
Lecture 9

Threshold Phenomena

March 7, 2005
Lecturer: Nati Linial

Notes: Chris Ŕe

9.1 Asides

There is a good survey of this area by Gil Kalai, Muli Safra calledThreshold Phenomena and Influencedue
out very soon.

9.1.1 Percolation

Though our main technical result concerns random graphs in the G(n,p) model, let us mention other contexts
in which threshold phenomena occur. One classical example isPercolation, an area started in physics. A
typical question here is this: given a planar grid and0 < p < 1. Create a graph by keeping each edge of the
planar grid with probability p and removing each edge with probability 1-p. The inclusion of edges is done
independently. Our question is then: In the resulting graph is the origin in an infinite connected component?

It turns out that there is a critical probability,pc, such that

p < pc with probability 1, the origin is not in an infinite component
p > pc with probability> 0, the origin is in an infinite component

You can imagine considering other similiar questions on higher dimensional grids. For the planar grids
it turns out thatpc = 1

2 .

This problem comes up in mining in the following idealized model. Somewhere underground is a deposit
of oil. It is surrounded by rocks whose structure is that of a ’random sponge’, a solid with randomly placed
cavities. The question is how far the oil is likely to flow away from its original location. Percolation in a
3-dimensional setting is a good abstraction of the above physical situation.

Now imagine graphing the probability of the property holding versus thep value from above. As an
example see figure 9.1. The interesting questions are how does it behave around or slightly to the right ofpc.
For example is this a smooth function? Is it differentiable? How large is its derivative? Figure 9.1 illustrates
some curves that could happen. In this example, the property could be discontinuous atpc or is continuous
but not smooth atpc.
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Figure 9.1: Probability of Property vs. p

9.2 Monotone Graph Properties

The main theorem we want to prove is:

Theorem 9.1 (Friedgut and Kalai). Every monotone graph property has a sharp threshold

To make this precise, we need some definitions. Let P be a graph property, that is a property invariant
under vertex relabeling. A property P ismonotoneif P (G0) implies thatP (G) for all G such thatG0 is
a subgraph ofG. A property has a sharp threshold, ifPr[A|G(n, p1)] = ε, Pr[A|G(n, p2)] = 1 − ε and
p2 − p1 = o(1)

Theorem 9.2 (Erdös and Renyi). The threshold for graph connectivity is atp = log n
n

p < (1− ε) log n
n G almost surely disconnected

p > (1 + ε) log n
n G almost surely connected

There is a ’counter-point’ model to our deleting model, where we throw in edges. There are some
surprising facts in this model. For example, when you throw in the edge that reaches the last isolated vertex,
with almost certainty, you also connect the graph - at the exact same stage. At the same instant, you also
make the graph hamiltonian.

It may be illustrative to see the form of these arguments.

Proof. sketchLet p < (1− ε) log n
n . Let X be a random variable representing the number of isolated vertices.

ThenE[X] → ∞ sinceE[x] = n(1− p)n−1. We also need a second moment argument like Chebyshev to
deduceX > 0 almost surely. In particular, whenX > 0, the graph is disconnected.

Proof. Let Yk be a random variable that counts the number of setsS ⊂ V with |S| = k that have no edges
between S and its complement. Then theE[Yk] =

(
n
k

)
(1−p)k(n−k). It can be checked that ifp > (1+ε) log n

n ,
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then
∑

k≤n
2

E[Yk] = o(1). It follows that with probability1 − o(1) no such sets exist. Clearly, when no
such sets exist, the graph is connected.

9.2.1 Relation to KKL

Why should we expect KKL to work like these examples?

If f : {0, 1}n → {0, 1} with E[f ] = 1
2

1. By KKL, ∃x ∈ [n] Inff (x) > Ω( log n
n ). Let N =

(
[n]
2

)
then

eachz ∈ {0, 1}N is a description of ann vertex graph and the variables correspond to edges.

We can now view graph property as an N-variable boolean function. Notice also by symmetry if one
edge (variable) is influential, then all edges (variables) are influential. As we will see later large influence
entails a sharp threshold.

To generalize, we need to understand the role ofp in G(n, p). We have to work with{0, 1}N not
under the uniform distribution but under the following product distribution:Pr[U ] = p|U |(1 − p)N−|U | =
pE(G)(1− p)(

n
2)−E(G). We are denoting the Hamming weight of U as|U |. andE(G) is the edge set of the

graphG.

9.3 BK3L

9.3.1 A relation between influence and the derivative ofµp(A)

The new B and K in our theory are Bourgain and Katznelson. Byµp(A) we denote the probability that the
property A holds under thep, 1− p product measure.

Lemma 9.3 (Margulis & Russo). Let A ⊆ {0, 1}n be a monotone subset and letµp(A) be the p-measure
of A. Forx ∈ A let h(x) = |{y /∈ A|x, y ∈ E(cube)}| (number of neigbors of x outside of A).

LetΨp(A) =
∑

h(x)µp(x), the weighted sum of thesehs.

Additionally letΦp(A) be the sum of influences of individual variables. Then

Φp(A) =1
Ψp(A)

p
=2

d

dp
µp(A)

The subscripts on the equality are only for convenience in the proof.

Definition 9.1. We will sayx � y, if x and y differ in exactly one coordinate, say theith, andxi = 1 and
yi = 0.

Influences, more generally In general, if X is a probability space and iff : Xn → {0, 1} (i.e. f
can be viewed as an indicator function for a subset ofXn). For 1 ≤ k ≤ n, we can sayInff (k) =
PrXn−1 [ Obtain a non-constant fiber]. Here we are randomly choosingn − 1 coordinates from X with the
kth coordinate missing, and checking if the resulting fiber is constant for f. Namely, if the value of f is fixed
regardless of the choice of for thekth variable.

