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In this article, we demonstrate that, ignoring computational constraints, it is possible to release synthetic
databases that are useful for accurately answering large classes of queries while preserving differential
privacy. Specifically, we give a mechanism that privately releases synthetic data useful for answering a
class of queries over a discrete domain with error that grows as a function of the size of the smallest net
approximately representing the answers to that class of queries. We show that this in particular implies a
mechanism for counting queries that gives error guarantees that grow only with the VC-dimension of the
class of queries, which itself grows at most logarithmically with the size of the query class.

We also show that it is not possible to release even simple classes of queries (such as intervals and their
generalizations) over continuous domains with worst-case utility guarantees while preserving differential
privacy. In response to this, we consider a relaxation of the utility guarantee and give a privacy preserving
polynomial time algorithm that for any halfspace query will provide an answer that is accurate for some
small perturbation of the query. This algorithm does not release synthetic data, but instead another data
structure capable of representing an answer for each query. We also give an efficient algorithm for releasing
synthetic data for the class of interval queries and axis-aligned rectangles of constant dimension over discrete
domains.
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1. INTRODUCTION

As large-scale collection of personal information becomes more commonplace, the prob-
lem of database privacy is increasingly important. In many cases, we might hope to
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learn useful information from sensitive data (e.g., we might learn a correlation be-
tween smoking and lung cancer from a collection of medical records). However, for
legal, financial, or moral reasons, administrators of sensitive datasets often are not
able to release their data in raw form. Moreover, it is far from clear whether or not
these data curators can allow analysts access to the data in any form if they are to
provide a rigorous measure of privacy to the individuals whose data is contained in the
data sets. If those with the expertise to learn from large datasets are not the same as
those who administer the datasets, what is to be done? In order to study this problem
theoretically, it is important to quantify what exactly we mean by “privacy.”

A series of recent papers [Dwork and Nissim 2004; Blum et al. 2005; Dwork et al.
2006b] formalizes the notion of differential privacy. Informally, an algorithm satisfies
differential privacy if modifying a single database element does not change the
probability of any outcome of the privatization mechanism by more than some small
amount (see Definition 2.1 for a formal definition). The definition is intended to capture
the notion that “distributional information is not private”: that it is acceptable to
release information that is encoded in aggregate over the dataset, but not information
that is encoded only in the single record of an individual. In other words, we may reveal
that smoking correlates to lung cancer, but not that any individual has lung cancer.
Individuals may submit their personal information to the database secure in the
knowledge that they may later plausibly claim any other fake set of values, as changing
one person’s entries would produce nearly the same probability distribution over
outputs.

Lower bounds of Dinur and Nissim [2003] imply that one cannot hope to be able
to usefully answer large numbers of arbitrary queries to arbitrarily low error. In this
paper, motivated by learning theory, we propose the study of privacy-preserving mech-
anisms that are useful for answering all queries in a particular class (such as all
conjunction queries or all halfspace queries), that is large but specified a-priori. In
particular, we focus on counting queries of the form, “what fraction of the database
entries satisfy predicate ϕ?” and say that a sanitized output is useful for a class C if
the answers to all queries in C are accurate up to error of magnitude at most α.

Building on the techniques of McSherry and Talwar [2007] and Kasiviswanathan
et al. [2008], we show that for discretized domains, for any concept class that admits
an α-net Nα, it is possible to privately release synthetic data that is useful for the
class, with error that grows proportionally to the logarithm of the size of Nα. As a
consequence, we show that it is possible to release data useful for a set of counting
queries with error that grows proportionally to the VC-dimension of the class of
queries. The algorithm is not in general computationally efficient. We are able to give
a different algorithm that efficiently releases synthetic data for the class of interval
queries (and more generally, axis-aligned rectangles in fixed dimension) that achieves
guarantees in a similar range of parameters.

Unfortunately, we show that for nondiscretized domains, under this definition of
usefulness, it is impossible to publish a differentially private database that is useful
in the worst case for even quite simple classes such as interval queries. We next show
how, under a natural relaxation of the usefulness criterion, one can release informa-
tion that can be used to usefully answer (arbitrarily many) halfspace queries while
satisfying privacy. In particular, instead of requiring that useful mechanisms answer
each query approximately correctly, we allow our algorithm to produce an answer that
is approximately correct for some nearby query. This relaxation is motivated by the no-
tion of large-margin separators in learning theory [Anthony and Bartlett 1999; Vapnik
1998; Smola and Schölkopf 2002]; in particular, queries with no data points close to
the separating hyperplane must be answered accurately, and the allowable error more
generally is a function of the fraction of points close to the hyperplane.
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1.1. Prior and Subsequent Work

1.1.1. Prior Work. Recent work on theoretical guarantees for data privacy was initiated
by Dinur and Nissim [2003]. The notion of differential privacy, finally formalized by
[Dwork et al. 2006b; Dwork 2006], separates issues of privacy from issues of outside
information by defining privacy as indistinguishability of neighboring databases. This
captures the notion that (nearly) anything that can be learned if your data is included
in the database can also be learned without your data. This notion of privacy ensures
that users have very little incentive to withhold their information from the database.
The connection between data privacy and incentive-compatibility was formalized by
McSherry and Talwar [2007].

