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Abstract

In arecent paper, Friedman, Geiger, and Goldszmidt [8]
introduced aclassifier based on Bayesian networks, called
Tree Augmented Naive Bayes (TAN), that outperforms
naive Bayes and performs competitively with C4.5 and
other state-of-the-art methods. This classifier has severa
advantages including robustness and polynomia compu-
tational complexity. One limitation of the TAN classifier
isthat it applies only to discrete attributes, and thus, con-
tinuous attributes must be prediscretized. In this paper,
we extend TAN to deal with continuous attributes directly
viaparametric (e.g., Gaussians) and semiparametric (e.g.,
mixture of Gaussians) conditional probabilities. Theresult
isaclassifier that can represent and combine both discrete
and continuous attributes. In addition, we propose a new
method that takes advantage of the modeling language of
Bayesian networks in order to represent attributes both in
discreteand continuousform simultaneously, and use both
versions in the classification. This automates the process
of deciding which form of the attribute is most relevant
to the classification task. It also avoids the commitment
to either a discretized or a (semi)parametric form, since
different attributes may correlate better with one version
or the other. Our empirical results show that this latter
method usually achieves classification performancethat is
as good as or better than either the purely discrete or the
purely continuous TAN models.

1 INTRODUCTION

The effective handling of continuous attributes is a cen-
tral problem in machine learning and pattern recognition.
Almost every real-world domain, including medicine, in-
dustria control, and finance, involves continuous attributes.
Moreover, these attributes usually have rich interdependen-
cies with other discrete attributes. Many approaches in
machine learning deal with continuous attributes by dis-
cretizing them. In statistics and pattern recognition, on the
other hand, thetypical approachistouseaparametric family
of distributions (e.g. Gaussians) to model the data.

Each of these strategies has its advantages and disadvan-
tages. By using a specific parametric family, we are making
strong assumptions about the nature of the data. If these
assumptions are warranted, then the induced model can bea
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good approximation of the data. In contrast, discretization
procedures are not bound by a specific parametric distribu-
tion; yet they suffer from the obvious loss of information.
Of course, one might argue that for specific tasks, such as
classification, it sufficesto estimate the probability that the
datafallsin acertain range, in which case discretization is
an appropriate strategy.

In this paper, we introduce an innovative approach for
dealing with continuous attributes that avoids a commit-
ment to either one of the strategies outlined above. This
approach uses a dua representation for each continuous
attribute: one discretized, and the other based on fitting
a parametric distribution. We use Bayesian networks to
model the interaction between the discrete and continuous
versions of the attribute. Then, we let the learning proce-
dure decide which type of representation best models the
training dataand what interdependencies between attributes
are appropriate. Thus, if attribute B can be modeled as a
linear Gaussian depending on A, then the network would
have a direct edge from A to B. On the other hand, if the
parametric family cannot fit the dependency of B on A, then
the network might use the discretized representation of A
and B to mode thisrelation. Note that the resulting models
can (and usually do) involveboth parametric and discretized
models of interactions among attributes.

Inthispaper wefocusour attention on classificationtasks.
We extend a Bayesian network classifier, introduced by
Friedman, Geiger, and Goldszmidt (FGG) [8] called “Tree
Augmented Naive Bayes’ (TAN). FGG show that TAN out-
performs naive Bayes, yet at the same time maintains the
computational simplicity (no search involved) and robust-
ness that characterize naive Bayes. They tested TAN on
problems from the UCI repository [16], and compared it
to C4.5, naive Bayes, and wrapper methods for feature se-
lection with good results. The origina version of TAN
is restricted to multinomial distributions and discrete at-
tributes. We start by extending the set of distributions that
can be represented in TAN to include Gaussians, mixtures
of Gaussians, and linear models. This extension resultsin
classifiers that can deal with a combination of discrete and
continuous attributes and model interactions between them.
We compare these classifiers to the original TAN on sev-
eral UCI data sets. The results show that neither approach
dominates the other in terms of classification accuracy.

We then augment TAN with the capability of representing



each continuous attribute in both parametric and discretized
forms. We examine the consequences of the dual represen-
tation of such attributes, and characterize conditions under
which the resulting classifier is well defined. Our main hy-
pothesis is that the resulting classifier will usually achieve
classification performancethat isas good or better than both
thepurely discreteand purely continuous TAN models. This
hypothesisis supported by our experiments.

We note that this dual representation capability also has
ramifications in tasks such as density estimation, cluster-
ing, and compression, which we are currently investigating
and some of which we discuss below. The extension of
the dua representation to arbitrary Bayesian networks, and
the extension of the discretization approach introduced by
Friedman and Goldszmidt [9] to take the dual representation
into account, are the subjects of current research.

2 REVIEW OF TAN

In this discussion we use capital letters such as X,Y, Z
for variable names, and lower-case letters such as z,y, 2
to denote specific values taken by those variables. Sets
of variables are denoted by boldface capital letters such as
X, Y, Z, and assignments of valuesto the variablesin these
sets are denoted by boldface lowercase letters x, y, z.

A Bayesian network over a set of variables X =
{X1,...,Xn} is an annotated directed acyclic graph that
encodes a joint probability distribution over X. Formally,
a Bayesian network is a pair B = (G, £). The first com-
ponent, G, is a directed acyclic graph whose vertices cor-
respond to the random variables X3, ..., X,,, and whose
edges represent direct dependencies between the variables.
The second component of the pair, namely £, represents
a set of local conditional probability distributions (CPDs)
La,...,L,, wherethe CPD for X; maps possible values z;
of X; and pa(X;) of Pa(X;), the set of parentsof X; in G,
to the conditional probability (density) of z; given pa( i)-
A Bayesian network B defines a unique joint probability
distribution (density) over X given by the product

When the variables in X take values from finite discrete
sets, we typically represent CPDs as tables that contain pa-
rametersd,, pa(x;) for all possiblevaluesof X; and Pa(X;).
When the vari I&areconn nuous, we can use various para-
metric and semiparametric representations for these CPDs.

