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THE INFORMATION-THEORETIC BOUND IS GOOD FOR MERGING*

NATHAN LINIAL"

Abstract. Let A=(al > > a,) and B=(bl > > b,) be given ordered lists: also let there be
given some order relations between ai’s and bj’s. Suppose that an unknown total order exists on A tAB
which is consistent with all these relations (= a linear extension of the partial order) and we wish to find
out this total order by comparing pairs of elements at:bs. If the partial order has N linear extensions, then
the Information Theoretic Bound says that log2 N steps will be required in the worst case from any such
algorithm. In this paper we show that there exists an algorithm which will take no more than C log2 N
comparisons where C (log2 ((x/+ 1)/2))-1. The computation required to determine the pair at:bs to be
compared has length polynomial in (m + n). The constant C is best possible. Many related results are
reviewed.
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1. Introduction and review. This paper is a part of an effort to answer the question
"How good is the Information Theoretic Lower Bound." This question had already
received considerable attention, e.g., [Fr][GYY1]. For many algorithmic problems,
the quest of an answer is equivalent to searching a certain space whose elements are
referred to as "compatible solutions" in the sense that they do not contradict the
presently available information concerning the solution. Let us assume that our queries
concerning the solution are such that they permit exactly two answers (the generaliz-
ation to other cases is obvious). Thus the space of compatible solutions is split into
two parts according to the answer. Assuming answers are given by an adversary, we
may assume that the actual answers are always such that we are left with the majority
of the compatible solutions after each query. The best one can do is to make such a
query for which the space of compatible solutions is split into two equal parts. For
this optimal strategy the number of steps will thus be log2 No where No is the initial
number of compatible solutions. The problem is of course that in many situations such
an efficient query which splits the compatible solutions into two sets of equal size does
not exist. The purpose of this paper is to investigate the quality of the ITB under such
circumstances.

This general model of a problem encompasses a great variety of search-sort
problems and the situation varies from one problem to another. In many interesting
families of problems which are included in this model the following situation occurs:
although in general one cannot always find an optimal query which splits the space of
compatible solutions into two equal parts, one can find a constant 1/2_-> a > 0 such that
a query can always be found for which the smaller subspace has size at least a times
the size of whole compatible solution space. (So the size of the large subspace is at
most (1- a) times the size of the whole space.) In this case it is clear that the solution
can be found in log N0/log (1-a) steps (No again being the initial size of the space
of compatible solutions). In such cases the ITB gives the right order of magnitude for
the optimal number of steps. Sometimes a somewhat more complicated result can be
stated: there is an integer k and a constant 0 </3 < 1 so that one can always find k
queries with the property that no matter what answers one receives the size of the
remaining subspace is at most/3 times the size of the space before these queries were
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made. Clearly the ITB gives here, too, the correct order of magnitude for the optimal
number of steps.

Let us review some previous work in which this situation has been shown to occur;
(1) [LS] Let T, r) be a tree rooted at r. The space of compatible solutions consists

of all subtrees of T rooted at r. The queries are: a node x in T is picked and one asks
whether x belongs to the chosen subtree. One proves here:

a) There is always a node which belongs to a fraction c of the compatible trees
wh re -<_ ,, -<_

b) One can always find k-< 3 vertices (=queries) so that after these queries are
answered, the size of the compatible solution space drops to at most A k Of its initial
size where A 5-1/3. The constant A is best possible and the cases of equality are
completely characterized.

2) Let (P,->_) be a finite poset and consider the space of its nonempty ideals
(= down sets; A c_ p is an ideal if x A, y < x implies y A). A query is made here
by asking whether an element x of P belongs to the chosen ideal or not. This space
is related to a large variety of search problems (see [LS]). Sands [Sa] has shown that
if one restricts the attention to posets of height _-< k, then there is a constant 1k 1/2 SO
that one can always find an x P(= a query) such that the fraction of those order
ideals containing x is between Ok and 1- Ck. A major open problem in this field is
the following:

Problem 1 [Sa]. [LS]. Prove that there is a universal constant 0 < a < 1/2 so that in
any finite poset P there is an element x for which

no. of ideals in P containing x
l-a> >a.

no. of ideals in P

3) [KLS] Let G =(V, E, r) be a connected graph roots at r. Let the space of
compatible solutions be the collection of all connected subgraphs containing r. A query
is made by picking a vertex x e V and asking if it belongs to the connected subgraph.
I no further assumption is made on the graph G, then the ITB may totally fail. If for
example one chooses G to be Cn---the circuit on n vertices---and r to be any designated
vertex, then No O(n2) is the number o connected subgraphs of G containing r.
However for certain connected subgraphs, like the whole graph minus one vertex, the
search will require n- 1 queries.

