Mean Field Variational Approximation for Continuous-Time Bayesian
Networks

Ido Cohn Tal El-Hay Nir Friedman
School of Computer Science
The Hebrew University
{ido_cohn,tale,nir} @cs.huji.ac.il

Abstract

Continuous-time Bayesian networks is a natu-
ral structured representation language for multi-
component stochastic processes that evolve con-
tinuously over time. Despite the compact repre-
sentation, inference in such models is intractable
even in relatively simple structured networks.
Here we introduce a mean field variational ap-
proximation in which we use a product of in-
homogeneous Markov processes to approximate
a distribution over trajectories. This variational
approach leads to a globally consistent distribu-
tion, which can be efficiently queried. Addition-
ally, it provides a lower bound on the probabil-
ity of observations, thus making it attractive for
learning tasks. We provide the theoretical foun-
dations for the approximation, an efficient imple-
mentation that exploits the wide range of highly
optimized ordinary differential equations (ODE)
solvers, experimentally explore characterizations
of processes for which this approximation is suit-
able, and show applications to a large-scale real-
world inference problem.

1 Introduction

Many real-life processes can be naturally thought of as
evolving continuously in time. Examples cover a di-
verse range, including server availability, changes in socio-
economic status, and genetic sequence evolution. To realis-
tically model such processes, we need to reason about sys-
tems that are composed of multiple components (e.g., many
servers in a server farm, multiple residues in a protein se-
quence) and evolve in continuous time. Continuous-time
Bayesian networks (CTBNs) provide a representation lan-
guage for such processes, which allows to naturally exploit
sparse patterns of interactions to compactly represent the
dynamics of such processes [9].

Inference in multi-component temporal models is a no-
toriously hard problem [1]. Similar to the situation in dis-
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crete time processes, inference is exponential in the num-
ber of components, even in a CTBN with sparse interac-
tions [9]. Thus, we have to resort to approximate inference
methods. The recent literature has adapted several strate-
gies from discrete graphical models to CTBNs. These in-
clude sampling-based approaches, where Fan and Shelton
[5] introduced a likelihood-weighted sampling scheme, and
more recently we [4] introduced a Gibbs-sampling proce-
dure. Such sampling-based approaches yield more accu-
rate answers with the investment of additional computa-
tion. However, it is hard to bound the required time in ad-
vance, tune the stopping criteria, or estimate the error of
the approximation. An alternative class of approximations
is based on variational principles.

Recently, Nodelman et al. [11] introduced an Expec-
tation Propagation approach, which can be roughly de-
scribed as a local message passing scheme, where each
message describes the dynamics of a single component
over an interval. This message passing procedure can auto-
matically refine the number of intervals according to the
complexity of the underlying system [14]. Nonetheless,
it does suffer from several caveats. On the formal level,
the approximation has no convergence guaranties. Second,
upon convergence, the computed marginals do not nec-
essarily form a globally consistent distribution. Third, it
is restricted to approximations in the form of piecewise-
homogeneous messages on each interval. Thus, the re-
finement of the number of intervals depends on the fit of
such homogeneous approximations to the target process.
Finally, the approximation of Nodelman et al does not pro-
vide a provable approximation on the likelihood of the
observation—a crucial component in learning procedures.

Here, we develop an alternative variational approxima-
tion, which provides a different trade-off. We use the strat-
egy of structured variational approximations in graphical
models [8], and specifically by the variational approach of
Opper and Sanguinetti [12] for approximate inference in
Markov Jump Processes, a related class of models (see be-
low). The resulting procedure approximates the posterior
distribution of the CTBN as a product of independent com-
ponents, each of which is an inhomogeneous continuous-



time Markov process. As we show, by using a natural rep-
resentation of these processes, we derive a variational pro-
cedure that is both efficient, and provides a good approxi-
mation both for the likelihood of the evidence and for the
expected sufficient statistics. In particular, the approxima-
tion provides a lower-bound on the likelihood, and thus is
attractive for use in learning.

2 Continuous-Time Bayesian Networks

Consider a D-component Markov process X ® =
(Xft),Xz(t), . Xg)) with state space S = 51 X Sy X -+ - %
Sp. A notational convention: vectors are denoted by bold-
face symbols, e.g., X, and matrices are denoted by black-
board style characters, e.g., Q. The states in S are denoted
by vectors of indexes, € = (z1,...,2p). We use indexes
1 < 4,5 < D for enumerating components and X ) and
X i(t) to denote the random variable describing the state of
the process and its 7’th components at time ¢.