As an example, let X = {A4,...,A,,C}, where the
variables Ay, ..., A, arethe attributes and C' is the class
variable. Consider agraph structurewheretheclassvariable
is the root, that is, Pa(C') = ), and each attribute has the
class variable as its unique parent, namely, Pa(4;) = {C'}
foral 1 <4 < m. For thistype of graph structure, Equa-
tion1yieldsPr(Ay,..., Ay, C) = Pr(C) - [T, Pr(4:|C).
From the definition of conditional probab|I|ty, we get

Pr(C|Ay,...,A,) = a-Pr(C)-T[;Z; Pr(4;|C), whereais
anormalization constant. Thisis the definition of the naive
Bayesian classifier commonly found in the literature [5].

The naive Bayesian classifier has been used extensively
for classification. It has the attractive properties of being
robust and easy to learn—weonly need to estimatethe CPDs
Pr(C) and Pr(4; | C) for al attributes. Nonetheless, the
naive Bayesian classifier embodiesthe strong independence
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Figure 1: A TAN model learned for the data set “glass2” The
dashed lines represent edges required by the naive Bayesian clas-
sifier. The solid lines are the tree augmenting edges representing
correl ations between attributes.

assumption that, given the value of the class, attributes are
independent of each other. FGG [8] suggest the removal
of these independence assumptions by considering aricher
class of networks. They define the TAN Bayesian classifier
that learnsanetwork inwhich each attribute hasthe classand
at most one other attribute as parents. Thus, the dependence
among attributesin a TAN network will be represented viaa
treestructure. Figure 1 showsan exampleof aTAN network.

InaTAN network, an edgefrom A; to A; impliesthat the
influence of A; on the assessment of the class also depends
onthevalueof A;. For example, in Figure 1, theinfluence
of theattribute“Iron” onthe class C dependson the val ue of
“Aluminum,” while in the naive Bayesian classifier the in-
fluence of each attribute on the classisindependent of other
attributes. These edges affect the classification processin
that avalue of “Iron” that istypically surprising (i.e., P(i|c)
is low) may be unsurprising if the value of its correlated
attribute, “Aluminum,” is also unlikely (i.e., P(i|c,a) is
high). In this situation, the naive Bayesian classifier will
overpenalize the probability of the class by considering two
unlikely observations, while the TAN network of Figure 1
will not do so, and thus will achieve better accuracy.

TAN networks havethe attractive property of being learn-
ablein polynomial time. FGG pose thelearning problem as
asearch for the TAN network that hasthe highest likelihood
LL(B : D) = Pg(D), giventhedataD. Roughly speaking,
networkswith higher likelihood match the data better. FGG
describe a procedure Const r uct - TANfor learning TAN
models and show the following theorem.

Theorem 2.1: [8] Let D be a collection of N instances of
C,Aq,...,A,. Theprocedure Const r uct - TANbuildsa
TAN network B that maximizes LL(B : D) and has time
complexity O(n? - N).

The TAN classifier is related to the classifier introduced
by Chow and Liu [2]. That method learns a different tree
for each class value. FGG's results show that the TAN and
Chow and Liu's classifier perform roughly the same. In
domains where there is substantial differencesin the inter-
actions between attributes for different class values, Chow
and Liu's method performs better. In others, it is possible
to learn a better tree by pooling the examplesfrom different
classes as done by TAN. Although we focus on extending
the TAN classifier here, all of our ideas easily apply to clas-
sifiersthat learn a different tree for each class value.

3 GAUSSIAN TAN

The TAN classifier, as described by FGG, applies only to
discrete attributes. In experiments run on data sets with



continuous attributes, FGG usethe prediscretizion described
by Fayyad and Irani [7] before learning a classifier. In
this paper, we attempt to model the continuous attributes
directly withinthe TAN network. To do so, weneedtolearn
CPDs for continuous attributes. In this section, we discuss
Gaussiandistributionsfor such CPDs. Thetheory of training
such representations is standard (see, for example, [1, 5]).
We only review the indispensable concepts.

A more interesting issue pertains to the structure of the
network. Aswe shall see, when we mix discrete and contin-
uous attributes, the algorithms must induce directed trees.
Thisisin contrast to the procedure of FGG, which learns
undirected trees and then arbitrarily chooses aroot to define
edge directions. We describe the procedure for inducing
directed trees next.

3.1 THE BASIC PROCEDURE

We now extend the TAN algorithm for directed trees. This
extension is fairly straight forward and similar ideas have
been suggested for learning tree-like Bayesian networks
[12]. For completeness, and to facilitate later extensions,
we rederive the procedure from basic principles. Assume
that we are given adata set D that consists of IV identically
and independently distributed (i.i.d.) instances that assign
valuesto Aj,..., A, and C. Also assume that we have
specified the class of CPDs that we are willing to consider.
The objective is, as before, to build a network that maxi-
mizes the likelihood function LL(B : D) = log Pg(D).

Using Eg. (1) and the independence of training instances,
it is easy to show that

LL(B:D) = ¥, %L, logLi(a] | Pa(X;))
= 25X | Pa(X;) 1 Li), 2
wherez? and a(X;)? arethevaluesof X; and Pa(X;) inthe
JthlnstancelnD Wedenoteby S(X; |Pa( i) thevalue

attained by S(X; | Pa(X;),L;) when L; is the optimal
CPD for this family, given the data, and the set of CPDs
we are willing to consider (e.g., al tables, or all Gaussian
distributions). “Optimal” should be understood in terms of
maximizing the likelihood function in Eq. (2).

