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ABSTRACT
The Internet Archive is a live production system support-
ing close to a petabyte of data and delivering an average of
2.3Gb/sec of data to Internet users. We describe the archi-
tecture of this system with an emphasis on its robustness
and how it is managed by a very small team of systems
personnel. Notably, the current system does not employ a
cache. We analyze the reasons for this decision and show
that an effective cache could not be built until now. How-
ever, new solid state disk technology may offer promising
new cache implementations.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.8 [Software
Engineering]: Metrics—complexity measures, performance
measures

1. INTRODUCTION
The Internet Archive (www.archive.org) is a petabyte scale
public Internet library. Its collections include The Wayback
Machine that provides access to approximately 500 TB of
historical web pages collected from the Internet beginning
in 1996, and a Media Collection that contains more than
500 TB of public domain books, audio, video, and images.
The Internet Archive has been in continuous operation since
2000. In its current state, the system handles tens of millions
of daily requests totaling more than 40 TB of data.

The Internet Archive is not only a good example of a large
scale Internet site, but also an architectural and operational
success story. One of the most interesting elements of the
Internet Archive is that less than five employees are involved
in operations and maintenance. Surprisingly, the Internet
Archive has accomplished this feat while avoiding almost
all of the popular approaches for performance enhancement
and storage minimization in favor of a simplest-solution-first
strategy.

Many systems [9] implement a reverse proxy cache to im-
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prove performance and to reduce the load on its storage
units. The Internet Archive has no such reverse-proxy cache.
We will show that implementing and operating such a cache
is not cost effective using currently available technology.
However, newly available Solid State Disks (SSD) are shown
to be a promising option for future implementations.

The case study presented here draws on the authors’ expe-
rience through access to the Internet Archive and discus-
sions with its architects and operations staff. We would like
to note that the authors have never worked in a technical
capacity at the Internet Archive and are not privy to any
internal operational decisions or policies. Our position is
one of remote researchers with very limited observational
capabilities.

2. SYSTEM ARCHITECTURE
Using an approach similar to Kruhchten’s [19], we describe
the System Architecture through a number of different views.
The requirements section details the goals and constraints
which drove and continue to drive architectural decisions.
The Logical view exposes the basic system objects. The Pro-
cess view presents the ongoing activities involved in deliver-
ing the basic service and maintaining its integrity. The De-
velopment view describes the implementation of these pro-
cesses. Finally, the Physical view exposes the hardware and
software components that implement the system.

2.1 Requirements
The Internet Archive’s mission is to be an Internet Library;
reliably storing large amounts of data and delivering that
data to users on the Internet. The system must be scalable,
storing many billions of objects and petabytes of content.
The only bottleneck to content delivery should be the In-
ternet Archives connections to the external network. That
is, the internal system should be able to scale based on cus-
tomer demand and available outgoing bandwidth.

The system requires a search and index mechanism to en-
able users to locate specific items. The designers choose to
take this requirement in its minimal interpretation. Items
should be searchable by title and by pre-specified keywords.
Detailed search at the content level is not necessary.

A library or archival system should make an attempt to
maintain its data for many years and to retain that data in
the face of component failures. The designers understood
that there is a direct relationship between system cost and



its level of reliability [16]. Basic reliability can be achievable
with linear cost, but as the requirements grow, the cost to
achieve those enhanced goals increases dramatically. The
designers therefore intentionally set the minimum require-
ments rather low: Try not to lose data, but don’t try too
hard.

As a real-world system, its creator, Brewster Kahle set down
a few basic design requirements orthogonal to its basic mis-
sion. These requirements are still in force today and have
significantly colored the architecture and operations of the
archive.

• The system should use only commodity equipment.

• The system should not rely on commercial software.

• The system should not require a PhD degree to imple-
ment or to maintain.

• The system should be as simple as possible.

2.2 Logical View

Figure 1: Logical View

The basic building block in the archive is a content element
which represents a particular item such as a book, web page
or video. Elements are grouped into aggregates such as col-
lections or crawls. A collection might be a set of books as
found in the Million Book Project [6], or movies such as The
Prelinger Archives [24]. Other types of collections include
web crawls performed by third parties or by the Internet
Archive itself.

Each element may be composed of multiple data files. For
example, a book may have hundreds of pages represented
as images and as plain text. A video element may be re-
tained in multiple formats for ease of access. Web pages
typically reference other web objects as links or embedded
objects. For web objects, each and every item is referenced
as a separate element.