Much of the initial work focused on lower bounds. Dinur and Nissim [2003] showed
that any mechanism that answers substantially more than a linear number of
subset-sum queries with error o(

√
n) yields what they called blatant nonprivacy – that

is, it allows an adversary to reconstruct all but a o(1) fraction of the original database.
They also show that releasing the answers to all subset sum queries with error o(n)
leads to blatant nonprivacy. In this article, we use a similar argument to show that
the accuracy for mechanisms that restrict themselves to fixed classes of queries must
depend on the VC-dimension of those classes. Dwork et al. [2007] extend this result
to the case in which the private mechanism can answer a constant fraction of queries
with arbitrary error, and show that still if the error on the remaining queries is o(

√
n),

the result is blatant nonprivacy. Dwork and Yekhanin [2008] give further improve-
ments. These results easily extend to the case of counting queries which we consider
here.

Dwork et al. [2006b], in the article that defined differential privacy, show that releas-
ing the answers to k low sensitivity queries (a generalization of the counting queries
we consider here) with noise drawn independently from the Laplace distribution with
scale k/ε preserves ε-differential privacy. Unfortunately, the noise scales linearly in
the number of queries answered, and so this mechanism can only answer a sub-linear
number of queries with non-trivial accuracy. Blum et al. [2005] consider a model of
learning and show that concept classes that are learnable in the statistical query
(SQ) model are also learnable from a polynomially sized dataset accessed through an
interactive differential-privacy-preserving mechanism. We note that such mechanisms
still access the database by asking counting-queries perturbed with independent
noise from the Laplace distribution, and so can still only make a sublinear number of
queries. In this article, we give a mechanism for privately answering counting queries
with noise that grows only logarithmically with the number of queries asked (or more
generally with the VC-dimension of the query class). This improvement allows an
analyst to answer an exponentially large number of queries with non-trivial error,
rather than only linearly many.

Most similar to this article is the work of Kasiviswanathan et al. [2008] and McSherry
and Talwar [2007]. Kasiviswanathan et al. [2008] study what can be learned privately
when what is desired is that the hypothesis output by the learning algorithm satisfies
differential privacy. They show that in a PAC learning model in which the learner
has access to the private database, ignoring computational constraints, anything that
is PAC learnable is also privately PAC learnable. We build upon the technique in
their paper to show that in fact, it is possible to privately release a dataset that is
simultaneously useful for any function in a concept class of polynomial VC-dimension.
Kasiviswanathan et al.[2008] also study several restrictions on learning algorithms,
show separation between these learning models, and give efficient algorithms for learn-
ing particular concept classes. Both our article and Kasiviswanathan et al. [2008] rely
on the exponential mechanism, which was introduced by McSherry and Talwar [2007].
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1.1.2. Subsequent Work. Since the original publication of this article in STOC 2008
[Blum et al. 2008], there has been a substantial amount of follow up work. A sequence
of papers by Dwork et al. [2009, 2010] give a noninteractive mechanism for releasing
counting queries with accuracy that depends in a similar way to the mechanism pre-
sented in this article on the total number of queries asked, but has a better dependence
on the database size. This comes at the expense of relaxing the notion of ε-differential
privacy to an approximate version called (ε, δ)-differential privacy. The mechanism of
Dwork et al. [2010] also extends to arbitrary low-sensitivity queries rather than only
counting queries. This extension makes crucial use of the relaxation to (ε, δ)-privacy, as
results such as those given in this paper cannot be extended to arbitrary low-sensitivity
queries while satisfying ε-differential privacy as shown recently by De [2011].

Roth and Roughgarden [2010] showed that bounds similar to those achieved in this
article can also be achieved in the interactive setting, in which queries are allowed to
arrive online and must be answered before the next query is known. In many appli-
cations, this gives a large improvement in the accuracy of answers, because it allows
the analyst to pay for those queries which were actually asked in the course of a
computation (which may be only polynomially many), as opposed to all queries which
might potentially be asked, as is necessary for a non-interactive mechanism. Hardt and
Rothblum [2010] gave an improved mechanism for the interactive setting based on the
multiplicative weights framework which achieves bounds comparable to the improved
bounds of Dwork et al. [2010], also in the interactive setting. An offline version of this
mechanism (constructed by pairing the online mechanism with an agnostic learner for
the class of queries of interest) was given by [Gupta et al. 2011a; Hardt et al. 2012].
Gupta, Roth, and Ullman unified the online mechanisms of [Roth and Roughgarden
2010; Hardt and Rothblum 2010] into a generic framework (and improved their error
bounds) by giving a generic reduction from online learning algorithms in the mistake
bound model to private query release algorithms in the interactive setting [Gupta
et al. 2011b]. Gupta et al. [2011b] also give a new mechanism based on this reduction
that achieves improved error guarantees for the setting in which the database size is
comparable to the size of the data universe.