We now recast this decomposition in the special class
of TAN networks. Recall that in order to induce a TAN
network, we need to choose for each attribute A; at most
oneparent other thantheclassC. Werepresent thisselection
by afunction(3), st., if w(i) = 0, then C' istheonly parent
of A;, otherwiseboth A,T (i) and C arethe parentsof A;. We
define LL(7 : D) to be the likelihood of the TAN model
specified by 7, where we select an optima CPD for each
parent set specified by 7. Rewriting Eq. (2), we get

LL(7 : D)

= Zi,r(i)>OS(Ai | €, Ary) +
Yin(iy=09(4i | C) + S(C'| 0)

= Zi,ﬂ'(i)>0(5(Ai | CyAry) — S(A4i | C)) +
iS4 [ C)+S(C | 0)
= Ei,ﬂ(i)>O(S(Ai | CyAry) —S(4i | ) +c

where ¢ is some constant that does not depend on 7. Thus,
we need to maximizeonly thefirstterm. Thismaximization

can be reduced to a graph-theoretic maximization by the
following procedure, whichwe call Di r ect ed- TAN:

1. Initidlize an empty graph G with n vertices labeled
1,...,n.

2. For each attribute A;, find the best scoring CPD for
P(4; | C) and compute S(A; | C). For each A; with
Jj # 1, if an arc from A; to A; is legal, then find the
best CPD for P(A; | C, A;), compute S(4; | C, A;),
andaddto G anarcj — i withweight S(4; | C, 4;) —
S(A; | C).

3. Findaset of arcs.4 that isamaximal weighted branching
inG. A branching isaset of edgesthat have at most one
member pointing into each vertex and does not contain
cycles. Finding a maximally weighed branching is a
standard graph-theoretic problem that can be solved in

low-order polynomial time[6, 17].
4. Construct the TAN model that contains arc from C' to

each A;, andarcfrom A4, to A; if j — ¢isin A. For each
A;, assign it the best CPD found in step 2 that matches
the choice of arcsin the branching.
From the argumentswe discussed aboveit is easy to seethat
this procedure constructs the TAN model with the highest
score. We notethat sincewe are considering directed edges,
the resulting TAN model might be aforest of directed trees
instead of a spanning tree.
Theorem 3.1: TheprocedureDi r ect ed- TANconstructs

a TAN network B that maximizes LL(B : D) given the
constraints on the CPDsin polynomial time.

In the next sections we describe how to compute the op-
timal S for different choices of CPDsthat apply to different
types of attributes.

3.2 DISCRETEATTRIBUTES

Recall that if A; isdiscrete, thenwe model P(A4; | Pa(4;))
by using tables that contain a parameter 6, pa(4,) for each
choice of valuesfor A; and its parents. Thus,

S(Ai | Pa(4:)) = ZlOQP (a] | pa(A;))

N ) P

a;,pa(A;)
where P(-) isthe empirical frequency of eventsin thetrain-
ing data. Standard arguments show that the maximum like-
lihood choice of parametersis P(z | y) = P(z | y).
Making the appropriate substitution above, we get a nice
information-theoretic interpretation of the weight of the arc
fromAi tOAj, S(Az | C, AJ)—S(A, | C) = NI(AZ, AJ’ |
(). The I() termisthe conditional mutual information be-
tween A; and A; given C [3]. Roughly speaking, it
measures how much information A; provides about A; if
already know the value of C'. In this case, our procedure
reducesto Const r uct - TANof FGG, except that they use
I(A;; A | C) directly asthe weight on the arcs, while we
multiply these weightsby N.

3.3 CONTINUOUSATTRIBUTES

We now consider the case where X is continuous. There
are many possible parametric models for continuous vari-
ables. Perhaps the easiest one to use is the Gaussian

P(a;, pa(A

i))1090,; paa;)>



distribution. A continuous variable is a Gaussian with
mean p and variance o2 if the pdf of X has the form
T—p 2

oz @ p,0?) = \/ije_( = If al the parents of a
continuous A; are discrete, then we learn a conditional
Gaussian CPD [11, 15] by assigning to A; different mean
Has|pa(A;) @nd variance o2, pa( 4,) for each joint value of
its parents. Standard arguments (e.g., see[1]) show that we
canrewrite S(A4; | Pa(4;)) asafunctionof E[4; | pa(A;)]
and E[A? | pa(A;)]—the expectations of A; and A? in
these instances of the data where Pa(A4;) take a particular
value. Standard arguments also show that we maximize the
likelihood score of the CPD by choosing

Ha;lpa(As) E[A; | pa(4;)]

0% apacay = BIAT| pa(4;)] — E?[A; | pa(4,)] .

When we learn TAN modelsin domains with many con-
tinuous attributes, we also want to have families where one
continuous attribute is a parent of another continuous at-
tribute. In the Gaussian model, we can represent such
CPDs by using a linear Gaussian relation. In this case,
the mean of A; depends, in a linear fashion, on the value
of A;. Thisrelationship is parameterized by three parame-
ters: aa; a;,c, Ba; a;,c da? 4, 4, . for eachvaluec of the
classvariable. The conditional probability for thisCPD isa
Gaussian with mean a4, 4,,c + A;jBa; 4,;,c and variance
02, 4;,c- Again, by using standard arguments, itiseasy to
show that S(A; | A;, C') isafunction of low-order statistics
in the data, and that the maximal likelihood parameters are
E[AiAj|c]-E[A;|c]E[Aj]|c]

Bai|a; e E[A[c]— E7[A;]c]
QA;|Aj,c E[A; |- ﬂAilAJ’aC * B[A; | (]
o’ aija;e = BlAZ|d—E*[A;|d -

(B[AiA;j|c] - E[Ai|c] E[Aj|c])?
E[A%]c]— E?[Aj]c]

In summary, to estimate parameters and to evaluate the
likelihood, we need only to collect the statistics of each
pair of attributes with the class, that is, terms of the form
E[A; | aj,c] and E[A;A; | ¢]. Thus, learning in the case of
continuous Gaussian attributes can be done efficiently in a
single pass over the data.

