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Abstract

The Inclusion-Exclusion formula expresses the size of a union of a family of sets in terms of the
sizes of intersections of all subfamilies. This paper considers approximating the size of the union when
intersection sizes are known for only some of the subfamilies, or when these quantities are given to
within some error, or both.

In particular, we consider the case when all k-wise intersections are given for every k < K. It
turns out that the answer changes in a significant way around K = /n : if K < O(y/n) then any
approximation may err by a factor of ©(n/K?), while if K > Q(y/n) it is shown how to approximate
the size of the union to within a multiplicative factor of 1 & e~ 2(E/Vn),

When the sizes of all intersections are only given approximately, good bounds are derived on how
well the size of the union may be approximated. Several applications for boolean function are mentioned
in conclusion.

1 Introduction
Are all the terms in the inclusion-exclusion formula
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really necessary? The obvious answer is positive. In the absence of even a single term the size of the
union is not uniquely specified. But can the size of the union be approzimated well, given only some of
the terms? Also, if terms are given to within some error, can the size of the union approximated? The
present article answers questions of this general character.

Our interest in these problem arose from some computational considerations: Many computational
problems may be viewed as asking for the size of a union of a collection of sets. On some instances it
turns out that while computing the size of the union is rather difficult, computing the sizes of members
in the family, or even of arbitrary intersections thereof is easy. In these cases, the inclusion-exclusion
formula may be used to find the size of the union.

Perhaps the most obvious example is the problem of computing the number of satisfying assignments
to a DNF formula (a problem known to be #P-complete [Val79]). This problem can be stated as that
of computing the size of the union of the sets of assignments that satisfy the various clauses of the DNF
formula. The number of assignments satisfying an intersection of clauses is either zero or 2" where m is
the number of variables which appear in none of these clauses. So inclusion-exclusion may be applied to
derive the size of the union. This procedure takes time which is exponential in the number of clauses,
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and seems to be the best algorithm known for this problem when the number of clauses is less than the
total number of variables that occur in the formula. In fact, in these cases, this method even seems to
be the quickest way known to check whether every assignment satisfies the DNF formula, i.e. to check if
the complement, a CNF formula, is satisfiable.

A somewhat more subtle example is Ryser’s formula [Rys63] for computing the permanent (also a
#P-complete problem [Val79]). Ryser essentially reduces the problem of computing the permanent to a
problem of computing the size of a union of sets, where the sizes of intersections of all subfamilies can be
easily computed. The inclusion-exclusion formula is then used to compute the size of the union. This is
the quickest method known to compute the permanent, as it requires 2°1t°(") operations to compute the
permanent of an n by n matrix, instead of the trivial n!.

The obvious drawback of using the inclusion-exclusion formula is the fact that it has an exponential
number of terms, and that, as mentioned, all terms are necessary, i.e. if the size of the intersection of
any subcollection is missing, then the size of the union cannot be computed. This prompted our interest
in approximate versions of the inclusion-exclusion formula.

We start, in Section 2, with the following version of this problem: Let Ay, A5, ..., A, be a collection of
sets. Suppose that |[;cs As| is given for every subset S C [n] of cardinality |.5| < k. How well can ||J A;]
be approximated based only on this information? Equivalently, let Ay, As,..., A, and By, Bs,..., B, be
two collections of sets such that for every S C [n] of cardinality | 5| < & there holds |N;es As| = |Nies Bil-
How different can ||J A;| and ||J B;| be?

A naive approach to the problem would be to truncate the exclusion-inclusion formula up to the
k-terms. This approach is easily seen to fail completely e.g. when all sets are identical.

We give a nearly complete answer to this question, essentially showing that for & < O(y/n) no good
approximation is possible, while for larger k a good approximation is possible. The essence of our main
result may be formulated as:

Theorem 1 Let k and n be integers and let Ay, Ay, ..., A, and By, Bo, ..., B, be collections of sets where
not all B; are empty and where:
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This bound is tight up to a constant factor for k < \/n.

The main observation used in the proof of this theorem is that the problem may be reduced, via
linear programming, to questions in approximation theory and in particular to the theory of Chebyshev
polynomials.

