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1. INTRODUCTION

The articles [1] and [2] study graphical properties of random lifts of graphs. They
mainly discuss the connectivity and expansion properties of random lifts. Here we
investigate the independence number and chromatic number.

Let us briefly recall the setting and notation. We write �n� for the set �1� 2� � � � � n�,
and G�S� denotes the subgraph of a graph G induced by a subset S of the vertex
set V �G�. An undirected edge with vertices x and y is denoted by �x� y�, and �x� y�
is a directed edge from x to y.

Let G be a connected graph. A covering map π: G̃ → G is a graph homomor-
phism that is a bijection on vertex neighborhoods, namely π maps the edges incident
with v one-to-one onto the edges incident with π�v�. We say that G̃ is a lift of G in
this case, and G is called the base graph. The inverse images π−1�v� are the fibers
of G̃, denoted by G̃v. They all have the same cardinality, called the order of the lift.
We prefer the term lift over cover since the latter is widely used in other contexts
in graph theory.

Given a graph G and a natural number n, a random n-lift of G is generated as
follows. The edges ofG are first oriented arbitrarily, and then we assign independent
uniformly distributed random permutations σe ∈ Sn to all edges e of G. The graph
G̃ is then formed with V �G̃� = V �G� × �n� and the edges connect �u� i� to �v� σe�i��
whenever e = �u� v� is an oriented edge of G. Properties of G̃ are said to occur
almost surely if their probability tends to 1 as n→ ∞.

2. THE INDEPENDENCE NUMBER

As usual, let α�G� denote the maximal size of an independent set in a graph G.
In this section, we present bounds on the size and structure of independent sets in
random lifts of G. Clearly, if G̃ is an n-lift of G, then α�G̃� ≥ nα�G�, since if X
is an independent set in G, then X̃ = ⋃

v∈X G̃v is an independent set in G̃. Note
that if X is a maximal independent set in G, then X̃ is maximal independent in
G̃. However, there may be larger independent sets in G̃ which are not a union of
fibers.

For a set X ⊂ V �G̃�, we let Xv = X ∩ G̃v be its intersection with the fiber over
v ∈ V �G�, and we set xv = �Xv�. A profile on G is a vector ξ = �ξv: v ∈ V �G�� ∈
�0� 1�V �G�. A set X determines a profile by ξv = xv/n, which represents the way X is
distributed across the fibers. We present bounds on the probability that independent
sets X exist, according to their profiles.

We need some definitions. For nonnegative real numbers x1� x2� � � � � xn with x1 +
x2 + · · · + xn ≤ 1, let

H�x1� � � � � xn� = −∑
i

xi log xi −
(
1 −∑

i xi

)
log

(
1 −∑

i xi

)
be the entropy function (all logs are to the base 2). For real numbers x� y ≥ 0, we
set

I�x� y� = H�x� +H�y� −H�x� y��
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letting I�x� y� = ∞ if x+ y > 1. For a profile ξ ∈ �0� 1�V �G�, let

h�ξ� = ∑
v∈V �G�

H�ξv� −
∑

�u� v�∈E�G�
I�ξu� ξv�

and

h0�ξ� =
∑

v∈V �G�
H�ξv� − log�e� ∑

�u�v�∈E�G�
ξuξv�

For all x� y we have

I�x� y� ≥ log�e�xy�

To verify this, we fix y = y0. The statement is an equality for x = 0, so it suffices to
show that �d/dx�I�x� y0� ≥ log�e�y0, which comes to ln�1 − x� − ln�1 − x − y0� ≥
y0. This is again true for x = 0 and, taking the derivative again, we obtain the
inequality y0/�1 − x��1 − x− y0� ≥ 0, which holds throughout the range, where
I�x� y� is defined. Therefore h�ξ� ≤ h0�ξ� for every profile ξ. Though h�ξ� yields
tighter bounds, it is often easier to work with h0�ξ�. We make the following basic
observation:

Lemma 1. Let G be a graph, and let ξ be a profile on G. The probability P that a
random n-lift G̃ of G contains an independent set X with profile ξ satisfies P ≤ 2nh�ξ�.

Proof. Fix a set X ⊆ V �G̃� with xv/n = ξv. The probability that X is independent
is ∏

�u�v�∈E�G�

(
n−xv
xu

)(
n
xu

)
since

(
n−b
a

)
/
(
n
a

)
is the probability that a random permutation on �n� takes a fixed

a-set to a set disjoint from a fixed b-set. Therefore, the probability that some inde-
pendent set X with this profile exists does not exceed

B = ∏
v∈V �G�

(
n

xv

) ∏
�u� v�∈E�G�

(
n−xv
xu

)(
n
xu

) �

Using the bounds (
n

xv

)
≤ 2nH�xv/n�

(
n−xv
xu

)(
n
xu

) ≤ 2−nI�xu/n� xv/n�

we obtain

B ≤ 2nh�ξ�

as stated.
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When h�ξ� < 0, this bound tends to 0, exponentially in n. In this case, almost
surely no independent sets with profile ξ exist in G̃. The same holds, of course,
when h0�ξ� < 0.

It may happen that the condition h�ξ� ≥ 0 holds for G but it is violated for a
subgraph of G, which also excludes almost surely the existence of an independent
set with profile ξ. Namely, for a subset S ⊆ V �G�, we let

h�ξ� S� = ∑
v∈S

H�ξv� −
∑

�u�v�∈E�G�S��
I�ξu� ξv��

If h�ξ� S� < 0 for some S ⊆ V �G� then an independent set with profile ξ does not
exist almost surely. We define ã�G� as the best upper bound on α�G̃� obtainable in
this way. That is,

ã�G� = max
ξ

{∑
v

ξv

∣∣∣h�ξ� S� ≥ 0 for all S ⊆ V �G�
}
�

The quantity ã�G� is defined analogously, with h replaced by h0.

Theorem 2. (The first moment upper bound). Almost every n-lift G̃ of G satisfies

α�G̃� ≤ nã�G� ≤ nã0�G��

Proof. Given n, there are only �n + 1��V �G�� profiles ξ such that nξv is an integer
for every v. Therefore, the probability that there is an independent set X and a
subset S ⊆ V �G� for which the profile ξ satisfies h�ξ� S� < 0 is o�1�. In particular,
this is the case for sets X with size larger than nã�G�, by the definition of ã�G�.

Here is a simple but useful corollary concerning constant profiles.

Corollary 3. LetG be a graph with k vertices and & edges, and suppose that β satisfies
kH�β� < & · I�β�β�. A random n-lift G̃ of G almost surely contains no independent
set X such that X ∩ G̃v ≥ βn for every v.

