
The Bayesian Structural EM Algorithm

Nir Friedman
�

Computer Science Division, 387 Soda Hall
University of California, Berkeley, CA 94720

nir@cs.berkeley.edu

Abstract
In recent years there has been a flurry of works on learning
Bayesian networks from data. One of the hard problems
in this area is how to effectively learn the structure of
a belief network from incomplete data—that is, in the
presence of missing values or hidden variables. In a re-
cent paper, I introduced an algorithm called Structural
EM that combines the standard Expectation Maximization
(EM) algorithm, which optimizes parameters, with struc-
ture search for model selection. That algorithm learns
networks based on penalized likelihood scores, which in-
clude the BIC/MDL score and various approximations to
the Bayesian score. In this paper, I extend Structural EM
to deal directly with Bayesian model selection. I prove the
convergence of the resulting algorithm and show how to
apply it for learning a large class of probabilistic models,
including Bayesian networks and some variants thereof.

1 INTRODUCTION
Belief networks are a graphical representation for proba-
bility distributions. They are arguably the representation
of choice for uncertainty in artificial intelligence and have
been successfully applied in expert systems, diagnostic en-
gines, and optimal decision making systems. Eliciting be-
lief networks from experts can be a laborious and expensive
process. Thus, in recent years there has been a growing in-
terest in learning belief networks from data [9, 16, 17, 18].
Current methods are successful at learning both the struc-
ture and parameters from complete data—that is, when each
data record describes the values of all variables in the net-
work. Unfortunately, things are different when the data is
incomplete. Until recently, learning methods were almost
exclusively used for adjusting the parameters for a fixed
network structure.

The inability to learn structure from incomplete data is
considered as one of the main problems with current state of
the art technology for several reasons. First, most real-life
data contains missing values One of the cited advantages of
belief networks (e.g., [16]) is that they allow for principled
methods for reasoning with incomplete data. However, it is
unreasonable at the same time to require complete data for
training them. Second, learning a concise structure is crucial
both for avoiding overfitting and for efficient inference in
the learned model. By introducing hidden variables that do
not appear explicitly in the model we can often learn simpler
models.

In [12], I introduced a new method for searching over
structures in the presence of incomplete data. The key idea
of this method is to use our “best” estimate of the distribu-
tion to complete the data, and then use procedures that work�

Current address: Institute of Computer Science, The
Hebrew University, Givat Ram, Jerusalem 91904, Israel,
nir@cs.huji.ac.il.

efficiently for complete data on this completed data. This
follows the basic intuition of the Expectation Maximization
(EM) algorithm for learning parameters in a fixed paramet-
ric model [11]. Hence, I call this method Structural EM.
(In [12], the name MS-EM was used.) Roughly speaking,
Structural EM performs search in the joint space of (Struc-
ture � Parameters). At each step, it can either find better
parameters for the current structure, or select a new struc-
ture. The former case is a standard “parametric” EM step,
while the later is a “structural” EM step. In [12], I show
that for penalized likelihood scoring functions, such as the
BIC/MDL score [18], this procedure converges to a “local”
maxima.

A drawback of the algorithm of [12] is that it applies only
to scoring functions that approximate the Bayesian score.
There are good indications, both theoretical and empirical,
that the exact Bayesian score provides a better assessment
of the generalization properties of a model given the data.
Moreover, the Bayesian score provides a principled way of
incorporating prior knowledge into the learning process.1

To compute the Bayesian score of a network, we need
to integrate over all possible parameter assignments to the
network. In general, when data is incomplete, this inte-
gral cannot be solved in closed form. Current attempts to
learn from incomplete data using the Bayesian score use
either stochastic simulation or Laplace’s approximation to
approximate this integral (see [7] and the references within).
The former methods tend to be computationally expensive,
and the latter methods can be imprecise. In particular, the
Laplace approximation assumes that the likelihood function
is unimodal, while there are cases where we know that this
function has an exponential number of modes.

In this paper, I introduce a framework for learning prob-
abilistic models using the Bayesian score under standard
assumptions on the form of the prior distribution. As with
Structural EM, this method is also based on the idea of com-
pletion of the data using our best guess so far. However,
in this case the search is over the space of structures rather
than the space of structures and parameters.

This paper is organized as follows. In Section 2, I de-
scribe a class of models, which I call factored models, that
includes belief networks, multinets, decision trees, decision
graphs, and many other probabilistic models. I review how
to learn these from complete data and the problems posed
by incomplete data. In Section 3, I describe the Bayesian
Structural EM algorithm in a rather abstract settings and dis-
cuss its convergence properties. The algorithm, as presented
in Section 3, cannot be directly implemented, and we need

1It is worth noting that the Structural EM procedure, as pre-
sented in [12], is applicable to scores that include priors over pa-
rameters. Such scores incorporate, to some extent, the prior knowl-
edge by learning MAP parameters instead of maximum likelihood
ones.

to approximate some quantities. In Section 4, I discuss how
to adapt the algorithm for learning factored models. This
results in an approximate approach that is different from the
standard ones in the literature. It is still an open question
whether it is more accurate. However, the derivation of this
approximation is based on computational consideration of
how to search in the space of network structures. Moreover,
the framework I propose here suggests where possible im-
provements can be made. Finally, in Section 5, I describe
experimental results that compare the performance of net-
works learned using the Bayesian Structural EM algorithm
and networks learned using the BIC score.

2 PRELIMINARIES
In this section, I define a class of factored models that in-
cludes various variants of Bayesian networks, and briefly
discuss how to learn them from complete and incomplete
data, and the problems raised by the latter case.

2.1 FACTORED MODELS
We start with some notation. I use capital letters, such as�������
	

, for variable names and lowercase letters � �
���
� to
denote specific values taken by those variables. Sets of
variables are denoted by boldface capital letters X

�
Y
�
Z,

and assignments of values to the variables in these sets are
denoted by boldface lowercase letters x

�
y
�
z.

In learning from data we are interested in finding the best
explanation for the data from a set of possible explanations.
These explanations are specified by sets of hypotheses that
we are willing to consider. We assume that we have a class of
models � such that each model ����� is parameterized
by a vector Θ � such that each (legal) choice of values
Θ � defines a probability distribution Pr ��� : ��� � Θ ��� over
possible data sets, where ��� denotes the hypothesis that
the underlying distribution is in the model � . (From now
on I use Θ as a shorthand for Θ � when the model � is clear
from the context.) I require that the intersection between
models has zero measure, and from now on, we will treat��� and ��� � as disjoint events.

We now examine conditions on � for which the algo-
rithms described below are particularly useful.

The first assumption considers the form of models in � .
A factored model � (for U � � � 1

�"!#!"!����%$'&
) is a para-

metric family with parameters Θ �(�*) Θ �1 �#!"!"!
� Θ �+-, that
defines a joint probability measure of the form:

Pr � � 1
�"!"!#!����%$/. � � � Θ � �0�214365��3 � � 1

�#!"!"!
���%$
: Θ �3 � �

where each 5��3 is a factor whose value depends on some
(or all) of the variables

�
1
�"!#!"!
��� $

. A factored model is
separable if the space of legal choices of parameters is the
cross product of the legal choices of parameters Θ �3 for each5��3 . In other words, if legal parameterization of different
factors can be combined without restrictions.

Assumption 1. All the models � are separable factored
models.

This assumption by itself is not too strong, since any
probability model can be represented by a single factor.
Here are some examples of non-trivially factored models
that are also separable.

Example 2.1: A belief network [22] is an annotated di-
rected acyclic graph that encodes a joint probability dis-
tribution over U. Formally, a belief network for U is a
tuple 78�8):9 ��;<� Θ , . The first component, namely 9 , is

a directed acyclic graph whose vertices correspond to the
random variables

�
1
�#!"!"!
���%$

that encodes the following
set of conditional independence assumptions: each variable� 3 is independent of its non-descendants given its parents
in 9 . The second component of the tuple, namely

;
, is a

set of local models = 1
�"!#!"!
� = $. Each local model = 3 maps

possible values pa � � 3 � of Pa � � 3 � , the set of parents of
� 3 ,

to a probability measure over
� 3 . The local models are pa-

rameterized by parameters Θ 3 . A belief network 7 defines
a unique joint probability distribution over U given by:

>@? � � 1
�"!"!#!
���A$ �0�

$B3DC 1

= 3 � � 3 � Pa � � 3 � : Θ 3 �
It is straightforward to see that a belief network is a factored
model. Moreover, it is separable: since any combination of
locally legal parameters defines a probability measure.

