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ABSTRACT

Motivation: Genetic networks regulate key processes in living
cells. Various methods have been suggested to reconstruct
network architecture from gene expression data. However,
most approaches are based on qualitative models that pro-
vide only rough approximations of the underlying events, and
lack the quantitative aspects that are critical for understanding
the proper function of biomolecular systems.

Results: We present fine-grained dynamical models of gene
transcription and develop methods for reconstructing them
from gene expression data within the framework of a gene-
rative probabilistic model. Unlike previous works, we employ
quantitative transcription rates, and simultaneously estimate
both the kinetic parameters that govern these rates, and the
activity levels of unobserved regulators that control them. We
apply our approach to expression data sets from yeast and
show that we can learn the unknown regulator activity profiles,
as well as the binding affinity parameters. We also introduce a
novel structure learning algorithm, and demonstrate its power
to accurately reconstruct the regulatory network from those
data sets.
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1 INTRODUCTION

Understanding the organization and function of gene regu-
latory networks is a key experimental and computational
challenge in molecular biology. Recent studies (Guet et al.,
2002; Kitano, 2002) indicate that network function depends
on both qualitative and quantitative aspects of network orga-
nization. For example, Guet et al., 2002 show how differences
in quantitative reaction rates have drastic effects on the func-
tion of circuits with identical qualitative properties such as
connectivity and logic.

Various methods have been devel oped to reconstruct regula-
tion networks from high-throughput data, including genomic
sequences, expression profiles and transcription factor loca-
tion assays (Ong et al., 2002; Pe'er et al., 2001; Segal et al.,
2002; Simon et al., 2001; Spellman et al., 1998; Tavazoie

et al., 1999). However, these methods are based on coarse
grained qualitative models, and cannot provide arealistic and
guantitative view of regulatory systems. Alternative methods
were recently suggested (Ronen et al., 2002) to estimate the
quantitative parameters of more biologically realistic network
models. However, these approaches are limited to networks
of known, simple architecture and cannot be generalized to
more complex architectures or unknown structures.

In this paper, we present a novel framework for the recon-
struction of quantitative, realistic, fine-grained, dynamical
models of gene regulatory networks. Given a dataset of gene
transcription rates, our agorithm reconstructs the structure
of a regulatory network, the quantitative kinetic parame-
ters of transcription regulation, and the unobserved activity
levels of regulator proteins. This focus on learning unobser-
ved regulator activity levelsiscrucial, asactivity levelsarethe
result of alarge variety of upstream biochemical events, such
as RNA and protein expression, biochemical modifications,
degradation rates, and changes in sub-cellular localization.
However, neither activity levels nor most of the events that
regul ate them are measured today on a genomic scale. Thus,
our models handle activity levels as unobserved variables,
that indirectly encompass upstream regul atory events, without
directly modeling these events. In particular, unlike previous
work, we do not use the expression levels of regulators, and
can thus identify the results of post-transcriptional events.

Our framework isbased on agenerative probabilistic model,
dynamic Bayesian networks, that accounts for the processes
that generated the data, handles noise in a principled way,
and incorporatesour prior biological knowledgeinto the solu-
tion. Wemodel the underlying biochemical reaction equations
and the sources of noise that can affect the dynamics of the
system. The model is flexible, and can accommodate net-
worksof realistic complexity, including activators, repressors,
combinatorial regulation, and cooperative and competitive
interactions between regulators.

Our approach can handle networks of either known, par-
tially known, or unknown architecture. In particular, we
introduce a novel learning algorithm for reconstructing the
network structure. This algorithm reassigns regulators to
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genes as well as detects when additional regulators should be
added to the network, thus both improving existing structures
and learning regulatory networks ab initio. We applied our
methods to data from the yeast cell cycle regulation system,
and were able to recover both regulator activity profiles and
accurate parameters for networks of known architecture, as
well as successfully learn a complex regulatory network ab
initio. Overall, our approach combines for the first time the
network reconstruction capabilities of qualitative approaches
with the biochemical detail of quantitative ones, into asingle
framework for the reconstruction of realistic complex models
of gene regulation from gene expression data.

