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1. Introduction

Computers are typically faced with streams of tasks that they have to perform.

It is usually the case that a task can be performed in more than one way. For

example, the system may have several possible paging schemes available or the

same piece of data may reside in several files each of which can be accessed.

The decision as to how to perform a particular task affects the efficiency of the

system in two ways: (1) the cost of the present task depends on how it is

performed and (2) the state of the system upon completion of the task may

affect the cost of subsequent tasks.

There are many other situations in which present actions influence our well

being in the future. In economics, one often encounters situations in which the

choice between present alternatives influences the future costs/benefits. This

is, for example, the case in choosing an investment strategy, for example, in

selecting among investment plans with different interest rates and time spans.

The difficulty is, of course, that we have to make our decision based only on

the past and the current task we have to perform. It is not even clear how to

measure the quality of a proposed decision strategy. The approach usually

taken by mathematical economists is to devise some probabilistic model of the

future and act on this basis. This is the starting point of the theory of Markov

decision processes [13].

The approach we take here, which was first explicitly studied in the seminal

paper of Sleator and Tarjan [21], is to compare the performance of a strategy

that operates with no knowledge of the future with the performance of the

optimal “clairvoyant” strategy that has complete knowledge of the future. This

requires no probabilistic assumptions about the future and is therefore a

“worst-case” measure of quality. A numb?r of recent articles that preceded

this paper analyze various computational problems from this point of view [2, 7,

15, 19, 22], and many more papem have appeared subsequently.

More precisely, consider a system for processing tasks that can be configured

into any of a possible set S of states (we take S to be the set {1, 2, . . . . n}). For

any two states i # j, there is a positive transition cost d(i, j) associated with

changing from i to j. We always assume that the distance matrix d satisfies the

triangle inequality, d(i, j) + d(j. k) > d(i, k) and that the diagonal entries are
O. The pair (S, d) is called a task system. For any task T, the cost of processing

T is a function of the state of the system so we can view T as a vector

T = (T(l), T(2),..., T(n)) where T(j) is the (possibly infinite) cost of process-

ing the task while in state j. An instance T of the scheduling problem consists

ofapair{TITz .“” T“’, so} where TIT1 .”, Tm is a sequence of tasks and SO is

a specified initial state. T is called a task sequence and usually we write simply

T = TITZ . . . Tm, where it is understood that there is a specified initial state

SO. (For most of what we do, the particular value of SO is unimportant.) A

sclzedule for processing a sequence T = T 1T z . . . T’n of tasks is a function o:

{O,. . . . m} + S where u(i) is the state in which T’ is processed (and u(0) = s(,).
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The cost of schedule u on T is the sum of all state transition costs and the task

processing costs:

c(T; u) = ~d(a(i – I), m(i)) + ~ T’(a(i)).
,=1 ~=1

It will be convenient to view the ith task as arriving at time i and being

processed during the time interval [i, i + 1). (Thus, the first task arrives at time

1.) A schedule u is also specified by sequences of state transitions and

transition times. Specifically 1< tl< t2< ... < tk is the sequence of times at

which a state change occurs and s = S1, S2, ..., Sk is the order in which states

are visited (the states are not necessarily distinct but s]_ ~ # s, for each j). We

also define to = O.

A scheduling algorithm for (S, d) is a map A that associates to each task

sequence T a schedule u = A(T). The cost of algorithm A on sequence T,

denoted cJT) is defined to be c(T; A(T)). It is easy to construct a dynamic

programming algorithm that gives an optimal (minimum cost) schedule for any

task sequence; we denote this optimal cost by CO(T). This algorithm k an

off-line computation since the choice of each state may depend on future tasks.

In an on-line scheduling algorithm, the ith state m(i) of the resulting schedule

u is a function only of the first i tasks T 1T z . co T’ and SO; that is, the tasks are

received one at a time in order and the algorithm must output u(i) upon

receiving T’. To measure the efficiency of an on-line algorithm A as compared

to the optimal (off-line) algorithm, we say that A is w-competitive (after [15])

for a positive real number w if there is a constant KW such that CA(T) –

WCO(T’) s KW, for any finite task sequence T. Let WA = {w: A is w-competitive}

and define the competitive ratio W(A) to be the infimum of WA. The competitil]e

ratio of the task system, W( S, d), is the infimum of W(A) over all on-line

algorithms A.’

If, in addition to satisfying the triangle inequality, the transition cost matrix

is symmetric, that is, d(i, j) = d(j, i), we say that the task system (S, d) is

metrical. Our main result is that the competitive ratio of every metrical task

system on n states is independent of d:

THEOREM 1.1. For any metrical task system (S, d) with n states

w(S, d) = 2n – 1.

In many situations, the matrix d is not symmetric since the cost of switching

between two states may be more expensive one way than the other. In fact, the

algorithm we give can be used to give an upper bound in the general case. For

a matrix d that is not necessarily symmetric, define the cycle offset ratio +(d)

to be the~ maximum over al~ sequences SO,Sl, S2, ..., sk where so = Sk of the

ratio (~, = ~d(sl _ ~, s,))/( ~,= ~d(sl, s,- ~)). (If d is symmetric, then +(d) = 1.)

We show

THEOREM 1.2. For any task system (S, d) with n states, there is an on-line

algorithm A: with competitive ratio at most (2n – l)+(d).