The dynamics of a time-homogeneous continuous-time
Markov process are fully determined by the Markov transi-
tion function,

Poy(t) = Pr(XOH) = y|X©) —a)

where time-homogeneity implies that the right-hand side
does not depend on s. These dynamics are fully cap-
tured by a matrix Q—the rate matrix with non-negative off-
diagonal entries g o and diagonal ¢z » = — Zy#c Gz,y-
This rate matrix defines the transition probabilities

Pa,y(h) = 6z,y + qu,y - h +o(h)

where 05, is a multivariate Kronecker delta and o(:)
means decay to zero faster than its argument. Using the
rate matrix Q, we can express the Markov transition func-
tion as pg y(t) = [exp(tQ)], ,, where exp(tQ) is a matrix
exponential [2, 7].

A continuous-time Bayesian network is defined by as-
signing each component ¢ a set of components Pa; C
{1,...,D}\ {i}, which are its parents in the network [9].
With each component ¢ we then associate a set of condi-
tional rate matrix @nlqiai for each state u; of Pa;. The

off-diagonal entries qil?;""u, represent the rate at which X;

transitions from state x; to state y; given that its parents are
in state u;. The dynamics of X @ are defined by a rate
matrix Q with entries g ,, which amalgamates the condi-
tional rate matrices as follows:

i|Pa; .
q;‘ivyaijui 5(32’1/) = {’L}
Tey =\ > q;lf;i‘ui r=1y O
0 otherwise,

where §(x,y) = {i|z; # y;}. This definition implies that
changes are one component at a time.

Given a continuous-time Bayesian network, we would
like to evaluate the likelihood of evidence, to compute the

probability of various events given the evidence (e.g., that
the state of the system at time ¢ is ), and to compute con-
ditional expectations (e.g., the expected amount of time X;
was in state x;). Direct computations of these quantities
involve matrix exponentials of the rate matrix Q, whose
size is exponential in the number of components, making
this approach infeasible beyond a modest number of com-
ponents. We therefore have to resort to approximations.

3 Variational Principle for Continuous Time
Markov Processes

We start by defining a variational approximations princi-
ple in terms of a general continuous-time Markov process
(that is, without assuming any network structure). For con-
venience we restrict our treatment to a time interval [0, T']
with end-point evidence X © = ey and X = ep. We
discuss more general types of evidence below. Here we
aim to define a lower bound on In Py(er|ep) as well as to
approximate the posterior probability Py (- | eg, er).

Marginal Density Representation Variational approxi-
mations cast inference as an optimization problem of a
functional which approximates the log probability of the
evidence by introducing an auxiliary set of variational pa-
rameters. Here we define the optimization problem over a
set of mean parameters [15], representing possible values
of expected sufficient statistics.

As discussed above, the prior distribution of the process
can be characterized by a time-independent rate matrix Q.
It is easy to show that if the prior is a Markov process, then
the posterior is also a Markov process, albeit not necessar-
ily a homogeneous one. Such a process can be represented
by a time-dependent rate matrix that describes the instan-
taneous transition rates. Here, rather than representing the
target distribution by a time-dependent rate matrix, we con-
sider a representation that is more natural for variational
approximations. Let Pr be the distribution of a Markov
process. We define a family of functions:

a(t) = Pr(X® = @)
Pr(X® =z, X#Hh) — )

Ya,y(t) = lhl?(} h , TFY )
Ve, (t) = — Z 'Yw,y(t)-
y#x

The function fi¢(t) is the probability that X = .
The function -y, () is the probability density that X tran-
sitions from state x to y at time ¢. Note that this parame-
ter is not a transition rate, but rather a product of a point-
wise probability with the point-wise transition rate of the
approximating probability, i.e., Yz 4(t)/1z(t) is the x,y
entry of the time-dependent rate matrix. Hence, unlike the
(inhomogeneous) rate matrix at time ¢, v, ,(¢) takes into
account the probability of being in state  and not only the



rate of transitions. This definition implies that

Pr(X®) =z, X0 — 4

We aim to use the family of functions p and v as a
representation of a Markov process. To do so, we need
to characterize the set of constraints that these functions
should satisfy.

Definition 3.1: A family nn = {{15(t), Vz,y(t) : 0 < t <
T} of continuous functions is a Markov-consistent density
set if the following constraints are fulfilled:

pa(t) = 0, Y pa(0) =1,
’Ym,y(t) > 0 Vy 7é Z,
Yeal(t) = - Z Va,y(t)

y#x

%Um (t) = Z Yy, (t)

Let M be the set of all Markov-consistent densities. |

Using standard arguments we can show that there ex-
ists a correspondence between (generally inhomogeneous)
Markov processes and density sets 7. Specifically:

Lemma 3.2: Let ) = {pz(t),Va,y(t)}. If n € M, then
there exists a continuous-time Markov process P, for which
He and Yz o satisfy (2).

