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Abstract

In recent yearsthere has been aflurry of workson learning
Bayesian networks from data. One of the hard problems
in this area is how to effectively learn the structure of
a belief network from incomplete data—that is, in the
presence of missing values or hidden variables. Inare-
cent paper, | introduced an algorithm called Structural
EM that combinesthe standard Expectation Maximization
(EM) agorithm, which optimizes parameters, with struc-
ture search for model selection. That algorithm learns
networks based on penalized likelihood scores, which in-
clude the BIC/MDL score and various approximations to
the Bayesian score. In this paper, | extend Structural EM
to deal directly with Bayesian model selection. | provethe
convergence of the resulting algorithm and show how to
apply it for learning a large class of probabilistic models,
including Bayesian networks and some variants thereof.

1 INTRODUCTION

Belief networks are a graphical representation for proba-
bility distributions. They are arguably the representation
of choice for uncertainty in artificial intelligence and have
been successfully applied in expert systems, diagnostic en-
gines, and optimal decision making systems. Eliciting be-
lief networksfrom experts can be alaborious and expensive
process. Thus, in recent years there has been a growing in-
terest in learning belief networks from data [9, 16, 17, 18].
Current methods are successful at learning both the struc-
ture and parametersfrom complete data—that is, when each
data record describes the values of al variablesin the net-
work. Unfortunately, things are different when the data is
incomplete. Until recently, learning methods were almost
exclusively used for adjusting the parameters for a fixed
network structure.

The inability to learn structure from incomplete data is
considered as one of the main problemswith current state of
the art technology for several reasons. First, most real-life
data contains missing values One of the cited advantages of
belief networks (e.g., [16]) is that they allow for principled
methods for reasoning with incomplete data. However, itis
unreasonable at the same time to require complete data for
training them. Second, learning aconcisestructureiscrucial
both for avoiding overfitting and for efficient inference in
the learned model. By introducing hidden variablesthat do
not appear explicitly in themodel we can often learn simpler
models.

In [12], | introduced a new method for searching over
structures in the presence of incomplete data. The key idea
of this method is to use our “best” estimate of the distribu-
tion to completethe data, and then use proceduresthat work
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efficiently for complete data on this completed data. This
followsthe basic intuition of the Expectation Maximization
(EM) agorithm for learning parametersin a fixed paramet-
ric model [11]. Hence, | call this method Structural EM.
(In[12], the name MS-EM was used.) Roughly speaking,
Structural EM performs search in the joint space of (Struc-
ture x Parameters). At each step, it can either find better
parameters for the current structure, or select a new struc-
ture. The former caseis a standard “ parametric” EM step,
while the later is a “structural” EM step. In [12], | show
that for penalized likelihood scoring functions, such as the
BIC/MDL score[18], this procedure converges to a*“local”
maxima.

A drawback of the algorithm of [12] isthat it applies only
to scoring functions that approximate the Bayesian score.
There are good indications, both theoretical and empirical,
that the exact Bayesian score provides a better assessment
of the generalization properties of a model given the data.
Moreover, the Bayesian score provides a principled way of
incorporating prior knowledge into the learning process.*

To compute the Bayesian score of a network, we need
to integrate over all possible parameter assignments to the
network. In general, when data is incomplete, this inte-
gral cannot be solved in closed form. Current attempts to
learn from incomplete data using the Bayesian score use
either stochastic simulation or Laplace's approximation to
approximatethisintegral (see[7] and thereferenceswithin).
The former methods tend to be computationally expensive,
and the latter methods can be imprecise. In particular, the
L aplace approximation assumesthat the likelihood function
is unimodal, while there are cases where we know that this
function has an exponential number of modes.

In this paper, | introduce a framework for learning prob-
abilistic models using the Bayesian score under standard
assumptions on the form of the prior distribution. As with
Structural EM, this method is also based on theidea of com-
pletion of the data using our best guess so far. However,
in this case the search is over the space of structures rather
than the space of structures and parameters.

This paper is organized as follows. In Section 2, | de-
scribe a class of models, which | call factored models, that
includes belief networks, multinets, decision trees, decision
graphs, and many other probabilistic models. | review how
to learn these from complete data and the problems posed
by incomplete data. In Section 3, | describe the Bayesian
Structural EM agorithmin arather abstract settingsand dis-
cussits convergence properties. Thealgorithm, as presented
in Section 3, cannot be directly implemented, and we need

LIt is worth noting that the Structural EM procedure, as pre-
sented in [12], is applicable to scores that include priors over pa-
rameters. Such scoresincorporate, to some extent, the prior knowl-
edge by learning MAP parametersinstead of maximum likelihood
ones.



to approximate some quantities. In Section 4, | discuss how
to adapt the algorithm for learning factored models. This
resultsin an approximate approach that is different from the
standard ones in the literature. It is still an open question
whether it is more accurate. However, the derivation of this
approximation is based on computational consideration of
how to search in the space of network structures. Moreover,
the framework | propose here suggests where possible im-
provements can be made. Finally, in Section 5, | describe
experimental results that compare the performance of net-
works learned using the Bayesian Structural EM algorithm
and networks learned using the BIC score.

2 PRELIMINARIES

In this section, | define a class of factored models that in-
cludes various variants of Bayesian networks, and briefly
discuss how to learn them from complete and incomplete
data, and the problemsraised by the latter case.

21 FACTORED MODELS

We start with some notation. | use capital letters, such as
X,Y, Z, for variable names and lowercase letters z, y, 2 to
denote specific values taken by those variables. Sets of
variables are denoted by boldface capital letters XY, Z,
and assignments of values to the variables in these sets are
denoted by boldface lowercaselettersx, y, z.

In learning from datawe areinterested in finding the best
explanation for the datafrom a set of possible explanations.
These explanations are specified by sets of hypotheses that
wearewilling to consider. We assumethat we haveaclassof
models M such that each model M € M is parameterized
by a vector @ such that each (legal) choice of values
OM defines a probability distribution Pr(- : M" @) over
possible data sets, where M" denotes the hypothesis that
the underlying distribution is in the model A7. (From now
on| use @ asashorthand for © when the model M isclear
from the context.) | require that the intersection between
models has zero measure, and from now on, we will treat
M" and M"" asdisjoint events.

We now examine conditions on M for which the algo-
rithms described below are particularly useful.

The first assumption considers the form of modelsin M.
A factored model M (for U = {X;,..., X,,}) is a para-

metric family with parameters @7 = (0} ... OM) that
defines ajoint probability measure of the florm:
Pr(Xa, ..., X, | M",0M) =TT, fM(Xy,..., Xn : OM),

where each fM is afactor whose value depends on some
(or al) of the variables X3, ..., X,,. A factored model is
separable if the space of legal choices of parametersis the
cross product of thelegal choicesof parameters®2 for each

M. In other words, if legal parameterization of different
factors can be combined without restrictions.

Assumption 1. All the models M are separable factored
models.

This assumption by itself is not too strong, since any
probability model can be represented by a single factor.
Here are some examples of non-trivially factored models
that are also separable.