2.3 Process View

Figure 2: Process View

There are relatively few processes involved in the Internet
Archive. The Storage process maintains the integrity of the
elements as storage components fail or are retired from ser-
vice. The Import process accepts items for storage and in-
tegrates these new items into the system. The Indexing and
Search processes create and maintain the indices over items
while enabling users to find specific items. Finally, the Ac-
cess process delivers those items on demand. Figure 2 shows
the relationships between these processes.

2.4 Development View
In this section, we describe the implementation for each of
the processes listed above. The presentation is bottom up,
first describing the basic components and then utilizing them
in subsequent descriptions.

2.4.1 Storage
Logical elements are stored in one or more predefined root
directories in the local file system on each storage node.
Each root directory represents a entire hard disk, and each
element has its own directory. Data files are then stored as
files in their element’s directory.

Web crawl elements are not stored as a directory because
the number of items in that directory would stress most
Linux file systems. Instead, these elements are stored as a
relatively small number of ARC [4] files. Each file is a set
of uncorrelated web pages usually totaling close to 100MB.
For each web object, the crawler that gathers these objects
appends to the ARC file a header followed by the content
of that object. Note that the header appears in the ARC
file directly before each item and not in some form of index.
This process continues until the file reaches its maximal size
at which point the crawler closes that file and opens a new
file. One of the challenges in working with ARC files is that
they are completely unindexed. The only way to search or
access one of its web files is to sequentially scan the entire
ARC file. ARC files are stored in their original unmodified
form on the node.

In principal, each element is stored on at least two storage
nodes. A monitoring service [12] identifies nodes that have
failed and disks that are failing [23]. When an error is de-
tected, the operators begin an automated process that copies
the contents of the old node to a new node, either from a
replica or from the failing node itself. In the past, some data
has been lost because two nodes crashed at the same time in
the lone data center. The current Internet Archive is repli-
cated across three geographically remote sites, enabling, if
necessary, retrieval from one of the remote sites.

An automated recovery system would be an obvious exten-
sion to the existing architecture. Such a system would have
to manage many issues, including automated error detection
and the provisioning of new hardware. In keeping with the
aggressively simple implementation approach, such a sys-
tem was never implemented. Another perspective would be
to note that such a system was never needed. The num-
ber of failures has never been high enough to cause undue
load on the administrators. More details about the Internet
Archives hard disk failure rates were published by Shwarz
et.al. [25].



Finally, the storage systems provides a form of load bal-
ancing. The Internet Archive contains some very popular
movies. When one of these movies becomes popular, the
storage nodes may be unable to keep up with the num-
ber of concurrent requests. The operations staff manually
watches for these spikes and copies the files to additional
nodes. When filling the nodes, some extra space is set aside
for just such situations. There is no need to ever remove
these duplicates.

2.4.2 Import
New items arrive at the archive by many paths. They can
be uploaded by Internet users, delivered by truck to the
Internet Archive’s facilities, provided as bulk transfers by
partners, or created internally through web crawls or book
scans. Regardless of how the data arrives, the process be-
gins by locating the current import nodes; two twin nodes
are dedicated to newly imported items. Imported items are
stored in parallel to these nodes until they reach a ”fill level”,
some percentage points shy of 100%. When that level is
reached, two new empty nodes are provisioned and the pro-
cess continues.

Where possible, the element, its data files and any meta-
data are collected during the import process and integrated
into the content indices. There is no need to update any
indices or metadata related to the new item’s location be-
cause this data is dynamically determined by the Access
process.

2.4.3 Index and Search
The Index process maintains a list of each item in the Inter-
net Archive and any available associated metadata. There
are at least two different index implementations.

Each web crawl includes millions of URLs. The total number
of URLs in the library is between 2 and 10 billion items.
The Internet Archive may store multiple copies of a web
page if it was retrieved by distinct crawls. References to
each URL are tagged by date. The Wayback Machine first
displays the available versions of each URL. Users can then
choose to view a specific version from the Internet Archive’s
collections.

The original design requirements severely limiting the use of
specialized software or hardware were taken to mean that the
system should not use a database system. In response, The
designers chose to store the URL index data in flat sorted
files. The system is limited to searching for complete URLs
and so the URL name space can be divided into similar size
buckets. The system first removes common prefixes such as
www and is then sorted by the remaining URL string. Hence
the first bucket might contain all URLs that start with A, B
or C. The next bucket would contain URLs that start with
D, E, F and G, and so forth. Multiple index files are main-
tained, physically distributed across the main web servers.
Requests are statically routed to the appropriate web server
and index section based on the requested URL.