When we learn TAN models that contain discrete and
Gaussian attributes, we restrict ourselves to arcs between
discrete attributes, arcs between continuous attributes, and
arcs from discrete attributes to continuous ones. If we want
also to model arcsfrom continuousto discrete, then we need
to introduce additional types of parametric models, such as
logistic regression [1]. As we will show, an aternative
solution is provided by the dua representation approach
introduced in this paper.

34 SMOOTHING

One of the main risks in parameter estimation is overfit-
ting. This can happen when the parameter in question is
learned from a very small sample (e.g., predicting 4; from
valuesof A; and of C that arerarein the data). A standard
approach to this problem is to smooth the estimated param-
eters. Smoothing ensuresthat the estimated parameterswill

not be overly sensitive to minor changesin thetraining data.
FGG show that in the case of discrete attributes, smoothing
can lead to dramatic improvement in the performance of the
TAN classifier. They use the following smoothing rule for
the discrete case
N-P(pa(Ai)) P(ai|pa(Ai))+s-P(ai)
N-P(pa(Ai))+s
where s is a parameter that controls the magnitude of the
smoothing (FGG use s = 5 in al of their experiments.)
This estimate uses a linear combination of the maximum
likelihood parameters and the unconditional frequency of
the attribute. It is easy to see that this prediction biases the
learned parameters in a manner that depends on the weight
of the smoothing parameter and the number of “relevant”
instancesin thedata. Thissmoothing operationissimilar to
(and motivated by) well-known methods in statistics such
as hierarchical Bayesian and shrinkage methods[10].

We can think of this smoothing operation as pretending
that there are s additional instances in which A; is dis-
tributed according to its marginal distribution. Thisimme-
diately suggests how to smooth in the Gaussian case: we
pretend that for these additional s samples A;, A? have the
same average as what we encounter in the totality of the
training data. Thus, the statistics from the augmented data
are

E[Ai | pa(A;)]

Oaslpa(a;) =

N-P(pa(Ai)) E[Ai| PA(A:)]+s-E[Ai]
N-P(pa(A7))+s
N-P(pa(Ai)) E[Af|pa(Ai)]+s-E[A]]
N-P(pa(A;))+s

E[A? | pa(4;)]

We then use these adjusted statisticsfor estimating the mean
andvarianceof A; givenitsparents. Thesamebasic smooth-
ing method applies for estimating linear interactions be-
tween continuous attributes.

4 SEMIPARAMETRIC ESTIMATION

Parametric estimation methods assume that the datais (ap-
proximately) distributed according to amember of the given
parametric family. If the data behaves differently enough,
then the resulting classifier will degrade in performance.
For example, suppose that for a certain class ¢, the attribute
A; has bimodal distribution, where the two modes z; and
x, arefairly far apart. If we use a Gaussian to estimate the
distribution of A; given C, then the mean of the Gaussian
would be in the vicinity of y = 2422 Thus, instances
where A; has avalue near p would receive a high probabil-
ity, giventhe classc. Onthe other hand, instanceswhere 4;
hasavaluein thevicinity of either z; or z, would receivea
much lower probability given ¢. Consequently, the support
¢ gets from A; behaves exactly the opposite of the way it
should. Itisnot surprising that in our experimental results,
Gaussian TAN occasionally performed much worsethan the
discretized version (see Table 1).

A standard way of dealing with such situationsis to al-
low the classifier more flexibility in the type of distribu-
tions it learns. One approach, called semiparametric esti-
mation, learns a collection of parametric models. In this
approach, we model P(A; | Pa(4;)) using a mixture of
Gaussian distributions:  P(4; | pa(4;)) = >, (4 :




[LA; pa A;),» 0% Aqlpa(As),j )W A; [pa(A; ),j» Where the parame-
ters specify the mean and variance of each Gaussian in the
mixtureandw 4, pa( 4,),; @€theweightsof the mixturecom-
ponents. We require that the w 4, |pa(4,),; SUm up to 1, for
each value of Pa(4;).

To estimate P(A; | pa(4;)), we need to decide on the
number of mixture components(the parameter j inthe equa-
tion above) and on the best choi ce of parametersfor that mix-
ture. Thisisusually donein two steps. First, we attempt to
fit the best parameters for different number of components
(eg., 7 = 1,2,...), and then select an instantiation for j
based on a performance criterion.

Because there is no closed form for learning the pa-
rameters we need to run a search procedure such as the
Expectation-Maximization (EM) agorithm.  Moreover,
since EM usualy finds local maxima, we have to run it
several times, from different initial points, to ensure that we
find a good approximation to the best parameters. This op-
eration is more expensive than parametric fitting, since the
training data cannot be summarized for training the mixture
parameters. Thus, we need to perform many passes over
the training data to learn the parameters. Because of space
restrictions we do not review the EM procedure here, and
refer the reader to [1, pp. 65-73].

With regard to selecting the number of componentsin the
mixture, itiseasy to seethat amixturewith k+1 components
can easily attainthe sameor better likelihood asany mixture
with k components. Thus, thelikelihood (of the data) alone
is not a good performance criterion for selecting mixture
components, since it always favors models with a higher
number of components, which resultsin overfitting. Hence,
we need to apply some form of model selection. The two
main approaches to model selection are based on cross-
validation to get an estimate of true performance for each
choiceof &, or on penalizing the performanceonthetraining
datato account for the complexity of thelearned model. For
simplicity, we use the latter approach with the BIC/MDL
penalization. This rule penalizes the score of each mixture

with "’%VSk, where k isthe number of mixture components,
and N isthe number of training examples for this mixture
(i.e., the number of instances in the data with this specific
value of the discrete parents).

