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It is proved that there exists a constant 6, f > 6 > 0, such that in every finite par- 
tially ordered set there is an element such that the fraction of order ideals contain- 
ing that element is between 6 and 1 -6. It is shown that 6 can be taken to be at 
least (3-log, 5)/4~0.17. This settles a question asked independently by Colburn and 
Rival, and Rosenthal. The result implies that the information-theoretic lower bound 
for a certain class of search problems on partially ordered sets is tight up to a mul- 
tiplicative constant. ( 1985 Academic Press. Inc. 

I. INTRODUCTION 

The problem considered in this paper can be roughly stated as, “Does 
every finite partially ordered set have an element that belongs to 
approximately half of the order ideals ?” This question, which arises out of 
a problem in computational complexity (see below) was raised indepen- 
dently by Colbourn and Rival, and Rosenthal (see [Sal) and the authors 
[LS]. To formulate the problem precisely, say that an element x belonging 
to a finite partially ordered set (P, <) is &central for some positive real 
number 6 if the fraction of order ideals of P containing x is between 6 and 
1 - 6. We are then asking whether there exists a constant 0 < 6 < + such 
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that every finite poset has a S-central element. Sands [Sal provided a par- 
tial solution by proving that for each integer h >O, there is a constant 
6, > 0 such that every poset of height h (having largest chain of cardinality 
h + 1) has a Zi,-central element; however, the values 6, obtained approach 0 
as h gets large. In this paper we settle the question affirmatively by proving 

THEOREM 1. I. In any finite partially ordered set (P, < ) there is an 
element x E P such that the fraction of order ideals of P that contain s is 
between 6, and 1 - 6,, where 6, = (3 - log, 5)/4 ~0.17. 

Shearer [Sh] has recently shown that there exist posets which have no 
h-central element if 620.197, so the bound in the above theorem is not far 
from best possible. 

Our interest in this question arose from the problem of searching par- 
tially ordered data structures, which we considered in [LS]. A partially 
ordered data structure is a poset P together with an order preserving injec- 
tion s: P + R(x < P y implies s(x) <s(y)). We think of the value s(x) as 
being stored at location x in P. The data location problem for such a struc- 
ture is: given a real number r determine whether r is stored in P and, if so, 
at which location (element). The basic step is a comparison of r to the 
value stored at some element x of P. Of interest is the minimum number of 
comparisons which are sufftcient to solve the location problem in the worst 
case. 

The hardest case of the location problem occurs when r is not stored in 
P, and establishing that r is not stored in P requires the identification of 
the ideal Z(r) of elements XE P such that s(x) < r. Thus the location 
problem is essentially the same as the ideal identification problem: given a 
poset P and an unknown ideal Ic P, determining I using queries of the 
form “is x E I?” 

The fundamental lower bound on the number of queries required for this 
problem is the information-theoretic bound which is obtained as follows. 
The query “is x E I?” partitions the set of possible ideals into two sets, those 
containing x and those not containing X. The response to the query 
eliminates from consideration all ideals in one of these two sets. It is 
possible that the set eliminated is the smaller of the two and the set of 
possible ideals is reduced by at most half. Thus, in worst case, at least 
log, i(P) queries are necessary to identify I (where i(P) is the number of 
ideals of P). 

The natural question is, of course, how close can we come to this bound? 
First, note that after each successive question we are reduced to a smaller 
problem of the same type since an answer of “yes” to “is x E I?” effectively 
reduces the problem to the ideal identification problem on P\I(x), where 
Z(x) is the set of elements dx, and an answer of “no” reduces the problem 
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to the same problem on P\F(x), where F(x) is the set of elements ax. To 
attain the information-theoretic bound or close to it, we would need, at 
each stage, to ask about an element x that is in roughly half of the ideals in 
the residual poset. Whether this is always possible is the problem addressed 
by Theorem 1.1. More precisely, testing a d-central element (0 < 6 < 4) at 
each stage, ensures that the number of possible ideals is reduced by a factor 
of at least 6, thereby guaranteeing the identification of the ideal I using at 
most log,;l ~ 6 i(P) queries. Thus, as a consequence of Theorem 1.1, we have 

THEOREM 1.2. The number of queries required to solve either the ideal 
ident[fication problem or the data location problem in a poset P is at most 
K, log, i(P) where KO = l/(2 - log,( 1 + log, 5))~ 3.73. Thus the infor- 
mation-theoretic bound is tight up to a multiplicative constant. 

