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We study the price of stability in undirected network design games with fair cost sharing. Our work provides
multiple new pieces of evidence that the true price of stability, at least for special subclasses of games, may

be a constant.

We make progress on this long-outstanding problem, giving a bound of O(log log logn) on the price of
stability of undirected broadcast games (where n is the number of players). This is the first progress on the

upper bound for this problem since the O(log logn) bound of [Fiat et al. 2006] (despite much attention, the

known lower bound remains at 1.818, from [Bilò et al. 2010]). Our proofs introduce several new techniques
that may be useful in future work.

We provide further support for the conjectured constant price of stability in the form of a comprehensive
analysis of an alternative solution concept that forces deviating players to bear the entire costs of building

alternative paths. This solution concept includes all Nash equilibria and can be viewed as a relaxation

thereof, but we show that it preserves many properties of Nash equilibria. We prove that the price of
stability in multicast games for this relaxed solution concept is Θ(1), which may suggest that similar results

should hold for Nash equilibria. This result also demonstrates that the existing techniques for lower bounds

on the Nash price of stability in undirected network design games cannot be extended to be super-constant,
as our relaxation concept encompasses all equilibria constructed in them.

Categories and Subject Descriptors: F.2.0 [Theory of Computation]: Analysis of Algorithms and Problem

Complexity

General Terms: Theory, Algorithms, Economics

Additional Key Words and Phrases: Network Design, Price of Stability

1. INTRODUCTION

Network design games, which model cost-sharing of network links by selfish players, have
received considerable attention in the algorithmic game theory literature. The price of sta-
bility of Nash equilibria has emerged as the most interesting question in such games, with
a substantial line of work beginning with Anshelevich et al. [Anshelevich et al. 2004; Fiat
et al. 2006; Li 2009; Bilò et al. 2010; Christodoulou et al. 2010; Bilo and Bove 2011; Kawase
and Makino 2012] resulting in known bounds of O(log n) for all directed games and for
undirected general games (wherein each player has a source and sink vertex she wishes to
connect), O(log n/ log log n) [Li 2009] for undirected multicast games (wherein all players
share a single sink vertex), and O(log log n) [Fiat et al. 2006] for undirected broadcast games
(wherein there is a single sink vertex and a player at every node). While the upper bound is
tight for directed games, the current lower bounds for undirected general games, multicast

Author’s addresses: Euiwoong Lee, Computer Science Department, Carnegie Mellon University; Katrina
Ligett, Department of Computing and Mathematical Sciences, California Institute of Technology.
EL is supported by the Samsung Foundation. KL gratefully acknowledges the generous support of the
Charles Lee Powell Foundation.
Permission to make digital or hardcopies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copy-
rights for components of this work owned by others than ACM must be honored. Abstracting with credits
permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any com-
ponent of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
EC’13, June 16–20, 2013, Philadelphia, USA. Copyright c© 2013 ACM 978-1-4503-1962-1/13/06...$15.00



Proceedings Article

games, and broadcast games are 2.245, 1.862, and 1.818, respectively (due to [Bilò et al.
2010]), leaving a huge gap between the upper and lower bounds.

It is remarkable that such a simple and elegant problem has defied analysis for so long,
despite receiving considerable attention. This paper provides substantial new evidence for
a constant price of stability for multicast games and broadcast games: first, we formally
demonstrate the limitations of existing lower bound approaches (they cannot be used to
obtain super-constant bounds), and second, we introduce new techniques and apply them
to obtain a better upper bound.

Previous techniques for both the lower and upper bound results have limitations that
make it difficult to close the gap by naturally extending them. For example, the games
presented to establish lower bounds in [Bilò et al. 2010] and [Bilo and Bove 2011] are too
“strong” in the sense that for every socially efficient equilibrium in these games, there exists
a player who would benefit by deviating—even if she had to pay the entire cost of her new
path. Any Nash equilibrium is robust to such “go-it-alone” deviations, but the converse
is not true. Therefore, in this work, we seek to understand the set of strategy profiles
robust to such deviations, and study their properties. We prove that the price of stability
of this relaxed solution concept is bounded by a constant, implying that either the price
of stability of Nash equilibria is also bounded by a constant, or we need new techniques to
prove a super-constant lower bound.

With regard to upper bounds, almost all previous work (e.g., [Anshelevich et al. 2004], [Li
2009]) has focused on analyzing one particular equilibrium outcome, the global potential
minimizer. Unfortunately, recent work of [Kawase and Makino 2012] demonstrates that in
the worst case, the potential-minimizing equilibrium exceeds the cost of the social optimum
by a super-constant factor (between O(

√
log n) and Ω(

√
log log n)), and so potential-based

techniques alone cannot be used to prove a constant upper bound on the price of stabil-
ity. The upper bound of [Fiat et al. 2006], in a stark departure from the potential-based
approach, carefully engineers a sequence of player movements to keep a certain structure
of the strategy profile. We find that combining the machinery of Fiat et al. with potential
minimization and additional new techniques allows us to make the first progress on upper
bounds in over six years; we improve the upper bound on the price of stability in broadcast
games from O(log log n) to O(log log log n).

Summary of our approach. In Section 3, we propose and study an equilibrium relaxation,
“go-it-alone equilibria,” intended to capture the “restricted access” setting, wherein deviat-
ing players are unable to cost-share with compliant players. We provide a nearly complete
characterization of the prices of anarchy and stability in directed and undirected graphs
for this concept. In the case of directed graphs, the bounds parallel those known for Nash
equilibria. In undirected graphs, the price of anarchy remains the same as its counterpart
for Nash equilibria, but the price of stability is improved to O(1) in multicast games and
broadcast games (see Table I).

In Section 4, we leverage insights from our study of go-it-alone equilibria to present a
new, improved upper bound of O(log log log n) for the Nash price of stability in broadcast
games. Our two upper bound proofs (O(1) for go-it-alone equilibria and O(log log log n)
for Nash equilibria) each introduce new techniques. In both of them, starting from the
socially optimum outcome, we construct a strategy profile iteratively, maintaining special
structures. For go-it-alone equilibria, we require our strategy profile to form a chord-line
graph, as has been used for lower bound constructions [Bilò et al. 2010]; for Nash equilibria,
we maintain the structure proposed in [Fiat et al. 2006]. One technique we introduce is
to consider a simultaneous move by multiple players (usually a set close to each other) to
construct a desired equilibrium. This introduces an additional layer of complexity in the
analysis, but it turns out to allow us to construct a more socially efficient equilibrium. Our
second new technique, which is specific to our analysis of Nash equilibria, might be viewed
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as a combination of the two main upper bound techniques that appear in prior work: in
each phase, we select the potential-minimizing strategy profile, subject to our structural
requirements. This effectively allows us to exploit the benefits of each of those two existing
approaches.

2. PRELIMINARIES

A network design game is defined by a tuple (G,A, c). Here, G = (V,E) is the underlying
graph of the game, which, depending upon the scenario under consideration, may be either
directed or undirected (we focus here on the undirected case). The function c : E 7→ R+

defines the costs of the edges, and A = {1, ..., n} is the set of players, where player i is
associated with a source-destination pair (si, ti) that she wishes to connect. A network design
game is called a multicast game if all players share the same sink vertex (t = t1 = ... = tn),
so that every player can be associated with her source in V \ {t}. A broadcast game is a
special case of multicast games wherein every vertex in V \{t} is associated with a player. In
multicast games and broadcast games, we sometimes abuse notation and identify a player
and her source v.

The strategy space for player i is the set Pi of paths from si to ti; we allow each player i
to use the same edge more than once. For an edge e and a path Pi for some player i, let ne,i
be the number of times e is used in Pi. Given a strategy profile P = (P1, ..., Pn) consisting
of a path Pi ∈ Pi for each player, let T (P ) = ∪iPi be the set of the edges used in the current
strategy profile. Let c(T ) =

∑
e∈T c(e) be the total cost of T , and c(P ) = c(T (P )). The cost

of player i, given a joint strategy profile P , is ci(P ) =
∑
e∈Pi

c(e)
ne
ne,i, where ne(P ) =

∑
i ne,i

is the number of players using edge e, counting multiplicity. Note that c(P ) =
∑
i ci(P ) for

any P . There are a number of basic economic motivations for equal sharing of costs among
those that use an edge; this sharing rule can be derived from the Shapley value (hence the
term “Shapley cost-sharing mechanism”), and it is the unique cost-sharing scheme satisfying
a number of different sets of axioms [Anshelevich et al. 2004].

We often compare the cost of our strategy profile to that of a Steiner forest that satisfies
the connectivity requirement for each player. Let T ∗ be the min-cost Steiner forest in which
si, ti are connected for every i. For any forest T ′, let c(T ′) =

∑
e∈T ′ c(e) be the cost of T ′

and dT ′(u, v) be the cost of the unique path from u to v in T ′, assuming that u and v are
connected.

A strategy profile P = (P1, ..., Pn) is a Nash equilibrium if no player i can strictly decrease
her cost by deviating to another strategy, i.e., ci(Pi, P−i) ≤ ci(P

′
i , P−i) for all i, P ′i ∈ Pi.

We introduce a new stability concept designed to model a situation where deviations can
be disincentivized, for example by centralized control or by punishment of the sort that
might emerge in a repeated game setting. We say a strategy profile P = (P1, ..., Pn) is a
go-it-alone equilibrium if no player can strictly reduce her cost by constructing a path by
herself, i.e., for any i, P ′i ∈ Pi, ci(P ) ≤

∑
e∈P ′i

c(e). Since
∑
e∈P ′i

c(e) is minimized when

P ′i is a shortest path from si to ti, this condition is equivalent to requiring that ci(P ) does
not exceed the cost of the shortest path from si to ti for each i. Let NE,GE be the sets of
Nash equilibria and go-it-alone equilibria, respectively.

The existence of a Nash equilibrium is proved in [Anshelevich et al. 2004] via the potential
function Φ(P ) =

∑
e∈E c(e)H(ne), where H(k) = 1 + ... + (1/k). Note that in any Nash

equilibrium no player pays more than the cost of her shortest path, so every Nash equilibrium
is a go-it-alone equilibrium. It directly follows that a go-it-alone equilibrium exists in any
network design game. Figure 1 shows that not every go-it-alone equilibrium of a network
design game is a Nash equilibrium. The example is from [Epstein et al. 2007], who show
that P = ((e, c), (b, f)) is the only Nash equilibrium and c1(P ) = c2(P ) = 5. Consider
P ′ = ((a, b, c), (b, c, d)), where the two players cooperate. Note that c1(P ′) = c2(P ′) = 4
and the cost of the shortest path from si to ti is 5 for each i, so P ′ is a go-it-alone equilibrium.



Proceedings Article

1

s1 t2

s2 t1

3 3 1

2 2
e f

a b c d

Fig. 1. A network design game where NE, GE, and the strong versions of these equilibrium concepts are
pairwise distinct.

The price of anarchy (PoA) for a class of games is the ratio between the cost of the
socially worst Nash equilibrium of a game instance and that of the social optimum of

that instance, i.e., maxP∈NE
c(P )
c(T∗) . Similarly, the price of stability (PoS) for a class of

games is the ratio between the cost of the socially best Nash equilibrium and the social

optimum, minP∈NE
c(P )
c(T∗) . We define analogues of these concepts with respect to go-it-alone

equilibria; the go-it-alone price of anarchy (GPoA) is maxP∈GE
c(P )
c(T∗) and the go-it-alone

price of stability (GPoS) is minP∈GE
c(P )
c(T∗) .