There has also been significant subsequent attention paid to the specific problem of
releasing the class of conjunctions (a special case of counting queries) with low error
using algorithms with more efficient run-time than the one given in this article. Gupta
et al. [2011a] give an algorithm that runs in time polynomial in the size of the database,
and releases the class of conjunctions to O(1) average error while preserving differen-
tial privacy. Hardt et al. [2011] give an algorithm which runs in time proportional dk

(for databases over a data universe X = {0, 1}d) and releases conjunctions of most
k variables with worst-case error guarantees. Their algorithm improves over the
Laplace mechanism (which also requires run-time dk) because it only requires that
the database size be proportional to d

√
k (The Laplace mechanism would require a

database of size dk). As a building block for this result, they also give a mechanism
with run-time proportional to d

√
k which gives average-case error guarantees.

Range queries—which extend the class of constant-dimensional interval queries
which we consider in this article—have also subsequently received substantial at-
tention [Xiao et al. 2010; Hay et al. 2010; Li et al. 2010; Li and Miklau 2011, 2012a,
2012b; Muthukrishnan and Nikolov 2012, Hardt et al. 2012].

There has also been progress in proving lower bounds. Dwork et al. [2009] show
that in general, the problem of releasing synthetic data giving non-trivial error for
arbitrary classes of counting queries requires run-time that is linear in the size of the
data universe and the size of the query class (modulo cryptographic assumptions). This
in particular precludes improving the run-time of the general mechanism presented
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in this paper to be only polynomial in the size of the database. Ullman and Vadhan
[2011] extend this result to show that releasing synthetic data is hard even for the
simple class of conjunctions of at most 2 variables. This striking result emphasizes
that output representation is extremely important, because it is possible to release
the answers to all of the (at most d2) conjunctions of size 2 privately and efficiently
using output representations other than synthetic data. Kasiviswanathan et al. [2010]
extend the lower bounds [Dinur and Nissim 2003] from arbitrary subset-sum queries
to hold also for an algorithm that only releases conjunctions. Hardt and Talwar [2010]
showed how to prove lower bounds for differentially query release using packing ar-
guments, and gave an optimal lower bound for a certain range of parameters [Hardt
and Talwar 2010]. De recently refined this style of argument and extended it to addi-
tional settings [De 2011]. Gupta et al. [2011a] showed that the class of queries that
can be released by mechanisms that access the database using only statistical queries
(which includes almost all mechanisms known to date, with the exception of the parity
learning algorithm of Kasiviswanathan et al. [2008]) is equal to the class of queries
that can be agnostically learned using statistical queries. This rules out a mechanism
even for releasing conjunctions to subconstant error that accesses the data using only
a polynomial number of statistical queries.

1.2. Motivation from Learning Theory

From a machine learning perspective, one of the main reasons one would want to
perform statistical analysis of a database in the first place is to gain information about
the population from which that database was drawn. In particular, a fundamental
result in learning theory is that if one views a database as a collection of random draws
from some distribution D, and one is interested in a particular class C of boolean
predicates over examples, then a database D of size Õ(VCDIM(C)/α2) is sufficient so
that with high probability, for every query q ∈ C, the proportion of examples in D
satisfying q is within ±α of the true probability mass under D [Anthony and Bartlett
1999; Vapnik 1998].1 Our main result can be viewed as asking how much larger does
a database D have to be in order to do this in a privacy-preserving manner: that is,
to allow one to (probabilistically) construct an output D̂ that accurately approximates
D with respect to all queries in C, and yet that reveals no extra information about
database D.2 Note that since the simple Laplace mechanism can handle arbitrary
queries of this form so long as only o(n) are requested, our objective is interesting only
for classes C that contain �(n), or even exponentially in n many queries. We will indeed
achieve this (Theorem 3.10), since |C| ≥ 2VCDIM(C).

1.3. Organization

We present essential definitions in Section 2. In Section 3, we show that, ignoring
computational constraints, one can release sanitized databases over discretized
domains that are useful for any concept class with polynomial VC-dimension. We then,
in Section 4, give an efficient algorithm for privately releasing a database useful for
the class of interval queries. We next turn to the study of halfspace queries over R

d

1Usually, this kind of uniform convergence is stated as empirical error approximating true error. In our
setting, we have no notion of an “intrinsic label” of database elements. Rather, we imagine that different
users may be interested in learning different things. For example, one user might want to learn a rule to
predict feature xd from features x1, . . . , xd−1; another might want to use the first half of the features to predict
a certain Boolean function over the second half.
2Formally, we only care about D̂ approximating D with respect to C, and want this to be true no matter how
D was constructed. However, if D was a random sample from a distribution D, then D will approximate D
and therefore D̂ will as well.
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and show in Section 5 that, without relaxing the definition of usefulness, one cannot
release a database that is privacy-preserving and useful for halfspace queries over
a continuous domain. Relaxing our definition of usefulness, in Section 6, we give an
algorithm that in polynomial time, creates a sanitized database that usefully and
privately answers all halfspace queries.