Example2.1: A belief network [22] is an annotated di-
rected acyclic graph that encodes a joint probability dis-
tribution over U. Formally, a belief network for U is a
tuple B = (G, £,0). The first component, namely G, is

a directed acyclic graph whose vertices correspond to the
random variables X3, ..., X,, that encodes the following
set of conditional independence assumptions: each variable
X; isindependent of its non-descendants given its parents
in G. The second component of the tuple, namely £, isa
set of local models Ly, .. ., L,. Eachlocal model .; maps
possible values pa( X;) of Pa(Xj;), the set of parentsof X;,
to a probability measure over X;. Thelocal models are pa-
rameterized by parameters ©;. A belief network B defines
aunique joint probability distribution over U given by:

, Xn) = f_[Li(in Pa(X;) : ©:)

Pp(Xi,...

It isstraightforward to see that a belief network isafactored
model. Moreover, it is separable: since any combination of
locally legal parameters defines a probability measure. il

Example2.2: As a more specific example, consider be-
lief networks over variables that have a finite set of val-
ues. A standard representation of the local models in such
networks is by atable. For each assignment of values to
Pa(X;), the table contains a conditional distribution over
X;. In such networks, we can further decompose each
of the local models into a product of multinomial factors:
[Tpacx,) Lispagx,) (Xi, Pa(Xi)  ©; pax,)), Where®; pa(x,)
isavector that contains parametersd,; ,a(x,) for eachvalue
z; of X, and Li,pa(X,) (XZ', Pa(XZ») . Oiypa(Xl)) |59xl,pa(Xl)
if Pa(X;) = pa(X;) and X; = z;, and 1 otherwise. In
this case, we can write the joint probability distribution
PB(X]_, X | M,OM) as

[Tiza Mpax,) Lipagxs) (X, Pa(X;) & ©; parx,))-

Again, it is easy to verify that such a model is separable:
each combination of legal choices of ©; pax,) resultsin a
probability distribution. il

Other examples of separable factored models include
multinets [14], mixture models [6], decision trees [5], de-
cision graphs, and the combination of the latter two repre-
sentations with belief networks[4, 13, 8]. An example of a
class of models that are factored in a non-trivial sense but
are not separable are non-chordal Markov networks [22].
The probahility distribution defined by such networkshas a
product form. However, a change in the parametersfor one
factor requires changing the global normalizing constant
of the model. Thus, not every combination of parameters
resultsin alegal probability distribution.

Our next assumption involves the choice of factors in
the factored models. | require that each factor is from the
exponential family [10]: A factor is exponential if it can be
specified in the form

F(X:0) = @)=

wheret(©) and s(X) arevector valued functionsof thesame
dimension, and - is the inner product. 2

Example 2.3 It iseasy to verify that the multinomial fac-
tors from Example 2.2 are exponential. We can rewrite

2Standard definitions of the exponential family often include
an additional normalizing term and represent the distribution as

a(©)e®*X) However, this term can be easily accounted for
by adding an additional dimensionto ¢(-) and s(X).



Li,pa(X,)(Xia Pa(Xi)
by setting

t(ei,pa(Xl)) =
S(X) =

© O pa(x,)) in the exponentia form

-,logf,, pa(Xl)>
- Ly, pax,) (X))

where vy, . .., v; arethe possible values of X;, and 1y (x) if
thevaluesof Y C X iny match the values assigned to them
by x, and O otherwise. il

Other examples of exponential factors include univariate
and multivariate Gaussians, and many other standard distri-
butions (see, for example, [10]).

Assumption 2. All the models in A contain only expo-
nential factors.

2.2 BAYESIAN LEARNING

Assume that we have an input dataset D with some number
of examples. We want to predict other events that were
generated from the same distribution as D. To define the
Bayesian learning problem, we assume that learner has a
prior distribution over models Pr(A1"), and over the param-
eters for each model, Pr(©¥ | M"). Bayesian learning
attempts to make predictions by conditioning the prior on
the observed data. Thus, the prediction of the probability of
an event X, after seeing the training data, can written as:

(1098, pa(x.) -
<1v1,pa(X,)(X)7 .

Pr(X |D) = 3, Pr(X|M" D)Pr(M"|D)
= Y Pr(X | M, D) PRI O )
where
Pr(D | M") = [Pr(D | M" ©)Pr(@©| M")dO, (2)
and
Pr(X | M" D)= [Pr(X | M" ©)Pr(© | M", D)dO.

Usually, we cannot afford to sum over all possiblemodels.
Thus, we approximate (1) by using only the maximum a
posteriori (MAP) model, or using asum over several of the
modelswith highest posterior probabilities. Thisisjustified
when the data is sufficient to distinguish among models,
since then we would expect the posterior distribution to put
most of the weight on afew models.

2.3 LEARNING FROM COMPLETE DATA

When the data is complete, that is, each example in D
assigns value to al the variables in U, then learning can
exploit the factored structure of models. To do so, we need
to make assumptions about the prior distributions over the
parameters in each model. We assume that a priori, the
parametersfor each factor areindependent of the parameters
of all other factors and depend only on theform of thefactor.
These assumptions are called parameter independence and
parameter modularity by Heckerman et al. [17].

Assumption 3. For eachmodel M € M with k factorsthe
prior distribution over parameters has the form

Pr(eY,....e¢" | M") =T]; Pr(@} | M").
Assumption 4. If fM = fM for some M, M’ € M, then
Pr(} | M") = Pf(eﬁw | M),

Given Assumptions 3 and 4, we can denote the prior over
parameters of afactor f; asPr(G;).

In practice, it also useful to require that the prior for each
factor isaconjugate prior. For example, Dirichlet priorsare
conjugate priors for multinomial factors. For many types
of exponential distributions, the conjugate priors lead to a
closed-form solution for the posterior beliefs, and for the
probability of the data.

An important property of learning given these four as-
sumptionsis that the probability of complete data given the
model a so has afactored form that mirrorsthe factorization
of the model.

Proposition 2.4: Given Assumptions 1-4 and a data set
D = {u!, ..., u"} of complete assignmentsto U, the score
of amodel M that consists of k£ factors f1, ..., fx,is

HF< ] lsl ))’

Pr(D | M")

where
Fi(S) = /eMGZ)'S Pr(©;)do;,

and ¢;(-), and s;(-) are the the exponential representation
of fi

It important to stress that terms in the score of Proposi-
tion 2.4 depend only on accumulated sufficient statisticsin
thedata. Thus, to evaluate the score of amodel, we can use
asummary of the datain the form of accumulated sufficient
statistics.

Example 2.5 We now completethe description of thelearn-
ing problem of multinomial belief networks. Following
[9, 17] we use Dirichlet priors. A Dirichlet prior for a
multinomial distribution of avariable X is specified by a

set of hyperparameters{ N, , ..., N, } wherevy, ..., v are
the values of X. We say that
Pr(©) ~ Dirichlet({N/,, ..., N.,}) if Pr(©) o L, 60" .

For a Dirichlet prior with parameters N, ,..., N the
probability of the values of X with sufficient statistics

S = {(Ny,, ..., Ny, )isgiven by
TN TNy +Nv,)
F$) = T (N +N)) =ty @
where [ (z) = [i° "~ 1e~!dt is the Gamma function. For

more details on Dirichlet priors, see [10].

