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GRAPHS 

The following computational problem was initiated by Manber  and Tompa (22nd FOCS 
Conference, 1981): Given a graph G=(V, E) and a real function f :  V ~ R  which is a proposed ver- 
tex coloring. Decide whe ther f i s  a proper vertex coloring of G. The elementary steps are taken to be 
linear comparisons. 

Lower bounds on the complexity of this problem are derived using the chromatic polynomial 
of G. It is shown how geometric parameters of a space partition associated with G influence the 
complexity of this problem. 

Existing methods for analyzing such space partitions are suggested as a powerful tool for 
establishing lower bounds for a variety of computational problems. 

1. Deciding the legality of a graph coloring 

Let G=(V, E) be a graph and let f :  V~R be a real function which is a 
proposed vertex coloring of G. We are to determine whether or not f i s  a proper color- 
ing, namely, whether or not for every two adjacent vertices x, y we have f (x)  gf(y).  
The elementary step is one linear comparison. 

The element uniqueness problem which was investigated by Dobkin and Lipton 
[1] is lhe following:Given n reals f~, ... , f ,  decide whether or not they are mutually 
distinct. The elementary steps are linear comparisons. This problem is the case of the 
legal coloring problem where the graph G is K,, the complete graph on n vertices. The 
article [1] serves as the starting point for Manber and Tompa [5] who were the first to 
consider the legal coloring problem. Following [1] they transform the combinatorial 
problem into an equivalent geometric problem. The defining parameters of the geo- 
metric objects involved can be used to derive lower bounds for the complexity of the 
legal coloring problem. Letting V= V(G) be denoted by {al . . . .  , a, } we associate 
with G a subset of R" as follows: 

S(G) = {(xl . . . .  , x,,)ER"lxi ~ x i if [a,, aj]CE(G)}. 

The geometric equivalent of the legal coloring problem is the question whether 
f=( f (a l )  ..... f(a,,)) belongs to S(G) or not. To be able to apply the methods of [1] 
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one needs to know the number of connected components of S(G). The answer to this 
is implicit in [2] and related results were subsequently obtained by Zaslavsky [9], [I0]. 

Theorem 1. [2], [5, Theorem 2]. Let G be a graph with a(G) acyclic or&ntations. There 
are a(G) connected components in S(G). 

The main tool from [I] is: 

Lemma 2. [1]. Let SC=R" be an open set with k connected components. Consider the 
problem of deciding J or x E R" whether or not x belongs to S, using lhwar comparisons. 
This problem requires at least logz k steps. 

(All logarilhms in this paper are base 2). 
The conclusion that is derived is: 

Theorem 3. [5]. Let G = (V, E) be a graph and consider the problem of deciding whether 
a given vertex coloring is legal, using linear comparisons. In worst case log a(G) steps 
are required. 

Most of the discussion in [5] concentrates around finding lower bounds on a(G) 
given the numbm of vertices and the number of edges in G. In this article we find the 
exact minimum and we solve, in fact, a much more general problem. 

We also point out that a large variety of computational problems can be res- 
tated as: "Decide for a point xER', whelher x belongs to S". The set S would typi- 
cally be a space partition or a polyhedral set. The geometric parameters of S can be 
used to estimate the complexity of the computational problem. The methods deve- 
loped by Zastavsky ([9], [10]) to compute those parameters can be used to realize this 
general plan. 

We start with a theorem of Stanley [8]: Let G = (V, E) be a graph, let D be an 
acyclic orientation of G and let f :  V~ {l . . . .  , k} be a mapping. We say that f is a k- 
partition compatible with the orientation D if the edge Ix, y]EE being oriented from 
x to y in D implies that f(x)<=f(y). 

Theorem 4. [8]. Let G be a graph on n vertices whose chromatic polynomial is P(G, 2) 
and let k be a natural number. Then ( -  1)'P(G, - k )  equals the number of  pairs ( D, f )  
where D is an acyclic orientation of  G and f a compatible k-partition. In particular, 
a(G) = IP(G, - 1)I. 

To state our result let us define for integers k>l>=O the graph Ak, z which 
consists of a complete graph on k vertices and one more vertex which has I neighbors 
among the vertices of the complete k-graph. Notice that P(A~, z, 2) = (2 - l) 2 ()~ - 1)... 
. . .(;~-k + 1). 

TheoremS. Let m, n be integers with ( ; )~m~O,  and let k, l be the integers defined by 

m=(~)+l,k>l>=O. Let B=B,,,, be the graph obtainedby adding n - k - 1  isolated 

vertices to Ak, t. I f  G is a graph on n vertices with m edges, then for any integer 2, 
IP(6, ).)I:>IP(B, )o)1 holds. 

