
Mean Field Variational Approximations in
Continuous-Time Markov Processes

A thesis submitted in partial fulfillment of the

requirements for the degree of Master of Science

by

Ido Cohn

Supervised by Prof. Nir Friedman

July 2009

The School of Computer Science and Engineering
The Hebrew University of Jerusalem, Israel



Contents

1 Introduction 2
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Foundations 4
2.1 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Inference in Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Mean Field Approximations in Bayesian Networks . . . . . . . . . . . . . 9

2.2 Discrete-Time Markov Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Multicomponent Discrete Markov Process . . . . . . . . . . . . . . . . . . 17
2.2.3 Inference in Discrete Markov Processes . . . . . . . . . . . . . . . . . . . 18

2.3 Continuous Time Markov Processes . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.1 Single Component Process Representation . . . . . . . . . . . . . . . . . 23
2.3.2 Multi-component Representation - Continuous Time Bayesian Networks . 24
2.3.3 Inference in Continuous Time Markov Processes . . . . . . . . . . . . . . 25

3 Variational Approximations in Continuous-Time Bayesian Networks 28
3.1 Variational Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Factored Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Branching Processes 50
4.1 Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Inference on Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Discussion 57
5.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2



5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A Supplementary Details 59
A.1 Constrained Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
A.2 Euler-Lagrange equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
A.3 Numerical Solutions of Differential Equations . . . . . . . . . . . . . . . . . . . . 60

3



Abstract

Continuous-time Bayesian networks is a natural structured representation language for multi-component
stochastic processes that evolve continuously over time. Despite the compact representation, infer-
ence in such models is intractable even in relatively simple structured networks. Here we introduce
a mean field variational approximation in which we use a product of inhomogeneous Markov pro-
cesses to approximate a joint distribution over trajectories. This variational approach leads to a
globally consistent distribution, which can be efficiently queried. Additionally, it provides a lower
bound on the probability of observations, thus making it attractive for learning tasks. Here I de-
scribe the theoretical foundations for the approximation, an efficient implementation that exploits
the wide range of highly optimized ordinary differential equations (ODE) solvers, experimentally
explore characterizations of processes for which this approximation is suitable, and show applica-
tions to a large-scale real-world inference problem.
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Chapter 1

Introduction

1.1 Motivation
Many real-life processes can be naturally thought of as evolving continuously in time. Exam-
ples cover a diverse range, including server availability, modeling social networks (Fan and Shel-
ton, 2009), changes in socio-economic status, and genetic sequence evolution. To realistically
model such processes, we need to reason about systems that are composed of multiple compo-
nents (e.g., many servers in a server farm, multiple residues in a protein sequence) and evolve in
continuous time. Continuous-time Bayesian networks (CTBNs) provide a representation language
for such processes, which allows to naturally exploit sparse patterns of interactions to compactly
represent the dynamics of such processes (Nodelman et al., 2002).

Inference in multi-component temporal models is a notoriously hard problem (Boyen and
Koller, 1998). Similar to the situation in discrete time processes, inference is exponential in the
number of components, even in a CTBN with sparse interactions (Nodelman et al., 2002). Thus, we
have to resort to approximate inference methods. The recent literature has adapted several strate-
gies from discrete graphical models to CTBNs. These include sampling-based approaches, where
Fan and Shelton (2008) introduce a likelihood-weighted sampling scheme, and more recently El-
Hay et al. (2008) introduce a Gibbs-sampling procedure. Such sampling-based approaches yield
more accurate answers with the investment of additional computation. However, it is hard to bound
the required time in advance, tune the stopping criteria, or estimate the error of the approximation.
An alternative class of approximations is based on variational principles.

Recently, Nodelman et al. (2005b) and Saria et al. (2007) introduced an Expectation Propa-
gation approach, which can be roughly described as a local message passing scheme, where each
message describes the dynamics of a single component over an interval. This message passing
procedure can be efficient. Moreover it can automatically refine the number of intervals according
to the complexity of the underlying system. Nonetheless, it does suffer from several caveats. On
the formal level, the approximation has no convergence guaranties. Second, upon convergence,
the computed marginals do not necessarily form a globally consistent distribution. Third, it is re-
stricted to approximations in the form of piecewise-homogeneous messages on each interval. Thus,
the refinement of the number of intervals depends on the fit of such homogeneous approximations

2



to the target process. Finally, the approximation of Nodelman et al does not provide a provable
approximation on the likelihood of the observation—a crucial component in learning procedures.

1.2 Our Contribution
Here, we develop an alternative variational approximation, which provides a different tradeoff.
We use the strategy of structured variational approximations in graphical models (Jordan et al.,
1998), and specifically by the variational approach of Opper and Sanguinetti (2007) for approxi-
mate inference in Markov Jump Processes, a related class of models (see below for more elaborate
comparison). The resulting procedure approximates the posterior distribution of the CTBN as a
product of independent components, each of which is a inhomogeneous continuous-time Markov
process. As we show, by using a natural representation of these processes, we derive a varia-
tional procedure that is both efficient, and provides a good approximation both for the likelihood
of the evidence and for the expected sufficient statistics. In particular, the approximation provides
a lower-bound on the likelihood, and thus is attractive for use in learning.
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Chapter 2

Foundations

In this chapter we will discuss the foundations required for understanding our work on multi com-
ponent continuous-time Markov processes. The natural representation for these processes, due to
their inherent structure, are with graphical models. First, we will discuss general joint probabili-
ties. Next we will move to discrete Markov processes, and finally we will present continuous-time
Markov processes. For each of these models, we will discuss their representation and inference.

Graphical models are an elegant framework which uses the structure of a distribution to com-
pactly represent the joint distribution of a set of random variables. A notational convention: vectors
are denoted by boldface symbols, e.g., X , with state space S = S1 × S2 × · · · × SD. The states
in S are denoted by vectors of indexes, x = (x1, . . . , xD). We use indexes 1 ≤ i, j ≤ D for
enumerating components. Matrices are denoted by blackboard style characters, e.g., Q.

In general, given a set X = {X1, . . . , Xn}, their joint probability distribution requires the
specification of a probability Pr(x1, . . . , xn) for every possible assignment. This results in an ex-
ponential blowup with respect to the number of variables in the set. However, using the dependence
structure between the different variables allows graphical models to factor the representation of the
distribution into modular components. This structure exists in many real-world phenomena, and is
what makes this framework so appealing. Additionally, effective learning in probablistic graphical
models is enabled by the compact representation.

2.1 Bayesian Networks
One of the most common classes of graphical models are Bayesian networks, whos underlying
semantics are based on directed graphs, hence they are also called directed graphical models.
These models allow compact representation of the joint distribution of a set of random variables,
using the independencies in the probability space.

2.1.1 Representation

The core of the Bayesian network is a directed acyclic graph (DAG). Each vertex corresponds
to a random variable and the topology of the graph relates to the dependency structure of the
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Figure 2.1: A simple Bayesian network consisting of 5 binary components. Each component’s
CPDs are shown, one for each possible state of its parents.

underlying distribution. Each vertex Xi is associated with a conditional probability distribution
(CPD) Pr(Xi = xi|Pai = ui) specifiying the conditional probability of the variable being in
each possible state xi conditioned on the state ui of its parents Pai. There are numerous ways to
represent this conditional distribution. The simplest, albeit not the most efficient, method is using
a table that stores the conditional probability of each state of the component for each possible
assignment of its parents. These are often referred to as table CPDs.

Example 2.1.1: For example, let us look at the network depicted in Fig. 2.1. Here we have a
simple 5 component network, where each component has 2 possible states (0 ot 1). The CPDs of
each component specify the probability of being in each possible state conditioned on each of the
states of its parents. For example, X1 requires only 1, because it is a root. On the other hand,
representing the factorized distribution of X5 requires 4 tables, one for every possible state of X4

and X3.

Definition 2.1.2: A probability distribution P factorizes over G if for every assignment x =
{x1, . . . , xn} of X the joint probability can be factorized according to the independence structure
of the graph:

Pr(X = x) =
D∏
i=1

Pr(Xi = xi|Pai = ui) (2.1)
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Example 2.1.3: Returning to example Example 2.1.1, the probability distribution factorizes ac-
cording to (2.1) as

Pr(X = (x1, x2, x3, x4, x5)) =

Pr(X1 = x1) Pr(X2 = x2|x1) Pr(X3 = x3|x1) Pr(X4 = x4|x2, x3) Pr(X5 = x5|x3, x4) .

This exploitation of structure avoids the need to enumerate over all possible assignments, leading
to an efficient calculation.

2.1.2 Inference in Bayesian Networks

One of the purposes of a probabilistic model is to compactly represent the joint distribution of the
set of random variables. This joint distribution and its structure hold certain properties we may
wish to query about for different reasons. The calculation of these queries is called inference and
is generally a difficult task.

In some cases, we would like to reason about networks where the states of some of the compo-
nents are known. We refer to these observed states as evidence which we simply denote as e. An
important inference query is the calculation of the likelihood of the evidence. For example, when
we observe the state of the components e = {X2 = x2, X3 = x3}, we would like to calculate the
probability of this assignment. To find this probability, we enumerate over all the states of the
remaining undetermined components

Pr(e) =
∑

x1,x4,x5

Pr(X1 = x1, X2 = x2, X3 = x3, X4 = x4, X5 = x5) .

Naturally, the probability of an assignment that is not consistent with the evidence is 0, thus we
only enumerate over assignments of the remaining variables, fixing the values of the observed
ones.

The next set of queries is the calculation of the posterior probability. As opposed to the prior
probablity which implies that we are reasoning before seeing any evidence, the posterior is the
probability distribution Pr(U |e), whose sample space is all possible states of some subset of the
components U ⊆X .

Generally, this may be a difficult task, because it would require summing out all of the other
components by enumeration over all their different states. To show this we use the Law of total
probability, and write the probability

Pr(u|e) =
∑

x\{e,u}

Pr(x,u|e)

Let us return to Example 2.1.1. Here we may wish to calculate the marginal probability that
X2 = x2 and X3 = x3, given that X3 = x3, i.e., - Pr(X2 = x2, X5 = x5|X3 = x3). This can be
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performed naively by calculating

Pr(X2 = x2, X5 = x5|X3 = x3) =
∑
x1,x4

Pr(x1, x2, x4, x5|x3)

=

∑
x1,x4

Pr(x1, x2, x3, x4, x5)∑
x1,x2,x4,x5

Pr(x1, x2, x3, x4, x5)
.

In the general case, this summing out operation is exponential in the number of components, which
makes inference in arbitrary networks NP-hard and so is intractable. Later we shall see how in
some cases we can exploit the network structure to perform this operation more efficiently.

The final Bayesian network inference query aims to find, given evidence, the maximum a-
posteriori (MAP) assignment of the remaining variables U = X \ e. Basically, the MAP query
aims to compute

arg max
u

Pr(u|e) .

MAP queries are used in many applications, for example in protein design (Fromer and Yanover,
2009). Even though this query is supposedly easier than the marginal queries, it is still NP-hard.
Next, we will explore the different methods for calculating these values.

Variable Elimination

In some cases, the summing out procedure shown in the previous section can be simplified if the
joint distribution has a tree structure, i.e., its corresponding Bayesian network is a tree. Specifi-
cally, if the graph of the Bayesian network is a tree, we can sum out the other components in linear
time where each step we “eliminate” a different variable (Pearl, 1988).

We can also use the variable elimination algorithm to solve the MAP queries by exchanging the
sums with max. Even though this operation is efficient and exact in tree graphs, arbitrary networks
are rarely without cycles. Therefore, we must resort to approximations.

Approximate Inference

In this section we will see some approximation methods for inference in general graphs. In all
of them we will approximate the required expectations using various methods, each of which has
different trade-offs.

Sampling The first group of approximations are particle based approximations. As their names
suggests, these algorithms calculate the inference queries by averaging over samples (otherwise
named particles). The justification for this approach comes from the law of large numbers which
states that any finite integral of a function can be estimated by sampling from that function with
probability proportional to its value. More generally, the expectation of any random variable X
with mean µX can be estimated by sampling it repeatedly and setting

µX =
1

N

N∑
n=1

sn
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S = φ
for i = 1 to N do

randomly initialize Si = X0, j = 0
while not mixed do

pick random component k ∈ {1, . . . , D}
sample Si

k given all components 6= k in Si

end
insert S ← Si

end

Figure 2.2: Abstract Gibbs sampling with dependencies

where sn is the nth sample and N is the number of samples. Additionally, the error of the approx-
imation declines exponentially with the number of samples taken. Sampling from a distribution
with dependencies is not a trivial task, and requires incorporating the evidence into the distribution
we sample from. Specifically, for the mean of the samples to be close to the real mean we must
take a number of i.i.d samples, which means they are independent and identically distributed. Just
sampling arbitrarily will not meet these requirements.

Markov Chain Monte Carlo algorithms allow us to sample from distributions with certain prop-
erties, and in particular, those with dependencies. The Gibbs sampling procedure is one that cor-
rectly samples from the distribution we want to approximate by producing a chain of samples, each
sampled conditioned on the previous one. When the chain is long enough we can assume that the
sample we get is independent of its initialization. The algorithm can be abstractly viewed in 2.2,
where we sample N independent samples.

To get the ith sample correctly, we start at some arbitrary global state X0. In each iteration, we
first sample the component to be changed k and then we sample its new state given the states of all
the others from the conditional distribution

Pr(Xk = xk|X1 = x1, . . . , XD = xD)

=
Pr(X1 = x1, . . . , Xk = xk, . . . , XD = xd)∑
yk

Pr(X1 = x1, . . . , Xk = yk, . . . , XD = xd)
.

After updating the kth component, we simply choose another one at random and run the same
update rule as before. Depending on different properties of the system such as its mixing time,
which determines how long a chain is required for the sampling to be correct. After performing
enough iterations our the sample, which we denote S1, is sampled from the target distribution. Now
we can perform this procedure again and again to obtain a sequence of N independent samples
S1, . . . ,SN .