We mention also that Theorem 1.1 can be restated via the Birkhoff 
representation theorem for distributive lattices [Bi] as 

THEOREM 1.3. Every finite distributive lattice L contains a prime ideal I 
(an ideal generated by a single meet irreducible element) such that 

where 6, = (3 -log, 5)/4, which settles a question qf Colbourn and Rival 
CSal. 

After a few preliminaries in Section 2, we present the proof of 
Theorem 1.1 in Sections 3-7. Sections 8-10 are devoted to some related 
results and questions. 

II. PRELIMINARIES 

The notation for partially ordered sets and graphs is-standard; see, for 
example, [Bi] and [Be]. An order ideal of a poset (P, d ) is a subset Z such 
that if y E I and x < y then x E I. A filter is a subset that is the complement 
of an ideal. A bipartite graph r with bipartition A, B and edge set E is 
denoted (A, B, E). For XE A, T(X) is the set of vertices in B which are 
adjacent to some vertex of X. A stable set is a set of mutually unrelated ver- 
tices. 

All logarithms are to base 2. 
We will be dealing extensively with real set functions; the domain of such 

a function is the set of subsets of some finite set S. A set function f: 2’ -+ R 
is additive iff(a)=O and for ASS, f(A)=C,,. f(a). The function f is 
multiplicative if log f is additive, that is, f (0) = 1 and ,f (A ) = n, E A f (a) for 
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each A c S. f’ is log supermodular (LSM) if f(A u B)f’(A n B) >,f(A ).f’(B) 
for all A, B c S. f is normulized fog supermodular (NLSM) if in addition 
j’(O) = 1. Clearly all multiplicative functions are NLSM. 

For a set function g on S we denote by S the set function defined by 
g(A) = &cA g(A’). The following proposition is one version of the prin- 
ciple of inclusionexclusion (see, e.g., [Ail). 

PROPOSITION 2.1. Let h and g he .set ,functions on S. Then h = S iJ’ and 
only if for all A c S, 

g(A)= c (-I)‘,“ -IA,’ h(A’). 
A’EA 

We state for reference the following simple 

PROPOSITION 2.2. Let h and g be set functions of S such that h = g. Then 
h is multiplicative if and only if g is. Furthermore if both are multiplicative 
we have for all A E S, 

(i) h(A)=IX,,, (da)+ 11, 

(ii) dA)=L, (h(a)- 0. 

III. PROOF OF THEOREM 1.1 

Given a poset (P, < ) let N be the number of order ideals of P. For x E P, 
let p(x) be the proportion of order ideals that contain x. Our aim is to 
show the existence of a constant f > 6 > 0 such that every poset has an 
element x for which I- 6 3p(x) z 6. (The value 6, = :(3 - log 5) will come 
out of the proof; for the moment we leave 6 unspecified.) 

Let J be the set of elements x such that p(x) > 4 and K= P\J. Since p(x) 
is a decreasing function on P, J is an order ideal and K is a filter. We need 
to show that one of the followng holds: 

(i) there is an element x E J such that p(x) < 1 - 6, 
(ii) there is an element x E K such that p(x) B 6. 

Clearly the search for such an element can be restricted to the sets A of 
maximal elements of J, and B of minimal elements of K. We will view the 
subposet induced on A u B as a bipartite graph r= (A, B, E). 

It is natural to first consider (as Sands [Sal did) the case where P is 
height one. In this case, J is the set of minimal elements of P and A = J and 
B = K and thus the vertex set of r is all of P. A set Xu Y with Xc A and 
YE B is an ideal if and only if (A\X) u Y is a stable set of f. Thus the 
stable sets of f are in one to one correspondence with the ideals of P. 
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Moreover, for bE B, the ideals of P containing b are in one to one 
correspondence with the stable sets of Z containing b and for a EA the 
ideals not containing a are in one to one correspondence with the stable 
sets of Z containing a. Thus if we define p*(x) to be the fraction of stable 
sets of Z’ containing x, then p*(x)=p(x) if XE B and p*(x)= 1 -p(x) if 
x E A. Thus the existence of a b-central element in every height one poset is 
equivalent to: 

In any bipartite graph f = (A, B, E) some vertex x belongs to a 
fraction of at least 6 of the stable sets, i.e., p*(x) b 6. (3.1) 

This was proved by Sands for 6~0.12, but his argument does not seem 
applicable to posets of height greater than one. Our aim was to find a new 
proof which could be extended. To this end, we considered the stronger 
conjecture that the average of p*(x) over XE P is at least 6. Now this 
average is equal to 

which is the average proportion of elements in a stable set of Z. Thus (3.1) 
is a corollary of 

THEOREM 3.1. In any bipartite graph r = (A, B, E) the average size of u 
stable set of r is at least do ) A v B 1. 