Proof. We need a lemma: 
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Lemma 5.1. Let G=(V, E) be a graph and let xC V have degree d=d(x). For an 
integer 2 with 2_<-0 or 2->d, IP(G, 2)[>- - 1(2-d) .  P(O-~x, 2)1 holds. 

Proof, Let us start with 2->d: Any k-coloring of  G \ x  can be extended to a 2-color- 
ing of G in at least 2 - d  different ways, so P(G, 2 ) - > ( 2 - d ) .  P(G\x ,  4)->0. For  2 =  
= - t < 0  consider an acyclic orientation of G and a compatible t-partition ~p. Sup- 

pose that x has di neighbors in Ci=q~-l(i),  so d =  ~ d i. We want to show that 
i = 1  

the orientation and the partition of G',,,x can be extended to an orientation and a 
compatible t-partition of G in at least (d+t) different ways. Let us extend 9 so that 
q~(x)=i, for some t=>i->l. The compatibility condition dictates the orientation of 
all edges incident with x, except for those d i whose other vertex is in Ci. We show 
d i + 1 different ways to extend the orientation so lhat it remaines acyclic. Notice that 
compatibility is already granted. Since the orientation of G \ x  is acyclic, we can order 
Y~ . . . . .  Ya.~, the neighbors o f x  in C~ in such a way that if there is a directed path from 
y,  to y.p m G \ x ,  then cz>fl. Pick any d~>=s->O and consider the orientation where 
we orient (x, yj) for s->./->l and ()5, x) for di>-j>-s+l. For each value o f s  we 
get a different acyclic orientation, altogether d i + l  orientations. Summing over 

t->i>-I weget  ~ ( d i + l ) = d + t  extensions and the lemma foUows. II 
i = 1  

We can proceed now to complete the proof  of theorem 5. For  integers 2 in the 
range k->2->0 we have P(B, 2 )=0  and the claim is obvious. For 2 outside this 
range we use induction on m. For small m the claim is easy to verify. We want to 
show next that the average degree of vertices in G must be strictly less than k. Since 

n m st at'e. t , ,  , f  + 1, 
k- -1  

use the fact that nk/2->(k + 1)k/2>m to conclude that 2m/n, the average degree in 
G is strictly less than k. Let us pick a vertex x with degree d=d(x)<-k-1. Denote 
G'-,,x by G" and apply induction to G'. We use the facts that 

P(Ak,,, 2) = (2--I) 2(2-- 1)...(,~-- k + l) 
and 

P(Bm.,, 4) = (2 -- /) 2"- k (2 - 1)...(2--k + 1). 

We consider two cases: 

Case 1. d<=l. 
In this case G' has n - 1  vertices and m - d  edges and so for all integral 2: 

IP(G', 2)1 -> IP(B', 2)1 holds, where B" is the graph obtained by adjoining n - k - 2  
isolated vertices to Ak, z-d. Now by Lemma 5.1, ]P(G, 2)I->](2-d).P(G', 2)[, and 
all we have to verify is that ](2-d).P(B',  2)[=>IP(B, 2)] where B=B~,, so that 
P(B, 2)=(2- / ) .2"-k(2-1) . . . (2-k+l)  and P(B' ,2)=(2-l+d).2"-k-a(2-1). . .  
. . . ( 2 - k + l ) .  This reduces to ](2--d)(2-l+d)l->]2(2-l)l where 2>k>l->d->O 
or l->d->0>2. This is easily verified. 

Case 2. d>l. 
Here B'  is obtained by adding n - k - I  isolated vertices to A~-l,k+,-d-~. 

Therefore 
B(B', 2) = ( 2 + d  + 1 - k - / ) 2 " - k  (), - 1 ) . . . ( 2 -k+2) .  
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The calculations are as above and reduce to showing I(2-d)P(B',  2)]=~IP(B, 2)1 
that is, ] ( 2 - d ) ( 2 + d + l - k - l ) l > - ( 2 - l ) ( 2 - k + l ) ] ,  where 2>k>d>l>=O or 
k>d>l>=O>2, which is easily verified. This completes the proof of theorem 5. Let 
us only remark that by carefully analyzing the cases of equality one can show that 
Bin,, is the unique graph for which the minimum is attained. II 

Theorem 3 and 5 can be combined to deduce 

Theorem 6. Let G be a graph with m edges and consider the problem of  deciding the 
legality of  a vertex colorh~g of G. It takes at least 

/ [ 2  log m +O (l/m) 

linear comparisons in the worst case. I 

2. Further lower bounds on the complexity of legal coloring 

The basic Lemma 2 has been generalized by several authors [6], [7]. The more 
general lower bounds can be applied to our problem and we show how: A subset S of 
R" is said to be polyhedral if each of its connected components in the intersection of 
finitely many halfspaces. The number of t-dimensional faces of S is denoted by f ( S ) .  
We refer the reader to [3] for background on polyhedra. 