Example 2.2: As a more specific example, consider be-
lief networks over variables that have a finite set of val-
ues. A standard representation of the local models in such
networks is by a table. For each assignment of values to
Pa � � 3 � , the table contains a conditional distribution over� 3 . In such networks, we can further decompose each
of the local models into a product of multinomial factors:1 pa EGFIHKJ = 3ML pa EGFIHDJ � � 3 � Pa � � 3 � : Θ 3ML pa EGFIHDJ � , where Θ 3ML pa EGFIHNJ
is a vector that contains parameters OQP H L pa EGF H J for each value� 3 of
� 3 , and = 3ML pa EGF H J � � 3 � Pa � � 3 � : Θ 3ML pa EGF H J � is OQP H L pa EGF H J

if Pa � � 3 �R� pa � � 3 � and
� 3 � � 3 , and 1 otherwise. In

this case, we can write the joint probability distribution> ? � � 1
�"!#!"!
��� $. � � Θ �-� as1 $3DC 1 1 pa EGFIHDJ = 3SL pa ETF�HUJ � � 3 � Pa � � 3 � : Θ 3SL pa ETF�HUJ � !

Again, it is easy to verify that such a model is separable:
each combination of legal choices of Θ 3ML pa EGF H J results in a
probability distribution.

Other examples of separable factored models include
multinets [14], mixture models [6], decision trees [5], de-
cision graphs, and the combination of the latter two repre-
sentations with belief networks [4, 13, 8]. An example of a
class of models that are factored in a non-trivial sense but
are not separable are non-chordal Markov networks [22].
The probability distribution defined by such networks has a
product form. However, a change in the parameters for one
factor requires changing the global normalizing constant
of the model. Thus, not every combination of parameters
results in a legal probability distribution.

Our next assumption involves the choice of factors in
the factored models. I require that each factor is from the
exponential family [10]: A factor is exponential if it can be
specified in the form

5V� X : Θ �W�2XQY E Θ JMZ [\E X J
where]#� Θ � and ^_� X � are vector valued functions of the same
dimension, and � is the inner product. 2

Example 2.3: It is easy to verify that the multinomial fac-
tors from Example 2.2 are exponential. We can rewrite

2Standard definitions of the exponential family often include
an additional normalizing term and represent the distribution as`ba Θ cMd"eDf Θ gMh i f X g . However, this term can be easily accounted for
by adding an additional dimension to j a:k c and l a X c .

= 3ML pa ETF�HUJ � � 3 � Pa � � 3 � : Θ 3ML pa EGFIHDJ � in the exponential form
by setting]#� Θ 3ML pa EGF H J �m�) log OQn 1 L pa EGF H J �#!"!"!
� log OQn\o L pa EGF H J ,^p� x �m�) 1 n 1 L pa EGFIHDJ � x � �#!"!"!�� 1 n o L pa EGFIHNJ � x ��,
where q 1 �"!#!"!
� q"r are the possible values of

� 3 , and 1y � x � if
the values of Y s X in y match the values assigned to them
by x, and 0 otherwise.

Other examples of exponential factors include univariate
and multivariate Gaussians, and many other standard distri-
butions (see, for example, [10]).

Assumption 2. All the models in � contain only expo-
nential factors.

2.2 BAYESIAN LEARNING
Assume that we have an input dataset t with some number
of examples. We want to predict other events that were
generated from the same distribution as t . To define the
Bayesian learning problem, we assume that learner has a
prior distribution over models Pr �S���p� , and over the param-
eters for each model, Pr � Θ � . ���_� . Bayesian learning
attempts to make predictions by conditioning the prior on
the observed data. Thus, the prediction of the probability of
an event

�
, after seeing the training data, can written as:

Pr � �u. tR�m� v � Pr � �u. ��� � tR� Pr �M��� . tR�� v � Pr � �u. ��� � tR� Pr EGwyx �{z J Pr E �{z J
Pr EGwIJ (1)

where

Pr �St . ���p�W�}| Pr �St . ��� � Θ � Pr � Θ . ���b��~ Θ � (2)

and

Pr � ��. ��� � tR�0� | Pr � ��. ��� � Θ � Pr � Θ . ��� � tR��~ Θ !
(3)

Usually, we cannot afford to sum over all possible models.
Thus, we approximate (1) by using only the maximum a
posteriori (MAP) model, or using a sum over several of the
models with highest posterior probabilities. This is justified
when the data is sufficient to distinguish among models,
since then we would expect the posterior distribution to put
most of the weight on a few models.

2.3 LEARNING FROM COMPLETE DATA
When the data is complete, that is, each example in t
assigns value to all the variables in U, then learning can
exploit the factored structure of models. To do so, we need
to make assumptions about the prior distributions over the
parameters in each model. We assume that a priori, the
parameters for each factor are independent of the parameters
of all other factors and depend only on the form of the factor.
These assumptions are called parameter independence and
parameter modularity by Heckerman et al. [17].
Assumption 3. For each model ���-� with � factors the

prior distribution over parameters has the form

Pr � Θ �1 �#!"!"!
� Θ �+ . ���b�0��1�3 Pr � Θ �3 . ���_� !
Assumption 4. If 5��3 ��5��{�� for some � � ���@�-� , then

Pr � Θ �3 . ���p�W� Pr � Θ � �� . ��� � � .
Given Assumptions 3 and 4, we can denote the prior over
parameters of a factor 5 3 as Pr � Θ 3 � .

In practice, it also useful to require that the prior for each
factor is a conjugate prior. For example, Dirichlet priors are
conjugate priors for multinomial factors. For many types
of exponential distributions, the conjugate priors lead to a
closed-form solution for the posterior beliefs, and for the
probability of the data.

An important property of learning given these four as-
sumptions is that the probability of complete data given the
model also has a factored form that mirrors the factorization
of the model.
Proposition 2.4: Given Assumptions 1–4 and a data sett���� u1 �#!"!#!
� u� & of complete assignments to U, the score
of a model � that consists of � factors 5 1 �"!#!"!
� 5 + , is

Pr �St . � � �W� +B3DC 1

� 3�� v �� C 1 ^ 3 � u� �:� �
where � 3 �M���I����X�Y H E Θ H JMZ � Pr � Θ 3 ��~ Θ 3 �
and] 3 ����� , and ^ 3 ����� are the the exponential representation
of 5 3 .

It important to stress that terms in the score of Proposi-
tion 2.4 depend only on accumulated sufficient statistics in
the data. Thus, to evaluate the score of a model, we can use
a summary of the data in the form of accumulated sufficient
statistics.

Example 2.5: We now complete the description of the learn-
ing problem of multinomial belief networks. Following
[9, 17] we use Dirichlet priors. A Dirichlet prior for a
multinomial distribution of a variable

�
is specified by a

set of hyperparameters ���-�n 1 �#!"!"!
� �-�n o & where q 1 �#!"!"!
� q"r are
the values of

�
. We say that

Pr � Θ ��� Dirichlet �:��� �n 1 �#!"!"!
� � �n o & � if Pr � Θ �W� 1 n H O � �� H
� 1n H !
For a Dirichlet prior with parameters �-�n 1 �"!"!#!
� �-�n�� the
probability of the values of

�
with sufficient statistics����):� n 1 �"!"!#!
� � n � , is given by� �S�0�W� Γ E v H � �� H J

Γ E v H E � �� H�� � � H JDJ�J 1 3 Γ E ���� HS� � � H J
Γ E � �� H J � (4)

where Γ �M���y� |0�0] P � 1 X � Y ~�] is the Gamma function. For
more details on Dirichlet priors, see [10].

Thus, to learn multinomial Bayesian networks with
Dirichlet priors, we only need to keep counts of the form� P L pa EGF0¡�J for families we intend to evaluate. The score of
the network is a product of terms of the form of (4), one
for each multinomial factor in the model; see [9, 17]. A
particular score of this form is the BDe score of [17], which
we use in the experiments below.

Learning factored models from data is done by searching
over the space of models for a model (or models) that max-
imizes the score. The above proposition shows that if we
change a factored model locally, that is by replacing a few of
the factors, then the score of the new model differs from the
score of the old model by only a few terms. Moreover, by
caching accumulated sufficient statistics for various factors,
we can easily evaluate various combinations of different
factors.