Earlier references for related work can be found in Prekopa [Pr88]. In particular, the theory of linear
programming seems to have first been employed by Kwerel [Kw75], but the roots of this idea go back
at least as far as Bonferroni [Bo37]. More recently this question has been studied by Alon and Hastad
[AHS88], who, using different techniques than ours, could show that when k& < O(loglogn), the size of the
union cannot be approximated well, and solve the case k = n — 1 completely.



Theorem 2, appearing in Section 2, shows how to effectively derive a good approximation for the
size of the union. The approximation is given by a linear form, and is essentially as good as Theorem 1
implies is possible.

Section 3 considers how well the size of a union can be approximated when the sizes of all of the
k-wise intersections are only given approxzimately. An almost complete answer to this question is given.

In Sections 4 and 5 we present further computational motivation for our problems: the study of
boolean functions. We present several applications of our results to questions related to the computational
complexity of boolean functions. These questions and similar ones from circuit complexity were in fact
the point of departure for the present research.

In Section 4 the following problem is considered: Let fi,..., f,, be n boolean functions, none of which
can even approximate a target function g, and moreover, the conjunction of any subset of these functions
cannot approximate g. Is it possible that the disjunction of these functions approximates the target
function g? Rather tight bounds are established on the extent to which the original functions must not
approximate ¢ as to insure a similar conclusion for the disjunction.

Section 5 contains some comments on constant depth circuits. We conjecture that any distribution
which is t-wise independent, for large enough ¢, "looks random” to any small constant depth circuit. The
methods of this paper yield only a weak result of this form for depth 2 circuits.

2 Approximation Using Initial Terms

2.1 Main result

Let A= (A1, As,...,A,)and B =(B1, By, ..., B,) be two collections of sets. Assume that for any subset
S C [n] of cardinality |5 < kit is true that |;c5 As| = |N;es Bil. How different can [J A;| and | B;|
be?

This problem is clearly scalable, i.e. multiplying each size by a constant will change every answer by
the same constant. It is therefore without loss of generality that we restrict our attention to events in a
probability space.

Definition 1

n n

E(k,n)= sup(Pr[U Al - PT[U Bil])
where the supremum ranges over all collections of events, in all probability apaces, Ay, Ao, ..., A, and

Bi,Bs, ..., B, that satisfy
Pr[() 4i] = Pr[() Bi]
1€S €S
for every S C [n] such that |S| < k.

Our aim in this section is to derive bounds for F(k,n). The first fact to notice is that there is no loss
of generality in assuming symmetry. A j-atom of A=(Ay, Ag,..., A, ) is defined to be the intersection
of 7 members in A and the complements of the other n — 7 members. A collection of events A is called
symmetric if for every 1 < j < n, all j-atoms of A are of the same probability.

Lemma 1 The supremum, F(k,n), remains unchanged even when A and B are restricted to be symmet-
ric.



Proof: Given non-symmetric A and B, we construct symmetric collections A’ and B’ with the same
difference in the probability of their union. The probability of each j-atom in A’ is defined to be the
average of the probabilities of all j-atoms in A, and similarly for B’. O

;From now on A=(A41, Az,..., A, ) and B=(Bq, Bs,..., B, ) are always assumed to be symmetric.
Here is some notation: For 1 < j < n let a; (resp. b;) be the probability of the union of all j—atoms in

A (resp B.) i.e.
aj = (n) Pr[ﬂ AN ﬂ Ai“]
J i€s i¢s
and
by = (") Pr[() B:n () Bi‘]
J i€s i2s

where §'is any set of cardinality j. For 1 < j < klet r; be the sum of the probabilities of all j-intersections,

r; = (])Pr[ﬂ Al = (])Pr[ﬂ Bi]

1€S €S

i.e.,

where S is any set of cardinality j. For 1 < 7 < k define the linear form

Ei(zy,...,2,) = Zn: (2) x;.