Since d satisfies the triangle inequality, it is easy to show that +(d) < n – 1,

and so w(S, d) s (n – l)(2n – 1) for any task sequence. We do not believe

1In our original paper, we used the term, waste factor, rather than the now accepted terminology
of competitiLle ratio.
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that this is the best possible; our guess is that an 0(n) competitive ratio is

always achievable.

The work in this paper was motivated by the goal of developing a general

theory of on-line algorithms for sequential decision problems. Let us explain

how it relates to some of the work done in particular cases, for instance,

sequential search of a list. In this case, on-line algorithms have been developed

that give a competitive ratio of at most 2 [21]. How does this square with our

result, that there is an Q(1 S 1) lower bound on the competitiveness for any

metrical task system? The difference is that in the sequential search problem

and in other particular problems, the possible tasks are restricted to a very

special set, while in our model we allow arbitra~ tasks. The next step in this

research is to determine how restrictions on the set of tasks can effect the

competitive ratio. In recent work, Manasse et al. [16] have studied such

restrictions by extending the model so that a task system consists of (S, d)

together with a set T of possible tasks. In particular, they obtain partial results

on a very interesting problem called the k-server problem. In our conclusion,

we elaborate further on the relation between task systems and the k-server

problem.

In Section 2, the lower bound of 2n – 1 for metrical task systems is proved.

First, the situation is formulated as a game between an on-line scheduler and a

taskmaster and then a particular strategy for the taskmaster is shown to force a

competitive ratio of 2n – 1.The upper bounds of Theorems 1.1 and 1.2 are

proved by explicit description of on-line algorithms. These algorithms are most

easily described as operating in continuous time (allowing nonintegral transi-

tion times). In Section 3, such algorithms are defined precisely and shown to be

easily converted to discrete time algorithms. In Section 4, a simple class of

algorithms called nearly oblivious algorithms is introduced, whose behavior

depends only very weakly on the input task system. In Section 5, a simple

algorithm that achieves a competitive ratio of at most 8(n – 1) when d is

symmetric is presented. In Section 6, the algorithm promised by Theorem 1.2 is

given. In Section 7, randomized on-line algorithms are introduced and a special

case is analyzed. Section 8 contains some concluding remarks and comparisons

to other work.

2. Cruel Taskmasters and a Lower Bound

We can view the operation of an on-line algorithm as a game between the

taskmaster and the scheduler; in the ith round the taskmaster provides the task

T’ and then the scheduler chooses a(i). To prove a lower bound we will define

a simple set of strategies for the taskmaster and show that they can be used to

force a competitive ratio arbitrarily close to 2n – 1.

For a real number E >0, we define the cruel taskmaster strate~ M(e), as

follows: At step i, define T’ so that

T[(u(i – 1)) = e,

T’(s) = O if s#u(i– 1).

Thus, the cost of the ith task is nonzero if and only if the scheduler remains in

state cr(i – 1). Such tasks are called ~-elementa~.

To prove a lower bound of 2n – 1 on the competitive ratio of an arbitrary

algorithm A, it will be convenient to define the competitive ratio of A with
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respect to an infinite task sequence T as follows:

c~(TITz ““” T~)
WT(A) = limsup

m+m CO(T1T2 ““. Tin’) “

From the definition of w(A), it is easy to prove:

LEMMA 2.1. If T is an infinite task sequence such that CO(T’ T2 “”” Tm) tends

to in@zitY with m, then w(A) > w~(A).

PROOF. Let

?-m = c~(T1T2 ““. T~)

and

gm = CO(T1T2 . . . T~).

It is enough to show that for all w G W’, w > w T(A ). So suppose w G WA;

then there is a constant KW such that r~ – wg,,l s KW for all m, which implies:

r~ Kti,
—<w+—.
g. g.

Taking lim sup of both sides yields WJ A) s w since gm tends to infinity, by

hypothesis. ❑

The lower bound on w(S, d) now follows from

THEOREM 2.2. Let A be any on-line scheduling algorithm for the metrical task

system (S, d). Let T(E) be the infinite task sequence produced by M(e ) in response

to A. Then

Taking ~ to be arbitrarily small, we obtain, by Lemma 2.1, that w(A) > 2n
— 1 for any on-line algorithm A so w(S, d) > 2n – 1, as desired.

Remark. Intuitively, the reason that the lower bound on the competitive

ratio improves as e decreases is that smaller tasks reduce the amount of

information available to the on-line algorithm at the times it must make

decisions. Compare a sequence of k repeats of the task T with a single task kT

(i.e., the task whose costs are obtained from those of T on multiplying by k).

The cost for the off-line algorithm is easily seen to be the same in both cases.

The on-line algorithm fares better with kT: Its situation is the same as with T

repeated k times except that it is “given a guarantee” that the following k

tasks are all equal to T.

PROOF OF THEOREM 2.2. Let T’T2 . . . be the (infinite) sequence of tasks

produced by M(E) and let o be the schedule produced by A. Each e-elemen-

tary task T’ has nonzero cost only in state m(i – 1). Let SI, s?, 1$3,. . . and
t1<t2<t~ <””” be the state transitions and transition times prescribed by

algorithm A and tO = O. Recall from the introduction that we assumed that

u(O) is occupied during the interval [0, 1), and the first task arrives at time

t:= 1. All the times t, and t,’are positive integers. Note that the times
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t; <t;< “s. with t;= tk+ 1 define the times at which the taskmaster changes

tasks.

To evaluate the competitive ratio, we analyze the quantities:

a~ = cost incurred by A during [1, t;),

b~ = cost incurred by the optimal off-line algorithm during [1, t~ ].