Example 2.6: Consider the following examples of search
procedures that exploit these properties. The first is the

search used by most current procedures for learning belief
networks from complete data. This search procedure con-
siders all arc additions, removals and reversals. Each of
these operations changes only the factors that are involved
in the conditional probabilities distributions of one or two
variables. Thus, to execute a hill climbing search, we have
to consider approximately ¢R�M£ 2 � neighbors for at each point
in the search. However, the change in the score due to one
local modification remains the same if we modified another,
unrelated, part of the network. Thus, at each step, the search
procedure needsonly to evaluate the ¢¤�S£'� modifications that
involve further changes to the parts of the model that were
changed in the previous iteration.

Another example of a search procedure that exploits the
same factorization properties is the standard “divide and
conquer” approach for learning decision trees, see for ex-
ample [5]. A decision tree is a factored model where each
factor corresponds to a leaf of the tree. If we replace a leaf
by subtree, or replace a subtree by a leaf, all of the other fac-
tors in the model remain unchanged. This formal property
justifies independent search for the structure of each subtree
once we decide the root of the tree.

2.4 LEARNING FROM INCOMPLETE DATA
Learning factored models from incomplete data is harder
than learning from complete data. This is mainly due to the
fact that the posterior over parameters is no longer a product
of independent terms. For the same reason, the probability
of the data is no longer a product of terms.

Since the posterior distribution over the parameters of a
model is no longer a product of independent posteriors, we
usually cannot represent it in closed form. This implies that
we cannot make exact predictions given a model using the
integral of (3). Instead we can attempt to approximate this
integral. The simplest approximation is by using MAP pa-
rameters. Roughly speaking, if we believe that the posterior
over parameters is sharply peaked, than the integral in (3) is
dominated by the predication in a small region around the
posterior’s peak. Thus, we approximate

Pr � �u. � � � tR�W¥ Pr � �u. � � � Θ̂ � (5)

where Θ̂ is the vector of parameters that maximizes Pr � Θ .��� � tR��� Pr �Mt . Θ
� ����� Pr � Θ . ���p� . We can find

an approximation to these parameters using either gradient
ascent methods [3] or using EM [11, 19].

Since the probability of the data given a model no longer
decomposes, we need to directly estimate the integral of
(2). We can do so either using stochastic simulation, which
is extremely expensive in terms of computation, or using
large-sample approximations that are based on Laplace’s
approximation. The latter approximation assumes that pos-
terior over parameters is peaked, and use a Gaussian fit in
the neighborhood of the MAP parameters to estimate the
integral. We refer the reader to [7, 15] for a discussion of
approximations based on this technique.

The use of these approximations requires us to find the
MAP parameters for each model we want to consider before
we can score it. Thus, a search of model space requires
an expensive evaluation of each candidate. When we are
searching in a large space of possible models, this type of
search becomes infeasible—the procedure has to invest a
large amount of computation before making a single change
in the model. Thus, although there have been thorough
investigations of the properties of various approximations
to the Bayesian score, there have been few empirical reports
of experiments with learning structure, except in domains

where the searchis restricted to a small number of candidates
(e.g., [6]).

3 THE STRUCTURAL EM ALGORITHM
In this section, I present the Bayesian Structural EM algo-
rithm for structure selection. This algorithm attempts to
directly optimize the Bayesian score rather than an asymp-
totic approximation. The presentation is in a somewhat
more general settings than factored models. In the next
section, we will see how to specialize it to factored models.

Assume that we have an input dataset t with some num-
ber of examples. For the rest of this section, assume that the
dataset is fixed, and denote each value, either supplied or
missing, in the data by a random variable. For example, if
we are dealing with a standard learning problem where the
training data consists of � i.i.d. instances, each of which is,
a possibly partial assignment to � variables, then we have�¦� random variables that describe the training data. I de-
note by O the set of observable variables; that is, the set of
variables whose values are determined by the training data.
Similarly, I denote by H be the set of hidden (or unobserved)
variables, that is, the variables that are not observed.

As before, we assume that we have a class of models� such that each model � �2� is parameterized by a
vector Θ � such that each (legal) choice of values Θ � de-
fines a probability distribution Pr ��� : � � Θ �/� over V. We
also assume that we have a prior over models and parame-
ter assignments in each model. For the sake of clarity, the
following discussion assumes that all variables take values
from a a finite set. However, the results in this section easily
apply to continuous variables, if we make standard continu-
ity and smoothness restrictions on the likelihood functions
of models in � .

To find a MAP model it suffices to maximize Pr �St .���p� Pr �S���_� , since the normalizing term
>¨§ �MtR� is the

same for all the models we compare. As we have seen
in the previous section, if t contains missing values, then
we usually cannot evaluate Pr �St . ���_� efficiently. For
the following discussion we assume that we can compute
or estimate the complete data likelihood, Pr � H � O . � � � .
As we have seen in the previous section, this assumption is
true for the class of factored models satisfying Assumptions
1–4. We will also assume that given a particular model, we
can perform the predictive inference of (3) efficiently. As
we have seen, although this is not true for factored mod-
els, we can efficiently compute approximations for these
predictions (e.g., using the MAP approximation).

We now have the tools to describe the general outline of
the Bayesian Structural EM algorithm.
Procedure Bayesian-SEM(© 0 ª o):

Loop for «%¬ 0 ª 1 ª
­
­
­ until convergence
Compute the posterior Pr a Θ ®y¯A°"©²±³ ª o c .
E-step: For each © , compute´ a © : © ³ c'¬¶µ¸· log Pr a H ª o ª © ± c�°#© ±³ ª o¹¬ v h Pr a h ° o ª © ±³ c log Pr a h ª o ª © ± c
M-step Choose © ³"º 1 that maximizes

´ a © : © ³ c
if
´ a © ³ : © ³ c'¬ ´ a © ³"º 1 : © ³ c then
return © ³

The main idea of this procedure is that at each iteration it
attempts to maximize the expected score of models instead
of their actual score. There are two immediate questions to
ask. Why is this easier? and, what does it buy us? The
answer to the first question depends on the class of models
we are using. As we shall see below, we can efficiently
evaluate the expected score of factored models.

We now address the second question. The following the-
orem shows that procedure makes “progress” in each itera-
tion.
Theorem 3.1: Let � 0

� � 1
�"!"!#!

be the sequence of models
examined by the Bayesian SEM procedure. Then,

log Pr � o � � �$ � 1 �V» log Pr � o � � �$ �¼ ½ �M� $ � 1 : � $ �0» ½ �S� $: � $ �
Proof:

log
Pr E o L � z¯
¾ 1 J

Pr E o L � z¯ J� log v h
Pr E h L o L � z¯
¾ 1 J

Pr E o L � z¯ J � Pr E h x o L � z¯ J
Pr E h x o L � z¯ J� log v h Pr � h . o � ���$ � Pr E h L o L � z¯
¾ 1 J
Pr E h L o L � z¯ J (6)¼ v h Pr � h . o � ���$ � log

Pr E h L o L � z¯
¾ 1 J
Pr E h L o L � z¯ J (7)

� ¿RÀ log
Pr E H L o L � z¯
¾ 1 J

Pr E H L o L � z¯ J . ���$ � o Á� ½ �S� $ � 1 : � $ �V» ½ �M� $: � $ �
where all the transformations are by algebraic manipula-
tions, and the inequality between (6) and (7) is a conse-
quence of Jensen’s inequality.3

This theorem implies that if
½ �M� $: � $ � 1 �¸Â ½ �M� $:� $ � then Pr � o � ���$ � 1 �IÂ Pr � o � ���$ � . Thus, if we choose a

model that maximizes the expected score at each iteration,
then we are provably making a better choice, in terms of the
marginal score of the network. It is important to note that
this theorem also implies that we can use a weaker version
of the M-step:

M
�
-step Choose © ³"º 1 such that´ a © ³#º 1 : © ³ cÄÃ ´ a © ³ : © ³ c

This is analogous to the Generalized EM algorithm. Us-
ing this variant, we do not need to evaluate the expected
score of all possible models in the E-Step. In fact, as we
shall see below, in practice we only evaluate the expected
score of a small subset of the models.