The processes we are interested in, however, have addi-
tional structure, as they correspond to the posterior distri-
bution of a time-homogeneous process with end-point ev-
idence. This additional structure implies that we should
only consider a subset of M:

Lemma 3.3: Let Q be a rate matrix, and eq, e be states
of X. Then the representation n corresponding to the pos-
terior distribution Py(-|eo, er) is in the set M C M that
contains Markov-consistent density sets satisfying (1, (0) =
6&3760’ Ha (T) = 6w7eT-

Thus, from now on we can restrict our attention to den-
sity sets from M. The constraint that i, (0) and g (T)
also has consequences on 7y, , at these points.

Lemma 3.4: If ) € M, then 7z 4(0) = 0 for all x # e
and g o (T) = 0 forall y # er.

Variational Principle We can now state the variational
principle for continuous processes, which closely tracks
similar principles for discrete processes.

We define a free energy functional,

F(n;Q) = Em; Q) + H(n),

which, as we will see, measures the quality of 7 as an ap-
proximation of Py(-|e). (For succinctness, we will assume
that the evidence e is clear from the context.) The two

= Mz (t)(sw,y“"}/w,y(t)h“‘o(h)a

terms in the continuous functional correspond to an en-
tropy,

/ D> e+ jia() — ey (8)dt,
T yFx

and an energy,

/ Z :uw q:c:c+Z’wa lnqu dt.

y#x

Theorem 3.5: Let Q be a rate matrix, e = (eg,er) be
states of X, and € M. Then

F(n;Q) = In Py(er|eo) — D(P,(-)|Pol'le))
where D(P,(-|Pg(-|e)) is the KL divergence between the

two processes.

We conclude that F(n; Q) is a lower bound of the log-
likelihood of the evidence, and that the closer the approxi-
mation to the target posterior, the tighter the bound.

Proof Outline The basic idea is to consider discrete ap-
proximations of the functional. Let K be an integer. We
define the K-sieve X g to be the set of random variables
X(tO),X(“),...,X(tK) where t;, = ]%T We can use
the variational principle [8] on the marginal distributions
Py(X kle) and P, (X k). More precisely, define

Po(Xk,er | eo)
Pn(XK) ’

Fr(n;Q) = Ep, |In

which can, by using simple arithmetic manipulations, be
recast as

Fr(n;Q)

We get the desired result by letting K —
co. By definition limg o D(P,(X k)| Pop(X kle)) is
D(P,(-)|Po(-le)). The crux of the proof is in proving the
following lemma.

Lemma 3.6: F(1); Q) = limg .o Fx (1; Q).

Proof: Since both Py and P, are Markov processes,

= In Py(erleo) — D(Py(X )| Po(X kle)).

K-1
> Er, [In Py(X (1) X (1)) |

Nw
>—-O

B 09, 0000

>
Il
o

S

+3 Ep, [m Pn(X(tk))]

b
Il
—

We now express these terms as functions of fig (%), Y,y (t)
and ¢ . By definition, P,(X®) = x) = yu,(tx). Each



of the expectations either depend on this term, or on the
joint distribution Pn(X(t"'*l), X (%)), Using the continu-
ity of v 4 (t) we write

Py(X ") = 2, X)) = y) = 65y pia (1)
+ Ak - Va,y(te) + o(Ak)
where A = T/K. Similarly, we can also write
Po(X ") = y| X M) = &) = 64y + A Gy +0(Agc)
Finally, using properties of logarithms we have that
In(1+Ag-z+0(Ak)) = Ag-z+o0(Axk).

Using these relations, we can rewrite after tedious yet
straightforward manipulations,

Fr(m;Q) = Ex(n; Q) + Hr (n),
where
K-1 K-1
x(n;Q) = Z Arer(ty), Hir(n Z Aghg(ti),
k=0 k=0
and
ex®) = 33 ey (D1 + 1n pat) — 7y (5] + 0(Asc
T y#x
Z ,Um q:cm+z7a:y IOngy + (AK)
x y#x

Letting K — oo we have that Y, Ag[f(tx) + o(Ak)] —

ﬁ) t)dt, hence Ex(n;Q) and Hx(n) converge to
E(n Q) and H(n), respectively. 1l

4 Factored Approximation

The variational principle we discussed is based on a rep-
resentation that is as complex as the original process—the
number of functions ~y ,,(¢) we consider is equal to the size
of the original rate matrix Q. To get a tractable inference
procedure we make additional simplifying assumptions on
the approximating distribution.