By the definitions, we do not include the cost of the on-line transition at

time t( in a~ but we do include the cost of an off-line transition at time t( in

b~. This discrepancy makes the analysis more convenient and, since we are

ultimately interested in the ratio aL/bL as k tends to infinity, it does not affect

its correctness. Note first that a~ = D~ + P~ where

is the cost of state transitions for A and

(P, = fjr(cr(i)) = ~ ;
if o(i) = u(i – 1)

~=1 1=1 }
if u(i) # u(i – 1) ‘

= E(tk –k),

is the task processing cost for A.

We obtain an upper bound for bL, as follows: Let bL(,s) denote the cost of

the optimal off-line schedule during the interval [1, t;] subject to the condition

that the system is in state s at time t~.Then

so we can upper bound bk by any convex combination of the b~( s). Thus, our

goal is to find some linear combination BL of the bL(s) for which we can write

a bound in terms of DA and Pk. To this end, we note the following facts:

bk(s) = bk_l(s) s +s~_~,

bL(sk_l) s mh{bL_,(sk_l) + C(tk –tL_l), bL_l(sL) +~(sk, sk-[))

The first claim is obvious, since staying in state s adds no cost between time

t;_~ and t:. The second follows from the fact that two possible options of the

off-line algorithm are: (i) stay in state s&~ during the interval [ t~_~,t;1and (ii)

stay in state sk during the interval [t~ _ ~, t~) and move to Sk_ ~ at time t(.

Simple manipulation now shows that if we define

then
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and thus

B~<B1+D~+et~=B1+a~+ck.

Now, since a~ > D~ 2 k rein, ~ ~ d(i, j) we have ek s ~aJminl~J d(i, j). Also

B~ > (2n – l)b~ and thus the previous inequality implies:

( E
b~(2n–l)<Bl+a~l+

)rein, ~, d(i, j) “

Simple manipulation yields

( 1
&(2n -1)

k 1 + e/rein d(i, j) )

for some constant C. Taking the lim sup as k tends to

(

w~(e)(A) > (2n - 1) ~ + ~,mi~
,~J d(i, j)

3. Continuous Time Schedules

Because of the discrete nature of our problem, all state transitions occur at

integer times. It will be useful to consider schedules in which transition times

are allowed to be arbitrary nonnegative real numbers. Such continuous-time

schedules are not really possible in our model, but we see in Lemma 3.1 that

any such schedule can be converted easily to a discrete time schedule that is at

least as good. The advantage of introducing continuous time is that the

algorithms we define in the next sections are easier to describe.

Precisely, a continuous-time schedule for tasks T1 T2 “”” Tm is a function

a: [1, m + 1) ~ S such that for each state s G S, U–l(s) is a finite disjoint

union of half open intervals [a, b). The endpoints of these intervals represent

times for transitions between states. As before, a can be described by the

sequences slj sz, ..., Sk andtl <t2 < ““”< tkwhere state s, is entered at time

t,;the only difference is that the t,need not be integers. The cost of processing

task T’ under this schedule is given by

! ‘+ldt T’(cr(t)),
1

that is, the cost is the convex combination ~ k ,T’(s) where h, is the

proportion of the time interval spent in state s. The total cost of the schedule is

An on-line continuous-time scheduling algorithm (CTSA) is one that schedules
the time interval [i, i + 1) upon receipt of task T’. The algorithms we describe

in the next three sections are CTSAS. We now show that any such algorithm

can be converted into an online discrete-time scheduling algorithm (DTSA) that
is at least as good on any task sequence.
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LEMMA 3.1. For any online CTSA A‘, there is an online DTSA A that

per@rns at least as well as A on any task sequence T.

PROOF. We define A as follows: On task sequence T, the schedule u

produced by A is given by

u(j) = s: T](s) is minimum among s G S1

where S, is the set of states visited by algorithm A‘ during the time interval

[j, j + 1). Since A’ is on-line, u(j) is computable from s,] and T] Tz . . . T’.
Furthermore, we claim that the cost incurred by algorithm A is at most the

cost incurred by A‘. This follows from

(1) By the definition of u(i), the sequence of states visited by A up to time j

is a subsequence of the states visited by A‘. Hence, by the triangle

inequality, the total transition cost for A is at most that for A‘.

(2) The cost of processing task j in A’ is a convex combination of T’(s) for
s E S, and hence is at least TJ(u(j)). ❑

4. Nearly Obiil’ious Algorithms and Traversal Algorithms

For motivation, consider a very simple metrical task system consisting of two

states SO and S1. A “safe” on-line continuous algorithm A is as follows: A

remains in starting state SO until the task processing cost incurred by A equals

d(so, S1), A then moves to state S1 where it stays until the task processing cost

incurred by A in s,, equals d(sl, SO) = d(sO, S1). At this time, say time c, A

returns to state so. This strategy of cycling between so and SI now repeats. We

note during the time interval [0, c], that A incurs state transition costs of

2 d(sO, s] ) and task-processing costs of 2 d(sO, S1); that is, a total cost of
4d(s~,, S1). Consider the cost of any off-line algorithm B during the same time

interval [0, c] (and against the same sequence of tasks). If B makes a state

transition, then B incurs a cost of at least d(sO, S1). Otherwise, B remains in

one of the states SZ(i = O or i = 1) during the entire time interval, and this

includes the time interval that A was in state s, incurring a task-processing

cost of at least d( SO,S1). It follows then that whether or not B moves, A‘s cost

is at most 4 times that of B.