However, if one assumes that all vertices in G have degree at least three, then it
can be shown [KLS] that No >-2n/4 and so the ITB must be good (for example, make
all n possible queries). Not much is known, though, about how to find the most efficient
queries and how efficient they are.

2. The problem and the main theorem. In the standard sorting problem [Kn], as
everyone knows, one is given n elements Xl,"" ", xn and one has to find a total order
on them by comparing pairs xi: xj. The ITB implies that at least log2 No log2 n! steps
are required and that this bound can be more-or-less achieved. Consider now the
following more general problem:

The general sorting problem. The input consists of n elements Xl," ", x together
with some order relations between them. One is to discover their total order which is
known to be compatible with the input order relations.

Formal restatement of the problem. Let (P, ->) be a finite poset. There is a linear
order on P compatible with ->_ (an extension of ->_) which is unknown to us. This
extension is to be discovered by querying the order relations between pairs of elements
x, y P where x, y are unrelated by =>.
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The ITB implies that any algorithm which solves this problem requires at least
log2 No steps where No is the number of extensions of ->. We conjecture that the ITB
gives the right order of magnitude. Namely, we make the following

CONJECTURE 1. There is a universal constant c > 1 such that the general sorting
problem can be solved in c log2 No steps where No is the number of extensions of (P, >-).

We want to make an even sharper conjecture asserting that one can always find
an efficient query. To this end we make the following

DEFINITION. Let (P, ->) be a poset, x, y P.

Pr(x> y)’=
no. of extensions of (P, _->) in which x > y

no. of extensions of (P, _->)

The quantities Pr (x > y) received much attention recently [Gr], [Sh], [GYY2], [KS].
We want to make:

CONJECTURE 2. There is a universal constant 1/2 > a > 0 such that if (P, >=) is a

finite poset in which the order >= is not total, then there exists x, y P such that

1-’a >-_Pr (x > y) >= a.

In fact we know of no counterexample even for a 1/2.
Now we can state and prove our main results. We can show the validity of

conjectures 1 and 2 in the case where (P, ->) can be covered by two chains. This special
case is well known as the merging problem, see [Kn]. One is given two linearly ordered
lists A (al > > am) and B (bl > > bn) and some order relations between
elements of A and elements of B. We want to merge A and B into one ordered list
where the linear order on A t.J B is an extension of the partial order just described.
So we have:

THEOREM 1. Any algorithm which can merge A and B will require log2 No steps
in the worst case where No is the number of extensions of the partial order on A t_J B.
An algorithm exists which merges A and B in no more than C1 log2 No where CI
(log2 ((1 +x/)/2))-1. This bound is best possible. The computation needed ]:or finding
the appropriate queries can be done in time polynomial in IA t_J BI.

THEOREM 2. With A, B as above one can always find x A, y B for which

_->Pr (x> y)_->1/2.
The constants 1/2, are best possible. The elements x, y can be found in time polynomial

Let us start with
Proof of Theorem 2.rLet us show first why 1/2, are best possible. Consider the

case where A=(al >... > a,,), B=(bl> > b2m), ai>b2i+l (m-l>--j>--l) and
bj_> aj (m _-> ] -> 2). It is easily verified that

k2j-2,-, k=2j-1,
Pr (a bk)

k 2j,
(m - j- 1, 2m - k - 1).

1, k2j+l,

Now let us turn to the proof of the existence of x A, y B for which
Pr (x y)-1/2. We may assume w.l.o.g, that al and bl are incomparable. If a bl,
say, then a is the unique maximal element in A 3 B and so it remains the maximal
element in any extension of the partial order. Therefore, nothing will change if a is
deleted from the poset. We prove our claim by contradiction and we assume again
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w.l.o.g, that

Pr (al > bl) < 1/2.
Define now the following quantities

ql Pr (al > bl),

qi Pr (bi_l > al > b)(n _-> >- 2),

qn/l Pr (bn > al).

We prove the following"
LEMMA. The real numbers qi( n + 1 >= >= 1) satisfy"
1 01) =ql=
n+l2) r-- qi 1.