Sampling algorithms are strong inference tools, as they hold the any-time property, which
means they improve their estimate as they run longer. Additionally, they are asymptotically un-
biased, which means they are guarantied to converge to the exact answer if run long enough. On
the down-side, it is very difficult to know when they have converged, and also to estimate their er-
ror. Sampling algorithms may also require many iterations to converge, depending on the system’s

8



mixing time and the number of components, among others.

Message passing The message passing paradigm is a general framework in which there are
numerous algorithms (Talya Meltzer and Weiss, 2009). These algorithms always converge and
give the exact marginal distributions on trees. Even though they do not have any guaranties on
graphs with cycles, empirically they work surprisingly well (Murphy et al., 1999).

These algorithms have a simple and elegant scheme, yet there is no obvious reason why it
should converge to any meaningful result. In general graphs with cycles, there are no convergence
guaranties and if the algorithm does converge the marginals it calculates, even though locally
consistent (there is a local agreement between neighbouring components) the resulting marginals
may not come from a valid distribution (Yedidia et al., 2005).

The next group of algorithms are those which always converge to a consistent distribution.
They will also approximate the log-likelihood of the evidence and allow tractable inference.

2.1.3 Mean Field Approximations in Bayesian Networks

A different approach, generally named Variational approximations to the abovementioned ones are
to cast the inference problem into an optimization of a functional (Jordan et al. (1998), Wainwright
and Jordan (2008)). Generally, a functional is a mapping from a linear space to the underlying field
(usually the reals R). Formally,

Definition 2.1.4: Let X be a linear space. A functional on X is a mapping X → R, i.e., a real
valued function.

Defining this functional in a certain way will see to it that reaching a fixed point in its optimization
will give us the best approximation on the marginals. For certain formulations of this functional,
for example in the Mean Field approximation, this functional may also give us an approximation of
the log-likelihood of the evidence. This functional represents the “distance” between the original
intractable model and an approximate model, which is tractable and will allow us to approximate
the marginals. In the next section we will unfold the transition of the inference problem into an
optimization scheme.

Variational Principle

In the presence of observations e, we can write the posterior distribution

P(x|e) =
P(x, e)

P(e)
=

P(x, e)

Z

where Z is the partition function
Z =

∑
x\e

P(x, e) .

The calculation of the partition function requires enumeration over all possible assignments and
so is usually intractable. In the case of Bayesian networks this term equals the log-likelihood of
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the evidence. For some arbitrary distribution Q(x) we define the free energy between Q and the
posterior

F(Q; P(·|e)) = H(Q) + E(Q,P(·|e)) (2.2)

where the first term is the entropy defined as

H(Q) = −EQ [ln Q]

and the second is the average energy

E(Q(·),P(·|e)) = EQ [ln P(x, e)] .

One standard way of measuring the “distance” between distributions is the KL divergence. This
measure between two arbitrary distributions is defined as

D(Q‖P(·|e)) = EQ

[
ln

Q

P(·|e)

]
=
∑

x

Q(x) ln
Q(x)

P(x|e)
. (2.3)

This divergence, although not a full metric, does have some useful properties when both P(·|e)
and Q are distributions. It is always non-negative, convex and is equal to zero iff Q = P(·|e).
Additionally it gives a good measure to the distance between the two distributions.

In our case we want to approximate the posterior distribution P(·|e). The KL-divergence from
the approximation Q is thus

D(Q‖P(·|e)) = EQ

[
ln

Q

P(·|e)

]
= EQ [ln Q]− EQ [ln P(·, e)] + ln P(e)

where the second equality is given by P(·|e) = P(·,e)
P(e)

and the fact that P(e) is independent of Q.
Defining the free energy as in (2.2) we get that

F(Q; P(·|e)) = ln P(e)−D(Q‖P(·|e)) .

This equation has two important implications for our approximation. The first is that maximiz-
ing the functional is equivalent to minimizing the KL-divergence. If we can write the functional
in a tractable form it will be possible to perform optimization over it and even calculate its value.
Secondly, because the KL-divergence is non-negative, we can see that as long as Q is a consis-
tent probability the functional is a lower bound on the log-likelihood of the evidence. This fact is
crucial for learning task, which we will not discuss here.

If we allow the approximation Q to take any form, then obviously the best approximation for
P is itself. On the one hand, setting Q(x) = P(x|e) gives us the maximal functional value of
ln P(e), yet by doing so all we have obtained is another intractable distribution which will not
ease our calculations. Thus, our aim is to approximate P(·|e) with a tractable distribution Q, and
more specifically the “best” possible one taken from some familyM of tractable distributions. We
now define our optimization
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Find Q∗ = arg maxQ∈MF(Q; P(·|e))

The choice of the family M is non-trivial and should be problem specific. The Mean Field ap-
proach approximates P(·|e) with fully factored probabilities. This approach, after the optimiza-
tion phase, yields the closest factorized probability distribution Q∗. This may seem like a crude
approximation to a possibly complex and informative target distribution, but in many problems
gives satisfactory results. Another advantage of this approach is that the resulting Q∗ is simple
to work with, and the calculation of the marginals and statistics becomes linear in the number of
components (as we perform inference on each component separately). More generally, we can de-
fine structured Mean Field approximations, where we retain some structure in the approximating
distribution. This in turn may give us a much closer approximation, but on the other hand make
the inference on the result more difficult.

In order to have a better understanding of these variational methods, we shall delve into the
Mean Field approximation in Bayesian networks.

Mean Field

The standard Mean Field (Koller and Friedman, 2009) approximation attempts to approximate the
original distribution by one that assumes independence between all the variables. Namely, we
would like to approximate P(·|e) using distributions Q(X) constrained to the family of factorized
distributions

Mfact =

{
Q(X) : Q(X) =

D∏
i=1

Q(Xi)

}
where we denote the approximate distribution over the subset of components U as Q(U), and
particularly over the ith component as Q(Xi). This is equivalent to removing all the edges in the
Bayesian network which represents the original distribution. Our optimization problem is to find
Q that is closest to our original distribution, formally

Find Q∗ = arg minQD(Q‖P(·|e))
s.t. Q ∈Mfact

The Mean Field algorithm is derived by considering the fixed points of the energy functional.
This functional will have a much simpler form due to the independence of the approximating
distribution. The entropy of distributions fromMfact can be written as the sum of local entropies

H(Q(X)) =
D∑
i=1

H(Q(Xi))
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Proof:

H(Q(X)) =
∑

x

Q(x) ln Q(x)

=
∑

x

∏
j

Q(xj) ln
∏
i

Q(xi)

=
∑
i

∑
x

∏
j

Q(xj) ln Q(xi)

We can enumerate over all x using a specific order∑
i

∑
x

∏
j

Q(xj) ln Q(xi) =
∑
i

∑
xi

Q(xi) ln Q(xi)
∑
x\i

∏
j\i

Q(xj)

=
∑
i

∑
xi

Q(xi) ln Q(xi)

where the last equality is true because∑
x\i

∏
j\i

Q(xj) =
∑
x\i

Q(X) = 1 . (2.4)

This brings us to the conclusion that

H(Q(X)) =
∑
i

∑
xi

Q(xi) ln Q(xi) =
∑
i

H(Q(Xi))

Additionally, we can write the average free energy as a sum of local terms

E(Q,P(·|e)) =
D∑
i=1

∑
xi,ui

Q(xi,ui) ln P(xi|ui)

Proof: Using the definition of the average free energy

E(Q,P(·|e)) =
∑

x

Q(x) ln P(x|e) .

Given the factorized structure of the distributions we can write the previous term∑
x\e

Q(x) ln P(x|e) =
∑
i

∑
x\e

Q(x) ln P(xi|ui)

=
∑
i

∑
x\e

∏
j

Q(xj), ln P(xi|ui) .
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Now we can change the order of summation and get∑
i

∑
x\e

∏
j

Q(xj), ln P(xi|ui) =
∑
i

∑
xi,ui

Q(xi,ui) ln P(xi|ui)
∑

x\e∪{i,Pai}

∏
j∈x\e∪{i,Pai}

Q(xj)

=
∑
i

∑
xi,ui

Q(xi,ui) ln P(xi|ui)

where the last equality follows from a similar principle to (2.4).

Here we see that the complexity of this term depends solely on the structure of P(X), and can be
calculated in a complexity that is exponential in the largest set of parents of any component.

These previous proofs give us a new factorized functional

F̃(Q; P(·|e)) =
∑
i

∑
xi

Q(xi) ln Q(xi) +
D∑
i=1

∑
xi,ui

Q(xi,ui) ln P(xi|ui) . (2.5)

Now we have the following optimization problem:

Find Q(x) =
∏D

i=1 Q(xi)

that maximizes arg maxQ F̃(Q; P(·|e))

s.t.
∑

xi
Q(xi) = 1 ∀ i

Here we have a constrained optimization problem, where we are faced with optimizing a func-
tional, under certain constraints. In our case we need the Q of each component to remain a dis-
tribution. The reason we do not enforce their non-negativity will be clear when we see the way
we update their values. Using the Lagrange multiplier theory (Appendix A.1), we will perform
constrained optimization over our functional in (2.5).

Corollary 2.1.5: The stationary point of the energy functional F̃(Q; P(·|e)) with respect to Q(xi)
is

1

Zi
exp {−IEQ[ln P(·|e) | xi]}

where
Zi =

∑
xi

exp {IEQ[ln P(·|e) | xi]}

Proof: We define the Lagrangian as

L = F̃(Q; P(·|e))−
∑
i

λi

(∑
xi

Q(xi)− 1

)

where F̃(Q; P(·|e)) is defined as in (2.5) and λi are the Lagrange multipliers that enforce the
constraints on the marginals of Q.
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We can further write the parts of the Lagrangian that concern the marginal Q(xi) and over
which we optimize this parameter

Li = F̃(Q; P(·|e))− λi

(∑
xi

Q(xi)− 1

)
.

Notice that this is a convex function of Q(xi). Calculating the partial derivatives of Li gives us

∂

∂Q(xi)
Li = − ln Q(xi) + Q(ui) ln P(xi|ui) +

∑
j∈Childreni

∑
uj\i

Q(xj,uj) ln P(xj|uj, xi)− λi .

Setting the derivatives to zero and rearranging terms we obtain the following equation

ln Q(xi) = −Q(ui) ln P(xi|ui)−
∑

j∈Childreni

∑
uj\i

Q(xj,uj) ln Q(xj|uj, xi) + λi .

Taking exponents on both sides, we can calculate the new parameterization given the current
marginals of all the other components and the terms and the parameters of P, and then normalize
all the marginals to obtain the constraint that Q is a distribution over the ith component. The right
hand side of the previous equation is exactly the expectation we require, as

Q(ui) ln P(xi|ui) +
∑

j∈Childreni

∑
uj\i

Q(xj,uj) ln Q(xj|uj, xi) = IEQ[ln P(·|e) | xi] .

Finally, because λi is the same for all xi it will vanish with this normalization and so can be
discarded.

The final touch of the optimization of the ith component comes from the derivative of the
lagrangian w.r.t. λi, which forces us to normalize the marginals Q(xi). When updating the ith

component we calculate the normalizing constant of this component as

Zi =
∑
xi

exp {IEQ[ln P(·|e) | xi]}

and update each component

Q(xi) =
1

Zi
exp {IEQ[ln P(·|e) | xi]} . (2.6)

The unnormalized update equations of the different marginals are independent of each other, as
they depend only on the marginals of the other components, and are invariant to multiplication by
a normalizing constant. Therefore, after this normalization step the marginals still form a fixed
point of the functional, and now also satisfy the normalization constraints.

Now we can use Corollary 2.1.5 to get the update equations for the optimization. The algorithm,
which is shown in 2.3, iteratively chooses a random component and updates its current marginals
using (2.6).
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for each i = 1, . . . , D
initialize Q(xi) = Q(xi|ui) for some random state ui

while not converged do

1. pick random component i ∈ {1, . . . , D}

2. update marginals using (2.6)

end
Output: marginals Q(xi) for all i = 1, . . . , D

Figure 2.3: Mean Field approximation in Bayesian networks

Notice that the update of the ith component does not depend on our current belief on the values
of the marginals of that component, which means the fixed point equations of each component are
self-consistent. This, along with the fact that Li is convex in Q(xi) gives us the guaranty that at
each update of the parameters of the ith component we reach the coordinate-wise optimum, thus
increasing the functional in each iteration. This functional is upper bounded by the log-likelihood
of the evidence, and so the procedure will ultimately converge to a local optimum.
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2.2 Discrete-Time Markov Processes
Many dynamic systems can be represented as discrete stochastic processes (Dean and Kanazawa,
1989) such as the random walk (Feller, 1968). A stochastic process X(t) involves the dynamics of
a stochastic system in time, where X(t) is a random variable which denotes its state at time t.

The system can be in a number of different states, which can change in regular intervals
t0, t1, . . .with some probability Pr(X(tk+1) = x′|X(tk) = x). We are interested particularly Markov
processes, which satisfy the Markov property.

Definition 2.2.1: A process is said to satisfy the Markov property (and is thus a Markov process)
if, for any set of real valued indices {t0 < t1 < . . . < tK}, the following independence property is
fulfilled:

Pr(X(tK)|X(t0) . . . X(tK−1)) = Pr(X(tK)|X(tK−1)) .

2.2.1 Representation

In order to represent the process in a succinct manner, we make another assumption on its param-
eterization

Definition 2.2.2: The dynamics of a time-homogeneous Markov process are fully determined by
the Markov transition function,

px,y(t) = Pr(X(t+s) = y|X(s) = x),

where time-homogeneity implies that the right-hand side does not depend on s.

A time-homogeneous stochastic Markov process can be represented using a prior distribution
π(x) = Pr(X(t0) = x), which states the distribution of the process starting in each of the different
possible states, and the transition probability p where pa,b = Pr(X(tk+1) = b|X(tk) = a) is the
transition probability from state a to b in one time interval. Notice that the homogeneity assump-
tion is the reason we can represent all the transition distributions at all the points with a single
matrix. The next lemma decomposes the probability of the sequence of observations, here called
trajectories, using these parameters alone.

