
Approximate Inclusion-ExclusionNathan Linial� Noam Nisan yDecember 22, 1993AbstractThe Inclusion-Exclusion formula expresses the size of a union of a family of sets in terms of thesizes of intersections of all subfamilies. This paper considers approximating the size of the union whenintersection sizes are known for only some of the subfamilies, or when these quantities are given towithin some error, or both.In particular, we consider the case when all k-wise intersections are given for every k � K: Itturns out that the answer changes in a signi�cant way around K = pn : if K � O(pn) then anyapproximation may err by a factor of �(n=K2), while if K � 
(pn) it is shown how to approximatethe size of the union to within a multiplicative factor of 1� e�
(K=pn).When the sizes of all intersections are only given approximately, good bounds are derived on howwell the size of the union may be approximated. Several applications for boolean function are mentionedin conclusion.1 IntroductionAre all the terms in the inclusion-exclusion formulajA1 [ A2 [ : : :[Anj =Xi jAij �Xi<j jAi \Aj j + Xi<j<k jAi \Aj \ Akj � : : : + (�1)n jA1 \ : : :\Anjreally necessary? The obvious answer is positive. In the absence of even a single term the size of theunion is not uniquely speci�ed. But can the size of the union be approximated well, given only some ofthe terms? Also, if terms are given to within some error, can the size of the union approximated? Thepresent article answers questions of this general character.Our interest in these problem arose from some computational considerations: Many computationalproblems may be viewed as asking for the size of a union of a collection of sets. On some instances itturns out that while computing the size of the union is rather di�cult, computing the sizes of membersin the family, or even of arbitrary intersections thereof is easy. In these cases, the inclusion-exclusionformula may be used to �nd the size of the union.Perhaps the most obvious example is the problem of computing the number of satisfying assignmentsto a DNF formula (a problem known to be #P-complete [Val79]). This problem can be stated as thatof computing the size of the union of the sets of assignments that satisfy the various clauses of the DNFformula. The number of assignments satisfying an intersection of clauses is either zero or 2m where m isthe number of variables which appear in none of these clauses. So inclusion-exclusion may be applied toderive the size of the union. This procedure takes time which is exponential in the number of clauses,�IBM-Almaden, Stanford University and Hebrew University.yLaboratory for Computer science, MIT, 545 Tech. sq., Cambridge, MA 02139. partially supported by NSF 865727-CCRand ARO DALL03-86-K-017. Part of this work was done in U.C. Berkeley, supported by NSF CCR-8411954.1



and seems to be the best algorithm known for this problem when the number of clauses is less than thetotal number of variables that occur in the formula. In fact, in these cases, this method even seems tobe the quickest way known to check whether every assignment satis�es the DNF formula, i.e. to check ifthe complement, a CNF formula, is satis�able.A somewhat more subtle example is Ryser's formula [Rys63] for computing the permanent (also a#P-complete problem [Val79]). Ryser essentially reduces the problem of computing the permanent to aproblem of computing the size of a union of sets, where the sizes of intersections of all subfamilies can beeasily computed. The inclusion-exclusion formula is then used to compute the size of the union. This isthe quickest method known to compute the permanent, as it requires 2n+o(n) operations to compute thepermanent of an n by n matrix, instead of the trivial n!.The obvious drawback of using the inclusion-exclusion formula is the fact that it has an exponentialnumber of terms, and that, as mentioned, all terms are necessary, i.e. if the size of the intersection ofany subcollection is missing, then the size of the union cannot be computed. This prompted our interestin approximate versions of the inclusion-exclusion formula.We start, in Section 2, with the following version of this problem: Let A1; A2; : : : ; An be a collection ofsets. Suppose that jTi2S Aij