The web index was originally designed to be built by a batch
process that was to be run each month. The process required
reading every unique ARC file, extracting the URLs, sort-
ing the results and finally splitting the index into sections.

Until recently, index scans were performed very infrequently
because each index scan caused the permanent loss of up to
10 hard disks. The specific cause of the disk failures seems
to have been related to insufficient data center cooling ca-
pacity. Actively accessing the disks raised the machine room
temperature by at least 5 degrees fahrenheit. This problem
was addressed by moving the majority of nodes to a more
capable data center. More recently, an improved process was
developed that can incrementally update the index.

A major challenge for the index and search components are
the sheer number of items in the system. There are more
than a million ARC files. Assuming that the average page
is only 20 kilobytes, each ARC file would then contain on
average 5000 page objects. The total system would need to
support more than 5 billion pages. The current index has
close to that number of entries and requires more than 2 TB
of storage.

The separate index is maintained for all other content, in-
cluding books, movies, and audio recordings. It contains
only searchable meta-data such as titles, authors and pub-
lication dates. This index is very small when compared to
the Wayback Machine. It contains only a few million records
and is currently implemented as a MySQL database.

2.4.4 Access
There is no central index detailing the location of elements
and data files within the system. To find an item, a request
for that object name is sent as a UDP broadcast to all data
nodes. A small listener program on each storage node main-
tains the list of all local files in main memory and looks up
each request. Those nodes that have the requested item re-
ply to the broadcast with the local file path and their own
node name. The requesting node then redirects the client
browser to the appropriate storage node. Each storage node
runs a lightweight web server that can efficiently deliver local
files.

In effect, the system implements a distributed index that
is very robust in the face of failures or updates. Moving
a file from one node to another requires only updating the
in-memory index on those two nodes. Failure of a node is
invisible to the searcher. That node will simply not respond
to any requests. This approach also creates a minimal form
of load balancing. Heavily loaded nodes will naturally be
slightly slower to respond to broadcast requests. Faster, un-
loaded responses will then be used instead of the subsequent
responses from slower nodes.

The process is slightly different for web pages. When a par-
ticular URL is requested, the system uses a URL/ARC file
index to identify the specific ARC file that contains this
URL. The ARC file is then located using the broadcast
mechanism and the client browser is redirected to that stor-
age node. The light weight web server then spawns off a
small process to open the ARC file, retrieve the page and
return it to the browser. While this process is relatively ex-
pensive, the number of concurrent requests to ARC files per
machine is small. There is sufficient local memory on each
storage node to maintain an entire ARC file in RAM. This
enables the kernel to prefetch the ARC file and to maintain
it locally in case there are temporally close requests for items



in that same ARC file.

2.5 Physical View

Figure 3: Physical View

The Internet Archive architecture is composed of a small
number of front-end web nodes and a large number of back-
end storage nodes as shown in Figure 3.

2.5.1 Web Nodes
The Web Nodes are implemented on Apache web servers
running in Linux on commodity hardware. A standard load
balancer is used to parcel requests between front-end nodes.
Since the Web nodes never deliver bulk data, they are tuned
for high volumes of short requests. With the exception of
search results, all other pages are static, further reducing
the computation overhead.

The URL index is stored on these same nodes. It is split into
segments and grouped by the first letter of the URL. Each
segment is on at least two nodes in case one node should
fail. The total index is more than 2 TB of data because of
the large number of archived URLs.

The number of Web nodes is dependent on the maximum
number of concurrent page requests, but not on the num-
ber of concurrent downloads. There are always a minimum
of three operational nodes in case of a localized node fail-
ure. In practice, the Internet Archive has approximately six
web nodes running at all times. These nodes have provided
sufficient capacity for all existing needs.

2.5.2 Storage Nodes
Each Storage Node consists of a low power CPU and up to
four commodity disks. Each node runs Linux and a lighttpd
web server. Files are stored in the local file system. Data
nodes are self-contained and do not depend on the activity
of any other component in the system.

A simple program implements the location responder. To
make things as simple as possible, the location responder
performs a name lookup on each file request. The Linux
kernel caches file names and so very few searches ever require
a physical disk access.