Since the set of go-it-alone equilibria contains all Nash equilibria, the lower bounds on
the price of anarchy and the upper bounds on the price of stability directly carry over to
go-it-alone equilibria; these results are proved by showing the existence of a good or bad
equilibrium. However, the upper bounds on the price of anarchy and the lower bounds on the
price of stability, whose proofs require considering all equilibria, do not carry over directly
to go-it-alone equilibria. For the case of undirected graphs, Table I summarizes prior work,
these immediate implications, and the results of this paper.

Table I. Best known results for upper and lower bounds on the price of anarchy (PoA) and price of stability (PoS) of go-
it-alone equilibria (GE) and Nash equilibria (NE) in undirected graphs. Automatic implication of one result from another
is denoted by an arrow (⇒). The first results from [Anshelevich et al. 2004] are marked by *, and new results from the
present manuscript are marked by a †. The lower bound on the price of stability in undirected graphs has been studied
extensively via constructing complicated examples, and we have not studied the implications for GE.

GPoS(GE) ≤ PoS(NE) ≤ PoA(NE) ≤ GPoA(GE)

broadcast O(1)† O(log log logn)†
upper bounds multicast O(1)† O( logn

log logn
) [Li 2009] n* n†

general O(logn) ⇐ O(logn)*
broadcast 1.818 [Bilò et al. 2010]

lower bounds multicast unstudied 1.862 [Bilò et al. 2010] n* ⇒ n
general 2.245 [Bilò et al. 2010]

2.1. Related work

Motivated by the study of communication networks, network design games have received
substantial attention over the past decade (e.g., [Anshelevich et al. 2003; Chawla et al.
2006; Hoefer 2006; Anshelevich and Caskurlu 2009a; 2009b]). Fair network design games,
where an edge’s cost is evenly divided among the players who use it, were first suggested
by [Anshelevich et al. 2004] and have subsequently become one of the canonical areas of
study of the quality of equilibrium outcomes. [Anshelevich et al. 2004] show that in both
directed and undirected graphs, a Nash equilibrium always exists, the worst-case price of
anarchy is exactly n, and the price of stability is O(log n).

Furthermore, in directed graphs, the situation is simple and well-understood: the same
work proves a matching lower bound on the price of stability of Ω(log n). We study the
quality of go-it-alone equilibria in the case of directed graphs in Appendix B, and show
that the matching lower bound on the price of stability also holds for go-it-alone equilibria.



Proceedings Article

The price of stability of fair network design games in undirected graphs is still unknown,
despite substantial work on both upper and lower bounds [Fiat et al. 2006; Li 2009; Bilò
et al. 2010; Christodoulou et al. 2010; Bilo and Bove 2011]. Table I provides a summary.
We prove an improved upper bound of O(log log log n) for the Nash price of stability in
broadcast games and show a even better upper bound for go-it-alone equilibria; the price
of go-it-alone stability is bounded by O(1) for multicast (and thus also broadcast) games.
Recently, [Kawase and Makino 2012] studied the quality of the Nash equilibrium with
the minimum potential in network design games and showed that the potential-optimal
price of stability is between O(

√
log n) and Ω(

√
log log n). Therefore, our work, in order to

break the log log n bound, first shows that the quality of the best Nash equilibrium can be
asymptotically better than the quality of the potential-optimal Nash equilibrium.

[Charikar et al. 2008] consider an online version of multicast games where players arrive
one by one and connect greedily to the sink. They show that the worst social cost after
all players’ arrival (not necessarily a Nash equilibrium), after best-response dynamics (a
Nash equilibrium), and after interleaved arrivals and deviations are O(log2 n), O(log3 n),
O(polylog(n)

√
n), respectively. An online version of go-it-alone equilibria is rather straight-

forward, as each player has no incentive to deviate after her arrival, when she chose a path
as efficient as the shortest path.

Strong equilibria, which resist deviations by coalitions of players, have also been studied
in network design games. [Albers 2008] studied the price of anarchy of strong equilibria,
giving an upper bound of O(log n) and a lower bound of Ω(

√
log n) in undirected graphs.

While Nash strong equilibria need not exist, [Epstein et al. 2007] prove existence of a
strong equilibrium under topological constraints. We discuss strong go-it-alone equilibria
in Appendix C, where we study their existence and present a full characterization of the
corresponding prices of anarchy and stability.

Arbitrary cost-sharing in network design games has also been considered (e.g., [Moulin
2009], [Hoefer 2010]).

Our notions of (strong) go-it-alone equilibria reflect some features of the core in coop-
erative game theory, where the goal is to centrally find a cost allocation to each player
so that no coalition of players has incentive to deviate by satisfying their requirements by
themselves. [Hoefer 2010] studied the relationship between strong Nash equilibria and the
core in games with arbitrary cost sharing, and our model, somewhere in between, might be
viewed as a bridge between competitive and cooperative game theory. Analogies can also
be drawn to the literature on conjectural variations, as GE may be enforced by anticipation
of punishment in future rounds of play.1

3. GO-IT-ALONE EQUILIBRIA

Since the set of go-it-alone equilibria contains all Nash equilibria, the GPoS can only be
lower than the PoS, while the GPoA can only be greater than the PoA. It might be desirable
for an equilibrium relaxation to have small such differences, i.e., that its price of stability
and price of anarchy are not far from their Nash equilibrium counterparts. We show that
for go-it-alone equilibria in network cost sharing games, this is indeed the case. For all such
quantities for which there is a known tight asymptotic value for Nash equilibria, the same
asymptotic value holds for go-it-alone equilibria. This correspondence even holds true for
the strong equilibrium variants, which are robust to deviations of a group of players. Since
the main case of interest is undirected graphs, we present the go-it-alone equilibrium results
for directed graphs and strong equilibria in Appendices B and C.

In undirected graphs, we first see that considering go-it-alone equilibria does not push
the price of anarchy beyond the (already quite high) bounds known for Nash equilibria. As

1Our thanks to Federico Echenique for suggesting this connection.
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noted in Table I, lower bounds of n on the Nash price of anarchy carry over immediately to
go-it-alone equilibria; here we prove the matching upper bound.

Theorem 3.1. The go-it-alone price of anarchy can never exceed n.

Proof. Assume by way of contradiction that there is a go-it-alone equilibrium whose
cost is more than n times the cost of the social optimum. This implies the existence of a
player who pays more than the cost of the social optimum, but that player could strictly
reduce her cost by building the entire subgraph corresponding to the social optimum by
herself.

Before we turn to the study of the one remaining quantity—the price of stability in
undirected cost sharing games—we briefly discuss the issue of equilibrium computation.
[Anshelevich et al. 2004] proved existence of a Nash equilibrium in every network design
game via a potential function argument, but unfortunately they show that best-response
dynamics can take exponentially many steps to converge. First, we see that computing a
go-it-alone equilibrium of minimum social cost is also NP -hard.2 The proof, which is a
reduction from set cover inspired by an exercise in [Vazirani 2001], appears in Appendix A.

Theorem 3.2. Computing the best go-it-alone equilibrium, even in single-source games,
is NP -hard in both directed and undirected graphs. Furthermore, in directed graphs, it is
NP -hard to approximate within an O(log n) factor.

This is perhaps unsurprising, as it is well known that the Steiner tree problem is APX-hard
in undirected graphs [Bern and Plassmann 1989], and a proof similar to that of the above
theorem shows that it is unlikely to have a better approximation guarantee than O(log n)
in directed graphs. (this was the original statement of the exercise in [Vazirani 2001]). How-
ever, these problems have been extensively studied and have known good approximations.3

Therefore, it is natural to ask if it is possible to convert the socially efficient solutions found
by these algorithms to go-it-alone equilibria, without losing too much efficiency. One in-
tuitive way to accomplish this is via best-response dynamics: if there exists a player who
pays more than the cost of the shortest path, let her deviate to build the shortest path.
Conveniently, for go-it-alone equilibria, each player will make such a deviation at most once.

In Theorem 3.4, we use this idea to show that the go-it-alone price of stability is O(1)
in multicast and broadcast games, giving a polynomial-time algorithm that computes such
a go-it-alone equilibrium. Note that this is the only case where we achieve a better result
for go-it-alone equilibria than is currently known for Nash equilibria. While it is difficult to
bound the resulting cost in terms of the social optimum when players are allowed to deviate
in an arbitrary order, our approach works by (1) identifying a simple class of graphs on
which it is sufficient to prove our theorem, (2) scheduling a chain of beneficial deviations
to follow each deviating player and recursively treating the remaining subgraphs, and (3)
introducing a charging scheme wherein the cost of each deviation is charged to the edges in
the social optimum. The equilibrium we find does not satisfy the criterion that the edges
which are used at least once should form a tree, but it does satisfy a slightly relaxed criterion
that it only uses edges from two trees—the social optimum and the shortest path tree.

We first show that a slightly more strict result on a certain class of graphs actually suffices
to prove the theorem. We call a graph G = (V,E) as line-shortcut if V = {t = s0, s1, ..., sn},

2Note that this is not a direct corollary of the NP -hardness of the Steiner tree problem, because we want
to compute not the globally best Steiner tree, but the best Steiner tree among go-it-alone equilibria.
3There is a 1.55-approximation algorithm in undirected graphs [Robins and Zelikovsky 2000], and a O(nε)-
approximation algorithm in directed graphs for any ε > 0 [Charikar et al. 1998]. Even in the Steiner
Forest problem, which finds the social optimum of general multicommodity network design games, there
is a 2-approximation algorithm in undirected graphs [Goemans and Williamson 1992] and a O(n1/2+ε)-
approximation algorithm for any ε > 0 [Chekuri et al. 2008].
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where t is the common sink and each si with i > 0 is the source of one player, and E =
{(s0, si) | 1 ≤ i ≤ n} ∪ {(si−1, si) | 2 ≤ i ≤ n}. We also require that the edge costs must

satisfy c(si−1, si) ≤ c(s0, si) ≤
∑i
j=1 c(sj−1, sj) to ensure that the line (s0, s1, ..., sn) is the

shortest spanning tree but each vertex has a direct shortcut to the sink (for s1, the shortcut
and the path to the sink on the line coincide). This class of graphs is also used in the lower
bound constructions in [Fiat et al. 2006] and [Bilò et al. 2010], so our positive result on
these graphs suggests that current Nash equilibrium lower bound techniques cannot easily
be extended. Two examples are illustrated in Figure 2. Although line-shortcut graphs are
quite simple, for go-it-alone equilibria a slightly more strict result on line-shortcut graphs
will imply the theorem on general graphs.

Lemma 3.3. Suppose that for any undirected broadcast game on a line-shortcut graph,
there is a polynomial time algorithm to compute a go-it-alone equilibrium P with c(P ) =
O(1)c(T ∗) such that each player uses each edge at most once. We can use this to efficiently
compute a go-it-alone equilibrium that is within a constant factor of optimal in a general
graph (where in the resulting GE each player uses each edge at most three times).

The full proof appears in Appendix D.1. Intuitively, given an instance of an undirected
multicast game, we construct the corresponding line-shortcut graph as follows: the line
corresponds to the preorder traversal of the (approximate) optimal Steiner tree, and each
shortcut corresponds to the shortest path from the corresponding player to the sink. Then,
the total cost of the line is at most two times the cost of the Steiner tree and the cost of
each shortcut is preserved. Each edge in the original graph corresponds to at most three
edges (two for the preorder traversal, one for the shortest path tree) in the line-shortcut
graph, explaining the slightly increased number of times that each edge can be used.