is given for every subset S � [n] of cardinality jSj � k: How well can jSAijbe approximated based only on this information? Equivalently, let A1; A2; : : : ; An and B1; B2; : : : ; Bn betwo collections of sets such that for every S � [n] of cardinality jSj � k there holds jTi2S Aij = jTi2S Bij.How di�erent can jSAij and jSBij be?A naive approach to the problem would be to truncate the exclusion-inclusion formula up to thek-terms. This approach is easily seen to fail completely e.g. when all sets are identical.We give a nearly complete answer to this question, essentially showing that for k < O(pn) no goodapproximation is possible, while for larger k a good approximation is possible. The essence of our mainresult may be formulated as:Theorem 1 Let k and n be integers and let A1; A2; : : : ; Anand B1; B2; : : : ; Bn be collections of sets wherenot all Bi are empty and where: �����\i2SAi����� = �����\i2SBi�����for every subset S � [n] such that jSj � k, then1. For k � 
(pn) jSni=1AijjSni=1Bij = 1+ O(e� 2kpn )2. For k � O(pn) jSni=1AijjSni=1Bij = O( nk2 )This bound is tight up to a constant factor for k � pn.The main observation used in the proof of this theorem is that the problem may be reduced, vialinear programming, to questions in approximation theory and in particular to the theory of Chebyshevpolynomials.Earlier references for related work can be found in Prekopa [Pr88]. In particular, the theory of linearprogramming seems to have �rst been employed by Kwerel [Kw75], but the roots of this idea go backat least as far as Bonferroni [Bo37]. More recently this question has been studied by Alon and Hastad[AH88], who, using di�erent techniques than ours, could show that when k � O(log logn), the size of theunion cannot be approximated well, and solve the case k = n� 1 completely.2



Theorem 2, appearing in Section 2, shows how to e�ectively derive a good approximation for thesize of the union. The approximation is given by a linear form, and is essentially as good as Theorem 1implies is possible.Section 3 considers how well the size of a union can be approximated when the sizes of all of thek-wise intersections are only given approximately. An almost complete answer to this question is given.In Sections 4 and 5 we present further computational motivation for our problems: the study ofboolean functions. We present several applications of our results to questions related to the computationalcomplexity of boolean functions. These questions and similar ones from circuit complexity were in factthe point of departure for the present research.In Section 4 the following problem is considered: Let f1; : : : ; fn, be n boolean functions, none of whichcan even approximate a target function g, and moreover, the conjunction of any subset of these functionscannot approximate g. Is it possible that the disjunction of these functions approximates the targetfunction g? Rather tight bounds are established on the extent to which the original functions must notapproximate g as to insure a similar conclusion for the disjunction.Section 5 contains some comments on constant depth circuits. We conjecture that any distributionwhich is t-wise independent, for large enough t, "looks random" to any small constant depth circuit. Themethods of this paper yield only a weak result of this form for depth 2 circuits.2 Approximation Using Initial Terms2.1 Main resultLet A = (A1; A2; : : : ; An) and B = (B1; B2; : : : ; Bn) be two collections of sets. Assume that for any subsetS � [n] of cardinality jSj � k it is true that jTi2S Aij = jTi2S Bij. How di�erent can jSAij and jSBijbe?This problem is clearly scalable, i.e. multiplying each size by a constant will change every answer bythe same constant. It is therefore without loss of generality that we restrict our attention to events in aprobability space.De�nition 1 E(k; n) = sup(Pr[ n[i=1Ai]� Pr[ n[i=1Bi])where the supremum ranges over all collections of events, in all probability apaces, A1; A2; : : : ; An andB1; B2; : : : ; Bn that satisfy Pr[\i2SAi] = Pr[\i2SBi]for every S � [n] such that jSj � k.Our aim in this section is to derive bounds for E(k; n). The �rst fact to notice is that there is no lossof generality in assuming symmetry. A j-atom of A=(A1; A2; : : : ; An ) is de�ned to be the intersectionof j members in A and the complements of the other n� j members. A collection of events A is calledsymmetric if for every 1 � j � n, all j-atoms of A are of the same probability.Lemma 1 The supremum, E(k; n), remains unchanged even when A and B are restricted to be symmet-ric. 3