The next lemma indicates the role of linear forms F;:
Lemma 2 For every symmetric collection of events Ay, A, ..., A, , and for every 1 < j < k:
rj = E;(@)

Proof: Consider any i—atom, say the one corresponding to the set .5 of size i. For any j < ¢, the weight
of this atom is counted once towards r; for any subset of size j of 9, namely, (;) times. O
Observe first that E(k,n) can be expressed as the value of a certain linear program:

Lemma 3 F(k,n) is the optimum of the following linear program:

i3
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Subject to the constraints:
For1<j<k: E(Z)=0 (1)
Forany S C[n] : —1§in§1 (2)
€S

Proof: Let Ay, Ay, ..., A, and By, By, ..., B, be (symmetric) collections of events. Let a; and b; be
defined as above and let #; = a; — b;. The previous lemma immediately implies that the x;’s satisfy
constraints of type 1. Constraints of type 2 are satisfied, as the a;’s are probabilities of disjoint events,
and so are the b;’s. Note that Y /-, @; is exactly the difference in the probabilities of the union of the
A;’s and of the B;’s. Thus the optimum of the linear program is at least F(k,n).

On the other hand, let z1,..., 2, be reals satisfying constraints 1 and 2. Define a; to be z; if z; > 0,
and 0 otherwise, and define b; to be —a; if #; < 0 and 0 otherwise. Consider collections of events A



and B as follows: each j-atom of A has probability aj/(?). Such a collection exists, because the a;’s are
all non-negative, and sum to at most 1. B is defined similarly with the b;’s. Note that the difference in
the probabilities of the union of the A;’s and of the union of the B;’s is exactly >, z;. Also the sizes
of the j-intersections of the A;’s and of the B;’s are equal for all 1 < j < k as they are both given by
E;(@) = E;(b) (by constraint 2). O

By passing to the dual some useful insight may be gained:

Lemma 4 F(kn) is given by the optimum of the following problem:

Minimi 1 f
e iinte;?rz,wligign( fZ)

over all linear forms f = %I, fix; that are linear combinations of the linear forms E; for 1 < j <k,

and satisfy f; < 1 for every integer 1 < ¢ < n.

Proof: In the dual optimization problem linear combinations of the equations (1) and inequalities (2)
are considered which yield the vector 1 + z2 4+ ...+ z,. Equations of type (1) may appear with an
arbitrary coefficient, since they add nothing to the cost of the dual, and only inequalities of type (2)
contribute to it. Consider an optimal combination of inequalities of both types and concentrate on the
contribution of type (1) equations. Let ¢; be the coefficient of z; in this restricted combination, and let
¢+ = max(0,max; ¢; — 1) and ¢— = maz(0, 1 — min; ¢;).

Our first claim is that the cost of the dual is at least ¢y + ¢_. If ¢ > 0, consider the index ¢ where
c_ is attained. In the full combination, the coeflicient of z; must be 1, which must come from the right
hand side of inequalities of type (2), adding € to the cost per each € in the coefficient of z;. These terms
must supply the missing ¢_ in the coefficient of ;. A similar argument applies to ¢y where the left side
of (2) is used.

Secondly, observe that a cost of ¢; + ¢_ can indeed be achieved. Consider the set 57 of all ¢ such
that ¢; < 1, and let ¢; be min;eg, (1 — ¢;). Let Sy be the set of all ¢ such that ¢; < 1 — €1, and let €3 be
min;es, (1 —¢;), and so on. Combine now ¢; time the r.h.s. of of the type (2) inequality corresponding to
51, €2 times the inequality corresponding to Sy, etc. to correct all the coeflicients smaller than 1 to be 1,
for a total cost of c_. A similar fix works for c,.

So far it was shown that F(k,n) is the minimum of ¢_ + ¢4 over linear combinations of equations of
type (1). Our next claim is that in the optimum of the dual, ¢, = 0. Consider any combination with
¢4 > 0, with a cost of ¢ + c_. Divide all the coefficients in the combination by (1 4 ¢4 ). This yields a
combination where all the coefficients are between (1 —c¢_)/(1+ ¢4 ) and 1. The cost associated with the
new combination does not exceed 1 — (1 —¢_)/(1+ ¢y ), less than the original ¢_ 4+ c¢4. O

The main observation underlying the proof is presented in the next lemma, where the problem is
stated in terms of approximations by polynomials.