We present a proof of this result in Section 4. Another proof has been 
found independently by Erdos and Sands [ES]. A very simple proof, which 
we present in Section 9, has also been given by N. Alon (for a smaller value 
of 6). Our proof, however, leads to an approach to the general problem for 
posets of arbitrary height. 

In this general case, we first need to find the appropriate generalization 
of the above correspondence between ideals of P and stable sets of Z? Say a 
subset T of P is quasi-stable if it is the symmetric difference of J and some 
ideal Z of P, i.e., T= (J\Z) u (Z\J). The following characterization is 
obvious. 

PROPOSITION 3.2. T is quasi-stable iff Tn K is an ideal in the subposet K, 
T n J is a filter in the subposet J and every element of Tn K is incomparable 
to every element of T n J. 

The quasi-stable sets of P are in natural one to one correspondence with 
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the ideals of P. For XE P, let p*(x) be the proportion of quasi-stable sets 
containing x. If x E K, then p*(x) =p(x), and if x E J, then p*(x) = 1 -P(X). 
Thus, as in the bipartite case, the existence of a S-central element in P is 
equivalent to the existence of an element for which p*(x) 2 6. 

Pursuing the analogy to the height one case, we tried to show that the 
average of p*(x) is at least 6,. In general this is false. However, it is suf- 
ficient for our purposes to show that the elements of P can be assigned 
nonnegative weights A: P --t R + such that the A-weighted average of p*(x) 
over x in P is at least 6, i.e., 

(3.3) 

It will be convenient to view 1 as an additive set function on P by deiin- 
ing W)=LT A(x). Now we have 

z &x)P*(x) = x 4-x) f ( 
YEP \EP Tquasl-stable 

1) 
.XE 7- 

=; _ c c 4x1 
7 quasi-stable \ E 7- 

=& _ c i(T). 
7 quasi-stable 

Thus, Theorem 1.1 follows from 

(3.4) 

THEOREM 3.3. For any poset P there is an additive set function A on P 
such that the average A-weight of a quasi-stable set is at least 6, A(P), i.e., 

1 A(T) ~&J(P). 
Tquasi-stable 

Note that for the case of height 1 posets, this follows from Theorem 3.1 
with the weight A(T) = 1 TI , 

Before proceeding with the proofs of these results, we define some 
additional notation. 

X = set of ideals of the subposet K, 

f E set of filters of the subposet .I. 

For L r K, 

X(L)= (I&-(ZcL}, 

k(L) SE 1 X(L)I. 
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C(H) z { y E K 1 y is incomparable to every element of H}. 

For Xc A, 

For YcB, 

Fn A =X} 1, 

FnAcX}I = C f(X). 
X’ c x 

ZnB= Y}i, 

ZnBE Y}/= C g(Y’). 
Y'S t- 

201 

IV. PROOF OF THEOREM 3.1 

For XGA, let T(X)= {y~BI[x,v]~Efor some XEX}. For Y&B, the 
set Xu Y is stable if and only if Y G B\T(X); thus the average size of a 
stable set of r is equal to 

f c 1 IW+IYI 
XGA YGB\T(X) 

=; 1 
XC_A 

1 J’( 21B\r(x)l +; I B\r(X)I 21B\r(x)1 

2w-cw 

=,C,N 
IN +; lB\W)l). (4.1) 

c 

To prove the theorem we must show that this quantity is greater than or 
equal to &(IAI+IBI). 

For XEA, let q(X)=2 ‘B’r(x)‘/N. Since N = xX, A 21S’rcx)l we have 
C q(X) = 1; q(X) can be interpreted as the probability that the intersection 
of A with a randomly chosen stable set S is X. Rewriting (4.1) in terms of 
q(X) and simplifying yields the following expression: 

; x;A q(--W2 I XI + log(dX) N)) 

log N 1 
=2+Yj c qm2 1x1 +logdm). 