Lemma 2.2.3: The joint probability of the trajectory x(t0), . . . , x(tK) can be written as the product

Pr(x(t0), . . . , x(tK)) = Pr(x(t0)) ·
K−1∏
k=0

Pr(x(tk+1)|x(tk))

Proof: Using the Bayes formula, we can write the probability of the trajectory as

Pr(x(t0), . . . , x(tK)) = Pr(x(t0)) ·
K∏
k=1

Pr(x(tk)|x(tk−1), . . . , x(t0))
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and then by the Markov property assumption, each term in the product reduces to

Pr(x(tk)|x(tk−1), . . . , x(t0)) = Pr(x(tk)|x(tk−1))

which gives us the required form.

Using Lemma 2.2.3 we can write the joint distribution of the trajectories of length K as

Pr(X(t0), . . . , X(tK)) = Pr(X(t0)) ·
K∏
k=1

Pr(X(tk)|X(tk−1)) .

Bayes rule states that we can write this as a quotient

Pr(X(tk)|X(tk−1)) =
Pr(X(tk), X(tk−1))

Pr(X(tk−1))

which gives us the following form of the joint probability

Pr(X(t0), . . . , X(tK)) = Pr(X(t0)) ·
∏K−1

k=0 Pr(X(tk), X(tk+1))∏K−1
k=1 Pr(X(tk))

.

We can see from this decomposition that the joint probabilities µx,y[tk, tk+1] = Pr(X(tk) =
x,X(tk+1) = y) and the marginal distributions µx[tk] = Pr(X(tk) = x) provide an alternative
representation for this process.

As in the Bayesian networks framework, we would like to move to multi component processes,
where the state X(tk) is a vector (x

(tk)
1 , . . . , x

(tk)
D ).

2.2.2 Multicomponent Discrete Markov Process

A multicomponent Markov process describes the evolution of a random vector X(tk) in time. Con-
sider a D-component Markov process X(tk) = (X

(tk)
1 , X

(tk)
2 , . . . X

(tk)
D ). We use X(tk) and X(tk)

i

to denote the random variable describing the state of the process and its i’th components at time
tk. This process is described by a Dynamic Bayesian network (Dean and Kanazawa, 1989), which
represents these random vectors in a graph structure (see Fig. 2.4a). The dependencies between
the components create influences between components in different time slices. The entaglement
between the different components is what causes difficulties in reasoning about these processes.
For example, two components that have no immediate connection become dependent on each other
(entangled) after several time slices. This results in difficult inference for these models.

Example 2.2.4: A simple 3 component discrete time process can be seen in Fig. 2.4 (a). Each
X

(tk)
i influences both itself and X(tk+1) at the next time slice. The posterior distribution is induced

by the evidence at both ends of the interval and the original transition probability p.
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Figure 2.4: A dynamic Bayesian network of 3 components with observations on all components
at times t0 and tK . (a) the original process, with evidence at both ends of the interval. Each X(tk)

i

influences X(tk+1)
i , X

(tk+1)
i+1 . (b) The inhomogeneous Mean Field approximation. Influences only

remain between the components and themselves through time.

2.2.3 Inference in Discrete Markov Processes

Inference in discrete processes is similar to those in joint probabilities, as we can represent the
process as the evolution of the joint probability distribution over time, like in Fig. 2.4.

As opposed to the Bayesian networks, here the sample space is the set of all trajectories
(X(t0), . . . , X(tK)), not single assignments. Given evidence e =

{
X(t0) = et0 , X

(tK) = etK
}

our
inference queries are similar to the Bayesian network queries. We will begin by the calculation of
forward probabilities αx(tk) = Pr(x(tk)|et0). These can be calculated using a forward propagation
rule in dynamic programming for each k = 1, . . . K

αx(tk) =
∑
y

αy(tk−1) · py,x

when αx(t0) = δx,et0 .
Similarly, we can calculate the backward probabilites βx(tk) = Pr(etK |x(k)) using the back-

ward propagation rule for all k = 0, . . . , K − 1

βx(tk) =
∑
y

px,y · βy(tk+1)

and βx(tK) = δx,etK . Next, the likelihood of the evidence Pr(etK |et0) can be calculated using these
values. We can rewrite this likelihood as, for any k

Pr(etK |et0) =
∑
x

Pr(X(tk) = x|et0) · Pr(etk |X(tk) = x) =
∑
x

αx(tk)βx(tk) (2.7)

which is linear in the number of states, and thus is exponential in the number of components.
Alternatively, we can use the fact that the evidence is deterministic, and write

Pr(e) = αeK (tK) = βe0(t0)
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which would still requires the propagation of either β(tk) backwards or α(tk) forwards through all
the interval. As in any Markov process, we can write any marginal as a function of these three
values

µx[tk] = Pr(X(tk) = x)

=
Pr(X(tk) = x|X(t0) = et0) · Pr(X(tK) = etK |X(tk) = x)

Pr(X(tK) = etK |X(t0) = et0)

=
αx(tk) · βx(tk)

Pr(e)
.

Similarly the joint distributions can be written as

µx,y[tk, tk+1] =
αx(tk) · px,y · βx(tk+1)

Pr(e)
.

Two additional queries are the process’ sufficient statistics.

Definition 2.2.5: The sufficient statistics of a statistical model with a parameter θ, and {s1, . . . , sN}
a set of observations from that model. A statistic T (s1, . . . , sN), i.e., some statistical property of
the set, is sufficient if it captures all the information relevant to statistical inference of the model,
i.e.,

Pr(X = x|T (X), θ) = Pr(X = x|T (X))

An example for sufficient statistics of a normally distributed random variable are its mean and
variance. Given a set of observations, the maximum likelihood estimate of the Gaussian process
generating these samples is Pr(x) ∼ N(µ, σ) where µ is the mean of the set of observations, and
σ is their standard deviation.

In the case of a dynamic process, in each trajectory (x(t0), . . . , x(tK)) we can measure the suf-
ficient statistics are the residence time of the process in a state x, denoted as Tx and the number of
transitions of the process from state x to y, written as Mx,y. The expectations of these values are
the sufficient statistics of any Markov dynamic process. They can both be calculated naively by
enumerating over the exponential number of trajectories and averaging over them.

These statistics shine a new light on the alternative representation of the process using the
marginals and joint distributions. The connection between the two can be seen in the calculation

E [Tx] =
K−1∑
k=0

µx[tk]∆K

E [Mx,y] =
K−1∑
k=0

µx,y[tk, tk+1]∆K . (2.8)

This leads us to see these parameters as the natural parameterization of this model, as they are
exactly the answers to the inference queries.
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For multi component processes, we do not require the statistics of complete assignments x =
(x1, . . . , xD). Due to the sparse nature of the process, it is sufficient to have the statistics of each
component given each state of its parents. For example, the expected residence times we require
are those of each component Xi in a state xi conditioned on its parents Pai being in state ui,
denoted as E

[
Txi|ui

]
. Likewise, the conditional expected number of transitions E

[
Mxi,yi|ui

]
Inference in these temporal models is generally a difficult task (Boyen and Koller, 1998).The

inference calculations shown above enumerate over all possible states, and because this number is
exponential and the summation performed in (2.7) is intractable, and so the usage of approxima-
tions is essential.

Approximate Inference

The first approach we will consider is sampling (Koller and Friedman, 2009). Here we must sample
trajectories from the distribution induced by the transition probability matrix and the evidence.
Due to the dependence between components, we must use the Gibbs sampling procedure, starting
with an initial trajectory for each component. In each iteration we select a random component,
and sample its new trajectory given the others. As in the Gibbs procedure for joint probabilities,
this method generates a chain of samples, and resulting in a set of independent trajectories. The
expected sufficient statistics are calculated as the empirical mean of statistics of the generated
trajectories.

This MCMC approach is again asymptotically unbiased, but has the same downsides as the
Bayesian network Gibbs procedure, namely no error estimate and a long runtime. Similarly, there
is a message passing paradigm in discrete Markov processes which is analogous to the algoithms
for approximating the marginals in Bayesian networks. This algorithm has similar advantages
and disadvantages to its counterpart. We proceed to the next group of algorithms - variational
approximations in discrete processes. These will give us a good intuition for our continuous-time
approximation.

Variational Approximations in Discrete Markov Processes

Variational approximations in discrete processes resembles those in continuous-time processes. In
this section we will show these discrete approximations. The extensions to the continuous case
will be shown in the next chapter.

In discrete processes, similarly to those in Bayesian networks, the variational method casts
the inference as an optimization problem. We define the optimization procedure over a functional.
After defining the constraints we define a Lagrangian and using its partial derivatives we can derive
update equations for each X(t0)

i . Similarly to the Bayesian network framework, the constraints we
select for the optimization will determine the resulting distribution. Next we will shortly discuss
the Mean Field approximation in discrete-time processes.

Mean Field Approximation The following section will briefly describe the discrete case, leav-
ing the details for the continuous-time case. As opposed to the Bayesian network framework,
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assuming a fully independent distribution throughout the process will lead to a very crude estimate
of the distribution. Instead, we will leave the influence of each component on itself in the next time
slice, as seen in Fig. 2.4 (b). This can be understood as approximating the complex intertwined
process using a set of independent processes. The optimization will find the closest independent
set, i.e., the one where each process evolves independently of its peers, yet with a behaviour similar
to that its corresponding component in the original process. An important fact is that in general,
due to the evidence, our new approximating distribution is now inhomogeneous, i.e., cannot be
parameterized using a constant transition probability matrix. This can be understood intuitively by
looking at the final transition matrix, which gives a transition probability px,etK (tK−1) = 1 from
any state x 6= etK to etK , as Pr(X(tK) = x) = 0. In the middle of the interval though, as the process
is irreducible, we have px,etK (tk) < 1. We can derive this approximation from the discretized Mean
Field procedure in continuous-time models. This connection between between the continuous and
discrete models will give us an intuition about the approximation for continuous-time models.
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Figure 2.5: Futile attempts to discretize a process using constant time slices with different granu-
larities. (a) Resolution is too low. (b) Resolution is too high.

2.3 Continuous Time Markov Processes
In the previous section, we depicted the representation of a general stochastic process in dis-
crete time slices. In this section we will present a continuous representation for processes with
continuous-time evolution.

Naively, any Markov process can be represented in this fashion by discretizatizing the entire
interval into regular time slices of length h. However, in many cases this representation is either
inefficient or insufficient. Examples for both these situations can be seen in Fig. 2.5 where in
(a) the resolution is too low, resulting in loss of information in the form of an unaccounted for
transition. Additionally, even if we start with a sparse network, a high granularity will result in the
entanglement of many variables and thus the loss of sparsity. In (b) the resolution is unnecessarily
over-accurate, leading to a high computational complexity.

The problem of discretizing continuous processes gives us the required motivation for repre-
senting these processes using a “continuous-time language”. Due to our process evolving in an
infinitesimal time scale, the likelihood of transitioning between the different states is no longer
represented using transition probability matrices as in the discrete case. Instead, we describe its
continuous dynamics with transition rates. The details of this representation will be devulged in
the next section.

A trajectory of a continuous-time Markov process X(t) over the interval [0, T ] can be param-
eterized by the finite number n of transitions, a set {t1, . . . , tn} of real-valued transition times and
the set

{
x(t0), . . . , x(tn)

}
of n + 1 states. A continuous-time process maps each trajectories and
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assigns each of them a joint probability

Pr
(
x(t0), . . . ,x(tn)

)
= Pr

(
x(t0)

) n∏
k=1

Pr
(
X(ti) = x(ti)|X(ti−1) = x(ti−1)

)
.

In the next section we discuss the representation of single and multiple component processes.

2.3.1 Single Component Process Representation

The dynamics of a continuous-time Markov process are fully captured by a matrix Q—the rate
matrix with non-negative off-diagonal entries qx,y and diagonal qx,x = −

∑
y 6=x qx,y. This rate

matrix defines the infinitesimal transition probabilities

px,y(h) = δx,y + qx,y · h+ o(h) (2.9)

where δx,y is a multivariate Kronecker delta and o(·) means decay to zero faster than its argument.
Using the rate matrix Q, we can express the Markov transition function as px,y(t) = [exp(tQ)]x,y
where exp(tQ) is a matrix exponential (Chung, 1960; Gardiner, 2004). The exponential is defined
for any square matrix A similarly to the Talyor series for the rational exponent

exp {A} = I +
∞∑
k=1

Ak

k!
.

As the exponential is defined as an infinite series, the actual calculation must be approximate,
yet as accurate as possible. The simplest approximation would be to truncate this series at some
coefficient, i.e.,

exp {A} ≈ I +
K∑
k=1

Ak

k!
,

which would lead to a significant error in the calculation. The approximation we use in our work is
the Padé approximation used for general functions Given a function f and two integers m,n ≤ 0,
the Padé approximant of order (m,n) is

R(x) =
1 + p1x+ p2x

2 + . . .+ pmx
m

1 + q1x+ q2x2 + . . .+ qnxn
,

the coefficients p0, . . . , pm, q1, . . . , qn can be determined uniquely. The general formulation of the
Padé approximation can be found in Num (2007). The interested reader is referred to Moler and
Van Loan (1978) for 18 more dubious ways of calculating a matrix exponential.

Naturally, we will now discuss multi component continuous processes and the challenges they
pose.
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Figure 2.6: Two representations of a two binary component dynamic process. (a) The associated
CTBN and its conditional rate matrices. (b) The DBN corresponding to the CTBN in (a). The
models are equivalent when h→ 0.