2 TRANSCRIPTIONAL REGULATION MODEL

To develop a quantitative realistic probabilistic model of
gene regulatory networks, we start by examining networks
of known structure and unknown Kinetic parameters (learning
unknown network structure will be addressed in Section 3).
First, we derive a kinematic model of how the transcription
rate of asingle gene dependsonits regulators. We then consi-
der how to model the behaviour of multiple genes over time,
and how to learn the model parameters from actual measu-
rements, including transcriptional rates and the unobserved
activity levels of regulators.

Kinematic Model of Regulation. Our regulation model
(Figure 1) is based on a regulation function that describes
the transcription rate of atarget gene (number of RNA mole-
cules transcribed per unit of time per cell) as a function of
the concentration of active regulator(s) (number of proteins
in active form in nucleus per cell). Consistent with the input
expression profiles that are typically measured on cell popu-
lations, we assume that we are examining a large population
of cells, and that the derived transcription rates are actually
averagerates over this population. We assume that the change
in concentration of the regulator H is much slower than the
kinetics of reactions described, and that at each time point
the system is nearly at an equilibrium. Thus, we model bin-
ding and disassociation reactions at steady-state. Finally, we
assume that the number of active regulator moleculesin each
cell is much larger than the number of its target sites, thus
neglecting any possible competition between different target
genes on the same regulator.

We start with asingle regulator, and then generalize to mul-
tiple regulators. In the simplest case (Figure 1a), of asingle
activator, theregul ation function takesthe familiar, non-linear
Michaelis-Menten form:

vyH
- )
++vH
where H denotesthe concentration of activeregulator protein,
(3 isthe maximum transcription rate the gene can achieve, and

visky / k4 theratio of association and disassoci ation constants
(Figure 1b-c).

g(H :p,v)=8

Toillustrate the general case of multipleregulatorswe con-
sider a gene that has two regulators, with activity levels H,
and H>. Depending on whether no regulator, H4, H, or both
are bound to the promoter, we distinguish four possible bin-
ding site fractions, denoted S ==, S71-—, S—"2 and S71 "2,
Solving the steady-state equations, we get the different bin-
ding state distribution:

S— = 1/Z
SHi= = Y1 H1 /Z

S-me =

SHLH  —

YoH2/Z
Hyv2Hy|Z

where Z = (1+~1 Hy)(1 + 2 H>) isanormalizing constant.
We now can define aregulation function for two regulators as
ageneric weighted sum over al possible binding states:

g(Hl,H2 : &76771772) = (2)
/B(a—,—s—,f_Faf,HQSf,HQ_'_aHl,szl,f_'_aHl,HQSHl,HQ)

where & isthe vector of o parametersindicating the “ produc-
tive” binding states that lead to transcription. Here, we focus
on cases where o take binary values. For example, for two
non-cooperative activators we set o=, =72 o172 t0 1,
and o=~ to O, reflecting that transcription occurs whenever
at least one regulator is bound. To model genera biologi-
cal models, where different productive states may result in
different rates, we can allow « to take real values.

Note, that this approach is general and is easily extended
to morethan two regulators by introducing additional binding
states with different associated probabilities and transcription
rates. It can also be extended to handle more complex scena
rios, such as competitive or cooperative interactions between
different regulatorsor asingleregulator withtwo binding sites,
eachwithadifferent effect ontranscription. Inthisinitial study
we focus on the simple variants of the model.

Temporal Modeling of Regulons Using Dynamic Bayesian
Networks. Tomodel aregulatory network, we need to consi-
der not only multipleregulators, but also multipletarget genes
and their temporal behaviour. Sinceregulatorstypically regu-
late multiple targets in the same regulon (Lee et al., 2002;
Shen-Orr et al., 2002), the same activity levels of a regulator
H can be used in the regulation functions of all of itstargets.
However, the functions themselves are gene specific. Consi-
der asimple system of n genesthat are regulated by the same
regulator H where we measure transcription rates at 7" time
points. Isit possibleto reconstruct the valuesof H at different
times, and the gene specific reaction constants? Since we have
n x T observations, and we assume that these can be explai-
ned by 7" values of H and 2n parameters (different 5 and ~
for each gene), we have an over-constrained problem when
n > 2 and T > 2. Thus, such areconstruction is feasible in
principle.