XrA 
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Thus we must show that 

(4.2) 

We need the following simple 

LEMMA 4.1. Let q: S --+ [0, 1 ] he u discrete probability mass function on 
the .finite set S, and let ,f: S -+ R + be any ,function. Then 

c (f(X) + log q(X)) q(X) > -log 1 2 pfrx). 
XES XES 

Proof: A routine exercise using Lagrange multipliers. g 

From (4.2) and Lemma 4.1 with .f(X)=2 /X/ it now suffices to show 
that 

IogN-log c 4 +Y’326,(/A/+jBI). (4.3) 
XCA 

Now 

so 

log c 4 
5 

XCA 

IX’= IAl logi. 

Without loss of generality we may assume ) A I b I BI Also, since each 
subset of A is stable, N> 21Al so (4.3) follows from 

which holds provided that 6,6 (3 - log 5)/4. 

V. PROOF OF THEOREM 3.3 

The strategy for proving Theorem 3.3 is to mimic the proof of 
Theorem 3.1 as closely as possible, modifying the details when necessary. 
The key difference is that here we must find an additive set function 
1: 2P -P R + that validates the theorem. We will restrict our search to those 
functions A with support on A u B, i.e., those satisfying 

A(x) = 0 for x 6 A u B. (5.1) 
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For the moment we postpone the choice of 1, and, using a derivation 
analogous to (but more complicated than) that of (3.1), reduce the 
theorem to another inequality which is more convenient to work with. 

By Proposition 3.2, the left-hand side of (3.5) can be rewritten as 

f 1 4T) 
Tquasi-stable 

=; c 1 [~“(H)+;1(z.)] 
HE/ LE X(C(H)) 

=- l Hf, [k(C(m 4w + LE JH), w]. N (5.2) 

Now by the additivity of A and the assumption (5.1), 

1 d(L)= c 1 4.Y) LE.?+-(C‘(H)1 Lt.iY(C(H))yELnB 

= c 4y)vdC(W) - QC(ff)\.Y)) 
vt(‘(H)r?B 

3 C l(y)#(C(H))=@(C(H)nB)k(C(H)), (5.3) 
1,tC‘(H)nB 

where the inequality follows from the observation that if I is an ideal in 
X(C(H)\y), then I and Zu {y} are ideals in X(C(H)). 

Substituting (5.3) into (5.2), we obtain 

Thus to prove Theorem 3.3, it is enough to exhibit a nonnegative 
additive set function jU on A u B such that 

k c k(C(H))[ZI(HnA)+l(C(H)nB)] 
H E ,I 

>26,(A(A)+A(B)). (5.4) 

We now need to construct an appropriate additive set function A on 
A u B. The idea is to continue along the lines of Theorem 3.1 and see what 
properties A must satisfy in order that the proof generalizes. These con- 
siderations lead us to 
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LEMMA 5.1. If /1 is an additive Set fimction on A u B satisjiving 

i(X) 3 logf( X), V’x c_- il and l.(A) = logf?A), 
(5.5) 

i”(Y)>logg(Y), VYcB and i(B) = log g(B); 

then i satiJfies (5.4) 

Once this is proved, Theorem 3.3 will follow from the existence of an 
additive set function ,! satisfying (5.5), which is a consequence of the 
following two lemmas, 

LEMMA 5.2. The functions,? 2A -+ R and 2: 2’ 4 R are NLSM Junctions 

LEMMA 5.3. Let h: 2’ -+ R + be a NLSM function. Then there exists a 
multiplicative function H: 2’ -+ R ’ satisfying H(T) >, h(T) ,for all T E S and 
H(S) = h(S). 

Applying this lemma to? and g produces multiplicative functions u and 
p. The function i defined by A(X) = log a(X) for XC A and A( Y) = log /I( Y) 
for Y c B then satisfies the hypotheses of Lemma 5.1. 

VI. PROOF OF LEMMA 5.1 

We continue the parallel with the proof of Theorem 3.1 by defining for 
HEY, 

q(H) = 4C(W)IN. 

Note C q(H) = 1; q(H) is the proportion of quasi-stable sets whose inter- 
section with J is H. 

Now we have the following chain of inequalities. 

