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We study the hardness of approximating the chromatic number when the input graph is
k-colorable for some fixed k≥3. Our main result is that it is NP-hard to find a 4-coloring
of a 3-chromatic graph. As an immediate corollary we obtain that it is NP-hard to color
a k-chromatic graph with at most k+2�k/3� − 1 colors. We also give simple proofs of
two results of Lund and Yannakakis [20]. The first result shows that it is NP-hard to
approximate the chromatic number to within nε for some fixed ε>0. We point here that
this hardness result applies only to graphs with large chromatic numbers. The second
result shows that for any positive constant h, there exists an integer kh, such that it is
NP-hard to decide whether a given graph G is kh-chromatic or any coloring of G requires
h ·kh colors.

1. Introduction

A legal coloring of a graph G is an assignment of colors to its vertices such
that every adjacent pair of vertices gets a different color. A variety of prob-
lems arising in practice can be modeled as the problem of finding a legal
coloring of a certain graph using the smallest possible number of colors. As
an example, consider the following computational problem: given a set of
tasks to perform where some of the tasks are pair-wise conflicting (say they
cannot be carried out at the same time or at the same place), find a partition
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of the set of tasks into a minimum number of subsets such that no subset
in the partition contains two conflicting tasks. This problem is equivalent
to finding a legal coloring with a minimum number of colors: consider the
graph whose vertices are all tasks, where two vertices are connected if and
only if the corresponding tasks are conflicting. A coloring of this graph is a
non-conflicting partition of the set of tasks.

A k-coloring of a graph G is a legal coloring of G that uses only k dif-
ferent colors and the chromatic number of G, denoted χ(G), is the least
integer k for which a k-coloring of G exists. Karp [17] showed for any k≥3,
it is NP-hard to determine if a graph is k-colorable. In light of this result,
it is natural to ask how well can one approximate the chromatic number
in polynomial time. The best known approximation guarantee for general
graphs is O(n(log logn)2/ log3n) [15]. Garey and Johnson [12] proved that it
is NP-hard to approximate the chromatic number within a factor of (2− ε)
for any ε > 0. Later, Linial and Vazirani [19] used graph products to give
evidence that for n-vertex graphs, the approximation ratio is either below
log1+o(1)n or above nΩ(1). In the early 90’s, the discovery of a surprising
connection between Probabilistically Checkable Proofs (PCPs) and hard-
ness of approximations [9,2,1], led to dramatically improved hardness result
for many classical optimization problems, including graph coloring. Lund
and Yannakakis [20] showed that chromatic number is hard to approximate
within nε for some constant ε>0. More recently, Feige and Kilian [10], build-
ing on the strong PCP constructions due to H̊astad [16], have shown that
the chromatic number is hard to approximate within a factor of n1−ε for any
constant ε>0, unless NP⊆ZPP. Thus at this point the approximability of
chromatic number on general graphs is essentially well-understood.

However, the above hardness results do not tell us anything about the
hardness of approximating chromatic number when the input graphs are
k-colorable for some fixed constant k ≥ 3. In fact much better algorithmic
results are known for such graphs. Wigderson [21] gave a simple algorithm to
color k-colorable graphs with O(n1/(k−1)) colors. Blum [3,4], extending the
work of Wigderson [21] provided a polynomial-time algorithm which finds a
legal coloring of a 3-colorable graph using at most O(n3/8 log

5
8 n) colors and

more generally, a coloring of k-colorable graphs usingO(n1−1/(k−4/3) log8/5n)
colors. More recently, using semidefinite programming techniques, Karger,
Motwani and Sudan [18], gave a polynomial-time algorithm which can color
a k-colorable graph using min{O(∆1−2/k),O(n1−3/(k+1))} colors where ∆ is
the maximum vertex degree in the graph. Blum and Karger recently im-
proved this guarantee to Õ(n3/14) for 3-colorable graphs [7]. Yet, until now,
no hardness of approximation result was known for 3-colorable graphs. In
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fact, the only hardness result known for k-colorable graphs when k is a con-
stant is the following result due to Lund and Yannakakis [20]. For every
constant h there exists a constant kh such that it is NP-hard to color a kh-
colorable graph with kh·h colors. However, kh depends on h and is relatively
large in comparison. Hence this result is not applicable to small fixed values
of the chromatic number.

Our results and techniques. The main focus of this paper is to study
the hardness of approximating chromatic number on graphs that are k-
chromatic for some constant k≥3. Our main result is that it is NP-hard to
decide whether χ(G)≤3 or χ(G)≥5 for a graph G. In other words, we show
that it is NP-hard to find a 4-coloring of a 3-colorable graph. Our proof uses
the result that clique is hard to approximate to within any constant factor,
a consequence of the PCP theorem [2,1]. In a very recent development,
Guruswami and Khanna [14], have discovered a new proof of this result that
does not rely on the PCP theorem. We also note that a straightforward
corollary of our main result is that for any fixed k≥3, it is NP-hard to color
a k-colorable graph with k+2�k

3	−1 colors.
In addition to this result, we also present a simpler proof of the nε-

hardness result of Lund and Yannakakis [20] (for the case when the chro-
matic number can be arbitrarily large). Building on the construction that
we present here, Bellare and Sudan [8] designed a more efficient reduction,
obtaining a stronger hardness result (better ε) than implied by either our
construction or that of [20]. Also subsequent to our work, Fürer [11] used a
geometric construction to obtain another simpler proof of the nε-hardness
for approximating the chromatic number.