Specifically, we use the language of dynamic Bayesian net-
works (DBNSs) (Friedman et al., 1998) to model the evolution
of a stationary Markovian stochastic system over discrete
time points. Our model combines a regulation diagram (e.g.
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Fig. 1. A kinematic model of transcription regulation by a single activator. (a) An active regulator protein, H, may bind to and disassociate
from atarget gene's promoter, with rate constants x; and k., respectively. In a population of cells, fractions S~ and S* of cells have free
and bound promoters, respectively and satisfy the steady-state reaction equations. The bound gene istranscribed with rate g(H) = 3S™. (b)
The regulation equation, describing the transcription rate as a function of the active regulator concentration H, isin the Michaelis-Menten

form. The transcription rate is a non-linear function of the activity level of H that depends on v = r;/ka; In particular, at high levels of
H, the transcription rate saturates. (c) Temporal behaviour of asingle activator and the transcription rates of genes it regulates with different

kinematic parameters.

Figure2(a)) that summarizesthe regul ation topol ogy between
two types of attributes: the activity of regulators H1, H,, . . .
and the transcription rates of target genes Ry, R»,.... The
state of the system at time point ¢ isdescribed by random varia-
bles H\", BV, .. and R\, R{"), ... that denote the values
of al the system’s attributes at time ¢.

Themodel describesrelations between variablesat the same
time point and at consecutive time points. First, to represent
the behaviour of the regulator activity attribute, we assume
that H{"*") dependson H "), We model this dependencewith
the persistence equation:

Hi(t—s-l) _ H(t) +€5;—&—1) @)

where /""" is a normally distributed noise variable with
zero mean and variance o;. By modeling the magnitude of
change, our model prefersasmoother sequence of values H ;.
Second, the transcription rate of each target gene depends on
the instantaneous activity levels of the regulators that control
it, as encoded by the regulation diagram. For example, if R,
depends on two regulators H, and H, then

BY = g1, B G, By, mee) (14 60) (@)

where g(.) isthe regulation function given by (2), and €. (t) is
a Gaussian noise variable with zero mean and variance o ..
Notethat the noiselevel for R, dependson itsexpected value
giventheregulator activity levels. Thisstemsfrom thefact that
the transcription rate is aresult of asum of stochastic events,
such as DNA binding, transcription initiation, and elongation
(McAdams & Arkin, 1997). The higher the rate, the more
events are involved, resulting in a higher variance.

Figure 2(b) illustrates the Bayesian network structure that
correspondsto the regul ation diagram of Figure 2(a) for three
consecutive time points. The DBN model for time range

4 4

(b) Unrolled network

R,

(a) Regulation Diagram

Fig. 2. Schematic representation of aDBN model for temporal gene
regulation. (a) A regulation diagram with 2 regulators and 4 targets.
(b) An example of the Bayesian network induced by this diagram for
three time points.

1,...,T definesajoint distribution over al therandomvaria-
blesinthese T  time points. Thejoint density of an assignment
to al thevariablesisthe product of the densities of the values
of error variables ¢\ and e\!) that achieve equality in Eq. 3
and 4.
Parameter Estimation. Once we define the DBN, we can
learn the kinetic parameters and the hidden activity levels of
regul ators from observations. We consider an observed set E
of transcription rates of n genesin 7' time points and try to
optimize for the most likely assignment of parameters and
levels. Thus, assuming afixed regulation diagram G, we want
to find parameters that maximize the likelihood
{(h,0:G,E)=1logP(E,h|0,G)

where h are the values of the unobserved regulator activity
levels at different times, and @ are the kinetic and variance
parametersof themodel. According tothe DBN definition, the
termlog P(E, h | 0, G) isalog probability of error variables.
To optimize the likelihood function, we use gradient ascent
on thejoint space of h and 6.

To avoid over fitting of the model to the data, we match the
model complexity to the amount of available data. When data
is scarce, we fix some of the parameters in advance, whereas
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when the amount of data grows, we attempt to learn more
parameters. In the current study, we preset the o parameters
according to biological knowledge, keeping the number of
free parameterslow. For exampl e, in the experiment described
in section 4 we optimize between 3 to 4 parameters per each
of the G target genes. This number is much lower than the
number of observations (G timesT , thesizeof thetimeseries).