2. DEFINITIONS

We consider databases which are n-tuples from some abstract domain X: that is, D ∈ Xn.
We will also write n = |D| for the size of the database. For clarity, we think of n as being
publicly known (and, in particular, all databases have the same size n), but as we
will discuss, this assumption can be removed. We think of X as the set of all possible
data-records. For example, if data elements are represented as bit-strings of length d,
then X = {0, 1}d would be the Boolean hypercube in d dimensions. Databases are not
endowed with an ordering: they are simply multisets (they can contain multiple copies
of the same element x ∈ X).

A database access mechanism is a randomized mapping A : Xn → R, where R is some
arbitrary range. We say that A outputs synthetic data if its output is itself a database,
and if the intended evaluation of a query on the output is the obvious one: that is, if
R = X∗, and f is evaluated on A(D) = D′ by computing f (D′).

Our privacy solution concept will be the by now standard notion of differential pri-
vacy. Crucial to this definition will be the notion of neighboring databases. We say that
two databases D, D′ ∈ Xn are neighboring if they differ in only a single data element:
that is, they are neighbors if their symmetric difference |D�D′| ≤ 2.

Definition 2.1 (Differential Privacy [Dwork et al. 2006b]). A database access mech-
anism A : Xn → R is ε-differentially private if for all neighboring pairs of databases
D, D′ ∈ Xn and for all outcome events S ⊆ R, the following holds:

Pr[A(D) ∈ S] ≤ exp(ε) Pr[A(D′) ∈ S]

Remark 2.2. In the differential privacy literature, there are actually two related,
though distinct, notions of differential privacy. In the notion we adopt in Definition 2.1,
the database size n is publicly known and two databases are neighboring if one can
be derived from the other by swapping one database element for another. That is, in
this notion, an individual deciding whether to submit either accurate or fake personal
information is assured that an observer would not be able to tell the difference. In the
other notion, n is itself private information, and two databases are neighboring if one
can be derived from the other by adding or removing a single database element. That is,
in the second notion, an individual deciding whether to submit any information at all
is assured that an observer cannot tell the difference. The two notions are very similar:
two databases that are neighboring in the public n regime are at distance at most 2 in
the private n regime. Similarly, using standard techniques, in the private n regime, n
can still be estimated accurately to within an additive factor of O(1/ε), which almost
always allows simulation of the public n regime up to small loss. Here, we adopt the
public n regime because it greatly simplifies our analysis and notation; nevertheless up
to constants, all of our results can be adapted to the private n regime using standard
techniques. We re-prove our main result (our release mechanism for counting queries)
for the private n version of differential privacy in the appendix.

Definition 2.3. The global sensitivity of a query f is its maximum difference when
evaluated on two neighboring databases:

GSn
f = max

D,D′∈Xn:|D�D′|=2
| f (D) − f (D′)|.
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In this article, we consider the private release of information useful for classes of
counting queries.

Definition 2.4. A (normalized) counting query Qϕ , defined in terms of a predicate
ϕ : X → {0, 1} is defined to be

Qϕ(D) = 1
|D|

∑
x∈D

ϕ(x).

It evaluates to the fraction of elements in the database that satisfy the predicate ϕ.

Observation 2.5. For any predicate ϕ : X → {0, 1}, the corresponding counting
query Qϕ : X∗ → [0, 1] has global sensitivity GSn

Qϕ
≤ 1/n

Remark 2.6. Note that because we regard n as publicly known, the global sensitiv-
ity of a normalized counting query is well defined. We could just as well work with
unnormalized counting queries, which have sensitivity 1 in both the public and private
n regime, but this would result in more cumbersome notation later on.

We remark that everything in this article easily extends to the case of more general
linear queries, which can are defined analogously to counting queries, but involve real
valued predicates ϕ : X → [0, 1]. For simplicity we restrict ourselves to counting queries
in this paper, but see [Roth 2010] for the natural extension to linear queries.

A key measure of complexity that we will use for counting queries is VC-dimension.
VC-dimension is strictly speaking a measure of complexity of classes of predicates, but
we will associate the VC-dimension of classes of predicates with their corresponding
class of counting queries.

Definition 2.7 (Shattering). A class of predicates P shatters a collection of points
S ⊆ X if for every T ⊆ S, there exists a ϕ ∈ P such that {x ∈ S : ϕ(x) = 1} = T . That
is, P shatters S if for every one of the 2|S| subsets T of S, there is some predicate in P
that labels exactly those elements as positive, and does not label any of the elements
in S \ T as positive.

Definition 2.8 (VC-Dimension). A collection of predicates P has VC-dimension d if
there exists some set S ⊆ X of cardinality |S| = d such that P shatters S, and P does
not shatter any set of cardinality d + 1. We denote this quantity by VC-DIM(P). We
abuse notation and also write VC-DIM(C) where C is a class of counting queries, to
denote the VC-dimension of the corresponding collection of predicates.

Dwork et al. [2006b] give a mechanism that can answer any single low-sensitivity
query while preserving differential privacy:

Definition 2.9 (Laplace Mechanism). The Laplace mechanism responds to a query
Q by returning Q(D) + Z where Z is a random variable drawn from the Laplace distri-
bution: Z ∼ Lap(GSn

Q/ε).
The Laplace distribution with scale b, which we denote by Lap(b), has probability

density function

f (x|b) = 1
2b

exp
(

−|x|
b

)
.