Once more, smoothing is crucial for avoiding overfitting.
Because of space considerations we will not go into the de-
tails. Roughly speaking, we apply the Gaussian smoothing
operation described abovein each iteration of the EM proce-
dure. Thus, we assume that each component in the mixture
has a preassigned set of s samplesit has to fit.

As our experimental results show, the additional flexi-
bility of the mixture resultsin drastically improved perfor-
mancein the caseswherethe Gaussian TAN did poorly (see,
for example, the accuracy of the data sets “anneal-U” and
“balance-scale’ in Table 1). In this paper, we learned mix-
turesonly when modeling acontinuousfeature with discrete
parents. We note, however, that learning amixture of linear
modelsis arelatively straightforward extension that we are
currently implementing and testing.

5 DUAL REPRESENTATION

Theclassifierswe have presented thusfar require usto make
achoice. We can either prediscretize the attributes and use
the discretized TAN, or we can learn a (semi)parametric
density model for the continuous attributes. Each of these
methods has its advantages and problems. Discretization
works well with nonstandard densities, but clearly loses
much information about the features. Semiparametric esti-
mation can work well for “well-behaved” multimodal den-
sities. On the other hand, although we can approximate any
distribution with a mixture of Gaussians, if the density is
complex, then we need alarge number of training instances
to learn a mixture with large number of components, with
sufficient confidence.

The choice we are facing is not asimple binary one, that
is, to discretize or not to discretize all the attributes. We can
easily imagine situationsin which some of severa attributes
are better modeled by a semiparametric model, and others
are better model ed by a discretization. Thus, we can choose
to discretize only a subset of the attributes. Of course, the
decision about one attribute is not independent of how we
represent other attributes. This discussion suggests that we
need to select a subset of variables to discretize, that is, to
choose from an exponential space of options.

In this section, we present a new method, called hybrid
TAN, that avoids this problem by representing both the con-
tinuous attributes and their discretized counterparts within
thesame TAN model. Thestructure of the TAN model deter-
mines whether the interaction between two attributesis best
represented via their discretized representation, their con-
tinuous representation, or a hybrid of the discrete represen-
tation of one and the continuous representation of the other.
Our hypothesisisthat hybrid TAN alows usto achieve per-
formance that is as good as either alternative. Moreover,
the cost of learning hybrid TAN is about the same as that of
learning either alternative.

Let us assume, that the first & attributes, Ag,..., Ay,
are the continuous attributes in our domain. We denote by
Az, ..., A} thecorresponding discretized attributes (i.e., A3
isthe discretized version of A;), based on a predetermined
discretization policy (e.g., using a standard method, such
as Fayyad and Irani's [7]). Given this semantics for the
discretized variables, we know that that each A} is a de-
terministic function of A;. That is, A} state corresponds
to the interval [z1, 2] if and only if A; € [z1,22]. Thus,
even though the discretized variablesare not observedin the
training data, we can easily augment the training data with
the discretized version of each continuous attribute.

At this stage one may consider the application of one of
the methods we described above to the augmented training
set. This, however, runs the risk of “double counting” the
evidence for classification provided by the duplicated at-
tributes. The likelihood of the learned model will contain
a penalty for both the continuous and the discrete versions
of the attribute. Consequently, during classification, a*“sur-
prising” value of an attribute would have twice the (neg-
ative) effect on the probability of the class variable. One
could avoid this problem by evaluating only the likelihood
assigned to the continuous version of the attributes. Unfor-
tunately, in this case the basic decomposition of Eq. (2) no



longer holds, and we cannot use the TAN procedure.

51 MODELING THE DUAL REPRESENTATION

Our approach takes advantage of Bayesian networks to
model theinteraction between an attributeand itsdiscretized
version. We constrain the networks we learn to match our
model of the discretization, that is, a discretized attributeis
afunction of the continuousone. More specifically, for each
continuous attribute A;, we require that Pg(A} | A;) =1
iff 4; isin the range specified by A}. It is easy to
show (using the chain rule) that this constraint implies that
PB(A]_, ceey An, AI, .. ,Az) = PB(Al, ceey An) av0|d|ng
the problem outlined in the previous paragraph.

Notethat by imposing this constraint we are not requiring
inany way that A; be aparent of A7. However, we do need
to ensure that P(A} | A;) is deterministic in the learned
model. We do so by requiring that A; and A} are adjacent
in the graph (i.e., one is the parent of the other) and by
putting restrictions on the models we learn for P(A4; | A})
and P(A} | 4;). Therearetwo possibilities:

If A; — AY isin the graph, then the conditional distri-
bution P(A} T A;, C) is determined as outlined above; it
is1if A; isin the range defined by the value of A} and 0
otherwise.

If AY — A; is in the graph, then we require that
P(A; | Af,C) = 0 whenever A; is not in the range spec-
ified by A7. By Bayesrule P(A; | A;) o< > o P(4; |
A%, C)P(A;,C); Thus, if A; is not in the range of A,
then P(A} | A;) «x >.,0x P(A},C) = 0. Since the
conditional probability of A} given A; must sum to 1, we
concludethat P(A} | A;) = 1iff A; isintherangeof A}.

Thereis still the question of the form of P(A4; | Af,C").
Our proposal istolearnamodel for 4; given A} and C', using
the standard methods above (i.e., a Gaussian or a mixture
of Gaussians). We then truncate the resulting density on
the boundaries of the region specified by the discretization,
and we ensure that the truncated density hastotal mass 1 by
applying a normalizing constant. In other words, we learn
an unrestricted model, and then condition on the fact that
A; can only take values in the specified interval.