Therefore, we can concentrate on line-shortcut graphs. Algorithm 1 finds a GE with total
cost only a constant worse than a given strategy, on line-shortcut graphs. In the initial
strategy P where each player uses the path on the main line to get to the sink, each edge
(sk−1, sk) is used by exactly n − k + 1 players (k, ..., n). We find the unsatisfied (i.e.,
paying more than the cost of her shortcut) player i with the largest index and make her

deviate using her shortcut. Before i’s deviation, c(s0, si) < ci(P ) =
∑i
k=1

c(sk−1,sk)
n−k+1 and

c(s0, sj) ≥ cj(P ) =
∑j
k=1

c(sk−1,sk)
n−k+1 for all j > i. All players j > i then follow i’s deviation

(i.e. Pj ← (sj , ..., si, s0)). They will still be satisfied, since following i’s shortcut further

reduces their costs to [ c(s0,si)n−i+1 +
∑j
k=i+1

c(sk−1,sk)
n−k+1 ] < cj(P ).

If i ≤ bn/2c+1, the remaining graph consisting of nodes that have not deviated will have
at most bn/2c vertices; we process it recursively. Otherwise, we divide the remaining nodes
into two smaller line-shortcut graphs, with vertices s0, ..., sbn/2c and s0, si, si−1, ..., sbn/2c+1.
Note that the second graph is reversed, going from right to left, even though it is a legitimate
line-shortcut graph. We process these two graphs recursively. Figure 2 illustrates the two
cases. Clearly, the procedure will terminate with all players satisfied. Furthermore, every
player j’s strategy consists of (a path on the main line from sj to si for some i) + (si, s0),
so no player uses any edge more than once.

Whenever a player deviates to her shortest path, the cost of her shortest path is less than
the amount she pays in the current strategy profile, which is simply a linear combination of
the costs of the edges on her current path. Each coefficient in the linear combination can be
thought of as debt that the corresponding edge has to pay in order to add a new shortest
path. If we accumulate the debts of the edges in the (approximate) social optimum as we
add shortest paths, the total cost of the added shortest paths is bounded by the cost of the
social optimum times the maximal debt of each edge. The recursive splits with reversals
mentioned above are carefully orchestrated to prevent the debt on any one connection to
the root from increasing too quickly. The full proof appears in in Appendix D.2.
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ALGORITHM 1: Divide-by-half

Data: Undirected broadcast game (G,A, c) where G is a line-shortcut graph with main line
(t = s0, s1, ..., sn) and associated initial strategy P s.t. ∀i, Pi = (si, si−1, ..., s0)

Result: Strategy P at go-it-alone equilibrium
Let α = b|A|/2c.
if all players in A are satisfied given P then return
else

Let i be the unsatisfied player in A with largest index. // Note ci(P ) > c(si, s0)
Pi ← (si, s0)
for j = i+ 1, ..., n do Pj ← (sj , sj−1, ..., si) + Pi
if i ≤ α+ 1 then

Divide-by-half(G, {1, ..., i− 1} , c)
end
else

for j = α+ 1, ..., i− 1 do Pj ← (sj , sj+1, ..., si) + Pi
Divide-by-half(G, {1, ..., α} , c)
Divide-by-half(G, {i, i− 1, ..., α+ 1} , c) // direction of the line is reversed

end
end

sn

t

s1 si−1 si

......

sn

t

s1 sisα sα+1

... ... ...

Fig. 2. Two situations depending on i. A component in each circle represents a line-shortcut graph recur-
sively processed.

Theorem 3.4. For any undirected multicast game, there exists a go-it-alone equilibrium
P where c(P ) = O(1)c(T ∗) and each player uses the same edge no more than three times.
This equilibrium can be computed in polynomial time.
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4. O(LOG LOG LOGN) UPPER BOUND ON NASH POS

Motivated in part by our result for go-it-alone equilibria, we present an upper bound of
O(log log log n) on the price of stability in undirected broadcast games, improving the
O(log log n) bound of [Fiat et al. 2006]. Their approach is based on the idea of carefully
scheduling a sequence of player deviations. They classify each edge ev outside the social
optimum (and the player v who initially uses it) into one of two categories: crowded if there
are more than log n players in a circle around v of radius proportional to the cost of ev, or
light otherwise. In the final Nash equilibrium, the total cost of the crowded edges can be
bounded by O(1)c(T ∗) using a relatively simple potential argument, supporting the intu-
ition that the crowded edges must be sparse—especially when they are expensive. Then, one
can draw a circle around each light vertex v of radius proportional to c(ev). They observe
that if one circle contains the center of another, the radius of the latter is at most half of
the radius of the former. We make an improvement to this key fact, showing that such a
containment reduces the radius by factor of O( log h

h ), where h indicates that the number of
players in the latter circle. This proves that the worst case for [Fiat et al. 2006], that one
large circle might contain many other large circles recursively, is actually impossible. This
observation, with careful induction, gives us a better upper bound.

The key improvement combines two techniques to find a Nash equilibrium with low
cost: taking the global potential minimizer [Anshelevich et al. 2004; Li 2009; Bilo and
Bove 2011] and carefully scheduling movements [Fiat et al. 2006]. Both techniques have
their limitations: the price of stability of the potential minimizer was recently proved to
be Ω(

√
log log n) even in broadcast games [Kawase and Makino 2012], and the scheduler

of [Fiat et al. 2006] resorts to arbitrary improving deviations at the end of each phase.
Taking the strategy profile that minimizes the potential function and satisfies our structural
requirement in each phase allows us to exploit having a low strategy profile as well as
maintaining the structure.

Our algorithm also has an additional feature, which is to consider a sequence of group
moves (wherein groups of players deviate simultaneously) that reduce the potential. Group
moves have previously only been considered in the case of three players [Bilo and Bove
2011], where the analysis was already quite complex. Our result suggests that this addi-
tional sophistication, combined with the ability to select a strategy profile having desired
properties, might be a promising approach to finding the true price of stability.

The proof is divided into two parts. In what follows, we prove the key observation—
limiting the number of circles surrounding light vertices that can appear within the circle
of any light vertex—using the two techniques mentioned above. The second part, where
we use nontrivial induction to prove the result based on the key observation, appears in
Appendix F.

Limiting the crowding of light vertices. Given an instance of the undirected broadcast
game (G,A, c), we work with the graph G as defined by [Fiat et al. 2006], where each edge
in the optimal spanning tree T ∗ is replaced by the two edges, colored red and blue, each
with the same cost as the original edge. As in [Fiat et al. 2006], given a strategy profile P ,
an improving move (deviation) of a player u to a new strategy P ′u is called

— EE (Existing Edges) : P ′u ⊆ T (P ) and all edges in P ′u are used in the same direction as
in P .

— OPT : P ′u ⊆ T (P ) ∪ T ∗ but P ′u 6⊆ T (P ) and all edges in P ′u ∩ T (P ) are used in the same
direction as in P .

— OPT: The first edge (u, v) /∈ T ∗ ∪ T (P ) but the other edges are in T (P ) and are used in
the same direction as in P .
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Lemma 2 of [Fiat et al. 2006] shows that P is a Nash equilibrium if no EE, OPT, and
OPT moves are possible. Their scheduler to find a desired Nash equilibrium consists of 4
steps per phase, with the last step consisting of arbitrary EE and OPT moves until no
more are possible. We reintroduce the definitions of the first three steps here, as well as
some additional notation. At the beginning of each phase, only one of the copies of an edge
in T ∗ is used; we assume that it is red. Let zu = c(u, v), and Du =

{
w | dT∗(u,w) ≤ zu

4

}
.

— OPT-move: This step starts with some player u changing her strategy by an improving
OPT move. Let eu = (u, v) /∈ T ∗ ∪ T (P ) be the first edge. As in [Fiat et al. 2006], we say
u is crowded if |Du| ≥ log n, and light otherwise.

— OPT-loop : Start a breadth first search of T ∗ from u reaching each player w in increasing
order of dT∗(u,w). If (path from w to u in T ∗ using blue edges) + (strategy of u) is
improving, make w deviate to follow u. Otherwise, truncate the breadth first search.
Denote by D′u the set of players who changed their strategy in this step. [Fiat et al. 2006]
prove that Du ⊆ D′u.

— EE-loop : For each player w ∈ Du, let Mw be the subset of descendants of w in the tree
T (P ) rooted at t, such that x ∈Mw if and only if x /∈ Du and w is the first player in Du

along the path from x to t in T (P ). We traverse the vertices in ∪w∈DuMw. For each player
x ∈ Mw, make her deviate using (path from x to w in T (P )) + (strategy of w following
u). [Fiat et al. 2006] prove that this move is improving for each x.

We define one more move, GroupOpt, which stands for Group OPT move and refers
to the strategy profile after simultaneous deviations of a group of players. Formally,
GroupOpt(P, x, w) is the strategy profile where each player y whose strategy in P con-
tained x changes her strategy to (path from y to x in P ) + (path from x to w using blue edges
in T ∗) + (path from w to t in P ). Note that every edge e ∈ T (GroupOpt(P, x, w)) − T ∗
is used in the same direction as it was in P . In the algorithm, GroupOpt is executed only
when it reduces the potential Φ(P ) =

∑
e∈E c(e)H(ne).

ALGORITHM 2: Find-NE
Data: Strategy profile P where no EE or OPT move is possible
if no OPT move is possible then output P .
else

Perform OPT-move, OPT-loop, EE-loop steps defined above, resulting in P ′.

Let u′1, ..., u
′
m be the vertices such that u′i is associated with (u′i, v

′
i), u 6= u′i, dT∗(u, u

′
i) ≤

zu′
i

8
,

and u′i is not contained in Pv.
for j = 1, ...,m do

if GroupOpt(P ′, u′j , u) decreases the potential then P ′ ←GroupOpt(P ′, u′j , u).
end
Update P to be the strategy profile // no EE or OPT move is possible in P
of minimum potential subject to T (P ) ⊆ T (P ′i ) ∪ T ∗, with every e ∈ T (P ) \ T ∗ used in the
same direction as in P ′.
Find-NE(P )

end

Let GOPT-loop refer to the loop in the above algorithm where each move is defined
by GroupOpt. To prevent the propagation of constants in formulas, let α = 8, so that for

each i, u is contained in the circle of radius
zu′

i

α around u′i. After OPT-loop and EE-loop,
we can classify every vertex x into one of three categories:

— x ∈ D′u: x’s strategy consists of (the path from x to u using blue edges) + eu + Pv.
— x ∈Mw for some w ∈ D′u: v’s strategy consists of (the prefix of Px from x to w) +P ′w.
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Mw1
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Mw3
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eu

3rd category

1st category

2nd category

Fig. 3. Situation after OPT-loop and EE-loop. The solid lines represent edges of T (P ). In the first
category, the only edges used (represented as thin dashed lines) are blue edges in T ∗.

— otherwise: P ′x = Px since x did not change her strategy during OPT-loop and EE-loop.

Figure 3 illustrates the situation after OPT-loop and EE-loop. Each w ∈ D′u has Mw

as descendants in solid lines as all of them will follow her during EE-loop. Note that every
vertex contained in Pv is in the third category; if v′ were an ancestor of v in the tree T (P )
rooted at t but a descendant of w for some w ∈ D′u, it would mean that w is also an ancestor
of u, and using (u,w) ∈ T ∗ could have been another possible improving move for u, which
contradicts the assumption that no EE or OPT move was possible in P .

We show that if there is another light vertex u′ such that dT∗(u, u
′) ≤ zu′

α , zu is sig-

nificantly less than zu′ , and furthermore the ratio is proportional to O( log |Du|
|Du| ). This fact

ensures that a player with many neighbors tends to use a cheaper edge to deviate, which
fits common sense and helps bound the social cost of the final equilibrium. Such u′ are the
ones considered in the GOPT-loop (u′1, .., u

′
m) or the ones contained in Pv (ancestors of

v in T (P )). In the latter case, this fact can be shown relatively easily since u′ is strictly
closer to t than v. Consider the situation where u and the players who followed her stop
using eu and start to follow u′ via edges in T ∗. This group move might reduce the potential
if zu is comparable to dT∗(u, u

′) ≤ zu′
α . However, in the previous phase we took P to be the

potential minimizer using T (P ) ∪ T ∗, so the outcome of this new group move, which does
not use eu and is contained in T (P ), cannot have a lower potential than P . This shows that
zu must be significantly less than dT∗(u, u

′) and zu′ .
The proof of these lemmas can be found in Appendix E.

