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An e-biased random source is a sequence X=(X;, X5, ..., X,,) of
0, 1-valued random variables such that the conditional probability
PriX;=1|X;, X5, ..., X;_1] is always between 3 —¢€ and 3+ €. Given a
family S= {0, 1}” of binary strings of length n, its e-enhanced prob-
ability Pr.(S) is defined as the maximum of Pry(S) over all e-biased
random sources X. In this paper we establish a tight lower bound on
Pr.(S) as a function of |S|, nand €. © 1999 Academic Press

1. INTRODUCTION

Following the definition of Santha and Vazirani [ SV2],
we consider in this paper the class of semi-random sources
with bias &, 0 <e<3i. Such a source is a sequence X =
(X1, X5, .., X,,) of 0, 1-valued random variables satisfying
the condition

1 e<Pr[X;=1]X,, X5, o Xi_ 1< 3+e

for all i=1, .., n. Equivalently, n coins are flipped sequen-
tially by an adversary who knows all previous coin flips and
gets to choose the bias of each coin. Clearly, if the source is
unbiased (¢ =0), it is a perfect random source. On the other
hand, if the source is completely biased (¢ =1), the adver-
sary has complete control over the outcome, and no ran-
domness remains.

Let S<= {0, 1}” be a set of length-n binary strings. A per-
fect source of randomness hits S with probability |S]|/2",
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called the density of S. What happens if, instead of being
perfect, our source is semi-random and the adversary who
controls it aims to maximize the probability of hitting S?
How large can the probability of hitting S be made if the
bias is not exceed ¢? Formally, the ¢-enhanced probability
Pr,(S) of S is defined as

Pr,(S) =max Pr,(S),
X

where X ranges over all ¢-biased semi-random sources.

The question of establishing the optimal lower bound on
Pr,(S) as a function of ¢ and the density d of |S]| (i.e.,
d=S]/2") was raised in [ SV1] in the context of bounding
the influence of a semi-random source (first introduced in
that paper). The authors claimed that the lower bound is
attained a on certain explicitly constructed set, computed its
value, and provided a short sketch outlining their proof.
However, in the final version of their paper [SV2] this
result was replaced by a different one (weaker, but still ade-
quate for the paper’s purposes), and the proof of the original
claim never appeared in print. In subsequent papers discuss-
ing the circle of related problems [ AR, BLS, H, P], the
Santha—Vazirani claim was proven only in a special case
when d is of the formd=1—-2"7ord=2"".

In the present paper we amend this situation and prove
the Santha—Vazirani claim for an arbitrary 4 in the range
[0, 1]. The main technical contribution of the paper is the
proof of Lemma 2.1, stated in [ SV1] without a proof.
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2. THE LOWER BOUND

The following function ¢,: [0, 1] — [0, 1] will play a key
role in the following investigation. Recall that ¢ is between
0 and 3.

DerFINITION 2.1. Let 0 < x <1 be a number with a (finite
or infinite) binary expansion x =), 2~ %, where 0 <a, <
a, < --- is an increasing sequence of nonnegative integers.
Define ¢,(x) as

It is a routine matter to verify that ¢,(x) is well defined on
[0,1] (even though some x have two distinct binary
representations). Furthermore, ¢, is monotone increasing
and continuous on this interval.

For example, ¢,(0)=0, ¢,(1)=1, ¢, (L)=1+e The
emergence of the above ¢,, as well as some of its properties
(i.e., monotonicity), might, perhaps, be clarified by the
following construction. Let k be a number between 0 and 2”.
Define recursively the set S(k, n) = {0, 1}” as follows:

If k=0 then S(k, n)= . If k=2" then S(k, n) is all of
{0, 1}”. Otherwise, if k <2"~1, let S(k,n)=1xS(k,n—1)
(this is a subset of 1x{0,1}”"). Finally, if £>2""",
let S(k,n) be the union of 1x{0,1}""' and 0x
S(k—2""" n—1).

The set S(n, k) comes up in the study of isoperimetric
problems in combinatorics, because of the following
extremal property that it has: its edge-boundary is the
smallest among all sets of k points in {0, 1}” (see, e.g.,

[Bo]).

CLamm 2.1.

Proof. 1Tt is easy to see that the adversary, aiming at
maximizing the hitting probability of S, should always bias
the source towards 1, making its probability 1+ ¢ The
reason for this is that for any (binary) prefix (b, ..., b;), the
cardinality of the intersection |S(k, n) "by X --- X b; x 0 X
{0, 1}7~"~1 is always smaller than |S(k,n) by x -+ x
b, x 1 x {0, 1}"~ =1, (In fact, S(k, n) is an initial segment in
the lexicographic ordering of {0, 1}".) Therefore,

Pr,(S(k, n)) = ¢,(k/2").

(1+8) Pr(Stk, n—1)),
if k<2"—1

(3+e)+(—e) PryStk—2""", n—1)),
otherwise.