~(C(H)nB)~log(~(C(H)nB))3log(k(C(H)))=log(Nq(H)). (6.1) 

The first inequality follows by hypothesis (5.5) and the second inequality 
and the equality are immediate from the definition. Thus (5.4) follows from 

logN+ 1 q(H)(WHnA)+logq(H)) 
HEX 

> 26,(logj-(A) + log 2(B)). (6.2) 

Without loss of generality, assume 3(A) > g(B) (if not we can redo the 
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preceding argument on the dual poset). Also, note that since every filter of 
J is quasi-stable, N>,?(A). Thus (6.2) follows from 

- 1 dWW(Hn~) 1 + ogq(H)) 4 (l-46,) hd(4. (6.3) 
H E .I 

Note?(A) 3 21A’. Also by Lemma 4.1, the left-hand side of (6.3) is less than 
or equal to 

log 1 2- 2wh4)=log 2 f(X)2p”‘X’ 

H E 2’ XZA 

Setting a(X) = 2”‘x’, (6.3) follows from 

(6.4) 

which we now prove. By Proposition 2.1, 

c f(x) = 1 l 
.,,m x,,G-) c 2$Ixx(-1) /Xl ‘“l,f(S) 

(6.5 1 

Using the multiplicativity of a and Proposition 2.2, we have for any S 

which is nonnegative for all SE A since a(a) > 1 for all a E A. It follows that 
the last expression in (6.5) is a linear combination of the 3(S) with non- 
negative coefficients. Since a(S) 23(S) f or all SE A we may replace 3( S) by 
M(S) to obtain a larger sum. That is, 

According to Propositions 2.1 and 2.2, the function y: 2A --f R defined by 
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y(X) = CSE x ( - 1 )I”’ s’ x(S) is a multiplicative function with y(rr) = 
r(a) - 1 for a E A. We deduce from (6.6) that 

Using the inequality (t - 1 )/r2 6 $ for real t, we obtain (6.4) which com- 
pletes the proof of Theorem 3.3. 

VII. PROOFS OF LEMMAS 5.2, 5.3 AND 5.4 

Lemma 5.2 is a consequence of the following inequality originally due to 
Daykin [D] which is a special case of an inequality proved later by 
Ahlswede and Daykin [AD] and is closely related to the well-known FKG 
inequality [FKG]. 

where @ v $$I = {A v BI A E Cr, BE&) and 0“ A :Z#={AnBIAEa, 
B&49). 

Proof of Lemma 5.2. By symmetry, it is enough to show that g is 
NLSM. Clearly g(4) = 1. For YE B let g( Y) be the set of ideals L E X 
such that L n B & Y. By Lemma 7.1, for Y, , Yz c B, we have 

I9qY,) v ti(Y2)l.IqY,) A d(YJ 

3 l!B(Y,)I’ l.;a(Y,)l. 

Note that g( Y,) v a( Y,)EJ( Y, u Y2) and a( Yr) A ,9#( Yz)s 
B( Y, n Y,) so we have 

I B( Y, u Y,)l I I W Y, n Y,)l > I gA( Y, )I I .W Ydl 
or 

k(Y,u Yd~(YlU y,)ag(y,)i?(y,). I 

Proof of Lemma 5.3. Let S = { I ,..., s, $ and define the multiplicative 
function H by H(si) = h(s, ,..., s,)jh(s, ,..., s, , ) for 1 <j < n, extending to 
arbitrary subsets by multiplicativity. Clearly H(S) = h(S). We show 
H(T)>h(T) for all TsS by induction on 17’1. We have H(@)=h(@)= 1 
for the basis. For T # 0, let sk be the element of largest index in T and let 



EVERYPOSETHASA CENTRAL ELEMENT 207 

u= {s,, sz,..., sk}. Since Tc U, the LSM inequality applied to T and U\s, 
yields 

By the induction hypothesis, H( T\s,) 2 h( T\s,) so 

but, the left-hand side is, by definition, H(T), proving the lemma, and 
Theorem 3.3. 

VIII. A WEIGHTED VERSION OF THEOREM 3.1 

Let r= (A, B, E) be a bipartite graph and W a nonnegative set functon 
(weight function) on A u B. We now ask: is there a vertex v of I- such that 
the total weight of the stable sets containing u is a nontrivial fraction of the 
total weight of all stable sets. Obviously this depends on W. The following 
theorem provides a suflicient condition for the existence of such a vertex. 

THEOREM 8.1. Let r= (A, B, E) be a bipartite graph and suppose f and g 
are normalized nondecreasing supermodular set functions on A and B, resper- 
tively. Let W be the set function on A v B d@ned by W(Z) = 
,f(Zn A) g(Zn B). Then there is an additive set,function i” on A v B such that 

1 W(S) /l(S)>&, 1 W(S) E,(Av B). 
ScAuB SEAUB 

Sstable SStable 

The proof of Theorem 8.1 follows along the same lines as the proofs of 
Theorems 3.1 and 3.3. The reader can fill in the details. 