Lemma 4.1. Let u′ be a light vertex associated with (u′, v′), u 6= u′, dT∗(u, u
′) ≤ zu′

α ,
and u′i contained in Pv (thus, u′ is not among the u′1, ..., u

′
m considered in the algorithm).

If |Du| ≥ 20, zu ≤ zu′ 3H(|Du|)
α|Du|

When u′ is not an ancestor of v in T (P ), none of them can be said to be strictly closer to
t, and u′ ∈ {u′1, ..., u′m} was considered in GroupOpt-loop. In addition to considering the
group move from u to u′ as in the previous lemma, we also consider the group move from
u′ to u and execute it if it reduces the potential. If this is possible, eu′ will be completely
unused. Otherwise, we have two seemingly contradictory situations happen (both group
moves cannot reduce the potential), and the only possibility is to have zu far less than zu′ ,
as required.

Lemma 4.2. For each u′ ∈ {u′1, ..., u′m}, suppose P ′ was not replaced by

GroupOpt(P ′, u′, u). If |Du| ≥ 20, zu ≤ 6H(|Du|)
|Du| zu′ .
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These two lemmas together show the first part of the theorem.

Lemma 4.3. Let N be the Nash equilibrium obtained by this algorithm. We can conclude

that if two light vertices u and u′ such that dT∗(u, u
′) ≤ zu′

α , zu ≤ min( 4
α ,

6H(|Du|)
|Du| )zu′ .

The second part of the theorem, where we utilize this key improvement to prove the
theorem, appears in Appendix F. Roughly, let A[n′] be the maximal sum of the radii of
n′ circles, given that all of their centers are contained in the big circle of radius 1. By
efficiently partitioning the big circle and assigning each portion to a subcircle that is not
contained in any of its peers, we obtain a recurrence relation on A that will lead us to show
A[n′] = O(log log n′). Since the circle around a light vertex can have at most log n circles in
it, the total cost of the light edges is O(log log log n)c(T ∗). Together with the upper bound
of O(1)c(T ∗) on the cost of the crowded edges achieved in [Fiat et al. 2006], this proves our
main theorem regarding the Nash price of anarchy on broadcast games:

Theorem 4.4. The price of stability in undirected broadcast games is O(log log log n).

5. CONCLUSION

The Nash price of stability for undirected graphs remains tantalizingly unresolved. For
multicast and broadcast games, our results give two hints that the true Nash price of
stability may be Θ(1). First, we have shown that the current lower bounds, which rely on
“go it alone” deviations, cannot be extended beyond a constant, because the go-it-alone price
of stability is bounded by O(1). Furthermore, we suspect that our O(log log log n) bound
on the Nash price of stability in broadcast games will not be the last word. Our approach
is only the second centralized algorithm in the literature and is the first to show that the
quality of a deliberately computed equilibrium is asymptotically better than that of the
potential-minimizer. There may yet be more leverage to gain from centralized algorithms,
both in the broadcast setting and in more general multicommodity games.

The idea that a limited centralized authority might prevent deviating players from free
riding on compliant players is not specific to network design games, nor to fair cost sharing.
We hope that the “go-it-alone equilibrium” approach we propose here may also serve as
an interesting relaxation concept in other domains where studying Nash equilibria directly
seems intractable.
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Online Appendix to:
Improved Bounds on the Price of Stability in Network Cost Sharing
Games

EUIWOONG LEE, Carnegie Mellon University

KATRINA LIGETT, California Institute of Technology

A. COMPUTATION OF GO-IT-ALONE EQUILIBRIA

Theorem A.1. Computing the best Go-it-alone equilibrium, even in single-source
games, is NP -hard in both directed and undirected graphs. Furthermore, in directed graphs,
it is NP -hard to approximate within an O(log n) factor.

Proof.
We reduce an instance of the set cover problem to a single-source network design game.

Given universe of elements U = {u1, ..., un} and a collection of subsets C = {S1, ..., Sm},
our underlying graph for the network design game is G = (U ∪ C ∪ {t} , E). We include
(ui, Sj) ∈ E if and only if ui ∈ Sj , and (Sj , t) ∈ E for all 1 ≤ j ≤ m. We have n players
1, ..., n, where player i’s source is ui and destination is t. The construction of G is shown in
Figure 4.

If G is directed, the cost of (ui, Sj) ∈ E is 0 for each i and j, and the cost of (Sj , t) ∈ E
is 1 for each j. Any strategy profile where each player i connects ui to t, which corresponds
to a feasible set cover, is a Go-it-alone equilibrium, because every shortest path from ui to t
costs 1, and each player does not pay more than that in any strategy profile since every path
from ui to t consists of only two edges (ui, Sj), (Sj , t) for some Sj . The cost of any strategy
profile is exactly the number of (Sj , t)’s used in this profile, so there is a set cover of cost k if
and only if there is a Go-it-alone equilibrium of cost k. Therefore, we have a gap-preserving
reduction from the set cover problem, and the hardness of O(log n)-approximation follows.

If G is undirected, the cost of (ui, Sj) ∈ E is 1 + ε for each i and j, and the cost of
(Sj , t) ∈ E is 1 for each j, where ε > 0 is a small constant. For each set cover, its cor-
responding strategy profile, where each player is only connected to one set and each used
set is connected to t, is a Go-it-alone equilibrium as in directed graphs. Note that not
every Go-it-alone equilibrium is guaranteed to correspond to a feasible set cover, because
some (Sj , t) may not be in the strategy profile even though Sj is visited by some player;
(ui1 , Sj1), (Sj1 , ui2), (ui2 , Sj2), (Sj2 , t) is a possible path from ui1 to t, but it does not guar-
antee that ui1 is covered by some Sj . However, we want to compute the best Go-it-alone
equilibrium, and we can show that it corresponds to the best set cover. Let P ∗ be the so-
cially best Go-it-alone equilibrium and suppose T (P ∗) contains m′ Sj ’s as Steiner vertices.
Note that m′ should be at least the size of the smallest set cover, since each player i should
move to some set containing ei via her first edge. Since the number of edges in T (P ∗) is
at least (n + m′ + 1) − 1 = n + m′, C(P ∗) ≥ n + m′, so P cannot be the best Go-it-alone
equilibrium unless m′ is the size of the smallest set cover. Once we have a fixed m′, having
all the chosen Sj ’s connected to t is the best strategy, since the c(Sj , t) is slightly cheaper
than c(ei, Sj). Therefore, P ∗ is the strategy profile where each ei is connected exactly one
Sj and (Sj , t) is used for each Sj ∈ V (T (P ∗)), which corresponds to the best set cover.

B. GO-IT-ALONE EQUILIBRIA IN DIRECTED GRAPHS

Theorem 3.1 also serves to settle the Go-it-alone Price of Anarchy in Directed Graphs.
For the Go-it-alone Price of Stability, we have the following:
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u1

u2

un

S1

S2

Sm

t... ...

Fig. 4. A reduction from an instance of the set cover problem to a single-source network design game. This
partial information shows that {u1, u2} ⊆ S1, {u2, un} ⊆ S2, {u1, un} ⊆ Sm.

Theorem B.1. The Go-it-alone price of stability in directed graphs is Ω(log n).

Proof. The example for Nash equilibria introduced in [Anshelevich et al. 2004] also
works for Go-it-alone equilibria; see Figure 5. It is easy to see that ((s1, t), (s2, t), ..., (sn, t))
is the only Go-it-alone equilibrium, while the social optimum is (si, v, t) for every player i.
The cost of the Go-it-alone equilibrium is 1 + 1/2 + ... + 1/n = H(n) = Ω(log n), where
H(n) is the nth harmonic number. The cost of optimal solution is 1 + ε.

s1 s2

1

t

v

1/2 1/n

0 0 0

1− ε

sn
...

Fig. 5. An instance with price of stability H(k).

C. STRONG GO-IT-ALONE EQUILIBRIA

C.1. Definition and Existence

Let A′ = {i1, ..., in′} be a nonempty coalition of players. Given a strategy profile P , let
PA′ be the strategy profile of players i ∈ A′. T (PA′), c(PA′), and ci(PA′) are naturally
defined from the earlier definitions, as if there were no players outside A′. P is a strong
equilibrium, if, for no nonempty coalition A′, there exists a strategy change P ′A′ such that
ci(P

′
A′ , P−A) < ci(P ) for all players i ∈ A′. Similarly, P is a strong Go-it-alone equilibrium,

if, for no nonempty coalition A′, there exists a strategy change P ′A′ on A′ such that ci(P
′
A′) <

ci(P ) for all players i ∈ A′. Note that for any P and P ′A′ , ci(P
′
A′) ≥ ci(P ′A′ , P−A′) since the

former ignores possible cost sharing with players outside A′.
Assuming the existence of a strong equilibrium or a strong Go-it-alone equilibrium, the

strong price of anarchy, the strong price of stability, the strong Go-it-alone price of anarchy,
the strong Go-it-alone price of stability can be defined similarly. Let NE,SE,GE, SGE be
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the set of Nash, strong, Go-it-alone, strong Go-it-alone equilibria respectively. It is straight-
forward from the definitions that every Nash equilibrium is a Go-it-alone equilibrium, and
every strong equilibrium is a strong Go-it-alone equilibrium, so NE ⊆ GE and SE ⊆ SGE.

Lemma C.1. There is a network design game in which the sets of equilibria corresponding
to the four equilibrium concepts are pairwise distinct.

Proof. Figure 6 is from [Epstein et al. 2007], who showed that P = ((e, c), (b, f)) is the
only Nash equilibrium (with c1(P ) = c2(P ) = 5), and that there is no strong equilibrium.
Consider P ′ = ((a, b, c), (b, c, d)) where the two players cooperate. c1(P ′) = c2(P ′) = 4 ≤
e1 = e2 = 5, so P ′ is a Go-it-alone equilibrium. Furthermore, P ′ is the social optimum and
the unique strong Go-it-alone equilibrium. P is not a SGE (or a SE), since simultaneous
deviation to P ′ benefits both players. Therefore, GE = {P, P ′}, NE = {P}, SGE = {P ′},
SE = ∅, which shows that all 4 notions are different.

1

s1 t2

s2 t1

3 3 1

2 2
e f

a b c d

Fig. 6. A network design game where all 4 notions of equilibria are pairwise different

The existence of a Nash equilibrium is proved in [Anshelevich et al. 2004] using a potential
function. It directly follows that a Go-it-alone equilibrium exists in any network design game.
However, as shown in Figure 6, a strong equilibrium is not guaranteed to exist even in a
game with two players where a strong Go-it-alone equilibrium exists. The next theorem
shows that this was not a coincidence.

Theorem C.2. A strong Go-it-alone equilibrium exists in every network design game
with two players.

We present two proofs, each of which partially extends to different restricted versions of the
case of n players. We will state the first proof, introduce generalizations, and then give the
second proof also with its generalizations.