Lemma 7. Let S c= R" be an open polyhedral set and consider the problem of  deciding 
for x(R" whether x is in S using linear comparisons. I f  op is the least number of steps 
in the worst case, then 

2°P t 

Notice that Lemma 2 is the case t--- n of Lemma 7. To be able to apply Lemma 7 
to derive lower bounds on the complexity of the legal coloring problem we need to 
relate .£(S(G)) to some graphic parameters of G. This has been done by Zaslavsky in 
[10] and we describe his solution : For a set of edges T ~  E in G we denote by Gr the 
pseudo-graph which results by contracting all edges in T. Notice that Gr may have 
loops in which case it has no acyclic orientations and so a(Gr) =0. 

Theorem 8. [10]: For a graph G =( V, E) on n vertices 

f (S(G))  = X a(Gr) ( n ~ t ~ O ) .  II 
T~E 

[rl=,-r 

Combining the last two results we have: 

Theorem 9. For a graph G=(V, E) i f  op is the least number of linear comparisons 
required in the worst case to decide the legal coloring problem for G, then 

rc__E, Ir l=f  
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3. Directions for further research 

1. The quality of our lower bounds: The lower bound derived in [1] for the 
element uniqueness problem is quite sharp---by sorting lhe vector 97=(f  1 . . . . .  f , )  
in n . log  n steps the problem can be decided. It would be very interesting to find 
such algorithms for the general cases of the legal coloring problem. 

2. Just as legal coloring is the general case of  lhe element uniquness problem 
one can ask questions on directec acyclic graphs which when specialized to the com- 
plete graphs are classical search--sort problems. Here are two examples: 

a) The general case of the sorting problem. Given a graph G there is an un- 
known acyclic orientation on G that we are supposed to discover by successively asking 
the orientations of  specific edges in G. How many steps are needed in worst case? 

b) The general case of the maximum problem. Same set up as in a. Find a 
source of  the unknown acyclic orientation of G. 

3. Maximizing a(G): An interesting question raised in [5] is to find lhe maxi- 
mum ofa (G)  given n and m, the number of vertices and edges in G. More generally 
one can ask for max [P(G, 2)1 as we did in this article. Our knowledge about this 
problem is very fragmentary and we mention some of our results without proof. 

a) We have a(G)<=[[ max(2, d(x)) where the product is over all vertices 
x in G. This upper bound is better then the best bound given by [5] but is still very 
poor for graphs with many edges. 

b) The graph which maximizes a(G) given m and n is either a forest or a con- 
nected graph. (This is easy). 

c) At first look it would seem that the graph G which maximizes P(G, 2) given 
m, n, and 2 should depend on 2. It seems however lhat for positive integlal 2 it does 
not that is lhere is a unique G,,,, which attains lhe maximum for all natural 2. It would 
be extremely interesting to know if this is the case. 

4. The complexity of deciding what is in a polyhedron: Let S c= R d by a poly- 
hedron that is defined by n essential linear inequalities. Consider lhe problem of decid- 
ing for xER ~ whether x is in S using linear comparisons. From [3 ch. 10] we know 
that f (S) _~ n d/2 (d=  t =~ 0). The best lower bounds one can derive from Lemma 7 for 
the complexity of this problem are thus of  the form op ~ O(d log n). The question 
is whether this lower bound can be achieved. For  d--2 this is clearly the case--if  
S is an open polygon with n sides, then deciding for x~R 2 whether or not x is in S 
can be decided by O(log n) linear comparisons. The result for d = 3  may also be 
within reach, but for general dimension we know nothing. 

5. Zaslavsky's method as a general tool for deriving lower bounds: In a series of 
papers ([9], [10], and more) T. Zaslavsky has shown how to computef t (S)  where S 
is R" minus a finite collection of hyperplanes. This is a class of polyhedral sets which 
come up in many computational problems. The evaluation of the integers f t (S)  corn- 
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bined with Lemma 7 can be a method of deriving interesting lower bounds for a num- 
ber of interesting problems. The paper [4] can serve as an example how hard it is to 
derive such bounds and in fact tkis calls for redoing [4] systematically using Zaslavsky's 
methods. 
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