Our goal isthento learn a TAN model that includes both
the continuous and discretized versions of each continuous
attribute, and that satisfiesthe restrictionswe just described.
Sincetheserestrictions are not enforced by the procedure of
Section 3.1, we need to augment it. We start by observing
that our restrictionsimply that if weinclude B — A inthe
model, we must alsoinclude A — A*. To seethis, notethat
since A already has one parent (B) it cannot have additional
parents. Thus, the only way of making A and A* adjacent
isby adding theedge A — A*. Similarly, if we include the
edge B — A*, wemust alsoinclude A* — A.

Thisobservation suggeststhat we consider edges between
groupsof variables, where each group containsboth versions
of an attribute. In building a TAN structure that includes
both representations, we must take into account that adding
an edge to an attribute in a group, immediately constraints
the addition of other edgeswithinthe group. Thus, the TAN
procedure should make choices at the level groups. Such a
procedure, which we call hybrid-TAN is described next.

Figure2: Thethreepossiblewaysof placinganedgefrom{B, B*}
into{A, A*}. Theparameterizationof possiblearcsareasfollows:
B* — A* is a discrete model, both B* — Aand B — A
are continuous models (e.g., Gaussians), A* — A is atruncated
continuous model (e.g., truncated Gaussian), and A — A* isa
deterministic model.

52 HYBRID-TAN

We now expand on the details of the procedure. As with
the basic procedure, we compute scores on edges. Now,
however, edgesare between groups of attributes. Each group
consisting of the different representations of an attribute.

Let A beacontinuous attribute. By our restriction, either
A e Pa(A*), or A* € Pa(A). And since each attribute has
at most oneparent (inadditiontotheclassC), wehavethat at
most one other attributeisinPa(A)UPa(A*)—{A, A*,C}.
We define a new function T'(A | B) that denotes the best
combination of parents for A and A* such that either B or
B* isaparent of oneof these attributes. Similarly, T(A | 0)
denotes the best configuration such that no other attributeis
aparent of A or A*.

First, consider the term T'(A | @). If we decide that
neither A nor A* have other parents, then we can freely
choose between A — A* and A* — A. Thus

T(A]0)= max( S(A|C,A")+S(4"|C),
S(A|C)+5(47 | C,A)),
where S(A | C, A*) and S(A* | C, A) are the scores of
the CPDs subject to the constraints discussed in Subsec-
tion 5.1 (the first is a truncated model, and the second is a
deterministic model).

Next, consider the case that a continuous attribute B is
aparent of A. There are three possible ways of placing an
edgefromthegroup { B, B*} intothegroup { 4, A*}. These
casesare shownin Figure 2. (Thefourth caseisdisallowed,
since we cannot have an edge from the continuous attribute,
B to the discrete attribute, A*.) It is easy to verify that in
any existing TAN network, we can switch between the edge
configurations of Figure 2 without introducing new cycles.
Thus, given the decision that the group B pointsto thegroup
A, wewould choose the configuration with maximal score:

T(A|B)= max( S(A|C,B*)+S(A*|C,A),
S(A|C,A%) + S(4* | C,B*),
S(A|C,B)+ S(4* | C,A))

Finally, when B isdiscrete, then T'(A | B) isthe maximum
between two options (B as a parent of A or as a parent of
B*), and when A isdiscrete, then T'(A | B) isequd to one
term (either S(A | C,B) or S(A | C, B*), depending on
B’stype).

We now define the Hybr i d- TAN procedure:
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Figure 3: A hybrid TAN model learned for the data set “glass2.” For clarity, the edges from the class to al the attributes are not shown.
The attributes marked with asterisks (x) correspond to the discretized representation. Dotted boxes mark two versions of the same

attribute.
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Figure 4: Differencesin the modeling of the interaction between attributes, for mixtures of Gaussians and the hybrid model. The graphs
show the interaction between Calcium (C') and Magnesium (M) inthe “glass2” data set, given a specific value of the class.

1. Initialize an empty graph G with n vertices labeled

1...,n.
2. For each attribute A;, compute the scores of the form

S(A; | C), S(Ar | C), S(4; | C, A}), etc. For each
A; with y # ¢, add to G an arc j — ¢ with weight
T(A; | Aj) —T(A; | 0). o

3. Find amaximal weighted branching A in G.

4. Construct the TAN model that contains edgesfrom C' to
each A; and A}. If j — ¢ isin A, add the best configu-
ration of edges (and the corresponding CPDs) from the
group 4; into A;. If ¢ does not have an incoming arcin
A, then add the edge between 4; and A} that maximizes

It is straight forward to verify that this procedure performs

the required optimization:

Theorem 5.1: The procedure Hybr i d- TAN constructsin

polynomial time a dual TAN network B that maximizes

LL(B : D), given the constraints on the CPDs and the

constraint that A; and A} are adjacent in the graph.

53 ANEXAMPLE

Figure 3 shows an example of ahybrid TAN model |earned
from one of the folds of the “glass2” dataset.! It isinstruc-
tive to compare it to the network in Figure 1, which was
learned by a TAN classifier based on mixtures of Gaussians
from the same data set. As we can see, there are some
similarities between the networks, such as the connections
between “Silicon” and “Sodium,” and between “Calcium”
and “Magnesium” (which was reversed in the hybrid ver-
sion). However, most of the network’s structure is quite

1Some of the discrete attributes do not appear in the figure,
since they were discretized into one bin.

different. Indeed, the relation between “Magnesium” and
“Calcium” is now modulated by the discretized version of
these variables. Thisfact, and theincreased accuracy of hy-
brid TAN for thisdata set (see Table 1), seemtoindicatethat
in thisdomain attributesare not modeled well by Gaussians.

