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An =-biased random source is a sequence X=(X1 , X2 , ..., Xn) of
0, 1-valued random variables such that the conditional probability
Pr[Xi=1 | X1 , X2 , ..., X i&1] is always between 1

2&= and 1
2+=. Given a

family S�[0, 1]n of binary strings of length n, its =-enhanced prob-
ability Pr=(S) is defined as the maximum of PrX (S) over all =-biased
random sources X. In this paper we establish a tight lower bound on
Pr=(S) as a function of |S|, n and =. ] 1999 Academic Press

1. INTRODUCTION

Following the definition of Santha and Vazirani [SV2],
we consider in this paper the class of semi-random sources
with bias =, 0�=� 1

2 . Such a source is a sequence X=
(X1 , X2 , ..., Xn) of 0, 1-valued random variables satisfying
the condition

1
2&=�Pr[X i=1 | X1 , X2 , ..., Xi&1]� 1

2+=

for all i=1, ..., n. Equivalently, n coins are flipped sequen-
tially by an adversary who knows all previous coin flips and
gets to choose the bias of each coin. Clearly, if the source is
unbiased (==0), it is a perfect random source. On the other
hand, if the source is completely biased (== 1

2), the adver-
sary has complete control over the outcome, and no ran-
domness remains.

Let S�[0, 1]n be a set of length-n binary strings. A per-
fect source of randomness hits S with probability |S|�2n,
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called the density of S. What happens if, instead of being
perfect, our source is semi-random and the adversary who
controls it aims to maximize the probability of hitting S?
How large can the probability of hitting S be made if the
bias is not exceed =? Formally, the =-enhanced probability
Pr=(S) of S is defined as

Pr=(S)=max
X

PrX (S),

where X ranges over all =-biased semi-random sources.
The question of establishing the optimal lower bound on

Pr=(S) as a function of = and the density d of |S| (i.e.,
d=|S|�2n) was raised in [SV1] in the context of bounding
the influence of a semi-random source (first introduced in
that paper). The authors claimed that the lower bound is
attained a on certain explicitly constructed set, computed its
value, and provided a short sketch outlining their proof.
However, in the final version of their paper [SV2] this
result was replaced by a different one (weaker, but still ade-
quate for the paper's purposes), and the proof of the original
claim never appeared in print. In subsequent papers discuss-
ing the circle of related problems [AR, BLS, H, P], the
Santha�Vazirani claim was proven only in a special case
when d is of the form d=1&2&l or d=2&l.

In the present paper we amend this situation and prove
the Santha�Vazirani claim for an arbitrary d in the range
[0, 1]. The main technical contribution of the paper is the
proof of Lemma 2.1, stated in [SV1] without a proof.
4
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2. THE LOWER BOUND

The following function ,= : [0, 1] � [0, 1] will play a key
role in the following investigation. Recall that = is between
0 and 1

2 .

Definition 2.1. Let 0�x�1 be a number with a (finite
or infinite) binary expansion x=�k 2&:k, where 0�a1<
a2< } } } is an increasing sequence of nonnegative integers.
Define ,=(x) as

,=(x)=:
i

( 1
2&=) i&1 ( 1

2+=)ai&i+1.

It is a routine matter to verify that ,e(x) is well defined on
[0, 1] (even though some x have two distinct binary
representations). Furthermore, ,= is monotone increasing
and continuous on this interval.

For example, ,=(0)=0, ,=(1)=1, ,=(
1
2)= 1

2+=. The
emergence of the above ,= , as well as some of its properties
(i.e., monotonicity), might, perhaps, be clarified by the
following construction. Let k be a number between 0 and 2n.
Define recursively the set S(k, n)�[0, 1]n as follows:

If k=0 then S(k, n)=<. If k=2n then S(k, n) is all of
[0, 1]n. Otherwise, if k<2n&1, let S(k, n)=1_S(k, n&1)
(this is a subset of 1_[0, 1]n&1). Finally, if k�2n&1,
let S(k, n) be the union of 1_[0, 1]n&1 and 0_
S(k&2n&1, n&1).

The set S(n, k) comes up in the study of isoperimetric
problems in combinatorics, because of the following
extremal property that it has: its edge-boundary is the
smallest among all sets of k points in [0, 1]n (see, e.g.,
[Bo]).

Claim 2.1. Pr=(S(k, n))=,=(k�2n).

Proof. It is easy to see that the adversary, aiming at
maximizing the hitting probability of S, should always bias
the source towards 1, making its probability 1

2+=. The
reason for this is that for any (binary) prefix (b1 , ..., bi), the
cardinality of the intersection |S(k, n) & b1_ } } } _bi_0_
[0, 1]n&i&1| is always smaller than |S(k, n) & b1 _ } } } _
bi _1_[0, 1]n&i&1|. (In fact, S(k, n) is an initial segment in
the lexicographic ordering of [0, 1]n.) Therefore,

Pr=(S(k, n))={
( 1

2+=) Pr=(S(k, n&1)),
if k<2n&1,

( 1
2+=)+( 1

2&=) Pr=(S(k&2n&1, n&1)),
otherwise.

Notice also that Pr=(S(2 i, i))=1 and Pr=(S(0, i))=0.

AN =-BIASED RA
Expanding the expression for Pr=(S(k, n)) according to the
above identities leads precisely to the definition of ,=(d ).
The easy verification is omitted. K
The main result of this present paper says that ,=(d ) is, in
fact, the smallest =-enhanced of any set S of density d. The
proof is based on the following lemma.

