) and consider the bidder i that got the largest number of items,

m′i ≥ m/n. Now there are two possibilities. If at least half the total value comes just

from this i, vi(m
′
i) ≥

∑
j 6=i vj(m

′
j), then clearly the allocation that gives everything to

him (which is part of our restricted optimization range) gets at least 1
2

∑
i vi(m

′
i) so our

allocation is only better. If on the other hand vi(m
′
i) <

∑
j 6=i vj(m

′
j) then we can take

away i’s allocation, and use these m′i ≥ m/n items to complete the allocations of all other

bidders to exact multiples of m/n2 (which may require at most m/n2 for each bidder),

now resulting in a bundling allocation that is in our restricted optimization range but with

value of at least
∑

j 6=i vj(m
′
j) ≥ 1

2

∑
i vi(m

′
i) which is thus a lower bound on

∑
i vi(mi) as

needed. We thus have:

Theorem 8 (Dobzinski and Nisan [2007]) There exists a truthful mechanism for the 2-

approximate multi-unit allocation problem (in any of the models we considered) whose

running time is polynomial in n and logm. It produces an allocation (m1, ...,mn) that

satisfies
∑

i vi(mi) ≥ (
∑

i vi(opti))/2, where (opt1, ..., optn) is the optimal allocation.
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So we have obtained a truthful computationally-efficient 2-approximation mechanism.

This is still far from the arbitrarily good approximation that is possible when we just

take into account one of the two constraints of efficient computation or of truthfulness.

Can we do better? We will now see that no Maximum-in-Range mechanism (with any

range) can get a better approximation ratio. We will prove the impossibility of a better

approximation even for the special case of two players for which we have already seen in

section 4.3 that finding the exactly optimal allocation is intractable even in the general

queries (communication) model.

Consider an algorithm that guarantees strictly better than 1/2 of the maximum possi-

ble value. If the range is complete, i.e. contains all possible allocations (m1,m−m1) then

we are doing perfect optimization which as we have seen is hard, and thus the algorithm

is not computationally-efficient. Otherwise, our range is missing at least one possible

outcome (m1,m − m1). Consider the input valuations given by the single minded bids

where the first player is willing to pay 1 for at least m1 items and the second is willing

to pay 1 for at least m − m1 items. Clearly the optimal allocation for this case would

be (m1,m −m1) with v1(m1) + v2(m −m1) = 2. However, this allocation is not in our

range, so our maximum-in-Range mechanism will output a different allocation, and all

other allocations get value of at most 1, which is exactly half of optimal. This argument

assumes a black-box query model and, in fact, Dobzinski and Nisan [2007] also show that

better approximations are possible in the bidding language models discussed above. We

have thus shown:

Theorem 9 (Dobzinski and Nisan [2007]) There is no Maximum-in-Range mechanism

for approximate multi-unit allocation (in any query model) whose running time is polyno-

mial in n and logm and always produces an allocation (m1, ...,mn) that satisfies
∑

i vi(mi) >

(
∑

i vi(opti))/2, where (opt1, ..., optn) is the optimal allocation.

So, as we have reached the limits of the VCG technique, are there other new tech-

niques for the construction of truthful mechanisms? Can any of these techniques give an

efficiently computable mechanism that gets a better approximation ratio?

Combinatorial Auctions

When looking at the wider class of combinatorial auctions, even the algorithmic prob-

lem can not be approximated arbitrarily well. As significant algorithmic work has been

done on obtaining various approximation factors for various sub-classes of valuations, for

each of these subclasses, the corresponding challenge is to find a truthful mechanism that

achieves similar approximation ratios. Maximum-in-Range mechanisms achieve various

partial results in this respect – see Blumrosen and Nisan [2007] for survey and references.
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5.4 Single Parameter Mechanisms

There is one class of situations where classical Mechanism Design provides another, non-

VCG, technique for constructing truthful mechanisms. This is the case where buyers’

private valuations are single dimensional. For the single dimensional case, Myerson [1981]

essentially gives a complete characterization of incentive compatible mechanisms. Our

presentation here essentially utilizes these results, but slightly differs from the classic

treatment in two respects. First, we will limit our discussion to deterministic mechanisms,

as we have done so far. Second, our scenario considers Single-Minded bids, which are really

slightly more than single dimensional as they contain an additional discrete parameter

(the desired number of items).