2.3.2 Multi-component Representation - Continuous Time Bayesian Net-
works

A continuous-time Bayesian network is defined by assigning each component i a set of components
Pai ⊆ {1, . . . , D} \ {i}, which are its parents in the network (Nodelman et al., 2002). With each
component i we then associate a set of conditional rate matrix Qi|Pai

·|ui for each state ui of Pai. The

off-diagonal entries qi|Pai
xi,yi|ui represent the rate at which Xi transitions from state xi to state yi given

that its parents are in state ui. The diagonal entries are

q
i|Pai
xi,xi|ui = −

∑
zi 6=xi

q
i|Pai
xi,zi|ui

to be the negative of the diagonal elements of the conditional rate matrices (in a rate matrix each
row sums up to zero). The dynamics of X(t) are defined by a rate matrix Q with entries qx,y, which
amalgamates the conditional rate matrices as follows:

qx,y =


q
i|Pai
xi,yi|ui δ(x,y) = {i}∑
i q
i|Pai
xi,xi|ui x = y

0 otherwise,
(2.10)

where δ(x,y) = {i|xi 6= yi}. This definition implies that changes are one component at a time.

Example 2.3.1: For clarification, we will study the simple case of a two component binary system
with two states, either −1 or 1. Both components have a disposition of being in the same state.
This system is called a two component ising chain and will be generalized later. For simplification,
we assume the system is symmetric, namely that the conditional rate matrices of both components
are identical. In Fig. 2.6(a) we can see the structure of the CTBN, and the rate matrices associated
with each of its parent’s possible assignments.

The relationship between this continuous model’s discrete counterpart can be seen in Fig. 2.6(b).
The corresponding DBN is discretized with some given h. Each time slice tk, we have a random
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variable Xi(tk) relating to the component Xi. This variable is the parent of the corresponding
random variables of its children in the CTBN itself in slice tk+1.

The transition probabilities for each Xi(tk) are given by the combination of Equations 2.9
and 2.10. From these equations, it can be seen that whenever the components are in different
states, they have a higher probability of switching to the state of the other component. Thus, the
probability of transitioning to the identical state is much higher than transitioning into the opposite
one.

In our framework, we receive evidence of the states of several or all components in our network
along some interval [0, T ]. The two possible types of evidence that may be given are continuous
evidence, where we know the state of a subset U ⊆ X continuously over some sub-interval
[t1, t2] ⊆ [0, T ], and point evidence of the state of U at some internal point t ∈ [0, T ]. For
convenience we restrict our treatment to a time interval [0, T ] with end-point evidence X(0) = e0

and X(T ) = eT . For components i with continuous evidence X(t) = x we simply assign the
constant µy(t) = δx,y.

The inference queries in continuous-time processes are similar to those in discrete time. These
calculated values are needed for the learning of the parameters of the process (Nodelman et al.,
2003). For example, the maximum-likelihood estimate for the rate of transition conditioned on the
state of Pai, denoted as q̂xi,yi|ui . Given the expected number of transitions E [Mxi, yi|ui] and the
the expected residence time E

[
Txi|ui

]
corresponding to the query, this estimate can be written as

q̂xi,yi|ui =
E
[
Mxi,yi|ui

]
E
[
Txi|ui

] .

We will discuss the calculations of these queries in the next section.

2.3.3 Inference in Continuous Time Markov Processes

Given a continuous-time Bayesian network, we would like to evaluate the likelihood of evidence,
to compute the probability of various events given the evidence (e.g., that the state of the system at
time t is x), and to compute conditional expectations (e.g., the expected amount of time Xi was in
state xi conditioned on some state of Pai). Every continuous-time process is fully described by the
transition rate matrix, and its sufficient statistics, which as illustrated above are essential for learn-
ing the parameters of the process. These queries are much like those of discrete processes, namely
the expected residence times E

[
Txi|ui

]
and the expected number of transitions E

[
Mxi,yi|ui

]
. Ad-

ditionally, we need the marginal probabilities µixi|ui(t) = Pr(Xi(t) = xi|U i(t) = ui). These
statistics are dependent on the probability is induced from the rate matrix Q and the evidence.
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Exact inference

Incidentally, calculation of these values is usually an intractable task. For instance, the calculation
of the marginals is given by the exponent

µx(t) = [µe0(0) · exp {Q · t}]e0,x

µixi|ui(t) =
∑

x\{i,ui}

µx(t) .

The expected residence times and transitions can be calculated as

E
[
Txi|ui

]
=

∫ T

0

µxi|ui(t)dt

E
[
Mxi,yi|ui

]
=

∫ T

0

µxi|ui(t)qxi,yi|uidt .

Direct computations of these quantities involve matrix exponentials of the rate matrix Q, whose
size is exponential in the number of components, and using it for integration over the the time in-
terval. These make this approach infeasible beyond a modest number of components. We therefore
have to resort to approximations.

Gibbs sampling

Similarly to the discrete Markov processes, the statistics in continuous-time processes can be calcu-
lated using sampling techniques which sample trajectories in systems with dependencies (El-Hay
et al., 2008). The main difference is that here the transitions of the randomly chosen component
are distributed exponentially, depending on the state of its parents. Sampling enough trajectories
can allow us to calculate these values by simply using the empirical mean as our estimate. For
example, the residence time can be calculated by

EP

[
T xi|ui

]
=

1

N

N∑
k=1

T k
xi|ui

where T k
xi|ui is the residence time of the ith component in state xi given its parents are in state ui,

as sampled in the kth trajectory.

Expectation propagation

The Expectation propagation algorithm, introduced in Nodelman et al. (2005b) approximates the
continuous process using a piece-wise homogeneous approximation. It is a message passing algo-
rtihm, and so models the dependence between the different components, but only requires a local
consistency, much like in the discrete case. The regions in the algorithm do not contain distribu-
tions over the region variables at individual time points, but distributions over trajectories of the
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variables throughout the domain. This it can adapt the time granularity of reasoning for different
variables and in different condtions.

The algorithm’s disadvantages are similar to the discrete message passing algorithms, namely
that it has no convergence guaranties and, as opposed to the Mean Field approximation we will
show next, does not give a lower bound on the log-likelihood of the evidence. It also requires a
tuning of parameters, which we would like to avoid and have the algorithm perform the tuning
adaptively.
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Chapter 3

Variational Approximations in
Continuous-Time Bayesian Networks

3.1 Variational Principle
We start by defining a variational approximation principle in terms of a general continuous-time
Markov process (that is, without assuming any network structure). Here we aim to define a lower
bound on lnPQ(eT |e0) as well as to approximate the posterior probability PQ(· | e0, eT ).

Variational approximations cast inference as an optimization problem of a functional which
approximates the log probability of the evidence by introducing an auxiliary set of variational
parameters. The posterior distribution of a Markov process can be represented in several ways.
Before we define this representation we will first examine its structure.

Inhomogeneous Rates Representation As discussed above, the prior distribution of the process
can be characterized by a time-independent rate matrix Q. It is easy to show that if the prior is
a Markov process, then the posterior Pr(·|e0, eT ) is also a Markov process, albeit not necessarily
a homogeneous one. Such a process can be represented by a time-dependent rate matrix R(t)
that describes the instantaneous transition rates. This approximation, although intuitive, proves
problematic in the framework of deterministic evidence, as can be seen in the following example.

Example 3.1.1: To illustrate how the rates diverge as we get closer to the end of the interval we
take a simple system with one binary component, and evidence e0 = A, eT = B. Intuitively, any
trajectory that is still in state A when t approaches T will need to be pushed harder and harder to
state B and at the limit, this rate will have to be infinite to assure that µA(T ) = 0. More formally,
we can write the rate of transition

RA,B(t) = lim
h→0

Pr(X(t) = B|X(t− h) = A, eT )

h
.

Taking the rates to t = T we get

RA,B(T ) = lim
h→0

Pr(X(T ) = B|X(t− h) = A, eT )

h
.
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Due to the deterministic evidence, the numerator tends to the constant 1 as we approach t = T . On
the other hand, the denominator obviously goes to 0, giving us divergent rates. While this problem
occurs in our framework where we have “hard” evidence (the probabilities of the different states
at the observed points are either 0 or 1, this does not occur when the evidence is noisy, and this
representation can be useful (Opper and Sanguinetti, 2007). In our framework, we therefore have
to find an alternative parameterization for this inhomogeneous process.

While this parameterization may seem problematic, we noticed that whenever the rates RA,B(t)
diverge as t → T , the marginals µA(t) must go to zero. Another non trivial fact is that the mul-
tiplication of the marginal and the rate µA(t) · RA,B(t) never diverges, and so this parameter is
numerically stable. When A 6= B this can be shown by decomposing this parameter as a joint
probability density

µA(t) · RA,B(t) = lim
h→0

Pr(X(t) = A,X(t+h) = B|e0, eT )

h

and so writing this density at t = T as the posterior probability of a Markov process

Pr(X(T−h) = A,X(T ) = B|e0, eT )

h

=
Pr(X(T−h) = A|e0) · Pr(X(T ) = B|X(T−h) = A) Pr(eT |X(T ) = B)

Pr(eT |e0) · h

=
Pr(X(T−h) = A|e0) · qA,B · h

Pr(eT |e0) · h

which has no infinite terms. In the case whereA = B, we have that µA(T )·RA,A(t) = −
∑

B 6=A µA(T )·
RA,B(t), which is a simple sum, and so does not diverge.

This motivation leads us to defining a new set of numerically stable variational parameters.

Marginal Density Representation As we have seen, continuous-time models require a slightly
modified parametrization for variational inference. Here we define the optimization problem over
a set of mean parameters (Wainwright and Jordan, 2008), representing possible values of expected
sufficient statistics. Here, rather than representing the posterior distribution by a time-dependent
rate matrix, we now consider a representation that is more natural for variational approximations.
Let Pr be the distribution of a Markov process. We define a family of functions:

µx(t) = Pr(X(t) = x)

γx,y(t) = lim
h↓0

Pr(X(t) = x,X(t+h) = y)

h
, x 6= y

γx,x(t) = −
∑
y 6=x

γx,y(t).

(3.1)

The function µx(t) is the probability that X(t) = x. The function γx,y(t) is the probability
density that X transitions from state x to y at time t. Note that this parameter is not a transition
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rate, but rather a product of a point-wise probability with the point-wise transition rate of the
approximating probability, i.e., the time-dependent rate matrix is defined Rx,y(t) = γx,y(t)/µx(t).
Hence, unlike the (inhomogeneous) rate matrix at time t, γx,y(t) takes into account the probability
of being in state x and not only the rate of transitions.

Proposition 3.1.2:

Pr(X(t) = x,X(t+h) = y) = µx(t)δx,y + γx,y(t)h+ o(h), (3.2)

Proof: In the case that y 6= x, this is the exact definition of γx,y(t). In the case where y = x we
can write

Pr(X(t) = x, X(t+h) = x) = µx(t)−
∑
y 6=x

Pr(X(t) = x, X(t+h) = y) + o(h)

= µx(t) + γx,x(t)h+ o(h) .

We aim to use the family of functions µ and γ as a representation of a Markov process. To do
so, we need to characterize the set of constraints that these functions should satisfy.

Definition 3.1.3: A family η = {µx(t), γx,y(t) : 0 ≤ t ≤ T} of continuous functions is a Markov-
consistent density set if the following constraints are fulfilled:

µx(t) ≥ 0,
∑

x

µx(0) = 1,

γx,y(t) ≥ 0 ∀y 6= x,

γx,x(t) = −
∑
y 6=x

γx,y(t),

d

dt
µx(t) =

∑
y

γy,x(t).

LetM be the set of all Markov-consistent densities.

As an analogy to the discrete case, we will compare this parameterization to the “natural”
parameterization of variational inference in dynamic Bayesian networks of Equation (2.8). First,
in both cases we constrain the marginals µx(t) to be valid distributions. Additionally, in the discrete
case we constrain the joint distributions over two time slices µz,x[tk, tk+1] to be non-negative and
agree on their intersecting time slice. The marginals of that time slice µx[k] are equal to the
marginalization over either of the two joint probability distributions, i.e.,

µx[tk] =
∑

z

µz,x[tk−1, tk] =
∑

z

µx,z[tk, tk+1]
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In the continuous case with infinitesimal discretization, we get the similar equation

µx(t) = µx(t− h) +
∑

y

γy,x(t− h) · h

by the same marginalization, but with the small difference justified in (3.2). Rearranging the terms
and going to the limit h→ 0 gives us the time-derivative of µx(t). This derivative, along with the
initial values µx(0) = δx,e0 gives us the forward master equation of the marginals.

Using standard arguments we can show that there exists a correspondence between (generally
inhomogeneous) Markov processes and density sets η. Specifically:

Lemma 3.1.4: Let η = {µx(t), γx,y(t)}. If η ∈ M, then there exists a continuous-time Markov
process Pη for which µx and γx,y satisfy (3.1).

Proof: Given η, we define the inhomogeneous rate matrix Rx,y(t) = γx,y(t)

µx(t)
wherever µ(t) > 0,

and for the singular points where µx(t) = 0 Rx,y(t) = 0. From its definition R(t) is a valid rate
matrix - its non-diagonals are non-negative as they are the quotient of two non-negative functions,
and the requirements of definition (3.1)

Rx,x(t) =
γx,x(t)

µx(t)
= −γx,y(t)

µx(t)
= −

∑
y

Rx,y(t) .

Thus R’s diagonals are negative and its rows sum to 0. From Chung (1960) we can use these rates
with the initial value µx(0) to construct the Markov process Pη and its probability P(t) from the
forward master equation

d

dt
Pη = R(t)Pη

and
Pη(0) = µ(0) .

Finally, to satisfy (3.1) we have to prove that µx(t) are the true marginals and that γx,y(t) equal
the joint probability densities. First, because of the matching initial value at t = 0 and the equality
of the time-derivatives of the two functions, thus

µx(t) = Px(t) = Pr(X(t) = x) .

Next, the equivalence of the joint probability densities can be proved:

lim
h→0

Pr(X(t) = x,X(t+h) = y)

h
= lim

h→0

µx(t) Pr(X(t+h) = y|Pr(X(t) = x)

h

= lim
h→0

µx(t)Rx,y(t)h

h
= µx(t)Rx,y(t)

which is exactly γx,y(t).