This simple on-line algorithm has certain nice properties that can be ab-

stracted as follows: An on-line CTSA is called nearly obliuious (so called

because its behavior depends only weakly on the input task sequence) if it is

specified by two infinite sequences SOS1S2 “” o of states (SO is given), and

coclc~c~ “.. of positive reals, and produces a schedule as follows:

(1) The states are visited in the sequence S1, s?, s,, “”” independent of the
input task sequence.

(2) The transition from state s, to s]+ ~ occurs at the instant in time t~+~ when
the total processing cost incurred since entering s] reaches c,. Hence, t,+,

is defined so that

c,= j“’’~f’(s,)d.
t,

Such an algorithm clearly operates on-line. We say it is periodic with period

k if, for j > k, s] = s,_ ~ and CJ = cl_ ~. A periodic algorithm is a traLersal
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algorithm if for each j, CJ = d(sj, s, +, ), that is, the processing cost in state j is

equal to the cost incurred in the transition to state SJ+ 1. A traversal algorithm

(with period k) is completely specified by the sequence ~ = SOSISZ o”” Sk ( = So),

which is called a traljersal of S.

The traversal algorithm specified by the traversal ~ is called A(T). A cycle of

A(T) on a given task sequence T is the time during which one traversal is

completed. Clearly,

PR~OPOSITION 4.1. If 7 = Soslsz ..” Sk, then A(T) incurs a cost of exactly

2 Zz=ld(sl..l, st ) dutzng each cycle.

5. A Good Trallersal Algorithm

We now generalize the two-state traversal algorithm discussed in the last

section so as to achieve an 8(n – 1) competitive ratio for any n state metrical

task system. Intuitively, we partition the states into two components and we

remain in a component (using the strategy recursively) until the task-processing

cost incurred in that component equals the cost to make the transition to the

other component. Formally, we proceed as follows: For d symmetric, let us

view the transition costs d( i, j) as edge weights on the (undirected) complete

graph on n vertices. Let MST = (S, E) be a minimum weight spanning tree for

this graph. For (u, v) G E, we define the modified weight d’(u, L1) to be 2p

where 2P – 1 < d(u, L’) < 2‘. We now inductively define a traversal ~* of S:

(a) If ISI = 1 and S = {u}, we have an empty traversal.

(b) For IS I >2, let (u, L1) be an edge with maximum weight in MST and let

d’(u, LJ) = 2“. The removal of (u, L ) partitions the MST into two smaller

trees MSTI = (Sl, El) and iVISTz = (Sz, Ez) with u G SI and L) G Sz. For

i = 1,2, let ~, be the inductively constructed traversals for S,, and let 2 ~

be the maximum of the modified edge weights in E,. Starting at u, T

consists of 2J1- ~’ cycles of ~ ~, followed by the edge (u, u), followed by

2 ‘1- ‘~’ cycles of 71, followed by the edge (~, u). (Here we cyclically
permute ~1 (resp., ~z) if necessa~ so that it begins and ends at u (resp.,

L’).)

A simple induction yields:

LEMMA 5.1. Let 2 M be the lagest modified weight in MST. Then, in ~*, an

edge of modified weight 2’” is trauersed 2M - m times in each direction.

From this, and Proposition 4.1, we have

COROLLARY 5.2. The total cost of one cycle of A(T*) is at most 4(n – l~2~f.

The desired 8(n – 1) ratio now follows from:

LEMMA 5.3. During the time that A(T *) completes a cycle, any off-line

algorithm B incurs a cost at least 2 ‘– ~.

PROOF. We show that B‘s transition costs plus the task costs incurred while

B is in the same state as A(~*) is at least 2 ‘– 1 We proceed by induction on

IEI, where E defines the MST. For the basis, 1~1 = 1, say ~“ is u ~ L) - u.
M– 1 If algorithm B makes an edge traversal, then we areThus, d(u, u) >2 .
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done. Otherwise, B stays at some state (say u). Since A(T) incurs a cost d(u, u)

while in state u, so does B.

For IEI >1, let (u, u) be the edge of maximal weight and MSTI, MSTQ be as

in the construction of r*.

Case 1. During a cycle of A(T *), B moves from some state in S1 to some
state in S2 (or vice versa). Then, since MST is a minimum spanning tree, this

transition costs at least d(.u, z]) > 2~- 1.

Case 2. B stays in some S, (say SI ) during the entire cycle.

(i) lS1I = 1, so S1 = {u}. Then, B remains at u throughout the cycle. By the
definition of A(T), a task cost of at least d(u, v) > 2~f - 1 is incurred by B

while A( ~ *) is in u.

(ii) lS1I > L M 2MI be the maximum modified weight in MSTI. Assume first
that the traversal ~” begins at u or at a vertex in Sz. Then the portion of

the cycle spent in SI consists of 2 ~–}’1 cycles of ~l. By the induction

hypothesis, B incurs a cost of 2~’ -1 in each cycle, for a total cost at least

2~- 1. If instead ~* begins at a vertex s + u in SI then the argument is

almost the same except that each traversal of ~ ~ by A(~) is interrupted by

a visit to Sz, and then resumed later. Consider the moves of B while

xl(~’) crosses (u, u ), completes its traversals of ~z and crosses (~, u). Say

that during this time B moves from state s‘ to s“. By the triangle

inequality, and since our lower bound for B disregards the task cost, it

incurs while A( ~ *) is in Sz, the relevant cost to B is at least as much as if

B waits in state s‘ until A(7 *) returns to u, and then moves to s“. Thus,

we can treat this exactly as before. ❑

6. An Algorithm with Competitive Ratio (2n – l)x(d)

In Section 2, we saw that the cruel taskmaster strategy forces a 2n – 1

competitive ratio in any metrical task system. In this section, we present an

on-line algorithm that anticipates the cruel taskmaster strategy and achieves a

matching upper bound against that adversary. We then show that the same

on-line algorithm guarantees a 21Z – 1 ratio for any input sequence of tasks. In

the case of asymmetric task systems, a factor of +(d) creeps into the analysis.