There are more than 2500 storage nodes in the current pri-
mary data center, sufficient to keep at least two copies of

each data file. The Bibliotheca Alexandrina [2] in Alexan-
dria, Egypt and the European Archive citeeuroparchive in
Amsterdam and Paris act as partial replicas.

2.6 Upgrade Path
There are no architectural decisions that strictly depend on
a specific software or piece of hardware. As new hardware
becomes available, it can easily be integrated into the Inter-
net Archive’s network. At the same time, old hardware can
be thrown away. The built-in failure management processes
will replicate the data on new hardware at the beginning of
its life cycle.

When the Internet Archive began major operations, the size
of the largest disk was around 30 Gb. Today, it is possible
to purchase 1.5 Tb disks. The architecture is independent
of the size or number of disks. The operations staff has
the flexibility to purchase the most cost effective disks at
any given time without concern for software or hardware
interactions.

There are no dependencies on the specific hardware plat-
form. Any system that is supported by one of the popular
Linux distributions will necessarily include an Apache web
server and the Perl interpreter. The Internet Archive re-
quires that all programs be written in a portable scripting
language for just this reason. The Internet Archive pur-
chases only commodity hardware and avoids any specialized
cards or add-ons. Because the hardware is standard and sim-
ple, there is a very high probability that it will be supported
by a recent Linux distribution.

3. ACTUAL PERFORMANCE
The Internet Archive currently includes more than 2500
nodes and more than 6000 disks. Outgoing bandwidth is
more than 6 Gb/sec. The internal network consists mostly
of 100Mb/sec with a 1Gb/sec network connecting the front-
end web servers.

Figure 4: Network load from Jan 2008 through Au-
gust 2008

Figure 4 presents the daily average network load as incoming
and outgoing traffic for the entire archive. This switch is
the main concentrator for the US operations. Peak loads
are slightly over five gigabits per second with average loads
around 2.8 gigabits per second. Data passing through this
switch includes all access to the Internet Archive’s main data
center.

For the remainder of this section, we will focus specifically
on non-webcrawl files. The Internet Archive logs accesses to
URLs in the Wayback machine separately and we currently
do not have access to those records.
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Figure 5: Downloads from July 2008 through early
Dec 2008
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Figure 6: Bytes Downloaded from July 2008
through early Dec 2008

As seen in Figures 5 and 6, during the instrumented period,
the Internet Archive served between 2.3 and 48 terabytes per
day. The daily download count ranged between 7.3 million
and 42.5 million downloads per day.

The local network supports 100Mb/sec and is used on a
regular basis for the location broadcasts. Each request in-
cludes the name of the requested object, the IP address of
the sending node, and a unique 32 bit ID for this request.
The response includes the name of the responding node and
the local path to the requested file. Empirically, the paths
range from 10 to 300 bytes long, with 90% of requests hav-
ing paths less than 160 bytes. There are on average approx-
imately 800 requests per second with peaks around 1400
requests per second.

The Internet Archive uses a switched fabric for its networks.
Thus UDP broadcasts will pass through all nodes, but re-
sponses will only travel between the requesting and respond-
ing nodes. The current load imposed by the locator mech-
anism is the number of requests per second times the UDP
packet size. At current loads, this corresponds to less than
3% of the total capacity. The system starts to become loaded
around 30,000 requests per second, or 48% of the available

capacity. Upgrading to a 1Gb/sec network enables this al-
gorithm to scale to more than 300,000 requests per second
at 50% capacity.

4. ADDING A CACHE
Many Internet systems include a reverse-proxy cache for
static content. Such caches are used to reduce the load
on dynamic web servers and to speed up access to content.
These issues are not relevant to the Internet Archive be-
cause the system already offloads static content to the stor-
age nodes. There is no indication that the existing disk
speeds, or the internal or external network bandwidths are
bottlenecks to content delivery. A reverse-proxy cache might
significantly reduce the load on the storage nodes, poten-
tially enabling these disks to be idled or even shut down for
extended periods of time. If the cache is operationally cost
effective, it could result in significant cost savings due to
wear and tear on storage nodes and due to energy savings
on these same nodes.

4.1 Empirical Requirements
To understand the empirical requirements for caching static
files at the Internet Archive, we analyzed Media Collection
W3C logs collected between July 1, 2008 and December 1,
2008. Each compressed log is between 1Gb and 3Gb with
between 7.4 million and 42 million records per file. There
are more than 50 million distinct objects referenced in these
files. Each object reference is a URL path between 10 and
300 characters long.