Transcription Rates While our regulation model isbased on
MRNA transcriptionrates, time seriesexpression profilestypi-
cally provideusonly withmRNA abundancelevels.® To reco-
ver transcription rates, we consider how themRNA expression
level depends on both transcription and degradation, and use
asimple gene-specific MRNA decay model:

%eg) = r,(:) — 5ke§:) (5)

where e,(f) is the expression level of gene k at time ¢ and 6,
is the mRNA decay rate of gene k. We assume that mRNA
decay ratesmay be gene-specific, but remain constant intime.
Giventhedecay rate ., and the expression measurements, we
recover r,(f) (up to a gene-specific multiplicative factor) by
solving the differential equation (5). Such actual decay rates
have been measured experimentally under specific conditions
by several recent genome-wide studies (Holstege et al., 1998;
Wang et al., 2002).

3 RECOVERING REGULATION DIAGRAMS

Structure Selection So far we have assumed that a defined
regulation diagram is known. The key question of inferring
thisdiagram abinitio from dataisastructure learning (Fried-
man et al., 1998) problem in the framework of DBNs: givena
rate matrix F, find the regulation diagram that is most likely
to have generated E. Note, that the likelihood of different
models is not an appropriate score here, since richer models
with more regulation relations will provably have better like-
lihood than simpler ones. A standard solutionistousethe BIC
score (Friedman et al., 1998; Schwarz, 1978), which penali-
zes the likelihood term with a a structure complexity penalty
term:

N aram
score(G : E) = mhaexé(h,ﬂ :G,E) — pTlog(T)

where Ny qrqm isthe number of parametersin the model, and
T is the number of time points. Once we define the score,
structure selection is posed as an optimization problem over
the discrete space of all possible regulation diagrams.

1 Our methods are applicable to time series measurements of mMRNA abun-
dance from both oligonucleotides chips and from cDNA microarrays. For
cDNA arrays, where values are relative to a common reference condition
My, we can reconstruct the expression level up to agene specific multiplica-
tive constant that involves the level of the gene in the reference sample and
probe-specific issues such as hybridization efficiency.

The typical approach to learn structure is by a heuristic
search, suchasgreedy hill climbing, that exploreslocal moves
(eg., al legal edge additions and deletions) in the space of
regulation diagrams. To evaluate a specific regulation dia-
gram, we need to perform parameter learning to find a good
reconstruction of the regulators for the proposed diagram.
Since such evaluations are costly, this approach is infeasible
in domains that involve many genes.

Instead, we propose an efficient algorithm to search for the
regulation diagram, based on two main ideas. First, to allow
efficient evaluation of proposed moves, we use a structural
EM approach (Friedman et al., 1998), and employ the regu-
lator activity profiles from one diagram to approximate the
score of modified diagrams. Second, rather than blindly eva-
luating all possible moves, we use the mathematical form of
the regulation functions to focus on a small subset of promi-
sing moves. As we show below, this also allows us to detect
when new regulators should be added to the model.

Ideal RegulatorsProfiles To illustrate the concept that will
alow us to efficiently propose moves and detect new regu-
lators, suppose we have a current network G, and we have
maximized the parameters and regul ator activity profileswith
respect to this network. Now consider agene R, that is regu-
lated by single regulator H, inthe model (Figure 3(a)). Since
H, predicts the transcription rates of multiple targets (and
sinceinreality R, may beregulated by additional regulators),
H, doesnot provideaperfect prediction of R,’stranscription
rate. The best reduction of this error is by finding an “ideal”
second regulator for R that together with H, eliminates all
predictionserrors (Figure 3(b)). We now use thisideal profile
to search against the current set of regulator activity profiles. If
wefind aregulator H that is highly correlated with the ideal
one, we evaluate it as a second regulator for Ry, by searching
for parameters that maximize the likelihood of R, given H,
and H (Figure 3(d)).

More formally, suppose we are given a gene R, that is
regulated by Hq, with parameters 3;, and - ;1. We want to

find a regulator profile {hffgw :t=1,...,T} and binding
affinity 74 new such that hi2, = £=1(r®)) where

f(h) = g(hgt)a h: O—Zkvﬂkaf}/k,l;’}/k,new) (6)

Since the function f is generadly invertible when r,(f) > 0,
we can find this profile once we determine v, new. However,
examining the definition of g, it is easy to see that we can set
Vi new arbitrarily, asit only servesto scalethevaluesof hipeyy .
Thus, we get a regulator profile that is “ideal” for Ry, andis
unique up to rescaling.