Lemma 5

E(k,n)=inf( max (1-—¢(m)))
q m=1,...,n
where the infimum ranges over all polynomials q of degree at most k that have zero constant term and
satisfy q(m) < 1 for all integer 1 < m < n.

Proof: Consider the linear forms F; as functions on 1,...,n, assigning to each 7 the coefficient of z;.
Viewed this way E; is the function (f), a polynomial of degree j. Thus the linear span of Fy,..., Ey
consists of all k—th degree polynomials with a zero constant term.

The present lemma is now seen to be nothing but a restatement of the previous one. O

It will be easier to estimate F/(k,n)in terms of a related quantity:



Definition 2

D(k,n) =inf( max |g(m)—1|)

q m=1,...n
where the infimum ranges over all polynomials q of degree at most k that have zero constant term.

Lemma 6

_ 2D(k,n)
Elkn) = 5 pi

Proof: Let ¢ be a polynomial achieving D(k,n), and consider p = ¢/(1 + D(k,n)). It is clear that for

every integer 1 < m < n, {75024 < p(m) < 1. This implies that E(k,n) < S

Conversely, if p is a polynomial achieving F(k,n), then define ¢ = 2p/(2 — F(k,n)), and the other
side follows similarly. O

Consider an optimization problem similar to the one posed in lemma 5 but where the variable m is
any real between 1 and n, rather than an integer in that range. This continuous version is fairly close
to standard questions from analysis on approximating functions throughout an interval under L., (max)
norm. A prototype of questions like this asks for a polynomial P(z) of a given degree, with a leading
coefficient 1 which minimizes maxz|P(z)| where x ranges over —1 < z < 1. This specific problem is solved
by Chebyshev polynomials which, not too surprisingly, play an important role in the present article as
well. The interested reader may find a detailed analysis of Chebyshev polynomials in many texts on
approximation theory ([Che66], [Riv69]). Here are some of their properies which will be required for the
present discussion.

1. The k’th Chebyshev polynomial Ti(2) is a polynomial of degree k and is given by:

(x+ Va2 =1 + (2 - $2—1)k‘

Ti(z) = 5

2. Forevery —1 <2 <1: |Tx(z)| <1

3. There are exactly k + 1 different points —1 < 2 < 1 for which |Ti(z)| = 1. The sign of Ti(z)
alternates between any two consecutive ones.

4. The derivative of T}, satisfies T} (z) < k? for every —1 < z < 1.

A word of intuition may be useful at this point. First of all, using a linear transformation, the interval
in question is changed to be [—1,1] rather than [1,n]. It turns out that for a given k and a large n,
the discrete problem where test points are integers, is sufficiently close to the continuous one, which is
optimized by Chebyshev polynomials. Actually, Chebyshev polynomials come very close to optimizing
the discrete problem as well. This happens because for a large n the set of points at which the polynomial
is tested is sufficiently dense to make the problem almost identical with the continuous problem, where
all real points are examined. This heuristic argument carries through as long as the distance between test
points (%) is sufficiently smaller than the distance between any two consecutive zeros of the Chebyshev
polynomial. Tt is known that the least distance between roots of T} is @(13—2) which explain the transition

that occurs around k = \/n.

Lemma 7
_ % 1
[T (=) = Dl < 7=



Proof: Consider a polynomial ¢, which results from a linear transformation applied to the k’th Cheby-
shev polynomial.

