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Theorem 7.1 (Brunn-Minkowski). If A, B C R" satisfy some mild assumptions (in particular, convexity
suffices), then

3=

> [vol (A)] " + [vol (B)]

3=

[vol (A + B)]
whereA+ B ={a+b:a € Aandb € B}.

Proof. First, suppose thatl and B are axis aligned boxes, say = H"}Zl I; and B = [[;", J;, where
eachl; andJ; is an interval with|[;| = z; and|J;| = y;. We may assume WLOG thdf = [0, z;] and
Ji = 10,y;] and henced + B = [];"_,[0, z; + y;]. For this case, the BM inequality asserts that

n

n n
H(fvz‘ Fyp)n > Hx; : Hy;

i=1 =1 i=1

. )] i)

Now, since the arithmetic meanoehumbers is bounded above by their harmonic mean, We(lﬁ\ce)% <
) 1 P . ) .
% and(JJ(1 —ay))» < 2(-a) Takinga; = —*i— and hencd — «; = y—y we see that the above

n T +Y; z;+

inequality always holds. Hence the BM inequalitf/ holds whenevand B are axis aligned boxes.

3=

Now, suppose thatl and B are the disjoint union of axis aligned boxes. Supposethat | J . 4 Aa
andB = (Jzcs Bs. We proceed by induction od| + [B|. We may assume WLOG thatl| > 1. Since
the boxes are disjoint, there is a hyperplane separating two boxés We may assume WLOG that this
hyperplane is;; = 0.
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A At A~

Let At = {z € A:2>0}andA™ = {z € A : 21 <0} as shown in the figure above. It is clear that
both AT and A~ are the disjoint union of axis aligned boxes. In fact, we maydét= J,. 4+ A and

A™ =Uqpea- Aa where| AT | < | A and|A~| < |A|. Suppose th% = «. Pick a) so that

vol{z € B :z1 > \})
vol (B)

=«

vol({ z€B:x1>\})

Vol(B) IS continu-

We can always do this by the mean value theorem because the fufichpa-
ous, andf(A\) — 0 asA — oo and andf(\) — 1 asA — —oc.

LetBT = {zx € B :2; > A}andB~ = {z € B : z; < \}. By induction, we may apply BM to both
(A*,BT)and(A~, B™), obtaining

[vol (A* + BT)]" > [vol (A%)] " + [vol (B*)]
[vol (A= + B7)]™ > [vol (47)] " + [vol (B7)]"
Now,
[vol (AJF)]% + [vol (BJF)}% —an [[vol (A)]% + [vol (B)]ﬂ
[Vol (A_)]% + [VO] (B_)ﬁ =(1- a)% [[vol (A)]% + [vol (B)]%}
Hence

3=

[vol (AT + B+)]% + [VOI (A~ + Bf)} > [[Vol (A)]% + [vol (B)]ﬂ

The general case follows by a limiting argument (without the analysis for the case where equality hiolds).

Suppose thaf : S! — R is a mapping having a Lipshitz constant 1. Hence

1 (@) = fF) < llz =yl
Let . be the median of, so .
p=prob[{z € 8" : f(z) <pj] =3
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We assume that the probability distribution always admits syclied least approximately). The following
inequality holds for every > 0 as a simple consequence of the isoperimetric inequality on the sphere.

{xeS™:|f—pu| > e} < 2e72

For A C S™ and fore > 0, let
A ={z e S" : distz, A < €}

Question 7.1.Find a setd C S™ with A = a for which A, is the smallest.

The probability used here is the (normalized) Haar measure. The answer is always a spherical cap, and
in particular ifa = % then the besH is the hemisphere (and s = {z € S™ : 1 < €}). We will show
thatforA C S with A = 1, A, > 1 — 2¢=<"/4, If Ais the hemisphere, thek, = 1 — ©(e~<""/?), and
so the hemisphere is the best possible set.

But first, a small variation on BM :

<m1(4;B>:>v%d@@.muB)

This follows from BM because

1

1 1
A+ B\n A\~ B\~
> — —
Vol< 5 > _vol<2) +v01<2>

= % [vol (A)% + vol (B)ﬂ

>4/ vol (A)% + vol (B)%

ForAC S* letA={Xa:ae€ A,1>X>0} ThenA = u,,1(A). LetB =S"\ A..