The processes we are interested in, however, have additional structure, as they correspond to the
posterior distribution of a time-homogeneous process with end-point evidence. This additional
structure implies that we should only consider a subset ofM:
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Lemma 3.1.5: Let Q be a rate matrix, and e0, eT be states of X . Then the representation η
corresponding to the posterior distribution PQ(·|e0, eT ) is in the set Me ⊂ M that contains
Markov-consistent density sets {µx(t), γx,y(t)}, satisfying µx(0) = δx,e0 , µx(T ) = δx,eT .

Thus, from now on we can restrict our attention to density sets fromMe. We can now state the
variational principle for continuous processes, which closely tracks similar principles for discrete
processes. Here we define a free energy functional,

F(η; Q) = E(η; Q) +H(η),

which, as we will see, measures the quality of η as an approximation of PQ(·|e). (For succinctness,
we will assume that the evidence e is clear from the context.) The two terms in the continuous
functional correspond to an entropy,

H(η) =

∫ T

0

∑
x

∑
y 6=x

γx,y(t)[1 + lnµx(t)− ln γx,y(t)]dt,

and an energy,

E(η; Q) =

∫ T

0

∑
x

[
µx(t)qx,x +

∑
y 6=x

γx,y(t) ln qx,y

]
dt.

To perform optimization of this functional, we will next prove its relation to the KL divergence
and the likelihood of the evidence, and thus casts the variational inference into an optimization
problem.

Theorem 3.1.6: Let Q be a rate matrix, e = (e0, eT ) be states of X , and η ∈Me. Then

F(η; Q) = lnPQ(eT |e0)− ID(Pη||PQ(·|e))

where Pη is the distribution corresponding to η and ID(Pη||PQ(·|e)) is the KL divergence between
the two processes.

Proof: The basic idea is to consider discrete approximations of the functional. Let K be an inte-
ger. We define the K-sieve XK to be the set of random variables X(t0),X(t1), . . . ,X(tK) where
tk = kT

K
. We can use the variational principle (Jordan et al., 1998) on the marginal distributions

PQ(XK |e) and Pη(XK). More precisely, define

FK(η; Q) = EPη

[
ln
PQ(XK , eT | e0)

Pη(XK)

]
,

which can, by using simple arithmetic manipulations be recast as

FK(η; Q) = lnPQ(eT |e0)− ID(Pη(XK)||PQ(XK |e)).

We get the desired result by letting K → ∞. By definition limK→∞ ID(Pη(XK)||PQ(XK |e))
is ID(Pη(·)||PQ(·|e)) and using the following Lemma 3.1.7 gives the result.
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Lemma 3.1.7: F(η; Q) = limK→∞FK(η; Q).

Proof: Since both PQ and Pη are Markov processes, we can write

FK(η; Q) =
K−1∑
k=0

EPη

[
lnPQ(X(tk+1)|X(tk))

]
+

K−1∑
k=0

EPη

[
lnPη(X

(tk),X(tk+1))
]

−
K−1∑
k=1

EPη

[
lnPη(X

(tk))
]

We now express these terms as functions of µx(t), γx,y(t) and qx,y. By definition, Pη(X(tk) =
x) = µx(tk). Each of the expectations either depend on this term, or on the joint distribution
Pη(X

(tk−1),X(tk)). Using the continuity of γx,y(t) we can rewrite the probability of such joint
events as

Pη(X
(tk) = x,X(tk+1) = y) = δx,yµx(t) + ∆K · γx,y(t) + o(∆K)

where ∆K = T/K. Similarly, we can also write

PQ(X(tk+1) = y|X(tk) = x) = δx,y + ∆K · qx,y + o(∆K) .

Plugging in these equalities we get

FK(η; Q) =
K−1∑
k=0

∑
x

(µx(tk) + γx,x(tk)∆K) ln
(1 + qx,x∆K)

µx(tk) + γx,x(tk)∆K

+ ∆K

∑
y 6=x

γx,y(tk) ln
qx,y

γx,y(tk)

+
∑

x

µx(t1) ln
PQ(X(t1) = x|e0)

µx(t1)
+
∑

x

µx(tK−1) lnPQ(etK |X
(tK−1) = x) .

To further simplify the functional, we define the boundary terms

AK =
∑

x

µx(t1) ln
PQ(X(t1) = x|e0)

µx(t1)
+
∑

x

µx(tK−1) lnPQ(etK |X
(tK−1) = x) (3.3)

and rewrite FK(η; Q)

FK(η; Q) =
K−1∑
k=0

∑
x

(µx(tk) + γx,x(tk)∆K) ln
(1 + qx,x∆K)

µx(tk) + γx,x(tk)∆K

+ ∆K

∑
y 6=x

γx,y(tk) ln
qx,y

γx,y(tk)
+AK .
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Using properties of logarithms we have that

ln (1 + ∆K · z + o(∆K)) = ∆K · z + o(∆K).

which simplifies the first sum:

(µx(tk) + γx,x(tk)∆K) ln(1 + qx,x∆K) = µx(tk)qx,x∆K + o(∆K)

and

(µx(tk) + γx,x(tk)∆K) ln(µx(tk) + γx,x(tk)∆K)

= (µx(tk) + γx,x(tk)∆K) ln

(
1 +

γx,x(tk)∆K

µx(tk)

)
+ µx(tk) lnµx(tk) + γx,x(tk)∆K lnµx(tk)

= γx,x(tk)∆K + µx(tk) lnµx(tk) + γx,x(tk)∆K lnµx(tk) + o(∆K) .

Our functional can now be written as

FK(η; Q) =
K−1∑
k=0

∑
x

∑
y 6=x

γx,y(tk) [1 + lnµx,y(t)− ln γx,y(tk)] ∆K

+
K−1∑
k=0

∑
x

[
µx(tk)qx,x +

∑
y 6=x

γx,y(tk) ln qxy(tk)

]
∆K + o(∆K) +AK .

Now we can decompose FK(η; Q) as the sum of two terms

FK(η; Q) = EK(η; Q) +HK(η) +AK ,

where

EK(η; Q) =
K−1∑
k=0

∆KeK(tk), HK(η) =
K−1∑
k=0

∆KhK(tk),

and
eK(t) =

∑
x

∑
y 6=x

γx,y(t)[1 + lnµx(t)− ln γx,y(t)] + o(∆K)

hk(t) =
∑

x

[
µx(t)qxx +

∑
y 6=x

γx,y(t) ln qx,y

]
+ o(∆K)

Letting K → ∞ we have that
∑

k ∆k[f(tk) + o(∆K)] →
∫ T

0
f(t)dt, hence EK(η; Q) and HK(η)

converge to E(η; Q) andH(η), respectively. According to Lemma 3.1.8, the termsAK vanish, and
the proof is concluded.

Lemma 3.1.8: The terms AK , as defined in (3.3) satisfy

lim
∆K→0

AK = 0 .
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Proof: The first term, involving e0, goes to zero due to the fact that µx(t0) is a linear approximation
of pe0,x(∆K). In the second, if x 6= etK then

µx(tK−1) lnPQ(etK |X
(tK−1) = x) =

Pη(X
(tK−1)|e0)

Pη(etK |e0)
Pη(etK |X

(tK−1)) lnPQ(etK |X
(tK−1))

and as lim∆K→0 Pη(etK |X
(tK−1)) = lim∆K→0 PQ(etK |X

(tK−1)) = 0, this whole term goes to 0.
Conversly, when x = etK then µx(tK−1) goes to 1 as ∆K → 0, as does PQ(etK |X

(tK−1) = x),
making the logarithm of this term go to 0.

Thm. 3.1.6 allows us to view variational inference as an optimization procedure. In particular
we see that the energy functional F(η; Q) is a lower bound of the log-likelihood of the evidence,
and the closer the approximation to the target posterior, the tighter the bound. Additionally, once
we have found the best approximation, we can calculate the sufficient statistics we need from the
result of the optimization.

Taking the general perspective of Wainwright and Jordan (2008), the representation of the
distribution uses the natural sufficient statistics. In a Markov process, these are Tx, the time spent
in state x, and Mx,y, the number of transitions from state x to y. In a discrete-time model, we can
capture the statistics for every random variable as in (2.8). In a continuous-time model, however,
we need to consider the time derivative of the statistics. Indeed, it is not hard to show that

d

dt
E [Tx(t)] = µx(t) and

d

dt
E [Mx,y(t)] = γx,y(t).

Thus, our marginal density sets η provide what we consider a natural formulation for variational
approaches to continuous-time Markov processes. and extracting these values from the resulting
approximation requires a simple integration.

Before moving on to the formal definition of the optimization procedure, we will give an in-
tuition of the optimization using the simplistic model of a single component process. This simple
case will be generalized later on.

Example 3.1.9: Consider the case of a single component, for which our procedure should be exact,
as no simplifying assumptions are made on the density set. Calculation of the sufficient statistics
and marginals should be an easy task using dynamic programming. A simple strategy for doing
this is to first calculate the backward probability βx(t) = Pr(eT |X(t) = x), given the end state of
the evidence eT . This probability is derived by using the discretized backward propagation rule

βx(t) =
∑
y

Pr(X(t+h) = y|X(t) = x)βy(t+ h)

which can be made continuous and form the continuous backward master equation

d

dt
βx(t) =

∑
y

qxyβy(t) . (3.4)

Next, we will calculate the forward variables µx(t) and γx,y(t).
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Lemma 3.1.10: For all t ∈ [0, T ] and x 6= y the following equation holds

γx,y(t) = µx(t)qx,y
βy(t)

βx(t)
.

Proof: Using the definition of γx,y(t)

γx,y(t) +
o(h)

h
=

Pr(X(t) = x,X(t+h) = y)

h

=
Pr(X(t) = x|e0) · Pr(X(t+h) = y|X(t) = x) · Pr(eT |X(t+h) = y)

h · Pr(eT |e0)

=
Pr(X(t) = x|e0) · qx,y · h · Pr(eT |X(t+h) = y)

h · Pr(eT |e0)

=
Pr(X(t) = x|e0) · Pr(eT |X(t) = x)

Pr(eT |e0)
· qx,y ·

Pr(eT |X(t+h) = y)

Pr(eT |X(t) = x)

= µx(t)qx,y
βy(t+ h)

βx(t)

and when h→ 0 we get the proof.

After calculating these values for each t ∈ [0, T ], using numerical methods (see Appendix A.3) we
can now go forward and find the exact marginals µx(t) using the forward master equation

d

dt
µx(t) =

∑
y

γx,y(t) .

This system of ODEs is similar to forward-backward propagation, except that unlike classical
forward propagation (which would use a function such as αx(t) = Pr(X(t) = x|e0)), here the
forward propagation already takes into account the backward messages, to directly compute the
posterior. Due to Lemma 3.1.10, we may use the alternative update equation

d

dt
µx(t) =

∑
y

µx(t)qx,y
βy(t)

βx(t)
. (3.5)

This equivalence will be made clearer in the context of the optimization procedure that is to come.

The forward-backward scheme described in Example 3.1.9 is not possible for a multi com-
ponent system, as the number of states is exponential. Therefore, we must resort to a factorized
representation, and a different optimization scheme that does not require enumeration over all
possible states.

36



3.2 Factored Approximation
The variational principle we discussed is based on a representation that is as complex as the original
process—the number of functions γx,y(t) we consider is equal to the size of the original rate matrix
Q. To get a tractable inference procedure we make additional simplifying assumptions on the
approximating distribution.

Given a D-component process we consider approximations that factor into products of inde-
pendent processes. More precisely, we define Mi

e to be the continuous Markov-consistent den-
sity sets over the component Xi, that are consistent with the evidence on Xi at times 0 and T .
Given a collection of density sets η1, . . . , ηD for the different components, the product density set
η = η1 × · · · × ηD is defined as

µx(t) =
∏
i

µixi(t)

γx,y(t) =


γixi,yi(t)µ

\i
x (t) δ(x,y) = {i}∑

i γ
i
xi,xi

(t)µ
\i
x (t) x = y

0 otherwise

where µ\ix (t) =
∏

j 6=i µ
j
xj

(t) is the joint distribution at time t of all the components other than the
i’th. (It is not hard to see that if ηi ∈Mi

e for all i, then η ∈Me). This representation is motivated
by the fact that the marginals should factor according to the independent distributions. Defining
X = (xi)

D
x=1 gives us the factorized distribution

Pr(X(t) = x) =
D∏
i=1

Pr(Xi(t) = xi) .

The joint densities are similarly decomposed: denoting y as the vector equal to x everywhere but
in the jth component where Y j = yj we can write these densities as

Pr(X(t) = x,X(t+ h) = y) = Pr(Xi(t) = xi, Xi(t+ h) = yi) ·
∏
j 6=i

Pr(Xj(t) = xj) .

We define the set MF
e to contain all factored density sets. From now on we assume that

η = η1 × · · · × ηD ∈MF
e .