Tk( 2x—(n—|—1) )

_ n—1
onl) =1 = 2

n—1
The upper bound for D(k,n) is implied by noting that ¢ has the following properties:

e It is a polynomial of degree k& with a zero constant term (it can be easily verified that ¢x ,(0) = 0).

e Forany 1 <z < n:
|Qk,n($) - 1| <

[1(=Lt))

This is so since for all such z, % is between —1 and 1, and thus ‘Tk(%)‘ <1
Turn back now to the lower bound for D(k,n). Assume to the contrary that a polynomial p(z) of
degree k with zero constant term satisfies
_ Kk
p(e) = 1] € "5
—(n+1
‘Tk(%)‘
for all integers 1 < 2 < n. The properties of Chebyshev polynomials mentioned above imply the following
for gy n:

e There are exactly k£ + 1 points 1 < & < n such that

1

|gkn(z) — 1] = m

and the sign of gx ,(2)— 1 alternates between each two consecutive points.

o The derivative of ¢y, satisfies

dho(0)] < C
2(n — 1) [T(=21)|

forall 1 <a <n.

Let us examine the k + 1 extrema of ¢, and consider the integer points nearest to them, which we call
Z1y...,2p+1- Each of these points is at at most 1/2 away from an extremum, and by the bound on the
derivative ¢, foralli=1,....k+ 1:

k2

@rm(2) — 1] > —— =L
( ) ‘Tk(—(n-l—l))‘

n—1
and, moreover, g ,(z;) — 1 changes sign between any two consecutive z;’s. Now consider the polynomial
p(x) — qrn(2). It changes sign between any two consecutive z;’s, so it must have at least k roots between
1 and n. But it is a polynomial of degree at most k, which vanishes at 0 as well, a contradiction. O
This finishes the derivation of our bounds for E(k,n). The next theorem summarizes our results:



Theorem 1 Let k and n be integers and let Ay, Ay, ..., A, and By, By, ..., B, be collections of sets that
satisfy:

N =

1€S

(15

1€S

for every subset S C [n] with |S| < k, then

Uiy A (A1)

V/n+1

where A = N In particular

1. Fork > Q(y/n)
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2. and for k < O(y/n)
|U?:1 A2| n
S
o Bl < %)

Moreover, the inequality in this range is optimal as there exist collections of sets satisfying the
requirements of the theorem and yet:

|U?:1 A2| n
=L (=
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Proof: As pointed out already, there is no loss of generality in assuming the sets to be events in a
probability space with cardinalities replaced by probabilities. The ratio between the probabilities of the
two unions is seen now to be at most 1—E1(k,n) = ifggg:g; But D(k,n) < |Tk(—%)|_1 = ﬁ, so the
upper bound on the ratio follows. The optimality in the range k < O(y/n) follows from the lower bounds
on D(k,n). The asymptotic results follow now from standard estimates. O

While this theorem gives nearly optimal bounds for & < O(y/n), there is evidence that for larger & a
better bound can be proved. A special case which we, as well as [AH88], managed to solve is k = n — 1.
In that case another family of classical orthogonal polynomials, viz., Krawchouk polynomials replace
the Chebyshev polynomials yielding an approximation to within a factor of 1 + 27%( rather than the
1+ 2-9(") implied by this theorem. A derivation of this bound appears in next subsection. We do not
know at present what the best approximation is in the range n — 1 > k > w(y/n).

Theorem 1 only estimates the quality of approximations obtainable from the sizes of all intersections
of up to k sets. The next theorem indicates how to effectively compute an approximation which attains
this bound. As the reader probably expects the result is obtained from an appropriate linear combination.

Theorem 2 For any integers k,n there exist (explicitly given) constants (o/f’n, ag’n, .. .,az’n) such that

for every collection of sets Ay, As, ..., A, , the quantity

S| A

|S|<k €S

differs from |UJ_, A;| by at most a factor of:

L1+ 0( ) if k> Q).



2. 0(&) if k < O(v/m).

Proof: The statement of the lemma follows on observing that the linear program in lemma 3 may be
slightly modified to yield an approximation for the size of the union. The modification is to replace every
equation of type (1) £;(Z) = 0 with E;(Z) ="size of intersection”, and replace all inequalities of type (2)
by the inequalities x; > 0 for all 1 <7 < n. Now the same linear combination that achieves the bound
E(k,n)for the program in lemma 3, can be used to obtain a good approximation for the size of the union.