So, in this section we restrict ourselves to bidders whose valuations are Single Minded:

each bidder i desires a specific number of items ki and is willing to pay vi if he gets at

least ki items (and gets value zero otherwise). This is a very limited class of valuations for

which we have no representation problems. However, in this section we will rely on their

strategic simplicity which is beyond the representational one. In particular, the results in

this section do not apply when we allow even double-minded bidders that are still simple

in the representational sense.

A bidder that is single-minded may either lose or win the auction – winning gives

value vi and losing gives value 0. We can always assume without loss of generality that

a mechanism never allocate to any winner i more than exactly the k̃i items it requested

and never allocates anything to a losing bidder. As a normalization, we may also assume

without loss of generality that losing bidders always pay 0. Under these conventions it

turns out that, when bidders are limited to being Single-Minded, truthful mechanisms

are exactly the ones that satisfy the following two properties:

1. Monotonicity: If a player wins with bid (ki, vi) then it will also win with any bid

which offers at least as much money for at most as many items. I.e. i will still win

if the other bidders do not change their bids and i changes his bid to some (k′i, v
′
i)

with k′i ≤ ki and v′i ≥ vi.

2. Critical Payment: The payment of a winning bid (ki, vi) is the smallest value

needed in order to win ki items, i.e. the infimum of v′i such that (ki, v
′
i) is still a

winning bid, when the other bidders do not change their bids.

Let us see why these are sufficient conditions: First let us see why for a bidder whose

real valuation is (ki, vi) bidding a quantity k′i 6= ki is always dominated by ki. If k′i < ki

then even if i wins he gets only k′i < ki items and thus his value from winning is 0 and

thus his utility is not positive. On the other hand, a bid k′i > ki can not help him since
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monotonicity implies that anything that he wins with bid k′i he could also win with ki and

furthermore more, given the the critical payment condition, the payment in the latter

case is never higher than in the former case. We now show that misreporting vi is not

beneficial either. If vi is winning and paying the critical value pi ≤ vi then every possible

bid v′i ≥ pi is still winning and still paying the same amount pi leading to the same utility

as when bidding vi. A bid v′i < pi in this case will lose, getting utility 0, which is certainly

not better than for bidding vi. If, on the other hand, vi is a loosing bid, and the smallest

winning bid is pi ≥ vi then bidding less than pi will still lose, and bidding at least pi will

win but will yield negative utility.

This characterization is quite fruitful: first, it decouples the algorithmic issue from the

strategic one: algorithmically we only need to devise a good monotone approximation

algorithm. Incentive compatibility will follow once we add the critical payment rule.

Second, it opens up a wide design space of monotone algorithms. At first, the limitation

of being monotone does not seem to be too challenging as it actually is hard to imagine

any useful algorithmic idea that is not monotone. Then, at second thought, one finds

that any interesting algorithmic idea attempted breaks monotonicity. Finally, one learns

how to be quite careful in the design of algorithms and ensure monotonicity. Let us look

at these three stages as they relate to our problem.

Let us start with the approximation algorithm presented in section 4.4 and consider

it in our single-minded setting of inputs (ki, vi). This gives the following mechanism:

Single-Minded Additive Approximation Mechanism

1. Let ε > 0 be the required approximation level, and let δ be a truncation precision

parameter

2. Truncate each vi to jδ where 0 ≤ j ≤ n/ε is an integer

3. Find the optimal allocation among the truncated vi’s, using the algorithm from

section 4.4

4. Charge the critical payments

It is not difficult to see that for each fixed ε and δ, the δ-scale approximation algorithm

is indeed monotone: the truncation is clearly a monotone operation, and the optimal

solution is clearly monotone. However, what should the choice of δ be? If we just take

a fixed choice of δ then we do get an additive approximation error of nδ, however this

will not translate to any approximation ratio since for very small valuations we may lose

31



everything. In our original description of the algorithm in section 4.4 our choice was

δ = εV/n where V = maxivi. This choice strikes a balance ensuring on one hand that an

additive error of nδ which the truncation causes translates to an approximation factor of

1− ε and on the other hand keeps the range of rounded values small (i.e. n/ε) enough for

computational efficiency. However, this choice of δ is not monotone: it is possible that

a bidder who has the largest bid vi = V is a winner, but when he slightly increases his

bid, then δ will also increase, leading to a different rounding in which he loses. Consider

selling m = 12 items to n = 7 bidders: each of three bidder are willing to each pay $7 for

4 items, while each of four bidders are willing to pay $5.9 for three items. Now for ε = 1

we get δ = $1 and the first group of three bidders all win. Had one of the first group

of bidders slightly increased his bid to $7.1, then δ would increase slightly above 1, and

the new rounding would favor the second group of bidders over the first group, breaking

monotonicity hence implying that the mechanism is not truthful.