Proof. Let fi be the cost of the shortest path from si to ti. Let P ∗ =
argmin

P
{c(P ) | c1(P ) ≤ f1, c2(P ) ≤ f2}. The set {P | c1(P ) ≤ f1, c2(P ) ≤ f2} is nonempty

since the union of shortest paths is in this set, so P ∗ is well defined. In P ∗, neither player
1 nor player 2 wants to deviate by herself because c1(P ∗) ≤ f1 and c2(P ∗) ≤ f2. Fur-
thermore, if they deviate simultaneously to P ′ and both their costs are strictly reduced,
c(P ′) = c1(P ′) + c2(P ′) < c1(P ) + c2(P ) = c(P ), which contradicts the choice of P ∗.
Therefore, P ∗ is a strong Go-it-alone equilibrium.

The definition of P ∗ can easily be extended to the case where there are more than two
players: with n players, we can define P ∗ = argmin

P
{c(P ) | ci(P ) ≤ ei, 1 ≤ i ≤ n}. In this

case, P ∗ prevents the deviation of any coalition of exactly size 1 or exactly size n, but it is
not guaranteed to be a strong Go-it-alone equilibrium. One situation where the definition of
P ∗ can be applied to a more general model is when the collection of the possible deviating
coalitions is restricted to correspond to a family tree. Formally, let F = (V (F ), E(F )) be
a rooted tree where each leaf corresponds to a player in the original game. Each possible
deviating coalition A′ corresponds to a node v in F : if v is a leaf corresponding to player i,
A′ = {i}; otherwise, A′ is the set of the players that correspond to the descendants of v.
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Theorem C.3. Given an instance of a network design game and tree F that represents
the family tree of possible deviating coalitions prevent, as above, there is a Go-it-alone
equilibrium where no coalition that corresponds to a node in F can deviate to strictly reduce
the cost of each player.

Proof. Let w be the root of F . While traversing F in postorder, we can build a Go-it-
alone equilibrium which does not allow the deviation of any coalition that corresponds to
a node of F . If v is the leaf that corresponds to player i, let P v be the shortest path from
si to ti. If v is an internal node with descendants v1, ..., vq that correspond to A1, ..., Aq
respectively, let

P v = argmin
P

c(P ) |
∑
j∈Ai

cj(P ) ≤ c(P vi), 1 ≤ i ≤ q


P v is well defined because the union of subgraphs that correspond to its children gives one
subgraph that satisfies the constraints.

We will argue that Pw is the strategy profile that we want. Assume by way of contradiction
that for some v ∈ V (F ) and the corresponding subset of players A′ ⊆ A, they can strictly
reduce each player’s cost by deviating to PA′ ; ∀i ∈ A′, ci(PA′) < ci(P

w). This would imply
c(PA′) <

∑
i∈A′ ci(P

w) ≤ c(P v). By the choice of P v, we can deduce that there is a
descendant r of v that corresponds to A′′ ⊆ A′ such that

∑
j∈A′′

cj(PA′) > c(P r). This implies

at least one player in A′′ cannot strictly reduce her cost, which leads to contradiction.

Although the number of coalitions whose deviations are prevented by this construction
is only |V (F )| = O(n) in this family tree model, one might argue that in reality deviating
coalitions may be formed in a hierarchical manner such as that described here; a player or
coalition might deviate if all of its siblings deviate to make a bigger coalition. The second
proof of Theorem C.2 shows there is a Go-it-alone equilibrium that prevents the deviation
of O(n2) coalitions.

Proof. Let fi be the cost of the shortest path from si to ti. Let P 1 be a shortest
path from s1 to t1. Then c1(P 1) = f1. Let P 2 = argmin

P

{
c2(P )|c1(P ) ≤ c1(P 1)

}
. The set{

P |c1(P ) ≤ c1(P 1)
}

is nonempty since the union of shortest paths is in this set, so P 2 is

well defined and c2(P 2) ≤ f2. In P 2, neither player 1 nor player 2 wants to deviate by herself
because c1(P 2) ≤ e1 and c2(P 2) ≤ e2. Furthermore, if they deviate together to P ′ where
both of their costs are strictly reduced, c1(P ′) < c1(P 1), c2(P ′) < c2(P 2), which contradicts
the choice of P 2. Therefore, P 2 is a strong Go-it-alone equilibrium.

The definition of P 2 can easily be extended to the case where there are more than two
players. For 1 ≤ m ≤ n, let Σm be the space of strategy profiles of players 1, ...,m. Define
Pm = argmin

P∈Σm

{
cm(P )|ci(P ) ≤ ci(P i), 1 ≤ i ≤ m− 1

}
. Note that this definition yields the

same P 1 and P 2 used in the above proof. The next theorem shows that Pn prevents the
deviation of any coalition which consists of adjacent players: {j, j + 1, ..., k} for some j ≤ k.
Since there are O(n2) of such coalitions, it provides a Go-it-alone equilibrium which is more
robust to possible deviations than the equilibrium defined using the previous proof. This
fact is also useful in practice because in reality coalitions might easily be formed by adjacent
players.

Theorem C.4. Given an instance of a network design game, there is a Go-it-alone
equilibrium where no coalition that consists of adjacent players can deviate to strictly reduce
the cost of each player.
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Proof. We claim that Pn is such a Go-it-alone equilibrium. Assume by way of con-
tradiction that A′ = {j, j + 1, ..., k} is such a coalition, with strategy profile P ′ =
(P ′j , P

′
j+1, ..., P

′
k), i.e., ci(P

′) < ci(P
n) for all j ≤ i ≤ k. Let P ′′ ∈ Σk be the concate-

nation of P j−1 and P ′; the concatenation of a profile of players 1, ..., j − 1 and a profile of
players j, ..., k yields a profile of players 1, ..., k. By the definition of P j−1 and our assump-
tion, ci(P

′′) ≤ ci(P
i) for all 1 ≤ i ≤ k with the inequality strict for j ≤ i ≤ k. However,

this contradicts the choice of P k since P k minimizes ck(P k) subject to ci(P
k) ≤ ci(P i) over

any P ∈ Σk. P ′′ satisfies all the constraints required for P k, and has a lower ck value.

These two proofs of Theorem C.2 and their simple extensions might lead one to conjec-
ture that a strong Go-it-alone equilibrium might exist even in more complicated games.
Unfortunately, this is not true, because there is a simple counterexample with three players
that does not admit a strong Go-it-alone equilibrium.

Theorem C.5. Strong Go-it-alone equilibria need not exist in games with three or more
players.

Proof. Figure 7 defines a simple game on a symmetric, planar graph. Each player
has only two paths from si to t, and two players may share costs if they meet at an
intermediate vertex which corresponds to an edge of the triangle. Consider the strategy
profile ((a, g), (b, g), (e, h)); players 1 and 2 cooperate to share the cost of g, and player
3 chooses the shorter route by herself. This is not a strong Go-it-alone equilibrium since
player 2 and 3 can deviate to ((c, i), (d, i)): player 2 can reduce her cost by using a cheaper
first edge, maintaining the cost sharing of the second edge. Player 3 can reduce its cost by
creating new cooperation. Since this game is symmetric, every profile can be shown to not
be a strong Go-it-alone equilibrium by a similar argument. Therefore, this game does not
admit a strong Go-it-alone equilibrium.

s2 s3

s1

t

a

b

c d

e

f

g h

i

1− ε

1− ε

1− ε

Fig. 7. An instance without a strong Go-it-alone equilibrium. The weight of each edge is 1 except a, c, e.

[Epstein et al. 2007] gave a topological classification of directed graphs according to the
existence of a strong equilibrium. Any single-source game based on a series-parallel graph
has at least one strong equilibrium, and there is a game based on a general graph that
does not admit a strong equilibrium. In multicommodity cases, any game based on an
extension-parallel graph (which restricts series operations to be performed only when one
of the operands is a single edge) has a strong equilibrium, while a strong equilibrium may
not exist even in a series-parallel graph.

Since all the existence results for strong equilibria directly imply existence of strong Go-
it-alone equilibrium, it is only remains to check whether similar nonexistence results hold
for strong Go-it-alone equilibria. Unfortunately, the counterexamples of [Epstein et al. 2007]
that do not admit a strong equilibrium do indeed have a strong Go-it-alone equilibrium,
so we need more sophisticated counterexamples. As noted above, figure 7 demonstrates
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nonexistence of a strong Go-it-alone equilibrium in a single-source game based on a non-
series-parallel graph. However, the question of whether a strong Go-it-alone equilibrium
exists in every game based on a series-parallel graph remains open. The proof techniques
of [Epstein et al. 2007] cannot be directly applied to strong Go-it-alone equilibria. Their
proof is based on the fact that if there are two players with the same source and the same
destination, in every equilibrium these two players take the same path. However, this is not
the case for strong Go-it-alone equilibria, as we show here.

Theorem C.6. There is an instance where two players with the same commodity take
different paths in the unique strong Go-it-alone equilibrium.

Proof. Consider a game on the graph in Figure 8 with 6 players, where players 1 and
2 have the commodity (s1, t1), players 3 and 4 have the commodity (s2, t2), and players 5
and 6 have the commodity (s3, t2). In a strong Go-it-alone equilibrium, it is obvious that
players 3 and 4 have to take the same path, and players 5 and 6 have to take the same path,
since otherwise they can cooperate to take (s2, t2) or (s3, t2) to strictly reduce their costs.
Therefore, it is more convenient to think of players 3 and 4 as one player (player 3), and
players 5 and 6 as one player (player 4), with their weights doubled.4

Consider strategy profiles where players 1 and 2 take the same path. By symmetry we
need only consider the case where P1 = P2 = ((s1, a), (a, b), (b, t1)). It is also easy to
see that in any strong Go-it-alone equilibrium either players 3 and 4 cooperate to take
(e, t2) or they take their own shortcuts to t2, since otherwise one of them has to pay
1000 for (e, t2) and has an incentive to take his shortcut. If players 3 and 4 cooperate,
c1(P ) = c2(P ) = 1.5, c3(P ) = 503, c4(P ) = 506. Then player 4 can strictly reduce her
cost by taking her own shortcut, so this is not a strong Go-it-alone equilibrium. If play-
ers 3 and 4 take their own shortcuts, c1(P ) = c2(P ) = 3, c3(P ) = 505, c4(P ) = 505.
Then all players can simultaneously deviate to ((s1, a), (a, b), (b, t1)), ((s1, c), (c, d), (d, t1)),
((s2, a), (a, b), (b, e), (e, t2)), ((s3, c), (c, d), (d, e), (e, t2)), where players 3 and 4 cooperate for
the expensive edge, and players 1 and 2 take different paths to each cooperate with one of
the players 3 and 4, which makes c1(P ) = c2(P ) = 2, c3(P ) = 504, c4(P ) = 504. This is the
unique strong Go-it-alone equilibrium, which forces player 1 and 2 take different paths.

The previous theorem supports our intuition that (strong) Go-it-alone equilibria reflect
global fairness and cooperation, since the strong Go-it-alone equilibria force each player to
cooperate not only with players who have the same interest (commodity), but with other
players with whom cooperation will yield a socially efficient and fair solution. This unusual
property makes it more difficult to prove or disprove the existence than for Nash equilibria
and strong equilibria, and requires totally different proof techniques. However, as we saw in
the body of the paper, Go-it-alone equilibria are more computationally tractable than their
Nash counterparts, while preserving many desired properties.

We now turn to the study of the quality of strong Go-it-alone equilibria.

C.2. Quality

The price of anarchy and the price of stability of strong equilibria have been less studied in
the literature than those of Nash equilibria. We find tight but rather dull results in directed
graphs; Figure 5 also serves an example to show the lower bound of Ω(log n) on the strong
price of anarchy and the strong price of stability in directed graphs. As far as we know, there
is no result on the strong price of stability in undirected graphs. The only two nontrivial
results on this topic are that of [Albers 2008], giving the lower bound on the strong price of

4See [Anshelevich et al. 2004] for the definition of a weighted network design game. Intuitively, the cost one
player has to pay for an edge e is now proportional to the ratio of the weight of the player to the sum of
the weights of all players using e.
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s2

s1

s3a c

b e d

t2

t1

6 505 505 6

1000

Fig. 8. An instance where two players with the same commodity take different paths in the unique strong
Go-it-alone equilibrium. The weight of each unspecified edge is 0.