Finaly, we show that our construction above can be modified to also ob-
tain a simpler proof of another hardness result of Lund and Yannakakis [20],
namely, for every constant h there exists a constant kh such that it is NP-
hard to color a kh-colorable graph with kh ·h colors.

The paradigm which underlies all our reductions can be informally de-
scribed as follows. We start with a family of graphs such that given a member
graph G, it is NP-hard to decide whether G has a “large” clique or if every
clique in G is “small”. We construct a transformation τ that takes any such
graph G to a graph H such that a large clique in G maps to a collection
of large cliques in H which together cover the vertices of H. On the other
hand, the transformation satisfies the property that if G does not have a
large clique, then every clique in H is small as well (and hence H has a
large clique cover number). Thus the problem of deciding whether or not
G has large clique translates into the problem of deciding whether or not
H has a small clique cover (chromatic number). This gives an appropriate
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hardness result for approximating the chromatic number of a graph. The
range of chromatic number values to which the hardness result applies and
the hardness of approximation factor obtained, depends on the properties
of the transformation τ . As will be evident in the remainder of this paper,
much stronger hardness results can be shown when the chromatic number
itself is allowed to take large values.
Notation. We use ω(G) to denote the size of the largest clique in a graph
G. The clique-cover number of a graph G is denoted by χ̄(G). We use Ḡ to
denote the complement graph of G. Thus χ̄(G) =χ(Ḡ). Finally, we denote
by [k] the set {0, . . .,k−1}.
Organization. In Sections 2 and 3, we present simpler proofs of the two
theorems of Lund and Yannakakis [20]. In Section 4, we prove our main
result, namely, it is NP-hard to color a 3-colorable graph using only 4 colors.

2. Hardness result for unrestricted values

In this section we give a simple proof of the result that chromatic number is
hard to approximate to within a factor of nε when the optimal value itself
may be nε′ for some constant 0<ε′<1.

We start with r-partite graph instances G, that is, the vertices of G can
be partitioned into r rows where each row is an independent set. Let q be
the maximum number of vertices in any row of G. For such instances, it is
NP-hard to determine whether ω(G)= r or ω(G)< r

qε for any q= o(r) and
some constant ε> 0 [9,2,1,16]. Given such a graph G with q= rδ for some
constant δ, 0< δ < 1, we construct an r-partite graph H with rq′ vertices
where q′ = (rq)O(1) such that χ̄(H) = q′ when ω(G) = r and χ̄(H) > q′ · qε

otherwise. Since χ̄(H) = χ(H̄), our result follows from the construction of
such a graph H.

2.1. Structure and properties of H

The graph H can be intuitively described as a transformation of G which
makes it symmetric under “rotations”. In particular, any r-clique in G would
map to several symmetric images in H which together cover the vertices of
H. On the other hand, the transformation also ensures that ω(H)=ω(G).

Specifically, the graph H is an r-partite graph such that each row of H
corresponds to a distinct row of G. The graph H satisfies the following two
properties:

1. if ω(G)=r then χ̄(H)=q′, and
2. ω(H)=ω(G).
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By the first property above, if ω(G) = r then χ̄(H) = q′. Otherwise,
ω(G) < r

qε and by the second property above, χ̄(H) ≥ (rq′)/ω(G) > q′ · qε.
Thus construction of a H that satisfies the above two properties will give us
the desired hardness result.

2.2. Construction of H

The vertex set. The vertex set of H is defined via an image function that
maps vertices in any row of G to vertices in the corrsponding row of H. If a
vertex v in G maps to a vertex v′ in H, we say that v′ is the image vertex
of v.
The edge set. The edge set of H is constructed as follows. For every
edge (u,v) in G, there is an edge (u′,v′) in H where u′ and v′ are the
images of u and v respectively. We refer to such an edge as a direct edge.
In addition, the edge set of H is extended to include all the rotations of the
above edges as follows. If H contains an edge connecting the ith vertex in
row k to the jth vertex in row l, then we also add to H edges connecting
the (i+a mod q′)th vertex in row k to the (j+a mod q′)th vertex in row l for
every m∈{1, . . .,q′−1}.
The image function. In order to complete our description ofH, it remains
to describe the image function, which maps each vertex v of G to a unique
vertex in H. We start by showing the existence of an injection T , of some
special structure, from any domain [n] to a range [m], when m = nO(1) is
sufficiently large.

Lemma 2.1. For every positive integer n, there exists a function T : [n]→
[m] where m = Ω(n5), such that for every distinct multiset {i1, i2, i3},
i1, i2, i3 ∈ [n], the sum T (i1) + T (i2) + T (i3) mod m is distinct. Moreover,
this implies that the property holds for distinct multisets of size two as well.

Proof. We use an inductive argument to show the existence of a map-
ping which satisfies the property that for every distinct multiset {i1, i2, i3},
i1, i2, i3 ∈ [n], the sum T (i1) + T (i2) + T (i3) mod m is distinct. Suppose
that T (0), . . .,T (l− 1) have already been selected from [m] such that for
0 ≤ i1, i2, i3 ≤ l− 1, all the sums T (i1)+T (i2)+T (i3) mod m are distinct.
An element y ∈ [m] cannot be chosen for T (l) if and only if there are
0≤ i1, i2, i3, i4, i5≤ l−1 such that

T (i1) + T (i2) + T (i3) ≡ T (i4) + T (i5) + y (mod m).
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Therefore, at most l5 elements y are ineligible at any step and if m=Ω(n5),
then the process can be carried through to yield the desired mapping.