For our detailed analysis, we used a specific seven day period
from November 1, 2008 through November 7, 2008. During
that time, the Internet Archive served 270 million requests
and delivered 240 terabytes worth of data. Using consecu-
tive dates balances any unusual activity and improves the
simulated cache performance.

For each log file, we parse the log and extract the date, URL,
http status and download size. We discard all records that
have an invalid size, that represent failed downloads (not a
200 or 206 return value), that were not for the HTTP pro-
tocol, or that were not a standard HTTP request (GET,
HEAD, or POST). These items should never get to the
storage nodes and hence would not effect a cache. In any
case, these requests represent less than 4.5% of the requests
and no more than 0.00015% of the total download band-
width.

We produce three data files for each log: a mapping of object
IDs to file sizes, a list of object ID’s in access order, and a file
containing three fields: access time, object ID, and request
size. The first two files are used by the stkdst [17] program
to compute the priority depth analysis. The third file is
used by the webtraff [20] package to compute standard web
statistics.

Converting the W3C log files into our three data files was
non-trivial. The problem was to maintain a hash table with
each object’s URL and its mapped ID. As each URL was
referenced, we could look them up in the hash table. We
found that this table would not fit into the 2Gb memory
footprint of most Linux programs.



Our first solution was to implement a distributed hash using
memcached [11]. We deployed memcached on four machines,
allocating 2Gb of memory to each server. We turned off
the LRU replacement feature of memcached, thus turning
it into a static hash table. The resulting 8 Gb cache was
large enough to process at least 10 days worth of logs. The
process took a number of hours to complete and was very
fragile.

We finally implemented the conversion algorithm in Hadoop[1].
The process required two map-reduce passes. The first pass
parsed the log files and generated key-value pairs where the
key was the URL and the value was a vector of the record
time and download size. The reduce phase ran as a single
reducer and assigned each unique URL key to a new ID.
The mapping was written to a secondary file in the Hadoop
file system. The second map-reduce phase inverted this pro-
cess, mapping each record into a time key and a vector value
with the id and download size. Hadoop automatically sorts
the output by key and so the reduce phase was simply the
identity mapping.

The stkdst program implements an LRU stack algorithm
[21], generalized to include the size of the requested objects.
For each item in an access trace, the algorithm computes the
size of the cache in terms of objects and bytes that would be
necessary to have stored that item. By sorting the output
on priority depth and then computing the cumulative dis-
tribution of number of items or item sizes as a function of
priority depth, we respectively obtain the hit rate and the
byte hit rate as a function of cache size.

The webtraff package is a collection of scripts to compute
standard web trace analyses such as popularity, size dis-
tribution, bytes and requests per interval, and inter-arrival
times.

Both stkdst and webtraff required some modifications. Nei-
ther system was designed for the large number of records
and items referenced in our logs. For example, both sys-
tems limited file sizes to 2 gigabytes in size. We were able
to address these problems by porting the code to use 64 bit
long values for all relevant operations.

Using priority depth analysis as described in [18], we derived
the cache hit rate as a function of the cache size in terms
of the percentage of the files served and the percentage of
bytes served. The results are shown in Figure 7. Table 1
provides a numeric summary of these charts.

4.2 Sizing the Cache
Using the byte hit rate and taking into account that each
download may only be for some fraction of the total file
size, we see that the maximum effective cache size is 30 TB.
Such a cache would be able to serve 228 terabytes of data,
accounting for 91.81% of the downloaded bytes. The other
4.91% of the hits and 8.19% of the downloaded bytes were
accessed only once during this period and hence there is
nothing to be gained by caching them.

The incremental improvements as the cache sizes grows be-
gin to level off over for caches over 5 TB. A six-fold increase
is cache size from 5 TB to 30 TB nets only a 8.38% increase

Figure 7: Cache Rates vs. Cache Size from Nov 1,
2008 to Nov 7, 2008

in the number of cached bytes, which is 21 TB of delivered
data. We will come back to the cache size once we under-
stand the I/O operations per second and the bandwidth per
second that our cache will need to support. Those values
are related to the number of cache hits and the size of the
requests, but not to the disk footprint of the cache.

4.3 I/Os per Second
As a simplification, let us assume that the cache hits are
uniformly distributed during any given period. For the pe-
riod in question, there were between 107 and 1259 requests
per second with a average rate of 447 requests per second.
Our cache will thus serve some percentage of that value as
determined by the size of the cache.