Proof: Given non-symmetric A and B, we construct symmetric collections A' and B' with the samedi�erence in the probability of their union. The probability of each j-atom in A' is de�ned to be theaverage of the probabilities of all j-atoms in A, and similarly for B'. 2>From now on A=(A1; A2; : : : ; An ) and B=(B1; B2; : : : ; Bn ) are always assumed to be symmetric.Here is some notation: For 1 � j � n let aj (resp. bj) be the probability of the union of all j�atoms inA (resp B.) i.e. aj =  nj!Pr[\i2SAi \ \i62SAic]and bj =  nj!Pr[\i2SBi \ \i62SBic]where S is any set of cardinality j. For 1 � j � k let rj be the sum of the probabilities of all j-intersections,i.e., rj =  nj!Pr[\i2SAi] =  nj!Pr[\i2SBi]where S is any set of cardinality j. For 1 � j � k de�ne the linear formEj(x1; : : : ; xn) = nXi=j  ij!xi:The next lemma indicates the role of linear forms Ej :Lemma 2 For every symmetric collection of events A1; A2; : : : ; An , and for every 1 � j � k:rj = Ej(~a)Proof: Consider any i�atom, say the one corresponding to the set S of size i: For any j � i, the weightof this atom is counted once towards rj for any subset of size j of S, namely, �ij� times. 2Observe �rst that E(k; n) can be expressed as the value of a certain linear program:Lemma 3 E(k; n) is the optimum of the following linear program:Maximize nXi=1 xnSubject to the constraints: For 1 � j � k : Ej(~x) = 0 (1)For any S � [n] : �1 �Xi2S xi � 1 (2)Proof: Let A1; A2; : : : ; An and B1; B2; : : : ; Bn be (symmetric) collections of events. Let ai and bi bede�ned as above and let xi = ai � bi. The previous lemma immediately implies that the xi's satisfyconstraints of type 1. Constraints of type 2 are satis�ed, as the ai's are probabilities of disjoint events,and so are the bi's. Note that Pni=1 xi is exactly the di�erence in the probabilities of the union of theAi's and of the Bi's. Thus the optimum of the linear program is at least E(k; n).On the other hand, let x1; : : : ; xn be reals satisfying constraints 1 and 2. De�ne ai to be xi if xi > 0,and 0 otherwise, and de�ne bi to be �xi if xi < 0 and 0 otherwise. Consider collections of events A4



and B as follows: each j-atom of A has probability aj=�nj�. Such a collection exists, because the ai's areall non-negative, and sum to at most 1. B is de�ned similarly with the bi's. Note that the di�erence inthe probabilities of the union of the Ai's and of the union of the Bi's is exactly Pi xi. Also the sizesof the j-intersections of the Ai's and of the Bi's are equal for all 1 � j � k as they are both given byEj(~a) = Ej(~b) (by constraint 2). 2By passing to the dual some useful insight may be gained:Lemma 4 E(k,n) is given by the optimum of the following problem:Minimize maxi integer; 1�i�n(1� fi)over all linear forms f = Pni=1 fixi that are linear combinations of the linear forms Ej for 1 � j � k,and satisfy fi � 1 for every integer 1 � i � n.Proof: In the dual optimization problem linear combinations of the equations (1) and inequalities (2)are considered which yield the vector x1 + x2 + : : : + xn. Equations of type (1) may appear with anarbitrary coe�cient, since they add nothing to the cost of the dual, and only inequalities of type (2)contribute to it. Consider an optimal combination of inequalities of both types and concentrate on thecontribution of type (1) equations. Let ci be the coe�cient of xi in this restricted combination, and letc+ = max(0;maxi ci � 1) and c� = max(0; 1�mini ci).Our �rst claim is that the cost of the dual is at least c+ + c�. If c� > 0, consider the index i wherec� is attained. In the full combination, the coe�cient of xi must be 1, which must come from the righthand side of inequalities of type (2), adding � to the cost per each � in the coe�cient of xi. These termsmust supply the missing c� in the coe�cient of xi. A similar argument applies to c+ where the left sideof (2) is used.Secondly, observe that a cost of c+ + c� can