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ABSTRACT

Protein–protein interactions play a major role in most cellular processes. Thus, the challenge
of identifying the full repertoire of interacting proteins in the cell is of great importance and
has been addressed both experimentally and computationally. Today, large scale experimen-
tal studies of protein interactions, while partial and noisy, allow us to characterize properties
of interacting proteins and develop predictive algorithms. Most existing algorithms, however,
ignore possible dependencies between interacting pairs and predict them independently of
one another. In this study, we present a computational approach that overcomes this draw-
back by predicting protein–protein interactions simultaneously. In addition, our approach
allows us to integrate various protein attributes and explicitly account for uncertainty of
assay measurements. Using the language of relational Markov networks, we build a unified
probabilistic model that includes all of these elements. We show how we can learn our model
properties and then use it to predict all unobserved interactions simultaneously. Our results
show that by modeling dependencies between interactions, as well as by taking into account
protein attributes and measurement noise, we achieve a more accurate description of the
protein interaction network. Furthermore, our approach allows us to gain new insights into
the properties of interacting proteins.

Key words: Markov networks, probabilistic graphical models, protein–protein interaction
networks.

1. INTRODUCTION

One of the main goals of molecular biology is to reveal the cellular networks underlying the
functioning of a living cell. Proteins play a central role in these networks, mostly by interacting with

other proteins. Deciphering the protein–protein interaction network is a crucial step in understanding the
structure, function, and dynamics of cellular networks. The challenge of charting these protein–protein
interactions is complicated by several factors. Foremost is the sheer number of interactions that have to be
considered. In the budding yeast, for example, there are approximately 18,000,000 potential interactions
between the roughly 6,000 proteins encoded in its genome. Of these, only a relatively small fraction occur
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in the cell (von Mering et al., 2002; Sprinzak et al., 2003). Another complication is due to the large
variety of interaction types. These range from stable complexes that are present in most cellular states
to transient interactions that occur only under specific conditions (e.g., phosphorylation in response to an
external stimulus).

Many studies in recent years address the challenge of constructing protein–protein interaction networks.
Several experimental assays, such as yeast two-hybrid (Uetz et al., 2000; Ito et al., 2001) and tandem affinity
purification (Rigaut et al., 1999) have facilitated high-throughput studies of protein–protein interactions
on a genomic scale. Some computational approaches aim to detect functional relations between proteins,
based on various data sources such as phylogenetic profiles (Pellegrini et al., 1999) or mRNA expression
(Eisen et al., 1998). Other computational assays try to detect physical protein–protein interactions by, for
example, evaluating different combinations of specific domains in the sequences of the interacting proteins
(Sprinzak and Margalit, 2001).

The various experimental and computational screens described above have different sources of error
and often identify markedly different subsets of the full interaction network. The small overlap between
the interacting pairs identified by the different methods raises serious concerns about their robustness.
Recently, in two separate works, von Mering et al. (2002) and Sprinzak et al. (2003) conducted a detailed
analysis of the reliability of existing methods, only to discover that no single method provides a reasonable
combination of sensitivity and recall. However, both studies suggest that interactions detected by two (or
more) methods are much more reliable. This motivated later “meta” approaches that hypothesize about
interactions by combining the predictions of computational methods, the observations of experimental
assays, and other correlating information sources, such as that of localization assays. These approaches
use a variety of machine learning methods to provide a combined prediction, including support vector
machines (Bock and Gough, 2001), naive Bayesian classifiers (Jansen et al., 2003), and decision trees
(Zhang et al., 2004).

While the above combined approaches lead to an improvement in prediction, they are still inherently
limited by the treatment of each interaction independently of other interactions. In this paper, we argue that
by explicitly modeling such dependencies, we can leverage observations from varied sources to produce
better joint predictions of the protein interaction network as a whole. As a concrete example, consider the
budding yeast proteins Pre7 and Pre9. These proteins were predicted to be interacting by a computational
assay (Sprinzak and Margalit, 2001). However, according to a large-scale localization assay (Huh et al.,
2003), the two proteins are not co-localized; Pre9 is observed in the cytoplasm and in the nucleus, while
Pre7 is not observed in either of those compartments; see Fig. 1a. Based on this information alone, we
would probably conclude that an interaction between the two proteins is improbable. However, additional
information on related proteins may be relevant. For example, interactions of Pre5 and Pup3 with both
Pre9 and Pre7 were reported by large scale assays (Mewes et al., 1998; Sprinzak and Margalit, 2001);

FIG. 1. Dependencies between interactions can be used to improve predictions. (a) A possible interaction of two
proteins (Pre7 and Pre9). Pre9 is localized in the cytoplasm and in the nucleus (light gray) and Pre7 is not annotated
to be in either one of those. This interaction was predicted by a computational assay (Sprinzak and Margalit, 2001)
(dashed line). This evidence alone provides weak support for an interaction between the two proteins. (b) Two additional
proteins Pre5 and Pup3. These were found to interact with Pre9 and Pre7 either by a computation assay (Sprinzak and
Margalit, 2001) (dashed line) or experimental assays (Mewes et al., 1998) (solid line). The combined evidence gives
more support to the hypothesis that Pre7 and Pre9 interact.
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see Fig. 1b. These observations suggest that these proteins might form a complex. Moreover, as both Pre5
and Pup3 were found to be localized both in the nucleus and in the cytoplasm, we may infer that Pre7 is
also localized in these compartments. This in turn increases our belief that Pre7 and Pre9 interact. Indeed,
this inference is confirmed by other interaction (Gavin et al., 2002) and localization (Kumar, 2002) assays.
This example illustrates two reasoning patterns that we would like to allow in our model. First, we would
like to encode that certain patterns of interactions (e.g., within complexes) are more probable than others.
Second, an observation relating to one interaction should be able to influence the attributes of a protein
(e.g., localization), which in turn will influence the probability of other related interactions.