Given a D-component process we consider approx-
imations that factor into products of independent pro-
cesses. More precisely, we define M to be the contin-
uous Markov-consistent density sets over the component
X;, that are consistent with the evidence on X; at times
0 and 7. Given a collection of density sets 1, ...,n"
for the different components, the product density set n =

n' x -+ x nP is defined as
pa(t) = Hu; (1)
Yooy O (t)  O(w,y) = {i}
Yoy (1) z Vi, O () T=1y
otherwise

where 13 (¢) = ] i 1, (t) is the joint distribution at time
t of all the components other than the ¢’th. (It is not hard to
see that if * € M for all 4, then n € M..) We define the
set ML to contain all factored density sets. From now on
we assume that = n* x --- x nP? € ME.

Assuming that Q is defined by a CTBN, and that 7 is a
factored density set, we can rewrite

T
+ Z/ Z ’yzl yz ,“\ (f) [h’l q$7 y?‘U ] d

Ti,YiFETi

H(n) = Z H(n")

This decomposition involves only local terms that either
include the ¢’th component, or include the ¢’th component
and its parents in the CTBN defining Q. Note that terms
such as E i (4 [q%wi‘ui] involve only 7 (t) for j € Pa;.

To make the factored nature of the approximation ex-
plicit in the notation, we write henceforth,

and

Fn;Q) =F(n',...,n";Q).

Fixed Point Characterization We can now pose the op-
timization problem we wish to solve:

Fixing 4, and given n',... 0"~ it ... nP,
in ML .. ML MEFL D MP, respec-
tively, find arg max,ic s 5 (1", ..., 075 Q).

If for all 7, we have a ui IS Mi, which is a solution
to this optimization problem with respect to each compo-
nent, then we have a (local) stationary point of the energy
functional within M.

To solve this optimization problem, we define a La-
grangian, which includes the constraints in the form of
Def. 3.1. The Lagrangian is a functional of the functions
p (t) and ~% . (t) and Lagrange multipliers (which are
functions of ¢ as well). The stationary point of the func-
tional satisfies the Euler-Lagrange equations, namely the
functional derivatives of £ vanish. Writing these equations
in explicit form we get a fixed point characterization of the
solution in term of the following set of ODEs:

Z (’Yzi/i,:ci <t) - ’Y;hyi (t))
YiFTi
%ng () = —pb (D@, (D + 05 1) B

_Zpy

YiFTi

da

),y (1)

where p’ are the exponents of the Lagrange multipliers.



In addition we have the following algebraic constraint

pgcz (t)’}/;myi (t) = 'u’;z (t)q~;7,yq (t)ply? (t)v T 7£ Yi- (4)
In these equations we use the following shorthand notations
for the average rates
Toiys (1) = Epviy) {q;‘i,@iwi}

| P,

qjﬁ‘mlﬂ@j (t) = Eﬂ\i(t) [q;yyaa‘jUi | xj] ’

Similarly, we have the following shorthand notations for
the geometrically-averaged rates,

~1 i | P i
G, (1) = €xp {Eu\"(t) [m q;‘i,;wi} }
~i i|Pa;
q;n%h; (t) = exp {Eﬂ\i(t) [lnq;‘z‘,yadUi | xj] } ’

The last auxiliary term is

S0, 0+

JE€Children; x;

S A, W@ ().

Jj€EChildren; x;7#y;

¥s, () =

The two differential equations (3) for !, (t) and p’, (t)
describe, respectively, the progression of uii forward, and
the progression of p; backward. To uniquely solve these
equations we need to set the boundary conditions. The
boundary condition for ,u; is defined explicitly in ME as

P, (0) = G0 ®)

The boundary condition at 7" is slightly more involved. The
constraints in ME imply that yi%, (T') = 6,, ¢, ... As stated
by Lemma 3.4, we have that 7/ . (T) = 0 when z; #
e; 7. Plugging these values into (4), and assuming that Q
is irreducible we get that p,,(T) = 0 for all z; # e; 7.
In addition, we notice that p., ..(7) # 0, for otherwise the
whole system of equations for p will collapse to 0. Finally,
notice that the solution of (3) for u® and ~* is insensitive
to the multiplication of p? by a constant. Thus, we can
arbitrarily set p, ,.(1') = 1, and get the boundary condition

p:ZvL (T) = 5%761',7"' (6)

Theorem 4.1: n° € ML is a stationary point (e.g., local
maxima) of F¥'(nl,... n”;Q) subject to the constraints
of Def. 3.1 if and only if it satisfies (3—6).

It is straightforward to extend this result to show that at a
maximum with respect to all the component densities, this
fixed-point characterization must hold for all components
simultaneously.