Now observe that the mapping T shown to exist above must also satisfy
the property that for every distinct multiset of size two, namely {i1, i2}, the
sum T (i1)+T (i2) mod m is distinct. This follows because if there exists two
distinct mulisets of size two, namely {i1, i2} and {j1, j2} such that

T (i1) + T (i2) ≡ T (j1) + T (j2) (mod m)

then we can simply add the same element y to both multisets and get a
contradiction to the property proven above that the sums of all triplets are
distinct. Finally, it is clearly the case that the mapping T is an injection.

Applying the image function. Let T be the injection shown to exist
above. We apply T to the domain of all vertices of G, i.e., n= rq, and let
q′=m, the size of the range of T . That is,

T : {0, . . ., rq − 1} →
{
0, . . ., q′ − 1

}
.

The image of a vertex v in the ith row of G is the vertex of H which is in
the ith row and column T (v) of H.

2.3. Establishing the properties of H

We now show that H satisfies the two properties mentioned in Section 2.1.

Lemma 2.2. If ω(G)=r then χ̄(H)=q′.

Proof: The graph H is symmetric under rotation; that is, if we let sj(H)
be the graph that results by rotating all the rows of H by j columns to the
right (in a wraparound manner), then for every j ∈ {0, ..,q′}, sj(H) = H.
Now given a clique C of size r in G, consider the set C ′ which consists of
the images in H of the vertices in C. Clearly, C ′ is a clique of H, and due
to the symmetry of H under rotation, C ′ has q′−1 rotational images that
together cover all the vertices of H.

We next show that our transformation preserves the maximum clique
size.

Lemma 2.3. ω(G)=ω(H).
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Proof. Since the image of a clique in G forms a clique in H, it is easily
seen that ω(H)≥ω(G). It remains to show that ω(H)≤ω(G).

An edge (u,v) in G is said to be the origin of an edge e= (u′,v′) in H
if either (i) u′ = T (u) and v′ = T (v), or (ii) e is obtained via a rotation
of the edge (T (u),T (v)). Using the properties of the image function T , we
first show that every edge in H has a unique origin in G. Suppose, to the
contrary, that an edge in H has two origins in G, namely the edges (u1,v1)
and (u2,v2). Then we must have

T (u1)− T (v1) ≡ T (u2)− T (v2) (mod q′).

Then it follows that

T (u1) + T (v2) ≡ T (u2) + T (v1) (mod q′),

which contradicts the properties of T .
Given a clique C ′ in H, consider the origins of the edges connecting the

vertices of C ′ between themselves. We claim that these origin edges are
related to consistent vertex origins in the graph G in the following sense:
there exists a mapping f , from every vertex v′∈C ′, to a vertex v∈G, such
that the origin of the edge (v′1,v

′
2), for v

′
1,v

′
2 ∈C ′, is the edge (f(v′1),f(v

′
2))

in G. Once this is proven, it follows immediately that the consistent vertex
origins of C ′ form a clique in G, giving us the desired result.

Assume, by way of contradiction, that the origins of the edges connecting
vertices in C ′ are not consistent. Then there exists a triangle {u′,v′,w′} such
that the origin of the edge (u′,v′) is (u1,v) and the origin of the edge (u′,w′)
is (u2,w), where u1 
=u2. We show that such a triangle cannot exist in H.

Let (v1,w1) be the origin in G of the edge (v′,w′). Observe that:

T (u1)− T (v) ≡ col(u′)− col(v′) (mod q′)
T (v1)− T (w1) ≡ col(v′)− col(w′) (mod q′)
T (w)− T (u2) ≡ col(w′)− col(u′) (mod q)′

where col(x), for a vertex x of H, denotes the column of x in H. Combining
the above equivalence relationships, we get

T (u1)− T (v) + T (v1)− T (w1) + T (w) − T (u2) ≡ 0 (mod q′),

and therefore,

T (u1) + T (v1) + T (w) ≡ T (v) + T (w1) + T (u2) (mod q′).

By the properties of T , and the fact that the origins of the edges connecting
vertices u′, v′ and w′ are in three distinct parts of G, we can conclude that
u1=u2 (as well as that v1=v and w1=w).

It follows that ω(H)≤ω(G).
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3. Hardness result for large constant values

The preceding construction results in graphs H whose chromatic number is
q′ = nO(1) where n is the number of vertices in the starting graph G. Our
goal now is to adapt the argument in the previous section so that q′ depends
only on q, the maximum number of vertices in any row of G. Starting with
an r-partite graph G such that G has q = O(1) vertices in each row, we
will show that for any constant h there exists a constant kh such that it is
NP-hard to determine whether χ(G)≤kh or χ(G)≥h ·kh.

3.1. Construction of H

The vertex set of H is once again constructed via an image function. Unlike
the earlier construction where the image function T was defined over all the
vertices in G, the domain of T is now only the vertices within a partite set
of G. In other words, the domain of T is restricted to [q]. As a result, several
vertices may now map to the same column in H and thus an edge in H
may not have a unique origin. The analysis of the preceding section can not
thus be carried over directly. In fact, to deal with the situation of multiple
origins, we need to build some additional structure in our graph H.