Lemma7.2.If # € Aandj € B, then

<1-—
2

T+7Y €2
- 8

It follows that# is contained in a ball of radius at mast- % Hence

(-5)" =m(*)
> \Jvol (4) -val (5)
vol (B)

>
- 2

Therefore2e=<"/4 > vol (B)
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7.1 Boolean Influences

Let f : {0,1}" — {0, 1} be a boolean function. For a stC [n], the influence o5 on f, I;(S) is defined
as follows. When we picl{xi}igs uniformly at random, three things can happen.

1. f = Oregardless ofz;},. 4 (Suppose that this happens with probabitig).

2. f =1regardless ofz;}. o (suppose that this happens with probabidity.

€S

3. With probabilityInf; (S) := 1 — qo — ¢1, f is still undetermined.
Some examples:

¢ (Dictatorship) f(z1,zo,...,x,) = x;1. In this case
1 ifies

Infgictatorship (S) = .
Blditatorship (5) {o ifi ¢ S

e (Majority) Forn = 2k + 1, f(x1,29,...,x,) is 1 if and only if a majority of ther; are 1. For
example, ifS = {1},

Inf majority ({1}) = prob (1 is the tie breakey

2k
@) (L
922k \/E
For fairly small setsS,
5]
Infmajority (S) =0 <\/ﬁ
o (Parity) f(z1,z2,...,z,) = 1if and only if an even number of the's are 1. In this case

Infparity ({:}) =1
foreveryl <i < n.

Question 7.2. What is the smallest = §(n) such that there exists a functign: {0,1}" — {0, 1} which
is balanced (i.e £ f = 1) for whichInf; ({z;}) < ¢ for all ; ?

Consider the following example, callédbes. The set of inputgxy, xo, ..., x,} is partitioned into tribes
of sizeb each. Heref (z1,x2,...,x,) = 1if and only if there is a tribe that unanimously 1.
%
A A A A
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Since we wantZ f = 3, we must haverob(f = 0) = (1 — 2—11,)% = 5. Therefore,2In (1 — ;) =
—In2. We use the Taylor series expansion fafl — ¢) = —¢ — €2/2 — --- = —e — O(€?) to get
% (55 +0(45)) = —In2. Thisyieldsn = b-2°In2 (1 + O(1)). Henceb = logy n — logy Inn + O(1).

Hence,

Infiripes (-T)

I
N

—

|
| =
s N——
|
/N
N =
"
T
—

In this example, each individual variable has influefc@ogn/n). It was later shown that this is lowest
possible influence.

Proposition 7.3. If £f = 5, then}__ Inf; (z) > 1.

This is a special case of the edge isoperimetric inequality for the cube, and the inequality is fight if
dictatorship.

The variabler is influential in the cases indicated by the solid lines, and hence

_ # of mixed edges

Inf; () o1

LetS = f~1(0). Then}_ Inf (z) = 27%16(8, S°).
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One can us¢ to compute influences. For examplefifs monotone (sa < y = f(x) < f(y)), then

) 1SN
8= (1;”
T
Therefore,
FiD) = 5 S 4T) — 57 34T
igT icT
= e UM - FTU )
igT
= ;—3 - # mixed edges in the direction of
= —%Inff (x;)

Hencelnf; (z;) = —2f({i}). What can be done to exprelssg ¢ (x) for a generalf? Define

Then

Inf; (z;) = ’suppor]f(i)

=3 (FOw)’
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The last term will be evaluated using Parseval. For this, we need to compute the Fourier expreg&ion of
(expressed in terms gf).

)lsnT]
=5 Zf !

—Qin [f(T)* £ @ {ip)] (-1

o Z ([f@ = | 0T+ [1@ U i) = £(D)] (~)ISnTEDT)
ig¢T
72[ F(TUli }} <(_1)|srm _ (_1)|sm<Tu{i}>\)
i¢T
o if i ¢ S
B {2 f(S) ifies

Using Parseval 0!7?(@'\) along with the fact thaf(i\) takes on only value§0, +1}, we conclude that

Infs (z;) =4 |hatf(S)[

ics
Next time, we will show that if£ f = 3, then there existsasuch thad ", ¢ ( f ( A(S)>2 > Q(lnn/n).
Lemma 7.4. For everyf : {0,1}" — {0, 1}, there is a monotong : {0,1}" — {0, 1} such that

e Eg=Ef.

e Foreverys C [n], Inf, (S) < Inf (5).

Proof. We use a shifting argument.

8
I
o
I
N
“

ClearlyEf = Ef. We will show that for allS, Inff (S) < Infy (S). We may keep repeating the shifting
step until we obtain a monotone functign It is clear that the process will terminate by considering the
progress measute, f(x) [« which is strictly increasing. Therefore, we only need show thé (() 5) <
Inf¢ (S).

O]
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