We present unified probabilistic models for encoding such reasoning and for learning an effective protein–
protein interaction network. We build on the language of relational probabilistic models (Friedman et al.,
1999; Taskar et al., 2002) to explicitly define probabilistic dependencies between related protein–protein
interactions, protein attributes, and observations regarding these entities. The use of probabilistic models
also allows us to explicitly account for measurement noise of different assays. Propagation of evidence
in our model allows interactions to influence one another as well as related protein attributes in complex
ways. This in turn leads to better and more confident overall predictions. Using various proteomic data
sources for the yeast Saccharomyces cerevisiae, we show how our method can build on multiple weak
observations to better predict the protein–protein interaction network.

2. A PROBABILISTIC PROTEIN–PROTEIN INTERACTION MODEL

Our goal is to build a unified probabilistic model that can capture the integrative properties of protein–
protein interactions as exemplified in Fig. 1. We represent protein–protein interactions, interaction assays
readout, and other protein attributes as random variables. We model the dependencies between these entities
(e.g., the relation between an interaction and an assay result) by a joint distribution over these variables.
Using such a joint distribution, we can answer queries such as What is the most likely interaction map
given an experimental evidence? However, a naive representation of the joint distribution requires a huge
number of parameters. To avoid this problem, we rely on the language of relational Markov networks
to compactly represent the joint distribution. We now review relational Markov network models and the
specific models we construct for modeling protein–protein interaction networks.

2.1. Markov networks for interaction models

Markov networks belong to the family of probabilistic graphical models. These models take advantage of
conditional independence properties that are inherent in many real world situations to enable representation
and investigation of complex stochastic systems. Formally, let X = {X1, . . . , XN } be a finite set of random
variables. A Markov network over X describes a joint distribution by a set of potentials �. Each potential
ψc ∈ � defines a measure over a set of variables Xc ⊆ X . We call Xc the scope of ψc. The potential ψc
quantifies local preferences about the joint behavior of the variables in Xc by assigning a numerical value
to each joint assignment of Xc. Intuitively, the larger the value, the more likely the assignment. The joint
distribution is defined by combining the preferences of all potentials

P(X = x) = 1

Z

∏
c∈C

eψc(xc) (1)

where xc refers to the projection of x onto the subset Xc and Z is a normalizing factor, often called the
partition function, that ensures that P is a valid probability distribution.

The above product form facilitates compact representation of the joint distribution. Thus, we can represent
complex distributions over many random variables using a relatively small number of potentials, each with
limited scope. Moreover, in some cases the product form facilitates efficient probabilistic computations.
Finally, from the above product form, we can read properties of (conditional) independencies between
random variables. Namely, two random variables might depend on each other if they are in the scope of
a single potential, or if one can link them through a series of intermediate variables that are in a scope
of other potentials. We refer the reader to Pearl (1988) for a careful exposition of this subject. Thus,
potentials confer dependencies among the variables in their scope, and unobserved random variables can
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mediate such dependencies. As we shall see below, this criteria allows us to easily check for conditional
independence properties in the models we construct.

Using this language to describe protein–protein interaction networks requires defining the relevant ran-
dom variables and the potential describing their joint behavior. A distribution over protein–protein interac-
tion networks can be viewed as the joint distribution over binary random variables that denote interactions.
Given a set of proteins P = {pi, . . . , pk}, an interaction network is described by interaction random vari-
ables Ipi ,pj for each pair of proteins. The random variable Ipi ,pj takes the value 1 if there is an interaction
between the proteins pi and pj , and 0 otherwise. Since this relationship is symmetric, we view Ipj ,pi
and Ipi ,pj as two ways of naming the same random variable. Clearly, a joint distribution over all these
interaction variables is equivalent to a distribution over possible interaction networks.

The simplest Markov network model over the set of interaction variables has a univariate potential
ψi,j (Ipi ,pj ) for each interaction variable. Each such potential captures the prior (unconditional) prefer-
ence for an interaction versus a noninteraction by determining the ratio between ψi,j (Ipi ,pj = 1) and
ψi,j (Ipi ,pj = 0). This model yields the next partition of the joint distribution function:

P(X ) = 1

Z

∏
pi,pj∈P

e
ψi,j (Ipi ,pj ) (2)

Figure 2a shows the graphic representation of such a model for three proteins. This model by itself is
overly simplistic as it views interactions as independent from one another.

We can extend this oversimplistic model by incorporating protein attributes that influence the probability
of interactions. Here we consider cellular localization as an example of such an attribute. The intuition
is simple: if two proteins interact, they have to be physically co-localized. As a protein may be present
in multiple localizations, we model cellular localization by several indicator variables, Ll,pi , that denote
whether the protein pi is present in the cellular localization l ∈ L. We can now relate the localization
variables for a pair of proteins with the corresponding interaction variable between them by introducing
a potential ψl,i,j (Ll,pi , Ll,pj , Ipi ,pj ). Such a potential can capture preference for interactions between co-
localized proteins. Note that in this case the order of pi and pj is not important, and thus we require this
potential to be symmetric around the role of pi and pj (we return to this issue in the context of learning).
As with interaction variables, we might also have univariate potentials on each localization variable Ll,pj
that capture preferences over the localizations of specific proteins.

Assuming that X contains variables {Ipi ,pj } and {Ll,pi }, we now have a Markov network of the form

P(X ) = 1

Z

∏
pi,pj∈P

e
ψi,j (Ipi ,pj )

∏
l∈L,pi∈P

eψl,i (Ll,pi )
∏

l∈L,pi ,pj∈P
e
ψl,i,j (Ipi ,pj ,Ll,pi ,Ll,pj ) (3)

The graph describing this model can be viewed in Fig. 2b. Here, representations of more complex distri-
butions are possible, as interactions are no longer independent of each other. For example, Ipi ,pj and Ll,pi
are co-dependent as they are in the scope of one potential. Similarly, Ipi ,pk and Ll,pi are in the scope of
another potential. We conclude that the localization variable Ll,pi mediates dependency between interac-
tions of pi with other proteins. Applying this argument recursively, we see that all interaction variables are
co-dependent on each other. Intuitively, once we observe one interaction variable, we change our beliefs
about the localization of the two proteins and in turn revise our belief about their interactions with other
proteins.