IX. ON THE INFORMATION-THEORETIC BOUND 

The information-theoretic argument given in Section 1 to give a lower 
bound on the ideal identification problem is a standard one, and has been 
used to give lower bounds for a wide variety of problems. The natural 
question “how good is this bound ?” has been addressed, either directly or 
indirectly by many researchers (e.g., [Fr, GYY, see [S] for a survey). 
Theorem 1.2 answers this question for the ideal identification problem. 

To place these questions in a general setting, we define the edge iden- 
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ttjication problem for hypergraphs: given a hypergraph H = ( V, W) and an 
unknown edge E E &, determine E using queries of the form “is s E (-5”‘?” 
(The ideal identification problem is the case when d is the set of ideals of 
some finite poset.) 

After a response of “no” to the question “is x E CC?“, we are left with the 
edge identification problem for the hypergraph Hx (the deletion of x) on 
q.x obtained by discarding all edges not containing x. A “yes” response 
leaves us with the same problem on the hypergraph H: x (the localization 
of X) on v\x obtained by discarding all edges not containing x and 
deleting x from all the remaining edges. 

Thus, as before, the information-theoretic bound implies that a least 
log 161 questions are required. In general this bound may be very weak, for 
example, if consists of singletons, 16’1 - 1 questions are needed. We are 
interested in identifying classes of hypergraphs for which the information 
theoretic bound is good. 

Say that x is d-central in H if the fraction of edges containing x is 
between 6 and 1 - 6. Arguing as for the ideal identification problem, we see 
that the information-theoretic bound is tight (up to a multiplicative con- 
stant) for the edge identification problem of H if there is a constant 6 > 0 
such that every hypergraph H’ obtained from H by (repeated) deletions or 
localizations has a &central element. This suggests that we consider classes 
of hypergraphs that are closed under deletions and localizations and such 
that every hypergraph in the class has a d-central element. We call such a 
class a o-central class of hypergraphs. Summarizing the above discussion we 
have: 

PROPOSITION 9.1. Let 52 be a o-central class of hypergraphs. Then for 
any H = ( V, &) E Q the edge identt$cation problem requires at least log / & 1 
questions and can be solved in C log ) & 1 questions, where C = - l/log( 1 - 6). 

Which leads us to the following nebulous 

PROBLEM 9.2. Find nice classes of d-central hypergraphs. 

In this context, the following (slightly stronger) restatement of 
Theorem 1.1 is appealing. 

THEOREM 9.3. The class !2 consisting of hypergraphs whose edge sets are 
closed under unions and intersections is ho-central for 6, = (3 - log 5)/4. 

One intriguing problem that can be formulated along these lines is the 
following conjecture of Fredman, which appears in [Li]: in every partially 
ordered set (P, d ) there exists a pair of elements, x, y such that the 
proportion of linear extensions of P (i.e., total orders compatible with P) in 
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which x > y is between f and 3. To fit this in the framework of Problem 9.2, 
associate to every finite poset P a hypergraph H, as follc ws: the vertex set 
consists of all ordered pairs of incomparable elements. For each linear 
extension g there is an edge E, which contains the ordered pair (x, J) iff .Y 
precedes y in B. Then the above conjecture is equivalent to the conjecture 
that the class D of all such hypergraphs is f-central. 

The conjecture is true for posets of width 2 [Li]. Kahn and Saks [KS] 
have recently proven the result with f replaced by A. 

X. THE AVERAGE SIZE OF A STABLE SET IN A GRAPH 

Theorem 3.1 asserts the existence of a constant (6,) which is a lower 
bound for the ratio of the average size of a stable set to the number of ver- 
tices in any bipartite graph. The existence of such a constant is actually 
quite trivial, as was pointed out to us by N. Alon. He observed that for an 
appropriately chosen 6 (6 = 0.1 will do), the number of stable sets of size 
less than Su, indeed the total number of vertex subsets of size less than 6v, is 
less than the number of subsets of the larger set in the bipartition (which 
have average size at least v/4 > 2611) and thus the overall average is at least 
6V. 

What if r is not bipartite? For any graph we have 

where cr(I’) is the size of the largest stable set, x(T) is its chromatic number, 
and o(T) is the number of vertices. Let 6(T) be the average size of a stable 
set of IY 

We ask 

QUESTION 10.1. Does there exist a universal constant C > 0 such that ,for 
every graph r, c1( IJ > Cu( T)/x( I-)? 

Using Alon’s argument, one can obtain 

PROPOSITION 10.2. There is a universal constant C such that 

a(r) 2 c v(r) 
s7 log m’ 
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