indeed be achieved. Consider the set S1 of all i suchthat ci < 1, and let �1 be mini2S1(1� ci). Let S2 be the set of all i such that ci < 1� �1, and let �2 bemini2S2(1� ci), and so on. Combine now �1 time the r.h.s. of of the type (2) inequality corresponding toS1, �2 times the inequality corresponding to S2, etc. to correct all the coe�cients smaller than 1 to be 1,for a total cost of c�. A similar �x works for c+.So far it was shown that E(k; n) is the minimum of c� + c+ over linear combinations of equations oftype (1). Our next claim is that in the optimum of the dual, c+ = 0. Consider any combination withc+ > 0, with a cost of c+ + c�. Divide all the coe�cients in the combination by (1 + c+): This yields acombination where all the coe�cients are between (1� c�)=(1+ c+) and 1. The cost associated with thenew combination does not exceed 1� (1� c�)=(1 + c+), less than the original c� + c+. 2The main observation underlying the proof is presented in the next lemma, where the problem isstated in terms of approximations by polynomials.Lemma 5 E(k; n) = infq ( maxm=1;:::;n(1� q(m)))where the in�mum ranges over all polynomials q of degree at most k that have zero constant term andsatisfy q(m) � 1 for all integer 1 � m � n.Proof: Consider the linear forms Ej as functions on 1; : : : ; n, assigning to each i the coe�cient of xi.Viewed this way Ej is the function �xj�, a polynomial of degree j. Thus the linear span of E1; : : : ; Ekconsists of all k�th degree polynomials with a zero constant term.The present lemma is now seen to be nothing but a restatement of the previous one. 2It will be easier to estimate E(k; n) in terms of a related quantity:5



De�nition 2 D(k; n) = infq ( maxm=1;:::;n jq(m)� 1j)where the in�mum ranges over all polynomials q of degree at most k that have zero constant term.Lemma 6 E(k; n) = 2D(k; n)1 +D(k; n)Proof: Let q be a polynomial achieving D(k; n), and consider p = q=(1 + D(k; n)). It is clear that forevery integer 1 � m � n, 1�D(k;n)1+D(k;n) � p(m) � 1. This implies that E(k; n)� 2D(k;n)1+D(k;n) .Conversely, if p is a polynomial achieving E(k; n), then de�ne q = 2p=(2� E(k; n)), and the otherside follows similarly. 2Consider an optimization problem similar to the one posed in lemma 5 but where the variable m isany real between 1 and n; rather than an integer in that range. This continuous version is fairly closeto standard questions from analysis on approximating functions throughout an interval under L1 (max)norm. A prototype of questions like this asks for a polynomial P (x) of a given degree, with a leadingcoe�cient 1 which minimizes maxjP (x)j where x ranges over �1 � x � 1: This speci�c problem is solvedby Chebyshev polynomials which, not too surprisingly, play an important role in the present article aswell. The interested reader may �nd a detailed analysis of Chebyshev polynomials in many texts onapproximation theory ([Che66], [Riv69]). Here are some of their properies which will be required for thepresent discussion.1. The k'th Chebyshev polynomial Tk(x) is a polynomial of degree k and is given by:Tk(x) = (x+px2 � 1)k + (x�px2 � 1)k2 :2. For every �1 � x � 1 : jTk(x)j � 13. There are exactly k + 1 di�erent points �1 � x � 1 for which jTk(x)j = 1. The sign of Tk(x)alternates between any two consecutive ones.4. The derivative of Tk satis�es T 0k(x) � k2 for every �1 � x � 1.A word of intuition may be useful at this point. First of all, using a linear transformation, the intervalin question is changed to be [�1; 1] rather than [1; n]: It turns out that for a given k and a large n,the discrete problem where test points are integers, is su�ciently close to the continuous one, which isoptimized by Chebyshev polynomials. Actually, Chebyshev polynomials come very close to optimizingthe discrete problem as well. This happens because for a large n the set of points at which the polynomialis tested is su�ciently dense to make the problem almost identical with the continuous problem, whereall real points are examined. This heuristic argument carries through as long as the distance between testpoints ( 1n) is su�ciently smaller than the distance between any two consecutive zeros of the Chebyshevpolynomial. It is known that the least distance between roots of Tk is �( 1k2 ) which explain the transitionthat occurs around k = pn:Lemma 7 1� k2n�1���Tk(�(n+1)n�1 )��� � D(k; n) � 1���Tk(�(n+1)n�1 )���6