Proof. It is enough to show that a.s. there is no independent set with exactly nβ
vertices in each fiber. Let �β denote the constant profile with value β at all vertices.
The probability that an independent set X exists with xv = nβ is smaller than 2nh� �β�.
Now

h� �β� = kH�β� − & · I�β�β� < 0

and so, almost surely, no such independent sets exist in G̃.

The average degree of a graph G with k vertices and & edges is d̄ = d̄�G� = 2&/k.

Corollary 4. Let G be a graph with average degree d̄, and suppose that β satisfies
d̄β/2 + lnβ ≥ 1. A random n-lift G̃ of G almost surely contains no independent set
X such that X ∩ G̃v ≥ βn for every v.
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Proof. Since h� �β� < h0� �β�, it suffices to show that h0� �β� < 0 for β satisfying
d̄β/2 + lnβ ≥ 1. Now h0� �β� = kH�β� − log�e�&β2. Using the easy inequality
H�x� < −x log�x� + log�e�x for x > 0,

h0� �β� < −kβ logβ+ log�e�kβ− log�e�&β2

= −kβ log�e��lnβ− 1 + d̄β/2�
≤ 0

as required.

The value ã�G� is not easy to compute even for very simple graphs. In
Appendix B, we determine ã�K4� using elementary calculus plus some numerical
computations.

A natural question is whether the first moment bound nã�G� on the indepen-
dence number of the random lift is essentially tight.

After reading a preliminary version of this article, Joel Spencer suggested a
method of proving a negative answer: it shows that for some graphs the first
moment bound can be improved, albeit by a small amount. In fact, most likely the
first moment bound is tight only for quite special graphs. Spencer’s argument is
explained in Appendix B.

2.1. A Greedy Lower Bound

To find an independent set in a lift G̃ of G, we may proceed as follows. We fix
an ordering v1� � � � � vr of the vertices of G, and choose a profile ξ = �ξi: i ∈ �r��
(we write ξi instead of ξvi for simpler notation) with the intention of finding ξ1n

independent vertices in G̃v1
, ξ2n independent vertices in G̃v2

, and so on. At the kth
step of this procedure, some of the vertices in G̃vk

cannot be used since they are
adjacent to vertices selected in some G̃i with i < k. However, if

ξk <
∏
i<k

�vi� vk�∈E

�1 − ξi��

we are likely to succeed in finding ξkn additional vertices in G̃k that are not adjacent
to the previously selected ones.

Proposition 5. Let V �G� = �v1� � � � � vr� and suppose that a profile ξ = �ξi: i ∈ �r��
satisfies, for every k ∈ �r�

0 ≤ ξk ≤ ∏
i<k

�vi�vk�∈E�G�

�1 − ξi�� (1)

Let S = ∑
ξi. For every ε > 0, a random lift G̃ of G almost surely contains an

independent set of size n�S − ε�.
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Proof. By replacing each positive ξi by ξi − ε/r, we may assume that for some
positive δ,

0 ≤ ξk ≤
( ∏

i<k
�vi�vk�∈E�G�

�1 − ξi�
)
− δ� (2)

This reduces S by at most ε, and so it suffices to show there is almost surely an
independent set in G̃ with ξin vertices in G̃vi

for every 1 ≤ i ≤ r, where the ξi
satisfy (2).

To see this, it is useful to consider the lift as being generated only as we pro-
ceed. Namely, the edges between vk and v1� � � � � vk−1 are being randomly lifted
only at the kth stage. This yields the usual random model for the lift G̃. It is now
obvious that the vertices in G̃vk

that cannot be used are the union of random sub-
sets of size ξin, for 1 ≤ i < k such that �vi� vk� ∈ E�G�. The probability that the
complement of this union is smaller than n

∏�1 − ξi� − δ is o�1�, and the claim
follows.

To get the most out of this result, we need to find an optimal ordering of the
vertices and then optimize over the ξi. For example, when G = K3, it is easy to see
that the optimum is ξ1 = ξ2 = 1

2 and ξ3 = 1
4 , which yields S = 5

4 . This is, however,
not the best available bound, as a random lift of K3 a.s. contains an independent
set of size 3

2n�1 ± o�1��. In fact, this is true for all cycles.

Lemma 6. A random n-lift of a cycle C a.s. contains an independent set with 1
2n�1±

o�1�� vertices in each fiber.

Proof. Let m = �C� be the length of C and let u1� u2� � � � � um be its vertices.
We note that a random lift of C can equivalently be generated in the follow-
ing two steps: First, we choose a single random permutation σ and consider the
graph ��u1� � � � � um� × �n�� ���uj� i�� �uj+1� i�� � i ∈ �n�� j ∈ �m− 1�� ∪ ���um� i�� �u1,
σ�i��� � i ∈ �n��� (all edges “horizontal” but those above �um� u1�). In the second
step, we permute each fiber randomly. This second step is clearly immaterial for
the graph-theoretic properties of the lift.

Consider first the special case where σ is cyclic and so the lift C̃ is itself a
cycle �v0� � � � � vl−1�, where �vi� vi+1� and �v0� vl−1� are edges. The length l of C̃ is
l = nm. Note that a fiber in C̃ is a collection of vertices vj whose indices j lie in a
residue class modulo m.

If m is odd, consider the independent set I0 = �v2k � 0 ≤ 2k ≤ l − 2�. This set
contains n/2 + ε vertices in each fiber, where −1/2 ≤ ε ≤ 1/2. In fact, if n is even
then I0 has exactly n/2 vertices in each fiber, while for n odd it has �n − 1�/2 or
�n+ 1�/2 depending on the fiber.

If m is even, then we consider instead the set I1 defined by

I1 = �v2k � 0 ≤ 2k ≤ l/2 − 2� ∪ �v2k+1 � l/2 ≤ 2k+ 1 ≤ l − 3��
Since now the fibers are either entirely even or entirely odd and I1 contains even

and odd vertices, it is again true that I1 contains approximately n/2 vertices in each
fiber. More precisely, it has n/2 + ε vertices in a fiber, where −1 ≤ ε ≤ 1, as can
easily be checked.
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In the general case, C̃ is a disjoint union of k cycles of length nim, where∑k
i=1 ni = n. The numbers ni are the cycle lengths of the random permutation

σ . In each component of C̃ we can choose an independent set I0 or I1, according to
the parity of m, forming an independent set whose total number of vertices in each
fiber is

∑�ni/2+ εi�, where −1 ≤ εi ≤ 1 depend on the fiber. However, �∑ εi� ≤ k,
and k is the number of cycles of a random permutation which is a.s. o�n�, so this
defines an independent set with n

2 �1 ± o�1�� vertices in each fiber as required.