As afurther illustration of this, we show in Figure 4 the
estimate of thejoint density of “Calcium” and “ Magnesium”
in both networks (given a particular value for the class), as
well as the training data from which both estimates were
learned. Aswe can see, most of thetraining datais centered
at one point (roughly, when M = 3.5 and C' = 8), but
thereis fair dispersion of data points when M = 0. In the
Gaussian case, C' ismodeled by a mixture of two Gaussians
(centered on 8.3 and 11.8, where the former has most of
the weight in the mixture), and M is modeled as a linear
function of C' with a fixed variance. Thus, we get a sharp
“bump” at the main concentration point on the low ridgein
Figure 4a. On the other hand, in the hybrid model, for each
attribute, we model the probability in each bin by atruncated
Gaussian. In this case, C is partitioned into three bins and
M intotwo. Thismodel resultsin the discontinuous density
function we see in Figure 4b. As we can see, the bump
at the center of concentration is now much wider, and the
whole region of dispersion corresponds to a low, but wide,
“tile” (in fact, thistile is a truncated Gaussian with a large
variance).

6 EXPERIMENTAL EVALUATION

We ran our experimentson the 23 data setslisted in Table 1.
All of these data sets are from the UCI repository [16], and
are accessible at the MLC++ ftp site. The accuracy of
each classifier is based on the percentage of successful pre-
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Figure 5: Scatter plots comparing the performance (a) of Disc (x axis) vs. Mix (y axis), (b) of H/Mix (z axis) vs. Disc and Mix (y axis),
and (c) of H/Mix (z axis) vs. H/Mix-FS (y axis). In these plots, each point represents a data set, and the coordinates correspond to the
prediction error of each of the methods compared. Points below the diagona line correspond to data sets where the y axis method is
more accurate, and points above the diagonal line correspond to data sets where the z axis method is more accurate. In (b), the dashed

lines connect points that correspond to the same data set.

dictions on the test sets of each data set. We estimate the
prediction accuracy of each classifier aswell asthe variance
of this accuracy by using the MLC++ system [14]. Ac-
curacy was evaluated using 5-fold cross validation (using
the methods described in [13]). Since we do not currently
deal with missing data, we removed instances with missing
values from the data sets. To construct discretizations, we
used a variant of the method of Fayyad and Irani [7], using
only thetraining data, in the manner describedin [4]. These
preprocessing stages were carried out by the MLCH++ sys-
tem. We note that experiments with the various learning
procedures were carried out on exactly the same training
sets and evaluated on exactly the same test sets.

Table 1 summarizesthe accuracies of the learning proce-
dures we have discussed in this paper: (1) Disc—TAN clas-
sifier based on prediscretized attributes; (2) Gauss-TAN
classifier using Gaussians for the continuous attributes and
multinomials for the discrete ones; (3) Mix—TAN classifier
using mixtures of Gaussians for the continuous attributes;
(4) H/Gauss—hybrid TAN classifier enabling the dual repre-
sentation and using Gaussians for the continuous version of
the attributes; (5) H/Mix—hybrid TAN classifier using mix-
turesof Gaussian for the continuousversion of the attributes;
and (6) H/Mix-FS-sameasH/Mix but incorporating aprim-
itiveform of feature selection. The discretization procedure
often removes attributes by discretizing them into oneinter-
val. Thus, theseattributesareignored by thediscreteversion
of TAN. H/Mix-FSimitate this feature selection by also ig-
noring the continuous version of the attributes removed by
the discretization procedure.

As we can see in Figure 5(a), neither the discrete TAN
(Disc) nor the mixture of Gaussians TAN (Mix) outper-
formsthe other. In some domains, such as “anneal-U” and
“glass,” the discretized version clearly performs better; in
others, such as“balance-scale,” “hayes-roth,” and “iris,” the
semiparametric version performs better. Note that the latter
three datasetsare all quite small. So, areasonable hypothe-
sisisthat the dataistoo sparseto learn good discretizations.

On the other hand, as we can see in Figure 5(b), the hybrid
method performs at roughly the same level as the best of
either Mix or Disc approaches. In this plot, each pair of
connected points describes the accuracy results achieved by
Discand Mix for asingledataset. Thus, the best accuracy of
these two methodsis represented by the lower point on each
line. Aswe can see, in most data sets the hybrid method
performsroughly at the samelevel astheselower points. In
addition, in some domains such as “glass?,” “hayes-roth,”
and “hepatitis’ the ability to model more complex interac-
tionsbetween the different continuousand discrete attributes
results in a higher prediction accuracy. Finaly, given the
computational cost involved in using EM to fit the mixture
of Gaussians we include the accuracy of H/Gauss so that
the benefits of using a mixture model can be evaluated. At
the same time, the increase in prediction accuracy due to
the dual representation can be evaluated by comparing to
Gauss.

Due to the fact that H/Mix increases the number of pa-
rameters that need to be fitted, feature selection techniques
are bound to have a noticeable impact. This is evident
in the results obtained for H/Mix-FS which, as mentioned
above, supports a primitive form of feature selection (see
Figure5(c)). Theseresultsindicatethat we may achievebet-
ter performance by incorporating a feature selection mech-
anism into the classifier. We leave this as atopic for future
research.

7 CONCLUSIONS

The contributions of thiswork aretwofold. First, we extend
the TAN classifier to directly model continuousattributes by
parametric and semiparametric methods. We use standard
proceduresto estimate each of the conditional distributions,
and then combine them in a structure learning phase by
maximizing thelikelihood of the TAN model. Theresulting
procedure preserves the attractive properties of the original
TAN classifie—we can learn the best model in polynomial
time. Of course, one might extend TAN to use other para-



Table 1. Experimental Results. Thefirst four column describe the name of the data sets, the number of continuous and discrete attributes,
and the number of instances. The remaining columnsreport percentage classification error and std. deviationsfrom 5-fold crossvalidation

of the tested procedures (see text).