Pr(S(k,n))=

Notice also that Pr(S(2%i))=1 and Pr,S(0,i))=0.
Expanding the expression for Pr,(S(k, n)) according to the
above identities leads precisely to the definition of ¢ (d).
The easy verification is omitted. |i
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The main result of this present paper says that ¢,(d) is, in
fact, the smallest ¢-enhanced of any set S of density d. The
proof is based on the following lemma.

LemMma 2.1. ¢, satisfies the inequality

(5-¢) b+ (3+e) dubr=. (“57).

where 0 <a<b<l.

Proof. Let us first list for future use the following four
simple properties of ¢,:
(a) ¢(x2)=(+¢)d,(x)forall0<x<1.

(b)  ¢u(x+3)=(3+&)+((1—2¢)/(1+2¢)) §,(x) for all
0<x<3.

() ¢ x+H=0E+e)?+((1-2¢)/(1+2¢)) ¢, (x)forall
0<x<j.

(d) dx+H =G+ —(G+e)2+¢(x) for all
i<x<i

The verification of the above identities is straightforward
and is omitted.

Since ¢, is continuous, it is enough to prove the lemma
when both a and b have finite binary representations. The
proof will proceed by induction on the (max of) the lengths
of the binary representations of a, b.

In the base case a, be {0, 1}, and the lemma is verified
directly.

Assume inductively that it holds for any «, b with binary
expansions of length </ In order to extend the lemma to
length /+ 1, we need to consider the following three cases:

Case 1. A=}a, B=13b, where a<b.

Case 2. A=3+1a, B=1+1b, where a<b.

Case 3. A=1a, B=1+1b,
where a, b always have an expansion of length </ We shall
deal with each case separately.

Case 1. By (a), we have ¢,(4)=(3+e) " ¢,(a),
$(B)=(1+2)"" §,(b). and ¢,((4+B)2)=(b+e)"
¢.((a+ b)/2). Since by the inductive assumption the lemma
is true for a, b, it must be true for 4, B as well.

Case 2. Similar to Case 1, using (b) and (a) to express
#.(A) and ¢ (B) in terms of ¢ (a) and ¢.(b).

Case 3. Requires a more involved analysis. Let x = 1a,
y=1b. Our goal is to show that the inequality holds for
1+ x; y. Namely,

<;+8> ¢, <;+x> + <;—8> ¢o(y)

> =
¢8<2 +4
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Equivalently, applying (b) to the left-hand side, one need to
show that

<;+e>2+ (;—s> $o(y)+ (;—e> d.(x)
Sy

where 0 < x, y < 1. Without loss of generality, we assume in
that follows x < y. Arguing as in Case 1, we see that

<;+6> ¢a<y)+<;—e) $ux) >4, (x;y)

The discussion splits now in two, according to the value of
X+ .

(1)

First case: x + y <1. Expanding the right-hand side of
the last inequality according to (a), and using 3 +¢&>1—¢,
we conclude that

P(x) +d(¥) Zdu(x + p).
Therefore,
1\ /1 !
<2+a> +<2—8> ¢>g(y)+<2—s> $o(x)
><;+s> +<;—8>¢g(y+x)

1 2
= <2 + é> +
By (c) the rightmost expression is equal to ¢, ((x+ y)/

+ 3), implying (1).

Second case: i<x+y<l. Since y<i and ¢, is
monotone increasing,

1—2s¢ y+x
1+2e7°\ 2 )

$(¥) < P3)=3+e.

Therefore, since the equation is true for x, y, one has
1 2 1 1
(5+¢) +(3-¢)bn+(5-¢) b
1V /1 1 5
~(3+¢) +| (3+¢) 001+ (52 ) )| ~22.00)
1 2 x+y 1
><2+8> +¢< >—28<2+8>

BEN-DOR ET AL.

e o2
—4. (3 243),

where the last equality follows from (d). Thus (1) is true in
this case as well.
This concludes the proof of the lemma. |

THEOREM 2.1.  Let S be a subset of {0, 1}" with density
=|S|/2". Let 3>¢>0 be the bias of the source. Then
Pr(S8)=¢.(d).

Proof. The proof is by induction on n. For n=1 the
theorem is verified directly. Assume now that the theorem
holds for every subset of {0, 1}”~'. Given S={0, 1}" as
above, let S=S, U S, be a partition of S according to the
value of the first coordinate. Let d, and d; denote the den-
sities of S, and S, respectively, whence d = (d, + d;)/2.

Without loss of generality, we may assume that d, <d,.
Since the adversary can bias the first bit to be 1 with prob-
ability 1 + ¢, it holds that

Pr,(8) > (3—¢) Pr,(So) + (3 +¢) Pr,(S)).

By the induction hypothesis, Pr,(S,) = ¢.(d,) and Pr.(S,;)
> ¢.(d,). Combining this with Lemma 2.1, we obtain the
desired lower bound:

Prs) (3¢ ) o) + (542 ) )

>4, 250 ) =0i0 1
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