We will use the mapping T to transform G into a (k · r)-partite graph
H for some integer 1 < k < q, such that if ω(G) = r then χ̄(H) = q′, and
otherwise χ̄(H)> q′·qε

2 . This transformation is better described through an
intermediate graph G′ where the graph G′ is also a (k ·r)-partite graph.
The intermediate graph G′. For every row of G, we include a block of k
rows in G′ such that the jth row in the block corresponding to the row i of
G is simply the ith row shifted by j columns to the right in a wraparound
manner. Thus each vertex of G has k copies in the graph G′. For every edge
(u,v) in G, we insert an edge between every copy of vertex u and every
copy of vertex v in G′. While doing so, we assume that each vertex of G is
connected to itself. Thus all the k copies of any vertex form a clique in G′.
It is easy to see that ω(G′)=k ·ω(G).
Transforming G′ to H. We now transform G′ to a graph H in a manner
somewhat similar to the one described in Section 2. We apply the mapping
T to the vertices in each row of G′, however, the domain of the mapping is
now restricted to [q]. The edge set of H is constructed via direct and rotated
edges as before. For every edge (u,v) in G′, we have an edge (T (u),T (v))
in H. We extend this edge set by including all the rotations of these edges.
Let v be the kth vertex in the jth row of G, and let x be the vertex which is



ON THE HARDNESS OF APPROXIMATING THE CHROMATIC NUMBER 401

the copy of v in the ith row of the jth block of G′, then the image of x is the
vertex of H which is in the ith row of the jth block and column T (k+i mod q)
of H.
When the edge origins are not unique. As noted earlier, a consequence
of the fact that the domain of T is now restricted to [q] is that an edge
(u′,v′) in H may now have multiple origins in G′. However, the following
proposition shows that this can happen only when u′ and v′ are in the same
column in H.
Proposition 1. Every edge (u′,v′) in H such that col(u′) 
= col(v′) has a
unique origin edge in G′.
Proof. Consider an edge (u′,v′) in H which has at least two distinct origin
edges, say (x1,y1) and (x2,y2). Then we must have

T (x1)− T (y1) ≡ T (x2)− T (y2) (mod q′).

By the special property of T , we can conclude {x1,y2}={x2,y1}. But since
(x1,y1) and (x2,y2) are distinct edges, either x1 
=x2 or y1 
= y2. So it must
be the case that x1 = y1 and x2 = y2. This immediately implies col(u′) =
T (x1)=T (y1)=col(v′).

3.2. Relating ω(G) and ω(H)

We will now relate the clique numbers of the graphs G and H. Unlike the
previous section where we obtained matching upper and lower bounds on
ω(H) in terms of ω(G), we now characterize a range of values where ω(H)
may lie.

Lemma 3.1. k ·ω(G)≤ω(H)≤k ·ω(G)+r.

Proof. Since the image of any clique C in G′ forms a clique in H and
ω(G′) = kω(G), it is easy to see that ω(H) ≥ k ·ω(G). We now show that
ω(H)≤k ·ω(G)+r.

To see this, consider any clique C ′ in H. Ignore any blocks in H where
the clique C ′ contains at most one representative. Thus we restrict ourselves
to a subset C ′′ ⊆ C ′ such that in every block of H, C ′′ either has zero or
at least two representatives. Clearly, |C ′| ≤ |C ′′|+ r because C ′ can have
precisely one representative in at most r blocks. Let b denote the number of
blocks in H such that C ′′ contains at least two representatives in them. We
will show that ω(G)≥b.
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Assigning vertex origins. Consider now an edge connecting two vertices
u′,v′∈C ′′ such that u′ and v′ are in the same block of H. We claim that it
must be the case that these two vertices are in different columns and thus
the edge (u′,v′) has a unique origin in G′. This follows rather easily from
the observation that for every edge (u,v) in G′ such that u and v are in
the same block (and thus they are the copies of the same vertex x in G),
T (u) 
=T (v). We further use this observation to define a labeling L for each
edge e=(u′,v′) where u′,v′ are in the same block in H. We define L(e)=x
if the edge (u,v) is the origin of the edge (u′,v′) and u′,v′ correspond to two
different copies of the vertex x in G.
Vertex origins form a clique. We now show that for any edge e1 =
(u′1,w

′
1) in a block B1 of H, and an edge e2=(u′2,w

′
2) in a block B2 of H (B1

and B2 may be the same blocks), such that u′1,u
′
2,w

′
1,w

′
2 form a 4-clique in

H, it must be the case that L(e1) is connected to L(e2) in G. Therefore, the
labels of the edges connecting vertices (within the same block) in C ′′ form
a clique in G, which implies our claim that ω(G)≥b.

Since u′1 and w′
1 are in different columns, as well as u′2 and w′

2, we can
assume, without loss of generality, that u′1 and u′2 are in different columns
(as well as w′

1 and w′
2). Hence, the origin in G′ of the edge (u′1,u

′
2) in H is

uniquely defined, say (z1,y2); we show that z1 is a copy of L(e1) and y2 is a
copy of L(e2) in G′, which are connected in G′, hence L(e1) is connected to
L(e2) in G.

Let (x1,y1) be the origin in G′ of the edge (u′1,w
′
1), we show that it must

be the case that x1 = z1. A similar argument shows that the origin of e2 is
consistent with the origin of (u′1,u

′
2).

We break the argument into two cases:

– w′
1 and u′2 are in different columns. The same argument as the triangle

argument from the last section applies.
– w′

1 and u′2 are in the same column. It must be the case that

T (x1)− T (y1) ≡ T (z1)− T (y2) (mod q′).

Using the special property of T , we know that {x1,y2}= {z1,y1}. Since
T (x1) 
=T (y2), it must be the case that x1=z1.

3.3. Putting together

This characterization immediately yields our goal concerning the chromatic
number of H̄ since, if ω(G)=r, then H contains a clique C ′ of size k·r which
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along with its q′−1 rotational images covers all the vertices in H and thus
χ̄(H)=q′. Otherwise, ω(G)< r

qε and therefore,

ω(H) <
k · r
qε

+ r .