To motivate the on-line algorithm, assume for now that the adversary follows

the cruel taskmaster strategy (for some arbitrarily small e). In this case, each

successive task has cost E in the state currently occupied by the on-line

algorithm and cost O in every other state. Thus, the entire history of the system

(inchzcling the tasks) depends only on the sequence SO,s,, S2,... of states
occupied by the on-line algorithm and the transition times tl, tz, . . . Where tl is

the time s, is entered. Instead of using the t, ‘s, it is more convenient to

parametrize the system history by CO,c1, Cz, . . . where c~ is the cost incurred

by the on-line algorithm while in state Sk; here CL = (tk+~ – tkk. The choice

of {Sk} and {c~} constitutes a nearly oblivious on-line algorithm.

How do we choose {Sk} and {c~}? The key is to understand how the off-line

cost changes during some time interval (;, i + At).
For a given task sequence T and an arbitrary time t, let @,: S - R be the

off-line cost function; that is, @t(s) is the minimum cost of processing T up to

time t, given that the system is in state s at time t.

In the present case, where the adversary follows the cruel taskmaster

strategy, consider a time ; at which the on-line algorithm is in state ;. Then, for
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sufficiently small At, @f+Js) = 0;(s) for s +$ since the off-line algorithm

can stay in state s during the interval (;,; + At). For s = f, note that the

off-line algorithm can either occupy ~ during (;,; + At), incurring an addi-

tional cost of ~At, or occupy some other state s during (;, i + At) and move to

f at time ~ + At. Thus,

O;+.,(f) = rein{+;(f)+ dt,:n+~(s) + d(s, ;)).

This expression indicates that +,(f) increases with t Up until the time ? such

that there is some state s for which ~;(s) < +;(;) – d(s, i). From that time o%

the off-line cost remains constant until the next transition by the on-line

algorithm. This suggests the following strategy by the on-line algorithm: stay in

S until the time i such that there is some state s such that +;(s) < @f($) –

d(s,;) and then move to state s. As noted previously, if we assume that the

adversa~ is a cruel taskmaster, then this strategy can be “recomputed” as a

nearly oblivious one. We now describe this on-line algorithm explicitly, general-

izing it so that it applies to any task sequence.

We define the sequences {Sk} and {c~} inductively. At the same time, we also

define a sequence { f~} of functions from S to the reals. For intuition, the

reader may find it useful to note that in the case that the tasks are given by the

cruel taskmaster, f~(s) is the optimal off-line cost up to the time the on-line

algorithm moves into state sk, subject to the off-line algorithm being in state s

at that time. We have:

so is given,

f,(s) = o for all s.

For k >1, having defined Sk. ~ and fk _ ~:

Sk = state s minimizing f~_l(s) + d(s, s~_l)

{

if s+ s&~fk(s) = fk-l(s)

fk-,(sk) + ~(s~>sk-1) }
if s ‘s&l “

Having defined the functions { fk} and states {sk}, we define for k z 1,

c~_l =fk(sk_l) –fk_l(s& l).

The nearly oblivious algorithm defined by {sk} and {c~} above is denoted Aj.

We prove:

THEOREM 6.1. A: has competitive ratio at most (2n – l)o(d).

PROOF. Let T = TITQ ““o Tm be any task sequence. Let tl< t2c “””c t,

< m be the (continuous) times at which A: prescribes state transitions, that is,

the on-line algorithm enters sk at time tk. Let hk(s) be the cost incurred by an

optimal off-line algorithm up to time tk,subject to its being in state s at time

tk.(In terms of the function @ defined before, hk(s) = @t$.s).) Let }ZL =

rein, ~s hk(S) be the optimal off-line cost up to time tk. We want to compare

hk to a~, the cost of the on-line algorithm up to time tk.Specifically, to prove
Theorem 6.1 it suffices to prove that for some constant L independent of k,

‘k2 (2n -a~)v(d) - “
(6.1)
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Note first that ak = D~ + CL_, where

and

k

CL = EC,.
1=[)

We need three lemmas:

LEMMA 6.2. hk(s) > ~~(s) for alls = S.

LEMMA 6.3. ~k(s) –~~(s’) s d(s’, s) @ alls, s’ = S.

LEMMA 6.4. Let

To deduce (6.1) from the lemmas, we have from Lemma 6.2 and 6.3:

h~> minfA(s) > ~,z~ ~[FL - 2n. maxci(i, J)],
SES

1

22?1–1
Fk – B,

where B is a constant independent of k. Using Lemma 6.4 to substitute for FL

gives

Now the distance around the cycle so, SI, ..., sk, SO k

&7ys1,s1_,) +d(so, s,)
,=~

and by the definition of q(d), this is at least

k d(sL_J,.s,) = ‘h

z
,=, +(d) +(d) “

Using this in (6.2), we get

(6.2)
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Since ~(d) >1, we have C~_ ~ + D/*(d) > a/4(d). Thus,

757

‘k> (2n -a~)v(d) - “

where L is independent of k, as required to complete the proof of Theorem

6.1.