However, if we observe all the localization variables, then the interaction variables are conditionally
independent of each other. That is a result of the fact that if Ll,pi is observed, it cannot function as a
dependency mediator. Intuitively, once we observe the localization variables, observing one interaction
cannot influence the probability of another interaction.

2.2. Noisy sensor models as directed potentials

The models we discussed so far make use of undirected potentials between variables. In many cases,
however, a clear directional cause and effect relationship is known. In our domain, we do not observe protein
interactions directly, but rather through experimental assays. We can explicitly represent the stochastic
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FIG. 2. Illustration of different models describing underlying different independence assumptions for a model over
three proteins. An undirected arc between variables denotes that the variables coappear in the scope of some potential.
A directed arc denotes that the target depends on the source in a conditional distribution. (a) Model shown in
Equation (2) that assumes all interactions are independent of each other. (b) Model shown in Equation (3) that
introduces dependencies between interactions using their connection with the localization of the proteins. (c) Model
described in Equation (4) that adds noisy sensors to the interaction variables.

relation between an interaction and its assay readout within the model. For each interaction assay a ∈ A
aimed toward evaluating the existence of an interaction between the proteins pi and pj , we define a binary
random variable IAapi,pj . Note that this random variable is not necessarily symmetric, since for some
assays, such as yeast two hybrid, IAapi,pj and IAapj ,pi represent the results of two different experiments.

It is natural to view the assay variable IAapi,pj as a noisy sensor of the real interaction Ipi ,pj . In this
case, we can use a conditional distribution potential that captures the probability of the observation given
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the underlying state of the system:

e
ψai,j (IA

a
pi ,pj

,Ipi ,pj ) ≡ P(IAapi,pj | Ipi ,pj ).

Conditional probabilities have several benefits. First, due to local normalization constraints, the number of
free parameters of a conditional distribution is smaller (two instead of three in this example). Second, such
potentials do not contribute to the global partition function Z, which is typically hard to compute. Finally,
the specific use of directed models will allow us to prune unobserved assay variables. Namely, if we do
not observe IAapi,pj , we can remove it from the model without changing the probability over interactions.

Probabilistic graphical models that combine directed and undirected relations are called chain graphs
(Buntine, 1995). Here we examine a simplified version of chain graphs where a dependent variable as-
sociated with a conditional distribution (i.e., IAapi,pj ) is not involved with other potentials or conditional
distributions. If we let Y denote the assay variables, then the joint distribution is factored as

P(X ,Y) = P(X )P (Y|X ) = P(X )
∏

pi,pj∈P,a∈A
P(IAapi,pj |Ipi ,pj ) (4)

where P(X ) is the Markov network of Equation (3). The graph for this model is described in Fig. 2c.

2.3. Template Markov networks

Our aim is to construct a Markov network over a large-scale protein–protein interaction network. Using
the model described above for this task is problematic in several respects. First, for the model with just
univariate potentials over interaction variables, there is a unique parameter for each possible assignment
of each possible interaction of protein pairs. The number of parameters is thus extremely large even for

the simplest possible model (in the order of ≈ 60002

2 for the protein–protein interaction network of the
budding yeast S. cerevisiae). Robustly estimating such a model from finite data is clearly impractical.
Second, we want to generalize and learn “rules” (potentials) that are applicable throughout the interaction
network, regardless of the specific subset of proteins we happen to concentrate on. For example, we want
the probabilistic relation between interaction (Ipi ,pj ) and localization (Ll,pi , Ll,pj ), to be the same for all
values of i and j .

We address these problems by using template models. These models are related to relational probabilistic
models (Friedman et al., 1999; Taskar et al., 2002) in that they specify a recipe with which a concrete
Markov network can be constructed for a specific set of proteins and localizations. This recipe is specified
via template potentials that supply the numerical values to be reused. For example, rather than using a
different potential ψl,i,j for each protein pair pi and pj , we use a single potential ψl . This potential is
used to relate an interaction variable Ipi ,pj with its corresponding localization variables Ll,pi and Ll,pj ,
regardless of the specific choice of i and j . Thus, by reusing parameters, a template model facilitates
a compact representation and at the same time allows us to apply the same “rule” for similar relations
between random variables.

The design of the template model defines the set of potentials that are shared. For example, when
considering the univariate potential over interactions, we can have a single template potential for all
interactions ψ(Ipi,pj ). On the other hand, when looking at the relation between localization and interaction,
we can decide that for each localization value l we have a different template potential for ψl(Ll,pi ). Thus,
by choosing which templates to create, we encapsulate the complexity of the model.

For the model of Equation (3), we introduce one template potential ψ(Ipi,pj ) and one template potential
for each localization l that specifies the recipe for potentials of the form ψl(Ipi ,pj , Ll,pi , Ll,pj ). The first
template potential has one free parameter, and each of the latter ones have five free parameters (due to
symmetry). We see that the number of parameters is a small constant, instead of growing quadratically
with the number of proteins.

2.4. Protein–protein interaction models

The discussion so far defined the basis for a simple template Markov network for the protein–protein
interaction network. The form given in Equation (4) relates protein interactions with multiple interaction
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assays (Fig. 3a) and protein localizations (Fig. 3b). In this model, the observed interaction assays are viewed
as noisy sensors of the underlying interactions. Thus, we explicitly model experiment noise and allow the
measurement to stochastically differ from the ground truth. For each type of assay, we have a different
conditional probability that reflects the particular noise characteristics of that assay. In addition, the basic
model contains a univariate template potential ψ(Ipi,pj ) that is applied to each interaction variable. This
potential captures the prior preferences for interaction (before we make any additional observations).

In this model, if we observe the localization variables, then, as discussed above, interaction variables are
conditionally independent. This implies that if we observe both the localization variables and the interaction
assay variables, the posterior over interactions can be reformulated as an independent product of terms,
each one involving Ipi ,pj , its related assays, and the localization of pi and pj . Thus, the joint model can
be viewed as a collection of independent models for each interaction. Each of these models is equivalent
to a naive Bayes model (see, e.g., Jansen et al. [2003]). We call this the basic model (see Fig. 3e).