Theorem 3.1 implies that the procedure converges when
there is no further improvement in the objective score. As
an immediate consequence, we can show that the procedure
reaches such a point under fairly general conditions.
Theorem 3.2: Let � 0

� � 1
�"!"!#!

be the sequence of models
examined by the Bayesian SEM procedure. If the number of
models in � is finite, or if there is a constant Å such that
Pr �St . ��� � Θ ���%ÆÇÅ for all models � and parameters
Θ � , then the limit lim

$bÈ � Pr � o � � �$ � exists.
Unfortunately, there is not much we can say about the con-

vergence points. Recall that for the standard EM algorithm,
convergence points are stationary points of the objective
function. There is no corresponding notion in the discrete
space of models we are searching over. In fact, the most
problematic aspect of this algorithm is that it might converge
to a sub-optimal model. This can happen if the model gen-
erates a distribution that makes other models appear worse
when we examine the expected score. Intuitively, we would
expect this phenomena to become more common as the ratio

3The same proof carries over to the case of continuous variables.
We simply replace the summation over h with an integration. To
apply Jensen’s inequality we have to make some mild assumptions
on the density function defined by models in É .

of missing information is higher. In practice we might want
to run the algorithm from several starting points to get a
better estimate of the MAP model.

4 BAYESIAN STRUCTURAL EM FOR
FACTORED MODELS

We now consider how to apply the Bayesian Structural EM
algorithm for factored models. There are several issues that
we need to address in order to translate the abstract algorithm
into a concrete procedure.

Recall that each iteration of the algorithm requires the
evaluation of the expected score

½ �M� : � $ � for each model
we examine. Since the term inside the expected score in-
volves assignments to H, we can evaluate Pr � h � o . ���_� as
though we had complete data. Using Proposition 2.4 and
linearity of expectation we get the following property.

Proposition 4.1: Let tÊ�Ë� x1 �#!"!"!
� x� & be a training set
that consist of incomplete assignments to U. Given Assump-
tions 1–4, if � consists of � factors, 5 1 �"!"!#!�� 5 + , then¿RÀ log Pr � H � o . ���_�MÁ'�2v +3DC 1 ¿RÀ log

� 3 �M� 3 ��Á �
where � 3 �Ìv �� C 1 ^ 3 � U� � is a random variable that repre-
sents the accumulated sufficient statistics for the factor 5 3
in possible completions of the data.
An immediate consequence of this proposition is that the
expected score has the same decomposability properties as
the score with complete data—local changes to the model
result in changes in only a few terms in the score. Thus,
we can use complete data search procedures that exploit this
property, such as the ones discussed in Example 2.6.

Next, we address the evaluation of terms of the form¿RÀ log
� 3 �M� 3 ��Á . Here we have few choices. The simplest

approximation has the form¿RÀ log
� 3 �M� 3 ��ÁÍ¥ log

� 3 �S¿RÀ�� 3 ÁS� (8)

This approximation is exact if log
� 3 ��� � is linear in its ar-

guments. Unfortunately, this is not the case for members
of the exponential family. Nonetheless, in some cases this
approximation can be reasonably accurate. In other cases,
we can correct for the non-linearity of log

� 3 ����� . In the next
section, I expand on these issues and outline possible ap-
proximations of ¿RÀ log

� 3 �S� 3 �MÁ . All of these approximations
use ¿RÀ�� 3 Á and some of them also use the covariance matrix
of the vector � .

Computing these expectations (and variances) raises the
next issue: How to compute the probability over assign-
ments to H? According to the Bayesian-SEM procedure,
we need to use Pr � H . o � ���$ � . However, as we discussed
above, when we have incomplete data, we usually cannot
evaluate this posterior efficiently. For now, we address this
problem using the MAP approximation of (5). Thus, when
we want to compute expectation based on � $, we attempt to
learn MAP parameters for � $ and use these. This approx-
imation is fairly standard and can be done quite efficiently.
The computation of the MAP parameters can be done using
either EM (as done in the experiments described below),
gradient ascent or extensions of these methods. Moreover,
once we fix the MAP parameters, we can use standard in-
ference procedure using the model �S� $ � Θ̂).4

4We must remember, however, that this approximation is im-
precise, since it ignores most of the information of the posterior.
A possible way of improving this approximation is by considering
a better approximation of the posterior, such as ensemble methods
[20].

When we use the MAP approximation, we get a procedure
with the following structure:

Procedure Factored-Bayesian-SEM(© 0 ª o):
Loop for «A¬ 0 ª 1 ª
­
­
­ until convergence

Compute the MAP parameters Θ̂ ®y¯ for © ³ given o.
Perform search over models, evaluating each model by

Score a © : © ³ c'¬ v�Î µ¸· log Ï ®Î aSÐ ®Î cW° o ª © ±³ ª Θ̂ ®³ ¹
Let © ³#º 1 be the model with the highest score among

these encountered during the search.
if Score a © ³ : © ³ c'¬ Score a © ³"º 1 : © ³ c then

return © ³
To completely specify this procedure we have to decide on

the search method over structures. This depends on the class
of models we are interested in. In some classes of models,
such as the class of Chow trees, there are algorithms that
construct the best scoring model. (See [21] for a nice use
of this idea within an approach that is similar to Structural
EM.) In other cases, we must resort to a heuristic search
procedure, such as the ones discussed above. In general, any
search procedure the exploits the decomposition properties
of factored models in complete data can be used within the
Factored-Bayesian-SEM algorithm.

Finally, as mentioned above, we need to estimate mo-
ments (e.g., mean and variance) of the distribution of � 3 in
order to evaluate the score of a factor 5 3 . If many models
share similar factors, we can cache the results of these com-
putations. As a consequence, the evaluation of many models
does not require additional inference. In some cases, we can
schedule computation in advance, if we know which factors
we will be examined during the search. A simple example
of this idea is, again, the algorithm for learning Chow trees.
In this case, we know in advance that we need to evaluate
all factors that involve pairwise interactions between vari-
ables. Thus, we can compute the necessary information
in one pass over the training data. (Again, see [21] for a
nice use of this idea.) In addition the caching strategy can
use the fact that for many classes of exponential families,
such as multinomials and Gaussians, we can marginalize
the sufficient statistics for one factor from these of another
factor.

The upshot of this discussion is that we can use effi-
cient search techniques inside the Bayesian Structural EM
loop. These search algorithms can evaluate many candi-
dates, since most candidates they explore share many fac-
tors. Thus, each new candidate might require evaluation of
the expected score of only a few factors. In many cases,
examining a new model requires no new factors to be eval-
uated.

4.1 COMPUTING ¿RÀ log
� �S�0�MÁ

We now examine how to approximate the value of¿RÀ log
� �M����Á . For the purpose of this discussion assume

that the factor in question is fixed and we omit the denote
by]#����� � ^p����� and

� ����� the associated functions.
We start our analysis by examining the distribution over

the accumulated sufficient statistics � . Recall that � is a
sum of the form v � ^p� U� � , where U

�
denotes the comple-

tion of the Ñ ’th instance under possible completions of the
data. Since the joint distribution defined by any model over
H is a product of independent distributions, one for each
instance in the data, we have that the variables ^p� U� � are
independent. Using the central limit theorem we have that
the distribution of � can be approximated by a Gaussian dis-
tribution with mean ¿RÀ��ÍÁÄ� v � ¿RÀ�^_� U� �MÁ , and covariance

matrix Σ À �ÍÁÒ� v � Σ À�^p� U� �MÁ . Both of these can be accumu-

lated by performing some computation on each instance in
the training data. Usually, we can compute the covariance
matrix based on the same computations we use in order to
compute the expected sufficient statistics

This observation implies that the distribution of � be-
comes sharply peaked as the expected number of “effec-
tive” samples in the data grows. The “effective” samples
are samples whose probability is sensitive to changes in
the parameters of the factor. Formally, these are samples
for which ^p� U� � is not zero. For example, when learning
multinomial Bayesian networks, the effective samples for
the factor = [L pa ETF H J are these where Pa � � 3 �Ó� pa � � 3 � (or
can be assigned that value in some completions of the data).