Assuming that Q is defined by a CTBN, and that η is a factored density set, we can use a similar
technique used in the Dynamic Bayesian networks Mean Field approximation to rewrite the terms
of the average energy functional as a sum factored by each component

E(η; Q) =
∑
i

∫ T

0

∑
xi

µixi(t)Eµ\i(t)

[
qxi,xi|U i

]
dt

+
∑
i

∫ T

0

∑
xi,yi 6=xi

γixi,yi(t)Eµ\i(t)

[
ln qxi,yi|U i

]
dt .
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Proof: We begin with the definition of the average energy

E(η; Q) =

∫ T

0

∑
x

[
µx(t)qx,x +

∑
y 6=x

γx,y(t) ln qx,y

]
dt

=

∫ T

0

∑
x

[
µx(t)qx,x +

∑
i

∑
yi 6=xi

γixi,yi(t)µ
\i(t) ln qx,y

]
dt

where the equality stems from the observation that the only states y that may have γx,y(t) > 0, are
those with δ(x,y) ≤ 1 (all the rest are 0). Thus, the enumeration over all possible states collapses
into an enumeration over all components i and all states yi 6= xi. Due to the fact that we are only
considering transitions in single components, we may replace the global joint density γx,y with
γixi,yi · µ

\i(t), as per definition.
Using (2.10), we can decompose the transition rates qx,x and qx,y to get∫ T

0

∑
x

[
µx(t)qx,x +

∑
i

∑
yi 6=xi

γixi,yi(t)µ
\i(t) ln qx,y

]
dt

=
∑
i

∫ T

0

∑
x

[
µx(t)qxi,xi|ui +

∑
yi 6=xi

γixi,yi(t)µ
\i(t) ln qxi,yi|ui

]
dt

=
∑
i

∫ T

0

∑
xi

µixi(t)∑
x\i

µ
\i
x\i(t)qxi,xi|ui +

∑
yi 6=xi

γixi,yi(t)µ
\i
x\i(t) ln qxi,yi|ui

 dt .
To get to the last equality we use the factorization of µ(t) as a product of µi(t) with µ\i(t) and the
reordering of the summation. Next we simply write the previous sum as an expectation over X \ i

∑
i

∫ T

0

∑
xi

µixi(t)∑
x\i

µ
\i
x\i(t)qxi,xi|ui +

∑
yi 6=xi

γixi,yi(t)µ
\i
x\i(t) ln qxi,yi|ui

 dt
=

∑
i

∫ T

0

∑
xi

µixi(t)Eµ\i(t)

[
qxi,xi|U i

]
+
∑
i

∫ T

0

∑
yi 6=xi

γixi,yi(t)Eµ\i(t)

[
ln qxi,yi|U i

]
dt

which concludes the proof.

A further simplification for the calculation of the average energy can be found when observing the
expectations over the transition rates Eµ\i(t)

[
qxi,yi|U i

]
. As the rates are independent of all the other

components given the state of Pai, it is sufficient to sum over all states of Pai

Eµ\i(t)

[
qxi,yi|U i

]
= EµPai (t)

[
qxi,yi|U i

]
because the left hand side involves only µj(t) for j ∈ Pai. Similarly, the entropy-like term factor-
izes as

H(η) =
∑
i

H(ηi).
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This decomposition involves only local terms that either include the i’th component, or include
the i’th component and its parents in the CTBN defining Q. Thus, this decomposition allows us
to write F(η; Q) as a function of µixi and γixi,yi for xi 6= yi. To make the factored nature of the
approximation explicit in the notation, we write henceforth,

F(η; Q) = F̃(η1, . . . , ηD; Q).

3.3 Optimization
Our goal is to maximize the functional, but to keep the ηi Markov consistent densities. Thus,
the maximization of the factored energy functional demands the use of constrained optimization
techniques in the field of Lagrange multipliers, elicited in Appendix A.1. Due to the independence
between the different ηi, we will perform block ascent, optimizing the functional with respect to
each parameter set in turn.

Fixed Point Characterization We can now pose the optimization problem we wish to solve:

Fixing i, and given η1, . . . , ηi−1, ηi+1, . . . , ηD, inM1
e, . . .Mi−1

e ,Mi+1
e , . . . ,MD

e , re-
spectively, find

arg max
ηi∈Mi

e

F̃(η1, . . . , ηD; Q) .

If for all i, we have a µi ∈ Mi
e, which is a solution to this optimization problem with respect

to each component, then we have a (local) stationary point of the energy functional withinMF
e .

Additionally, due to Lemma 3.1.4, each η which is Markov consistent defines a valid Markov
process, and thus we will always remain in the domain of consistent parameterization.

To solve this optimization problem, we define a Lagrangian, which includes the constraints in
the form of Def. 3.1.3. These constraints are to be enforced in a continuous fashion, and so the
Lagrange multipliers λixi(t) are continuous functions of t as well. The Lagrangian is a functional
of the functions µixi(t), γixi,yi(t) and λixi(t), and takes the following form

L = F̃(η; Q)−
D∑
i=1

∫ T

0

λixi(t)

(
d

dt
µixi(t)−

∑
yi

γixiyi(t)

)
dt .

Similarly to the discrete case, we need to find the derivatives of the Lagrangian with respect to
each variable and form fixed point equations which will show us how to update the parameters.
Despite this similarity, due to its continuous nature, our derivations are now w.r.t. continuous
functions, not discrete parameters. This requires the use of so-called functional derivatives and
several techniques in Calculus of variations. The stationary point of the Lagrangian satisfies the
Euler-Lagrange equations (see Appendix A.1). Writing these equations in explicit form, we get a
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fixed point characterization of the solution in term of the following set of ODEs:

d

dt
µixi(t) =

∑
yi 6=xi

(
γiyi,xi(t)− γ

i
xi,yi

(t)
)

d

dt
ρixi(t) = −ρixi(t)(q̄

i
xi,xi

(t) + ψixi(t))−
∑
yi 6=xi

ρiyi(t)q̃
i
xi,yi

(t)

(3.6)

where ρi are the exponents of the Lagrange multipliers λi as defined in the proof of Thm. 3.3.2
below. In addition we get the following algebraic constraint

ρixi(t)γ
i
xi,yi

(t) = µixi(t)q̃
i
xi,yi

(t)ρiyi(t), xi 6= yi. (3.7)

In these equations we use the following shorthand notations for the average rates

q̄ixi,yi(t) = Eµ\i(t)

[
q
i|Pai
xi,yi|U i

]
q̄ixi,yi|xj(t) = Eµ\i(t)

[
q
i|Pai
xi,yi|U i

| xj
]
,

where µ\i(t) is the product distribution of µ1(t), . . . , µi−1(t), µi+1(t), . . . , µD(t). Similarly, we
have the following shorthand notations for the geometrically-averaged rates,

q̃ixi,yi(t) = exp
{
Eµ\i(t)

[
ln q

i|Pai
xi,yi|U i

]}
q̃ixi,yi|xj(t) = exp

{
Eµ\i(t)

[
ln q

i|Pai
xi,yi|U i

| xj
]}

.

The last auxiliary term is

ψixi(t) =
∑

j∈Childreni

∑
xj

µjxj(t)q̄
j
xj ,xj |xi(t)+∑

j∈Childreni

∑
xj 6=yj

γjxj ,yj(t) ln q̃jxj ,yj |xi(t) .

The two differential equations (3.6) for µixi(t) and ρixi(t) describe, respectively, the progression of
µixi forward, and the progression of ρixi backward. To uniquely solve these equations we need to
set the boundary conditions. The boundary condition for µixi is defined explicitly inMF

e as

µixi(0) = δxi,ei,0 (3.8)

The boundary condition at T is slightly more involved. The constraints inMF
e imply that µixi(T ) =

δxi,ei,T . These constraints that µx(0) and µx(T ) are extreme probabilities (having all the mass on
one value) have consequences on γx,y at these points, as stated the following lemma

Lemma 3.3.1: If η ∈Me then γx,y(0) = 0 for all x 6= e0 and γx,y(T ) = 0 for all y 6= eT .
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Proof: If y 6= eT then Pη(X(T−h) = x,X(T ) = y) = 0, and thus by (3.1) and the continuity of
γx,y we have that γx,y(0) = 0.

As stated by Lemma 3.3.1, we have that γiei,T ,xi(T ) = 0 when xi 6= ei,T . Plugging these values
into (3.7), and assuming that Q is irreducible we get that ρxi(T ) = 0 for all xi 6= ei,T . In addition,
we notice that ρei,T (T ) 6= 0, for otherwise the whole system of equations for ρ will collapse to 0.
Finally, notice that the solution of (3.6) for µi and γi is insensitive to the multiplication of ρi by a
constant. Thus, we can arbitrarily set ρei,T (T ) = 1, and get the boundary condition

ρixi(T ) = δxi,ei,T . (3.9)

We can now prove the correctness of our sequential updates in the algorithm portrayed in 3.3 that
uses (3.6–3.9)

Theorem 3.3.2: ηi ∈Mi
e is a stationary point (e.g., local maxima) of F̃(η1, . . . , ηD; Q) subject to

the constraints of Def. 3.1.3 if and only if it satisfies (3.6–3.9).

Proof: The Euler-Lagrange equations of the Lagrangian define its stationary points w.r.t. the
parameters of each component µi(t), γi(t) and λi(t). First, taking derivatives w.r.t. µixi(t) gives us
the following equality

q̄ixi,xi(t)−
γixi,xi
µixi(t)

+
d

dt
λixi(t) + ψixi(t) = 0 . (3.10)

The derivative of λixi(t) term is obtained from the time-derivative of µixi(t) in the Lagrangian, as
described in (A.1), and the ψixi(t) term is derived from the equality

∂

∂µixi(t)

∑
j 6=i

∑
xj

µixi(t)Eµ\i(t)

[
qixi,xi|U i

]
= ψixi(t) .

Next, the derivative w.r.t. γixi,yi(t) gives us

lnµixi(t) + ln q̃ixi,yi(t)− ln γixi,yi(t) + λiyi(t)− λ
i
xi

(t) = 0 . (3.11)

Finally, the derivative w.r.t. λixi(t) gives us the update equation of the µi(t), so it is Markov
consistent

µixi(t)−
∑
yi 6=xi

[
γiyi,xi(t)− γxi,yi(t)

]
= 0 .

Denoting ρixi(t) = exp{λixi(t)} we have the relation

d

dt
ρixi(t) = ρixi(t) ·

d

dt
λixi(t)

which transforms (3.11) into

γixi,yi(t) = µixi(t)q̄
i
xi,yi

(t)
ρiyi(t)

ρixi(t)
.
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Thus by definition

γixi,xi(t) = −
∑
yi 6=xi

γixi,yi(t) = −µixi(t)
∑
xi,yi

q̃ixi,yi(t)
ρiyi(t)

ρixi(t)
.

Plugging this equality into (3.10) and using the fact that

d

dt
ρixi(t) =

d

dt
λixi(t)ρ

i
xi

(t)

gives us
d

dt
ρixi(t) = −ρixi(t)

(
q̄ixi,xi|U i

(t) + ψixi(t)
)
−
∑
yi 6=xi

q̃ixi,yiρ
i
yi

(t) .

Thus the stationary point of the lagrangian matches the updates of (3.6–3.7).

It is straightforward to extend this result to show that at a maximum with respect to all the compo-
nent densities, this fixed-point characterization must hold for all components simultaneously.

Example 3.3.3: Returning to Example 3.1.9, the averaged rates q̄i and the geometrically-averaged
rates q̃i both reduce to the unaveraged rates q, and ψ ≡ 0. Thus, the system of equations to be
solved is

d

dt
µx(t) =

∑
y 6=x

(γy,x(t)− γx,y(t))

d

dt
ρx(t) = −

∑
y

qx,yρy(t),

along with the algebraic equation

ρx(t)γx,y(t) = qx,yµx(t)ρy(t), y 6= x.

In this case, it is straightforward to show that the backward propagation rule for ρx implies that

ρx(t) = Pr(eT |X(t))

as for every x, ρx(T ) = δeT ,x and its backward propagation rule is exactly the backward master
equation from (3.4). Setting the marginals at t = 0 to be consistent with the evidence, the forward
propagation rule

d

dt
µx(t) = µx(t)

∑
y

qx,y
ρy(t)

ρx(t)

exactly matches the one in Lemma 3.1.10, and thus correctly calculates the marginals.
This interpretation of ρx(t) also allows us to understand the role of γx,y(t). Recall that γx,y(t)/µx(t)

is the instantaneous rate of transition from x to y at time t. Thus,

γx,y(t)

µx(t)
= qx,y

ρy(t)

ρx(t)
.
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Figure 3.1: Numerical results for the two-component Ising chain described in Example 3.3.4 where
the first component starts in state−1 and ends at time T = 1 in state 1. The second component has
the opposite behavior. (a) Two likely trajectories depicting the two modes of the model. (b) Exact
(solid) and approximate (dashed/dotted) marginals µi1(t). (c) The log ratio log ρi1(t)/ρi0(t).

That is, the instantaneous rate combines the original rate with the relative likelihood of the evidence
at T given y and x. If y is much more likely to lead to the final state, then the rates are biased toward
y. Conversely, if y is unlikely to lead to the evidence the rate of transitions to it are lower. This
observation also explains why the forward propagation of µx will reach the observed µx(T ) even
though we did not impose it explicitly.

An example of a multicomponent process is the Ising chain, which corresponds to a CTBN
X1 ↔ · · · ↔ XD such that each binary component prefers to be in the same state as its neighbour.
These models are governed by two parameters: a coupling parameter β (it is the inverse temper-
ature in physical models, which determines the strength of the coupling between two neighboring
components, and a rate parameter τ that determines the propensity of each component to change
its state. Low values of β correspond to weak coupling (high temperature). More formally, we
define the conditional rate matrices as

q
i|Pai
xi,yi|ui = τ

(
1 + e−2yiβ

P
j∈Pai

xj
)−1

where xj ∈ {−1, 1}. This model is derived from the Ising grid on Continuous-Time Markov
Networks, which are the undirected counterparts of CTBNs, by using the technique in El-Hay
et al. (2006).

Example 3.3.4: Let us return to the two-component Ising chain in Example 2.3.1 with initial state
X

(0)
1 = −1 and X(0)

2 = 1, and a reversed state at the final time, X(T )
1 = 1 and X(T )

2 = −1. For a
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Figure 3.2: The expected rates q̄i(t) of the approximating process in each of the components of the
(symmetric) Ising chain in Example 2.3.1. In the left figure, we can see transitions q̄i1,2(t) and in
the right q̄i2,1(t). We can notice that the averaged rates are highly non-linear, and so are cannot be
approximated well with a constant rate matrix.

large value of β, this evidence is unlikely as at both end points the components are in a undesired
configurations. The exact posterior is one that assigns higher probabilities to trajectories where
one of the components switches relatively fast to match the other, and then toward the end of the
interval, they separate to match the evidence. Since the model is symmetric, these trajectories are
either ones in which both components are most of the time in state−1, or ones where both are most
of the time in state 1 (Fig. 3.1 (a)). Due to symmetry, the marginal probability of each component
is around 0.5 throughout most of the interval (Fig. 3.1 (b)). The variational approximation cannot
capture the dependency between the two components, and thus converges to one of two local
maxima, corresponding to the two potential subsets of trajectories. Examining the value of ρi, we
see that close to the end of the interval they bias the instantaneous rates significantly (Fig. 3.1 (c)).