Thus the real numbers a]f’n, ag’n, .. .,ag’n are defined to be the coefficients of the linearly transformed
Chebyshev polynomials expressed in terms of the polynomials (915), (g), ey (i), that is
k L r
Gk = Za27n()
; ?
=1
The vector @ = (a]f’n, ag’n, .. .,az’n) can be calculated by as follows. Consider the above polynomial
identity for z = 1, ..., k. There results a system of linear equations in the a's:
aM =1

where M is the matrix whose (¢, ) entry is (Z) and the j—th element in 7 is g ,(j). Now it is easily

verified that the (i,) entry of the inverse M1 is (—1)"*/(%), so one can calculate & = {M~".

O
2.2 The case k=n—1
As mentioned previously, we can improve on Theorem 1 for the case k = n — 1.

Theorem 3
D(n—1,n)=

2n — 1
Proof: By Lemmas 5 and 6, D(n — 1,n) is the optimum of the following linear program:
min u

under the constraint that for all integers 1 < ¢ < n there holds

n—1
1—U§Zajt]§1+u.
i=1

JFrom LP duality it follows that the optimum for u is obtained by linear combinations of these inequalities.
In such a combination all terms involving the a; have to cancel out. So if 7 is the vector yielding the
optimal bound, then necessarily #M = 0 where M is the matrix of the LP whose (i, j) entry is #/ for
1<i:<nand 1< j<n-—1 Nowany n— 1 rows of M form a van der Monde matrix so the rank of
M is n — 1 and consequently the space of such 7 is one-dimensional. It is easily verified that this space
is spanned by the vector whose ¢—th entry is (—1)2(7) In other words, the combination in question is
that where for t odd (even) the left (right) side of the t—th inequality is multiplied by (). The resulting
inequality is easily seen to be

u > .
—2n -1

Since the null space of M is one-dimensional this is the optimal bound for . O



When translated back to the language of polynomials the optimal solution is seen to be closely related

to Krawtchuk polynomials:
l
M\ ({m—x
Pz;m) = -1y . .
i) Zo:( )(J)(l—ﬂ)

The exact relationship is

n—x—1
n—1

(]($)Il—(1—|—€)( ) +eP_1(zsn—1)

where ¢ = 2,}—_1 To check this, note that P,_1(r;n—1) = (=1)" for r = 0,1,...,n — 1 which readily
implies that ¢(0) =0 and ¢(r) =14 (=1)"efor r = 1,...,n — 1. The only fact to verify is that the same
holds also at r = n, but P,_y(n,n—1) = (=1)""1(2" - 1) = (_1171_1
too.

The fact that this problem is optimized at two ranges by (simple variants of ) Chebyshev and Krawchuk
polynomials is very suggestive, of course. Is it not the case that in other ranges the optimum is obtained
through other classical families of orthogonal polynomials, perhaps other instances of Racach or Hahn
polynomials? Unfortunately, we do not know the answer to this question for other values of k at the time
of writing.

and the validity for » = n follows,

3 Using Approximate Information

This section estimates for the size of the union when intersections sizes are given only to within an error.

Let Ay, A, ..., A, be events in a probability space. Say that for any subfamily, the probabilities of
the intersection is given to within an additive error of e. How good an estimate for the probability of the
union can be derived? Again, the problem is restated in terms of two collections of events:

Definition 3 B(n,¢€) is defined to be

sup PT[U Al - PT[U Bi]
where Ay, Ag, ..., A, and By, Bs, ..., B, are any two collections of events satisfying:

< €

‘Pr[ﬂ A;] = Pr[() Bi]

1€S €S

for every subset S C [n].
The results of the last section imply good bounds on B(n,¢):

Theorem 4 For ¢ = ¢(n) > 0 there holds:

1

1. Iflog(L) = Q(y/nlogn) then B(n,€) < M megn) = o(1).

2. Iflog(L) = o(y/n) then B(n,e) =1 —o(1).

10



Proof: To prove part (1), apply Theorem 2 for good estimates on Pr[J A;] and Pr[J B;], using k =

—_ 1
O(log 1 /logn). Theorem 2 then yields estimates of a error no bigger than e~ k) = M TRg) | These
approximations must be very close to each other, for their difference is given by:

Z aféT(Pr[ﬂ Al — Pr[ﬂ Bi]).
SC[al, 1S|<k ies i€s

There are clearly at most n* terms in this expression, none exceeding a;"e. The considerations of

Theorem 2 imply that that f’n is bounded by, say, n*.