Thus, to learn multinomial Bayesian networks with
Dirichlet priors, we only need to keep counts of the form
Ng pacx,) for families we intend to evaluate. The score of
the network is a product of terms of the form of (4), one
for each multinomial factor in the model; see [9, 17]. A
particular score of thisformisthe BDe score of [17], which
we use in the experiments below. I

L earning factored models from datais done by searching
over the space of modelsfor amodel (or models) that max-
imizes the score. The above proposition shows that if we
changeafactored model locally, that is by replacing afew of
thefactors, then the score of the new model differsfrom the
score of the old model by only afew terms. Moreover, by
caching accumul ated sufficient statisticsfor variousfactors,
we can easily evaluate various combinations of different
factors.

Example 2.6: Consider the following examples of search
procedures that exploit these properties. The first is the



search used by most current procedures for learning belief
networks from complete data. This search procedure con-
siders all arc additions, removals and reversals. Each of
these operations changes only the factors that are involved
in the conditional probabilities distributions of one or two
variables. Thus, to execute a hill climbing search, we have
to consider approximately O (n?) neighborsfor at each point
in the search. However, the change in the score due to one
local modification remainsthe sameif we modified another,
unrelated, part of the network. Thus, at each step, the search
procedureneedsonly to evaluatethe O (n) modificationsthat
involve further changes to the parts of the model that were
changed in the previous iteration.

Another example of a search procedure that exploits the
same factorization properties is the standard “divide and
conquer” approach for learning decision trees, see for ex-
ample [5]. A decision tree is afactored model where each
factor correspondsto a leaf of thetree. If we replace aleaf
by subtree, or replace asubtree by aleaf, al of the other fac-
tors in the model remain unchanged. Thisformal property
justifiesindependent search for the structure of each subtree
once we decide theroot of thetree. il

24 LEARNING FROM INCOMPLETE DATA

Learning factored models from incomplete data is harder
than learning from complete data. Thisis mainly dueto the
fact that the posterior over parametersisno longer aproduct
of independent terms. For the same reason, the probability
of the datais no longer a product of terms.

Since the posterior distribution over the parameters of a
model is no longer a product of independent posteriors, we
usually cannot represent it in closed form. Thisimpliesthat
we cannot make exact predictions given a model using the
integral of (3). Instead we can attempt to approximate this
integral. The simplest approximation is by using MAP pa-
rameters. Roughly speaking, if we believethat the posterior
over parametersis sharply peaked, than theintegral in (3) is
dominated by the predication in a small region around the
posterior’'s peak. Thus, we approximate

Pr(X | M" D) ~ Pr(X | M" ©) (5)

where © is the vector of parameters that maximizes Pr(© |
M" D) < Pr(D | ©, M")Pr(®@ | M"). We can find
an approximation to these parameters using either gradient
ascent methods [3] or using EM [11, 19].

Since the probability of the data given a model no longer
decomposes, we need to directly estimate the integral of
(2). We can do so either using stochastic simulation, which
is extremely expensive in terms of computation, or using
large-sample approximations that are based on Laplace’s
approximation. The latter approximation assumes that pos-
terior over parameters is peaked, and use a Gaussian fit in
the neighborhood of the MAP parameters to estimate the
integral. We refer the reader to [7, 15] for a discussion of
approximations based on this technique.

The use of these approximations requires us to find the
MAP parametersfor each model wewant to consider before
we can score it. Thus, a search of model space requires
an expensive evaluation of each candidate. When we are
searching in a large space of possible models, this type of
search becomes infeasible—the procedure has to invest a
large amount of computation before making asingle change
in the model. Thus, athough there have been thorough
investigations of the properties of various approximations
to the Bayesian score, there have been few empirical reports
of experiments with learning structure, except in domains

wherethesearchisrestricted to asmall number of candidates
(eg., [6]).

3 THE STRUCTURAL EM ALGORITHM

In this section, | present the Bayesian Structural EM algo-
rithm for structure selection. This algorithm attempts to
directly optimize the Bayesian score rather than an asymp-
totic approximation. The presentation is in a somewhat
more general settings than factored models. In the next
section, we will see how to specializeit to factored models.

Assume that we have an input dataset D with some num-
ber of examples. For therest of this section, assumethat the
dataset is fixed, and denote each value, either supplied or
missing, in the data by a random variable. For example, if
we are dealing with a standard learning problem where the
training dataconsists of N i.i.d. instances, each of whichis,
a possibly partial assignment to k£ variables, then we have
kN random variables that describe the training data. | de-
note by O the set of observable variables; that is, the set of
variables whose values are determined by the training data.
Similarly, | denoteby H bethe set of hidden (or unobserved)
variables, that is, the variables that are not observed.

As before, we assume that we have a class of models
M such that each model M € M is parameterized by a
vector @ such that each (legal) choice of values @M de-
fines a probability distribution Pr(- : M, @) over V. We
also assume that we have a prior over models and parame-
ter assignmentsin each model. For the sake of clarity, the
following discussion assumes that all variables take values
fromaafinite set. However, theresultsin this section easily
apply to continuous variables, if we make standard continu-
ity and smoothness restrictions on the likelihood functions
of modelsin M.

To find a MAP model it suffices to maximize Pr(D |
M")Pr(M"), since the normalizing term Pr(D) is the
same for al the models we compare. As we have seen
in the previous section, if D contains missing values, then
we usually cannot evaluate Pr(D | M*") efficiently. For
the following discussion we assume that we can compute

or estimate the complete data likelihood, Pr(H, O | M").
Aswe have seen in the previous section, this assumption is
truefor the class of factored model s satisfying Assumptions
1-4. We will also assume that given a particular model, we
can perform the predictive inference of (3) efficiently. As
we have seen, athough this is not true for factored mod-
els, we can efficiently compute approximations for these
predictions (e.g., using the MAP approximation).

We now have the tools to describe the general outline of
the Bayesian Structural EM algorithm.

Procedure Bayesian-SEM(Mo, 0):
Loop for n = 0,1, ... until convergence
Compute the posterior Pr(@™= | M}, o).
E-step: For each M, compute
Q(M : M,) = E[logPr(H,0, M") | M} o]
= > hPr(h|o,M})logPr(h, o, M")
M-step Choose M, 1 that maximizes Q(M : My)
if Q(M,, : M) = Q(Mny1: My) then
return M,

The main idea of this procedure isthat at each iteration it
attempts to maximize the expected score of models instead
of their actual score. There are two immediate questionsto
ask. Why is this easier? and, what does it buy us? The
answer to the first question depends on the class of models
we are using. As we shall see below, we can efficiently
evaluate the expected score of factored models.



We now address the second question. The following the-
orem shows that procedure makes “progress’ in each itera
tion.