We now consider two extensions to the basic model. The first extension relates to the localization
random variables. Instead of using the experimental localization results to assign these variables, we
can view these experimental results as noisy sensors of the true localization. To do so, we introduce
localization assay random variables LAl,p, which are observed, and relate each localization assay variable
to its corresponding hidden ground truth variable using a conditional probability (Fig. 3c). The parameters
of this conditional probability depend on the type of assay and the specific cellular localization. For
example, some localizations, such as “bud,” are harder to detect as they represent a transient part of the
cell cycle, while other localizations, such as “cytoplasm,” are easier to detect since they are present in
all stages of the cell’s life and many proteins are permanently present in them. As we have seen above,
allowing the model to infer the localization of a protein provides a way to create dependencies between
interaction variables. For example, an observation of an interaction between pi and pj may change the

FIG. 3. Protein–protein interaction models. In all models, a plain box stands for a hidden variable, and a shadowed
box represents an observed variable. The model consists of four classes of variables and four template potentials
that relate them. (a) Conditional probability of an interaction assay given the corresponding interaction; (b) potential
between an interaction and the localization of the two proteins; (c) conditional probability of a localization assay given
a corresponding localization; (d) potential between three related interacting pairs; (e)–(h) The four models we build
and how they hold the variable classes and global relations between them.
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belief in the localization of pi and thereby influence the belief about the interaction between pi and another
protein, pk , as in the example of Fig. 1. We use the name noise model to refer to the basic model extended
with localization assay variables (see Fig. 3f). This model allows, albeit indirectly, interactions to influence
each other in complex ways via co-related localization variables.

In the second extension, we explicitly introduce direct dependencies between interaction variables by
defining potentials over several interaction variables. The challenge is to design a potential that captures
relevant dependencies in a concise manner. Here we consider dependencies between the three interactions
among a triplet of proteins. More formally, we introduce a three variables potential ψ3(Ipi ,pj , Ipi ,pk , Ipj ,pk )

(Fig. 3d). This model is known in the social network literature as the triad model (Frank and Strauss, 1986).
Such a triplet potential can capture properties such as preferences for (or against) adjacent interactions, as
well as transitive closure of adjacent edges. Given our set of proteins P , the induced Markov network has(|P |

3

)
potentials, all of which replicate the same parameters of the template potential. Note that this requires

the potential to be ignorant of the order of its arguments (as we can “present” each triplet of interactions
in any order). Thus, the actual number of parameters for ψ3 is four—one when all three interactions are
present, another for the case when two are present, and so on. We use the name triplet model to refer to
the basic model extended with these potentials (see Fig. 3g). Finally, we use the name full model to refer
to the basic model with both the extensions of noise and triplet (see Fig. 3h).

3. LEARNING AND INFERENCE

In the previous section, we qualitatively described the design of our model and the role of the template
potentials, given the interpretation we assign to the different variables. In this section, we address situations
where this qualitative description of the model is given and we need to find an explicit quantification for
these potentials. At first sight, it may appear as if we could manually decide, based on expert advice,
on the values of this relatively small number of parameters. Such an approach is problematic in several
respects. First, a seemingly small difference might have a significant effect on the predictions. This effect
is amplified by the numerous times each potential is used within the model. We may not expect an expert
to be able to precisely quantify the potentials. Second, even if each potential can be quantified reasonably
on its own, our goal is to have the potentials work in concert. Ensuring this is nearly impossible using
manual calibration.

To circumvent these problems, we adopt a data-driven approach for estimating the parameters of our
model, using real-life evidence. That is, given a dataset D of protein–protein interactions, as well as
localization and interaction assays, we search for potentials that best “explain” the observations. To do so,
we use the maximum likelihood approach where our goal is to find a parameterization � so that the log
probability of the data, logP(D | �), is maximized. Note that obtaining such a database D is not always
an easy task. In our case, it means we have to find a reliable set of both interacting protein pairs and
“noninteracting” protein pairs. Finding such a reliable database is not simple, since we have no evidence
for such a “noninteraction.”

3.1. Complete data

We first describe the case where D is complete, that is, every variable in the model is observed. Recall that
our model has both undirected potentials and conditional probabilities. Estimating conditional probabilities
from complete data is straightforward and amounts to gathering the relevant sufficient statistics counts. For
example, for the template parameter corresponding to a positive interaction assay given that the interaction
actually exists, we have

P(IAapi,pj = 1 | Ipi ,pj = 1) = N(IAapi,pj = 1, Ipi ,pj = 1)

N(Ipi ,pj = 1)
(5)

where N(IAapi,pj = 1, Ipi ,pj = 1) is the number of times both IAapi,pj and Ipi ,pj are equal to one in D and
similarly for N(Ipi,pj = 1) (see, for example, Heckerman [1998]). Note that this simplicity of estimating
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conditional probability is an important factor in preferring these to undirected potentials where it is natural
to do so.

Finding the maximum likelihood parameters for undirected potentials is more involved. Although the
likelihood function is concave, there is no closed-form formula that returns the optimal parameters. This is
a direct consequence of the factorization of the joint distribution Equation (1). The different potentials are
linked to each other via the partition function, and thus we cannot optimize each of them independently.
A common heuristic is a gradient ascent search in the parameter space (e.g., Bishop [1995]). This requires
that we repeatedly compute both the likelihood and its partial derivatives with respect to each parameter.
It turns out that for a specific entry in a potential ψc(xc), the gradient is

∂ logP(D | �)
∂ψc(xc)

= P̂ (xc)− P(xc | �) (6)

where P̂ (xc) is the empirical count of xc (Della Pietra et al., 1997). Thus, the gradient equals to the
difference between the empirical count of an event and the probability of that event P(xc) as predicted by
the model. This is in accordance with the intuition that at the maximum likelihood parameters, where the
gradient is zero, the predictions of the model and the empirical evidence match. Note that this estimation
may be significantly more time consuming than in the case of conditional probabilities, and that it is
sensitive to the large dimension of the parameter space—the combined number of all values in all the
potentials.