1choosingE[f ] = 1
2

is not critical. Anything bounded away from 0,1 will do

67



Figure 9.2: Cube with a Fiber

Proof. We prove equality 1.Φp(A) is the sum of all influences. The influence of theith variable is the
weighted sum of all such edges such thatx � y wherex ∈ A, y /∈ A andxi = 1, yi = 0. The probability of
the relevent event is this: We have selected all coordinates except theith and the outcome should coincide
with x. There are|x| − 1 coordinates which are 1 among those andn− |x| coordinates for which are 0. So
we can rewrite the formula as follows

Φp(A) =
∑

x∈A,y/∈A,x�y

p(|x|−1)(1− p)n−|x|

=
1
p

∑
x∈A,y/∈A,x�y

p(|x|)(1− p)n−|x|

=
1
p

∑
x∈A

p(|x|)(1− p)n−|x| |{y|y /∈ A, x � y}|

=
1
p

∑
x∈A

p(|x|)(1− p)n−|x| h(x)

=
1
p

∑
x∈A

µp(x)h(x) =
1
p
Ψp(A)

Proof. Equality 2.

d

dp
µp(A) =

∑
x∈A

|x|p|x|−1(1− p)n−|x| −
∑
x∈A

(n− |x|)p|x|(1− p)n−|x|−1

p
d

dp
µp(A) =

∑
x∈A

|x|p|x|(1− p)n−|x| − p

1− p

∑
x∈A

(n− |x|)p|x|(1− p)n−|x|

For a fixed vertex of the cube, x, and e an edge incident with x define

wx,e =

{
1 e goes down from x

− p
1−p e goes up from x
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Figure 9.3: Partitioning the cube to derive KKL fromBK3L

Figure 9.4: f on n=2 case

So we can rewrite (summing over x and e’s incident).

p
d

dp
µp(A) =

∑
x∈A,e∼x

wx,eµp(x)

This is because there are|x| edges going down from x and|n− x| edges going up from it. Notice that if
x � y are both in A ande = (x, y), thenwx,eµp(x) + wy,eµp(y) = 0. It follows that we can restrict to the
sum to the edges inE(A,Ac). In other words,

p
d

dp
µp(A) =

∑
x∈A,y/∈A,e=(x,y)

wx,e µp(x) =
∑

x∈A,y/∈A,e=(x,y)

µp(x) =
∑
x∈A

h(x)µp(x) = Ψp(A)

Returning to the proof that every monotone graph property has a sharp threshold. LetA be a monotone
graph property and let us operatre in the probability spaceG(n, p). We will show here that thep value where
the property holds with less thanε is very close to where the property holds with1

2 . A symmetric argument
for 1− ε will give us the full desired result.
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9.3.2 Words about BKKKL

Theorem 9.4 (BKKKL). Let f : [0, 1]n → {0, 1} with E[f ] = t, let t′ = min(t, 1 − t). Then there exists
n ≥ k ≥ 1 such thatInff (k) ≥ Ω(t′ log n

n )

Set version of KKL ∀f : {0, 1}n → {0, 1} E[f ] ∼ 1
2 and for everyω(n) → ∞ asn → ∞,

∃S ⊆ [n]. |S| ≤ n(ω(n))
log n with Inff (S) = 1− o(1). This result follows from repeated application of KKL.

Remark.It is interesting to note that the analgous statement forf : [0, 1]n → [0, 1] does not hold.

Consider the following f, represented in figure 9.4. Letf(x1, . . . , xn) = 0 iff ∃i 0 ≤ xi ≤
c
n wherec = loge(2). In other words,f−1(1) =

∏n
i [ c

n , 1]. Let |S| = α. In this example,Inf(S) =
Pr[f still undetermined when all variables outside of S are set at random]. The function is still undeter-
mined iff all others outside the set are 1. This happens with probability(1− c

n)n(1−α) ≈ e−c(1−α), which is
bounded away from 1.

This is a ’close-cousin’ of the tribes example. Recall in the tribes example we broke the variables into
’tribes’ of size∼ log n − log log n. Each tribe contributed if all variables take on the value 1, that is there
is one assignment out of the2log n−log log n = n

log n such that the tribe had value 1. In our setting, we can
identify tribes with single variables. The 0 region of the continuous case corresponds to the assigment where
all variables in the discrete case are set to 1, since this determines the function.

Proof. By BK3L there exist influential variables. By symmetry all variables are influential. Sum of all
individual influences are at least as large asΦp(A) ≥ Ω(ε log N) = Ω(ε log n)

Φp(A) ≥ Ω(µp(A) log n)

By Margulis-Russo Lemma we knowΦp(A) = d
dp µp(A).

d

dp
µp(A) ≥ Ω(µp(A) log n)

(
d

dp
µp(A))/µp(A) ≥ Ω(log n)

d

dp
(log(µp(A)) ≥ Ω(log n)

let p1, p2 be defined byPrG(n,p1)[A] = ε andPrG(n,p2)[A] = 1
2 . From above we know thatd(log µp(A)) >

Ω(log n) sop1 − p2 < O( log 1
ε

log n ).

Remark.We will not give a proof here, but note that Freidgut showed using standard measure theory how
to deriveBK3L from KKL. Namely, how we can reach the same conclusion for anyf : Xn → {0, 1},
whereX is any probability space. To derive KKL fromBK3L, is easy: Givenf : {0, 1}n → {0, 1} define
F : [0, 1]n → {0, 1} by breaking the cube to2n subcubes and letting F be constant on each subcube that is
equal to f at the correpsoning vertex of the cube. For a simple illustration of the casen = 2, see figure 9.3.
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