Proof: Consider a polynomial qk;n which results from a linear transformation applied to the k'th Cheby-shev polynomial. qk;n(x) = 1� Tk(2x�(n+1)n�1 )Tk(�(n+1)n�1 )The upper bound for D(k; n) is implied by noting that q has the following properties:� It is a polynomial of degree k with a zero constant term (it can be easily veri�ed that qk;n(0) = 0).� For any 1 � x � n: jqk;n(x)� 1j � 1���Tk(�(n+1)n�1 )���This is so since for all such x, 2x�(n+1)n�1 is between �1 and 1, and thus ���Tk(2x�(n+1)n�1 )��� � 1.Turn back now to the lower bound for D(k; n). Assume to the contrary that a polynomial p(x) ofdegree k with zero constant term satis�esjp(x)� 1j � 1� k2n�1���Tk(�(n+1)n�1 )���for all integers 1 � x � n. The properties of Chebyshev polynomials mentioned above imply the followingfor qk;n:� There are exactly k + 1 points 1 � x � n such thatjqk;n(x)� 1j = 1���Tk(�(n+1)n�1 )���and the sign of qk;n(x)� 1 alternates between each two consecutive points.� The derivative of qk;n satis�es ���q0k;n(x)��� � k22(n� 1) ���Tk(�(n+1)n�1 )���for all 1 � x � n.Let us examine the k + 1 extrema of qk;n, and consider the integer points nearest to them, which we callz1; : : : ; zk+1. Each of these points is at at most 1=2 away from an extremum, and by the bound on thederivative q0k;n for all i = 1; : : : ; k+ 1: jqk;n(zi)� 1j � 1� k2n�1���Tk(�(n+1)n�1 )���and, moreover, qk;n(zi)� 1 changes sign between any two consecutive zi's. Now consider the polynomialp(x)� qk;n(x). It changes sign between any two consecutive zi's, so it must have at least k roots between1 and n. But it is a polynomial of degree at most k, which vanishes at 0 as well, a contradiction. 2This �nishes the derivation of our bounds for E(k; n). The next theorem summarizes our results:7



Theorem 1 Let k and n be integers and let A1; A2; : : : ; An and B1; B2; : : : ; Bn be collections of sets thatsatisfy: �����\i2SAi����� = �����\i2SBi�����for every subset S � [n] with jSj � k, thenjSni=1AijjSni=1Bij �  �k + 1�k � 1!2where � = pn+1pn�1 : In particular1. For k � 
(pn) jSni=1AijjSni=1Bij � 1 + O(e� 2kpn )2. and for k � O(pn) jSni=1AijjSni=1Bij � O( nk2 )Moreover, the inequality in this range is optimal as there exist collections of sets satisfying therequirements of the theorem and yet: jSni=1AijjSni=1Bij = 
( nk2 )Proof: As pointed out already, there is no loss of generality in assuming the sets to be events in aprobability space with cardinalities replaced by probabilities. The ratio between the probabilities of thetwo unions is seen now to be at most 11�E(k;n) = 1+D(k;n)1�D(k;n) . But D(k; n) � jTk(�n+1n�1 )j�1 = 2�k+��k , so theupper bound on the ratio follows. The optimality in the range k � O(pn) follows from the lower boundson D(k; n). The asymptotic results follow now from standard estimates. 2While this theorem gives nearly optimal bounds for k � O(pn), there is evidence that for larger k abetter bound can be proved. A special case which we, as well as [AH88], managed to solve is k = n� 1:In that case another family of classical orthogonal polynomials, viz., Krawchouk polynomials replacethe Chebyshev polynomials yielding an approximation to within a factor of 1 + 2�
(n) rather than the1 + 2�
(pn) implied by this theorem. A derivation of this bound appears in next subsection. We do notknow at present what the best approximation is in the range n� 1 > k > !(pn).Theorem 1 only estimates the quality of approximations obtainable from the sizes of all intersectionsof up to k sets. The next theorem indicates how to e�ectively compute an approximation which attainsthis bound. As the reader probably expects the result is obtained from an appropriate linear combination.Theorem 2 For any integers k; n there exist (explicitly given) constants (�k;n1 ; �k;n2 ; : : : ; �k;nk ) such thatfor every collection of sets A1; A2; : : : ; An , the quantityXjSj�k �k;njSj �����\i2SAi�����di�ers from jSni=1Aij by at most a factor of:1. 1 + O(e� 2kpn ) if k � 
(pn). 8