3.2. Parameter sharing

In our template model, we use many potentials which share the same parameters. In addition to the
conceptual benefits of such a model (as described in Section 2), template potentials can also help us
in parameter estimation. In particular, the large reduction of the size of the parameter space significantly
speeds up and stabilizes the estimation of undirected potentials. Furthermore, many observations contribute
to the estimation of each potential, leading to an estimation that is more robust.

In our specific template model, we also introduce constraints on the template potentials to ensure that
the model captures the desired semantics (e.g., invariance to protein order). These constraints are encoded
by parameter sharing and parameter fixing (e.g., if two proteins are not in a specific cellular location, the
potential value should have no effect on the interaction of these two proteins). This further reduces the
size of the parameter space in the model. See Fig. 4 for the design of our potentials.

Learning with shared parameters is essentially similar to simple parameter learning. Concretely, let a set
of potentials C share a common potential parameter θ so that for all c ∈ C we have ψc(xc) = θ . Using the
chain rule of partial derivatives, it can be shown that

∂ logP(e)
∂θ

=
∑
c∈C

∂ logP(e)
∂ψc(xc)

.

Thus, the derivatives with respect to the template parameters are aggregates of the derivatives of the corre-
sponding entries in the potentials of the model. Similarly, estimating template parameters for conditional
potentials amount to an aggregation of the relevant counts.

It is important to note that evaluating the gradients does not require access to the whole data. As the
gradient depends only on the aggregate count associated with each parameter, we need to store only these
sufficient statistics.

3.3. Incomplete data

In real life, the data is seldom complete, and some variables in the model are unobserved. In fact,
some variables, such as the true location of a protein, are actually hidden variables that are never observed
directly. To learn in such a scenario, we use the expectation maximization (EM) algorithm (Dempster et al.,
1977). The basic intuition is simple. We start with some initial guess for the model’s parameters. We then
use the model and the current parameters to “complete” the missing values in D (see Section 3.4 below).
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FIG. 4. A summary of the free parameters that are learned in the model. For each potential/conditional distribution,
we show the entries that need to be estimated. The remaining entries are set to 0 in potentials and to the complementary
value in conditional distributions.

The parameters are then reestimated based on the “completed” data using the complete data procedure
described above, and so on. Concretely, the algorithm has the following two steps:

• E-step. Given the observations e, the model, and the current parameterization �, compute the expected
sufficient statistics counts needed for estimation of the conditional probabilities and the posterior prob-
abilities P(xc | e,�) required for estimation of the undirected potentials.

• M-step. Maximize the parameters of the model using the computations of the E-step, as if these were
computed from complete data.

Iterating these two steps is guaranteed to converge to a local maximum of the likelihood function.
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3.4. Inference

The task of inference involves answering probabilistic queries given a model and its parameters. That
is, given some evidence e, we are interested in computing P(x | e,�) for some (possibly empty) set of
variables e as evidence. Inference is needed both when we want to make predictions about new unobserved
entities and when we want to learn from unobserved data. Specifically, we are interested in computation of
the likelihood P(D | �) and the probability of the missing observations (true interactions and localization)
given the observed assays.

In general, exact inference is computationally intensive (Cooper, 1990) except for a limited classes of
structures (e.g., trees). Specifically, in our model that involves tens of thousands of potentials and many
undirected cycles, exact inference is simply infeasible. Thus, we need to resort to an approximate method.
Of the numerous approximate inference techniques developed in recent years, such as variational methods
(e.g., Jordan et al. [1998]) and sampling-based methods (e.g., Neal [1993]), propagation based methods
(e.g., Murphy and Weiss [1999]) have proved extremely successful and particularly efficient for large-scale
models.

In this work, we use the loopy belief propagation algorithm (e.g., Pearl [1988]). The intuition behind
the algorithm is straightforward. Let b(xc) be the belief (current estimate of the marginal probability)
of an inference algorithm about the assignment to some set of variables Xc. When inference is exact
b(xc) ≡ P(xc). Furthermore, beliefs over different subsets of variables are consistent in that they agree
on the marginals of variables in their intersection. In belief propagation, we phrase inference as message
passing between sets of variables, which are referred to as cliques. Each clique has its own potential that
forms its initial belief. For example, these potentials can be defined using the same potentials as in the
factorization of the joint distribution function in Equation (1). During belief propagation, each clique passes
messages to cliques that share some of its variables, conveying its current belief over the variables in the
intersection between the two cliques. Each message updates the beliefs of the receiving clique to calibrate
the beliefs of the two cliques to be consistent with each other.

Concretely, a message from clique s to clique c that share some common variables is defined recur-
sively as

ms→c(xs∩c) =
∑
s�c

⎛
⎝eψs(xs )

∏
t∈{Ns�c}

mt→s(xs)

⎞
⎠ (7)

where ψs(xs) is s’s potential, s ∩ c denotes the variables in the intersection of the two cliques, and Ns is
the set of neighbors (see below for description of the graph construction) of the clique s. The belief over
a clique c is then defined as

b(xc) = eψc(xc)
∏
s∈Nc

ms→c(xc).

The result of these message propagations depends on the choice of cliques, their potentials, and the
neighborhood structure between them. To perform inference in a model, we select cliques that are consistent
with the model in the sense that each model potential (that is, every ψc(xc) from Equation (1)) is absorbed
in the potential of exactly one clique. This implies that the initial potentials of the cliques are exactly the
potentials of the model. Moreover, we require that all the cliques that contain a particular variable X form
one connected component. This implies that beliefs about X will be eventually shared by all cliques that
contain it.

Pearl (1988) showed that if these conditions are met and the neighborhood structure is singly connected
(that is, there is at most a single path between any two cliques), then this simple and intuitive algorithm is
guaranteed to provide the exact marginals for each clique. In fact, using the correct ordering of messages,
the algorithm converges to the true answer in just two passes along the tree.