Note, that the behaviour of the new ideal regulator can dif-
fer if we believe it is an activator or repressor and whether
it works cooperatively with the current regulator(s), as indi-
cated by the values (0 or 1) of @y, in (6). Thus, rather than
testing asingleideal regulator per gene, we construct a small
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Fig. 3. lllustration of the ideal regulator approach. (a) A current regulator H; and its target’s input transcription rate Ry, (solid line) and
predicted rates (dashed lines). (b) An “ideal regulator profile” Hye., that together with H; predicts R, without errors. (¢) By computing the
correlation between the profile of H,e. and the activity profiles of each of the current regulators (based on the current network architecture),
we can detect regulators that potentially regulate Ry, and evaluate how well these perform in predicting the transcription rates of Ry,. (d) We
reduce errors by introducing Hx, the best scoring candidate, as second regulator of Ry..

set of possible ones (with different &y, representing different
relevant logic), which we compare to the actual regulators.
Once we find a good match, we may add a new edge from
the existing regulator to Ry,. In a similar way, we may also
replace a current regulator by computing the set of possible
ideal regulator profiles (with different @) in the absence of
one of the current regulators of R, assuming that 5 and al
other ~ values are fixed.

Learning Algorithm Thealgorithmiteratively improvesthe
network structure. It starts with some initial guess, which is
either derived from prior biological knowledge (seebelow), or

issimply the naiive network where all genes depend onasin-

gle regulator. Each iteration of the algorithm consists of two

phases. Inthefirst, we train parameters and regulator activity

profiles to maximize the current model’s likelihood function.

We then use these to compute the ideal regulator profiles for

each regulated gene, as described above. In the second phase,

we propose possible modifications to the current structure
(either addition or replacement of a regulatory connection),

by computing correlations between the ideal profiles and the
current regulator activity profiles. We explore each of these
modifications suggested by correlations that exceed a fixed

threshold, by training the local parameters 3, and -, ; for
the specific target £ to maximize the score. This optimiza-
tion is done without changing the regulator activity profiles,

and hence changes the likelihood only locally in terms that
involve R;. Modifications that decrease the score are discar-
ded, and the rest are applied at the end of the iteration. If

there are several modificationsthat apply to the same R, we
select only the one that leads to the biggest improvement in
the score.

We may al so remove an existing connection, thuscorrecting
earlier mistakes We suggest an intuitive mechanism for selec-
ting candidate connectionsfor removal: if acertain regulatory
connection hasan associated affinity parameter whichismuch
lower (e.g. by afactor of 10) fromtheother affinity parameters
of that gene, we test this connection for removal. As with the

addition steps, if the change yields a positive changein score
- it is accepted.

Introducing New Regulators We can also introduce a new
regul ator into the network. Thisstepisapplied only if no other
maodificationisaccepted. To add anew regulator, we apply the
CLUST algorithm (Ben-Dor et al., 1999) to find clusters of
ideal regulator profilesthat are highly correlated (above 0.8),
and may correspond to anew regulator of the genesfor which
theseidea profiles were generated. We evaluate each propo-
sed new regulator by introducingit into the network, and then
apply gradient ascent to find the best parameter values and
regul ators activity profiles for the modified network. We then
choosethe new regulator that leadsto the biggest scoreimpro-
vement and add it and its target links to the current network.
If no such regulator offers a positive improvement, no action
is taken.

4 RESULTS

We tested the power of our transcription regulation model
and the effectiveness of the structure learning algorithm on a
series of examples related to transcriptional regulation in the
yeast cell cycle. First, we identify kinematic parameters and
regulator activity profiles for a small transcriptional network
operating at M phase, involving an activator and a repressor.
Second, we study a curated model of the complex regulatory
network of the entire cell cycle, and show that we can accu-
rately identify activity levels of regulators based solely on
our realistic modeling framework and the expression level s of
their targets. Finally, we employ our structure learning algo-
rithm to learn a regulatory network ab initio, based solely on
expression data, and show the accuracy of both the resulting
network topology and the reconstructed regulators and their
activity profiles.