2. O( nk2 ) if k � O(pn).Proof: The statement of the lemma follows on observing that the linear program in lemma 3 may beslightly modi�ed to yield an approximation for the size of the union. The modi�cation is to replace everyequation of type (1) Ej(~x) = 0 with Ej(~x) ="size of intersection", and replace all inequalities of type (2)by the inequalities xj � 0 for all 1 � i � n. Now the same linear combination that achieves the boundE(k; n) for the program in lemma 3, can be used to obtain a good approximation for the size of the union.Thus the real numbers �k;n1 ; �k;n2 ; : : : ; �k;nk are de�ned to be the coe�cients of the linearly transformedChebyshev polynomials expressed in terms of the polynomials �x1�; �x2�; : : : ; �xk�; that isqk;n = kXi=1 �k;ni  xi!:The vector ~� = (�k;n1 ; �k;n2 ; : : : ; �k;nk ) can be calculated by as follows. Consider the above polynomialidentity for x = 1; : : : ; k: There results a system of linear equations in the �0s:~�M = ~twhere M is the matrix whose (i; j) entry is �ji� and the j�th element in ~t is qk;n(j). Now it is easilyveri�ed that the (i; j) entry of the inverse M�1 is (�1)i+j�ji�; so one can calculate ~� = ~tM�1:22.2 The case k = n� 1As mentioned previously, we can improve on Theorem 1 for the case k = n� 1.Theorem 3 D(n� 1; n) = 12n � 1Proof: By Lemmas 5 and 6, D(n� 1; n) is the optimum of the following linear program:min uunder the constraint that for all integers 1 � t � n there holds1� u � n�1Xj=1 aj tj � 1 + u:>From LP duality it follows that the optimum for u is obtained by linear combinations of these inequalities.In such a combination all terms involving the aj have to cancel out. So if ~z is the vector yielding theoptimal bound, then necessarily ~zM = 0 where M is the matrix of the LP whose (i; j) entry is ij for1 � i � n and 1 � j � n � 1: Now any n � 1 rows of M form a van der Monde matrix so the rank ofM is n � 1 and consequently the space of such ~z is one-dimensional. It is easily veri�ed that this spaceis spanned by the vector whose i�th entry is (�1)i�ni�: In other words, the combination in question isthat where for t odd (even) the left (right) side of the t�th inequality is multiplied by �nt�: The resultinginequality is easily seen to be u � 12n � 1 :Since the null space of M is one-dimensional this is the optimal bound for u: 29



When translated back to the language of polynomials the optimal solution is seen to be closely relatedto Krawtchuk polynomials: Pl(x;m) = lX0 (�1)j xj! m� xl� j !:The exact relationship is q(x) = 1� (1 + �) n � x� 1n� 1 !+ �Pn�1(x;n� 1)where � = 12n�1 : To check this, note that Pn�1(r;n � 1) = (�1)r for r = 0; 1; : : : ; n � 1 which readilyimplies that q(0) = 0 and q(r) = 1 + (�1)r� for r = 1; : : : ; n� 1: The only fact to verify is that the sameholds also at r = n; but Pn�1(n; n� 1) = (�1)n�1(2n � 1) = (�1)n�1� and the validity for r = n follows,too.The fact that this problem is optimized at two ranges by (simple variants of) Chebyshev and Krawchukpolynomials is very suggestive, of course. Is it not the case that in other ranges the optimum is obtainedthrough other classical families of orthogonal polynomials, perhaps other instances of Racach or Hahnpolynomials? Unfortunately, we do not know the answer to this question for other values of k at the timeof writing.3 Using Approximate InformationThis section estimates for the size of the union when intersections sizes are given only to within an error.Let A1; A2; : : : ; An be events in a probability space. Say that for any subfamily, the probabilities ofthe intersection is given to within an additive error of �. How good an estimate for the probability of theunion can be derived? Again, the problem is restated in terms of two collections of events:De�nition 3 B(n; �) is de�ned to be sup �����Pr[ n[i=1Ai]� Pr[ n[i=1Bi]�����where A1; A2; : : : ; An and B1; B2; : : : ; Bn are any two collections of events satisfying:�����Pr[\i2SAi]� Pr[\i2SBi]����� � �for every subset S � [n].The results of the last section imply good bounds on B(n; �):Theorem 4 For � = �(n) > 0 there holds:1. If log(1� ) = 
(pn logn) then B(n; �) � �
( 1pn log n ) = o(1).2. If log(1� ) = o(pn) then B(n; �) = 1� o(1). 10



Proof: To prove part (1), apply Theorem 2 for good estimates on Pr[SAi] and Pr[SBi], using k =O(log 1� = logn). Theorem 2 then yields estimates of a error no bigger than e�
(k=pn) = �
( 1pn log n ). Theseapproximations must be very close to each other, for their di�erence is given by:XS�[n]; jSj�k �k;njSj (Pr[\i2SAi]� Pr[\i2SBi]):There are clearly at most nk terms in this expression, none exceeding �k;ni �. The considerations ofTheorem 2 imply that that ����k;ni ��� is bounded by, say, nk . Thus, the whole di�erence does not exceedn2k� = �
( 1pn log n ) and part (1) of the theorem follows.Part (2) follows from the fact that B(n; 2�t) � E(n=2; t) together with the part of Theorem 1 stat-ing that when t = o(pn), E(n=2; t) = 1 � o(1). Let there be given two collections A01; : : : ; A0n=2 andB01; : : : ; B0n=2 where Pr[\i2SA0i] = Pr[\i2SB0i]if jSj � t. We show how to construct families A1; A2; : : : ; An and B1; B2; : : : ; Bn , so thatPr[ n[i=1Ai] = Pr[n=2[i=1A0i] Pr[ n[i=1Bi] = Pr[n=2[i=1B0i]for every S � [n], and �����Pr[\i2SAi]� Pr[\i2SBi]����� � 2�t:To construct A1; A2; : : : ; An and B1; B2; : : : ; Bn , �rst augment each collection with n=2 empty sets,then apply lemma 1 to "symmetrize" them thus obtaining symmetric collections A1; A2; : : : ; An andB1; B2; : : : ; Bn . In other words, if S has size m:Pr[\i2SAi] = PS0�[n=2]; jS0j=m Pr[Ti2S0 A0i]�nm�and similarly for the Bi's.That Pr[ n[i=1Ai] = Pr[n=2[i=1A0i]holds is obvious. As for �����Pr[\i2SAi]� Pr[\i2SBi]����� � 2�tfor every S � [n], note that if jSj � t the di�erence is zero. For jSj = m > t;Pr[\i2SAi] �  n=2m != nm! � 2�tand the claim follows.This completes the proof of the lemma, because for any solution of the E(n=2; t) problem, a solutionfor the B(n; 2�t) problem is presented, with the same value for the target function. 2Let us note that we have actually showed that an estimate of size of the union may be e�ectivelycomputed by the same formula given by Theorem 2. Also note that this formula does not require thesizes of intersections of a large number of sets. 11



4 Disjunctions of Boolean FunctionsThis section addresses the approximation of boolean functions by other boolean functions.De�nition 4 Let f and g be boolean functions. The advantage of f on g isAdv(f; g) = jPr[f(x) = g(x)]� Pr[f(x) 6= g(x)]jwhere the probability distribution is uniform over all binary n�vectors x.The advantage of f on g is a measure of how well f (or its negation) approximate g. The followingquestion comes up naturally in the study of circuit complexity of boolean functions: Given are booleanfunctions f1; : : : ; fn, and a target function g. Suppose that the conjunction of any subset of f1; : : : ; fnhas advantage of less than � on g. How large can the advantage of the disjunction of these functions beon g?Lemma 8 Let g; f1; f2; : : : ; fn be boolean functions such thatFor all S � [n] : Adv(î2S fi; g) � �then Adv(Wni=1 fi; g) � B(n; �). This bound is optimal in that there exist boolean functions satisfying theconditions of the lemma such that Adv(Wi fi; g) is arbitrarily close to B(n; �).Proof: De�ne Ai = fx : g(x) = fi(x)gBi = fx : g(x) 6= fi(x)gOur assumptions on g; f1; : : : ; fn translate to:�����Pr[\i2SAi]� Pr[\i2SBi]����� � �for every S � [n], and the advantage is given by:Adv(_i fi; g) = �����Pr[ n[i=1Ai]� Pr[ n[i=1Bi]����� :It is thus clear that the advantage is bounded by B(n; �).Conversely, let A1; A2; : : : ; An and B1; B2; : : : ; Bn be collections of events that achieve the value ofB(n; �). They can be viewed, w.l.o.g. as subsets of f0; 1gl for some l, because for a su�ciently large l theoriginal distributions can be approximated arbitrarily well. Consider the following boolean functions onf0; 1g� f0; 1gl. g(x0; x1; : : : ; xl) = x0fi(x0; x1; : : : ; xl) = 8><>: 1 if x0 = 0 and < x1; : : : ; xl >2 Ai1 if x0 = 1 and < x1; : : : ; xl >2 Bi�1 otherwiseDirect translation of the properties of A1; A2; : : : ; An and B1; B2; : : : ; Bn implies that any conjunction offi has advantage of at most � on g, yet their disjunction has an advantage of B(n; �) on g. 2Combining with Theorem 4 we obtain: 12



Theorem 5 Let f1; f2; : : : ; fn and g be boolean functions that satisfyFor all S � [n] : Adv(î2S fi; g)� 2�twhere t � 
(pn logn). Then Adv( n_i=1 fi; g) � 2�
( tpn log n )Moreover, this is optimal in the sense that for any t = t(n) = o(pn) there exist boolean functionsf1; f2; : : : ; fn and g that satisfy For all S � [n] : Adv(î2S fi; g)� 2�tand yet Adv( n_i=1 fi; g) � 1� o(1)5 t-wise Independence and Constant Depth CircuitsSome of the original questions motivating this research were ones regarding "what looks random toconstant depth circuits?" Although the present results do not provide a strong answer to this problem,they do enable us to make some nontrivial remarks. Here is a statement of the problem and our results.Consider balanced probability distributions on x1; : : : ; xn, i.e. distributions that satisfy for every i,Pr[xi = 0] = Pr[xi = 1] = 1=2. Such a distribution is called t-wise independent if the induced distributionon any t variables xi1 ; : : : ; xit is uniform.De�nition 5 Let f(x1; : : : ; xm) be a boolean function. Say that f is fooled by t-wise independence if:jPr[f(x1; : : : ; xm) = 1]� Pr[f(y1; : : : ; ym) = 1]j � 0:1whenever x1; : : : ; xm are chosen independently uniformly at random and y1; : : : ; ym are chosen at randomaccording to any balanced distribution which is t-wise independent.Conjecture 1 Any function which is computed by a boolean circuit of depth d and size s is fooled by(log s)d�1-wise independence.(The circuits in question have unbounded fanin with "and" and "or" gates, all negations are ap-plied to variables). This conjecture essentially states that a bit generator producing distributions whichare polylog-wise independent is a pseudorandom generator for AC0 tests (polynomial size, constantdepth boolean circuits). This would generalize the two known pseudorandom generators for AC0 [AW85][NW88], both of which indeed are at least polylog-wise independent.We are only able to show:Theorem 6 Any function which is computed by a boolean circuit of depth 2 and size s is fooled by
(ps log s)-wise independence. 13



Proof: Assume w.l.o.g. the circuit to be a DNF-formula with terms f1; : : :fs. Consider a distribution �on x1; : : : ; xm which is t-wise independent. De�ne Ai to be the event that fi(x1; : : : ; xm) is true where xis chosen uniformly at random, and de�ne Bi as the event that fi(y1; : : : ; ym) is true where y is chosenaccording to distribution �. We now claim that for any subset S � f1 : : :mg:�����Pr[\i2SAi]� Pr[\i2SBi]����� � 2�tThere are two cases: if the conjunction of the fi's has less that t literals then the two probabilities areexactly equal, as � is t-wise independent. Otherwise, both probabilities are bounded from above by 2�t.The statement of the theorem now follow directly from Theorem 4. 26 Open Problems1. Is there an e�cient adaptive algorithm to approximate the size of a union of events given an oraclefor sizes of intersections?2. The inclusion-exclusion formula is the M�obius inversion formula for the full boolean lattice. Arethere results similar to the present ones for other lattices?3. Theorem 1 shows the existence of two collections of sets where small subcollections have intersectionsof the same size, whose unions di�er much by size. The proof does not supply an example. Whatdo such families look like? Is it possible to achieve stronger results for some interesting special casesof collections of sets?4. Theorem 1 is nearly optimal for k � pn. Can the bounds for larger k be improved? As mentioned,we know the best result for k = n� 1 and it is better than what is supplied by the theorem.5. A proof or counterexample to Conjecture 1 would be interesting.7 AcknowledgmentsWe are grateful to John Tomlin who ran for us his computer programs for linear programming to solvesome small cases of the optimization problem in lemma 3 which we could not solve by hand. Thesesolutions helped us gain insight for the general case. The second author would like to thank Dick Karpfor many helpful discussions.References[AH88] N. Alon and J. Hastad. 1988. Private communication.[AW85] M. Ajtai and A. Wigderson. Deterministic simulation of probabilistic constant depth circuits".In 26th Annual Symposium on Foundations of Computer Science, Portland, Oregon, pages 11{19,1985.[Bo37] C. E. Bonferroni. Teoria statistica delle classi e calcolo delle probabilita. In volume in onore diRicardo Dalla Volta, Universita di Firenze, pages 1{62, 1937.[Che66] E. W. Cheney. Approximation Theory. McGraw-Hill Book Co., 1966.14
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