It is not at all clear whether there is any monotone way of choosing δ in a way that will

maintain both the approximation ratio and the computational efficiency. The solution

proposed in Briest et al. [2011] is to simultaneously try multiple values of δ as all different

orders of scale:

Single-Minded Approximation Mechanism:

1. Let ε > 0 be the required approximation level.

2. For all δ = 2t where t is an integer (possibly negative) with εV/(2n2) ≤ δ ≤ V ,

where V = maxivi do:

(a) Run the Additive Approximation Algorithm with precision parameter δ

obtaining a “δ-scale allocation”

3. Choose the δ-scale allocation that achieved the highest value (as counted with

the truncated values) to determine the final allocation

4. For each winner i in the final allocation: Find, using binary search, the lowest

value that would still have bidder i win when the others’ values are unchanged,

and set this critical value as i’s payment

It would seem that we have only made things worse: previously we had a single δ that

depended on V , now we have a range of such δ’s. However, the main observation is that

in fact the range of δ’s does not depend on V : for δ > V the truncation would anyway

result in rounding everything to 0’s, while for δ < εV/(2n2), the δ-scale approximation
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will truncate each vi to at most V/(2n), yielding a total value of at at most V/2, which is

less than that obtained for the largest δ in the range checked by allocating to the highest

bidder. Thus to strategically analyze this mechanism we can imagine that we really tried

all (infinitely many) possible values of δ = 2t for integer t and chose the best allocation

encountered. This imaginary infinite search would yield exactly the same outcome as our

finite one does. However, it is clear that in this imaginary mechanism the choice of each

δ does not depend in any way on the bids so we maintain monotonicity.

Or do we? While it is true that for every single δ we have a monotone algorithm,

it does not follow that an algorithm that runs several monotone algorithms and then

chooses the best among them is monotone itself. It could be that a winner, that wins

when the optimum was achieved via a certain value of δ, increases his bid, causing a

different value of δ to be the winning choice, a value of δ in which our original bidder

loses. However, in our case it is possible to show that this does not happen: a nice

property of the additive approximation is that the only way that the value of a player

influences the solution quality is by winning or not. Thus if an increase in vi causes a

new value of δ to achieve the highest value then vi must be winning for the new value of

δ and thus global monotonicity is maintained. The same is true for manipulations in the

requested number of items ki. We have thus obtained:

Theorem 10 (Briest et al. [2011]) There exists a truthful mechanism for the approxi-

mate multi-unit allocation problem among single-minded bidders whose running time is

polynomial in n, logm, and ε−1. It produces an allocation (m1, ...,mn) that satisfies∑
i vi(mi) ≥ (1− ε)

∑
i vi(opti), where (opt1, ..., optn) is the optimal allocation.

So we have shown a truthful polynomial time approximation mechanism for the single-

minded case. What about general valuations?

Combinatorial Auctions and Beyond

A similar phenomena appears in many others algorithmic mechanism design problems,

where good approximation mechanisms are known for single-parameter settings. This

was demonstrated effectively in the context of combinatorial auctions in Lehmann et al.

[2002] where a truthful O(
√
m)-approximation mechanism was designed, matching the

algorithmic possibilities. Such mechanisms can be applied also to problems that do not

maximize social welfare, as has been done, for example in the context of scheduling in

early work of Archer and Tardos [2001].
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5.5 Multi-Parameter Mechanisms Beyond VCG?

Once we have seen that for the strategically simple case of single-minded bidders we can

design arbitrarily good computationally-efficient truthful approximation mechanisms it

is natural to try to get the same type of result for general bidders. Is that possible?

While this is still open, it is known that truthfulness implies rather severe constraints

in multi-parameter settings. This section will demonstrate these type of constraints by

proving a partial impossibility result. We will show that a truthful mechanism for n = 2

players that is required to always allocate all items which obtains an approximation factor

that is strictly better than 2 requires exponentially many queries, in the value queries

model. So let us fix such a mechanism M = (m1(·),m2(·), p1(·), p2(·)), where mi denotes

the number of items allocated to player i, where we always have m1 +m2 = m.