Proof. Since ql,..., qn/l is a probability distribution, all we have to show is that
ql -> -> qn/l. To show this we exhibit a 1" 1 mapping from the event whose probabil-
ity is qi+l into the event with probability q(1 >_-i>_-n). Notice that in an extension for
which b-i > al > b not only does al come after bi-1 but it must immediately follow
it" Of course none of the aj can precede a and none of the bj can come between
and bi. The mapping from those extensions in which a immedihtely follows b to those
where b_ > a > bi is obtained by permuting a and b-l. This mapping clearly is well
defined and 1"1.

The theorem can be proved now: let r be defined by

., qi<--1/2 < qi.
i=1 i=1

r-1
Since Y;1 q Pr (al > br-1) <1/2, it follows that -I .i=l qi < Similarly i=l qi

Pr (al > br) must be >. Therefore qr>, but this contradicts -> ql >=q,
Complexity. The last claim of the theorem reduces now to proving that the index

r of the above proof can be found in time which is polynomial in IA t_J BI. The reader
should be aware that two separate complexity measures are being considered: the
main one is a count of the number of queries that have to be asked in order to solve
the merging problem, and the other one, which we address now, is the time complexity
of the computations which are required to design the queries. Given a partially ordered
set on n elements (P, => which can be covered by two chains, there is a determinant
formula giving the number of extensions of =>, see [Mo, p. 32]. Since these determinants
are computable in polynomial time and we need to compute polynomially many such
determinants to implement our algorithm, this proves our assertion. For completeness,
let us recite the determinant counting formula: Let P=AUB, where A=
(a>...>a,,), B=(bl>’">b), and assume m>=n. Define integers
a,..., a,,,/3,...,/3,, as follows: /3=min {tla<b,}, a=max {tlbr> a} and where
the minimum and maximum of an empty set are taken to be n + 1 and zero respectively.
The number of extensions of (P, >=) is given by

det[(/3i- aJ+ 1)]j- + 1 m>_i.j>__l

see [Mo] for the details.
The following theorem is equivalent with Theorem 1 but states the result in a

more convenient way. We remind the reader about the definition of Fibonacci numbers"
This is the sequence defined by: Fo 1, F 2, Fn+ =F, +F,_(n >= 1). The following
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explicit formula also exists for these integers

F,,=AA"+B.(-A)-",
where

/+ 1 5 +3/ 5 3/= A= B=
2 10 10

THEOREM 1.1. A merging problem which cannot be solved by less than n queries
must have at least F, compatible solutions. For each n >= 1 there exists a unique merging
problem which requires n queries and has exactly Fn compatible solutions The appropriate
queries can be found in time polynomial in the size of the poset.

Proof. Let us start by exhibiting the extreme cases. We describe the merging
problems which are referred to as the special merging problems. For n 2m-1, let
A (al > > am), B (bl > > b,,) and the relations aj > bj+l(m 1 >= j >- 1),
bk>ak+2(m-2>=k>=l). For n=2m let A=(a>... > a,+), B=(b> >bin)
and a> b/(m- 1 >= j>= 1), bk > a/2(m- 1 >= k >= 1). In either case a is incomparable
with only b_l and bj. Whenever a’b are compared, the answer is a> b and the
answer on aj" b_ is b_l > a. These answers supply no further information on incompar-
able pairs: therefore all n queries have to be made to solve these merging problems.
To show that the number of compatible solutions in these merging problems are given
by Fibonacci numbers, let us consider the case n 2m. We split the compatible solutions
into two parts according to whether a > b or b > a. If al > bl, then a is the unique
maximal element and so can be deleted altogether. For the rest of the elements we

bi (i 1 m) which showsmake the following renaming bi a/(i 1,.. , m)a
that the remaining problem is the special problem for n 2m- 1. If a < b, then al, b
are the maximal elements of the poset so they can be deleted. The remaining problem
is again the special one for n 2m- 2. We have thus shown that Fn Fn_ + F,-2 for
even n->_ 2. The rest of the details can be easily filled in by the reader.

Now we turn to the actual proof of the theorem and of the uniqueness of the
special problems: We’ll show that if a merging problem is given with No =< F, compatible
solution and n steps are needed to solve it, then the problem is special. For n-< 3 the
cases are few and can be checked each in itself. The general case is done by induction
on n. Without loss of generality we assume that q Pr (a > b) =< 1/2. As in the lemma
we define q to be Pr (b-i > a > bi)(m + 1 >= i>= 1). Consider the index r for which

Pr (al> b_) q_<-1/2< q-Pr(a> b).
i=1 i=1

If Pr (a > b) < Fn_/F,, then comparing a" b we remain with a problem which has
less than F,_ compatible solutions and so can be solved in n- 2 steps, contradiction.
Similarly if Pr(a > b_l)> F_2/F,, then on comparing a" b_ we remain with a
problem with less than Fn-F_a- F,_I compatible solutions and the same argument
applies. If follows, therefore, that q >-_ Fn_/F,- Fn_/Fn F_/F. This implies now
that r - 2, because otherwise

Fn-2 r-1 2F._3
--> qi >--- ql + q2 > 2qr >

a contradiction if n=>4. On the other hand r# 1 because, by assumption q
Pr (a> b) =<1/2.