This example also allows to examine the implications of modeling the posterior by inhomoge-
neous Markov processes. In principle, we might have used as an approximation Markov processes
with homogeneous rates, and conditioned on the evidence. To examine whether our approximation
behaves in this manner, we notice that in the single component case we have

qx,y =
ρx(t)γx,y(t)

ρy(t)µx(t)
,

which should be constant.
Consider the analogous quantity in the multi-component case: q̃ixi,yi(t), the geometric average

of the rate ofXi, given the probability of parents state. Not surprisingly, this is exactly a mean field
approximation, where the influence of interacting components is approximated by their average in-
fluence. Since the distribution of the parents (in the two-component system, the other component)
changes in time, these rates change continuously, especially near the end of the time interval. This
suggests that a piecewise homogeneous approximation cannot capture the dynamics without a loss
in accuracy. As expected in a dynamic process, we can see in Fig. 3.2 that the inhomogeneous
transition rates are very erratic. In particular, the rates spikes at the coordinated point of transition
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For each i, initialize µi using Qi|ui with some random state ui.
while not converged do

1. Pick a component i ∈ {1, . . . , D}.

2. Update ρi(t) by solving the ρi backward master equation in (3.6).

3. Update µi(t) and γi(t) by solving the µi forward master equation in (3.6) and the fixed
equation in (3.7).

end

Figure 3.3: Mean Field approximation in continuous-time Bayesian networks

selected by the Mean Field approximation. This can be interpreted as putting all the weight of the
distribution on trajectories which transition from state -1 to 1 at that point.

Optimization Procedure If Q is irreducible, then ρixi and µxi are non-zero throughout the open
interval (0, T ). As a result, we can solve (3.7) to express γixi,yi as a function of µi and ρi, thus
eliminating it from (3.6) to get evolution equations solely in terms of µi and ρi. Abstracting the
details, we obtain a set of ODEs of the form

d

dt
µi(t) = α(µi(t), ρi(t), µ\i(t)) µi(0) = given

d

dt
ρi(t) = −β(ρi(t), µ\i(t)) ρi(T ) = given.

where α and β can be inferred from (3.6) and (3.7) The general optimization procedure can be seen
in 3.3. First we initialize all the marginals and joint probabilities of each component i according
to a conditional rate matrix Qi|ui using some random assignment ui. Next we iterate in updating
each component according to (3.7). First we solve γi(t) backwards, then we update γi(t) and
margi(t) forward using the forward master equation. We can measure the improvement of the
approximation by calculating the functional after the update and comparing it to its previous value.
We stop once we have reached a point where the functional converges.

Since the evolution of ρi does not depend on µi, we can integrate backward from time T to solve
for ρi. Then, integrating forward from time 0, we compute µi. After performing a single iteration of
backward-forward integration, we obtain a solution that satisfies the fixed-point equation (3.6) for
the i’th component. (This is not surprising once we have identified our procedure to be a variation
of a standard forward-backward algorithm for a single component.) Such a solution will be a local
maximum of the functional w.r.t. to ηi (reaching a local minimum or a saddle point requires very
specific initialization points).

This suggests that we can use the standard procedure of asynchronous updates, where we up-
date each component in a round-robin fashion. Since each of these single-component updates
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Figure 3.4: Convergence of the energy functional in a 8 component ising chain in 20 iterations.
The functional (in red) is a lower bound on the log likelihood of the (black), and increases mono-
tonically with each iteration.

converges in one backward-forward step, Wand since it reaches a local maximum, each step im-
proves the value of the free energy over the previous one (Fig. 3.4). Since the free energy functional
is bounded by the probability of the evidence, this procedure will always converge.

Potentially, there can be many scheduling possibilities. In our implementation the update
scheduling is simply random. A better choice would be to update the component which would
maximally increase the value of the functional in that iteration. This idea is similar the scheduling
of Elidan et al. (2006), who approximate the change in the beliefs by bounding the residuals of the
messages, which give an approximation of the benefit of updating each component.

Another issue is the initialization of this procedure. Since the iteration on the i’th component
depends on µ\i, we need to initialize µ by some legal assignment. To do so, we create a fictional
rate matrix Q̃i for each component and initialize µi to be the posterior of the process given the
evidence ei,0 and ei,T . As a reasonable initial guess, we choose at random one of the conditional
rates in Q to determine the fictional rate matrix.

Exploiting the Continuous Time Representation The continuous time update equations allow
us to use standard ODE methods with an adaptive step size (here we use the Runge-Kutta-Fehlberg
(4,5) method). At the price of some overhead, these procedures automatically tune the trade-
off between error and time granularity. See Appendix A.3 for more information on numerical
integration.

To further save computations, we note that while standard integration methods involve only
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Figure 3.5: (a) Relative error as a function of the coupling parameter β (x-axis) and transition rates
τ (y-axis) for an 8-component Ising chain. (b) Comparison of true vs. estimated likelihood as a
function of the rate parameter τ . (c) Comparison of true vs. likelihood as a function of the coupling
parameter β.

initial boundary conditions at t = 0, the solution of µi is also known at t = T . Therefore, we stop
the adaptive integration when µi(t) ≈ µi(T ) and t is close enough to T . This modification reduces
the number of computed points significantly because the derivative of µi tends to grow near the
boundary due to its exponential behaviour, resulting in a lower step size.
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3.4 Evaluation
To gain better insight into the quality of our procedure, we performed numerical tests on mod-
els that challenge the approximation. Specifically, we use Ising chains where we explore regimes
defined by the degree of coupling between the components (the parameter β) and the rate of tran-
sitions (the parameter τ ). We evaluate the error in two ways. The first is by the difference between
the true log-likelihood and our estimate. The second is by the average relative error in the estimate
of different expected sufficient statistics defined by

∑
j
|θ̂j−θj |
θj

where θj is exact value of the j’th

expected sufficient statistics and θ̂j is the approximation.
Applying our procedure on an Ising chain with 8 components, for which we can still perform

exact inference, we evaluated the relative error for different choices of β and τ . The evidence in
this experiment is e0 = {+,+,+,+,+,+,−,−}, T = 0.64 and eT = {−,−,−,+,+,+,+,+}.
As shown in Fig. 3.5a, the error is larger when τ and β are large. In the case of a weak coupling
(small β), the posterior is almost independent, and our approximation is accurate. In models with
few transitions (small τ ), most of the mass of the posterior is concentrated on a few canonical
“types” of trajectories that can be captured by the approximation (as in Example 3.3.4). At high
transition rates, the components tend to transition often, and in a coordinated manner, which leads
to a posterior that is hard to approximate by a product distribution. Moreover, the resulting free
energy landscape is rough with many local maxima. Examining the error in likelihood estimates
(Fig. 3.5b,c) we see a similar trend. Other than approximating the expected statistics, a good
approximation should also find the maximum-likelihood model, i.e., the model θ∗ which gives
arg maxθ Pr(e; θ). It can be easily seen that this approximation does not find the max-likelihood
model (Fig. 3.5b,c).

Next, we examine the run time of our approximation when using fairly standard ODE solver
with few optimizations and tunings. The run time is dominated by the time needed to perform
the backward-forward integration when updating a single component, and by the number of such
updates until convergence. Examining the run time for different choices of β and τ (Fig. 3.6), we
see that the run time of our procedure scales linearly with the number of components in the chain.
Moreover, the run time is generally insensitive to the difficulty of the problem in terms of β. It
does depend to some extent on the rate τ , suggesting that processes with more transitions require
more iterations to converge. Indeed, the number of iterations required to achieve convergence in
the largest chains under consideration are mildly affected by parameter choices.

The scalability of the run time stands in contrast to the Gibbs sampling procedure (El-Hay et al.,
2008), which scales roughly with the number in transitions in the sampled trajectories. Comparing
our method to the Gibbs sampling procedure we see (Fig. 3.7) that the faster Mean Field approach
dominates the Gibbs procedure over short run times. However, as opposed to Mean Field, the
Gibbs procedure is asymptotically unbiased, and with longer run times it ultimately prevails. This
evaluation also shows that the adaptive integration procedure in our methods strikes a better trade-
off than using a fixed time granularity integration.
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Figure 3.6: Evaluation of the run time of the approximation versus the run time of exact inference
as a function of the number of components.

Figure 3.7: Evaluation of the run time vs. accuracy trade-off for several choices of parameters for
Mean Field and Gibbs sampling on the branching process of Fig. 4.2.
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Chapter 4

Branching Processes

The abovementioned experimental results indicate that our approximation is accurate when reason-
ing about weakly-coupled components, or about time intervals involving few transitions (low tran-
sition rates). Unfortunately, in many domains we face strongly-coupled components. For example,
we are interested in modeling the evolution of biological sequences (DNA, RNA, and proteins).
In such systems, we have a phylogenetic tree that represents the branching process that leads to
current day sequences (see Fig. 4.2). It is common in sequence evolution to model this process
as a continuous-time Markov process over a tree (Felsenstein, 2004). More precisely, the evolu-
tion along each branch is a standard continuous-time Markov process, and branching is modeled
by a replication, after which each replica evolves independently along its sub-branch. Common
applications are forced to assume that each character in the sequence evolves independently of the
other.

In some situations, assuming an independent evolution of each character is highly unreason-
able. Consider the evolution of an RNA sequence that folds onto itself to form a functional struc-
ture. This folding is mediated by complementary base-pairing (A-U, C-G, etc) that stabilizes the
structure. During evolution, we expect to see compensatory mutations. That is, if a A changes
into C then its based-paired U will change into a G soon thereafter. To capture such coordinated
changes, we need to consider the joint evolution of the different characters. In the case of RNA
structure, the stability of the structure is determined by stacking potentials that measure the sta-
bility of two adjacent pairs of interacting nucleotides. Thus, if we consider a factor network to
represent the energy of a fold, it will have structure as shown in Fig. 4.1b. We can convert this
factor graph into a CTBN using procedures that consider the energy function as a fitness criteria
in evolution (El-Hay et al., 2006; Yu and Thorne, 2006). Unfortunately, inference in such models
suffers from computational blowup, and so the few studies that deal with it explicitly resort to
sampling procedures (Yu and Thorne, 2006).

4.1 Representation
To consider trees, we need to extend our framework to deal with branching processes. In a linear-
time model, we view the process as a map from [0, T ] into random variables X(t). In the case of
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Figure 4.1: (a) Structure of an RNA molecule. The 3 dimensional structure dictates the depen-
dencies between the different positions. (b) The form of the energy function for encoding RNA
folding, superimposed on a fragment of a folded structure; each gray box denotes a term that
involves four nucleotides.

a tree, we view the process as a map from a point t = 〈b, t〉 on a tree T (defined by branch b and
the time t within it) into a random variable X(t). Similarly, we generalize the definition of the
Markov-consistent density set η to include functions on trees. We define continuity of functions
on trees in the obvious manner.

4.2 Inference on Trees
The variational approximation on trees is thus similar to the one on intervals. Within each branch,
we deal with the same update formulas as in linear time. We denote by µixi(b, t) and ρixi(b, t) the
messages computed on branch b at time t. The only changes occur at vertices, where we cannot use
the Euler-Lagrange equations (Appendix A.2), therefore we must derive the propagation equations
using a different method.

The following lemma shows and proves the update equations for the parameters µi(t) and ρi(t)
at the vertices:

Proposition 4.2.1: Given a vertex T with an incoming branch b1 and two outgoing branches b2, b3.
The following are the correct updates for our parameters µixi(t) and ρixi(t):

ρixi(b1, T ) = ρixi(b2, 0)ρixi(b3, 0) (4.1)
µixi(bk, 0) = µixi(b1, T ) k = 2, 3. (4.2)

Proof: We denote the time at the vertex t0 = (b1, T ), the time just before as t1 = (b1, T − h) and
the times just after it on each branch t2 = (b2, h) and t3 = (b3, h), as in Fig. 4.3.
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Figure 4.2: An example of a phylogenetic tree. Branch lengths denote time intervals between
events with the interval used for the comparison in Fig. 4.5a highlighted.

Figure 4.3: Branching process with discretization points of Lemma 4.2.1.

The marginals µixi(b1, t) are continuous, as they are derived from the forward differential equa-
tion.

To derive the propagation formula for the ρixi(t) requires additional care. The ρixi(t) have been
derived from the constraints on the time-derivative of µixi(t). In a vertex this constraint is threefold,
as we now have the constraints on b1

µixi(t0)− µixi(t1)

h
=
∑
yi

γixi,yi(t1)

and those on the other branches bk for k = 2, 3

µixi(tk)− µ
i
xi

(t0)

h
=
∑
yi

γixi,yi(t0) .
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Figure 4.4: Structure of the branching process. (a) The discretized CTBN underlying the process
in an intersection. (b) Illustration of the ODE updates on a directed tree, updating ρi(t) backwards
using (4.1) and µi(t) forwards using (4.2).

The integrand of the Lagrangian corresponding to point t0 is

L|t0 = F̃(η; Q)|t0 + λ0(t1)

(
µixi(t0)− µixi(t1)

h
−
∑
yi

γixi,yi(t1)

)

−
∑
k=2,3

λk(t0)

(
µixi(tk)− µ

i
xi

(t0)

h
−
∑
yi

γixi,yi(t0)

)

and because this is the only integrand which involves µxi(t0) the derivative of the Lagrangian
collapses into

∂

∂µixi(t0)
L =

∂

∂µixi(t0)
L|t0

=
λ0(t1)

h
−
(
λ2(t0)

h
+
λ3(t0)

h

)
+

∂

∂µixi(t0)
F̃(η; Q)|t0 = 0 .