As mentioned above, the simplest approximation of¿RÀ log
� �S�0��Á is using (8). This approximation is precise if

log
� �S�0� is linear in � . It can be fairly accurate if log

� �S�0�
can be approximated by linear function in the vicinity of¿RÀ��ÍÁ . Since most of the the density is assigned to values
of � in this region, this results in a good approximation.
Formally, using Taylor expansion, to get that:

log
� �S�0�Ô� log

� �M¿RÀ��'ÁS�'Õ��S�4»Ö¿RÀ��'ÁS��×-� log
� �Q�S¿RÀ��ÍÁS�'Õ

1
2 �S�4»²¿RÀ��ÍÁS�MØÄ× 2 � log

� �Q�S� � ���M�4»Ù¿¤À �ÍÁS�
where � � is a point along the line from ¿RÀ��'Á to � . When we
take expectation over the right hand side, the second term
cancels out. Thus, the difference between ¿¤À log

� �M����Á and
log
� �S¿¤À �ÍÁS� , is the integration of the quadratic term in the

Taylor expansion. If we can show that the norm of the
Hessian × 2 � log

� � is bounded in the region of high density
around ¿RÀ��ÍÁ , then we can bound the error.

My conjecture is that for factors from the regular expo-
nential family, the norm of the Hessian asymptotes to 0, as
the expected number of effective samples for � grows. This
is easily verified for multinomial factors. In this case, using
simple approximation to the derivatives of log Γ ����� , we get
that the elements of the Hessian are roughly of the form

1� � H » 1v H � � H . Thus, as the size of the expected counts

grows, the Hessian matrix vanishes. This implies for multi-
nomial factors, in cases where the expected counts are far
from 0, we can safely use the linear approximation of (8).
I hope to provide a more definitive characterization of the
conditions under which this approximation is close in the
full version of this paper.

In cases where the linear approximation to log
� ����� does

not suffice, we can get a better approximation by using the
Gaussian approximation to the distribution over the values
of � . Thus, we can approximate ¿RÀ log

� �S�0��Á by an integral
over a Gaussian

¿RÀ log
� �S�0�MÁ@¥}� log

� �S�0��Ú��M� : ¿RÀ��ÍÁ � Σ À��ÍÁS��~b� � (9)

where ÚI� X : Û � Σ � is the multivariate Gaussian with mean Û
and covariance matrix Σ. Note that the central limit theorem
implies that the normal approximation is fairly good even
for relatively small number of instances.

There are several methods for evaluating the right-hand
side of (9). If the dimension of � is small, we can use numer-
ical integration techniques to directly evaluate the integral.
If the dimension of � is large, we can use Laplace’s ap-
proximation. Here we have good reasons to believe that,
if log

� ����� is well-behaved, then the integration is over
a unimodal function, and therefore Laplace’s approxima-
tion would work well. To perform Laplace’s approxima-
tion in this case, we need to find the maximum point of

alarm insurance
Method 500 1000 2000 4000 500 1000 2000 4000
.10

BDe (S) 1.046 +- .1210 0.504 +- .0596 0.315 +- .0423 0.214 +- .0238 1.600 +- .1042 1.075 +- .0652 0.750 +- .1205 0.449 +- .0423
BDe (I) 1.151 +- .0435 0.603 +- .0888 0.337 +- .0754 0.247 +- .0147 1.855 +- .1173 1.336 +- .0727 0.889 +- .1521 0.516 +- .0839
BDe (La) 1.251 +- .0933 0.841 +- .1309 0.372 +- .0541 0.269 +- .0312 2.099 +- .1485 1.634 +- .1279 0.939 +- .0875 0.825 +- .1806
BDe (Li) 1.135 +- .0741 0.566 +- .0628 0.283 +- .0264 0.257 +- .0104 1.893 +- .1442 1.296 +- .1105 0.842 +- .1531 0.543 +- .0826
BIC 2.784 +- .1779 1.257 +- .1758 0.628 +- .0857 0.594 +- .0397 2.965 +- .2642 1.850 +- .1543 1.446 +- .1449 0.950 +- .0961

.20
BDe (S) 1.532 +- .2158 0.724 +- .0796 0.439 +- .0894 0.259 +- .0056 2.135 +- .2018 1.623 +- .0845 1.103 +- .1435 0.668 +- .0810
BDe (I) 1.581 +- .2534 0.995 +- .0655 0.634 +- .0820 0.282 +- .0848 2.328 +- .1017 1.933 +- .1418 1.423 +- .0545 0.721 +- .0749
BDe (La) 1.985 +- .2114 0.984 +- .1510 0.645 +- .0364 0.470 +- .1002 2.879 +- .2236 2.069 +- .3054 1.599 +- .2313 0.819 +- .0785
BDe (Li) 1.476 +- .2226 1.056 +- .0908 0.614 +- .0630 0.228 +- .0348 2.391 +- .3829 1.791 +- .1933 1.323 +- .2199 0.796 +- .1157
BIC 3.171 +- .4608 1.870 +- .1891 0.900 +- .1863 0.564 +- .0298 3.453 +- .2542 2.614 +- .1835 1.975 +- .0730 1.490 +- .1148

.30
BDe (S) 2.173 +- .1349 1.239 +- .1555 0.754 +- .1098 0.455 +- .1770 2.974 +- .3019 2.211 +- .0769 1.859 +- .2894 1.196 +- .2880
BDe (I) 2.683 +- .3791 1.482 +- .2893 0.832 +- .0636 0.411 +- .1049 3.515 +- .3060 2.226 +- .1221 2.046 +- .1391 1.379 +- .1801
BDe (La) 3.416 +- .3835 1.576 +- .2279 1.008 +- .1685 0.675 +- .0611 3.515 +- .1865 2.781 +- .3146 1.923 +- .1734 1.511 +- .1739
BDe (Li) 2.866 +- .3641 1.685 +- .1504 1.021 +- .1724 0.579 +- .1531 3.473 +- .3690 2.475 +- .1619 2.039 +- .1147 1.634 +- .2823
BIC 3.942 +- .3839 3.131 +- .1883 1.866 +- .1700 0.810 +- .0950 4.126 +- .3303 3.320 +- .3162 2.156 +- .1297 1.874 +- .1209

.40
BDe (S) 3.852 +- .5568 2.192 +- .3096 1.255 +- .1653 1.794 +- 1.8763 4.342 +- .5313 3.181 +- .3114 2.024 +- .1074 1.945 +- .1730
BDe (I) 4.430 +- .1813 2.564 +- .4480 1.690 +- .2122 1.824 +- 1.8615 4.320 +- .5381 3.289 +- .4039 2.238 +- .1617 2.130 +- .1716
BDe (La) 4.429 +- .2635 3.038 +- .3359 1.887 +- .2115 1.006 +- .1781 4.416 +- .5386 3.246 +- .4745 2.778 +- .3226 2.017 +- .1206
BDe (Li) 4.550 +- .2485 3.061 +- .3884 1.553 +- .2431 0.740 +- .1217 4.946 +- .4052 3.584 +- .4422 2.345 +- .1130 2.025 +- .0769
BIC 5.645 +- .6852 3.821 +- .0919 2.883 +- .4775 1.549 +- .2079 6.054 +- .1423 3.714 +- .2343 2.966 +- .3040 2.154 +- .0337

Table 1: Experimental results for learning with various percentage of missing values. The number in each cell indicates
the mean and standard deviation of the KL divergence of the learned network to the true network from 5 different training
sets (smaller is better). The variants of the BDe score are S, I, L, and N and they correspond to summation, integration,
Laplace’s, and linear approximations, respectively

9R�M��� � log
� �M����ÚI�S� : ¿RÀ��'Á � Σ À��'ÁS� and then evaluate the

Hessian of log 9R�S�0� at that point. The first step can be
done by standard optimization methods (e.g., gradient as-
cent), and the second is a straight forward application of
Laplace’s approximation. Due to lack of space, I do not go
in to details.