Example 4.2: Consider the case of a single component,
for which our procedure should be exact, as no simplifying
assumptions are made on the density set. In this case, the

averaged rates ¢ and the geometrically-averaged rates §*
both reduce to the unaveraged rates ¢, and ¢» = 0. Thus,
the system of equations to be solved is

@ 1elt) = 3 Oalt) — e (1)

y#w
d
%Pm(t) = Z z,yPy(t),
y

along with the algebraic equation

y# .

In this case, it is straightforward to show that the back-
ward propagation rule for p, implies that

Pz () Ve () = Gyt () py (),

pz(t) = Pr(ep| X®).

This system of ODE:s is similar to forward-backward prop-
agation, except that unlike classical forward propagation
(which would use a function such as a,(t) = Pr(X®) =
z|eg)), here the forward propagation already takes into ac-
count the backward messages, to directly compute the pos-
terior. Given this interpretation, it is clear that integrating
pz(t) from T to O followed by integrating 11, (¢) from 0 to
T computes the exact posterior of the processes.

This interpretation of p,,(t) also allows us to understand
the role of -y, ,(¢). Recall that 7y, , (t)/p(t) is the instan-
taneous rate of transition from x to y at time ¢. Thus,

’Y;c,y(t) —q py(t)
iz (1) oy p(t) .

That is, the instantaneous rate combines the original rate
with the relative likelihood of the evidence at T" given y and
z. If y is much more likely to lead to the final state, then
the rates are biased toward y. Conversely, if y is unlikely
to lead to the evidence the rate of transitions to it are lower.
This observation also explains why the forward propaga-
tion of y, will reach the observed 1, (T") even though we
did not impose it explicitly.

Example 4.3: We define an Ising chain to be a CTBN
Xy < X9 < -+ < Xp such that each binary compo-
nent prefers to be in the same state as its neighbor. These
models are governed by two parameters: a coupling pa-
rameter 3 which determines the strength of the coupling
between two neighboring components, and a rate parame-
ter T that determines the propensity of each component to
change its state. More formally, we define the conditional

rate matrices as qi‘f;’ilui = 7 (1 1 2B epa, h) !
where z; € {—1,1}.

As an example, we consider a two-component Ising
chain with initial state X\” = —1 and X{”) = 1, and a
reversed state at the final time, X{T) =1and X;T) =—1.
For a large value of 3, this evidence is unlikely as at
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Figure 1: Numerical results for the two-component Ising chain
described in Example 4.3 where the first component starts in state
—1 and ends at time 7" = 1 in state 1. The second component
has the opposite behavior. (top) Two likely trajectories depicting
the two modes of the model. (middle) Exact (solid) and approx-
imate (dashed/dotted) marginals p7(¢). (bottom) The log ratio

log pi(t)/p5 ().

both end points the components are in a undesired con-
figurations. The exact posterior is one that assigns higher
probabilities to trajectories where one of the components
switches relatively fast to match the other, and then toward
the end of the interval, they separate to match the evidence.
Since the model is symmetric, these trajectories are either
ones in which both components are most of the time in
state —1, or ones where both are most of the time in state 1
(Fig. 1 top). Due to symmetry, the marginal probability of
each component is around 0.5 throughout most of the inter-
val (Fig. 1 middle). The variational approximation cannot
capture the dependency between the two components, and
thus converges to one of two local maxima, corresponding
to the two potential subsets of trajectories. Examining the
value of p?, we see that close to the end of the interval they
bias the instantaneous rates significantly (Fig. 1 bottom).
This example also allows to examine the implications
of modeling the posterior by inhomogeneous Markov pro-
cesses. In principle, we might have used as an approxima-
tion Markov processes with homogeneous rates, and con-
ditioned on the evidence. To examine whether our approx-

imation behaves in this manner, we notice that in the single
component case we have

_ Pm(t)%c,y(t)
S py (e (t)

which should be constant. Consider the analogous quantity
in the multi-component case: g, ., (t), the geometric aver-
age of the rate of X, given the probability of parents state.
Not surprisingly, this is exactly a mean field approximation,
where the influence of interacting components is approxi-
mated by their average influence. Since the distribution of
the parents (in the two-component system, the other com-
ponent) changes in time, these rates change continuously,
especially near the end of the time interval. This suggests
that a piecewise homogeneous approximation cannot cap-
ture the dynamics without a loss in accuracy.