@ Thus, the whole difference does not exceed

1
n?he = X Tmaw) and part (1) of the theorem follows.
Part (2) follows from the fact that B(n,27") > E(n/2,t) together with the part of Theorem 1 stat-
ing that when ¢ = o(y/n), E(n/2,t) = 1 — o(1). Let there be given two collections Af,... A/

/2 and
B, .. .,B;%/z where

Pr[() Al = Pr[() Bl]
1€S €S
if |9] < t. We show how to construct families Ay, A, ..., A, and By, By,..., B, , so that

n n/2 n n/2
Pr[U Al = Pr[U Al Pr[U B = Pr[U B

for every S C [n], and
Pri() Al = Pri[) Bi]| <27
1€S €S
To construct Ay, Ag,..., A, and By, Bs, ..., B, , first augment each collection with n/2 empty sets,

then apply lemma 1 to ”symmetrize” them thus obtaining symmetric collections Ay, Ay,..., A, and
By, By,..., B, . In other words, if 5 has size m:

! Nem P ; /A/
Pr[ﬂ Al = 2s'Cln/2), |5 |<—7Zn> r[Nies Ail

1€S

and similarly for the B;’s.

That
n n/2
PT[U Al = PT[U Al
=1 =1

holds is obvious. As for

<27

‘Pr[ﬂ A;] = Pr[() Bi]

1€S €S

for every S C [n], note that if | S| < ¢ the difference is zero. For |S| = m > ¢,

Pr{() 4] < (T;/z 2)/(;) < o

€S
and the claim follows.
This completes the proof of the lemma, because for any solution of the F(n/2,t) problem, a solution
for the B(n,27") problem is presented, with the same value for the target function. O
Let us note that we have actually showed that an estimate of size of the union may be effectively
computed by the same formula given by Theorem 2. Also note that this formula does not require the
sizes of intersections of a large number of sets.
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4 Disjunctions of Boolean Functions
This section addresses the approximation of boolean functions by other boolean functions.

Definition 4 Let f and g be boolean functions. The advantage of f on ¢ is

Advo(f,g) = |Prlf(z) = g(x)] = Pr(f(z) # g(2)]]
where the probability distribution is uniform over all binary n—vectors x.

The advantage of f on ¢ is a measure of how well f (or its negation) approximate g. The following
question comes up naturally in the study of circuit complexity of boolean functions: Given are boolean
functions fi,..., f,, and a target function g. Suppose that the conjunction of any subset of fi,..., [,
has advantage of less than € on g. How large can the advantage of the disjunction of these functions be
on g7

Lemma 8 Let g, f1, fa, ..., fn be boolean functions such that

Forall § C[n] : Adv(/\ fisg) < e
€S

then Adv(\7—y fi,g) < B(n,€). This bound is optimal in that there exist boolean functions satisfying the
conditions of the lemma such that Adv(\/; fi,q) is arbitrarily close to B(n, ).

Proof: Define
A =A{a:g(x) = file)}

B =A{z:g(x) # fi(z)}

Our assumptions on ¢, f1,..., f, translate to:
‘Pr[ﬂ Al - Pr[ﬂ Bi]| <€
1€S 1€S
for every S C [n], and the advantage is given by:
Adv(\/ fi,g9) = ‘PT[U Ail— pr[lJ Bl
7 =1 =1

It is thus clear that the advantage is bounded by B(n,e€).