Two Regulator System Recent work shows that M phase-
expressed genes in yeast can be distinguished into two sub-
sets. A major set whichisactivated by Mcm1 and is expressed
earlier in M phase, and a minor set which is activated by
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Fig. 4. Regulator reconstruction
in an activator-repressor system.
(a) Thelearned activity for Mcm1
(top), vs. its MRNA log expres-
sion levels (middle), and itstarget
genestranscription rates (bottom).
Vertical lines denote cell cycle
start points (end of M/GL1 transi-
tion). (b) Same for the repressor
Yox1.

(b) Yox1

Mcml and repressed by Yox1, with delayed expression in
late M phase. To evaluate the dynamics of this system, we
built a model of this network, based on known Mcml and
Yox1targets (Simon et al., 2001), and used cell-cycle mRNA
expression data? (Spellman et al., 1998) and experimentally
derived decay rates (Wang et al., 2002), to estimate trans-
cription rates for these genes. We then applied our parameter
learning methods on each of the time series and learned acti-
vity profiles for the two regulators. As seen in Figure 4, the
reconstructed activity level of Yox1 peaks earlier than that
of Mcml, consistent with its documented repressiverole, and
explaining the subsequent shift in the peak transcription levels
of its target genes compared to that of Mcml-exclusive tar-
gets. Surprisingly, Yox1'sreconstructed activity peak appears
relatively early in the cell cycle, before M phase. This novel
finding was also obtained on a separate time series (data
not shown) and is corroborated by Yox1's expression pro-
file (Figure 4b). Note, that the regulator expression profiles
themselves are not used in the reconstruction. This allows
us to recover the hidden activity levels of regulators that are
themselves not transcriptionaly regulated. Thus, we accura-
tely reconstruct the activity profile of Mcm1, which is not
transcriptionaly regulated, with a clear peak at M phase.

Cell Cycle Regulation System We next turned to a large
regul atory network of known topology, assembled from loca-
tiondata(Leeet al., 2002) and biological databases (Costanzo
etal., 2001). Inthisnetwork, seven different transcription fac-
tors control the expression of 141 genes throughout the cell
cycle, alone or in pair-wise combinations. Using the alpha
synchronization expressiontimeseries(Spellmanet al., 1998)
shownin Figure5(a), welearned activity profilesand kinema-
tic parameters for this complex network. The predicted rates
we learned for the 141 genes are shown in Figure 5(b).
Figure 6 showsthe learned activity profiles for the 7 mode-
led regulators, against their mMRNA expression levelsand their
target genes behaviour. For all seven transcription factors, the
model automatically reconstructs cyclic activity levels, that

2 The data set consists of three time series that contain 17 to 23 time points,

with time intervals of 7 to 10 minutes.

are consistent with their known activity based on molecular
or genetic studies. For example, Swi5's activity peaks at late
M/G1 and early G1, consistent with its previously reported
activity (McBride et al., 1999); Mbpl and Swi4’'s activity
levelspeak at mid to late G1 consistent with their rolein GL/S
geneexpression (Baetz & Andrews, 1999); and Fkh1 and Fkh2
peak at late S/IG2 and G2/M respectively, consistent with their
reported effects in genetic studies (Hollenhorst et al., 2000).
Thus, in many cases (e.g., Swi5 and Swi4 or Fkhl and Fkh2),
thereconstructed activity level sdistinguish betweenrel atively
subtle but important differences in true biological activities,
the establishment of which has often required a large num-
ber of experiments. In some cases (e.g. Fkh2 or Swi5), our
reconstructed activity profilesclosely resembletheregulator’s
expression profile. Moreimportantly, since our reconstruction
doesnot usethe expression level sof theregulators, weareable
to accurately reconstruct their activity levels even if they are
not regulated transcriptionaly (e.g., Mcm1), or if their expres-
sion and activity profilesare shifted (e.g., Ace2), highlighting
the power of our approach.

The full power of our framework lies in its ability to learn
not only accurate activity profiles and kinematic parameters,
but also the full network architecture ab initio. We therefore
ran our structure learning algorithm on a nalive network with
the same 141 target genes al wired to a single activator. We
alowed thealgorithmto add more regul atorsand change regu-
latory connectionsuntil convergence, surprisingly resultingin
anetwork with seven regulators. See Figure 5(c) for predicted
rates with this model.