Attr. Prediction Errors
Data set C D Size Disc Gauss Mix H/Gauss H/Mix H/Mix-FS
anned-U 6 32 898 245+ 101 23.06 +- 3.49 746+ 312 10.91+ 1.79 4712+ 1.78 434+ 143
australian 6 8 690 15.36 +- 2.37 23.77 +- 3.26 18.70 +- 4.57 17.10 +- 2.83 16.23 +- 2.38 15.80 +- 1.94
auto 15 10 159 23.93 +- 8.57 28.41 +- 10.44 29.03 +- 10.04 27.10+-8.12 26.47 +- 8.44 21.41 +- 4.27
balance-scale 4 0 625 25.76 +- 7.56 11.68 +- 3.56 9.60 +- 2.47 11.84 +- 3.89 13.92 +- 2.16 13.92 +- 2.16
breast 10 0 683 3.22+- 1.69 5.13+-1.73 3.66 +- 2.13 3.22+-1.69 434+-1.10 4.32 +-0.96
carsl 7 0 392 26.52 +- 2.64 25.03+-7.11 26.30 +- 4.44 25.28 +- 6.54 24.27 +- 7.85 25.79 +- 6.21
cleve 6 7 296 18.92 +- 1.34 17.23+-1.80 16.24 +- 3.97 16.24 +- 3.97 15.89 +- 3.14 16.23 +- 3.58
crx 6 9 653 15.01 +- 1.90 24.05 +- 4.44 19.76 +- 4.04 17.31 + 1.60 15.47 +- 1.87 15.47 +- 2.09
diabetes 8 0 768 24.35 +- 2.56 25.66 +- 2.70 24.74 +- 3.74 22.65 +-3.21 24.86 +- 4.06 24.60 +- 3.45
echocardiogram 6 1 107 31.82+-10.34 2823+-13.86 30.13+ 1494 29.18+-14.05 29.18+-14.05 30.95+- 11.25
flare 2 8 1066 17.63 +- 4.19 17.91 + 4.34 17.63 +- 4.46 17.91 +- 4.34 17.63 +- 4.46 17.63 +- 4.19
german-org 12 12 1000 26.30 +- 2.59 25.30 +- 2.97 25.60 +- 1.39 25.70 +- 3.47 25.20 +- 1.75 26.60 +- 2.27
german 7 13 1000 | 26.20 +-4.13 25.20 +- 2.51 24.60 +- 1.88 25.10 +- 2.07 25.30 +- 3.33 25.70 +- 4.40
glass 9 0 214 30.35 +- 5.58 49.06 +- 6.29 48.13+- 8.12 32.23+-4.63 31.30 +- 5.00 33.16 +- 5.65
glass2 9 0 163 21.48 +-3.73 38.09 +- 7.92 38.09 +- 7.92 34.39 +- 9.62 31.27 +- 9.63 23.30 +- 6.22
hayes-roth 4 0 160 43.75 +- 4.42 33.12 +- 11.40 31.88 +- 6.01 29.38 +- 10.73 18.75 +- 5.85 14.38 +- 4.19
heart 13 0 270 16.67 +- 5.56 15.56 +- 5.65 15.19 +- 5.46 15.19 +- 3.56 17.41 +- 4.65 15.93 +- 5.34
hepatitis 6 13 80 8.75 +- 3.42 12.50 +- 4.42 10.00 +- 3.42 12.50 +- 7.65 10.00 +- 5.59 11.25+-5.23
ionosphere 34 0 351 7.70+- 2,62 9.13+-3.31 9.41 +- 2.98 6.85 +- 3.27 6.85 +- 3.27 7.13+- 3.65
iris 4 0 150 6.00 +- 2.79 2.00 +- 2.98 2.00 +- 2.98 4.67 +- 1.83 4.67 +- 1.83 4.67 +- 1.83
liver-disorder 6 0 345 41.16 +- 1.94 40.29 +- 5.16 33.33+-4.10 36.52 +- 7.63 30.43 +- 5.12 41.74 +- 2.59
pima 8 0 768 24.87 +- 2.82 24.35 +- 1.45 24.35 +- 3.47 22.92 +- 3.96 25.52 +- 2.85 24.48 +- 2.87
post-operative 1 7 87 29.74+-13.06 3438+ 1009 30.98+ 11.64 3438+ 10.09 3098+-11.64 29.74+- 13.06

metric families (e.g., Poisson distributions) or other semi-
parametric methods, (e.g., kernel-based methods). Thegen-
eral conclusion we draw from these extensionsisthat if the
assumptions embedded in the parametric forms* match” the
domain, then the resulting TAN classifier generalizes well
and will lead to good prediction accuracy. We aso note
that it is straightforward to extend the procedure to select,
at learning time, a parametric form from a set of parametric
families.

Second, we introduced a new method to deal with differ-
ent representations of continuous attributes within a single
model. This method enables our model learning procedure
(inthiscase, TAN) to automate the decision asto which rep-
resentation is most useful in terms of providing information
about other attributes. As we showed in our experiments,
the learning procedure managed to make good decisions on
these issues and achieve performance that roughly as good
as both the purely discretized and the purely continuous
approaches.

This method can be extended in several directions. For
example, to deal with several discretizations of the same
attributes in order to select the granularity of discretization
that is most useful for predicting other attributes. Another
direction involves adapting the discretization to the particu-
lar edgesthat are present inthe model. Asargued Friedman
and Goldszmidt [9], it is possible to discretize attributes to
gain the most information about the neighboring attributes.
Thus, we might follow the approach in [9] and iteratively
readjust the structureand discretization toimprovethe score.
Finally, it is clear that this hybrid method is applicable not
only to classification, but also to density estimation and
related tasks using general Bayesian networks. We are cur-
rently pursuing these directions.
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