Conversely, let Ay, Ay,..., A, and By, By, ..., B, be collections of events that achieve the value of
B(n,¢). They can be viewed, w.l.o.g. as subsets of {0, 1} for some [, because for a sufficiently large [ the
original distributions can be approximated arbitrarily well. Consider the following boolean functions on

{0,1} x {0,1}4

g($07$17"'7$1) = 20
1 ifeg=0and < xq,...,21 >€ A;
filzo,21,...,xz) =< 1 ifap=1land <x1,...,21>€ B;

—1 otherwise

Direct translation of the properties of A1, Ay, ..., A, and By, B, ..., B, implies that any conjunction of
fi has advantage of at most € on g, yet their disjunction has an advantage of B(n,¢) on g. O
Combining with Theorem 4 we obtain:
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Theorem 5 Let fi, fo,..., [, and g be boolean functions that satisfy

Forall § C[n] : Adv(/\ fivg) <27t
1€S
where t > Q(y/nlogn). Then

Q(\/ﬁltogn)

i3
Ado(\/ fi,g)<2”
=1
Moreover, this is optimal in the sense that for any t = t(n) = o(y/n) there exist boolean functions

fis f2y. oy fn and g that satisfy

Forall § C[n] : Adv(/\ fivg) <27t
€S

and yet
Adv(\/ fi,g)>1—0(1)

=1

5 t-wise Independence and Constant Depth Circuits

Some of the original questions motivating this research were ones regarding ”"what looks random to
constant depth circuits?” Although the present results do not provide a strong answer to this problem,
they do enable us to make some nontrivial remarks. Here is a statement of the problem and our results.

Consider balanced probability distributions on zq,...,z,, i.e. distributions that satisfy for every z,
Prlz; = 0] = Prlz; = 1] = 1/2. Such a distribution is called ¢-wise independent if the induced distribution

on any t variables z; ,...,;, is uniform.

t

Definition 5 Let f(x1,...,2,) be a boolean function. Say that f is fooled by t-wise independence if:

|Prif(z1,....xm) =1 — Prif(yi,.. .y um) = 1]] < 0.1

whenever x4, ..., x, are chosen independently uniformly at random and y4, ...,y are chosen at random
according to any balanced distribution which is t-wise independent.

Conjecture 1 Any function which is computed by a boolean circuit of depth d and size s is fooled by
(log s)4~!-wise independence.

(The circuits in question have unbounded fanin with ”"and” and "or” gates, all negations are ap-
plied to variables). This conjecture essentially states that a bit generator producing distributions which
are polylog-wise independent is a pseudorandom generator for AC? tests (polynomial size, constant
depth boolean circuits). This would generalize the two known pseudorandom generators for AC? [AWS5]
[NW88], both of which indeed are at least polylog-wise independent.

We are only able to show:

Theorem 6 Any function which is computed by a boolean circuit of depth 2 and size s is fooled by
Q(/slog s)-wise independence.
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Proof: Assume w.l.o.g. the circuit to be a DNF-formula with terms fi,... f;. Consider a distribution u
on x1,...,&;, which is t-wise independent. Define A; to be the event that fi(z1,...,2,,) is true where
is chosen uniformly at random, and define B; as the event that f;(y1,...,¥n) is true where y is chosen
according to distribution p. We now claim that for any subset S C {1...m}:

Pr[() 4i] - Pr[( Bi]| < 27
1€S €S

There are two cases: if the conjunction of the f;’s has less that ¢ literals then the two probabilities are
exactly equal, as y is t-wise independent. Otherwise, both probabilities are bounded from above by 27
The statement of the theorem now follow directly from Theorem 4. O

6 Open Problems

1. Is there an efficient adaptive algorithm to approximate the size of a union of events given an oracle
for sizes of intersections?

2. The inclusion-exclusion formula is the Mobius inversion formula for the full boolean lattice. Are
there results similar to the present ones for other lattices?

3. Theorem 1 shows the existence of two collections of sets where small subcollections have intersections
of the same size, whose unions differ much by size. The proof does not supply an example. What
do such families look like? Is it possible to achieve stronger results for some interesting special cases
of collections of sets?

4. Theorem 1 is nearly optimal for & < y/n. Can the bounds for larger £ be improved? As mentioned,
we know the best result for £ = » — 1 and it is better than what is supplied by the theorem.

5. A proof or counterexample to Conjecture 1 would be interesting.
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