Table II. The results on PoA and PoS of strong equilibria and strong
Go-it-alone equilibria. An asterisk indicates results proved in the present
manuscript, that do not follow directly from prior work.

strong NE strong GE
PoA(Undirected) O(logn)[Epstein et al. 2007] O(logn)∗

Ω(
√

logn)[Albers 2008] Ω(
√

logn)
PoA(Directed) O(logn)[Epstein et al. 2007] O(logn)∗

Ω(logn)[Anshelevich et al. 2004] Ω(logn)
PoS(Directed) O(logn)[Anshelevich et al. 2004] O(logn)∗

Ω(logn)[Anshelevich et al. 2004] Ω(logn)∗

anarchy in undirected graphs, and that of [Albers 2008] and [Epstein et al. 2007], giving an
upper bound on the strong price of anarchy which holds in both directed and undirected
graphs.

Table II summarizes the results on strong Nash equilibria and strong Go-it-alone equi-
libria. Since a strong equilibrium is not guaranteed to exist in every network design game,
we need to be careful when translating the results of strong equilibria to strong Go-it-alone
equilibria. As before, lower bounds on the strong price of anarchy hold for strong Go-it-
alone equilibria. However, upper bounds on the strong price of stability are not guaranteed
to hold for strong Go-it-alone equilibria, because strong Go-it-alone equilibria may exist in
an instance which does not admit a strong equilibrium, and the ratio of the cost of best
equilibrium to the cost of the social optimum in this instance could be larger than the price
of stability of strong equilibria.

However, this does not in fact occur In directed graphs, the upper bound on the strong
price of anarchy matches the lower bound on the strong price of stability. In undirected
graphs, we have no result on the price of stability other than the trivial upper bound
coming from the upper bound on the price of anarchy.

Therefore, there is only one nontrivial result that needs to be translated to strong Go-it-
alone equilibria, which is the upper bound on the price of anarchy. [Albers 2008] and [Epstein
et al. 2007] independently proved this result, and we reproduce the proof of [Epstein et al.
2007], highlighting why it also holds for strong Go-it-alone equilibria.

Theorem C.7. [Epstein et al. 2007] The strong Go-it-alone price of anarchy of a net-
work design game with n players is at most H(n).
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Proof. Let P = (P1, ..., Pn) be a strategy profile. Given a subset A′ of the set of players,
recall that PA′ are the strategies of players i ∈ A′ and ne(PA′) is the number of players
in A′ using e (counting multiplicity). We denote by Φ(PA′) the potential function of the
profile PA′ , where

Φ(PA′) =
∑
e∈E

c(e)H(ne(PA′))

Let P be a strong Go-it-alone equilibrium, and let P ∗ be the profile of the optimal solution.
We define an order on the players as follows. For each k = n, ..., 1, since P is a strong
Go-it-alone equilibrium, there exists a player in Ak = {1, ..., k}, w.l.o.g. call it player k,
such that,

ck(P ) ≤ ck(P ∗Ak
)

where ck(P ∗Ak
) denotes the cost of player k in the game with the set of players Ak and the

strategy profile P ∗Ak
. In this way, Ak is defined recursively, such that for every k = n, ..., 2

it holds that Ak−1 = Ak − {k}, i.e., after the renaming, Ak = {1, ..., k}. It is easy to see
that ck(P ∗Ak

) ≤ Φ(P ∗Ak
) − Φ(P ∗Ak−1

), even considering the fact that each edge can be used

multiple times. Therefore,

ck(P ) ≤ ck(P ∗Ak
) ≤ Φ(P ∗Ak

)− Φ(P ∗Ak−1
)

The above equation is where strong Go-it-alone equilibria perfectly replace strong equilibria.
The original proof says that ck(P ) ≤ ck(P−Ak

, P ∗Ak
) ≤ ck(P ∗Ak

), which simply ignores the
contribution of the players outside Ak. Together with the upper bound on the price of
stability of Go-it-alone equilibria, it shows that these proof techniques implicitly assumed
that deviating coalitions will independently create the network that serves them, which
provides additional justification of our new equilibrium concept.

Summing over all players, we obtain∑
i∈A

ci(P ) ≤ Φ(P ∗A)

=
∑
e∈P∗

ceH(ne(P
∗))

≤
∑
e∈P∗

ceH(n)

= H(n) ·OPT

While the strong Go-it-alone price of anarchy and stability are exactly the same as the
strong price of anarchy and stability in directed graphs, in undirected graphs, where a strong
Go-it-alone equilibrium might be strictly better than a strong equilibrium (as a Go-it-alone
equilibrium is better than a Nash equilibrium), the strong price of stability has never been
studied even. It would be interesting to study this problem in terms of strong (Go-it-alone)
equilibria and see how they improve the price of stability.

D. FULL PROOF OF THEOREM 3.4

D.1. Proof of Lemma 3.3

Given an instance of an arbitrary multicast game, compute a constant approximation Steiner
tree as suggested in [Robins and Zelikovsky 2000]. Traverse the tree in preorder with the
sink t as the root. Note that some vertices in this traversal are sources of the players while
some are not, and the same vertex can appear more than once in the traversal. Name the
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sink and the sources t = s0, s1, ..., sn in the order they first appear in the traversal. The line-
shortcut graph has s0, ..., sn as the vertices, where c(si−1, si) is the cost of the path along
the traversal between the first appearances of si−1 and si ((si−1, si) in the line-shortcut
graph is the path on the Steiner tree traversal, contracted to one edge). The total cost of
the line is at most the two times the cost of the computed Steiner tree, which is a constant
times the social optimum. For i ≥ 1, let c(s0, si) in the line-shortcut graph be the cost of
the shortest path from si to s0 in the original graph ((s0, si) in the line-shortcut graph is
player i’s shortest path in the original graph, contracted to one edge).

Suppose we find a Go-it-alone equilibrium in the line-shortcut graph, where each player
pays no more than the cost of her shortcut and the cost of the equilibrium is bounded by a
constant times the cost of the social optimum in the line-shortcut graph. We can reconstruct
the corresponding Go-it-alone equilibrium in the original graph, expanding each edge to a
path if necessary, while respecting the direction in which it was used. For every edge in
the line-shortcut graph, the number of players using the corresponding path in the original
graph is at least the number of players using that edge in the line-shortcut graph, so in the
original graph each player pays no more than the cost she paid in the line-shortcut graph,
which is no more than the cost of her shortest path (in both line-short and original graph).
Even if no edge is used by any player more than once in the line-shortcut graph, some edges
can be used up to three times by the same player in the original graph, since the preorder
traversal can use the same edge twice, and it might also overlap with the shortest path tree.
However, these overlaps only reduce the cost of some players, as well as the total cost of the
equilibrium, giving a desired Go-it-alone equilibrium in the original graph. The conversion
to and from the line-shortcut graph can be done in polynomial time.

D.2. Proof of Theorem 3.4

We wish to show that Algorithm 1 finds a Go-it-alone equilibrium in a line-shortcut graph
with cost at most a constant times the cost of the social optimum.

At each recursive call with players {s0, ..., sn} (indices and the number of players
can be different from original graph), we bound the cost of strategy profile P by∑m
i=1 C[i]c(si−1, si), by recursively computing C. Initially, we set C[i] = 1 for all 1 ≤ i ≤ n.

The cost of the initial strategy profile, the line, is then precisely
∑n
i=1 C[i]c(si−1, si). When

i is the unsatisfied player with the largest index, we add (s0, si) to the strategy profile.

However, c(s0, si) < ci(P ) =
∑i
k=1

c(sk−1,sk)
n−k+1 , so the cost of the added edge can be bounded

by the costs of the existing edges. If i ≤ α+ 1 (α = bn/2c), only one recursion with players
{s0, ..., si−1} is called. Let C ′[1], ..., C ′[i − 1] be the recursively computed C for that sub-
graph. Then, C[k] ← C ′[k] + 1

n−k+1 satisfies the invariant (1 ≤ k < i). We do not need to

consider C[i] since (si−1, si) gets completely unused.
If i > α + 1, the added shortcut (s0, si) is used as the first edge in a reversed subgraph

with players {s0, si, si−1, ..., sα+1}, accumulating its own debt in subsequent calls in that
subgraph. In that case, the edges responsible for (s0, si), which are (sk−1, sk) for 1 ≤ k ≤ i,
need to pay the debt for (s0, si). In addition to C ′[1], ..., C ′[α] for the first subgraph, we
continue to compute C ′′[1], ..., C ′′[i − α] of the reversed subgraph recursively, where the

debt for (s0, si) is stored in C ′′[1]. Then C[k] ← C ′[k] + C′′[1]
n−k+1 for 1 ≤ k ≤ α, and

C[k] ← C ′′[i − k + 1] + C′′[1]
n−k+1 for α < k ≤ i satisfies the invariant. Table III summarizes

the rule to compute C.
If we continue to do the same accounting in all recursive calls, in the original line-

shortcut graph after the termination of the algorithm, c(P ) ≤
∑n
i=1(C[i]c(si−1, si)) ≤

(maxi C[i])
∑n
i=1 c(si−1, si) ≤ (maxi C[i])c(T ∗), so showing C[i] is bounded by a constant

suffices.
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Table III. Update rule to compute C when (s0, si) is added.

Range Update rule

i ≤ α+ 1 1 ≤ k < i C[k]← C′[k] + 1
n−k+1

i > α+ 1 1 ≤ k ≤ α C[k]← C′[k] +
C′′[1]
n−k+1

α < k ≤ i C[k]← C′′[i− k + 1] +
C′′[1]
n−k+1

These updates depend on the size of a graph and the costs of edges, but we can show
that C is bounded by a constant for any number of players and any costs of edges. Let
B[n, j](1 ≤ j ≤ n) be the supremum of all possible C[j]’s on any line-shortcut graph with
n vertices (over any costs of edges satisfying the definition of a line-shortcut graph). For
example, B[1, 1] = 1, B[2, 1] = 1.5, B[2, 2] = 1 (when n = 2, player 2 can deviate when

c(s0, s2) < c(s0,s1)
2 + c(s1, s2)). B[n, 1] can be easily bounded since the first edge always

remains to be the first edge in a reduced graph with at most bn/2c vertices.

Lemma D.1. For any n, B[n, 1] < 5

Proof. We prove the following claim which implies the lemma: if 2l−1 < n ≤ 2l,

B[n, 1] ≤
l−1∏
k=0

(
1 +

1

2k

)
B[1, 1] = 1 and B[2, 1] = 1.5, so it holds for n = 1, 2. For n ≥ 3 (so l ≥ 2), by the update

rules in Table III (C[1] ≤ C ′[1] + C′′[1]
n ),

B[n, 1] ≤ B[bn/2c, 1] +
1

n
max

bn/2c<i≤n
B[i− bn/2c, 1]

≤
l−2∏
k=0

(
1 +

1

2k

)
+

1

n

l−2∏
k=0

(
1 +

1

2k

)

≤
(

1 +
1

n

) l−2∏
k=0

(
1 +

1

2k

)

≤
(

1 +
1

2l−1

) l−2∏
k=0

(
1 +

1

2k

)

≤
l−1∏
k=0

(
1 +

1

2k

)
The lemma follows from the fact that

∏∞
k=0

(
1 + 1

2k

)
< 5.