This suggests an improvement to Proposition 5. Given G with χ�G� ≥ 3, start by
choosing a cycle C in G. For vertices vi ∈ C we can guarantee ξi = 1

2 , and for the
other vertices we choose ξk so as to satisfy (1). For example, this implies that lifts
of K4 a.s. have an independent set with ξi = 1

2 for i = 1� 2� 3 and ξ4 = 1
8 , yielding

S = 13
8 = 1�625.

This can still be further improved (we are indebted to E. Friedgut for this obser-
vation). After choosing an independent set X using the above procedure, let Y be
the complement of X. Classify members of Y in fiber 4 (i.e., over v4) according to
the number of neighbors they have in X. For those that have exactly one, perform a
“switch” by putting them in X and removing their single X-neighbor from X. This
does not change the size of X, but it can cause some elements of Y to lose all their
X-neighbors, after which they can be safely added to X. Let us consider a vertex
y ∈ Y , say in fiber 1. Let x2 be the neighbor of y in fiber 2 and x3 the neighbor in
fiber 3. Typically we have x2� x3 ∈ X. If z2 denotes the neighbor of x2 in fiber 4,
the probability that x2 is the only X-neighbor of z2 (event A) is 1

4 + o�1�, and sim-
ilarly for x3 being the only X-neighbor of z3 (event B). Here we can imagine that
the edges of the lift among fibers 1, 2, and 3 are fixed, as well as the vertices of
X in these fibers, and only then the edges incident to fiber 4 are generated at ran-
dom. If both the events A and B occur simultaneously, then y is added to X. These
events are not independent, but they are almost independent and the probability of
both of them occurring is 1

16 + o�1�. There are about 3
2n vertices of Y in fibers 1,

2, 3, and so the expected increase of the size of X is 3
32n, yielding S′ = 1�71875.

An upper bound can be obtained from Theorem 2: A random n-lift of K4 a.s. does
not contain an independent set with more than 1�8363n vertices. The calculation is
given in Appendix B.

Finally, let us consider the case in which all the ξi’s are equal to the same number
x. Condition (1) then becomes x ≤ �1 − x�d, where d is the degree of vk in the
subgraph spanned by v1� � � � � vk. To minimize d, we proceed as follows.

The degeneracy of a graph G is defined as dgn�G� = max δ�H� where the max-
imum is over all induced subgraphs of G (see, e.g., [4]). Choosing the ordering
v1� � � � � vn backwards, taking vn to be a vertex of degree δ�G� and in general taking
vk−1 to be a vertex of minimum degree in G\�vk� � � � � vn�, we can make sure that
the exponent d above is never larger than dgn�G�. For d large, the unique positive
root of x = �1 − x�d is �1 + o�1���ln d/d�.

2.2. The Independence Number of Lifts of Complete Graphs

Combining the lower bound from the previous section with Theorem 2, we can
determine the asymptotics of the independence number of random lifts of Kr+1 (as
r grows).
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Proposition 7. The independence number of a random n-lift K̃r+1 of a complete
graph a.s. satisfies

α�K̃r+1� = 2�n log r��

Proof. For a lower bound, set ξi = C�log r/r� for all i in Proposition 5, with C = 1
3 ,

for example. Condition (1) is satisfied since(
1 − C

log r
r

)r

≥ r−2C ≥ C
log r
r

�

(The left inequality follows from e−2ε ≤ 1− ε for ε < 1
2 .) Therefore, there exists an

independent set of size at least 3�n log r�. Alternatively, this follows from Corollary
20 below.

We now turn to the upper bound, using Theorem 2. Let V �Kr+1� = �r + 1� and
let ξ = �ξi: i ∈ �r + 1�� be a profile. Let ξ′ be obtained from ξ by averaging the
values of ξ1 and ξ2; that is, ξ′1 = ξ′2 = x̄ �= �ξ1 + ξ2�/2 and ξ′i = ξi for i > 2. We
claim that h�ξ′� ≥ h�ξ�.

Indeed, consider the difference h�ξ′� − h�ξ�. Noting that H�a� +H�b� − I�a� b�
is just H�a� b�, we get

h�ξ′� − h�ξ� = H�x̄� x̄� −H�x1� x2� +
∑
i>2

I�x1� xi� + I�x2� xi� − 2I�x̄� xi�

which is positive since H�x̄� x̄� ≥ H�x1� x2� (entropy is maximal for the uniform
distribution) and I�x� c� is convex in x for constant c.

It follows that if ξ is a profile with h�ξ� ≥ 0, then h�ξ̄� ≥ 0 where ξ̄ the constant
profile is obtained by averaging all the values of ξ. To bound the independence
number of K̃r+1 from above it therefore suffices to consider constant profiles.

Let �p be the constant profile with values p at all vertices. We need to estimate
the critical value of p for which h� �p� = 0. We will consider h0� �p� = 0 instead since
this saves some calculation and does not essentially change the end result. We have

�r + 1�H�p� = log�e� r�r + 1�
2

p2

which can be restated as (the o�1� terms are with respect to r → ∞):

−2
r
�1 + o�1��p lnp = p2�1 + o�1���

This is achieved at

p = 2 ln r
r

�1 + o�1���

Thus
∑
ξi ≤ O�log r� for every profile ξ with h�ξ� ≥ 0 and α�K̃r+1� ≤

O�n log r�.

The upper bound on the independence number provides a lower bound on the
chromatic number of typical lifts of Kr : For a.e. lift of Kr , χ�K̃r� ≥ 3�r/ log r�. In
Section 3.3, we will see that this is essentially tight.
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3. THE CHROMATIC NUMBER

We now turn to investigate the chromatic number of random lifts. There is an
obvious bound for the chromatic number of any lift G̃ of G: a coloring of G can be
“lifted” to a coloring of G̃ by coloring all the vertices in each fiber with the color of
the corresponding vertex in G. This means that χ�G̃� ≤ χ�G�. We are interested in
finding nontrivial upper and lower bounds for the chromatic number of typical lifts.

To this end, it is convenient to define:

Definition 8. Given a graph G, let

χ̃h�G� = min�k � χ�G̃� ≤ k for a.e. lift G̃ of G�
χ̃l�G� = max�k � χ�G̃� ≥ k for a.e. lift G̃ of G�

These are the essential upper and lower bounds on the chromatic number of lifts
of G. For nontrivial graphs G we have 2 ≤ χ̃l�G� ≤ χ̃h�G� ≤ χ�G�. A natural
conjecture is that the chromatic number of random lifts satisfies a zero/one law and
is essentially single-valued:

Conjecture 9. For every graph G, χ̃l�G� = χ̃h�G�.