To evauate the quality of our ab initio reconstructed net-
work and identify the reconstructed regulators, we compared
the topology of the learned network to that of the curated one
(Figure5(d)), and thelearned activity profilesto thoselearned
on the curated network (Figure 5(€)). In some cases, such as
inferred regulator 1 and theknown regulator Swi5 (Figure 5(d-
e), top row), the correspondence in both targets and activity
levelsis striking. In others, asingle inferred regulator corre-
sponds to two separate factors with similar activity patterns
(e.g., regulator 7 and the G1/SfactorsMbpl and Swi4). Over-
al, since in the known network some targets are regulated
by more than one factor and some factors have similar pro-
files, by combining both tests we can roughly identify most
of our inferred profiles (regulators 1, 2/3, 4/5, 6 and 7) with
known regulatory activities (Swi5, A G1 regulatory activity,
the Fkh2/Mcm1 complex, Fkhl, and MBF/SBF). Thus, these
tests indicate that the inferred regulators have both targets
and activity levels strikingly similar to those in the known
curated network, and highlight the success of our approach
in learning both correct structure and parameters in the most
stringent challenge.

Finally, despite their impressive correspondence, both the
ab initio learned network and the curated model are likely
only approximations of the true biological systems. Thus,
we combined our curated network and our structure learning
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Fig.5. Comparison of abinitio structure learning vs. parameter learning for the curated cell cycleregulatory diagram. (a) Measured transcrip-
tionratesfor 141 genes. (b) Predicted ratesin the curated model after learning parameters. (c) Predicted rates after ab initio structure learning.
(d) log p-value of target intersection groups between known and ab initio regulators. (e) Positive correl ations between learned activity profiles
of known and ab initio regulators.
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Fig. 6. Regulator activity profiles learned from the curated network diagram. Each profile (top) is plotted against the regulator’'s mRNA log

expression levels (middle) and the average transcription rates of all itstarget genes (bottom).

approach, and used the curated network as a starting point
for the structure learning algorithm, trying to improve the
known structure. | ndeed, thisyielded adramaticimprovement
in score (610 bits), by introducing changesin the connections
for about 35 genes (despite not adding new regulators), pri-
marily changing genesfrom SBF to MBF regulation and from
Fkh1 to Fkh2. These modifications suggest novel hypotheses,
potentially extending our partial biological knowledge.

5 DISCUSSION

In this paper, we examined the question of learning the dyna-
mics of transcription networks, in terms of the temporal
behaviour of regulators, as well as the kinetic parameters
governingtheir effect on their targets. Our method providesa
principled approach to handle awide range of transcriptional
network architectures and regulation functions. Unlike pre-
vious methods based on probabilisticmodels (Friedmanet al .,
2000; Kimetal., 2003; Onget al., 2002; Pe’ er et al ., 2001), we
addressed the fact that the relevant sizes - transcription rates
and regulator activity levels- areusually not measured. Thisis
done by preprocessing steps to extract transcription rates, and
by the use of hidden variablesto account for unobserved regu-
lator activity levels. Several recent works (Battogtokh et al.,
2002; Liao et al., 2003; Perrin et al., 2003) use a fixed regu-
lation diagram to reconstruct unobserved regulator activity
profiles and parameters. This work is the first to introduce
a network structure learning algorithm in this context. Our

algorithmis based on the notion of “ideal” regulators, and we
demonstrated its power on the cell cycle regulatory network.

Our DBN-based model to transcription rates and regulator
activity levels allows us to handle these biologically relevant
quantities despite the indirect measurement of the former and
the lack of measurements of the latter. It also allows us to
handle the inherently noisy measurement in a principled way,
and provides a framework both for learning parameters and
for structurelearning. However, our model still abstractsaway
some of the explicit processes that generate the actual obser-
ved expression data. A more explicit modeling of these will
provide a more principled treatment of different sources of
noise in the data. Furthermore, our model does not handle
directly any of the upstream events that affect regulator acti-
vity. In fact, the current model is an open loop system, such
that the regulation of regulator activity is itself viewed as
exogenousto the system. By devel oping aricher modelinglan-
guage we may capture more complex reaction models, model
the upstream regulation of activity levels, and learn systems
that involve feedback mechanisms and signalling networks.
Finally, such extensions open the possibility of incorporating
additional types of data, such as binding sites models, trans-
cription factor binding dataor protein-proteininteraction data.
These could serve not only as additional sources for initiali-
zation or validation of models, but also asa primary source of
observationsfor model learning, thus widening the molecular
scope covered by our framework.
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