There are two scaling issues with our proposed cache: band-
width and requests per second. Bandwidth is an issue at
many architectural levels. From the network perspective, a
single 10Gb ethernet would be more than the existing exter-
nal network and hence would be sufficient for existing net-
work traffic. Adding multiple such interfaces or using more
than one caching node would provide for expansion room.
The other two areas of concern for bandwidth are the disk
access bandwidth and the bus speed.

One of the major bottlenecks in current non-memory caches
is the disk subsystems. We must consider the disk trans-
fer rates as well as the number of I/O operations per sec-
ond (IOPS) to the disk subsystem. The traditional ap-
proach to limitations in disk bandwidth or IOPS is found
in database systems that utilize a large number of small
disks. By spreading the data, the database can use all of
the disks in parallel, thus multiplying the bandwidth and
IOPS by the number of disks.

In order to see if IOPS are an issue for our cache, we will
need to translate the number of hits to the cache into IOPS
at the disk level. For the purposes of this exposition, let us
assume a worst case scenario where the local memory on the
caching server cannot cache all active files. That is, each file
request will result in at least one disk request.



Table 1: Coverage achieved as function of cache size.
cache size % bytes % hits
100 GB 48.09% 69.09%
200 GB 56.37% 74.79%
300 GB 61.09% 77.30%
400 GB 63.85% 78.63%
500 GB 65.78% 79.65%
600 GB 67.60% 80.73%
700 GB 68.77% 81.38%
800 GB 69.87% 81.96%
900 GB 70.97% 82.52%
1 TB 71.53% 82.79%
2 TB 76.79% 85.48%
3 TB 79.72% 87.17%
4 TB 81.61% 88.35%
5 TB 83.43% 89.58%
6 TB 84.32% 90.21%
7 TB 85.69% 91.21%
8 TB 86.14% 91.58%
9 TB 87.04% 92.32%
10 TB 87.93% 92.93%
15 TB 90.13% 94.35%
20 TB 91.20% 94.91%
25 TB 91.68% 95.13%
30 TB 91.81% 95.19%

In most hardware caching scenarios, the block size is fixed
[7]. This means that all cache hits return exactly the same
amount of data. Our cache must return a variable amount
of data because our file sizes are highly variable. Further-
more, our cache must support the current HTTP 1.1 pro-
tocol, which allows the requester to download any range of
bytes from within the file. Almost half of all requests to
the Internet Archive are for ranges of data. Thus, while
we cache whole files, we must assume that each request will
perform a random seek to the beginning of the requested file
segment.

Modern operating systems attempt to pre-fetch parts of the
file. The Linux operating system begins with its default
block size of 4KB [5]. For each subsequent sequential read,
it doubles the size of the prefetch buffer up to a maximum of
128KB. The prefetch algorithm is intended to increase the
throughput of the disk by performing sequential reads which
do not require additional disk seeks.

Let us assume that the kernel maintains a prefetch buffer
for each and every open file descriptor. That is, each open
file is treated separately by the kernel and is prefetched on
demand. This assumption may be true in practice given the
large number of open files served by our cache.

We simulated the prefetch algorithm, counting the number
of IOPS necessary per second based on the available trace
data. Figure 8 shows the results on a log scale. The mini-
mum value was 552 IOPS. The maximum value was 4021411
IOPS. The average value was 7734 per second. As can be
seen, there were a significant number of seconds with more
than 50000 IOPS.

It is critical to note that these values are only an approxima-

Figure 8: Estimated IOPS over time from Nov 1,
2008 to Nov 7, 2008

tion. The major challenge to these results is that we assume
that all IO operations for each request occur immediately
upon arrival of the request. In actuality, the file access is
spread over the time necessary to deliver the data to the re-
quester over the Internet. For large files, this can take hours
and even days.

In support of our argument, we observe that there are no
quiet times in this trace. Spreading the load over time will
very likely reduce the very high IOPS rate, but it will also
serve to increase the lower values. Furthermore, by spread-
ing the load over time, we expect to see a reduction in ker-
nel prefetch activity, once again increasing the number of
IOPS.

Our calculation of IOPS also enable us to determine the re-
quired I/O bandwidth. For the period in question, the values
ranged from a minimum of 0.007 Gb/sec to a maximum of
263 Gb/sec, with an average value of 0.41 Gb/sec per sec-
ond. The bandwidth exceeded 1 Gb/sec approximately 5%
of the time, and exceeded 2Gb/sec 0.65% of the time. Note
that the total available outgoing bandwidth is less than 10
Gb/sec. Our reported value of 263 Gb/sec is a result of as-
suming that the entire file is downloaded at the moment of
the request.