Theorem 3.1: Let My, My, ... be the sequence of models
examined by the Bayesian SEM procedure. Then,
logPr(o, M}, ;) — logPr(o, M)
Z Q(Mn+l : Mn) - Q(Mn : Mn)

Proof:
Iog%
= log Ty MSarke oM
- IogZhPf(h|0’Mr?)% ©
> ZhPr(h|0,M,?)|Og% @
- E[Iog%Mﬁvo]

= QMpy1: Myp) — Q(My 1 My)

where al the transformations are by agebraic manipula-
tions, and the inequality between (6) and (7) is a conse-
quence of Jensen’s inequality.® Il

This theorem impliesthat if Q(M, : My41) > Q(M,, :
M,,) then Pr(o, M, ;) > Pr(o, M/"). Thus, if we choose a
model that maximizes the expected score at each iteration,
then we are provably making a better choice, in terms of the
marginal score of the network. It isimportant to note that
this theorem also implies that we can use a weaker version
of the M -step:

M*-step Choose M,,+1 such that
Q(Myuy1: My) > Q(M, : M)

Thisis analogous to the Generalized EM algorithm. Us-
ing this variant, we do not need to evaluate the expected
score of all possible modelsin the E-Step. In fact, as we
shall see below, in practice we only evaluate the expected
score of a small subset of the models.

Theorem 3.1 implies that the procedure converges when
there is no further improvement in the objective score. As
an immediate consequence, we can show that the procedure
reaches such a point under fairly general conditions.

Theorem 3.2: Let My, My, ... be the sequence of models
examined by the Bayesian SEM procedure. If the number of
models in M isfinite, or if there is a constant ¢ such that
Pr(D | M" ©@M) < ¢ for all models M and parameters
oM then thelimit lim, _, ., Pr(o, M) exists.

Unfortunately, thereis not much we can say about the con-
vergence points. Recall that for the standard EM algorithm,
convergence points are stationary points of the objective
function. There is no corresponding notion in the discrete
space of models we are searching over. In fact, the most
problematic aspect of thisalgorithmisthat it might converge
to asub-optimal model. This can happen if the model gen-
erates a distribution that makes other models appear worse
when we examine the expected score. Intuitively, wewould
expect thisphenomenato become more common astheratio

3The same proof carriesover tothe case of continuousvariables.
We simply replace the summation over h with an integration. To
apply Jensen’sinequality we have to make some mild assumptions
on the density function defined by modelsin M.

of missing information is higher. In practice we might want
to run the algorithm from several starting points to get a
better estimate of the MAP model.

4 BAYESIAN STRUCTURAL EM FOR
FACTORED MODELS

We now consider how to apply the Bayesian Structural EM
algorithm for factored models. There are several issues that
weneedto addressin order to translatethe abstract algorithm
into a concrete procedure.

Recall that each iteration of the algorithm requires the
evaluation of theexpected score@ (M : M,,) for each model
we examine. Since the term inside the expected score in-
volves assignmentsto H, we can evaluate Pr(h, o | M"*) as
though we had complete data. Using Proposition 2.4 and
linearity of expectation we get the following property.

Proposition 4.1: Let D = {x!,...,x"} beatraining set
that consist of incomplete assignmentsto U. Given Assump-
tions 14, if M consists of k factors, f1, . . ., fr, then

EllogPr(H,0| M")] = 3%, Ellog F;(S;)],

where S; = Z;V: 1 5:(U7) is a random variable that repre-
sents the accumulated sufficient statistics for the factor f;
in possible completions of the data.

An immediate conseguence of this proposition is that the
expected score has the same decomposability properties as
the score with complete data—Ilocal changes to the model
result in changes in only a few terms in the score. Thus,
we can use complete data search proceduresthat exploit this
property, such as the ones discussed in Example 2.6.

Next, we address the evaluation of terms of the form
E[log F;(S;)]. Here we have few choices. The simplest
approximation has the form

E[log F;(Si)] ~ log F;(E[S;]) €S)

This approximation is exact if log F;(-) is linear in its ar-
guments. Unfortunately, this is not the case for members
of the exponential family. Nonetheless, in some cases this
approximation can be reasonably accurate. In other cases,
we can correct for the non-linearity of log F;(+). In the next
section, | expand on these issues and outline possible ap-
proximationsof E{log F;(.S;)]. All of these approximations
use E[S;] and some of them also use the covariance matrix
of the vector S.

Computing these expectations (and variances) raises the
next issue: How to compute the probability over assign-
ments to H? According to the Bayesian-SEM procedure,
we need to use Pr(H | o, M}*). However, as we discussed
above, when we have incomplete data, we usually cannot
evaluate this posterior efficiently. For now, we address this
problem using the MAP approximation of (5). Thus, when
wewant to compute expectation based on M,,, we attempt to
learn MAP parametersfor M,, and use these. This approx-
imation is fairly standard and can be done quite efficiently.
The computation of the MAP parameters can be done using
either EM (as done in the experiments described below),
gradient ascent or extensions of these methods. Moreover,
once we fix the MAP parameters, we can use standard in-

ference procedure using the model (A, é) A

“We must remember, however, that this approximation is im-
precise, since it ignores most of the information of the posterior.
A possible way of improving this approximationis by considering
abetter approximation of the posterior, such as ensemble methods
[20].



Whenwe usethe M AP approximation, we get aprocedure
with the following structure:

Procedure Factored-Bayesian-SEM(Mo, 0):
Loop for n = 0,1,... until convergence

Compute the MAP parameters @™~ for M,, given o.

Perform search over models, evaluating each model by
Score(M : M) =>_. Ellog FM(SM) | o, M}, ©}]

Let M, 41 be the model with the highest score among
these encountered during the search.

if Scorg( M, : My,) = Score( My 41 : My,) then
return M,

To completely specify thisprocedurewe haveto decide on
the search method over structures. Thisdependsontheclass
of models we are interested in. In some classes of models,
such as the class of Chow trees, there are algorithms that
construct the best scoring model. (See [21] for a nice use
of thisidea within an approach that is similar to Structural
EM.) In other cases, we must resort to a heuristic search
procedure, such asthe onesdiscussed above. Ingeneral, any
search procedure the exploits the decomposition properties
of factored modelsin complete data can be used within the
Factored-Bayesian-SEM algorithm.

Finally, as mentioned above, we need to estimate mo-
ments (e.g., mean and variance) of the distribution of .S; in
order to evaluate the score of a factor f;. If many models
share similar factors, we can cache the results of these com-
putations. Asaconsequence, the evaluation of many models
doesnot require additional inference. In some cases, we can
schedule computation in advance, if we know which factors
we will be examined during the search. A simple example
of thisideais, again, the algorithm for learning Chow trees.
In this case, we know in advance that we need to evaluate
all factors that involve pairwise interactions between vari-
ables. Thus, we can compute the necessary information
in one pass over the training data. (Again, see [21] for a
nice use of thisidea.) In addition the caching strategy can
use the fact that for many classes of exponentia families,
such as multinomials and Gaussians, we can marginalize
the sufficient statistics for one factor from these of another
factor.

The upshot of this discussion is that we can use effi-
cient search techniques inside the Bayesian Structural EM
loop. These search agorithms can evaluate many candi-
dates, since most candidates they explore share many fac-
tors. Thus, each new candidate might require evaluation of
the expected score of only a few factors. In many cases,
examining a new model requires no new factorsto be eval-
uated.

41 COMPUTING E[logF(S)]

We now examine how to approximate the value of
Eflog F(S)]. For the purpose of this discussion assume
that the factor in question is fixed and we omit the denote
by ¢(-), s(-) and F(-) the associated functions.