We will see some examples of graphs G for which this conjecture is true. It holds
trivially for bipartite graphs: If G is bipartite, every lift of G is also bipartite and
so χ̃l = χ̃h = 2 in this case. The following is a very simple lower bound on χ̃l for
nonbipartite graphs:

Lemma 10. If χ�G� ≥ 3, then χ̃l�G� ≥ 3.

Proof. Since χ�G� ≥ 3, G contains an odd cycle. A random lift of an odd cycle
a.s. contains a component, which is an odd cycle as well (since the cycle structure
of a random permutation a.s. contains an odd cycle).

This is a lower bound on the chromatic number of typical lifts. For every graph
G there do exist bipartite lifts of every even order: the 2-lift G̃2 which assigns to
every edge the transposition �1 2� is bipartite, and so is every lift of G̃2. Similarly,
by assigning the permutation �1 2 3��4 5��6 7� · · · �n− 1n� to every edge, one obtains
3-colorable lifts of any odd order n.

Let us remark that Conjecture 9 holds for every nonbipartite graph with maximal
degree 5�G� ≤ 3. We may assume that G is connected. If G is not a K4, then
every lift of G can be 3-colored by Brooks’ Theorem. For G = K4, Lemma 18
below shows that a random lift of K4 a.s. does not contain a K4 and so it is a.s.
3-colorable too. We have just seen that a random lift of the considered G is a.s. not
2-colorable, and so Conjecture 9 holds for these graphs with χ̃l�G� = χ̃h�G� = 3.
The simplest case where we do not know whether a zero-one law holds is G = K5.
We have 3 ≤ χ̃l�K5� ≤ χ̃l�K5� ≤ 4, and it is possible (though, we believe, unlikely)
that both 3-chromatic and 4-chromatic random lifts occur with probability bounded
away from 0.
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3.1. Lower Bounds

We begin with a lower bound on the chromatic number of almost all lifts of G,
given in terms of the chromatic number of G itself.

Theorem 11. For every graph G with χ�G� ≥ 2,

χ̃l�G� ≥
√

χ�G�
3 logχ�G� �

Proof. Suppose that G̃ is colored with the colors 1� � � � � s. For each color i, let

Vi = �v ∈ V �G� � i is the most frequent color in G̃v�

breaking ties arbitrarily. For v ∈ Vi let Iv ⊂ G̃v be the vertices over v that are
colored by the color i. Note that �Iv� ≥ n/s for every v, and that

⋃
v∈Vi Iv is an

independent set in G̃. Set β = 1/s, so that �Iv� ≥ βn.
Let r = χ�G�. Since the sets Vi partition V �G�, there is some j ∈ �s� such that

the chromatic number of G�Vj� is at least k = r/s. It follows that G�Vj� contains
a subgraph H with minimal degree δ�H� ≥ k − 1, so d̄ = d̄�H� ≥ k − 1. The set⋃
v∈V �H� Iv is independent, and since it sits above the relatively dense subgraph H,

it cannot be too large by Corollary 4; namely, we have

d̄β/2 + lnβ < 1�

(Note that for any subgraph H of G, the subgraph of G̃ induced by the fibers above
H is a random lift of H; moreover, since the number of subgraphs H is bounded
while n→ ∞, a statement that is true almost surely for a random lift is true almost
surely for the lifts of all H simultaneously.) Then

r − s

2s2
− ln s < 1

r < s + 2s2�ln s + 1�
r < 5s2 ln s�

where the last inequality holds for s ≥ 3 (we may ignore s = 2 by Lemma 10). From
this it follows easily that s2 ≥ r/3 ln r.

It does not seem easy to improve the lower bound substantially (see also
Section 3.2 for a related graph-coloring problem involving no lifts and no random-
ness), but currently, we have no example where χ̃l�G� would be o�χ�G�/ logχ�G��.
So the following problem looks quite interesting:

Problem 12. Is it true that for every graph G,

χ̃l�G� ≥ 3�χ�G�/ logχ�G��?
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In Section 3.3, we will see that for large complete graphs, χ̃l is indeed as low as
2�χ/ logχ�. We now prove a lower bound on the chromatic number of a random
lift in terms of χf �G�, the fractional chromatic number of G.

Definition 13. For a graph G, the fractional chromatic number χf �G� is defined as
the solution Z of the following optimization problem: Let � be the collection of all
independent sets in G. We seek a mapping φ: � → �+ such that

∑
I∈� φ�I� = Z is

minimized while for every x ∈ V �G�,∑
x∈I∈�

φ�I� ≥ 1� (3)

Any mapping φ satisfying these conditions is called a fractional coloring of G. If
G is properly colored with χ�G� colors, then we can define a fractional coloring by
letting φ�I� = 1 if I is a color class and φ�I� = 0 otherwise, so χf �G� ≤ χ�G�.

Theorem 14. For every graph G,

χ̃l�G� ≥ 3

(
χf �G�

log2 χf �G�

)
�

Proof. Suppose G̃ is colored with the colors 1� � � � � s. As in the proof of Theorem
11, we assume that for every subgraph H of G, the restriction of G̃ to the base
graph H satisfies the conclusion of Corollary 4. Our plan is to slightly modify the
coloring of G̃, use the color classes to obtain weights for independent sets in G that
satisfy the requirement (3), and finally estimate the total weight to bound χf �G�.

The new coloring of the vertices of G̃ uses the set of colors �s� × �k�, where
k = O�log s�. Let Ci be the class of vertices in G̃ that received (old) color i. The new
color of a vertex ṽ ∈ Ci ∩ G̃v is �i� j�, where j is such that 1

n
�Ci ∩ G̃v� ∈ �2−j� 2−j+1�.

More precisely, this holds for all vertices such that 1
n
�Ci ∩ G̃v� ≥ 1/2s, while the

vertices with �Ci ∩ G̃v� < n/2s remain uncolored. We note that at least half the
vertices in each fiber are colored, because there were s color classes originally, and
we have only ignored classes that occupied lesser than 1/2s of the vertices in a fiber.
The total number of colors is now O�s log s�.

Letting Ci�j denote the new color classes, we see that the sets Ci�j are disjoint,
they cover at least half of each fiber, and each one is an independent set in G̃.
Furthermore, by definition, whenever Ci�j intersects a fiber, the intersection has
size at least 2−jn.

Let Ai�j be the “shadow” of Ci�j , namely the collection of vertices v in the base
graph G for which Ci�j ∩ G̃v is nonempty. For any subgraph H of G�Ai�j�, there is
an independent set with occupancy at least 2−j in the lift of H, and by Corollary 4
we must have d̄�H� ≤ O�2jj�. In other words, Ai�j has degeneracy O�2jj�, and in
particular it can be partitioned into O�2jj� independent sets Iijq.