At this point, we note the now well publicized difference
between traditional hard disks and solid state disks. In a
traditional hard disk, data is stored on rotating platters and
read by floating magnetic sensor heads. In order to perform
a seek, the sensor must be moved to the correct track on
this platter and the platter must complete its rotation to
bring the data under the sensor head. For 5400 RPM disks,
the average seek time is around 8 milliseconds. If each file
access required one seek, the disk would be able to service
only 125 operations per second, assuming that transfer time
was negligible. In practice most commodity disks service
about 100 operations per second with some enterprise disks
offering up to 250 IOPS. These same enterprise disks offer
sustainable transfer rates of 125MB/sec [26] (1 Gb/sec ) over
3Gb/sec SATA interfaces.



Solid state disks have no moving parts and therefore are
not subject to rotational seek latencies. Current solid state
disks boast between 7000 and 35000 IOPS. Perhaps due to
being early on the product curve, Solid states disks use the
same 3Gb/sec SATA interfaces and support transfer rates
very similar to traditional hard disks.

4.4 Implementation options
Let us now return to the determination of the cache size. As
can be seen in Table 1, a one terabyte disk cache would sat-
isfy 82.79% of the hits and 71.53% of the content. There are
several ways that such a cache can be implemented.

Web caches are usually implemented using RAM. In-core
memory would easily deliver the required IOPS, and also
reduce latency relative to disks. Current operating systems
limit the size of main memory to between 64 and 128 Gb.
Building a 1 TB RAM cache would necessitate implemen-
tation as a distributed system, increasing the complexity
of the implementation and introducing more points of fail-
ure.

An alternative would be to use the existing RAM of each
node as a cache. In the Internet Archive, there are 2500
nodes and each node has 512MB of storage for a total of
1.28TB of RAM. Ignoring the fact that some portion of this
RAM will be needed for the kernel and for running appli-
cations, we might consider using this memory as a in-place
cache. Perhaps the biggest challenge would be that many
files are larger than 512MB. To cache these files, we would
need to split them up across nodes. While possible in prin-
cipal, we believe that using existing RAM as a cache would
violate the keep-it-simple approach in the Internet Archive
and would likely reduce the performance of the existing sys-
tem due to swapping and memory contention.

We might consider using enterprise-class hard disks with 250
IOPS. A single one terabyte hard disk would store all the
data, but would never be able to supply the thousands of
IOPS that we need. Even if we use ten 100 gigabyte disks, we
would have only 2500 IOPS, which is also below our require-
ments. We could build a ten terabyte cache with one hun-
dred 100 gigabyte disks. This would provide 25000 IOPS,
which would support all but the the peak requirements. Un-
fortunately, using such a large number of disks becomes self
defeating because we might as well just continue to use the
original storage nodes.

It is in these circumstances that a solid state disk with 20000
IOPS would be a very good fit in terms of IOPS. Having
two such disks would likely provide sufficient over capacity
to handle even the peak times. There remains the question
of disk bandwidth. Our simplistic calculations suggest that
two solid state disks would have sufficient bandwidth for
more than 99% of the sampled time periods. The proposed
calculations that include the downstream bandwidth would
likely lower the peak times into the supported range.

4.5 Future Work
The usefulness of a cache for systems like the Internet Archive
is by no means obvious. Assuming that it could be built
in a cost-effective manner and that it was sufficiently reli-
able, there remains the question of its impact on the un-

derlying data store. Further research is necessary to model
the impact of such a cache on the data access patterns to
the backing disk nodes. We believe that such a cache will
significantly reduce multiple accesses to file objects. This
should allow most replicated data to remain idle and hence
we should be able to turn off the disks on which those repli-
cas reside.

We have assumed as a simplification that the cache is read-
only. In practice, objects are being loaded into the cache
on a regular basis. Cache writes would further increase the
number of IOPS. The impact of writes to the cache should
be considered when implementing such a system.

Similarly, it would be useful to model the network download
performance. This model could then be used to predict the
number of bytes delivered per request per second. As men-
tioned above, this would smooth out the download peaks by
spreading the IOPS for an given file over a longer period of
time.