By choosing k = �qε�, we get ω(H) < 2k·r
qε . Now simply dividing the total

number of vertices in H by the size of the largest clique in H, we get χ̄(H)>
q′·qε

2 .

4. Hardness result for fixed constant values

The hardness result of the preceding section tells us that chromatic number
is hard to approximate to within any constant when the optimal value itself
is allowed to be a sufficiently large constant. But what happens when the
graphs is k-colorable for some small integer k ≥ 3? Specifically, we now
focus on the hardness of approximating the chromatic number on 3-colorable
graphs. We will show the following theorem:
Theorem 1. (Main) It is NP-hard to color a 3-colorable graph with 4 col-
ors.

A straightforward corollary of the above theorem is as follows.
Corollary 1. For any k ≥ 3, it is NP-hard to color a k-chromatic graph
with at most k+2�k

3	−1 colors.
To establish our main theorem, we start with an r-partite graph G =

(V,E) that either has an r-clique or every clique of G contains less than r
2

vertices. It is NP-hard to distinguish between these two cases [9,2]. Given
such a graph G, we construct a graph H such that χ̄(H)=3 when ω(G)=r
and χ̄(H)≥5 when ω(G)< r

2 . Clearly, Theorem 1 follows from the construc-
tion of such a graph H.

For the purpose of this reduction, we assume that every vertex of G
is connected to itself, and that every vertex is connected to at least one
vertex in each row of G. It is easily verified that any given G can always be
transformed into a graph G′ such that G′ satisfies both these assumptions,
and ω(G′)=r if and only if ω(G)=r and ω(G′)< r

2 otherwise.

4.1. The structure and properties of H

The graph H is a multi-partite graph with exactly 3 vertices in each partite
set (arranged in 3 columns, denoted 0, 1 and 2). Each row of graph G maps
to a block of O(q) rows in H where q is the maximum number of vertices
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in any row of G. Thus the total number of rows as well as the total number
of vertices in H is O(rq). As in our previous constructions, the graph H is
symmetric under rotations. H satisfies the following two properties:

1. if ω(G)=r then χ̄(H)=3, and
2. if χ̄(H)≤4 then ω(G)≥r/2.

As indicated above, this would immediately imply Theorem 1. In what
follows, we first decribe how H is constructed and then establish each of the
above properties.

4.2. Construction of H

The vertex set. A row in the ith block of H is associated with an ordered
3-way partition of the set of vertices of the ith row of G. Each vertex in a
row in the ith block of H can be labeled by a subset of the vertices of the ith

row of G, which we refer to as the label set of that vertex. The ith block of H
consists of 5qi−7 rows where qi is the number of vertices in the ith row of G.
The edge set. The edges of H are determined by the label sets of the
vertices. A vertex labeled by a set X is connected to a vertex labeled by
a set Y if there exists u ∈X and v ∈ Y such that u and v are connected
in G. Note that due to our assumption that each vertex of G is connected
to itself, two vertices in the same block of H whose label sets have a non-
empty intersection are connected in H. The edges inserted in this manner
are referred to as direct edges.

In addition, the edge set of H is extended to include all the rotations
of the above edges as follows: If H contains a direct edge connecting the
i
th vertex in row k to the jth vertex in row l, then we also add to H edges
connecting the (i+1 mod 3)th vertex in row k to the (j+1 mod 3)th vertex in
row l, and similarly between the (i+2 mod 3)th and (j+2 mod 3)th vertices
in these rows.

For conciseness, a row whose vertices 0, 1 and 2 have labels X, Y and Z
respectively, is said to have a row label of the form

X Y Z ,

and we often abbreviate it as 〈X,Y,Z〉.
In order to fully describe H, it now only remains to describe the ordered

partitions associated with each of its rows.
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The ordered partitions. Let Q={v1, . . .,vq} denote the set of vertices in
the ith row of G, and for 1≤ j < q, let Xj = {vj+1, . . .,vq}, Yj = {v1, . . .,vj}
and Zj =Xj ∪Yj−1=Q−{vj}). We now describe how the ith block of rows
in H is constructed.

– The first row is the trivial partition, corresponding to having all vertices
in one set:

Q ∅ ∅ .

– For 1≤j<q, H contains the following pair of rows:

Xj Yj ∅
Yj Xj ∅ .

– In addition, for 1 < j < q, H contains a pair of rows whose labeling
corresponds to a partition that singles out the unique vertex not included
in Zj :

Zj {vj} ∅
{vj} Zj ∅ .

– Finally, for 1<j<q, H contains a single row with the label

Xj Yj−1 {vj} .

4.3. A clique of size r in G implies a 3-coloring of H̄

The following lemma directly follows from our construction of the graph H.

Lemma 4.1. If ω(G)=r then χ̄(H)=3.