These sets Iijq support our fractional coloring of G. We assign the weight of
φ�Iijq� = 2−j+1 to each Iijq. From the construction of Ci�j we see that the total
weight at each vertex is at least 1, and so we have a fractional coloring. The total
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weight of this fractional coloring is at most

s∑
i=1

O�log s�∑
j=1

O�2j j�∑
q=1

2−j+1 = s
O�log s�∑
j=1

O�j� = O�s log2 s��

We have shown that a.s. χf �G� ≤ χ�G̃� log2 χ�G̃�, from which the desired
inequality follows.

Theorem 14 shows that if there are examples of graphs with χ̃l�G� much smaller
than χ�G�/ logχ�G�, they may not be easy to find, since only very few construc-
tions of graphs with χf much smaller than χ are known. The most notable such
construction are perhaps the Kneser graphs (see e.g., [4, 8]), but these do not seem
to provide a good example for our problem, at least in their usual version.

3.2. �̃ l�G� and Variations on Graph Coloring

In proving the bounds in the previous section, we have transformed a coloring
of a lift into a coloring, or a fractional coloring, of the base graph. The latter is
natural since a coloring of a fiber G̃v defines a “mixture” of colors at v. These
considerations lead us to constructions on the base graph, which are variations on
the classical notion of coloring.

Our first example is: The degeneracy of a set S ⊂ V �G� is defined as dgn�G�S��,
the degeneracy of the subgraph spanned by S (see, Section 2.2). Thus an inde-
pendent set has degeneracy 0 and a cycle-free set of vertices has degeneracy ≤ 1.
Coloring a graph entails covering the vertex set by 0-degenerate subsets. We now
allow for using nondisjoint, nonindependent subsets, where the contribution of a
dependent set to the solution is reduced. Specifically, a set S contributes 1

dgn�S�+1 to
every vertex x it contains, and we seek a weighted cover, so the total contribution
should be 1 everywhere. Formally:

Definition 15. Given a graph G, let

L�G� = min
{
k
∣∣∃ S1� � � � � Sk ⊆ V �G� such that (4)

∑
i�x∈Si

1
dgn�Si� + 1

≥ 1 for every x ∈ V �G�
}
�

Again, we see that L�G� ≤ χ�G� since we can take the color classes as the sets Si.
Pyatkin [7] found an example of a graph G with L�G� = 3 < χ�G� = 4. A simple
adaptation of the proof of Theorem 14 shows that

Proposition 16. For every graph G,

χ̃l�G� ≥ 3

(
L�G�

log2�L�G��

)
�

The following lift-free result now provides an alternative proof to a slightly weaker
form of Theorem 11.
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Lemma 17. For any graph G,

χ�G� ≥ L�G� ≥
√
χ�G�/2�

Proof. The left inequality is trivial, as observed above.
Let S1� � � � � Sk be sets satisfying the condition in (4). Let

J = �j � dgn�Sj� ≤ 2k− 1��

The sets Sj , j ∈ J cover V �G� since for every vertex x,

∑
j∈J
x∈Sj

1
dgn�Sj� + 1

≥ 1
2
�

The result follows easily, since each Sj for j ∈ J can be colored using at most
2k colors, and using a different palette of colors for each j we have colored G by
lesser than 2k2 colors.

It is possible that the lower bound in Lemma 17 is not tight, and any significant
improvement on that bound brings us closer to solving Problem 12. The question
of improving Lemma 17 has nothing to do with lifts, and it seems quite interesting
in its own right.

We have defined L�G� as a “covering version” of the degeneracy. More gener-
ally, for any real-valued graph parameter <�G� attaining values in �1�∞� for all
nonempty graphs, we can define

cover-<�G� = min
{
k
∣∣ ∃ S1� � � � � Sk ⊆ V �G� such that

∑
i�x∈Si

1
<�G�Si��

≥ 1 for all x ∈ V �G�
}
�

With this notation, L�G� = cover-dgn1�G�, where dgn1�G� = dgn�G� + 1. These
notions for various graph parameters < seem to be of independent interest.

Let us note that if < has value 1 for independent sets, then always cover-<�G� ≤
χ�G�. On the other hand, if <�G� ≥ χ�G� for all G, then considerations as in the
proof of Theorem 14 show that cover-<�G� ≥ χf �G�. We also have cover-<�G� ≥
3�√χ�G��, by the same argument as in the proof of Lemma 17. So for various
graph parameters < bounding χ�G� from above, we get new graph parameters
cover-< sandwiched between χf and χ.

For the smallest of such parameters, namely cover-χ�G�, we have

cover-χ�G� ≤ L�G�

and so we can try to approach Problem 12 by improving the just-mentioned lower
bound cover-χ�G� ≥ 3�√χ�G� �. However here we can show that this bound is
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tight. An example showing this is the following Kneser-type graph, denoted by Ds =
�V�E�, where

V = all vectors in ��∗� ∪ �s��3s in which exactly 2s components are ∗�
E = ��u� v�: there is no i with ui = vi �= ∗��

Using topological methods (see Appendix 4), it can be shown that χ�Ds� ≥ s2.
On the other hand, cover-χ�Ds� ≤ O�s�: consider the sets A1� � � � �A3s where Ai =
�u � ui �= ∗�. Each Ai can be colored with s colors, corresponding to the values of
ui. In addition, every vertex belongs to exactly s of the Ai’s. It follows that cover-
χ�Ds� ≤ 3s.

3.3. An Upper Bound

We use a result of Kim [5] to give an upper bound on the chromatic number of
almost all lifts of G, in terms of the maximal degree 5�G�. First we need a lemma,
which says that all connected subgraphs of constant size in a random lift are trees
or unicyclic.

Lemma 18. Let G be a graph and let M be any fixed integer. A random lift G̃ of G
has the following property almost surely: Every subgraph H ⊂ G̃ with �V �H�� ≤ M
also satisfies �E�H�� ≤M .

Proof. Let X be a collection of at most M vertices in V �G̃�. The probability that
X spans more than M edges is smaller than 2M

2�1/�n −M��M+1: the number of
possible sets of edges is bounded by 2M

2
, and for a given potential edge, the proba-

bility that it exists in the random lift never exceeds 1/�n−M�, even if we condition
on the situation of other potential edges.

The number of possible sets of vertices X is lesser than �n�V �G���M . It fol-
lows that the expected number of exceptions to our claim is o�1� and by Markov’s
inequality the property holds almost surely.

Subgraphs of larger size are, of course, not so degenerate, for example because
almost every lift of G is δ�G�-connected [1].