Lemma 2.1. ,= satisfies the inequality

\1
2

&=+ ,=(a)+\1
2

+=+ ,=(b)�,= \a+b
2 + ,

where 0�a�b�1.

Proof. Let us first list for future use the following four
simple properties of ,= :

(a) ,=(x�2)=( 1
2+=) ,=(x) for all 0�x�1.

(b) ,=(x+ 1
2)=( 1

2+=)+((1&2=)�(1+2=)) ,=(x) for all
0�x� 1

2 .

(c) ,=(x+ 1
4)=( 1

2+=)2+((1&2=)�(1+2=)) ,=(x) for all
0�x� 1

4 .

(d) ,=(x + 1
4) = ( 1

2 + =) & ( 1
2 + =)2+,=(x) for all

1
4�x� 1

2 .

The verification of the above identities is straightforward
and is omitted.

Since ,= is continuous, it is enough to prove the lemma
when both a and b have finite binary representations. The
proof will proceed by induction on the (max of) the lengths
of the binary representations of a, b.

In the base case a, b # [0, 1], and the lemma is verified
directly.

Assume inductively that it holds for any a, b with binary
expansions of length �l. In order to extend the lemma to
length l+1, we need to consider the following three cases:

Case 1. A= 1
2a, B= 1

2 b, where a�b.

Case 2. A= 1
2+ 1

2a, B= 1
2+ 1

2 b, where a�b.

Case 3. A= 1
2a, B= 1

2+ 1
2b,

where a, b always have an expansion of length �l. We shall
deal with each case separately.

Case 1. By (a), we have ,= (A) = ( 1
2 + =)&1 ,=(a),

,= (B) = ( 1
2+=)&1 ,= (b), and ,= ((A + B)�2) = ( 1

2+=)&1

,=((a+b)�2). Since by the inductive assumption the lemma
is true for a, b, it must be true for A, B as well.

Case 2. Similar to Case 1, using (b) and (a) to express
,=(A) and ,=(B) in terms of ,=(a) and ,=(b).

Case 3. Requires a more involved analysis. Let x= 1
2a,

y= 1
2b. Our goal is to show that the inequality holds for

1
2+x; y. Namely,

\1
2

+=+ ,= \1
2

+x++\1
2

&=+ ,=( y)
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�,= \x+ y
2

+
1
4+ .
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Equivalently, applying (b) to the left-hand side, one need to
show that

\1
2

+=+
2

+\1
2

&=+ ,=( y)+\1
2

&=+ ,=(x)

�,= \x+ y
2

+
1
4+ , (1)

where 0�x, y� 1
2 . Without loss of generality, we assume in

that follows x� y. Arguing as in Case 1, we see that

\1
2

+=+ ,=( y)+\1
2

&=+ ,=(x)�,= \x+ y
2 + .

The discussion splits now in two, according to the value of
x+ y.

First case: x+ y� 1
2 . Expanding the right-hand side of

the last inequality according to (a), and using 1
2+=� 1

2&=,
we conclude that

,=(x)+,=( y)�,=(x+ y).

Therefore,

\1
2

+=+
2

+\1
2

&=+ ,=( y)+\1
2

&=+ ,=(x)

�\1
2

+=+
2

+\1
2

&=+ ,=( y+x)

=\1
2

+=+
2

+
1&2=
1+2=

,= \y+x
2 + .

By (c), the rightmost expression is equal to ,=((x+ y)�
2+ 1

4), implying (1).

Second case: 1
2�x+ y�1. Since y� 1

2 and ,= is
monotone increasing,

,=( y)�,=(
1
2)= 1

2+=.

Therefore, since the equation is true for x, y, one has

\1
2

+=+
2

+\1
2

&=+ ,=( y)+\1
2

&=+ ,=(x)

=\1
2

+=+
2

+_\1
2

+=+ ,=( y)+\1
2

&=+ ,=(x)&&2=,=( y)

1 2 x+ y 1
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�\2
+=+ +,=\ 2 +&2= \2

+=+
=\1
2

+=+&\1
2

+=+
2

+,= \x+ y
2 +

=,= \x+ y
2

+
1
4+ ,

where the last equality follows from (d). Thus (1) is true in
this case as well.

This concludes the proof of the lemma. K

Theorem 2.1. Let S be a subset of [0, 1]n with density
d=|S|�2n. Let 1

2�=�0 be the bias of the source. Then
Pr=(S)�,=(d ).

Proof. The proof is by induction on n. For n=1 the
theorem is verified directly. Assume now that the theorem
holds for every subset of [0, 1]n&1. Given S�[0, 1]n as
above, let S=S0 _ S1 be a partition of S according to the
value of the first coordinate. Let d0 and d1 denote the den-
sities of S0 and S1 , respectively, whence d=(d0+d1)�2.

Without loss of generality, we may assume that d0�d1 .
Since the adversary can bias the first bit to be 1 with prob-
ability 1

2+=, it holds that

Pr=(S)�( 1
2&=) Pr=(S0)+( 1

2+=) Pr=(S1).

By the induction hypothesis, Pr=(S0)�,=(d0) and Pr=(S1)
�,=(d1). Combining this with Lemma 2.1, we obtain the
desired lower bound:

Pr=(S)�\1
2

&=+ ,=(d0)+\1
2

+=+ ,=(d1)

�,= \d0+d1

2 +=,=(d ). K
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