We start our analysis by examining the distribution over
the accumulated sufficient statistics .S. Recall that S isa
sum of the form 3~ s(U’), where U’ denotes the comple-

tion of the j'th instance under possible completions of the
data. Sincethe joint distribution defined by any model over
H is a product of independent distributions, one for each
instance in the data, we have that the variables s(U’) are
independent. Using the central limit theorem we have that
thedistributionof S can be approximated by aGaussiandis-
tribution with mean E[S] = 3, E[s(U’)], and covariance

matrix Z[S] = ), 3[s(U7)]. Both of these can be accumu-

lated by performing some computation on each instance in
the training data. Usually, we can compute the covariance
matrix based on the same computations we use in order to
compute the expected sufficient statistics

This observation implies that the distribution of S be-
comes sharply peaked as the expected number of “effec-
tive” samples in the data grows. The “effective’ samples
are samples whose probability is sensitive to changes in
the parameters of the factor. Formally, these are samples

for which s(U?) is not zero. For example, when learning
multinomial Bayesian networks, the effective samples for
the factor L, pa(x,) are these where Pa(.X;) = pa(.X;) (or
can be assigned that valuein some completions of the data).

As mentioned above, the simplest approximation of
Eflog F(S)] isusing (8). This approximation is precise if
log F(S) islinearin S. It can befairly accurateif log F(S)
can be approximated by linear function in the vicinity of
E[S]. Since most of the the density is assigned to values
of S in this region, this results in a good approximation.
Formally, using Taylor expansion, to get that:

logF(S) =
3(S = E[S])TV¥(log F)(S*)(S — ELS])

where S* isapoint dlong thelinefrom E[S]to S. Whenwe
take expectation over the right hand side, the second term
cancelsout. Thus, the difference between Eflog F(S)] and
log F(E[S]), isthe integration of the quadratic term in the
Taylor expansion. If we can show that the norm of the
Hessian V2(log F') is bounded in the region of high density
around F[S], then we can bound the error.

My conjecture is that for factors from the regular expo-
nential family, the norm of the Hessian asymptotesto 0, as
the expected number of effective samplesfor S grows. This
iseasily verified for multinomial factors. In this case, using
simple approximation to the derivatives of logl" ?), we get
that the elements of the Hessian are roughly of the form

L L Thus, as the size of the expected counts

Ny, Y NS
grows, the Hessian matrix vanishes. Thisimpliesfor multi-
nomial factors, in cases where the expected counts are far
from O, we can safely use the linear approximation of (8).
| hope to provide a more definitive characterization of the
conditions under which this approximation is close in the
full version of this paper.

In cases where the linear approximation to log F'(-) does
not suffice, we can get a better approximation by using the
Gaussian approximation to the distribution over the values
of S. Thus, we can approximate E[log F'(.S)] by an integral
over a Gaussian

Ellog F(S)] z/IogF(S)go(S:E[S],Z[S])dS, ©

where (X : p, Z) isthe multivariate Gaussian with mean
and covariancematrix . Notethat the central limit theorem
implies that the normal approximation is fairly good even
for relatively small number of instances.

There are several methods for evaluating the right-hand
sideof (9). If thedimensionof .S issmall, we can use numer-
ical integration techniques to directly evaluate the integral.
If the dimension of S is large, we can use Laplace's ap-
proximation. Here we have good reasons to believe that,
if log F'(-) is well-behaved, then the integration is over
a unimodal function, and therefore Laplace’'s approxima
tion would work well. To perform Laplace's approxima-
tion in this case, we need to find the maximum point of

log F/(E[S]) + (S — E[S])V(log F)(E[S]) +



alarm insurance
Method 500 1000 2000 4000 500 1000 2000 4000
10
BDe(S) 1.046 +- .1210  0.504 +-.0596  0.315 +- .0423 0.214 +- .0238 1.600 +-.1042  1.075+-.0652  0.750 +-.1205  0.449 +- .0423
BDe(l) 1.151+-.0435 0.603 +-.0888  0.337 +-.0754 0.247 +- .0147 1.855+-.1173  1.336+-.0727 0.889+-.1521  0.516 +- .0839
BDe(La) | 1.251+-.0933 0.841+-.1309 0.372+-.0541 0.269 +- .0312 2.099 +-.1485 1.634+-.1279  0.939+-.0875  0.825+-.1806
BDe (Li) 1.135+- .0741  0.566 +-.0628  0.283 +-.0264 0.257 +- .0104 1.893+-.1442  1.296+-.1105 0.842+-.1531  0.543 +-.0826
BIC 2.784+- 1779  1.257+-.1758  0.628 +- .0857 0.594 +- .0397 2.965+-.2642 1850 +-.1543  1.446+-.1449  0.950 +- .0961
.20
BDe(S) 1.532+-.2158 0.724+-.0796  0.439 +-.0894 0.259 +- .0056 2135+-.2018 1.623+-.0845 1.103+-.1435  0.668 +-.0810
BDe(l) 1.581+-.2534  0.995+-.0655 0.634 +-.0820 0.282 +- .0848 2.328+-.1017 1933 +-.1418  1.423+-.0545  0.721+-.0749
BDe(La) | 1.985+-.2114 0984 +-.1510 0.645 +-.0364 0.470 +- .1002 2.879+-.2236  2.069 +-.3054  1.599 +-.2313  0.819+-.0785
BDe (Li) 1.476+- .2226  1.056 +-.0908  0.614 +-.0630 0.228 +- .0348 2.391+-.3829 1791 +-.1933  1.323+-.2199  0.796 +- .1157
BIC 3.171+- 4608 1.870+-.1891  0.900 +- .1863 0.564 +- .0298 3453 +-.2542  2.614+-.1835 1.975+-.0730 1.490+-.1148
.30
BDe(S) 2.173+-.1349  1.239+-.1555  0.754 +- .1098 0.455 +- .1770 2974 +-.3019 2.211+-.0769  1.859+-.2894  1.196+-.2880
BDe(l) 2.683+-.3791  1.482+-.2893  0.832 +- .0636 0.411 +- .1049 3515+-.3060 2.226+-.1221  2.046+-.1391  1.379+-.1801
BDe(La) | 3416+ .3835 1576+-.2279  1.008 +- .1685 0.675 +- .0611 3515+-.1865 2.781+-.3146  1.923+-.1734  1.511+-.1739
BDe (Li) 2.866+-.3641  1.685+-.1504  1.021 +-.1724 0.579 +- .1531 3473 +-.3690 2475+-.1619  2.039+-.1147  1.634+-.2823
BIC 3.942+-.3839  3.131+-.1883  1.866 +-.1700 0.810 +- .0950 4126 +-.3303  3.320+-.3162  2.156+-.1297  1.874+-.1209
40
BDe(S) 3.852+- .5568  2.192 +-.3096  1.255+-.1653  1.794+- 1.8763 | 4.342+- 5313 3.181+-.3114 2.024 +-.1074  1.945+-.1730
BDe(l) 4430+-.1813 2564 +-.4480 1.690+-.2122 1.824+-1.8615 | 4.320+-.5381  3.289+-.4039  2.238+-.1617 2.130+-.1716
BDe(La) | 4.429+-.2635 3.038+-.3359  1.887 +-.2115 1.006 +- .1781 4.416 +- 5386  3.246 +- .4745  2.778+-.3226  2.017 +- .1206
BDe (Li) 4550+-.2485  3.061+-.3884  1.553+-.2431 0.740 +- .1217 4.946 +- 4052  3.584 +-.4422  2.345+-.1130  2.025+- .0769
BIC 5.645+- .6852  3.821+-.0919  2.883+- .4775 1.549 +- .2079 6.054 +-.1423  3.714 +-.2343  2.966+-.3040  2.154 +- .0337