When j > 1, it is harder to bound B[n, 1]. This is partially because if bn/2c < j < i,
where i deviated, j belongs to the second, reversed component, and this reversal can occur
multiple times with both n and j changed. However, by a more involved induction on both
n and j, we can prove that B[n, j] for any n, j is bounded by a constant.

Lemma D.2. For any n and 1 ≤ j ≤ n, B[n, j] < O(1)
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Proof. Let B′ = max(5,max1≤j≤n≤4B[n, j]). We prove the following claim which
proves the lemma: if 2l−1 < n ≤ 2l, 2p−1 < j ≤ 2p,

B[n, j] ≤ 2

(
l−3∑
k=0

(
1

2k

)
+

p−1∑
k=0

(
1

2k

))
B′

By the definition of B′, the claim holds when n ≤ 4 or j = 1 (assume
∑b
k=a = 1 when

a > b). For n > 4 and j > 1 (l ≥ 3 and p ≥ 1), consider a line-shortcut graph with n
vertices. Let i be the unsatisfied player with the largest index. If j ≤ bn/2c, j belongs to
the first component which contains at most bn/2c vertices. If j > bn/2c, j belongs to the
second component with i−bn/2c vertices. In the latter case, also note that the direction is
reversed, so j is changed to i− j + 1. By the update rules in Table III,

j ≤ bn/2c :

B[n, j] ≤ B[min(bn/2c, i− 1), j] +
1

n− j + 1
B[i− bn/2c, 1]

j > bn/2c :

B[n, j] ≤ B[i− bn/2c, i− j + 1] +
1

n− j + 1
B[i− bn/2c, 1]

In the first case, j ≤ bn/2c and n− j + 1 ≥ 2l−2,

B[n, j] ≤ B[min (bn/2c, i− 1) , j] +
1

n− j + 1
B[i− bn/2c, 1]

≤ 2

(
l−4∑
k=0

(
1

2k

)
+

p−1∑
k=0

(
1

2k

))
B′ +

1

n− j + 1
B′

≤ 2

(
l−4∑
k=0

(
1

2k

)
+

p−1∑
k=0

(
1

2k

))
B′ +

1

2l−2
B′

≤ 2

(
l−3∑
k=0

(
1

2k

)
+

p−1∑
k=0

(
1

2k

))
B′

We further divide the second case into two. When bn/2c < j < b 3n
4 c, n− j+ 1 ≥ n

4 + 1 ≥
2l−3 and n− j + 1 ≤ j,

B[n, j] ≤ B[i− bn/2c, i− j + 1] +
1

n− j + 1
B[i− bn/2c, 1]

≤ 2

(
l−4∑
k=0

(
1

2k

)
+

p−1∑
k=0

(
1

2k

))
B′ +

1

n− j + 1
B′

≤ 2

(
l−4∑
k=0

(
1

2k

)
+

p−1∑
k=0

(
1

2k

))
B′ +

1

2l−3
B′

≤ 2

(
l−3∑
k=0

(
1

2k

)
+

p−1∑
k=0

(
1

2k

))
B′

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.



App–12 REFERENCES

Finally, if b 3n
4 c < j, n− j + 1 ≤ n

4 ≤
j
2 . Let 2p

′−1 < n− j + 1 ≤ 2p
′

where p′ ≤ p− 1.

B[n, j] ≤ B[i− bn/2c, i− j + 1] +
1

n− j + 1
B[i− bn/2c, 1]

≤ 2

 l−4∑
k=0

(
1

2k

)
+

p′−1∑
k=0

(
1

2k

)B′ +
1

n− j + 1
B′

≤ 2

 l−4∑
k=0

(
1

2k

)
+

p′−1∑
k=0

(
1

2k

)B′ +
2

2p′
B′

≤ 2

 l−4∑
k=0

(
1

2k

)
+

p′∑
k=0

(
1

2k

)B′

≤ 2

(
l−4∑
k=0

(
1

2k

)
+

p−1∑
k=0

(
1

2k

))
B′

Therefore, the claim is proved and the lemma easily follows from the fact that
∑∞
k=0

1
2k =

2.

Therefore, for any line-shortcut graph, Algorithm 1 finds a desired Go-it-alone equilib-
rium. This proves the theorem.

E. PROOF OF LEMMAS IN SECTION 4

E.1. Proof of Lemma 4.1

Let Q be the strategy profile during OPT-loop immediately after vertices in Du change
their strategies to follow u. (Note that this is possible since we process wi in the increasing
order of dT∗(u,wi), and by the definition of Du.) By Lemma 7 of [Fiat et al. 2006], the

potential of Q is less than the potential of P by at least
∑|Du|
i=1 zu[( |Du|

2 −(H(|Du|+1)−1))] ≥
|Du|

3 zu; (note H(21)− 1 ≈ 2.645 and 10− 2.645 ≥ 20/3). The vertices in Du use eu in their
strategies. Consider the group move where each vertex x ∈ Du changes her strategy to (the
current path from x to u) + (the path from u to u′ using blue(T ∗) edges) + (the path from
u′ to t in P ). After this deviation, some vertices might have the same blue edge more than
once, but correcting these situations will only decrease the potential. After this move, eu
will be completely unused again, so the potential of Q will decrease by at least zuH(|Du|)
from eu. The only edges which are used more are the blue edges on the path from u to u′,
since u′ was already in the strategy of every vertex in Du. The increase of the potential
from these edges will be at most H(|Du|)dT∗(u, u′) ≤ H(|Du|) zu′α . However, the strategy
profile after this group move will not use eu and will use the edges in T (P )−T ∗ in the same
direction as they did in P . Thus, the potential of P must be no more than the potential
of this strategy profile, since we took P to be the strategy profile achieving the minimum
potential using the edges in T (P )∪T ∗ and obeying the directions for T (P )−T ∗. Therefore,

H(|Du|) zu′α ≥ H(|Du|)zu + |Du|
3 zu ≥ |Du|

3 zu and zu ≤ zu′ 3H(|Du|)
α|Du| .
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E.2. Proof of Lemma 4.2

As in the previous lemma, let Q be the strategy profile during OPT-loop immediately
after exactly the vertices in Du changed their strategies to follow u. The potential of Q

is less than the potential of P by at least |Du|
3 zu. Let eu = (u, v), eu′ = (u′, v′) and r

be the least common ancestor of v and v′ in T (Q). Consider the same group move as
before, where each vertex x ∈ Du changes her strategy to (the current path from x to u)
+ (the path from u to u′ using blue(T ∗) edges) + (the path from u′ to t in P ), followed
by improving movements to avoid using same the same edge more than once. Let Qrv and
Qrv′ be the paths from v to r and v′ to r in Q, respectively. After the group move, eu
will be completely unused, and the number of players using edges in Qrv will be decreased.
Since exactly |Du| vertices stop using these edges, the amount of the potential decreased
from these edges is H(|Du|)zu +

∑
e∈Qr

v
(H(ne)−H(ne − |Du|))ce. On the other hand, the

potential is increased in the blue edges on the path from u to u′, eu′ , and the edges in Qrv′ .
Since |Du| vertices start using these edges, the amount of the potential increase is at most
H(|Du|) zu′α + H(|Du|)zu′ +

∑
e∈Qr

v′
(H(ne + |Du|) −H(ne))ce. Since the potential of Q is

already less that the potential of P by at least |Du|
3 zu, and this group move leads to another

strategy profile which does not use eu and use the edges in T (P )−T ∗ in the same direction
as they did in P , by the same argument as before, we have

H(|Du|)
zu′

α
+H(|Du|)zu′ +

∑
e∈Qr

v′

(H(ne + |Du|)−H(ne))ce

> H(|Du|)zu +
|Du|

3
zu +

∑
e∈Qr

v

(H(ne)−H(ne − |Du|))ce.

If zu >
6H(|Du|)
|Du| zu′ , then H(|Du|)zu + |Du|

3 zu > H(|Du|) zu′α +H(|Du|)zu′ and we have∑
e∈Qr

v′

(H(ne + |Du|)−H(ne))ce >
∑
e∈Qr

v

(H(ne)−H(ne − |Du|))ce (1)

Now, let P ′ be the strategy profile right before we process u′ as a candidate for
GroupOpt, after OPT-loop and EE-loop. Let M be the set of players whose strat-
egy in P ′ contains u′. Note that u′ can be neither in Du′ (after OPT-loop and EE-loop
eu′ will be completely unused), nor in Qrv (we required those who did not change strategy
between P and Q to not be an ancestor of v in the tree T (P )). It follows that u′ will be
either in the second (u′ ∈ Mw for some w ∈ D′u) or the third category. Note that if u′ is
in the second category, GroupOpt(u′, u, P ′) is guaranteed to execute because it makes zu′
completely unused (thus decreasing the potential by at least H(|M |)zu′) while increasing
the potential from the blue edges on the path from u′ to u by at most H(|M |) zu′α .

If u′ in the third category, it means that her ancestors in P , including herself, did not
change strategy at all during OPT-loop, EE-loop and previous executions in GOPT-
loop (if one of her ancestors u′′ had changed her strategy according one of these moves,
it would mean that (P ′)u′′ contained u, so u′′ would be either in the first or in the second
category, and u′ would be in the second category). Since the ancestors of v in P did not
change the strategy either, Qrv and Qrv′ in (1) refer to the same path in each of P , Q and P ′.
The number of players using those edges, however, will be different. Let ne denote ne(Q)
while using n′e for ne(P

′). Note that during EE-loop and GOPT-loop the number of
players using Qrv will increase, as some players will change their strategy to follow u. On
the other hand, the number of players using Qrv′ will decrease, as some of its descendants
might change their strategy to follow u. Therefore, ne ≤ n′e for e ∈ Qrv and ne ≥ n′e for
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e ∈ Qrv′ . Therefore, equation (1) implies that∑
e∈Qr

v′

(H(n′e + |Du|)−H(n′e))ce >
∑
e∈Qr

v

(H(n′e)−H(n′e − |Du|))ce, (2)

since H(x) − H(y) ≥ H(x + z) − H(y + z) for x > y ≥ 0 and z ≥ 0. Let us consider
the amount of the potential change caused by GroupOpt(u′, u, P ′). eu′ will be completely
unused and the edges in Qrv′ will have less players, so the amount of the potential decrease
in these edges is at least H(|M |)zu′ +

∑
e∈Qr

v′
(H(n′e)−H(n′e−|M |))ce. On the other hand,

the potential will be increased by the blue edges on the path from u′ to u, eu and by the
edges in Qrv′ . The amount of the potential increase is at most H(|M |) zu′α + H(|M |)zu +∑
e∈Qr

v′
(H(n′e + |M |) − H(n′e))ce. Since H(x+y+z)−H(x+y)

z ≤ 1
x+y ≤

H(x+y)−H(x)
y for any

x, y, z > 0, ∑
e∈Qr

v′

(H(n′e)−H(n′e − |M |))ce

≥
∑
e∈Qr

v′

(H(n′e + |Du|)−H(n′e))ce

≥
∑
e∈Qr

v

(H(n′e)−H(n′e − |Du|))ce by (2)

≥
∑
e∈Qr

v

(H(n′e + |M |)−H(n′e))ce

Furthermore, note that zu
4 ≤ dT∗(u, u

′) ≤ zu′
α , which implies zu ≤ 4

αzu′ . For α ≥ 5,
zu′
α + zu ≥ z′u. Finally we have

H(|M |)zu′ +
∑
e∈Qr

v′

(H(n′e)−H(n′e − |M |))

> H(|M |)(zu
′

α
+ zu) +

∑
e∈Qr

v

(H(n′e + |M |)−H(n′e))

which indicates that P ′ will be replaced by GroupOpt(u′, u, P ′) if zu >
6H(|Du|)
|Du| zu′ .