We start by deducing a necessary condition on the allocation function itself (m1(·),m2(·))
(independently of the payment functions). This condition will then allow us to analyze

the behavior of truthful mechanisms and bound their power. Our analysis starts with

stating the basic structure of payments induced by fixing one of the two input valuations

and varying only the other.

The Taxation Principle: For every fixed value of v2, there exists prices {pa} for 0 ≤
a ≤ m such that p1(v1, v2) = pa whenever a = m1(v1, v2) (we will denote pa =∞ if there

is no v1 with a = m1(v1, v2)). Moreover, m1(v1, v2) = argmaxa{v1(a)− pa}.

The taxation principle states that, once v2 is fixed, the prices that the first bidder face

may only depend on the allocation it gets rather than arbitrarily on his full valuation.

Moreover, under this pricing rule, his allocation maximizes his utility. Otherwise, if

m1(v1, v2) = m1(v
′
1, v2) but p1(v1, v2) > p1(v

′
1, v2) then clearly a bidder with valuation v1

will gain by misreporting v′1. Similarly if m1(v1, v2) 6= argmaxa{v1(a)−pa} = m1(v
′
1,m2)

then a a bidder with valuation v1 will gain by misreporting v′1.

Let us now consider a situation where, for some fixed value of v2, when the first

bidder changes his valuation from v1 to v′1 then his allocation changes from a to a′. By

the taxation principle this means that v1(a) − pa ≥ v1(a
′) − pa′ while v′1(a

′) − pa′ ≥
v′1(a)− pa. Combining these two inequalities allows us to cancel pa and pa′ , showing that

the allocation rule of a truthful mechanism satisfies the following property, a property

that also turns out to be sufficient (Lavi et al. [2003]):

Weak Monotonicity: The allocation function m1(·) is called weakly monotone if when-

ever m1(v1, v2) = a 6= a′ = m1(v
′
1, v2) then we have that v1(a) − v′1(a) ≥ v1(a

′) − v′1(a′).

The heart of our proof will use this property to show that for some fixed value of v2, the
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range of m1(·, v2) is full, i.e. for every 0 ≤ a ≤ m there exists v1 such that m1(v1, v2) = a

and, moreover, each of these v1’s is strictly monotone, 0 < v1(1) < · · · < v1(m). Using the

taxation principle, this in particular implies p0 < p1 < · · · < pm <∞. This allows to use

the following adversary argument. Fix v2 and our adversary will choose v1 adaptively, as

it answers value queries, as follows: for each query a it will answer v1(a) = pa− p0. Note

that as long as the algorithm is missing even a single query 0 < a ≤ m, it is still possible

that for the missing a, we have that v1(a) > pa − p0 which would give strictly higher

utility than all previous queries, and so the truthful mechanism may need to output it.

Thus in order for the algorithm to be truthful it must query v1(a) for all m possible values

of a.

We will choose v2 to be the linear valuation v2(k) = 2k (there is nothing special about

this valuation and any other strictly monotone one will do as well). For every 0 ≤ a ≤ m

we will exhibit a valuation v1 such that for the input (v1, v2), the output must be m1 = a

and m2 = m − a. We will argue this by starting with some other valuations (v′1, v
′
2) for

which we can know the output and “modifying” them to become the desired (v1, v2) using

weak monotonicity to control how the results may change.

Let us denote by 1≥a the valuation that gives value ε for each item with a large bonus

of 1 for at least a items (i.e. 1≥a(k) = kε for k < a and 1≥a(k) = 1 + kε for k ≥ a)

and consider the allocation on the input v′1 = 1≥a and v′2 = 1≥m−a. The fact that the

mechanism is a strictly better than 2 approximation implies that for this input m1 = a

and m2 = m− a.

We now consider a “stretched” version v1 of v′1 where for k < a we define v1(k) = v′1(k),

for k > a we define v1(k) = c + v′1(k) and v1(a) = c + v′1(a) + ε/2, where c is a large

constant. We claim that for input (v1, v
′
2) our mechanism must still produce the allocation

m1 = a and m2 = m − a. This is true due to weak monotonicity as in our construction

v1(a)− v′1(a) ≤ v1(a
′)− v′1(a′) only holds for a′ = a (notice that the roles of a and a′ are

switched from their roles in the definition).