THEOREM 2.10 [DWORK ET AL. 2006B]. The Laplace mechanism preserves ε-
differential privacy.

This mechanism answers queries interactively, but for a fixed privacy level, its ac-
curacy guarantees degrade linearly in the number of queries that it answers. The
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following composition theorem is useful: it tells us that a mechanism which runs k
ε-differentially private subroutines is kε-differentially private.

THEOREM 2.11 [DWORK ET AL. 2006A]. If mechanisms M1, . . . , Mk are each ε-
differentially private, then the mechanism M defined by the (string) composition of
the k mechanisms: M(D) = (M1(D), . . . , Mk(D)) is kε-differentially private.

We propose to construct database access mechanisms that produce one-shot (non-
interactive) outputs that can be released to the public, and so can necessarily be used to
answer an arbitrarily large number of queries. We seek to do this while simultaneously
preserving privacy. However, as implied by the lower bounds of Dinur and Nissim
[2003], we cannot hope to be able to usefully answer arbitrary queries. We instead seek
to release synthetic databases which are “useful” (defined below) for restricted classes
of queries C.

Definition 2.12 (Usefulness). A database access mechanism A is (α, δ)-useful with
respect to queries in class C if for every database D ∈ Xn, with probability at least
1 − δ, the output of the mechanism D̂ = A(D) satisfies:

max
Q∈C

|Q(D̂) − Q(D)| ≤ α.

In this article, we will derive (α, δ)-useful mechanisms from small α-nets.

Definition 2.13 (α-net). An α-net of databases with respect to a class of queries C is
a set N ⊂ X∗ such that for all D ∈ Xn, there exists an element of the α-net D′ ∈ N such
that:

max
Q∈C

|Q(D) − Q(D′)| ≤ α.

We write Nα(C) to denote an α-net of minimum cardinality among the set of all α-nets
for C.

3. GENERAL RELEASE MECHANISM

In this section, we present our general release mechanism. It is an instantiation of the
exponential mechanism of McSherry and Talwar [2007].

Given some arbitrary range R, the exponential mechanism is defined with respect
to some quality function q : Xn × R → R, which maps database/output pairs to quality
scores. We should interpret this intuitively as a measure stating that fixing a database
D, the user would prefer the mechanism to output some element of R with as high a
quality score as possible.

Definition 3.1 (The Exponential Mechanism [McSherry and Talwar 2007]). The ex-
ponential mechanism ME(D, q,R, ε) selects and outputs an element r ∈ R with proba-
bility proportional to exp( εq(D,r)

2GSn
q

).

McSherry and Talwar [2007] showed that the exponential mechanism preserves
differential privacy. It is important to note that the exponential mechanism can define
a complex distribution over a large arbitrary domain, and so it may not be possible to
implement the exponential mechanism efficiently when the range of the mechanism
is super-polynomially large in the natural parameters of the problem. This will be the
case with our instantiation of it.

THEOREM 3.2 [MCSHERRY AND TALWAR 2007]. The exponential mechanism preserves
ε-differential privacy.
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ALGORITHM 1: NetMechanism(D, C, ε, α)
let R ← Nα/2(C).
let q : Xn × R → R be defined to be:

q(D, D′) = − max
Q∈C

∣∣Q(D) − Q(D′)
∣∣

Sample And Output D′ ∈ R with the exponential mechanism ME(D, q,R, ε)

We first observe that the Algorithm 1, the Net mechanism, preserves ε-differential
privacy.

PROPOSITION 3.3. The Net mechanism is ε-differentially private.

PROOF. The Net mechanism is simply an instantiation of the exponential mechanism.
Therefore, privacy follows from Theorem 3.2.

We may now analyze the usefulness of the Net mechanism. A similar analysis of the
exponential mechanism appears in McSherry and Talwar [2007].

PROPOSITION 3.4. For any class of queries C (not necessarily counting queries) the
Net mechanism is (α, δ)-useful for any α such that:

α ≥ 4�

ε
log

Nα(C)
δ

,

where � = maxQ∈C GSn
Q.

PROOF. First observe that the sensitivity of the quality score GSn
q ≤ maxQ∈C GSn

Q =
�.

By the definition of an α/2-net, we know that there exists some D∗ ∈ R such that
q(D, D∗) ≥ −α/2. By the definition of the exponential mechanism, this D∗ is output
with probability proportional to at least exp( −εα

4GSn
q
). Similarly, there are at most |Nα(C)|

databases D′ ∈ R such that q(D, D′) ≤ −α (simply because R = Nα(C)). Hence, by a
union bound, the probability that the exponential mechanism outputs some D′ with
q(D, D′) ≤ −α is proportional to at most |Nα(C)| exp( −εα

2GSn
q
). Therefore, if we denote by A

the event that the Net mechanism outputs some D∗ with q(D, D∗) ≥ −α/2, and denote
by B the event that the Net mechanism outputs some D′ with q(D, D′) ≤ −α, we have:

Pr[A]
Pr[B]

≥ exp(−εα
4�

)
|Nα(C)| exp(−εα

2�
)

= exp( εα
4�

)
|Nα(C)| .