E.3. Proof of Lemma 4.3

Note that zu
4 ≤ dT∗(u, u

′) since otherwise u′ ∈ Du and eu′ will be completely unused.

Therefore, zu ≤ zu′
2 = 4

αzu′ regardless of |Du|.
zu ≤ 6H(|Du|)

|Du| zu′ is proved when |Du| ≥ 20. For |Du| ≤ 20, 4
α ≤

6H(i))
i for any i ≤ 20.

F. SECOND PART OF PROOF OF THEOREM 4.4

Let N be the Nash equilibrium finally obtained by the algorithm. We want to bound the
sum of zu, where u is a light vertex associated with an edge not in T ∗. As in [Fiat et al.
2006], we draw a circle of radius zu

α around each light vertex u, and show that the sum of
the radii can be bounded in terms of the cost of T ∗. However, we do not draw circles directly
on T ∗. As in Lemma 3.3, let T ′ = (v1, ..., vn′) be a sequence of light vertices ordered by a
preorder traversal of T ∗ rooted at t. Note that we choose not to include the sink t or any
crowded vertices. We define a similar (line) metric on T ′ by dT ′(vi, vi+1) = dT∗(vi, vi+1) and
dT ′(vi, vj) =

∑
i≤k<j dT ′(vk, vk+1) for i < j. By the properties of the preorder traversal,
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c(T ′) ≤ 2c(T ∗). Therefore, we could instead show that the sum of the radii can be bounded
in terms of c(T ′) to prove the desired result. From now on, we will often identify T ′ with
a segment of the real line where v1, ..., vn′ correspond to real numbers x1 < ... < xn such
that dT ′(vi, vj) = |xi − xj |. This will allow us to use simple geometric arguments.

Suppose that, on T ′, we draw a circle of radius ru = zu
α around each light vertex u. If the

circle around u′ contains the center u of another circle, dT∗(u, u
′) ≤ dT ′(u, u′) ≤ zu′

α , so by

Lemma 4.3, zu ≤ min( 4
α ,

6H(|Du|)
|Du| )zu′ , and thus also ru ≤ min( 4

α ,
6H(|Du|)
|Du| )ru′ . Furthermore,

the fact that dT∗(u, u
′) ≤ ru′ ≤ zu′

4 but u and u′ are both light vertices implies that eu′
was added earlier than eu was added; therefore, there must be no sequence u0, ..., um = u0

such that the circle around ui contains ui+1.
Consider a directed graph G′ = (V ′, E′) where V ′ ⊆ V is the set of the light vertices and

(u, u′) ∈ E′ if and only if the circle around u′ contains u or there exists u′′ such that (u′′, u′) ∈
E′ and the circle around u′′ contains u. Then G′ is acyclic. Let Bu = {w | (w, u) ∈ E′}. For
each vertex u ∈ G′ without outgoing edges, we will show that

∑
w∈Bu

rw is O(log log |Bu|)ru.

(w, u) ∈ E′ means that dT ′(w, u) ≤ ru or ((w′, u) ∈ E′ and dT ′(w,w
′) ≤ rw′) for some w′.

Since the rw is decreased multiplicatively by at least 4
α for each containment, dT ′(w, u) ≤

(1+ 4
α+ 42

α2 +...)ru = (1+ 4
α+ 42

α2 +...) zuα ≤
zu
4 . This implies Bu ⊆ Du and |Bu| ≤ |Du| ≤ log n.

Therefore,
∑
w∈Bu

rw is O(log log log n)ru, and since sum of those ru’s can be at most 4c(T ′)

(if no circle contains the center of another, each point in T ′ can be covered only twice and
there is no circle with a radius larger than T ′),

∑
w zw = O(log log log n)c(T ′), which is the

main theorem of this paper.
Consider a light vertex u ∈ V ′ without outgoing edges (i.e., it is not contained in other

any circle), and the line segment from the leftmost point to the rightmost point covered by
the circles around the vertices in Bu (these intervals do not need to be contained in T ′). The

length ju is at least ru, and since (1+ 4
α + 42

α2 + ...) < 2, any point on the circle around some
w ∈ Bu cannot be farther than 2ru from u, so ju ≤ 4ru. Therefore, bounding the sum of
radii of the circles around the vertices in Bu in terms of ju will be enough for our goal. This
interval has several properties that we will use inductively, even though partitioning one
interval into several subintervals is more involved than forming these first-level intervals:

— Every w′ ∈ V ′ on this segment is in Bu. Let B′u ⊆ Bu be the set of the vertices on this
segment.

— Any segment covered by the circle w ∈ B′u cannot go beyond the left end of the segment.
— 1

4ju ≤ ru ≤ ju.

Let A[n′] be the maximal sum of the radii r1, ..., rn′ of the n′ circles with centers w1, ..., wn′
on the segment of length ju = 1, satisfying the above three requirements and the previous

lemma that if wi is contained in the circle around wj , ri ≤ min( 4
α ,

6H(|Bi|)
|Bi| )rj where Bi

is computed as above but only for n′ circles on this segment. For example, A[0] = 0 and
A[1] = 4

α (since any w is in Bu and its radius cannot be larger than 4
αru ≤

4
αju = 4

α ).
We prove the following recurrence relation, which shows that A is very slowly growing. As
opposed to the selection of the intervals in the first level (those around u’s without outgoing
edges), the essence of the lemma is to divide a segment into several subsegments such that
(1) all of them are contained in the big segment, and (2) subsegments are pairwise disjoint.

Lemma F.1.

A[n′] ≤

 max
1≤k≤n′

max
i1+...+ik=n′
j1+...+jk≤1
jl≤24H(il)/il

k∑
l=1

A[il − 1]jl

+ 3
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Proof. Let w1, ..., wn′ and r1, ..., rn′ be the centers and the radii of n′ circles achieving
A[n′]. Without loss of generality, the big segment is [0, 1] and assume that 0 < w1 < ... <
wk < 1 are the centers that are not contained in any other circle. Note that w1 ≥ r1

since no circle can extend beyond 0. We will find k disjoint line segments gl of length jl,
contained in [0, 1] such that together with k circles, each segment-circle pair satisfies the
same requirement for A.

First set gl = [wl − rl, wl]; this interval is from the left end of the circle to the center
of the circle. This ensures that the length of the interval will be at least the radius of
the corresponding circle, since the subsequent operations only enlarge the intervals. Now,
consider the circles in Bl. Some circles will be on the left of wl while the others will be on
the right. Let

Ll = min
wq∈Bl,wq<wl

wq − rq

Rl = max
wq∈Bl,wq>wl

wq /∈B
l′ ,∀l

′∈[k]−{l}

wq

Let gl ← gl ∪ [Ll, Rl] and jl be the length of gl. Intuitively, gl contains all the circles
in Bl which are on the left of wl; it extends to the leftmost point, not just the centers.
On the right, it just extends to cover the centers which were not previously covered by the
aggressive left extension. Figure 9 illustrates an example.

w1 w2w3 w4 w5 w6

Fig. 9. An example of the division of the big interval to g1 and g2

Since each point can be contained by at most two circles, one on the left and one on
the right, it is clear that every wq will be covered by some gl, (1 ≤ l ≤ k). Let B′l be

the centers covered by gl. Then
∑k
l=1 |B′l| = n′ − k. Assume that gl and gl+1 intersect. It

implies wq ≥ wq′ − rq′ for some q ∈ Bl ∪ {l} −Bl+1, q
′ ∈ Bl+1 ∪ {l + 1}. However, then wq

is contained in the circle around wq′ and wq ∈ Bl+1, which contradicts the definitions of Ll
and Rl. Therefore, the gl’s are disjoint and

∑
jl ≤ 1. As previously mentioned, rl ≤ jl by

the definition of gl. Also, jl ≤ 4rl since the line segment covered by the circles in Bl cannot

be more than 2(1 + 4
α + 42

α2 + ...)rl < 4rl. Therefore, jl ≤ 4rl ≤ 24H(|Bl|+1)
|Bl|+1 ru ≤ 24H(|Bl|+1)

|Bl|+1 .

Note that gl satisfies all 3 requirements for being bounded by A[|B′l|]: every center on gl
belongs to Bl, no circle can extend beyond the left end of gl (by the definition of Ll), and
1
4jl ≤ r ≤ jl. Finally, the sum of the radii of the circles with the centers in B′l is bounded
by A[|Bl|]jl. The sum of r1, ..., rk will be at most 3, since each point [0, 1] can be covered
by at most 2 circles, each point in [1, 2] can be covered by only the rightmost circle, and no
circle can extend beyond either 0 or 2.
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Therefore,

A[n] ≤

(
k∑
l=1

A[|B′l|]jl

)
+ 3

where
∑
|B′l| = n′ − k,

∑
jl ≤ 1, jl ≤

24H(|Bl|+ 1)

|Bl|+ 1

=

(
k∑
l=1

A[il − 1]jl

)
+ 3

where il = |B′l|+ 1,
∑

jl ≤ 1, jl ≤
24H(il)

il

≤

 max
1≤k≤n′

max
i1+...+ik=n′
j1+...+jk≤1
jl≤24H(il)/il

k∑
l=1

A[il − 1]jl

+ 3

Given the recurrence relation, the main result is then proved by introducing an inverse
function. Let D[m] = minn′ {A[n′] ≥ m}.

Lemma F.2. For m ≥ 7,

D[m] ≥ D[m− 6]2

48H(D[m− 6])

Proof. For given m, let n′ = D[m]. Then, there exists i1, ..., ik, j1, ..., jk for some k such
that

— i1 + ...+ ik = n′

— j1 + ...+ jk ≤ 1

— jl ≤ 24H(il)
il

for each 1 ≤ l ≤ k
— (

∑k
l=1A[il − 1]jl) + 3 ≥ A[n′] ≥ m

Without loss of generality, assume i1 ≥ ... ≥ ik, and let k′ be such that

A[i1 − 1] ≥ ... ≥ A[ik′ − 1] ≥ (m− 6) > A[ik′+1 − 1] ≥ ... ≥ A[ik − 1],

which means

i1 ≥ ... ≥ ik′ ≥ D[m− 6] + 1 > ik′+1 ≥ ... ≥ ik.

(
∑k
l=1A[il− 1]jl) can be thought of the weighted average of A[il− 1]’s (if

∑
jl < 1, assume

that there is an element 0 of weight 1 −
∑
jl). By the choice of n′ and k′, A[i1 − 1] ≤ m

and A[ik′+1− 1] ≤ m− 6. Therefore, to make (
∑k
l=1A[il− 1]jl) at least m− 3, at least half

of the weight should be given to A[i1 − 1], ...,≥ A[ik′ − 1], which means j1 + ...+ jk′ ≥ 0.5.

Since jl ≤ 24H(il)
il

≤ 24H(D[m−6])
D[m−6] for each 1 ≤ l ≤ k′, k′ ≥ D[m−6]

48H(D[m−6]) . Furthermore,

i1 ≥ ... ≥ ik′ ≥ D[m− 6] implies that n′ ≥
∑k′

l=1 il ≥
D[m−6]2

48H(D[m−6]) , as desired.

Lemma F.3.

A[n′] = O(log log n′)
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Proof. Note that D is indeed a very fast increasing function diverging to infinity, so

there exists m′ such that
√
D[m′ − 6] > 48H(D[m′ − 6]). After m′, D[m] ≥ D[m−6]2

48H(D[m−6])

implies D[m] ≥ D[m− 6]1.5. This implies D[m] = 21.5Ω(m)

and A[D[m]] = O(log logD[m]).
The monotonicity of A proves the lemma.
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