It remains to prove the lemmas.

PROOF OF LEMMA 6.2. By induction on k; for k = O the result is trivial. For

k >1, we have

h~(s) > h~_l(s) >fk_l(S) =f~(s)

if s # sk_l. If s = sk_l, we have

{
hk(s~_l) > min hk_l(Sk_l) + C’_~, min (hk_l(s) + d(s, s’_~))) ,

s#s~_,

since either the off-line algorithm is in state sk_ ~ throughout the time interval

[t’_~,t’)or makes a transition from some state s to s~_ ~ during that time

interval (in which case the cost incurred prior to that transition is at least

hk_ l(S)). NOW

h~_l(s~_l) + c~_~ >f’_,(s~_~) + c’_~ ‘f’(s~-~),

by the induction hypothesis and the definition of c’- ~, while

‘f~-l(s~) + d(s’>s~-,)

‘fk(sk-1)

by the induction hypothesis and the definition of f’ and Sk. ❑

PROOF OF LEMMA 6.3. By induction on k; the result is obvious for k = O.

Suppose it is true for k – 1.Then, f’(s) – f’(s’) = f~_ ~(s) – f~_ ~(s’) if neither

of S,s’ equals s’_~. For s = s’_l and s’ + s’–l,

fk(sk-1) -fk(s’)

‘f&,( s’) + d(sk> s’-,) ‘f’(s’)

<fk_l(s’) + d(s’, s~-1) ‘f’(s’) (by definition of s’)

= d(s’, s~-l) (by definition Of f’(s’)),

and for s’ = s&~, s # s~_l,

f’(s) ‘fk(sk-l) ‘f’-l(s) ‘f’-l(s’) – d(s’>s~-1)

< d(Sk, S) – ~(s’, s’-l) (by the induction hypothesis)

< d(sk-l, s). ❑
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PROOF OF LEMMA 6.4. By induction on k. For k = 1, both sides equal

2d(s1, so). For k >1, it is enough to show, by induction, that

( H2 x fk(~) +fk(~k) – )2 z .fk-1(~) +“fk-l(~k-1) ‘CL-1 +~(~~l~k-1).
5# s,’ s#sk_,

Now, ~~(s) = f~ _ ~(s) if s # s~_,, so the left-hand side is equal to

zfk(~k-1) –fk-l(sk) –fk-l(sk-1)>

which equals c~_ ~ + d(,s~, s~_ ~), by definition. ❑

7. Probabilistic On-Line Algorithms

The result of Section 2 shows that, in a general task system, we cannot hope for

a competitive ratio better than 2n – 1. The ability of the adversaty to force

this ratio is highly dependent on its knowledge of the current state of the

algorithm. This suggests that the performance can be improved by randomizing

some of the decisions made by the on-line algorithm. A randomized on-line

scheduling algorithm can be defined simply as a probability distribution on the

set of all deterministic algorithms. The adversary, knowing this distribution,

selects the sequence of tasks to be processed.2 (Note that if the algorithm is

deterministic then the adversary can predict with certainty the response to

each successive task.) The resulting schedule u is a random variable and (using

the notation of Section 1) we are interested in the relationship between

2A(T) = ~ UC(T; U) . pr(~ IT) as it relates to CO(T), where pr(cr IT) denotes the

probability that A follows u on input T. The expected competitive ratio of A,

E(A), is the infimum over all w such that F~(T) – WC()(T) is bounded above for

any finite task sequence, and the randomized competitive ratio, W(s, d), of the

task system (S, d) is the infimum of iZ(A ) over all randomized on-line algo-

rithms A.

The above definition can be described in terms of the scheduler-taskmaster

game described in Section 2. The ith state u(i) is a function of the first i tasks

T’,..., T1, the first i states u(0), u(l),..., ~(i – 1), and some random bits.

For a given sequence of i tasks, the schedule followed up to that time is a

random variable and the adversary selects the (i + l)st task knowing the

distribution of this random variable, but not the actual schedule that was

followed. It is this uncertainty that gives randomized algorithms a potential

advantage over purely deterministic ones.
Thus. far we have been unable to analyze the expected competitive ratio for

arbitrary task systems. However, for the uniform task system, the system where

all state transitions have identical (say unit) cost, we have been able to

determine the expected competitive ratio to within a factor of 2. In this case,

randomization provides a substantial reduction in the competitive ratio. (Recall

that the competitive ratio for a deterministic algorithm is at least 2 n – 1.) Let

H(n)= 1 + 1/2+ 1/3+ ““. + l/n. It is well known that H(n) is between

in n and 1 + in ~z.

2 Such an adversary is now called an “oblivious adversary”. Adaptive adversaries were introduced

in Raghavan and Snir [18] and further studied in Ben-David et al. [1],
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THEOREM 7.1. If (S, d) is the uniform task system on n states, then

H(n) s iZ(S, d) < 2H(Jz).

PROOF OF THE UPPER BOUND. Note first that Lemma 3.1 extends to

randomized on-line algorithms and thus it suffices to describe a continuous-time

algorithm that achieves the desired expected competitive ratio. The algorithm

proceeds in a sequence of phases. The time at which the ith phase begins is

denoted t,_ ~. For a state s, let A, be the algorithm that stays in state s for the

entire algorithm. A state s is said to be saturated for phase i at time t > t, – 1, if
the cost incurrecl by As during the time interval [t, _ ~, t] is at least 1. The ith

phase ends at the instant t,when all states are saturated for that phase. During

a phase the on-line algorithm proceeds as follows: remain in the same state

until that state becomes saturated and then jump randomly to an unsaturated

state. Note that at the end of a phase, the on-line algorithm moves with equal

probability to some state, with all states again becoming unsaturated.