The message defined in Equation (7) can be applied to an arbitrary clique neighborhood structure even if
it contains loops. In this case, it is not even guaranteed that the final beliefs have a meaningful interpretation.
In fact, in such a situation, the message passing is not guaranteed to converge. Somewhat surprisingly,
applying belief propagation to graphs with loops produces good results even when the algorithm does not
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converge and is arbitrarily stopped after some predefined time has elapsed (e.g., Murphy and Weiss [1999]).
Indeed, the loopy belief propagation algorithm has been used successfully in numerous applications and
fields (e.g., Freeman and Pasztor [2000] and McEliece et al. [1998]). The empirical success of the algorithm
found theoretical basis with recent works and in particular with the work of Yedidia et al. (2002) that
showed that even when the underlying graph is not a tree the fixed points of the algorithm correspond to
local minima of the Bethe free energy.

Here we use the effective variant of loopy belief propagation which involves the construction of a
generalized cluster graph over which the messages are propagated. The nodes in this graph are the cliques
that are part of the model. An edge Esc is created between any two cliques s and c that share common
variables. The scope of an edge is the variables Xs∩c that are in the intersection of the scope of the two
cliques. To ensure mathematical coherence, each variable X must satisfy the running intersection property:
there must be one and only one path between any two cliques in which X appears. With the above
construction, this amounts to requiring that X does not appear in a loop. We ensure this by constructing
a spanning tree over the edges that have X in their scope and then remove it from the scope of all edges
that are not part of that tree. We repeat this for all random variables in the graph. Messages are then
propagated along the remaining edges and their scope. We note that our representation is only one out of
several possible options. Each different representation might produce different propagation schemes and
different resulting beliefs. We are guarantied though that the insights of Yedidia et al. (2002) hold in all
possible representations, as long as we satisfy the conditions above.

4. EXPERIMENTAL EVALUATION

In Section 2, we discussed a general framework for modeling protein–protein interactions and introduced
four specific model variants that combine different aspects of the data. In this section, we evaluate the utility
of these models in the context of the budding yeast S. cerevisiae. For this purpose, we choose to use four
data sources, each with different characteristics. The first is a large-scale experimental assay for identifying
interacting proteins by the yeast two hybrid method (Uetz et al., 2000; Ito et al., 2001). The second is a
large-scale effort to curate experimental results from the literature about protein complexes (Mewes et al.,
1998). The third is a collection of computational predictions based on correlated domain signatures learned
from experimentally determined interacting pairs (Sprinzak and Margalit, 2001). The fourth is a large scale
experimental assay examining protein localization in the cell using GFP-tagged protein constructs (Huh
et al., 2003). Of the latter, we regarded four cellular localizations (nucleus, cytoplasm, mitochondria,
and ER).

In our models, we have a random variable for each possible interaction and a random variable for each
assay measuring such an interaction. In addition, we have a random variable for each of the four possible
localizations of each protein and yet another variable corresponding to each localization assay. A model for
all ≈ 6,000 proteins in the budding yeast includes close to 20,000,000 random variables. Such a model is
too large to cope with using our current methods. Thus, we limit ourselves to a subset of the protein pairs,
retaining both positive and negative examples. We construct this subset from the study of von Mering et al.
(2002) who ranked ≈ 80,000 protein–protein interactions according to their reliability based on multiple
sources of evidence (including some that we do not examine here). From this ranking, we consider the
2,000 highest-ranked protein pairs as “true” interactions. These 2,000 interactions involve 867 proteins. The
selection of negative (noninteracting) pairs is more complex. There is no clear documentation of failure to
find interactions, and so we consider pairs that do not appear in von Mering’s ranking as noninteracting.
Since the number of such noninteracting protein pairs is very large, we randomly selected pairs from the
867 proteins and collected 2,000 pairs that do not appear in von Mering’s ranking as “true” noninteracting
pairs. Thus, we have 4,000 interactions, of these, half interacting and half noninteracting. For these entities,
the full model involves approximately 17,000 variables and 38,000 potentials that share 37 parameters.

The main task is to learn the parameters of the model using the methods described in Section 3. To
get an unbiased estimate of the quality of the predictions with these parameters, we test our predictions
on interactions that were not used for learning the model parameters. We use a standard four-fold cross
validation technique, where in each iteration we learn the parameters using 1,500 positive and 1,500 negative
interactions and then test on 500 unseen interactions of each type. Cross validation in the relational setting
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is more subtle than learning with standard i.i.d. instances. In particular, when testing the predictions on the
1,000 unseen interactions, we use both the parameters we learned from the interactions in the training set
and also the observations on these interactions. This simulates a real world scenario when we are given
observations on some set of interactions, and are interested in predicting the remaining interactions, for
which we have no direct observations.

To evaluate the performance of the different model elements, we compare the four models described in
Section 2 (see Fig. 3). Figure 5 compares the test set performance of these four models. The advantage of
using an integrative model that allows propagation of influence between interactions and protein attributes is
clear, as all three variants improve significantly over the baseline model. Adding the dependency between
different interactions leads to a greater improvement than allowing noise in the localization data. We
hypothesize that this potential allows for complex propagation of beliefs beyond the local region of a
single protein in the interaction network. When both elements are combined, the full model reaches quite
impressive results: close to 85% true positive rate with just a 1% false positive rate. This is in contrast
to the baseline model that achieves less than half of the above true-positive rate with the same amount of
false positives.

A potential concern is that the parameters we learn are sensitive to the number of proteins and interactions
we have. To further evaluate the robustness of the parameters in regard to these aspects, we applied the
parameters learned using the 4,000 interactions described above in additional settings. Specifically, we
increase the dataset of interaction by adding additional 2,000 positive examples (again from von Mering’s
ranking) and 8,000 negative examples (random pairs that do not appear in von Mering’s ranking), resulting
in a dataset of 14,000 interactions. We then performed four-fold cross-validation on this dataset, but used
the parameters learned in the previous cross-validation trial rather than learning new parameters. The
resulting ROC curve was quite similar to Fig. 5 (data not shown). This result indicates that at least in this
range of numbers the learned parameters are not specific to a particular number of training interactions.