Proof. Let C = {v1, . . .,vr} be the set of vertices forming a clique of size
r in G. Clearly, each row of H contains one vertex whose labeling contains
some vi∈C; let C0 be the set of those vertices in H. By the construction of
the edge set of H, C0 constitutes a clique with a representative in every row
of H. Since the graph H is symmetric under rotation, C0 has two rotational
images, C1 and C2, that together cover all vertices in all rows in H.
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4.4. A 4-coloring of H̄ implies a large clique in G

Our objective now is to show that χ̄(H)≤4 implies ω(G)=r. We will show
that if χ̄(H)≤4 then ω(G)≥ r

2 , which, by the constraint on the values taken
by ω(G), implies that ω(G) must be r.1

We now give an overview of the main ingredients of our proof. Our start-
ing point is a 4-clique cover of H. We will show that any 4-clique cover of
H can be used to identify a representative vertex in each row of G such
that these representative vertices induce a union of two clique graphs in G.
Clearly, one of the two cliques must be r/2 in size, giving us the desired
result. Broadly speaking, there are four main steps in our proof:

1. The first step is to modify any given 4-clique cover ofH into one satisfying
a certain property. Once this is done, we identify three cliques in the cover
as the critical cliques and the fourth one is refered to as the non-critical
clique (Section 4.4.1).

2. Next we introduce a notion of voting and election of vertices of H by the
critical cliques. In particular, we show that under our notion of election, in
every pair of rows of the form {〈L0,L1,∅〉,〈L1,L0,∅〉}, the critical cliques
elect either L0 or L1 (Section 4.4.2). This notion of election plays a central
role in identifying the representative vertices in the rows of G.

3. The third step is to show that in every block of rows in H, there exists
a pair of the above form such that the set elected is a singleton (Sec-
tion 4.4.3). These singletons in H have a one-to-one correspondence to
the representative vertices in G described above.

4. Finally, let SCLQ={v1, . . .,vr} be set of elected singletons as indentified
in the preceding step; each vi correponds to a vertex from a distinct row
in G. We now show that SCLQ can be partitioned into two sets S1 and
S2 such that each set induces a clique in G. This suffices to conclude that
ω(G)≥ r

2 (Section 4.4.4).

4.4.1. The critical cliques

We start by showing how to transform the given 4-clique cover to one that
satisfies a simple property. Consider the ith block of rows in H. There are
three cliques that contain a vertex in the row whose label is of the form
〈Q,∅,∅〉, where Q denotes the set of vertices in the ith row of G. To each of
these cliques we assign a shift, which is either 0,1 or 2, according to whether
the clique contains the first, second or the third vertex respectively.

1 As an aside, it may be noted that by Lemma 4.1, this in turn implies that χ̄(H)=3.
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Observe that the vertices in two rows (in different blocks) with row labels
of the above form, are connected only if they appear in the same column.
Hence a clique is assigned in this manner at most one shift value over all
the blocks in H. However, one of the shift values may be assigned to two
cliques, say C and C ′. If this were the case, we replace all occurrences of
one of the two cliques, say C ′, with the clique C in each row of the form
〈Q,∅,∅〉. It follows easily from the structure of H and the assumption that
any vertex in G is connected to at least one vertex in every row of G that
the modified C still induces a clique in H.

So we can assume from now on that all the rows of the above form are
covered by a fixed set of three cliques in the 4-clique cover of H. Let C0, C1

and C2 denote these three cliques; Ci is the clique that is assigned a shift
value of i in every block of H. We refer to these three cliques as the critical
cliques while the remaining clique (which may be empty), denoted by CN ,
is referred to as the non-critical clique.

4.4.2. The voting and election scheme

The voting scheme. In any row of H, whose label is of the form
〈L0,L1,L2〉, we say that the critical clique Cs votes for Li if Cs contains
the vertex with label Lj where i≡ (j− s) mod 3. That is, C0 votes for the
set that labels the vertex it contains, while C1 and C2 vote for the set la-
beling the vertex to the immediate left and right (in a wraparound manner)
respectively, of the vertex that they contain in the above row. Thus in a
row whose label has the form 〈Q,∅,∅〉, each of C0, C1 and C2 vote for Q.
Roughly speaking, this voting procedure is helping us identify one of the
critical cliques in the cover as a direct image of some clique in G (the clique
C0), and the remaining two critical cliques as shifted images of it.

Let us now consider a pair of rows in the same block of H which have
the form

L0 L1 ∅
L1 L0 ∅

and consider the votes that may be casted by the critical cliques in that
pair. The following propositions summarize some useful observations.
Proposition 2. In a row whose row label is of the form 〈L0,L1,∅〉, no crit-
ical clique can vote for the empty set.
Proof. By definition, the critical clique Ci appears in the column i of the
row whose label is of the form 〈Q,∅,∅〉. By our construction of the edge set
of H, Ci can only appear in the columns i and (i+1) mod 3 of the given row.



408 SANJEEV KHANNA, NATHAN LINIAL, SHMUEL SAFRA

So it can only vote for either the entry in column 0 or the entry in column
1 of the given row. The proposition follows.

Proposition 3. In a pair of rows of H of the form {〈L0,L1,∅〉,〈L1,L0,∅〉},
the following two properties are always satisfied :

(a) a critical clique which appears in both rows either votes for L0 in both
rows or votes for L1 in both rows, and

(b) two critical cliques which appear in both rows, either together vote for
L0 or together vote for L1.
Proof. By Proposition 2, we know that a critical clique only votes for L0

or L1 in either of the two rows. Since there are no vertical edges between
the two rows, it cannot vote for L0 in one row and L1 in the other row of
the pair. This gives us property (a).

To see property (b), consider a critical clique, say Ci, which appears
in both rows. By property (a), it either votes for L0 or L1 in both rows.
Without loss of generality, assume it votes for L0 in both rows. Then the
vertex which corresponds to the critical clique C(i+1) mod 3 voting for L1

in the second row of the pair, is taken by Ci. Similarly, the vertex which
corresponds to C(i+2) mod 3 voting for L1 in the first row of the pair, is also
taken by Ci. Thus if either C(i+1) mod 3 or C(i+2) mod 3 also appears in both
rows of the pair, it must also vote for L0.