To analyze the expected competitive ratio of this algorithm during a single

phase, any off-line algorithm incurs a cost of at least 1, either because it makes

a state transition or because it remains in some state during the entire phase

and that state becomes saturated. Hence, it suffices to show that the expected

cost of the on-line algorithm is at most 2H( n). Let f(k) be the expected

number of state transitions until the end of the phase given that there are k

unsaturated states remaining. Note f(1) = 1. For k > 1,since the algorithm is

in each unsaturated state with equal probability, the probability that the next

state to become saturated results in a transition is l\k. Thus, f(k) = f(k – 1)

+ l/k, so that f(k) = H(k) and the expected cost of the phase (task process-

ing costs + transition costs) is at most 2H(n). ❑

PROOF OF THE LOWER BOUND. Yao [23] has noted that using the von

Neumann minimax theorem for two-person games, a lower bound on the

performance of randomized algorithms in these (and most other) models can

be obtained by choosing any probability distribution on the input (in this case,

the task sequence) and proving a lower bound on the expected cost of any

deterministic algorithm on this input. We use this principle to derive a lower

bound on the expected competitive ratio of a randomized algorithm on a

uniform task system.

If T is an infinite task sequence, let TJ denote the first j tasks.

LEMMA 7.2. Let (S, d) be a task system and D be a probabili~ measure on the

set of infinite task sequences. Let E denote expectation with respect to D and

suppose that E(cO(TJ )) tends to infinity with j. Let mJ denote the minimum overall

deterministic on-line algorithms A of E(cti(T])). Then

mJ
ii(S, d) > limsup

~+~ E(cO(T’)) “

PROOF. By the definition of i7(S, d), there exists a randomized algorithm R

and a constant c such that for all infinite task sequences T and integers j,
CR(TJ ) – W(S, d)cO(TJ ) < c. Averaging over the distribution D, we obtain

that for each j, E(cR(T])) – iiXS, d) E(cO(TJ)) < c or iiXS, d) > E(c~(TJ))\

E(CO(TJ)) – C/E(CO(TI)). Since E(c~(TJ)) > ml and E(cO(TJ)) tends to infinity

we obtain lim sup m,\E(cO(T1)) < EJ(S, d). ❑
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Now for s c S, define U, to be the unit elementary task with a processing

cost of 1 in state s and O in any other state. Let D be the distribution on task

sequences obtained by generating each successive task independently and

uniformly from the unit elementary tasks. We show that for each j, m, > j/n

and E(cO(T’)) < j/(nH(n)) + 0(1). Applying Lemma

j/n
i7(S, d) > lim sup

,4= J/’(~~(~l) + 0(1))

7.2, we obtain ‘

= H(n),

as required.

Ide~tify a sequence of unit elementa~ tasks with the sequence of states

sl, s~, ..., that define each task. Note that if u is the schedule produced by a

deterministic on-line algorithm A, then, for each time step j, A incurs a cost

of 1 at time step j if SJ = cr(j – 1). This happens with probability l/n, and

hence the expected cost of processing each task is at least l/n and rnj > j\n.

Now for each time i, let a(i) be the least index greater than i such that the

sequence s~+l,st+z,...,s~(i~ contains all states of S. Consider the following

off-line algorithm: letting U,, denote the ith task, at time i do not change state

unless m(i – 1) =s,, in which case let u(i) = s.(,). (This is in fact the optimal

off-line strategy for each such task sequence, although we do not need that

fact.) We claim that the expected cost (with respect to the distribution D) of

this strategy after the first j tasks, as a function of j, is j/(nH(rz)) + 0(1).The

algorithm incurs a cost of one exactly at those times i such that u(i – 1) = S,,

and incurs zero cost at other times. Let C-Jbe the cost incurred up to time j and

let X~ be the time at which the total cost incurred by the algorithm reaches k.

Then, c1 = max{k: X~ s j} and the quantities: Y~ = X~ – X~ _ ~ are indepen-

dent identically distributed random variables, which means that the sequence

{c,: j > 1} is a renewal process. By the elementary renewal theorem (see [20,

Theorem 3.8]), the limit of the ratio Exp(cJ )/j exists and is l/Exp(Y~). To

compute Exp( Y~), note that Y~ is the time until a sequence of randomly

generated states contains all of the states. When i of the states have appeared

in the sequence the probability that the next state is a new state is (n – i)/n

and hence the expected number of states between the ith and (i + l)st state

has appeared is n/(rz – i). Summing on i yields Exp(Y~) = nH(n). ❑

Upper and lower bounds on the expected competitive ratio for other specific

task systems would be of interest. In particular, we would like to know what it

is for the system in which d is the graph distance on a cycle; that is,

d(s,, s]) = min(lj – il, n – lj – ii). We suspect that there is an O(log n) upper

bound for any task system on n states, but the analysis of iZ(,S. d) for arbitrary
task systems seems to be a challenging problem.