FIG. 5. Test performance (based on 4-fold cross validation) of the different models we evaluate. Shown is the true
positive rate vs. the false positive rate for four models: Basic with just interaction, interaction assays, and localization
variables; Noise that adds the localization assay variables; Triplets that adds a potential over three interactions; and
Full that combines both extensions.
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Another potential concern is that in real life we might have few observed interactions. In our cross-
validation test, we have used the training interactions as observations when making our predictions about
the test interactions. A harder task is to infer the test interactions without observing the training interactions.
That is, we run prediction using only the observed experimental assays. We evaluated prediction accuracy
as before using the same four-fold cross validation training but predicting test interactions without using
the training set interactions as evidence. Somewhat surprisingly, the resulting ROC curves are quite similar
to Fig. 5 with a slight decrease in sensitivity.

We can gain better insight into the effect of adding a noisy sensor model for localization by examining
the estimated parameters (Fig. 6). As a concrete example, consider the potentials relating an interaction
variable with the localization of the two relevant proteins in Fig. 6b. In both models, when only one of the
proteins is localized in the compartment, noninteraction is preferred, and if both proteins are co-localized,
interaction is preferred. We see that smaller compartments, such as the mitochondria, provide stronger
support for interaction. Furthermore, we can see that our noise model allows us to be significantly more
confident in the localization attributes in the nucleus and in the cytoplasm. This confidence might reveal,
by using information from the learned interactions, the missing annotation of the interaction partners of
these proteins.

Another way of examining the effect of the noisy sensor is to compare the localization predictions
made by our model with the original experimental observations. For example, out of 867 proteins in our
experiment, 398 proteins are observed as nuclear (Huh et al., 2003). Our model predicts that 492 proteins
are nuclear. Of these, 389 proteins were observed as nuclear, 36 are nuclear according to YPD (Costanzo
et al., 2001), 45 have other cellular localizations, and 22 have no known localization. We get similar results
for other localizations. These numbers suggest that our model is able to correctly predict the localizations
of many proteins, even when the experimental assay misses them.

As an additional test to evaluate the information provided by localization, we repeated the original
cross-validation experiments with randomly reshuffled localization data. As expected, the performance
of the basic model decreased dramatically. The performance of the full model, however, did not alter
significantly. A possible explanation is that the training “adapted” the hidden localization variables to
capture dependencies between interactions. Indeed, the learned conditional probabilities in the model
capture a weak relationship between the localization variables and the shuffled localization assays. This
experiment demonstrates the expressive power of the model in capturing dependencies and shows the ability
of the model to use hidden protein attributes (the localization variables in this case) to capture dependencies

FIG. 6. Examples of potentials learned using the Basic and the Noise models. (a) Univariate potentials of interactions
and the four localizations. The number shown is the difference between a positive and a negative value so that a larger
negative number indicates preference for no interaction or against localization. (b) The four potentials between an
interaction Ipi ,pj and localizations of the proteins Ll,pi , Ll,pj for the four different localizations. For each model,
the first column corresponds to the case where one protein is observed in the compartment while the other is not. The
second column corresponds to the case where both proteins are observed in the compartment. The number shown is the
difference between the potential value for interaction and the value for no interaction. As can be seen, co-localization
typically increases the probability of interaction, while disagreement on localization reduces it. In the Noise model,
co-localization provides more support for interaction, especially in the nucleus and cytoplasm.
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between interaction variables. This experiment also reinforces the caution needed in interpreting what
hidden variables represent. In our previous experiment, the localization assay was informative, and thus the
hidden localization variables maintain the intended semantics. In the reshuffled experiment, the localization
observations were uninformative, and the learned model in effect ignores them.

To get a better sense of the way in which our model improves predictions, we consider specific examples
where the predictions of the full model differ from those of the basic model. Consider the unobserved
interaction between the EBP2 and NUG1 proteins. These proteins are part of a large group of proteins
involved in rRNA biogenesis and transport. Localization assays identify NUG1 in the nucleus, but do not
report any localization for EBP2. The interaction between these two proteins was not observed in any of the
three interaction assays included in our experiment and thus was considered unlikely by the basic model. In
contrast, propagation of evidence in the full model effectively integrates information about interactions of
both proteins with other rRNA processing proteins. We show a small fragment of this network in Fig. 7a.
In this example, the model is able to make use of the fact that several nuclear proteins interact with both
EBP2 and NUG1 and thus predicts that EBP2 is also nuclear and indeed interacts with NUG1. Importantly,
these predictions are consistent with the cellular role of these proteins and are supported by independent
experimental assays (Costanzo et al., 2001; von Mering et al., 2002).

Another, qualitatively different example involves the interactions between RSM25, MRPS9, and MRPS28.
While there is no annotation of RSM25’s cellular role, the other two proteins are known to be components
of the mitochondrial ribosomal complex. Localization assays identify RSM25 and MRPS28 in the mito-
chondria, but do not report any observations about MRPS9. As in the previous example, neither of these
interactions was tested by the assays in our experiment. As expected, the baseline model predicts that both
interactions do not occur with a high probability. In contrast, by utilizing a fragment of our network shown
in Fig. 7b, our model predicts that MRPS9 is mitochondrial and that both interactions occur. Importantly,
these predictions are supported by independent results (Costanzo et al., 2001; von Mering et al., 2002).
These predictions suggest that RSM25 is related to the ribosomal machinery of the mitochondria. Such
an important insight could not be gained without using an integrated model such as the one presented in
this work.