Let us now consider the output of our mechanism on the input (v1, v2). Since c is large,

to maintain an approximation ratio the first player must be allocated at least a items

and thus the second must be allocated at most m − a items. Can the second player be

allocated strictly less items, m−a′ for a′ > a? If so, then using the weak monotonicity of

m2 for the fixed choice of v1, we have that v2(m−a)−v′2(m−a) ≤ v2(m−a′)−v′2(m−a′)
which in our construction only holds for a′ ≤ a. Thus m2 = m − a and m1 = a as

required, completing the proof of:

Theorem 11 (Lavi et al. [2003]) Every truthful mechanism for approximate multi-unit

allocation with two players that always allocates all items, m1 + m2 = m, and for some

fixed α > 1/2 always satisfies v1(m1)+v2(m2) ≥ α(v1(opt1)+v2(opt2)), where (opt1, opt2)
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is the optimal allocation, requires at least m queries in the value queries model.

So how “biting” are the constraints induced by truthfulness? Can we extend this

theorem to hold without the requirement of always allocating all items? This is still not

known. To gain a perspective about what we may be able to achieve, it will be useful

to consider a strong characterization result due to Roberts [1979] that holds in a more

general mechanism design setting. In this abstract non-restricted setting there are n

agents that have valuations that assign an arbitrary values to possible abstract outcomes

in the set A, i.e. vi : A→ <. The mechanism in such a case has to choose a single outcome

a ∈ A (as well as payments) in a truthful way. It is not difficult to verify that the VCG

mechanism that we have seen in section 5.1 directly generalizes to this setting yielding

a truthful mechanism whose outcome maximizes
∑

i vi(a) over all a ∈ A. It is also not

difficult to generalize the VCG mechanism by assigning weights αi ≥ 0 to the players

as well as weights βa to the outcomes, obtaining a truthful mechanism that maximizes

βa +
∑

i αivi(a) over all a ∈ A. A mechanism whose output always maximizes this

expression (for some choice of {αi}, {βa}) is called an affine maximizer. The payment rule

to make an affine maximizer truthful is given by a natural weighted variant of the VCG

payments. Roberts’ theorem states that these are the only truthful mechanisms for the

general unrestricted mechanism design problem when there are at least three outcomes.

This is in stark contrast to the single-parameter case where Myerson’s technique provides

many truthful non-affine-maximizing (non-VCG) mechanisms.

Now back to our setting of multi-unit auctions. The case of Single-Minded bidders

is close to being single-parameter and as we saw in section 5.4 there are good, non-

VCG, mechanisms for this case. The more general case, where bidders have more general

valuations is far from being single-parameter and we basically lack any techniques that go

beyond (weighted versions of) VCG, which are very limited in their power. For example,

as shown in section 5.3, they cannot guarantee, in polynomial time, more than half of

the social welfare. (It is not difficult to generalize the proof there to weighted versions

of VCG, i.e. to any affine maximizer.) Had Roberts’ theorem applied to multi-unit

auctions and not just to the unrestricted case then we would have a general impossibility

result of going beyond (weighted) VCG. However, the setting of multi-unit auctions is

more restricted in two respects. First, we are assuming free disposal (vi is monotone)

and, second, we are implicitly assuming no externalities. (vi is only a function of mi

rather than of the full allocation). The case analyzed here of two players where all items

must always be allocated, voids the “no externalities” restriction and becomes sufficiently

close to the unrestricted case as to allow Lavi et al. [2003] to extend (a version of)

the Roberts characterization to it. On the other hand, without this restriction, several

non-VCG truthful mechanisms are known for multi-unit auctions, including some that
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guarantee more than half of the social welfare (Dobzinski and Nisan [2011]), although not

in polynomial time. An impossibility result is given in Dobzinski and Nisan [2011] for

the subclass of “scalable mechanisms” – those where multiplying all values by the same

constant factor does not change the allocation.

The general question remains open: are there any useful truthful non-VCG mecha-

nisms for multi-unit auctions? This is open for most interpretations of “useful”, including

the one we embrace in this survey: computationally-efficient and guaranteeing strictly

more than half the optimal social welfare6.

Combinatorial Auctions and Beyond

The basic question of existence of “useful” non-VCG computationally-efficient truthful

combinatorial auctions is open for general valuations as well as for most interesting sub-

classes. There is one case where a truthful non-VCG mechanism is known (Bartal et al.

[2003]), as well one case where impossibility results are known (Dobzinski [2011], Dobzin-

ski and Vondrák [2012]). A similar situation holds for other mechanism design problems

where again essentially no non-VCG mechanisms are known for multi-parameter settings.