Optimization Procedure If Q is irreducible, then p;L
and fi,, are non-zero throughout the open interval (0,7").
As aresult, we can solve (4) to express fyfﬂzyl as a function
of ' and p?, thus eliminating it from (3) to get evolution
equations solely in terms of y* and p?. Abstracting the de-
tails, we obtain a set of ODEs of the form

%ui(t) = a(u'(t), p'(t), n\' ()

&5 (1) = ~B(' (6, 1V (1)

where «v and 3 can be inferred from (3) and (4). Since the
evolution of p’ does not depend on x?, we can integrate
backward from time 7" to solve for p’. Then, integrating
forward from time 0, we compute u°. After performing a
single iteration of backward-forward integration, we obtain
a solution that satisfies the fixed-point equation (3) for the
1’th component. (This is not surprising once we have iden-
tified our procedure to be a variation of a standard forward-
backward algorithm for a single component.) Such a solu-
tion will be a local maximum of the functional w.r.t. to n’
(reaching a local minimum or a saddle point requires very
specific initialization points).

This suggests that we can use the standard procedure
of asynchronous update, where we update each compo-
nent in a round-robin fashion. Since each of these single-
component updates converges in one backward-forward
step, and since it reaches a local maximum, each step im-
proves the value of the free energy over the previous one.
Since the free energy functional is bounded by the proba-
bility of the evidence, this procedure will always converge.

Another issue is the initialization of this procedure.
Since the iteration on the i’th component depends on .\,
we need to initialize p by some legal assignment. To do
so, we create a fictional rate matrix QZ for each component
and initialize p' to be the posterior of the process given
the evidence ¢; o and e; 7. As a reasonable initial guess,
we choose at random one of the conditional rates in Q to
determine the fictional rate matrix.

1t (0) = given

p(T) = given.
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Figure 2: (a) Relative error as a function of the coupling parameter 3 (z-axis) and transition rates 7 (y-axis) for an 8-component Ising
chain. (b) Comparison of true vs. estimated likelihood as a function of the rate parameter 7. (¢) Comparison of true vs. likelihood as a

function of the coupling parameter [3.

The continuous time update equations allow us to use
standard ODE methods with an adaptive step size (here we
use the Runge-Kutta-Fehlberg (4,5) method). At the price
of some overhead, these procedure automatically tune the
trade-off between error and time granularity.

5 Perspective & Related Works

Variational approximations for different types of
continuous-time processes have been recently pro-
posed [12, 13]. Our approach is motivated by results of
Opper and Sanguinetti [12] who developed a variational
principle for a related model. Their model, which they call
a Markov jump process, is similar to an HMM, in which
the hidden chain is a continuous-time Markov process and
there are (noisy) observations at discrete points along the
process. They describe a variational principle and discuss
the form of the functional when the approximation is a
product of independent processes. There are two main
differences between the setting of Opper and Sanguinetti
and ours. First, we show how to exploit the structure of the
target CTBN to reduce the complexity of the approxima-
tion. These simplifications imply that the update of the ¢’th
process depends only on its Markov blanket in the CTBN,
allowing us to develop efficient approximations for large
models. Second, and more importantly, the structure of
the evidence in our setting is quite different, as we assume
deterministic evidence at the end of intervals. This setting
typically leads to a posterior Markov process in which
the instantaneous rates used by Opper and Sanguinetti
diverge toward the end point—the rates of transition into
the observed state go to infinity, leading to numerical
problems at the end points. We circumvent this problem by
using the marginal density representation which is much
more stable numerically.

Taking the general perspective of Wainwright and Jor-
dan [15], the representation of the distribution uses the nat-
ural sufficient statistics. In the case of a continuous-time
Markov process, the sufficient statistics are 7T, the time

spent in state x, and M ,,, the number of transitions from
state  to y. In a discrete-time model, we can capture the
statistics for every random variable. In a continuous-time
model, however, we need to consider the time derivative of
the statistics. Indeed, it is not hard to show that

% = uz(t) and %E [Mg ()]
Thus, our marginal density sets n provide what we con-
sider a natural formulation for variational approaches to
continuous-time Markov processes.

Our presentation focused on evidence at two ends of
an interval. Our formulation easily extends to deal with
more elaborate types of evidence: (1) If we do not observe
the initial state of the i’th component, we can set i’ (0)
to be the prior probability of X(©) = z. Similarly, if we
do not observe X; at time T, we set p(T) = 1 as ini-
tial data for the backward step. (2) In a CTBN where one
(or more) components are fully observed, we simply set z*
for these components to be a distribution that assigns all
the probability mass to the observed trajectory. Similarly,
if we observe different components at different times, we
may update each component on a different time interval.
Consequently, maintaining for each component a marginal
distribution ¢ throughout the interval of interest, we can
update the other ones using their evidence patterns.