The election scheme. We say that the label Li is elected in the above
pair of rows if the majority (i.e. two) of the critical cliques vote for Li,
i= {0,1}. The following is a straightforward consequence of the preceding
two propositions.

Lemma 4.2. In a pair of rows of H of the form {〈L0,L1,∅〉,〈L1,L0,∅〉},
majority is always defined.

Proof. If all three critical cliques appear in this pair of rows, majority is
clearly defined by Proposition 3(a). On the other hand, if only two of the
critical cliques appear in this pair of rows (i.e., the pair of rows is covered
by only three cliques), then each of these two critical cliques appears in
both the rows and therefore by Proposition 3(b), both of them must vote
for either L0 or L1.

For example, in Figure 1., C0 votes for L0 while C1 and C2 vote for L1.
Hence L1 is elected in this pair of rows.
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Fig. 1. An example of critical cliques electing L1

4.4.3. Every block elects a singleton

We have established so far that in every pair of rows of the form
{〈L0,L1,∅〉,〈L1,L0,∅〉}, either L0 or L1 must get majority of the votes. Our
next goal is to show that among all such pairs of rows in a block, there exists
one such that the set elected is a singleton set.

Lemma 4.3. In every block Bi of rows in H, there exists a pair of rows
corresponding to the partition of the form 〈Q−{vj} ,{vj} ,∅〉 where Q =
{v1, . . .,vq} is the set of vertices in the i

th
row of G, such that {vj} is elected

by the majority of the critical cliques in this pair.

Proof: Recall thatXj ={vj+1, . . .,vq}, Yj ={v1, . . .,vj} and Zj =Xj∪Yj−1,
where 1≤ j < q. Now consider the sequence of pairs of rows with the row
labels of the form:

Xj Yj ∅
Yj Xj ∅ .

If either Y1={v1} is elected in the first pair (j=1), or Xq−1={vq} is elected
in the last pair (j= q−1), we are done. Otherwise, there must be a switch
point k∈ [2..q−1] such that Xk−1={vk, . . .,vq} is elected in the (k−1)th pair
and Yk={v1, . . .,vk} is elected in the kth pair. We show that then it must be
the case that {vk} is elected in the pair of rows with row label of the form:

Zk {vk} ∅
{vk} Zk ∅ .

Suppose by way of contradiction, the vertex with label Zk is elected in the
above pair of rows. We then show that it is impossible to cover all three
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vertices in the row R below:

R : Xk Yk−1 {vk} .

Specifically, we will argue that at most one critical clique can be present in
R. Since a non-critical clique can cover at most one vertex in any row, this
will contradict the fact that we started with a 4-clique cover of H.

Consider the three pairs of rows which corresponds to the following three
partitions:

– the partition just before the switch: 〈Xk−1,Yk−1,∅〉,
– the partition just after the switch: 〈Xk,Yk,∅〉, and
– the partition that singles out the vertex that causes the switch:

〈Zk,{vk} ,∅〉.
A critical clique Ci that contains a vertex in row R votes for one of

Yk−1,{vk} or Xk. LetW denote this set. Clearly, one of the above three par-
titions has the form 〈W,Q−W,∅〉. Let P be the pair of rows corresponding
to this partition. By our assumption, the label Q−W is elected in P . The
critical clique Ci cannot vote for Q−W in P since Ci votes for W in R and
the edges connecting the vote for W in R to the votes for Q−W in P do not
exist in H (there are three direct edges connecting a row in P to R, however,
none is a rotation of the edge that if existed in H were to connectW in R to
Q−W in P ). Therefore, it must be the case that the two remaining critical
cliques, namely C(i+1) mod 3 and C(i+2) mod 3, vote for Q−W in P (otherwise
Q−W would not have been elected in P ).

Let j1 
=j2∈{0,1} be the columns, of the vertices in the first and second
rows of P respectively, that are labeled by Q−W . Consider the vertex in the
first row and the (j1+i) mod 3 column of P , and the vertex in the second row
and (j2+i) mod 3 column of P (if the critical clique Ci were to vote for Q−W ,
it would cover at least one of these two vertices). These two vertices cannot
be contained in the critical cliques C(i+1) mod 3 or C(i+2) mod 3 as this would
mean these cliques do not vote for Q−W , which then could not have been
elected. Therefore, these two vertices must be contained in the remaining
non-critical clique CN (see Figure 2.). Thus CN contains vertices in both
column i and column (i+1) mod 3 (this follows because j1 
=j2∈{0,1}).

Now if another critical clique, say Ci′ (i′ 
= i), appears in row R voting
for some set W ′, there exists a different pair of rows, say P ′, such that it
corresponds to a partition of the form 〈W ′,Q−W ′,∅〉 and by our assump-
tion, the label Q−W ′ is elected in P ′. By applying the same argument as
before, we can conclude that CN must contain a vertex in column i′ and a
vertex in column (i′+1) mod 3 of this pair. This means CN contains vertices
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in all three columns in the pairs P and P ′. However, taking into account
the edges connecting pairs P and P ′, this contradicts the following simple
proposition:
Proposition 4. In any block of H, consider a pair of rows, say P1, with
labels of the form:

L0 + S L1 ∅
L1 L0 + S ∅ .

Suppose a clique C in H contains a vertex i, for i∈{0,1,2}, in the first row
and vertex (i+1) mod 3 in the second row (i.e., some shift of a choice that
corresponds to label L0+S). Now consider the pair of rows, say P2, with row
labels of the form :

L0 L1 + S ∅
L1 + S L0 ∅ .