Note that if this ratio is at least 1/δ, then we will have proven that the Net mechanism
is (α, δ) useful with respect to C. Solving for α, we find that this is condition is satisfied
so long as

α ≥ 4�

ε
log

Nα(C)
δ

.

We have therefore reduced the problem of giving upper bounds on the usefulness of
differentially private database access mechanisms to the problem of upper bounding
the sensitivity of the queries in question, and the size of the smallest α-net for the set
of queries in question. Recall that for counting queries Q on databases of size n, we
always have GSn

Q ≤ 1/n. Therefore, we have the immediate corollary.
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COROLLARY 3.5. For any class of counting queries C the Net mechanism is (α, δ)-useful
for any α such that:

α ≥ 4
εn

log
Nα(C)

δ
.

To complete the proof of utility for the Net mechanism for counting queries, it remains
to prove upper bounds on the size of minimal α-nets for counting queries. We begin
with a bound for finite classes of queries.

THEOREM 3.6. For any finite class of counting queries C:

|Nα(C)| ≤ |X | log |C|
α2 .

In order to prove this theorem, we will show that for any collection of counting
queries C and for any database D, there is a “small” database D′ of size |D′| = log |C|

α2

that approximately encodes the answers to every query in C, up to error α. Crucially,
this bound will be independent of |D|.

LEMMA 3.7. For any D ∈ Xn and for any finite collection of counting queries C, there
exists a database D′ of size

|D′| = log |C|
α2

such that:

max
Q∈C

∣∣Q(D) − Q(D′)
∣∣ ≤ α.

PROOF. Let m = log |C|
α2 We will construct a database D′ by taking muniformly random

samples from the elements of D. Specifically, for i ∈ {1, . . . , m} let Xi be a random
variable taking value xj with probability |{x ∈ D : x = xj}|/|D|, and let D′ be the
database containing elements X1, . . . , Xm. Now fix any Qϕ ∈ C and consider the quantity
Qϕ(D′). We have: Qϕ(D′) = 1

m

∑m
i=1 ϕ(Xi). We note that each term of the sum ϕ(Xi) is

a bounded random variable taking values 0 ≤ ϕ(Xi) ≤ 1, and that the expectation of
Qϕ(D′) is:

E[Q(D′)] = 1
m

m∑
i=1

E[ϕ(Xi)] = Qϕ(D).

Therefore, we can apply a standard Chernoff bound which gives:

Pr
[|Qϕ(D′) − Qϕ(D)| > α

] ≤ 2e−2mα2
.

Taking a union bound over all of the counting queries Qϕ ∈ C, we get:

Pr
[
max
Qϕ∈C

|Qϕ(D′) − Qϕ(D)| > α

]
≤ 2|C|e−2mα2

.

Plugging in the chosen number of samples mmakes the right-hand side smaller than 1
(so long as |C| > 2), proving that there exists a database of size m satisfying the stated
bound, which completes the proof of the lemma.

Now we can complete the proof of Theorem 3.6.

PROOF OF THEOREM 3.6. By Lemma 3.7, we have that for any D ∈ X∗ there exists a
database D′ ∈ X∗ with |D′| = log |C|

α2 such that maxQϕ∈C
∣∣Qϕ(D) − Qϕ(D′)

∣∣ ≤ α. Therefore,
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if we take N = {D′ ∈ X∗ : |D′| = log |C|
α2 } to be the set of every database of size log |C|

α2 , we
have an α-net for C. Since

|N| = |X | log |C|
α2

and by definition
∣∣Nα(C)

∣∣ ≤ |N|, we have proven the theorem.

When the cardinality of the concept class is untenably large, we can replace lemma
3.7 with the following lemma.

LEMMA 3.8 [ANTHONY AND BARTLETT 1999; VAPNIK 1998]. For any D ∈ X∗ and for any
collection of counting queries C, there exists a database D′ of size

|D′| = O(VCDIM(C)log (1/α)/α2)

such that:

max
Q∈C

∣∣Q(D) − Q(D′)
∣∣ ≤ α

This lemma straightforwardly gives an analogue of Theorem 3.6.

THEOREM 3.9. For any class of counting queries C:∣∣Nα(C)
∣∣ ≤ |X |O(VCDIM(C)log(1/α)/α2)

Note that we always have VCDIM(C) ≤ log |C| for finite classes of counting queries,
and so (modulo constants and the log (1/α) term) Theorem 3.9 is strictly stronger than
Theorem 3.6.

Finally, we can instantiate Corollary 3.5 to give our main utility theorem for the Net
mechanism.

THEOREM 3.10. For any class of counting queries C, there exists constant c such that
the Net mechanism is (α, δ)-useful for:

α ≥ c ·
(

VCDIM(C) log |X | + log 1/δ

εn

)1/3

.

PROOF. The instantiation guarantees the existence of constants c1 and c2 such that
the Net mechanism gives (α, δ)-usefulness for an α such that:

α ≥ 4
εn

(
c1VCDIM(C) log (1/α) log |X |

α2 + c2 log |X | + log 1/δ

)
.