Table 1: Experimental results for learning with various percentage of missing values. The number in each cell indicates
the mean and standard deviation of the KL divergence of the learned network to the true network from 5 different training
sets (smaller is better). The variants of the BDe score are S, I, L, and N and they correspond to summation, integration,

Laplace’s, and linear approximations, respectively

G(S) = log F(S)e(S : E[S], Z[S]) and then evaluate the
Hessian of log G(.S) at that point. The first step can be
done by standard optimization methods (e.g., gradient as-
cent), and the second is a straight forward application of
Laplace’s approximation. Dueto lack of space, | do not go
in to details.

In the reminder of this section, | will discusshow to apply
these approximations for Dirichlet factors. Using (4), we
have that:

[0g F'({Nyy, - -, Ny, )b)
= logl(3_; Ny,) —logl (32 (Ny, + N (wi)))
+2_;(10gT (N, + N(vi)) —logl (N, ))
It immediately follows, by linearity of expectations, that:
EllogF({Ny,, .-+, Ny))]
= 2 Ellogl (N, + N(vi))] -
EllogF (3";(N,. + N(vi)))] + e,

where ¢ issome constant term that dependsonly ontheprior.

As we can see, we can approximate each of the expec-
tations individually. Since each one of these involves only
one count, we will simplify notation somewhat. Assume
that p; and Uiz are the mean and variance of some count ;.
Also, let N/ be the prior count for the same event. Finally,
let m;, and M; be the minimal and maximal valuesthat N;
can take in the data. (These can be easily recorded during
the computation of expected sufficient statistics.) We now
consider three approximationsto E[logl (N; + N/)].

Summation: In this approximation, we iterate over the
possible integral values of N; (from m; to M;). For each
value of N;, we estimate the probability p(N;) using the
Gaussian function, by integratingtherange [N; — 2, N; + ]
(for the extreme values m; and M;, we aso include also
the volume of the tail of the the distribution). We then
approximate E[logl (N; + N})] as

SN, 09T (N; + N!)p(N;).

This method does not scale when N; can take many values.
However, | useisit abaselineto evaluate other approxima-
tions.

Integration. Using the continuous approximation to the
sum above, we have that

E[IogF(NZ + Nzl)] ~ f IogF* (Nz + NZ»/)QD(NZ' L Ui, O'ZZ)dNZ

wherel™ () isthe“truncated” I'(-) function: I'*(z) = I'(z)
if z € [ml =+ NZ»/,MZ' =+ NZ-I], r*(l‘) = F(ml + Nz) if
r < m;+ Ni/' and r*(l‘) = F(MZ + Nl) if e > M; + Nil'
Thistruncationisnecessary sincel (z) growstoinfinity asz
goesto 0. To evaluatethisintegral, we can use numerical in-
tegration procedures, called Hermite-Gaussian quadratures,
that are particularly suitable for integrals of this form and
can be encoded quite efficiently [1]. In the experiments
described below, | use this integration procedure with 16
evaluation points. | suspect that it would suffice to use a
smaller number of control points.

Laplace’'s Approximation: Here we approximate the
integral of the Gaussian by finding the mode m of the inte-
grated function logl (z)p(z : p; + N/, o?). Inmy imple-
mentation, | find this value by binary search.

Using L aplace's approximation, we get that theintegral is
approximated by:

1 (m—p;=N1)?

2 2

logl(m)e i

logM)"’(m
(1_ U%((?ggr)(n(m) )

1
2

- ()
| use standard approximations(e.g., [1]) to computethefirst
and second derivatives of logl(-).

5 EXPERIMENTAL RESULTS

51 METHODS

Inthissection, | describeresultsof experimentsthat indicate
the effectiveness of the general approach and evaluate the
alternative methods for computing scores discussed above.
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Figure 1: The networks used in learning with hidden vari-
ables. Shaded nodes correspond to hidden variables. (@)
3x1+1x3+3, (b) 3x8.

In addition, | also compare the resulting networks to net-
works learned using Structural EM with the BIC score (as
described in [12]).

All the variants of this procedure use the same genera
architecture. Thereisa search modulethat performs greedy
hill climbing search over network structures. To evaluate
each network, this search procedure calls another module
that is aware of the metric being used and of the current
completion model. This module keeps a cache of expected
sufficient statistics (and in the case of the Bayesian score,
also variances and bounds) to avoid recomputations.

52 MISSING VALUES

Many real life data sets contain missing values. This poses
a serious problem when learning models. When learning
in presence of missing data, one has to be careful about the
source of omissions. In general, omission of values can be
informative. Thus, the learner should learn a model that
maximize the probability of the actual observations, which
includesthe pattern of omissions. Learning procedures that
attempt to score only the observabl e data, such astheonede-
scribed here, ignore, in some sense, themissingvalues. This
isjustified when data is missing at random (MAR). | refer
the interested reader to [23] for a detailed discussion of this
issue. We can circumvent this requirement if we augment
thedatawith indicator variablesthat record omissions, since
the augmented data satisfies the MAR assumption. Thus,
procedures, such asthe one discussed here, arerelevant also
for dealing with data that is not missing at random.

In order to evaluate the Bayesian Structural EM proce-
dure, | performed the following experiments that examine
the degradation in performanceof thelearning proceduresas
afunction of the percentage of missing values. Inthisexper-
iment, | generated artificial training datafrom two networks:
alar m—anetwork for intensive care patient monitoring [2]
that has 37 variables, and insurance—a network for clas-
sifying car insurance applications [3] that has 26 variables.
From each network | randomly sampled 5 training sets of
different sizes, and then randomly removed values from
each of these training sets to get training sets with varying
percentage of missing values.

For each training set, the Bayesian and the BI C procedures
were run from the same random initial networks with the
sameinitial random seeds. Theseinitial networkswereran-
dom chain-like networks that connected all the variables. |
evaluated the performance of the learned networks by mea-
suring the KL divergence of the learned network to the

generating network. The resultsare summarized in Table 1.
As expected, there is a degradation in performance as the
percent of missing values grows. We see that the Bayesian
procedureconsistently outperformsthe Bl C procedure, even
though both use the same prior over parameters.

As we can see from these results, the summation approx-
imation is consistently finding better networks. In some
cases, it finds networks with as much as 60% small error
than the linear approximation. Thisisespecially noticeable
for in the smaller training sets. The integration approxima-
tion performs dightly worst, but often significantly better
than the linear approximation. These results match the hy-
pothesis that the linear approximation is most unsuitable
in small training sets. For larger training sets with small
percent of missing values, we see that the linear approxima-
tion performs quite well, and often better than the Laplace
approximation.