In the reminder of this section, I will discuss how to apply
these approximations for Dirichlet factors. Using (4), we
have that:

log
� �:)�� n 1 �"!#!"!
� � n o ,��� log Γ � v 3 �-�n H �0» log Γ � v 3 �M�-�n H Õ²�Ö�Mq 3 �����Õ v 3
� log Γ �S�-�n H Õ²�Ù�Sq 3 ���0» log Γ �S�-�n H ���

It immediately follows, by linearity of expectations, that:¿RÀ log
� �:)�� n 1 �"!#!"!
� � n o ,���Á� v 3 ¿RÀ log Γ �M�-�n H Õ²�Ö�Mq 3 ���MÁÜ»¿RÀ log Γ � v 3
�M�-�n H ÕÝ�Ö�Mq 3 ������ÁÞÕ²Å �

where Å is some constant term that depends only on the prior.
As we can see, we can approximate each of the expec-

tations individually. Since each one of these involves only
one count, we will simplify notation somewhat. Assume
that Û 3 and ß 23 are the mean and variance of some count � 3 .
Also, let �-�3 be the prior count for the same event. Finally,
let à 3 , and � 3 be the minimal and maximal values that � 3
can take in the data. (These can be easily recorded during
the computation of expected sufficient statistics.) We now
consider three approximations to ¿¤À log Γ �S� 3 ÕÝ�-�3 �MÁ .

Summation: In this approximation, we iterate over the
possible integral values of � 3 (from à 3 to � 3). For each
value of � 3 , we estimate the probability á@�M� 3 � using the
Gaussian function, by integrating the range À�� 3 » 1

2

� � 3 Õ 1
2 Á

(for the extreme values à 3 and � 3 , we also include also
the volume of the tail of the the distribution). We then
approximate ¿RÀ log Γ �S� 3 ÕÝ�-�3 ��Á asv � H� H CÜâ H log Γ �M� 3 Õ¶�-�3 �DáV�S� 3 � !

This method does not scale when � 3 can take many values.
However, I use is it a baseline to evaluate other approxima-
tions.

Integration. Using the continuous approximation to the
sum above, we have that¿RÀ log Γ �S� 3 Õ²�/�3 ��ÁÒ¥ | log Γ

� �M� 3 ÕÝ�-�3 ��ÚI�S� 3 : Û 3 � ß 23 ��~b� 3 �
where Γ

� ����� is the “truncated” Γ ����� function: Γ
� �S�Ü�W� Γ �S�Ü�

if �ã�ÊÀ�à 3 Õ��-�3 � � 3 ÕÌ�/�3 Á , Γ
� �S�Ü�Ö� Γ �Sà 3 Õä� 3 � if�åÆ2à 3 ÕÝ�-�3 , and Γ

� �S�Ü�W� Γ �M� 3 Õ¶� 3 � if �åÂ2� 3 ÕÝ�-�3 .
This truncation is necessary since Γ �M��� grows to infinity as �
goes to 0. To evaluate this integral, we can use numerical in-
tegration procedures, called Hermite-Gaussian quadratures,
that are particularly suitable for integrals of this form and
can be encoded quite efficiently [1]. In the experiments
described below, I use this integration procedure with 16
evaluation points. I suspect that it would suffice to use a
smaller number of control points.

Laplace’s Approximation: Here we approximate the
integral of the Gaussian by finding the mode à of the inte-
grated function log Γ �S�Ü��ÚI�S� : Û 3 ÕÝ�-�3 � ß 23 � . In my imple-
mentation, I find this value by binary search.

Using Laplace’s approximation, we get that the integral is
approximated by:

log Γ �Mà{��X � 1
2 æTç'è�é H è_ê �HDë 2ì 2H �� 1 »Öß 23 � E log Γ J � � E â J

log Γ E â J »í� E log Γ J � E â J
log Γ E â J � 2 �:� � 1

2

I use standard approximations (e.g., [1]) to compute the first
and second derivatives of log Γ ����� .
5 EXPERIMENTAL RESULTS
5.1 METHODS
In this section, I describe results of experiments that indicate
the effectiveness of the general approach and evaluate the
alternative methods for computing scores discussed above.

X1

_H0 _H1

X2 X3

Y1 Y2 Y3 Z1 Z2 Z3

(a)

X1 X2 X3 X4 X5 X6 X7 X8

_H0 _H1 _H2

(b)

Figure 1: The networks used in learning with hidden vari-
ables. Shaded nodes correspond to hidden variables. (a)
3x1+1x3+3, (b) 3x8.

In addition, I also compare the resulting networks to net-
works learned using Structural EM with the BIC score (as
described in [12]).

All the variants of this procedure use the same general
architecture. There is a search module that performs greedy
hill climbing search over network structures. To evaluate
each network, this search procedure calls another module
that is aware of the metric being used and of the current
completion model. This module keeps a cache of expected
sufficient statistics (and in the case of the Bayesian score,
also variances and bounds) to avoid recomputations.

5.2 MISSING VALUES

Many real life data sets contain missing values. This poses
a serious problem when learning models. When learning
in presence of missing data, one has to be careful about the
source of omissions. In general, omission of values can be
informative. Thus, the learner should learn a model that
maximize the probability of the actual observations, which
includes the pattern of omissions. Learning procedures that
attempt to score only the observable data, such as the one de-
scribed here, ignore, in some sense, the missing values. This
is justified when data is missing at random (MAR). I refer
the interested reader to [23] for a detailed discussion of this
issue. We can circumvent this requirement if we augment
the data with indicator variables that record omissions, since
the augmented data satisfies the MAR assumption. Thus,
procedures, such as the one discussed here, are relevant also
for dealing with data that is not missing at random.

In order to evaluate the Bayesian Structural EM proce-
dure, I performed the following experiments that examine
the degradation in performance of the learning procedures as
a function of the percentage of missing values. In this exper-
iment, I generated artificial training data from two networks:
alarm—a network for intensive care patient monitoring [2]
that has 37 variables, and insurance—a network for clas-
sifying car insurance applications [3] that has 26 variables.
From each network I randomly sampled 5 training sets of
different sizes, and then randomly removed values from
each of these training sets to get training sets with varying
percentage of missing values.

For each training set, the Bayesian and the BIC procedures
were run from the same random initial networks with the
same initial random seeds. These initial networks were ran-
dom chain-like networks that connected all the variables. I
evaluated the performance of the learned networks by mea-
suring the KL divergence of the learned network to the

generating network. The results are summarized in Table 1.
As expected, there is a degradation in performance as the
percent of missing values grows. We see that the Bayesian
procedure consistently outperforms the BIC procedure, even
though both use the same prior over parameters.

As we can see from these results, the summation approx-
imation is consistently finding better networks. In some
cases, it finds networks with as much as 60% small error
than the linear approximation. This is especially noticeable
for in the smaller training sets. The integration approxima-
tion performs slightly worst, but often significantly better
than the linear approximation. These results match the hy-
pothesis that the linear approximation is most unsuitable
in small training sets. For larger training sets with small
percent of missing values, we see that the linear approxima-
tion performs quite well, and often better than the Laplace
approximation.

5.3 HIDDEN VARIABLES
In most domains, the observable variables describe only
some of the relevant aspects of the world. This can have ad-
verse effect on our learning procedure since the marginaliza-
tion of hidden quantities can lead to a complex distribution
over the observed variables. Thus, there is growing interest
in learning networks that include one or more hidden vari-
ables. The Structural EM approach gives us the tools for
learning a good structure with a fixed set of hidden variables.
We still need an additional mechanism to choose how many
hidden variables to add. This can be done using a simple
loop, since we are now searching over a linear scale. The
experiments in this section attempt to evaluate how good
our procedure is in learning such hidden variables and how
it compares with the BIC score which is easier to learn but
over penalizes network structures.

In the experiments, I used two networks with binary vari-
ables: The first is 3x1+1x3+3 with the topology shown in
Figure 1b. This network has hidden variables “meditating”
between two groups of observed variables. The second is
3x8 with the topology shown in Figure 1b. Here all the
variables seems to be correlated, although they are nicely
separated by the hidden ones. I quantified these networks
using parameters sampled from a Dirichlet distribution. For
each sampled value for the parameters, I run a standard
belief network learning procedure that used only the ob-
servable variables to see how “hard” it is to approximate the
distribution. I then chose the parameter settings that led to
the worst prediction on an independent test set.

I then sampled, from each network, training sets of sizes
500, 1000, 2000, and 4000 instances of the observable vari-
ables, and learned networks in the presence of 0, 1, 2, 3,
or 4 hidden binary variables using the both the Bayesian
Structural EM algorithm with the BDe metric with uniform
prior, and the BIC Structural EM algorithm that used the
same uniform prior over parameters. Both algorithms were
started with the same set of initial network structure and
randomized parameters.