Theorem 19. Let G be a graph with maximal degree 5 = 5�G�. Then

χ̃h�G� ≤ 5

ln5
�1 + o5�1���

It is important not to confuse the two asymptotic variables in this result: The
maximum degree 5 and the order of lift, hidden in the definition of χ̃h.

Proof. Let G̃ be a lift of G. From the lemma, we may assume that the triangles
and 4-cycles in G̃ are disjoint, because adjacent triangles or 4-cycles are subgraphs
with 7 vertices or less whose number of edges exceeds their number of vertices.

Let T be the set of vertices that are contained in triangles or 4-cycles. Removing
T from G̃ yields a graph with maximum degree 5 and girth at least 5. Kim proves
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in [5] that such a graph can be colored with �5/ ln5��1+ o�1�� colors. The vertices
in T can be colored with three extra colors, and the result follows.

As a corollary, we can determine the asymptotic behavior of χK̃r�, the chromatic
number of random lifts of complete graphs.

Corollary 20. There exist constants A > B > 0 such that

A
r

log r
≥ χ̃h�Kr� ≥ χ̃l�Kr� ≥ B

r

log r
�

Indeed, the upper bound follows immediately from Theorem 19, and the lower
bound was obtained in Section 2.2.

It is interesting to see that the drop in chromatic number of lifts of Kr occurs,
in a sense, already for lifts of order 2. A random 2-lift of Kr is a graph H̃ with
V �H̃� = V1 ∪ V2. Each edge e = �i� j� of Kr is covered either by a “parallel” pair
of edge �i1� j1� and �i2� j2� or by a “crossed” pair �i1� j2� and �i2� j1�, depending on
whether the permutation assigned to e is trivial or the transposition �1 2�.

The subgraphs H̃�V1� and H̃�V2� induced by V1 and V2, respectively, are isomor-
phic, and are in fact drawn uniformly from the random graph model G�r� 1/2�.
The chromatic number of such graphs [3] is a.s. � 1

2 + o�1��r/ log2�r�, and so the
chromatic number of H̃ is at most O�r/ log�r��.

3.4. Persistence of the Chromatic Number

In contrast to the situation with complete graphs, here we present examples of
graphs for which the chromatic number of typical lifts equals that of the base graph.

For a graph G, let H denote the graph obtained by replacing each vertex of
G by an independent set of size r; formally V �H� = V �G� × �r� and E�H� =
���u� i�� �v� j�� � �u� v� ∈ E�G�� i� j ∈ �r��.

Proposition 21. For any graph G with χ�G� ≥ 2, put r = 3χ�G� logχ�G�, and let
H be constructed from G as above. Then almost every lift H̃ of H has chromatic
number χ�H̃� = χ�H� = χ�G�.

Proof. Let H̃ be a random lift of H and let c̃ � V �H̃� → �s� be a coloring of
H̃, s = χ�H̃�. We define the mapping c: V �G� → �s� by letting c�v� be the
color occurring most often in the union of the fibers

⋃
i∈�r� H̃�v�i�, breaking ties

arbitrarily.
We show that, for almost every lift H̃, the coloring c is a proper coloring of G.

For v ∈ V �G�, let Xv�i be the set of vertices of the lift H̃ in the fiber H̃�v�i� colored
with the color c�v�, and let Xv =

⋃
i∈�r�Xv�i. It suffices to show that if �u� v� ∈ E�G�,

then a.s. there is an edge of H̃ connecting a vertex of Xu to a vertex of Xv.
Set ξi = �Xu�i�/n and ζi = �Xv�i�/n. We have �Xv� ≥ nr

s
by the choice of c�v�, and

so
∑

i ζi = λ with λ ≥ r
s
= 3 log s. We may actually assume λ = r

s
(if Xv has more

vertices we discard some of them). Similarly, we assume
∑

j ζj = λ.
The calculation is now very similar to the one in the proof of Lemma 1. If the ξi

and the ζi are fixed, then the number of ways of choosing the sets Xu and Xv is at
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most

2n�
∑

i H�ξi�+
∑

j H�ζj���

The probability that there is no edge between fixed sets Xu and Xv with the given
sizes of the intersections with the fibers is bounded by

2−n�
∑

i�j I�ξi�ζj���

To show that c is a proper coloring for a particular choice of the ξi’s and ζj ’s (with∑
i ξi =

∑
j ζj = λ = 3 log s), it is enough to verify that∑

i

H�ξi� +
∑
j

H�ζj� <
∑
i�j

I�ξj� ζj�� (5)

Since I�ξi� ζj� ≥ log�e�ξiζj , the right-hand side is at least log�e�λ2. By concavity of
the function H�·�, the left-hand side is at most 2rH�λ/r� = 2rH�1/s�. So it suffices
to check that 2H�1/s� < 3 log�e� log�s�/s for all s ≥ 2, and this is indeed true
(elementary calculus).

There are infinitely many possible choices of the ξi’s and ζj ’s. However, since
the difference of the right-hand side and of the left-hand side in (5) is bounded
away from 0 uniformly for all ξi and ζj (for fixed s), each application of the above
argument with a given collection of ξi’s and ζj ’s actually covers a small range of
ξi’s and ζj ’s, and the whole space of possible ξi’s and ζj ’s is covered by a bounded
number of such ranges. So the chromatic number of the random lift is a.s. equal
to χ�G�.

4. CONCLUSION

This article is an initial study of the independence number and chromatic num-
ber of random lifts. Many interesting questions remain open, and some of them
may be quite challenging. Their formulation is, in our opinion, one of the main
contributions of the present article. Here we repeat those which we like most.

• (Precise values of α) Azuma’s inequality or similar tools imply that the inde-
pendence number of the random n-lift is concentrated; in particular, for every
fixed graph G, the independence number of a random n-lift of G is a.s.
�1+ o�1��An�G� · n for some number An�G�. It would be interesting to deter-
mine An�G�, in particular An�K4�. It is also not obvious that the An�K4� tend
to a limit. Our results show that 1�718 < An�K4� < 1�837; see the discussion
in Appendix B.

• The questions about An�G�, χ̃l�G� and χ̃h�G� seem to be closely related to
the analogous questions on independence number and chromatic number of
random d-regular graphs. A summary of the present state of knowledge on
random regular graphs can be found in the survey [10]. It is possible, for
example, that An�K4� tends to the same limit as the independence ratio of
random cubic graphs (which is also not known to tend to a limit). It should be
noted, however, that the model of random lifts of any graph G (other than a
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bouquet) is not contiguous to the standard models of random regular graphs,
as can be seen by considering the probability that a random graph in either
model covers G.

• (Zero-one law) Is there a zero-one law for the chromatic number of random
lifts? In particular, is the chromatic number of a random lift of K5 a.s. equal
to a single number (which may be either 3 or 4)?