E [To(t)] = Yoy(t)

6 Experimental Evaluation

To gain better insight into the quality of our procedure, we
performed numerical tests on models that challenge the ap-
proximation. Specifically, we use Ising chains where we
explore regimes defined by the degree of coupling between
the components (the parameter [3) and the rate of transitions
(the parameter 7). We evaluate the error in two ways. The
first is by the difference between the true log-likelihood and
our estimate. The second is by the average relative error in
the estimate of different expected sufficient statistics de-

fined by >, W where 6; is exact value of the j’th ex-
J



pected sufficient statistics and éj is the approximation.

Applying our procedure on an Ising chain with 8
components, for which we can still perform exact in-
ference, we evaluated the relative error for different
choices of # and 7. The evidence in this experiment is
e = {+,+,+++,+,—,—} T = 0.64 and er =
{-,—,—,+,+,+,+,+}. As shown in Fig. 2a, the error
is larger when 7 and (3 are large. In the case of a weak cou-
pling (small (3), the posterior is almost independent, and
our approximation is accurate. In models with few transi-
tions (small 7), most of the mass of the posterior is concen-
trated on a few canonical “types” of trajectories that can
be captured by the approximation (as in Example 4.3). At
high transition rates, the components tend to transition of-
ten, and in a coordinated manner, which leads to a pos-
terior that is hard to approximate by a product distribution.
Moreover, the resulting free energy landscape is rough with
many local maxima. Examining the error in likelihood es-
timates (Fig. 2b,c) we see a similar trend.

Next, we examine the run time of our approximation
when using fairly standard ODE solver with few optimiza-
tions and tunings. The run time is dominated by the time
needed to perform the backward-forward integration when
updating a single component, and by the number of such
updates until convergence. Examining the run time for dif-
ferent choices of 3 and 7 (Fig. 3), we see that the run time
of our procedure scales linearly with the number of com-
ponents in the chain. Moreover, the run time is generally
insensitive to the difficulty of the problem in terms of .
It does depend to some extent on the rate 7, suggesting
that processes with more transitions require more iterations
to converge. Indeed, the number of iterations required to
achieve convergence in the largest chains under considera-
tion are mildly affected by parameter choices. The scala-
bility of the run time stands in contrast to the Gibbs sam-
pling procedure [4], which scales roughly with the number
in transitions in the sampled trajectories. Comparing our
method to the Gibbs sampling procedure we see (Fig. 4)
that the faster Mean Field approach dominates the Gibbs
procedure over short run times. However, as opposed to
Mean Field, the Gibbs procedure is asymptotically unbi-
ased, and with longer run times it ultimately prevails. This
evaluation also shows that adaptive integration procedure
in our methods strikes a better trade-off than using a fixed
time granularity integration.

7 Inference on Trees

The abovementioned experimental results indicate that our
approximation is accurate when reasoning about weakly-
coupled components, or about time intervals involving few
transitions (low transition rates). Unfortunately, in many
domains we face strongly-coupled components. For exam-
ple, we are interested in modeling the evolution of biologi-
cal sequences (DNA, RNA, and proteins). In such systems,
we have a phylogenetic tree that represents the branching
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Figure 3: Evaluation of the run time of the approximation versus
the run time of exact inference as a function of the number of
components.

process that leads to current day sequences (see Fig. 5a). It
is common in sequence evolution to model this process as
a continuous-time Markov process over a tree [6]. More
precisely, the evolution along each branch is a standard
continuous-time Markov process, and branching is mod-
eled by a replication, after which each replica evolves in-
dependently along its sub-branch. Common applications
are forced to assume that each character in the sequence
evolves independently of the other.

In some situations, assuming an independent evolution
of each character is highly unreasonable. Consider the evo-
lution of an RNA sequence that folds onto itself to form
a functional structure. This folding is mediated by com-
plementary base-pairing (A-U, C-G, etc) that stabilizes the
structure. During evolution, we expect to see compensatory
mutations. That is, if a A changes into C' then its based-
paired U will change into a G soon thereafter. To capture
such coordinated changes, we need to consider the joint
evolution of the different characters. In the case of RNA
structure, the stability of the structure is determined by
stacking potentials that measure the stability of two adja-
cent pairs of interacting nucleotides. Thus, if we consider
a factor network to represent the energy of a fold, it will
have structure as shown in Fig. 5b. We can convert this
factor graph into a CTBN using procedures that consider
the energy function as a fitness criteria in evolution [3, 16].
Unfortunately, inference in such models suffers from com-
putational blowup, and so the few studies that deal with it
explicitly resort to sampling procedures [16].