In these experiments, the procedures are initialized by a
structure in which all of the hidden variables are parents
of each observable variable. (See [12] for motivation for
the choice of this structure). As discussed above, both
the Bayesian and the BIC versions of Structural EM can
converge to local “structural” maxima. In the case of hidden
variables, this phenomena is more pronounced than in the
case of missing value. In these cases, the initial structure I
use is often close to a local maxima in the search.

To escape from these local maxima, I use random pertur-
bations. The procedure uses two forms of perturbations. In

Hidden/ 3x1+1x3+3 3x8
Method 500 1000 2000 4000 500 1000 2000 4000

0
BDe .1410 +- .0246 .0741 +- .0205 .0421 +- .0123 .0274 +- .0046 .1591 +- .0226 .0819 +- .0104 .0535 +- .0057 .0386 +- .0046
BIC .1469 +- .0274 .0796 +- .0233 .0356 +- .0035 .0267 +- .0029 .1383 +- .0192 .0792 +- .0108 .0502 +- .0035 .0328 +- .0038

1
BDe (S) .0964 +- .0250 .0384 +- .0056 .0240 +- .0048 .0159 +- .0027 .1063 +- .0182 .0423 +- .0138 .0419 +- .0028 .0261 +- .0011
BDe (I) .0698 +- .0195 .0431 +- .0107 .0222 +- .0023 .0165 +- .0011 .1085 +- .0241 .0438 +- .0111 .0319 +- .0060 .0235 +- .0043
BDe (La) .0831 +- .0132 .0374 +- .0041 .0214 +- .0027 .0151 +- .0022 .0892 +- .0235 .0513 +- .0122 .0348 +- .0099 .0224 +- .0058
BDe (Li) .0920 +- .0201 .0409 +- .0088 .0241 +- .0058 .0144 +- .0026 .1078 +- .0138 .0443 +- .0093 .0358 +- .0056 .0227 +- .0060
BIC .0929 +- .0101 .0590 +- .0166 .0224 +- .0028 .0182 +- .0024 .1152 +- .0213 .0635 +- .0092 .0294 +- .0051 .0247 +- .0076

2
BDe (S) .0720 +- .0249 .0304 +- .0037 .0174 +- .0039 .0100 +- .0034 .0785 +- .0223 .0422 +- .0112 .0209 +- .0024 .0163 +- .0053
BDe (I) .0731 +- .0321 .0323 +- .0051 .0147 +- .0046 .0098 +- .0022 .0907 +- .0244 .0364 +- .0085 .0228 +- .0031 .0134 +- .0057
BDe (La) .0702 +- .0307 .0403 +- .0088 .0127 +- .0039 .0113 +- .0037 .0769 +- .0336 .0485 +- .0212 .0221 +- .0038 .0157 +- .0030
BDe (Li) .0646 +- .0175 .0290 +- .0043 .0134 +- .0042 .0070 +- .0020 .0619 +- .0209 .0344 +- .0054 .0196 +- .0021 .0165 +- .0017
BIC .0952 +- .0259 .0333 +- .0035 .0133 +- .0028 .0082 +- .0019 .1074 +- .0494 .0428 +- .0069 .0209 +- .0015 .0204 +- .0035

3
BDe (S) .0875 +- .0282 .0504 +- .0221 .0253 +- .0075 .0158 +- .0021 .0386 +- .0176 .0365 +- .0168 .0248 +- .0095 .0158 +- .0042
BDe (I) .0889 +- .0245 .0382 +- .0062 .0229 +- .0099 .0100 +- .0044 .0516 +- .0165 .0409 +- .0251 .0193 +- .0099 .0106 +- .0040
BDe (La) .1079 +- .0157 .0335 +- .0153 .0166 +- .0066 .0138 +- .0050 .0465 +- .0156 .0274 +- .0094 .0148 +- .0084 .0123 +- .0068
BDe (Li) .1058 +- .0215 .0298 +- .0080 .0198 +- .0031 .0143 +- .0052 .0481 +- .0268 .0276 +- .0053 .0184 +- .0073 .0136 +- .0056
BIC .1108 +- .0383 .0574 +- .0203 .0143 +- .0044 .0096 +- .0040 .0679 +- .0217 .0185 +- .0073 .0082 +- .0020 .0073 +- .0048

4
BDe (S) .0678 +- .0179 .0676 +- .0157 .0615 +- .0167 .0263 +- .0089 .0628 +- .0147 .0673 +- .0063 .0309 +- .0042 .0154 +- .0032
BDe (I) .0942 +- .0217 .0847 +- .0296 .0365 +- .0196 .0206 +- .0065 .0564 +- .0260 .0448 +- .0160 .0321 +- .0096 .0145 +- .0040
BDe (La) .0880 +- .0163 .0357 +- .0159 .0365 +- .0098 .0220 +- .0053 .0458 +- .0189 .0372 +- .0096 .0262 +- .0065 .0158 +- .0027
BDe (Li) .1105 +- .0308 .0373 +- .0108 .0228 +- .0047 .0125 +- .0016 .0594 +- .0230 .0266 +- .0088 .0185 +- .0075 .0133 +- .0045
BIC .1181 +- .0131 .0628 +- .0186 .0260 +- .0087 .0162 +- .0105 .0715 +- .0252 .0279 +- .0128 .0151 +- .0057 .0082 +- .0033

Table 2: Performance on an independent test set for the networks learned with hidden variables using the BDe and BIC
scores. The reported numbers correspond to the difference in log loss on the test set between the generating distribution
and learned distributions. The mean and standard deviation of this quantity for run on 5 data sets are reported. The labels
of the rows indicate the number of hidden variables that were learned and the procedure used.

the first type of perturbations, a change the local neighbor-
hood of the hidden variables is tried. This is done either by
adding an edge to/from a hidden variable to another vari-
able (which might be hidden), or reversing such an edge.
After such a single edge change, the procedure restarts the
Structural EM procedure with the new structure and runs
until convergence. This is repeated where at each stage the
procedure perturbs the best structure found so far. The pro-
cedure uses the Cheeseman-Stutz score [6, 7] to evaluate
structures from different runs of Structural EM. (The BIC
version uses the marginal BIC score.) This is repeated for
up to five perturbations. After this type of perturbations are
tried, the procedure applies the second type of perturbation,
which is simply a random sequence of moves (edge addition,
deletion and reversal). In the experiments the procedure ap-
plied 20 such changes. Then the procedure is restarted using
the basic Structural EM procedure and the first type of per-
turbations. After 10 such random walks, or if the time limit
is reached the procedure is terminated.

The results summarized in Table 2, show that the variants
of the Bayesian procedure usually make better predictions
than the BIC score, but not always. Also, the performance
of the linear approximation is often better than other approx-
imations. The main explanation for both of these discrep-
ancies from the missing data case, is that in these learning
problems the main improvements where achieved by runs
that where initialized by the “right” random perturbations.
Since, all the runs were terminated after 30 CPU minutes,
the runs with the BIC score and the BDe with linear ap-
proximation have gone through many more random restarts
than the other runs. This is most noticeable in the cases
where there are more hidden variables, since they require
many score evaluations for factors with incomplete data and
the search space they define contain more local maxima.
The structures learned where also quite close to the original
structure. Due to space restrictions, I cannot elaborate on
this here.

6 DISCUSSION

In this paper, I described a new approach for Bayesian model
selection in belief networks and related models. I believe
that this approach is exciting since it attempts to directly
optimize the true Bayesian score within EM iterations. The
paper describes a framework for building algorithms that
learn from incomplete data. This framework provides some
guarantees, but leaves open such issues as the collection
of sufficient statistics and the computation of the expected
score for each factor. These details can be filled in for each
class of models.

There is quite a bit of related work on learning from incom-
plete data. The general idea of interleaving structure search
with EM-like iteration appeared in several papers. The first
Structural EM paper, Friedman [12] introduced the frame-
work and established the first formal convergence results.
Singh [25] had a similar insight although his procedure is
somewhat different. Like the Structural EM procedure, his
procedure is iterative. In each iteration, it generates � joint
assignments to all missing values using the best model from
previous iterations. His procedure then invokes the learning
procedure of Cooper and Herskovits [9] on each one of the
completed datasets. Finally, Singh’s procedure merges the
learned networks, trains parameters for this merged network
using standard EM procedure, and reiterates. This approach
can be interpreted as a stochastic approximation of Struc-
tural EM. The analysis of this paper gives insight into the
limiting behavior of Singh’s algorithm. More precisely, by
using � completed datasets, Singh approximates the expec-
tation of the score. However, instead of combining these
estimates within a single search procedure, Singh searches
for structures independently on each one of the completed
datasets. This leads to various complications, such as the
need to merge the learned networks.