Then C cannot contain in this pair of rows a vertex in the (i+2) mod 3
column.
Proof. Simply observe that the vertex i in the first row of P1, is not
connected to the vertex (i+2) mod 3 in the first row of P2 and similarly, the
vertex (i+1) mod 3 in the second row of P1, is not connected to the vertex
(i+2) mod 3 in the second row of P2.

Consequently, only one critical clique can appear in R and thus all the
vertices of R could not have been covered by this clique cover. This is a con-
tradiction. We therefore conclude that the vertex with label {vk} is elected
in the pair of rows corresponding to the partition 〈Zk,{vk},φ〉.

4.4.4. The singletons form at most two cliques in G

Our final goal now is to show that the set of vertices formed by the singleton
sets elected in each block (we associate exactly one singleton set with each
block), is indeed the set SCLQ we described earlier. This clearly will complete
the proof of our main theorem.

Lemma 4.4. Let SCLQ={v1, . . .,vr} be a set of vertices of G, such that vi

belongs to the i
th
row of G and {vi} is elected in the i

th
block of H. Then

SCLQ is a union of two cliques in G.
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Fig. 2. Critical cliques C0 and C1 vote for Yk−1 and vk, respectively, in row R. This
forces the non-critical clique CN to cover 4 vertices, as shown, that do not induce a

clique in H .

Proof. Let Qi denote the set of vertices in the ith row of G, where i ∈
{1, . . .,r} and let Pi denote a pair of rows of the form

Qi − {vi} {vi} ∅
{vi} Qi − {vi} ∅,

where vi∈Qi. We say that CN holds {vi} with shift j∈{0,1,2} in Pi if CN

contains both the vertex in the (j+1 mod 3)th column of the first row, and
the vertex in the jth column in the second row.

We define S1⊆SCLQ to be the set of vertices vi such that, in the pair of
rows Pi, CN holds {vi} with some shift j∈{0,1,2} and let S2=SCLQ−S1.
We claim that S1 and S2 each form a clique in G.
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S2 induces a clique in G. Let us first look at the easier case which is that
of S2. In each Pi, such that vi ∈ S2, CN does not hold {vi} with any shift
j. Therefore, every critical clique that contains a vertex in Pi votes for {vi}
and hence it must be the case that one of the critical cliques votes for {vi}
in Pi and {vi′} in Pi′ , and contains 3 vertices in these four rows. This is not
possible unless vi is connected in G to vi′ .
S1 induces a clique in G. We now focus on the set S1. Consider any pair
of vertices vi,vi′ ∈S1. By our construction of S1, there exists j,j′ ∈{0,1,2}
such that CN holds {vi} with shift j in Pi and {vi′} with shift j′ in Pi′ . We
argue that unless vi and vi′ are connected in G, both vi and vi′ could not
have been elected.

For clarity of exposition, let us represent the pair of rows Pi and Pi′ such
that their first row is shifted one column to the left (note that we are not
changing the edge set of H).

Pi : {vi} ∅ Qi − {vi}
{vi} Qi − {vi} ∅

Pi′ : {vi′} ∅ Qi′ − {vi′}
{vi′} Qi′ − {vi′} ∅

The following proposition can be easily verified now.
Proposition 5. Unless vi is connected to vi′ in G, H has no vertical edges
connecting a vertex in the first (second) row of Pi to a vertex in the second
(first) row of Pi′ .

By our assumption, CN holds {vi} with some shift j in Pi and holds
{vi′} with some shift j′ in Pi′ . Note that this implies that CN contains both
vertices in column j in Pi as well as both vertices in column j′ in Pi′ . If
j= j′, there exists a column such that CN contains a vertex in this column
in the first (second) row of Pi as well as in the second row of Pi′ . In this
case, we are done by Proposition 5. So we assume from now on that j 
= j′.
Let α ∈ {0,1,2} be such that α 
= j and α 
= j′. Observe that CN does not
contain any vertices in column α.

Since vi and vi′ are elected, it must be the case that (a) the critical
cliques with shifts j′ and α constitute the majority of votes in Pi, and (b)
the critical cliques with shifts j and α constitute the majority of votes in
Pi′ . As Cα votes for {vi} in Pi and {vi′} in Pi′ , it follows that Cα contains
vertices only in column α.

Assume by way of contradiction that vi is not connected to vi′ . Then by
Proposition 5, Cα either contains vertices only from the first row of Pi and
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the first row of Pi′ , or the second row of Pi and second row of Pi′ . However,
using the facts (a) and (b) above, a straightforward case analysis shows that
Cj and Cj′ can cover the vertices in column α of Pi and Pi′ in only one of
the following two ways:

– clique Cj contains the vertex in the first row in column α of Pi and the
clique C ′

j contains the vertex in the second row in column α of Pi′ , or
– clique Cj contains the vertex in the second row in column α of Pi and

the clique C ′
j contains the vertex in the first row in column α of Pi′ .

In either case, we are left with one vertex in column α of the rows in Pi

and Pi′ that is not covered by any of the 4 cliques. This contradicts the fact
that these cliques constitute a clique cover of H. Hence vi must be connected
to vi′ in G.

Concluding remarks. The obvious open problem is to tighten the gap
between the known positive and negative approximability results for the 3-
coloring problem. Another interesting problem is to show the hardness of
coloring a k-colorable graph with f(k) colors where f(k) grows faster than
any constant power of k.
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