53 HIDDEN VARIABLES

In most domains, the observable variables describe only
some of the relevant aspects of theworld. Thiscan have ad-
verseeffect on our learning procedure since the marginaliza-
tion of hidden quantities can lead to a complex distribution
over the observed variables. Thus, thereis growing interest
in learning networks that include one or more hidden vari-
ables. The Structural EM approach gives us the tools for
learning agood structurewith afixed set of hidden variables.
We till need an additional mechanism to choose how many
hidden variables to add. This can be done using a simple
loop, since we are now searching over a linear scale. The
experiments in this section attempt to evaluate how good
our procedureisin learning such hidden variables and how
it compares with the BIC score which is easier to learn but
over penalizes network structures.

In the experiments, | used two networkswith binary vari-
ables: Thefirst is 3x1+1x3+3 with the topology shown in
Figure 1b. This network has hidden variables “ meditating”
between two groups of observed variables. The second is
3x8 with the topology shown in Figure 1b. Here all the
variables seems to be correlated, although they are nicely
separated by the hidden ones. | quantified these networks
using parameters sampled from a Dirichlet distribution. For
each sampled value for the parameters, | run a standard
belief network learning procedure that used only the ob-
servable variablesto seehow “hard” it isto approximatethe
distribution. | then chose the parameter settingsthat led to
the worst prediction on an independent test set.

| then sampled, from each network, training sets of sizes
500, 1000, 2000, and 4000 instances of the observable vari-
ables, and learned networks in the presence of 0, 1, 2, 3,
or 4 hidden binary variables using the both the Bayesian
Structural EM algorithm with the BDe metric with uniform
prior, and the BIC Structural EM algorithm that used the
same uniform prior over parameters. Both algorithms were
started with the same set of initial network structure and
randomized parameters.

In these experiments, the procedures are initialized by a
structure in which all of the hidden variables are parents
of each observable variable. (See [12] for motivation for
the choice of this structure). As discussed above, both
the Bayesian and the BIC versions of Structural EM can
convergetolocal “structural” maxima. Inthe caseof hidden
variables, this phenomena is more pronounced than in the
case of missing value. In these cases, the initia structure |
useis often close to alocal maximain the search.

To escape from these local maxima, | use random pertur-
bations. The procedure uses two forms of perturbations. In



# Hidden/ 3x1+1x3+3 3x8
Method 500 1000 2000 4000 500 1000 2000 4000
0
BDe 1410 +-.0246  .0741+-.0205  .0421+-.0123  .0274+-.0046 | .1591+-.0226  .0819+-.0104 .0535+-.0057  .0386 +- .0046
BIC 1469 +- .0274 0796 +-.0233  .0356+-.0035 .0267 +-.0029 | .1383+-.0192 .0792+-.0108 .0502 +-.0035 .0328 +-.0038
T
BDe(S) 0964 +-.0250  .0384 +-.0056  .0240+-.0048  .0159 +- .0027 | .1063+-.0182  .0423+-.0138  .0419+-.0028  .0261 +-.0011
BDe(l) 0698 +-.0195  .0431+-.0107 .0222+-.0023  .0165+-.0011 | .1085+-.0241  .0438+-.0111 .0319 +-.0060  .0235+-.0043
BDe(La) | .0831+-.0132 .0374+-.0041 .0214+-.0027 .0151+-.0022 | .0892+-.0235 .0513+-.0122  .0348+-.0099  .0224 +- .0058
BDe (Li) 0920 +-.0201  .0409+-.0088  .0241+- .0058  .0144+-.0026 | .1078+-.0138  .0443+-.0093  .0358 +-.0056  .0227 +- .0060
BIC 0929 +-.0101  .0590+-.0166  .0224+-.0028  .0182+-.0024 | .1152+-.0213 .0635+-.0092 .0294 +-.0051  .0247 +- .0076
2
BDe(S) 0720 +-.0249  .0304 +-.0037  .0174+-.0039  .0100+-.0034 | .0785+-.0223  .0422+-.0112  .0209 +-.0024  .0163 +- .0053
BDe(l) 0731+-.0321  .0323+-.0051  .0147 +-.0046  .0098 +- .0022 | .0907 +-.0244  .0364 +-.0085 .0228 +-.0031  .0134 +-.0057
BDe(La) | .0702+-.0307 .0403+-.0088 .0127+-.0039  .0113+-.0037 | .0769+-.0336  .0485+-.0212  .0221+-.0038  .0157 +- .0030
BDe (Li) 0646 +-.0175  .0290+-.0043  .0134+-.0042 .0070+-.0020 | .0619+-.0209  .0344 +-.0054 .0196 +-.0021  .0165+-.0017
BIC 0952 +-.0259  .0333+-.0035 .0133+-.0028 .0082+- .0019 | .1074+-.0494  .0428+-.0069 .0209 +-.0015  .0204 +- .0035
3
BDe(S) .0875+-.0282  .0504+-.0221  .0253+-.0075 .0158+-.0021 | .0386+-.0176  .0365+-.0168  .0248 +-.0095  .0158 +-.0042
BDe(l) .0889 +-.0245  .0382+-.0062 .0229+-.0099  .0100+- .0044 | .0516 +-.0165  .0409 +-.0251  .0193 +-.0099  .0106 +- .0040
BDe(La) | .1079+-.0157 .0335+-.0153 .0166+-.0066  .0138+-.0050 | .0465+-.0156 .0274+-.0094  .0148+-.0084  .0123+-.0068
BDe (Li) 1058 +-.0215  .0298+-.0080  .0198 +-.0031  .0143+-.0052 | .0481+-.0268 .0276 +-.0053  .0184 +-.0073  .0136 +- .0056
BIC 1108 +-.0383  .0574+-.0203  .0143+-.0044  .0096 +- .0040 | .0679+-.0217 .0185+-.0073 .0082 +-.0020  .0073 +-.0048
7
BDe(S) 0678 +-.0179  .0676+-.0157  .0615+- .0167 .0263+-.0089 | .0628 +-.0147  .0673+-.0063  .0309 +-.0042  .0154 +- .0032
BDe(l) 0942 +-.0217  .0847 +-.0296  .0365+-.0196  .0206 +- .0065 | .0564 +-.0260  .0448 +-.0160 .0321+-.0096  .0145 +-.0040
BDe(La) | .0880+-.0163 .0357+-.0159 .0365+-.0098 .0220+-.0053 | .0458+-.0189  .0372+-.0096 .0262 +-.0065  .0158 +- .0027
BDe (Li) 1105+-.0308  .0373+-.0108  .0228+-.0047  .0125+- .0016 | .0594 +-.0230  .0266 +-.0088 .0185+-.0075  .0133+-.0045
BIC 1181 +-.0131  .0628+-.0186  .0260+-.0087  .0162+- .0105 | .0715+-.0252  .0279+-.0128  .0151+-.0057  .0082 +- .0033

Table 2: Performance on an independent test set for the networks learned with hidden variables using the BDe and BIC
scores. The reported numbers correspond to the difference in log loss on the test set between the generating distribution
and learned distributions. The mean and standard deviation of this quantity for run on 5 data sets are reported. The labels
of the rows indicate the number of hidden variables that were learned and the procedure used.