• (Gap between chromatic numbers) Are there graphs G such that the chromatic
number of their random lift is a.s. o�χ�G�/ logχ�G��, or perhaps even close
to

√
χ�G�?

• What about the “cover-degeneracy” L�G�: can it be much smaller than χ�G�?
Can one find some reasonable graph parameter <�G� that upper bounds χ�G�
and such that cover-<�G� is always close to χ�G�? (For example, what about
<�G� being the maximum degree of G plus 1?)
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APPENDIX A: THE CHROMATIC NUMBER OF Ds

We prove here a lower bound on the chromatic number χ�Ds� of the graph Ds

defined in Section 3.2. First we need a slightly different representation of this graph:
we represent it as the disjointness graph of some set system. Let X = �3s� × �s� be
a ground set and let L0 ⊆ 2X be the system consisting of all s-element subsets of
X having the first components of their elements pairwise distinct. The graph Ds is
isomorphic to the graph D′

s with vertex set L0 and edges being pairs of disjoint sets.
The isomorphism is defined as follows: to a vector v ∈ V �Ds� assign the set

��i� vi� � i ∈ �3s�� vi �= ∗� ∈ L0 = V �D′
s�

We use Theorem 4.13 from [6], a slight generalization of theorems by Sarkaria
[8, 9]. Let σN denote the N-dimensional simplex with vertex set �N + 1�. In what
follows, simplicial complexes are abstract (i.e., hereditary set systems), and  K 
denotes the polyhedron of a simplicial complex K.

Theorem 22. Write 5 = σN and let K be a subcomplex of 5. Put L = 5\K and let
L0 be the set of all inclusion-minimal simplices in L. Suppose that

χ: L0 → 2�m�\�!�
is a coloring of the simplices of L0 by nonempty subsets of an m-element set, which
satisfies the condition

σ1 ∩ σ2 = ! ⇒ χ�σ1� ∩ χ�σ2� = !� �A�1�
Then for d ≤ N −m− 1 there is no embedding  K → �d.
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In our case, the vertex set of 5 is identified with X = �3s� × �s�, so N = 3s2 − 1.
The set system L (the supersets of the sets in L0) consists of all subsets of X with
at least s distinct first components. Thus, K consists of all sets with at most s − 1
distinct first components. So K is a simplicial complex of dimension �s − 1�s − 1,
and thus it can be embedded into �d with d = 2s�s− 1� − 1. Hence, by the theorem,
there is no coloring of the sets in L0 by nonempty subsets of �m� for

m = N − d − 1 = 3s2 − 1 − 2s�s − 1� + 1 − 1 ≥ s2�

In particular, there is no proper coloring of the graph Ds by at most s2 colors, so
χ�Ds� ≥ s2.

APPENDIX B: UPPER BOUNDS ON THE INDEPENDENCE NUMBER OF
RANDOM LIFTS OF K4

We recall that the real number An�K4� is defined so that almost all n-lifts of K4 have
independence number �1 ± o�1��Ann. In this section, we discuss the calculation
ã�K4�, the first moment upper bound on An�K4� (as in Theorem 2) and then a
slight improvement of this bound. Much of what we do applies more generally to
An�Kr�, but some of the calculations become much messier for r > 4.

To determine ã�K4�, we find the maximum
∑4

1 ξi under the conditions

1. ξi ≥ 0 for i = 1� � � � � 4,
2. ξi + ξj ≤ 1, for 1 ≤ i ≤ j ≤ 4, and
3. h�ξ� = ∑4

i=1H�ξi� −
∑

1≤i<j≤4 I�ξi� ξj� ≥ 0.

We will show that the maximum is attained at a single profile ξ̄, with all the ξ̄i
equal, and for this ξ̄ one can check that h�ξ̄� S� ≥ 0 for all subsets of vertices.
Consequently, looking at the subgraphs cannot improve the bound and ã�K4� = 4ξ̄1.

The first two conditions determine a 4-dimensional convex polytope and the third
condition defines some more complicated domain. Observe first that we may w.l.o.g.
consider all ξi to be strictly positive. If any of the ξi vanishes, then we are essentially
dealing with independent sets in lifts of K3. But an n-lift of K3 is the disjoint union
of cycles with total length 3n, hence its independence number does not exceed 1�5n.
As we later see, larger independent sets can be found in lifts of K4.

We begin by solving the optimization problem in the interior of this polytope.
If all ξi + ξj are strictly smaller than 1, then the last condition can be taken with
equality, simply by increasing the smallest ξi. Namely, we now seek max

∑
ξi under

the following conditions:

1. ξi > 0 for i = 1� � � � � 4,
2. ξi + ξj < 1, for 1 ≤ i ≤ j ≤ 4, and
3.

∑
i H�ξi� =

∑
i<j I�ξi� ξj�.

We recall that

I�x� y� = H�x� +H�y� −H�x� y�
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so the last condition can be stated as

2
∑

H�ξi� =
∑

H�ξi� ξj�� �B�1�

In the interior, we solve this problem using Lagrange multipliers. Namely, we
define the function

F�ξ� λ� = ∑
ξi − λ

(
2
∑

H�ξi� −
∑

H�ξi� ξj�
)

(λ is the Lagrange multiplier) and require that the partial derivative of F w.r.t.
each ξi vanishes. This condition will give us all internal optima. After taking the
derivative and some simple algebraic manipulations, we conclude that there is a
constant C such that

2 log
(

1 − ξi
ξi

)
−∑

j

log
(1 − ξi − ξj

ξi

)
= C

for all indices i. In other words, there is a constant C ′ such that∏
j�1 − ξi − ξj�
ξi�1 − ξi�2

= C ′

for every i. Let us equate these expressions for i = 1� 2. That is:

�1 − ξ1 − ξ3��1 − ξ1 − ξ4��1 − ξ2�2ξ2 = �1 − ξ2 − ξ3��1 − ξ2 − ξ4��1 − ξ1�2ξ1�

However, if ξ2 ≥ ξ1, then it is easy to check that

�1 − ξ1 − ξ3��1 − ξ2� ≥ �1 − ξ2 − ξ3��1 − ξ1�
�1 − ξ1 − ξ4��1 − ξ2� ≥ �1 − ξ2 − ξ4��1 − ξ1�

and, of course ξ2 ≥ ξ1. Therefore, equalities must hold throughout and ξ1 = ξ2.
Since there is nothing special about ξ1 and ξ2, we obtain ξ1 = ξ2 = ξ3 = ξ4. In
other words, the only internal point that has to be checked for optimality is the
one, where all the ξi equal the positive root of the equation

4H�x� − 3H�x� x� = 0�

The solution of this equation (done numerically with Mathematica) is 0�4590621 � � � �
leading to

∑
ξi = 1�836248 � � � �

We turn to extremal points on the boundary. As mentioned above, we only have
to consider the case where two of the ξi sum to one. If, for convenience, we order
ξ1 ≤ ξ2 ≤ ξ3 ≤ ξ4, then necessarily ξ3 + ξ4 = 1. We should still check whether the
inequality h�ξ� ≥ 0 holds with equality.