So r 2, ql <= F,_2/F,, ql + q2 >= F,_I/F,. Make the comparison a" b2, to which we
may assume the answer is a > b2. This is followed by the comparison a" bl to which
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we may assume a reply a > bl. The remaining problem has at most Fn_2 compatible
solutions and so can either be solved in n- 3 queries making up a total of n- 1 queries
for the original problem, or else it is the special problem with Fn-2 compatible solutions.
One has to verify now that the problem we started with is special. This is an easy fact
to verify and the details are omitted. The complexity argument is the same as in
Theorem 2.

3. Open problems. The major problem is, of course, to show that Theorems 1
and 2 hold for general sorting problems. These problems were stated above in conjec-
tures 1, 2. To state other problems let us make the following definition" An extension
of a partial order (P, =>) can be described as 1" 1 order-preserving map tr’P
{1,’", IPI}. For x P we define h(x) to be the average of tr(x) over all extensions
of (P, >-). Let [PI n be the order of the poset, then YxP h(x) n(n + 1)/2. We define
the "second moment" of h as V(P) ,xP h2(x)" If p, q P are incomparable elements,
then denote by P(p, q) the poset which is obtained by adding the relation p > q to P
(and, of course, taking transitive closure of the new relation). We have:

THEOREM 3. Let P be a poset, p, q P incomparable elements. Then

V(P) <= max { V(P(p, q)), v(e(q, p))}.

Proof. The most convenient way to view this inequality is geometrically: To any
poset (P, =>) we canonically assign an n-dimensional convex polyhedron C(P) where
Ie[ n. The assignment is as follows" If P has no order relations, then C(P) is the unit
cube {(Xl, xn)ll->_ x >_-0}. Let us say that C(P) has been defined for posets with
k order relations or less (k _->0). Then on introducing the new relation p > pi the
convex polytope of the new poset P(p, p), namely C(P(p, p)), is obtained by taking
that part of C(P) which lies in the half-space x > x. Accordingly, for P which is totally
ordered, C(P) is a simplex X(l < x(2 < < x(,. Notice that these simplices have
volume 1/n! each, and that if (P,_>-) is any partial order on P={p,... ,p}, then
there is a 1"1 correspondence between the extensions of (P, _->) and the simplices that
make up C(P). In particular the volume of C(P) equals 1/n! times the number of
extensions of (P, >_-). Notice also that since all these simplices have equal volume,
h(P)= 1/(n+ 1)(h(pl),’’’, h(p,)) is the center of gravity of C(P). If follows that
V(P) is the square of the distance from the center of gravity of C(P) to the origin.
Now that we have established the geometric interpretation of V(P), the validity of
the theorem follows at once" C(P) is the disjoint union of C(P(p, p)) and C(P(p, p)).
Therefore the origin and the centers of gravity for C(P(p, p)) and C(P(p, p)) form
a triangle and the center of gravity of C(P) lies on the edge connecting the two centers
of gravity. The theorem now follows from obvious facts of plane geometry.

Now that we have established Theorem 3, we are ready to ask if a stronger
statement holds.

CONJECTURE 3. Let P be a poset and let p, q P be incomparable. Then

V(P(p, q)) >- V(P).

See the problem session of [OS, p. 806] for a related discussion.
Note added in proof. Problem 1 has been recently answered affirmatively by the

author and M. Saks. The constant that was found is a 1/4(3- log2 5).
An interesting prob!.em in computational complexity is to show that it is hard to

count the number of linear extensions of a finite poset. We conjecture that this problem
is 4 P-complete. This conjecture has apparently been made also by R. Karp and by
some other researchers. Using the construction made in the proof of Theorem 3, this
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conjecture could be a concrete statement to the effect that evaluating the volumes of
polyhedra is a hard computational problem.

Also, counting the number of order ideals in posets can be shown to be
4 P-complete. This was shown also by R. Karp (private communication, March 1983).

It has been brought to our attention that Conjecture 2 has been independently
made by a number of researchers, some time ago. In particular we know that M. Fred-
man and R. Stanley had thought about it.
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