We assume that α ≤ 1/2 (i.e., that the error guaranteed by the theorem is nontrivial).
In this case, we have α2/ log (1/α) < 1 and so it is only pessimistic to take:

α3

log(1/α)
≥ 4

εn

(
c1VCDIM(C) log |X | + c2 log |X | + log 1/δ

)
.

Moreover, we have α3 ≤ α3/ log (1/α), and so it is only further pessimistic to consider

α3 ≥ 4
εn

(
c1VCDIM(C) log |X | + c2 log |X | + log 1/δ

)
.

Solving for α yields(
4(c1VCDIM(C) log |X | + c2 log |X | + log 1/δ)

3εn

)1/3

,

which yields the theorem.
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Theorem 3.10 shows that a database of size Õ( log |X |VCDIM(C)
α3ε

) is sufficient in order
to output a set of points that is α-useful for a concept class C, while simultaneously
preserving ε-differential privacy. If we were to view our database as having been drawn
from some distributionD, this is only an extra Õ( log |X |

αε
) factor larger than what would be

required to achieve α-usefulness with respect toD, even without any privacy guarantee.
The results in this section only apply for discretized database domains, and may

not be computationally efficient. We explore these two issues further in the remaining
sections of the paper.

3.1. The Necessity of a Dependence on VC-Dimension

We just gave an ε-differentially private mechanism that is (α, δ)-useful with respect to
any set of counting queries C, when given a database of size n ≥ Õ( log |X |VCDIM(C)

α3ε
). In

this section, we show that the dependence on the VC-dimension of the class C is tight.
The proof follows an argument similar to one used by Dinur and Nissim to show

that no private mechanism can answer all counting queries to nontrivial accuracy
[Dinur and Nissim 2003]. Fix a class of counting queries C corresponding to a class of
predicates P of VC-dimension d. Let S ⊂ X denote a set of universe elements of size
|S| = d that are shattered by P, as guaranteed by the definition of VC-dimension. We
will consider all subsets T ⊂ S of size |T | = d/2. Denote this set by DS = {T ⊂ S :
|T | = d/2} For each such T ∈ DS, let ϕT be the predicate such that:

ϕT (x) =
{
1, x ∈ T ;
0, x 
∈ T .

as guaranteed by the definition of shattering, and let QT = QϕT be the corresponding
counting query. Note that for T ∈ DS, we can treat QT as an element of C for the
purpose of evaluation against databases ⊂ S, because there must exist some element
of C that induces the same partition of S as QT does. In what follows, we restrict
ourselves to databases consisting of elements of S, and so we adopt this convention.

We begin with a proof of “blatant non-privacy”, like that shown by Dinur and Nissim
[2003].

LEMMA 3.11. For any 0 < δ < 1, let M be an (α, δ)-useful mechanism for C. Given
as input M(T ) where T is any database T ∈ DS, there is a procedure which with
probability 1 − δ reconstructs a database T ′ with |T ′�T | ≤ dα. M(T ) is not required to
be synthetic data.

PROOF. Write D′ = M(T ). With probability at least 1 − δ, we have maxQ∈C |Q(T ) −
Q(D′)| ≤ α. Then with probability 1 − δ, the following reconstruction succeeds: return
T ′ = argmaxT ′∈DS

QT ′ (D′). (That is, T ′ is the database in DS that best matches M(T ).)
Note that the fraction of T reconstructed by T ′ is exactly QT ′(T ) = QT (T ′). Thus,

QT (T ′) = QT ′ (T )
≥ QT ′(D′) − α by (α, δ)-usefulness of D′

≥ QT (D′) − α by choice of T ′ as best match for D′

≥ QT (T ) − 2α by (α, δ)-usefulness of D′

= 1 − 2α,

which completes the proof, since |T | = |T ′| = d/2.

We now explore the consequences this blatant nonprivacy has for ε-differential
privacy.
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THEOREM 3.12. For any class of counting queries C, for any 0 < δ < 1, if M is an
ε-differentially private mechanism that is (α, δ) useful for C given databases of size
n ≤ VCDIM(C)

2 , then α ≥ 1
2(exp(ε)+1) .

PROOF. Let T ∈ DS be a set selected uniformly at random, D′ = M(T ), and let T ′ be
the set reconstructed from D′ = M(T ) as in Lemma 3.11.

Select x ∈ T uniformly at random, and y ∈ S \ T uniformly at random. Let T̂ =
(T \ {x}) ∪ {y} be the set obtained by swapping element x out and replacing it with y.
Note that (x, y) are uniformly random over pairs of elements in S such that the first
is in T and the second is not in T ; similarly, (x, y) are uniformly random over pairs of
elements in S such that the first is not in T̂ and the second is in T̂ . Let T̂ ′ be the set
reconstructed from D′ = M(T̂ ).