Suppose that h�ξ� > 0. If ξ3 > ξ1, then ξ1� ξ2 may be increased until either h�ξ�
vanishes or ξ1 = ξ2 = ξ3. One possibility that needs to be checked for optimality is
where ξ1 = ξ2 = ξ3 = x ≤ ξ4 = 1 − x. Here the condition h�ξ� ≥ 0 translates to
H�x� ≥ 3H�x� x� but it turns out that this inequality never holds for x ∈ �0� 1�.
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Henceforth, we are allowed to assume that h�ξ� ≥ 0 holds with equality. Now
if ξ3 > ξ2 then we can re-apply the above analysis. To save space, we only briefly
describe the steps. We fix ξ3 and ξ4 = 1 − ξ3 and we seek max 1 + ξ1 + ξ2 under
the condition h�ξ� = 0. We again define F�ξ� λ� as above and set to zero its partial
derivatives w.r.t. ξ1 and ξ2. The same analysis again yields that ξ1 = ξ2 must hold
in such an optimal point. Consequently, either ξ1 = ξ2 or ξ2 = ξ3. Hence there are
just two additional sequences x1� � � � � x4 on the boundary that ought to be checked
for optimality.

• �ξ1� ξ2� ξ3� ξ4� = �y� x� x� 1 − x�. Here, we seek the maximum of 1 + x + y
subject to

2H�y� + 4H�x� = 2H�y� x� +H�y� 1 − x� +H�x� x��

• �ξ1� ξ2� ξ3� ξ4� = �y� y� x� 1 − x�. We want to maximize 1 + 2y subject to

4H�y� + 3H�x� = H�y� y� + 2H�y� x� + 2H�y� 1 − x��

One can again use Lagrange multipliers in these two cases. This results in two
equations in x� y, one algebraic and one transcendental, involving the entropy func-
tions. Numerical calculations show that the maximum in both cases is strictly below
1�833, showing that the strict global maximum is attained at the constant profile ξ̄
as above.

B.1. Spencer’s Improvement: The Fecundity Argument

It may be tempting to think that Theorem 2 yields a tight bound on An�G�. This
turns out to be false, as was shown to us by Joel Spencer. We include the argument
by his kind permission. This so-called “fecundity argument,” whose basic idea is
well known in probability theory, allows for one to improve the above upper bound
on An�K4�. We first explain the general idea and then we specialize it for K4.

Let G̃ be a random n-lift of a fixed graph G, and let us consider profiles ξ =
�ξv: v ∈ V �G�� and ζ = ζ�ε� = �ζv: v ∈ V �G��, where ζv = ξv�1− εv� with εv ≥ 0.
For every G̃ ∈ Ln�G�, let X denote the number of independent sets with profile ξ
in G̃, and let Z denote the number of independent sets with profile ζ. Whenever
X ≥ 1, we have

Z ≥ ∏
v∈V

(
ξvn

ζvn

)
≥ 2�1−o�1��n

∑
v ξvH�εv��

Therefore,

E�Z� ≥ Prob�X > 0� · 2�1−o�1��n
∑

v ξvH�εv��

On the other hand, as we know, E�Z� ≤ 2�1+o�1��n·h�ζ�, and so if

h�ζ� −∑
v

ξvH�εv� < 0 �B�2�

then X = 0 a.s., i.e., an independent set with profile ξ almost never exists.
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Let ξ be the profile that maximizes
∑
ξv subject to h�ξ� ≥ 0 for some graph G.

Why should (B.2) hold? Let us suppose that ε has only one nonzero component,
namely εu > 0, and ζ = ζ�ε� is as before. If ξu > 0, then ξuH�εu� grows super-
linearly with εu: it is of the order εu log 1

εu
as εu → 0. On the other hand, if the

partial derivative ∂h�ζ�
∂εu

is bounded for εu ∈ �0� δ� for some δ > 0, then by the Mean
Value Theorem we have

h�ζ� = h�ζ� − h�ξ� = O�εu��
Thus in such case, (B.2) holds for all sufficiently small εu > 0 and we can conclude
that independent sets with profile ξ a.s. do not exist. As we will check below, the
considered partial derivative is bounded unless ξu = 0� 1 (rather uninteresting cases)
or there is an edge �u� v� with ξu + ξv = 1.

To see this, we substitute for h�ξ� and I�ξu� ξv�, obtaining

∂h�ζ�
∂εu

= ∂H�ξu�1 − εu��
∂εu

− ∑
v��u�v�∈E�G�

∂I�ξu�1 − εu�� ξv�
∂εu

= �degG�u� − 1�H ′�ξu�1 − εu��ξu

− ∑
v��u�v�∈E�G�

∂H�x� ξv�
∂x

∣∣∣∣∣
x=ξu�1−εu�

· ξu�

Now H ′�x� is bounded as soon as x is bounded away from 0 and 1, and ∂H�x�y�
∂x

is

bounded on a neighborhood of x as soon as 0 < x < 1 − y.
In the case G = K4, we know that max�∑ ξv: h�ξ� ≥ 0� is attained at ξ = ξ̄,

where all the components of ξ̄ are equal and strictly below 1
2 . Thus an indepen-

dent set with profile ξ̄ a.s. does not exist. Moreover, by continuity, there is a
small neighborhood U of ξ̄ such that (B.2) holds for all ξ ∈ U with some suit-
able εu = εu�ξ� > 0, and so independent sets with profiles ξ ∈ U a.s. do not exist
as well. However the maximum at ξ̄ is strict, meaning that all profiles ξ �∈ U with
h�ξ� ≥ 0 have

∑
ξv <

∑
ξ̄v − δ for some fixed δ > 0. We conclude that

An�K4� ≤ ã�K4� − δ�

i.e., the first moment bound for the independence number of random lifts of K4

is not tight. By more extensive calculations, it seems possible to obtain a numerical
bound for δ, but we have not pursued this direction.

A similar argument can be made for other graphs. Let us call a profile ξ on
a base graph G an admissible border profile if h�ξ� ≥ 0 and for every u ∈ V �G�
there is an edge �u� v� ∈ E�G� with ξu + ξv = 1. If there is an η > 0 such that∑
ξv ≤ ã�G� − η for all admissible border profiles ξ, then the above arguments

imply that An�G� < ã�G�.
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