Rearranging the previous equation and multiplying by h, we get

λ0(t1) = λ2(t0) + λ3(t0) +
∂

∂µixi(t0)
F̃(η; Q)|t0h .

Looking at (3.10) we can see that as t0 is not a leaf, and thus µixi(t0) > 0 and the derivative of the
functional cannot diverge. Therefore as h→ 0 this term vanishes and we are left with

λ0(t1) = λ2(t0) + λ3(t0)
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Figure 4.5: (a) Evaluation of the relative error in expected sufficient statistics for an Ising chain
in branching-time; compare to Fig. 3.5(a). (b),(c) Evaluation of the estimated likelihood on a tree
w.r.t. the rate τ and coupling β; compare to Fig. 3.5(b),(c).

which after taking exponents gives us (4.1).

Using Proposition 4.2.1 we can set the updates of the different parameters in the branching process
according to (4.1–4.2). In the backward propagation of ρi, the value at the end of b1 is the product
of the values at the start of the two outgoing branches. This is the natural operation when we recall
the interpretation of ρi as the probability of the downstream evidence given the current state (which
is its exact meaning in a single component process): the downstream evidence of b2 is independent
of the downstream evidence of b3, given the state of the process at the vertex T . The forward
propagation of µi simply uses the value at the end of the incoming branch as initial value for the
outgoing branches.

When switching to trees, we essentially increase the amount of evidence about intermediate
states. Consider for example the tree of Fig. 4.2 with an Ising chain model (as in the previous
section). We can view the span from C to D as an interval with evidence at its end. When we add
evidence at the tip of other branches we gain more information about intermediate points between
C and D. Even though this evidence can represent evolution from these intermediate points, they
do change our information state about them. To evaluate the impact of these changes on our
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Figure 4.6: Comparison of exact vs. approximate inference along the branch from C to D in the
tree of Fig. 4.2 with and without additional evidence at other leaves. Exact marginals are shown in
solid lines, whereas approximate marginal are in dashed lines. The two panels show two different
components.

approximation, we considered the tree of Fig. 4.2, and compared it to inference in the backbone
between C and D (Fig. 3.5). Comparing the true marginal to the approximate one along the main
backbone (see Fig. 4.6) we see a major difference in the quality of the approximation. The evidence
in the tree leads to a much tighter approximation of the marginal distribution. A more systematic
comparison (Fig. 4.5a,b) demonstrates that the additional evidence reduces the magnitude of the
error throughout the parameter space.

As a more demanding test, we applied our inference procedure to the model introduced by Yu
and Thorne (2006) for a stem of 18 interacting RNA nucleotides in 8 species in the phylogeny
of Fig. 4.2. We compared our estimate of the expected sufficient statistics of this model to these
obtained by the Gibbs sampling procedure of El-Hay et al. (2008). The results, shown in Fig. 4.7,
demonstrate that over all, the two approximate inference procedures are in good agreement about
the value of the expected sufficient statistics.
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Figure 4.7: Comparison of estimates of expected sufficient statistics in the evolution of 18 inter-
acting nucleotides, using a realistic model of RNA evolution. Each point is an expected statistic
value; the x-axis is the estimate by the variational procedure, whereas the y-axis is the estimate by
Gibbs sampling.
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Chapter 5

Discussion

In this dissertation we formulate a general variational principle for continuous-time Markov pro-
cesses and use it to derive an efficient procedure for inference in CTBNs. In this mean field-type
approximation, we use a product of independent inhomogeneous processes to approximate the
multi-component posterior.

5.1 Related Works
Variational approximations for different types of continuous-time processes have been recently
proposed (Opper and Sanguinetti, 2007; Archambeau et al., 2008). Our approach is motivated by
results of Opper and Sanguinetti (2007) who developed a variational principle for a related model.
Their model, which they call a Markov jump process, is similar to an HMM, in which the hidden
chain is a continuous-time Markov process and there are (noisy) observations at discrete points
along the process. They describe a variational principle and discuss the form of the functional
when the approximation is a product of independent processes. There are two main differences
between the setting of Opper and Sanguinetti and ours. First, we show how to exploit the structure
of the target CTBN to reduce the complexity of the approximation. These simplifications imply
that the update of the i’th process depends only on its Markov blanket in the CTBN, allowing us
to develop efficient approximations for large models. Second, and more importantly, the structure
of the evidence in our setting is quite different, as we assume deterministic evidence at the end of
intervals. This setting typically leads to a posterior Markov process (recall that the posterior is still
Markovian), in which the instantaneous rates used by Opper and Sanguinetti diverge toward the
end point—the rates of transition into the observed state go to infinity, while transitions into states
inconsistent with the evidence decay to zero. Opper and Sanguinetti use instantaneous rates as the
variational parameters, which in our framework lead to numerical problems at the end points. We
circumvent this problem by using the marginal density representation which is much more stable
numerically.

In comparison to the Expectation Propagation procedure of Nodelman et al. (2005b) our al-
gorithm posseses several important advantages. The Mean Field procedure is guarantied to con-
verge to a consistent distribution. Due to this consistency, the calculated energy functional is a
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lower bound on the likelihood of the evidence. Additionally, our algorithm is fully adapted to the
continuous-time representation and unlike EP does not require fine-tuning of any parameters. Even
though we do not directly model dependencies as in the EP algorithm, we are able to give a good
approximation of the expected sufficient statistics in trees.

5.2 Extensions
A possible extenstion is to use our variational procedure to generate the initial distribution for the
Gibbs sampling procedure and thus skip the initial burn-in phase and produce accurate samples.

Another attractive aspect of this new variational approximation is its potential use for learn-
ing model parameters from data. It can be easily combined with the EM procedure for CTBNs
(Nodelman et al., 2005a), to obtain a Variational-EM procedure for CTBNs, which monotonically
increases the likelihood by alternating between steps that improve the approximation η (the up-
dates discussed here) and steps that improve the model parameters θ (an M-step (Nodelman et al.,
2005a)).

5.3 Conclusions
Our procedure enjoys the same benefits encountered in discrete time mean field procedure (Jordan
et al., 1998): it provides a lower-bound on the likelihood of the evidence and its run time scales
linearly with the number of components. Using asynchronous updates it is guaranteed to converge,
and the approximation represents a consistent joint distribution. It also suffers from expected
shortcomings: the functional has multiple local maxima, it cannot capture complex interactions in
the posterior (Example 2.3.1). By using a time-inhomogeneous representation, our approximation
does capture complex patterns in the temporal progression of the marginal distribution of each
component. Importantly, the continuous time parametrization enables straightforward implemen-
tation using standard ODE integration packages that automatically tune the trade-off between time
granularity and approximation quality. We show how to extend it to perform inference on phylo-
genetic trees, and show that it provides fairly accurate answers in the context of a real application
(Fig. 4.7).

One of the key developments here is the shift from (piecewise) homogeneous parametric rep-
resentations to continuously inhomogeneous representations based on marginal density sets. This
shift increases the flexibility of the approximation and, somewhat surprisingly, also significantly
simplifies the resulting formulation.
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Appendix A

Supplementary Details

A.1 Constrained Optimization
Given a multidimensional function f(x) over x ∈ X we would like to find

find maxx f(x)
subject to hi(x) = 0 for i = 1, . . . , K .

To maximize subject to the K equality constraints, we introduce new auxilliary variables named
Lagrange multipliers. We define the Lagrangian

L(x, λi) = f(x)−
K∑
i=1

λihi(x)

which allows us to incorporates the constraints, as well as the function itself. Now the original
constrained problem turns into the following optimization problem

find minλi,x L(x, λi) .

The partial derivatives of the lagrangian w.r.t. its parameters are

∂

∂x
L(x, λi) =

∂

∂x
f(x)−

K∑
i=1

λi
∂

∂x
hi(x)

∂

∂λi
L(x, λi) = −hi(x) .

We denote U ∈ X to be the subspace of X that for each x ∈ U , x satisfies the constraints over all
hi(x). The main strength of this formulation comes from the following lemma (Bertsekas, 1982)

Lemma A.1.1: An interior point x ∈ U is a stationary point of the function f(x) iff all the partial
derivatives of L(x, λi) vanish.

This lemma gives us a new optimization problem - finding the fixed points of the Lagrangian will
give us the constrained fixed points of the function.

This theory can also be generalized to functionals (as in our case), and inequality constraints.
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A.2 Euler-Lagrange equations
The problem of finding the fixed points of functionals comes from the field of Calculus of vari-
ations, as opposed to ordinary calculus which deals with functions. As defined in Def. 2.1.4, a
functional is a mapping from a linear space X to its underlying field. In our case the functional
is our Lagrangian, which is an integral over real-valued functions, and the underlying field is R.
Given a functional of the form

I[y] =

∫ b

a

f(t, y(t), y′(t))dt

where y′(t) is the time-derivative of the function y(t). We would like to find a function y(t) that
minimizes (or in our case maximizes) the functional. For y(t) to be a stationary point, it must
satisfy the Euler-Lagrange equations (Gelfand and Fomin, 1963)

∂

∂y
f(t, y(t), y′(t))− d

dt

(
∂

∂y′
f(t, y(t), y′(t))

)
= 0 . (A.1)

An example for the use of this equation is in (3.10).

A.3 Numerical Solutions of Differential Equations
Numerical integration is the calculation of an integral using numerical techniques, and in this
section we will talk about solving definite integrals. In our case, we are given a differential equation
which is defined by an initial value, and the derivative of the function. Our goal is to calculate the
values of f(t) for each t ∈ [0, T ]. For a given positive h, we can write the discretized differential
equation as derived from the first taylor expansion of f(t):

f(t+ h) = f(t) +
d

dt
f(t) · h . (A.2)

To calculate the values of f(t) at each t ∈ [0, T ], we have to perform sequential integration for-
wards from t = 0 to t = T .

For example, the forward master equation of the marginals µixi(t) is given by the initial value
µixi(0) = δxi,ei0 and the derivative

d

dt
µixi(t) = µxi(t)

∑
yi

q̄ixi,yi(t)
ρiyi(t)

ρixi(t)
.

which leads us to the first order expansion

µixi(t+ h) = µxi(t)

(
1 +

∑
yi

q̄ixi,yi(t)
ρiyi(t)

ρixi(t)
· h

)
.
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We see that to calculate µixi(t+ h) we must have all the values of µiyi(t) for each yi, as well as the
values of q̄i(t) and ρi(t) which have already been calculated in the backward pass of ρi(t). Starting
from t = 0, we set µi(0) to be consistent with the evidence. Then we propagate the values of
µi(t+ h) for every t in the interval.

In this section we will address two parts of the numerical integration procedure. The first deals
with how to choose the points in which we calculate the values of the function, and the second
deals with how we calculate the value of the function in a given point.

Adaptive Point Selection The formulation of the numerical solution of an integral with (A.2)
leads us to the simplest numerical methods which use the Newton-Cotes integration formulas. In
these methods we calculate the values of a function f(t) in constantly spaced points 0, h, . . . , T −
h, T , similar to discretizing the function along regular intervals. In general, these methods are
useful for the case where we can only determine the derivative of f(t) at these certain intervals,
and not in between.

Due to the continuous nature of f(t), we expect an error of a certain magnitude, given that the
derivative need not be constant in between the calculated points. However, the error generated from
using this construction is guarantied to go to 0 as h→ 0, but at a higher and higher computational
cost. These methods do not utilize prior knowledge of the function’s dynamics, nor its smoothness.
For instance, the calculation of a linear function in an interval [0, T ] where f(0) is known and
d
dt
f(t) = C will be in Θ(T

h
) in this naive method (expensive, even though with no error). On

the other hand, understanding that the function is linear brings us to the obvious solution that
f(t) = f(0) + t · d

dt
f(0), which can be calculated in Θ(1) without error. This insight motivates us

to move away from the discretized methods and back into the continuous framework.
In contrast to the constant interval methods, we would like our integrator to determine the

intervals in which to calculate the function’s value adaptively. A function whose derivative changes
slowly will require a small number of sample points, while a highly dynamic one will need many
closely-positioned points. The adaptive integrator is able to bound the error of the calculation
by choosing the appropriate step size at each t. There are a multitude of ways to achieve these
requirements, the inquisitive reader is referred to (Forsythe et al., 1977). The saving in computation
can be substantial, as we see in Fig. A.1 where a continuous function is computed using numerical
integration by discretization (blue) and adaptively (red).

In our work we were able to utilize the continuous nature of the approximation and thus use
adaptive numerical integration. We show results (Fig. 3.7) that using this adaptive integration
procedure is superior to any constant interval discrete approximation, and achieves the best trade-
off between computation and error.

Function Value Calculation The second issue has to do with the calculation of f(t) for each t in
the interval. The most naive method to approximate f(t+ h) given f(t) is the rectangle rule (also
named “Euler’s method”), which simply uses (A.2). Not surprisingly, this approximation gives a
cubic error of O(h2) in the interval length of h. More complex variants of this rule are known,
such as the “trapezoid” rule, or the different “quadratures” which approximate the next value of
f(t+ h) using splines or other more complex approximations instead of linear extrapolation.
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Figure A.1: Comparison of numerical integration between Newton-Cotes (blue) and adaptive (red).
The number of integration points varies according to the second derivative of the calculated func-
tion, which near 0 is approximately linear and near 1 has an exponential behaviour. The number
of adaptive integration points is smaller than the discretization method’s by an order of magnitude,
with a miniscule additional error.

In our work we used the Runge-Kutta-Fehlberg (RKF45) algorithm (Num, 2007) in its adaptive
version, implemented by the GNU Scientific Library (www.gnu.org/software/gsl/). This method
achieves a O(h5) error bound by factoring in the derivatives of several neighboring points for a
much more accurate approximation.
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