For a problem that is “close” to being unrestricted, there is a strong characterization ex-

tending Roberts (Papadimitriou et al. [2008]). There is also a restricted impossibility

results for scheduling due to Ashlagi et al. [2009].

5.6 Randomization

We now slightly widen our scope of mechanisms and allow also randomized ones. We will

see that these indeed do provide us with increased capabilities. A randomized mechanism

will still accept as input the valuations of the players but will now output a distribution

over allocations and payments. A randomized mechanism will be called truthful (in

expectation) if for all vi, v−i, v
′
i we have that E[vi(Mi) − Pi] ≥ E[vi(M

′
i) − P ′i ] where

Mi and Pi are the random variables indicating the number of items allocated to i and

the payment of i when he bids vi, and M ′
i and P ′i are these random variables when

he bids v′i. We will concentrate on a specific class of randomized mechanisms that first

deterministically choose a distribution on allocations, and a payment and then just output

a random realization of an allocation from the chosen distribution.

We can now generalize the idea of maximum in range mechanisms. We can think of

a mechanism that pre-decides on a range of distributions on allocations. For any such

possible distribution D on allocations (m1...mn), we can look at the expected value of

each vi on this distribution: vi(D) = E(m1,...,mn)∼D[vi(mi)]. From this point of view we

6It is probably good to remark that if we agree to relax our notion of equilibria to Bayesian, then a
multitude of computationally-efficient Bayesian-truthful mechanisms exist (e.g. Hartline et al. [2011]).

37



can look at any such distribution as a new possible allocation. We will call a randomized

mechanism maximum in distributional range if it always maximizes the expected social

value over such a pre-chosen range of distributions, i.e. always chooses the distribution

that maximizes
∑

i vi(D) = E(m1...mn)∼D[
∑

i vi(mi)] over all D in the range. Clearly we

can apply the VCG payment rule to such a mechanism by simply viewing the range of

distributions as a new range of “deterministic” outcomes, this way obtaining a randomized

truthful (in expectation) mechanism.

Can such mechanisms be helpful? In particular can we build a maximum-in-distributional-

range mechanism that provides a good approximation while being computationally-efficient?

The approximation ratio of a randomized mechanism is defined to be the worst case ra-

tio obtained over all possible inputs, where for each input we measure ratio between

the expected social welfare produced and the optimal social welfare for this input. As

shown by Dobzinski and Dughmi [2009], it turns out that the answer is yes. In fact, a

very basic randomized range already suffices for this. The distributions we will use in

our range will all have support size of 2: the empty allocation (mi = 0 for all i) and a

single other allocation (m1, ...,mn). We will have such a distribution for every possible

allocation (m1, ...,mn); we will define a “penalty probability” 0 ≤ z(m1, ...,mn) < ε for

each (m1, ...,mn), and will choose the empty allocation with probability z(m1, ...,mn)

and allocate mi to each i with probability 1− z(m1, ...,mn). The expected social welfare

of such a distribution is simply (1 − z(m1, ...,mn))
∑

i vi(mi), and it is this expression

that our algorithm maximizes (over all (m1, ...,mn).) It should immediately be clear that

this allocation will also approximately maximize the non-penalized social welfare, i.e.∑
i vi(mi) ≥ (1 − ε)

∑
i vi(m

′
i) for every other allocation (m′1...m

′
n). The wonder is that

we will be able to define these penalties in a way that will allow the computationally-

efficient maximization of (1− z(m1, ...,mn))
∑

i vi(mi) over all allocations.

The idea is to penalize “non-roundness”. Let us define the weight of an integer mi,

w(mi), to be the largest power of two that divides mi (thus the weight of 8 is 3, the weight

of 9 is 0, and the weight of 10 is 1). Let us also define the weight of an allocation to

be the sum of the weights of the mi’s, w(m1, ...,mn) =
∑

iw(mi). Our penalty function

will be defined as z(m1, ...,mn) = (C − w(m1, ...,mn))δ, where C is a fixed upper bound

on the weight of any allocation (C = n logm) and δ chosen to be small enough so that

z is in the required range, (δ = ε/C). The point is that these penalties for “non-round”

allocations will suffice to significantly trim down the search space.