Some variants of Structural EM have been proposed by
Meila and Jordan [21] and Thiesson et al. [27]. Both of
these variants learn multinets in which the selector variable

is hidden (these can be thought of mixtures of Bayesian
networks). Meila and Jordan learn multinets in which each
network is a Chow tree. They exploit this restriction to
collect all required statistics in one pass at each iteration.
Although they do not provide any formal treatment of their
procedure, the analysis of [12] directly applies to their ap-
proach, and shows that their procedure will converge to a
local maximum. Thiesson et al. [27] aim to learn general
multinets using the Cheeseman-Stutz score [6]. By exam-
ining approximations to this score they motivate a learning
algorithm that, in the terminology of this paper, can be seen
as an instance of Factored-Bayesian-SEM, using the linear
approximation, applied to multinets. Thiesson et al. use an
efficient method for caching expected statistics when most
of the variables of interest are Gaussian, that can answer all
queries during the structure search after a single pass on the
training data at each iteration. The analysis in this paper
directly applies to their approach.

One restriction of the Structural EM algorithm is that it
focuses on learning a single model. In practice, we often
want to use a committee of several high scoring models for
prediction. Such committees can provide a better approxi-
mation of Eq. (1) and ensure that we do not commit to the
particulars of a single model when the evidence also sup-
ports other models. Both Meila and Jordan, and Thiesson et
al. attempt to approximate such committees by learning mix-
ture models, where each mixture component is a Bayesian
network. Nonetheless, they are learning a MAP model, in a
larger class of models. This might be useful, if the source
of the data can be better described by a mixture. However,
it does not address the dependency on a single model.

Alternatively, we might attempt to directly follow the ba-
sic Bayesian principle as formulated in Eq. (1), and perform
Bayesian model averaging. In this approach, members of
the committee are weighted by their posterior probability. It
turns out that we can use a variant of Bayesian Structural EM
to learn Bayesian committees. Roughly speaking, we can
run Bayesian Structural EM where the “current” candidate
at each stage is a Bayesian committee of models (i.e., each
model is weighted by its posterior probability). Then, at
each iteration we choose the � models that have the highest
expected score given the current committee. The formal
treatment of this idea is somewhat more complex, and is the
topic of current research.

There are several other issues that require additional un-
derstanding. In particular, although I provided convergence
proofs for the abstract version of the algorithm, it is still not
clear whether these proofs apply given the approximations
need to perform this algorithm in practice. Empirical expe-
rience shows that the procedure does consistently converge.
However, better theoretical understanding is called for.

An additional aspect glossed over in this presentation is
the computation of the expected statistics. This requires
large number of computations during learning. This is the
main bottleneck in applying this technique to large scale
domains. It is clear that we should be able to improve the
standard inference procedures by exploiting the fact that we
are evaluating the same set of queries over large number
of instances. Moreover, stochastic simulation seems an
attractive approach to examine in this context, since we
can use the same sample to evaluate many queries. This,
however, requires a more careful analysis of the effect of the
noise in the estimation on the convergence properties of the
algorithm. Finally, it would be interesting to understand if
it is possible to combine variational approaches (e.g., [24])
with this type of learning procedures.

Another major open question is how to decide, in an in-

telligent fashion, on the number of hidden variables. Right
now, the approach used in this paper (and in [12, 21, 27]) is
to learn models with 1 hidden variable, 2 hidden variables,
etc., and then to select the network with the highest score.
This is clearly a blind approach. Moreover, the qualitative
model learned with a hidden variable depends on the ini-
tial structure used by the Structural EM procedure. Current
research examines how to combine the Structural EM pro-
cedure with constraint-based approaches, such as these of
[26] that learn constraints as to the possible positions of hid-
den variables, to guide the introduction of hidden variables
during the search.

Acknowledgments
I am grateful to Danny Geiger, Moises Goldszmidt, Daphne Koller,
Kevin Murphy, Ron Parr, Stuart Russell, and Zohar Yakhini for
useful discussions relating to this work. I would like to thank an
anonymous referee, whose comments prompted lead me to investi-
gate the appropriateness of the linear approximation in more detail.
Some of this work was done while I was at SRI International. This
research was supported by ARO under grant number DAAH04-
96-1-0341 and by ONR under grant number N00014-97-1-0941.

References
[1] M. Abramowitz and I. A. Stegun, eds. Handbook of Mathematical Functions.

1964.
[2] I. Beinlich, G. Suermondt, R. Chavez, and G. Cooper. The ALARM monitor-

ing system. In Proc. 2’nd Euro. Conf. on AI and Medicine, 1989.
[3] J. Binder, D. Koller, S. Russell, and K. Kanazawa. Adaptive probabilistic

networks with hidden variables. Machine Learning, 29:213–244, 1997.
[4] C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller. Context-specific

independence in Bayesian networks. In UAI ’96, pp. 115–123. 1996.
[5] W. Buntine. Learning classification trees. In D. J. Hand, ed., AI & Stats 3,

1993.
[6] P. Cheeseman and J. Stutz Bayesian classification (AutoClass): Theory and

results. In Advances in Knowledge Discovery and Data Mining, pp. 153–180,
1995.

[7] D. M. Chickering and D. Heckerman. Efficient approximations for the
marginal likelihood of Bayesian networks with hidden variables. Machine
Learning, 29:181–212, 1997.

[8] D. M. Chickering, D. Heckerman, and C. Meek. A Bayesian approach to
learning Bayesian networks with local structure. In UAI ’97, pp. 80–89, 1997.

[9] G. F. Cooper and E. Herskovits. A Bayesian method for the induction of
probabilistic networks from data. Machine Learning, 9:309–347, 1992.

[10] M. H. DeGroot. Optimal Statistical Decisions, 1970.
[11] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from

incomplete data via the EM algorithm. J. Royal Stat. Soc., B 39:1–39, 1977.
[12] N. Friedman. Learning Bayesian networks in the presence of missing values

and hidden variables. In ML ’97. 1997.
[13] N. Friedman and M. Goldszmidt. Learning Bayesian networks with local

structure. In M. I. Jordan, ed., Learning in Graphical Models, 1998. A
preliminary version appeared in UAI ’96..

[14] D. Geiger and D. Heckerman. Knowledge representation and inference in
similarity networks and Bayesian multinets. Artificial Intelligence, 82:45–74,
1996.

[15] D. Geiger, D. Heckerman, and C. Meek. Asymptotic model selection for
directed graphs with hidden variables. In UAI ’96, pp. 283–290. 1996.

[16] D. Heckerman. A tutorial on learning Bayesian networks. In M. I. Jordan,
ed., Learning in Graphical Models, 1998.

[17] D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian net-
works: The combination of knowledgeand statistical data. Machine Learning,
20:197–243, 1995.

[18] W. Lam and F. Bacchus. Learning Bayesian belief networks: An approach
based on the MDL principle. Computational Intelligence, 10:269–293, 1994.

[19] S. L. Lauritzen. The EM algorithm for graphical association models with
missing data. Computational Statistics and Data Analysis, 19:191–201, 1995.

[20] D. J. C. MacKay. Ensemble learning for hidden Markov models. Unpublished
manuscript, http://wol.ra.phy.cam.ac.uk/mackay, 1997.

[21] M. Meila and M. I. Jordan. Estimating dependency structure as a hidden
variable. In NIPS 10. 1998.

[22] J. Pearl. Probabilistic Reasoning in Intelligent Systems, 1988.
[23] D. R. Rubin. Inference and missing data. Biometrica, 63:581–592, 1976.
[24] L. Saul, T. Jaakkola, and M. Jordan. Mean field theory for sigmoid belief

networks. Journal of Artificial Intelligence Research, 4:61–76, 1996.
[25] M. Singh. Learning Bayesian networks from incomplete data. In AAAI ’97,

pp. 27–31. 1997.
[26] P. Spirtes, C. Glymour, and R. Scheines. Causation, prediction, and search,

1993.
[27] B. Thiesson, C. Meek, D. M. Chickering, and D. Heckerman. Learning

mixtures of Bayesian networks. In UAI ’98, 1998.