the first type of perturbations, a change the local neighbor-
hood of the hidden variablesistried. Thisis done either by
adding an edge to/from a hidden variable to another vari-
able (which might be hidden), or reversing such an edge.
After such a single edge change, the procedure restarts the
Structural EM procedure with the new structure and runs
until convergence. Thisis repeated where at each stage the
procedure perturbs the best structure found so far. The pro-
cedure uses the Cheeseman-Stutz score [6, 7] to evaluate
structures from different runs of Structural EM. (The BIC
version uses the marginal BIC score.) Thisis repeated for
up to five perturbations. After thistype of perturbationsare
tried, the procedure applies the second type of perturbation,
whichissimply arandom segquence of moves (edge addition,
deletion and reversal). In the experiments the procedure ap-
plied 20 such changes. Thentheprocedureisrestarted using
the basic Structural EM procedure and the first type of per-
turbations. After 10 such random walks, or if thetime limit
is reached the procedure is terminated.

The results summarized in Table 2, show that the variants
of the Bayesian procedure usually make better predictions
than the BIC score, but not always. Also, the performance
of thelinear approximationisoften better than other approx-
imations. The main explanation for both of these discrep-
ancies from the missing data case, is that in these learning
problems the main improvements where achieved by runs
that where initialized by the “right” random perturbations.
Since, all the runs were terminated after 30 CPU minutes,
the runs with the BIC score and the BDe with linear ap-
proximation have gone through many more random restarts
than the other runs. This is most noticeable in the cases
where there are more hidden variables, since they require
many score evaluationsfor factorswith incomplete dataand
the search space they define contain more local maxima.
The structures learned where al so quite close to the original
structure. Due to space restrictions, | cannot elaborate on
this here.

6 DISCUSSION

Inthispaper, | described anew approach for Bayesian model
selection in belief networks and related models. | believe
that this approach is exciting since it attempts to directly
optimize the true Bayesian score within EM iterations. The
paper describes a framework for building algorithms that
learn from incomplete data. Thisframework provides some
guarantees, but leaves open such issues as the collection
of sufficient statistics and the computation of the expected
score for each factor. These details can befilled in for each
class of models.

Thereisquiteabit of related work onlearning fromincom-
plete data. The general ideaof interleaving structure search
with EM-like iteration appeared in several papers. Thefirst
Structural EM paper, Friedman [12] introduced the frame-
work and established the first formal convergence results.
Singh [25] had a similar insight although his procedure is
somewhat different. Like the Structural EM procedure, his
procedure isiterative. In each iteration, it generates k£ joint
assignmentsto all missing values using the best model from
previousiterations. Hisprocedure then invokesthe learning
procedure of Cooper and Herskovits [9] on each one of the
completed datasets. Finally, Singh's procedure merges the
learned networks, trains parametersfor this merged network
using standard EM procedure, and reiterates. Thisapproach
can be interpreted as a stochastic approximation of Struc-
tural EM. The analysis of this paper gives insight into the
limiting behavior of Singh’s algorithm. More precisely, by
using k£ completed datasets, Singh approximates the expec-
tation of the score. However, instead of combining these
estimates within a single search procedure, Singh searches
for structures independently on each one of the completed
datasets. This leads to various complications, such as the
need to merge the learned networks.

Some variants of Structural EM have been proposed by
Meila and Jordan [21] and Thiesson et a. [27]. Both of
these variants learn multinets in which the selector variable



is hidden (these can be thought of mixtures of Bayesian
networks). Meila and Jordan learn multinetsin which each
network is a Chow tree. They exploit this restriction to
collect all required statistics in one pass at each iteration.
Although they do not provide any formal treatment of their
procedure, the analysis of [12] directly applies to their ap-
proach, and shows that their procedure will converge to a
local maximum. Thiesson et al. [27] aim to learn general
multinets using the Cheeseman-Stutz score [6]. By exam-
ining approximations to this score they motivate a learning
algorithm that, in the terminology of this paper, can be seen
as an instance of Factored-Bayesian-SEM, using the linear
approximation, applied to multinets. Thiesson et a. use an
efficient method for caching expected statistics when most
of thevariables of interest are Gaussian, that can answer all
gueries during the structure search after a single pass on the
training data at each iteration. The analysisin this paper
directly appliesto their approach.

One restriction of the Structural EM algorithm is that it
focuses on learning a single model. In practice, we often
want to use a committee of several high scoring models for
prediction. Such committees can provide a better approxi-
mation of Eq. (1) and ensure that we do not commit to the
particulars of a single model when the evidence aso sup-
ports other models. Both Meilaand Jordan, and Thiesson et
al. attempt to approximate such committeesby learning mix-
ture models, where each mixture component is a Bayesian
network. Nonetheless, they are learninga MAP model, ina
larger class of models. This might be useful, if the source
of the data can be better described by a mixture. However,
it does not address the dependency on a single model.

Alternatively, we might attempt to directly follow the ba-
sic Bayesian principleasformulated in Eq. (1), and perform
Bayesian model averaging. In this approach, members of
the committee are weighted by their posterior probability. It
turnsout that we can useavariant of Bayesian Structural EM
to learn Bayesian committees. Roughly speaking, we can
run Bayesian Structural EM where the " current” candidate
at each stage is a Bayesian committee of models (i.e., each
model is weighted by its posterior probability). Then, at
each iteration we choose the £ models that have the highest
expected score given the current committee. The formal
treatment of thisideais somewhat more complex, and isthe
topic of current research.

There are several other issues that require additional un-
derstanding. In particular, although | provided convergence
proofsfor the abstract version of the algorithm, it is still not
clear whether these proofs apply given the approximations
need to perform this algorithm in practice. Empirical expe-
rience shows that the procedure does consistently converge.
However, better theoretical understanding is called for.

An additional aspect glossed over in this presentation is
the computation of the expected statistics. This requires
large number of computations during learning. Thisis the
main bottleneck in applying this technique to large scale
domains. It is clear that we should be able to improve the
standard inference procedures by exploiting the fact that we
are evaluating the same set of queries over large number
of instances. Moreover, stochastic simulation seems an
attractive approach to examine in this context, since we
can use the same sample to evaluate many queries. This,
however, requiresamore careful analysisof the effect of the
noisein the estimation on the convergence properties of the
algorithm. Finaly, it would be interesting to understand if
it is possible to combine variational approaches (e.g., [24])
with this type of learning procedures.

Another major open question is how to decide, in an in-

telligent fashion, on the number of hidden variables. Right
now, the approach used in this paper (and in [12, 21, 27]) is
to learn models with 1 hidden variable, 2 hidden variables,
etc., and then to select the network with the highest score.
Thisis clearly ablind approach. Moreover, the qualitative
model learned with a hidden variable depends on the ini-
tial structure used by the Structural EM procedure. Current
research examines how to combine the Structural EM pro-
cedure with constraint-based approaches, such as these of
[26] that learn constraintsasto the possible positions of hid-
den variables, to guide the introduction of hidden variables
during the search.
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