Let us look at a single player: do we need to consider all m possible values of mi to

allocate to him or can we significantly trim down the search space and consider only a

smaller number of possible mi’s? Consider two possible values mi < m′i with w(mi) >

w(m′i). The point is that if their values are close, vi(mi)/vi(m
′
i) > (1 − δ), then m′i can
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clearly be trimmed from the search space since the tiny addition to v() when increasing

mi to m′i can not offset the loss of welfare due to the decrease in wi() (which increases

z). It turns out that this suffices for the construction of an computationally-efficient

algorithm.

Maximum-in-Distributed-Range Mechanism

1. For each player i, compute a list Listi of possible allocations mi to player i by

calling Listi = Listi(0, logm):

For an integer 0 ≤ t ≤ logm, and 0 ≤ L ≤ m with w(L) ≤ t, LISTi(L, t), will

output the list of all non-trimmable values of mi in the range L < mi ≤ L+ 2t:

(a) If t = 0 then return the singleton {L+ 1}.

(b) If vi(L)/vi(L+2t−1) < 1−δ then return LISTi(L, t−1) concatenated with

LISTi(L+ 2t−1, t− 1).

(c) Else return LISTi(L+ 2t−1, t− 1).

2. Find the allocation (m1, ...,mn) that maximizes (1−z(m1...mn))
∑

i vi(mi), over

all mi ∈ Listi.

3. With probability z(m1, ...,mn) output the empty allocation, otherwise output

(m1, ...,mn).

4. Compute VCG payments for each bidder i by re-running the optimization with-

out i.

The point is that the subroutine LIST branches to two recursive calls only if v(L)/v(L+

2t−1) < 1− δ, otherwise it only makes a single recursive call. In terms of correctness this

is OK since if the gap between v(L) and v(L+ 2t−1) is too small then we have seen that

the whole range L < mi ≤ L + 2t−1 can be trimmed away. To bound the running time,

we will bound the number of invocations of LIST where a branch can be made, and will

do that for each fixed value of the 1 + logm possible levels t’s. Since the subranges on

which LIST is called at level t are a partition, and since a branch is undertaken only if

there is a (1− δ)-gap between the value of vi at the two end points of the subrange, then

there can be at most O(T/δ) invocations of LIST that branch at any given level t of the

recursion, where T is the number of bits of precision in the representation of vi. Thus

the total number of recursive invocations of LISTi is bounded by O(T logm/δ) giving a

total polynomial bound on the running time as well as on the length of LISTi.
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If we just worry about information considerations, i.e. the number of queries made,

then we are already done: Finding the optimal allocation only requires querying the

values of vi(mi) only for these polynomially-many mi ∈ LISTi. To completely specify

a polynomial time algorithm we need to explicitly describe how to use this polynomial-

length information to find the optimal allocation. For the case of a constant number

of players, this is immediate by exhaustive search over all possible combinations. The

general case is more complex and appears in Dobzinski and Dughmi [2009]. We have thus

obtained:

Theorem 12 (Dobzinski and Dughmi [2009]) There exists a randomized truthful (in

expectation) mechanism for the approximate multi-unit allocation problem (in any of the

models we considered) whose running time is polynomial in n, logm, and ε−1. It produces

an allocation (m1, ...,mn) that satisfies E[
∑

i vi(mi)] ≥ (1 − ε)
∑

i vi(opti), where E[]

denotes expectation over the random choices of the mechanism and (opt1, ..., optn) is the

optimal allocation.

A slightly stronger result in terms of truthfulness is also known (Vöcking [2012]). This

mechanism randomly chooses among deterministic truthful mechanism for the problem.

The guarantee on the quality of the output is still probabilistic, but the truthfulness holds

universally for each random choice rather than only in expectation.

Combinatorial Auctions and Beyond

Looking at the wider picture of Algorithmic Mechanism Design, the power of ran-

domized mechanisms is a general phenomena and there are many cases where we have

randomized mechanisms that are better than the deterministic ones. This, in particular,

is so for combinatorial auctions where a randomized mechanism is known that achieves

an O(
√
m)-approximation ratio which matches the ratio possible due to algorithmic con-

straints alone (Dobzinski et al. [2006]). Similarly, for many subclasses of valuations we

have randomized mechanisms whose approximation ratios are much better than those of

the known truthful deterministic ones. See Blumrosen and Nisan [2007] for references.

6 Conclusion

The challenge of designing good truthful efficiently-computable (deterministic) mecha-

nisms for welfare maximization in multi-unit auctions remains open.

The same is true for most other interesting algorithmic mechanism design problems

such as combinatorial auctions.
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