To consider trees, we need to extend our framework to
deal with branching processes. In a linear-time model, we
view the process as a map from [0, 7'] into random variables
X In the case of a tree, we view the process as a map
from a point t = (b, ¢) on a tree 7 (defined by branch b
and the time ¢ within it) into a random variable X ) Simi-
larly, we generalize the definition of the Markov-consistent
density set 1 to include functions on trees. We define con-
tinuity of functions on trees in the obvious manner.

The variational approximation on trees is thus similar
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to the one on intervals. Within each branch, we deal with
the same update formulas as in linear time. We denote by
p,(b,t) and p (b, t) the messages computed on branch b
at time ¢. The only changes occur at vertices. Suppose we
have a branch b; of length 73 incoming into vertex v, and
two outgoing branches by and b3 (see Fig. 5¢). Then we
use the following updates for 1, and p’,.

f, (b, 0) = pig (b1, Th) k= 2,3,
ps. (b1, Ty) = pf,, (b2, 0)pk, (b3, 0).

The forward propagation of z¢ simply uses the value at the
end of the incoming branch as initial value for the outgoing
branches. In backward propagation of p’ the value at the
end of b; is the product of the values at the start of the
two outgoing branches. This is the natural operation when
we recall the interpretation of p’ as the probability of the
downstream evidence given the current state.

When switching to trees, we increase the amount of ev-
idence about intermediate states. Consider for example the

tree of Fig. 5a. We can view the span from C' to D as an
interval with evidence at its end. When we add evidence at
the tip of other branches we gain more information about
intermediate points between C' and D. To evaluate the im-
pact of these changes on our approximation, we consid-
ered the tree of Fig. 5a, and compared it to inference in
the backbone between C and D (Fig. 2). Comparing the
true marginal to the approximate one along the main back-
bone (see Fig. 6a) we see a major difference in the quality
of the approximation. The evidence in the tree leads to a
much tighter approximation of the marginal distribution. A
more systematic comparison (Fig. 6b,c) demonstrates that
the additional evidence reduces the magnitude of the error
throughout the parameter space.

As a more demanding test, we applied our inference
procedure to the model introduced by Yu and Thorne [16]
for a stem of 18 interacting RNA nucleotides in 8 species in
the phylogeny of Fig. 5a. We compared our estimate of the
expected sufficient statistics of this model to these obtained
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Figure 7: Comparison of estimates of expected sufficient statis-
tics in the evolution of 18 interacting nucleotides, using a realistic
model of RNA evolution. Each point is an expected statistic value;
the x-axis is the estimate by the variational procedure, whereas
the y-axis is the estimate by Gibbs sampling.

by the Gibbs sampling procedure. The results, shown in
Fig. 7, demonstrate that over all, the two approximate in-
ference procedures are in good agreement about the value
of the expected sufficient statistics.

8 Discussion

In this paper we formulate a general variational principle
for continuous-time Markov processes (by reformulating
and extending the one proposed by Opper and Sanguinetti
[12]), and use it to derive an efficient procedure for infer-
ence in CTBNSs. In this mean field-type approximation, we
use a product of independent inhomogeneous processes to
approximate the multi-component posterior. Our procedure
enjoys the same benefits encountered in discrete time mean
field procedure [8]: it provides a lower-bound on the like-
lihood of the evidence and its run time scales linearly with
the number of components. Using asynchronous updates
it is guaranteed to converge, and the approximation repre-
sents a consistent joint distribution. It also suffers from ex-
pected shortcomings: there are multiple local maxima, and
it cannot captures certain complex interactions in the pos-
terior. By using a time-inhomogeneous representation, our
approximation does capture complex patterns in the tempo-
ral progression of the marginal distribution of each compo-
nent. Importantly, the continuous time parametrization en-
ables straightforward implementation using standard ODE
integration packages that automatically tune the trade-off
between time granularity and approximation quality. We
show how to extend it to perform inference on phylogenetic
trees, and show that it provides fairly accurate answers in
the context of a real application.

One of the key developments here is the shift from
(piecewise) homogeneous parametric representations to
continuously inhomogeneous representations based on
marginal density sets. This shift increases the flexibility
of the approximation and, somewhat surprisingly, also sig-
nificantly simplifies the resulting formulation.

A possible extension of the ideas set here is to use

our variational procedure to generate initial distribution
for Gibbs sampling skip the initial burn-in phase and pro-
duce accurate samples. Another attractive aspect of this
new variational approximation is its potential use for learn-
ing model parameters from data. It can be easily com-
bined with the EM procedure for CTBNs [10], to obtain
a Variational-EM procedure for CTBNs, which monotoni-
cally increases the likelihood by alternating between steps
that improve the approximation 7 (the updates discussed
here) and steps that improve the model parameters 6.
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