Finally, we evaluate our model in a more complex setting. We consider the interactions of various proteins
with the mediator complex. This complex has an important role in helping activator transcription factors to
recruit the RNA polymerase II. We used the results of Gugliemi et al. (2004) as evidence for interactions
with the mediator complex. We then applied the parameters previously learned to infer interactions of other
proteins with the complex. Specifically, we found a set of 496 proteins that according to the ranking of
von Mering et al. might be in interaction with proteins in the mediator complex. Among these proteins,
there are 7,179 potential interactions according to that ranking. We then applied the inference procedure to
the model involving these proteins and potential interactions, using the same assays as above and the same
learned parameters, and taking the interactions within the mediator complex to be observed. The predicted

FIG. 7. Two examples demonstrating the difference between the predictions by our Full model and those of the
Basic model. Solid lines denote observed interactions and a dashed line corresponds to an unknown one. Grey colored
nodes represent proteins that are localized in the nucleus in Fig. (a) and in the mitochondria in Fig. (b). White colored
nodes have no localization evidence. In (a), unlike the Basic model, our Full model correctly predicts that EBP2 is
localized in the nucleus and that it interacts with NUG1. Similarly, in (b) we are able to correctly predict that MRPS9
is localized in the mitochondria and interacts with RSM25, which also interacts with MRPS28.
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interaction network is shown in Fig. 8. Our model predicts that only a small set of the 496 proteins
interact directly with the mediator complex. Two large complexes could be identified in the network: the
proteasome complex and the TFIID complex. In the predicted network, these interact with the mediator
complex via Tbf1 and Spt15, respectively, two known DNA binding proteins. Many other DNA binding
proteins interact with the complex directly to recruit the RNA polymerase II.

5. DISCUSSION

In this paper we presented a general purpose framework for building integrative models of protein–
protein interaction networks. Our main insight is that we should view this problem as a relational learning
problem, where observations about different entities are not independent. We build on and extend tools
from relational probabilistic models to combine multiple types of observations about protein attributes and
protein–protein interactions in a unified model. We constructed a concrete model that takes into account
interactions, interaction assays, localization of proteins in several compartments, and localization assays, as
well as the relations between these entities. Our results demonstrate that modeling the dependencies between
interactions leads to significantly better predictions. We have also shown that including observations of
protein properties, namely, protein localization, and explicit modeling of noise in such observations, leads
to further improvement. Finally, we have shown how evidence can propagate in the model in complex
ways leading to novel hypotheses that can be easily interpreted.

Our approach builds on relational graphical models. These models exploit a template level description
to induce a concrete model for a given set of entities and relations among these entities (Friedman et al.,
1999; Taskar et al., 2002). In particular, our work is related to applications of these models to link
prediction (Getoor et al., 2001; Taskar et al., 2004b). In contrast to these works, the large number of
unobserved random variables in the training data poses significant challenges for the learning algorithm.
Our probabilistic model over network topology is also related to models devised in the literature of
social networks (Frank and Strauss, 1986). Recently, other studies tried to incorporate global views of the
interaction network when predicting interactions. For example, Iossifov et al. (2004) proposed a method to
describe properties of an interaction network topology when combining predictions from literature search
and yeast two-hybrid data for a dataset of 83 proteins. Their model is similar to our triplet model in that it
combines a model of dependencies between interactions with the likelihood of independent observations
about interactions. Their model of dependencies, however, focuses on the global distribution of node
degrees in the network, rather than on local patterns of interactions. Similarly, Morris et al. (2004) use
degree distributions to impose priors on interaction graphs. They decompose the interactions observed
by yeast two-hybrid data as a superimposition of several graphs, one representing the true underlying
interactions, and another the systematic bias of the measurement technology. Other recent studies employ
variants of Markov networks to analyze protein interaction data. In these studies, however, the authors
assumed that the interaction network is given and use it for other tasks, e.g., predicting protein function
(Deng et al., 2004; Leone and Pagnani, 2005; Letovsky and Kasif, 2003) and clustering interacting co-
expressed proteins (Segal et al., 2003). In contrast to our model, these works can exploit the relative
sparseness of the given interaction network to perform fast approximate inference.

Our emphasis here was on presenting the methodology and evaluating the utility of integrative mod-
els. These models can facilitate incorporation of additional data sources, potentially leading to improved
predictions. The modeling framework allows us to easily extend the models to include other properties of
both the interactions and the proteins, such as cellular processes or expression profiles, as well as different
interaction assays. Moreover, we can consider additional dependencies that impact the global protein–
protein interaction network. For example, a yeast two-hybrid experiment might be more successful for
nuclear proteins and less successful for mitochondrial proteins. Thus, we would like to relate the cellular
localization of a protein and the corresponding observation of a specific type of interaction assay. This can
be easily achieved by incorporating a suitable template potential in the model. An exciting challenge is to
learn which dependencies actually improve predictions. This can be done by methods of feature induction
(Della Pietra et al., 1997). Such methods can also allow us to discover high-order dependencies between
interactions and protein properties.
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FIG. 8. (a) The mediator complex (taken from Figure 8b of Gugliemi et al. (2004) with permission). (b) Part of
the interaction network predicted by our method (shown are interactions predicted with probability ≥ 0.5). Nodes
are colored according to their GO annotation, and mediator complex subunits are painted as in (a). The lower orange
circle marks the TFIID complex and the upper circle marks the proteasome complex.
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Extending our framework to more elaborate models and networks that consider a larger number of pro-
teins poses several technical challenges. Approximate inference in larger networks is both computationally
demanding and less accurate. Generalizations of the basic loopy belief propagation method (e.g., Yedidia
et al. [2002]) as well as other related alternatives (Jordan et al., 1998; Wainwright et al., 2002), may
improve both the accuracy and the convergence of the inference algorithm. Learning presents additional
computational and statistical challenges. In terms of computation, the main bottleneck lies in multiple in-
vocations of the inference procedure. One alternative is to utilize information learned efficiently from few
samples to prune the search space when learning larger models. Recent results suggest that large margin
discriminative training of Markov networks can lead to a significant boost in prediction accuracy (Taskar
et al., 2004a). These methods, however, apply exclusively to fully observed training data. Extending these
methods to handle partially observable data needed for constructing protein–protein interaction networks
is an important challenge.

Finding computational solutions to the problems discussed above is a crucial step on the way to a global
and accurate protein–protein interaction model. Our ultimate goal is to be able to capture the essential
dependencies between interactions, interaction attributes, and protein attributes, and at the same time to be
able to infer hidden entities. Such a probabilistic integrative model can elucidate the intricate details and
general principles of protein–protein interaction networks.
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