8. Conclusion

We have introduced an abstract framework for studying the efficiency of

on-line algorithms relative to optimal off-line algorithms. With regard to

deterministic algorithms, we have established an optimal 2n – 1 bound on the

competitive ratio for any n state metrical task system. For randomized algo-

rithms, we have only succeeded in analyzing the expected competitive ratio for

the uniform task system.
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One must ask about the “utility” of such an abstract model. (For the utility

of an even more abstract model, we refer the reader to Ben-David et al. [1]). As

stated in the introduction, our optimal bound for deterministic algorithms is

unduly pessimistic in that our model allows arbitraxy tasks. We believe that the

utility of a general model should not only be measured in terms of direct

application of results, but one should also consider the extent to which the

model, techniques and results suggest results in more concrete settings.

One such very appealing setting is the k-server model introduced by

Manasse et al. [16]. Here, k mobile servers satisfy requests that come in the

form of a command to place a server on one of n nodes in a graph G whose

edges have lengths that satisfy the triangle inequality. (In their definition, the

edge lengths need not be symmetric but since all the results in [16] assume

symmetry, we make this assumption to simplify the discussion.) In fact, the

model permits n to be infinite as, for example, when one takes G to be all of

Rd. As observed in [16], there is a strong relation between the n = k + 1 node,

k server problem and task systems. To be precise, an n = k + 1 node, k server

problem is equivalent to an n state task system where the tasks are restricted

to be ~-elementary tasks (i.e., those that have a cost vector that is zero in

n – 1 states and ~ in that remaining state). A variant of the k server problem

called the k-server with excursions problem (where servers can either move to

service a request or else make an excursion where the costs of such excursions

are defined by a given matrix) is also introduced and in this case the n = k + 1

node, k server with excursion problem is equivalent to task systems where the

tasks are restricted to arbitrary elementary tasks. For both problems, one

studies the competitil’e ratio. Our 2n – 1 upper bound then immediately

applies in the n = k + 1, k server (with or without excursions) case but the

lower bound only applies directly to the k server with excursion problem.

Indeed Manasse et al. [16] show that n – 1 is the optimal bound for the

competitive ratio of a n = k + 1 node, k server problem. Their n – 1 lower

bound is derived by using the same adversary (i.e., the cruel taskmaster) as in

our Theorem 2.2 and then applying a nice averaging argument. (Alternatively,

the proof of Theorem 2.2 could be modified so as to yield the optimal n – 1

lower bound when tasks are restricted to ~-elementary tasks.) The k = n – 1

upper bound requires a new and intuitively appealing algorithm. By a quite

different algorithm, Manasse et al. [16] also prove that for all k = 2 server

problems, the competitive ratio is 2 and they make the following intriguing

conjecture: the competitive ratio for every k-server problem (without excur-

sions) is k. A lower bound of k is immediate from the previous discussion since

such a bound can be derived when one restricts the adversary to n = k + 1

nodes. Our task system framework provides a little positive reinforcement for

the conjecture in that our deterministic upper bound can be used to show that

the competitive ratio for any n-node, k-server problem is at most 2(Y) – 1

which (at least) is independent of the edge lengths. Here each of the (i!)

possible positions of the servers becomes a state of the task system and the

induced state transition costs inherit the triangle inequality and symmetry

properties. A node request becomes a task whose components are either zero
(if the state contains the requested node) or infinite (if the state does not

contain the requested node). Although a state transition may represent moving

more than one server, as noted in [16], we need only move the server that

covers the request and treat the state as representing the virtual position of
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servers while remembering the physical position of all servers. By the same

simulation, our Theorem 6.1 also provides some information for nonsymmetric

k-server problems. We note that there is now an impressive literature concern-

ing the k-server conjecture, including optimal results on specific server systems

(e.g., [5]. [61), as well as results yielding upper bounds (exponential in k) for
arbitrary k-server systems (see [10] and [12]).

We note however that the k-server with excursion problem cannot, in

general, be formulated as a task system problem. For now, if a state represents

the position of the servers, the cost of a task is not just a function of the state

but also of how we reached this state. Indeed, for n > k + 2, Shai Ben-David

(personal communication) has shown that the competitive ratio can be made to

grow with the edge lengths. (However, we should note that Ben-David’s

example uses excursion costs which do not satisfy the triangle inequality. ) One

suggestion is to redefine the problem so that servers can “move and serve”

rather than “move or serve”. This point of view is investigated in the case of

one server by Chung et al. [7].

Our results on the expected competitive ratio of randomized algorithms for

the unit-cost task system has a very nice analogue in the unit-cost k-server

problem that is better known as the paging or caching problem. For the paging

problem, Fiat et al. [9] have established a 2H(k) upper bound on the expected

competitive ratio using a very appealing (and possibly quite practical) random-

ized algorithm. It is interesting to note that in the (admittedly nonpractical)

case when n = k + 1, their algorithm becomes the algorithm of our Theorem

7.1. A direct modification of our lower bound in Theorem 7.1 can be used to

establish an H(k) lower bound for the expected competitive ratio of random-

ized on-line paging algorithms. Subsequently, McGeoch and Sleator [17] have

constructed a randomized algorithm with a matching upper bound of H(k). A

number of other important results on paging problems, on the trade-off

between randomization and memory, and on a more general study of random-

ized algorithms in the context of competitive ratios for on-line algorithms

(against various types of adversaries) can be found in Raghavan and Snir [18],
Coppersmith et al. [8], and Ben-David et al. [1].

The papers of Manasse et al. [19], Fiat et al. [9], and Raghavan and Snir [18]

and the original papers by Sleator and Tarjan [21] and Karlin et al. [15] argue

for the development of a theory (or rather theories) for competitive analysis.

Such a study seems fundamental to many other disciplines (e.g., economics) in

addition to computer science and, as such, we expect to see a number of

alternative models and performance measures.
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