5. RELATED WORK
Most Petabyte scale storage systems are proprietary. Pub-
lished architectural details of petabyte scale storage systems
exist for the Google File System[13], the Hadoop Distributed
File System (HDFS)[3], and the ATLAS experiment at the
Large Hadron Collider (LHC) [10]. All of these systems
deal primarily with write-once data, cached data from web
crawls in the GFS, log files and static content for HDFS and
experimental results from the LHC.

The Google File System (GFS) stores file data in chunks,
spread across distributed, commodity storage nodes. Files
are stored and accessed through a centralized locater service
that maintains the location of the 64MB chunks (blocks) in
which the file is stored. Like the Internet Archive, each GFS
storage node stores file chunks in its local file system. This is
very similar to the ARC file concept in the Internet Archive,
where web crawls are stored in ”chunks” of 100MB. Google’s
approach has a centralized management service that can
perform automated load balancing and recovery. We are
unaware if Google uses any caching infrastructure for the
GFS.

The Hadoop Distributed File System is very similar to GFS.
It is an open-source file system written entirely in Java.
There is no caching infrastructure currently available for
HDFS. HFDS serves as the heart of The Yahoo! Search
Webmap, running on more than 10,000 linux nodes[27].

The ATLAS experiment will collect 3 to 4 petabytes of
data during each year of operation. The system’s archi-
tects chose a traditional SAN approach to storage. There
are a small number of front-end servers with 10 gigabit/sec
Ethernet controllers connected to 4 gigabit/sec fiber chan-
nel controllers. Disks are managed by SAN controllers and
are accessed as block devices through logical unit numbers
(LUNs). The ATLAS system implements RAID 6 across
the disks. Backup is performed to 800 GB tape drives in a
mechanical tape library.

We believe that future large-scale storage systems will be
more like GFS and the Internet Archive. Their simplicity,



low cost of hardware, lower operational overhead, and ease
of expansion make them good choices for most applications.
High performance file systems will still be needed to support
database operations and write-frequently data. Yet, as data
sets grow and become more static, archival storage systems
become more cost effective and easier to maintain over time.
As we have shown, the Internet Archive can deliver prodi-
gious quantities of data even though the unit components
are not themselves of particularly high performance.

In 2002, Colarelli and Grunwald proposed using massive ar-
rays of idle disks for archive storage [8]. The concept was
to spin down idle disks in order to save costs. Pinheiro
and Bianchini [22] extended this approach by moving ac-
tive data from low activity disks to high activity disks in
order to increase the locality of reference. They argued that
disks never became sufficiently inactive to shut them down
and that savings could be had only with adjustable-speed
disks. Both of these studies were focused on systems that
had significant read and write activities. Our research looks
at archival systems, where the impact of ”cold” un-accessed
data should be significant. We believe that these systems
are prime candidates for cost savings. We assume that most
accesses can be caught by a cache and that cold data can be
segregated so that some significant fraction of the disks can
be idled.

The late Jim Gray was one of the strongest proponents of
massively over-capacity disk arrays in order to increase disk
heads and hence IOPS [15]. His arguments followed from
the claim that all systems were in fact databases. Most re-
cently, in a posthumous paper, he argued that Flash disks
are highly appropriate for server applications [14]. The In-
ternet Archive shows that large scale archival storage sys-
tems are not databases. They have significant over-capacity
in terms of IOPS. On the other hand, a cache for such a sys-
tem would be very similar to a high performance database
and would indeed be bound by IOPS and storage band-
width.

6. CONCLUSION
The Internet Archive is a surprising example of using sim-
ple principles to implement a high capacity, highly available
system. The core concept is the use of uncomplicated al-
gorithms and simple hardware. Reliability and capacity are
due to scale, not intelligence. The Internet Archive repre-
sents, perhaps for the first time, a basic example of totally
unoptimized system behavior against which, in simulation,
one might explore the real value of the most obvious opti-
mizations.

The Internet Archive has been operational for almost 10
years. Its longevity is due to its simplicity. Administrators
do not need to spend long months learning the intricacies of
the algorithms or installations and hence make fewer mis-
takes. The Internet Archive is a low cost solution in all
terms; software, hardware and operations.

As an extension to the Internet Archive’s architecture, we
have explored the requirements for a reverse-proxy cache.
Using live traces from the Internet Archive, we determined
that traditional hard disks are simply not a viable design
alternative because they cannot keep up with the large num-

ber of I/O operations per second. Furthermore, a complete
implementation will likely require a distributed approach in
order to guarantee sufficient disk and I/O bus bandwidth
during peak loads.
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