Except with probability at most 2δ, we have the following properties of the recon-
structions:

Pr[x ∈ T ′ given input T ] = |T | − (1/2)|T �T ′|
|T |

≥
d
2 − dα

d
2

= 1 − 2α

and

Pr[x ∈ T̂ ′ given input T̂ ] = (1/2)|T̂ �T̂ ′|
|T̂ |

≤ dα
d
2

= 2α

Now recall that T and T̂ are neighboring databases, with |T �T̂ | ≤ 2, and so by the
fact that M is ε-differentially private, we also know:

exp(ε) ≥ Pr[x ∈ T ′ given input T ]

Pr[x ∈ T̂ ′ given input T̂ ]
≥ 1 − 2α

2α
= 1

2α
− 1,

and so

α ≥ 1
2(exp(ε) + 1)

,

as desired.

4. INTERVAL QUERIES

In this section, we give an efficient algorithm for privately releasing a database useful
for the class of interval queries over a discretized domain, given a database of size only
polynomial in our privacy and usefulness parameters. We note that our algorithm is
easily extended to the class of axis-aligned rectangles in d dimensional space for d a
constant; we present the case of d = 1 for databases that consist of distinct points, for
clarity.

Consider a database D of n points in {1, . . . , 2d} (in Corollary 5.2 we show some
discretization is necessary). Given a1 ≤ a2, both in {1, 2, . . . , 2d}, let Ia1,a2 be the indicator
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ALGORITHM 2: ReleaseIntervals(D, α, ε)
let α′ ← α/6, MaxIntervals ← �4/3α′�, ε ′ ← ε/(d · MaxIntervals).
let Bounds be an array of length MaxIntervals
let i ← 1, Bounds[0] ← 1
while Bounds[i − 1] < 2d do

a ← Bounds[i − 1], b ← (2d − a + 1)/2, increment ← (2d − a + 1)/4
while increment ≥ 1 do

let v̂ ← Q[a,b](D) + Lap(1/(ε ′n))
if v̂ > α′ then let b ← b − increment
else let b ← b + increment
let increment ← increment/2

let Bounds[i] ← b, i ← i + 1
Output D′, a database that has α′m points in each interval [Bounds[ j − 1], Bounds[ j]] for each
j ∈ [i], for any m > 1

α′ .

function corresponding to the interval [a1, a2]. That is:

Ia1,a2 (x) =
{
1, a1 ≤ x ≤ a2;
0, otherwise.

Definition 4.1. An interval query Q[a1,a2] is defined to be

Q[a1,a2](D) =
∑
x∈D

Ia1,a2 (x)
|D| .

Note that GSn
Q[a1 ,a2]

= 1/n, and we may answer interval queries while preserving
ε-differential privacy by adding noise proportional to Lap(1/(εn)).

We now give the algorithm. Algorithm 2 repeatedly performs a binary search to
partition the unit interval into regions that have approximately an α′ fraction of the
point mass in them. It then releases a database that has exactly an α′-fraction of the
point mass in each of the intervals that it has discovered. There are at most ≈ 1/α′
such intervals, and each binary search terminates after at most d rounds (because the
interval consists of at most 2d points). Therefore, the algorithm requires only ≈ d/α′
accesses to the database, and each one is performed in a privacy preserving manner
using noise from the Laplace mechanism. The privacy of the mechanism then follows
immediately.

THEOREM 4.2. ReleaseIntervals is ε-differentially private.

PROOF. The algorithm runs a binary search at most �4/3α′� times. Each time, the
search halts after d queries to the database using the Laplace mechanism. Each query is
ε′-differentially private (the sensitivity of an interval query is 1/n since it is a counting
query). Privacy then follows from the definition of ε′ and the fact that the composition
of k differentially private mechanisms is kε differentially private.

THEOREM 4.3. ReleaseIntervals is (α, δ)-useful for databases of size:

n ≥ 288d
εα3 · log

(
8d
δα

)
.

PROOF. By a union bound and the definition of the Laplace distribution, if the
database size n satisfies the hypothesis of the theorem, then except with probability
at most δ, none of the (4/3) d/α′ draws from the Laplace distribution have magnitude
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greater than α′2. That is, we have

max |v̂ − Q[a,b](D)| ≤ log ( 8d
αδ

)
ε′n

≤ 8d log ( 8d
αδ

)
εαn

≤ α′2

except with probability δ. Conditioned on this event occurring, for each interval
[Bounds[ j − 1],Bounds[ j]] for j ∈ [i], fBounds[ j−1],Bounds[ j](D) ∈ [α′ − α′2, α′ + α′2]. In
the synthetic database D′ released, each such interval contains exactly an α′ fraction
of the database elements. We can now analyze the error incurred on any query when
evaluated on the synthetic database instead of on the real database. Any interval
[Bounds[ j − 1],Bounds[ j]] ⊂ [a, b] will contribute error at most α′ to the total, and any
interval [Bounds[ j − 1],Bounds[ j]] 
⊂ [a, b] that also intersects with [a, b] contributes
error at most (α′ +α′2) to the total. Note that there are at most 2 intervals of this second
type. Therefore, on any query Q[a,b] we have:

|Q[a,b](D′) − Q[a,b](D)| ≤
∑

j:[Bounds[ j−1],Bounds[ j]]∩[a,b]
=∅
|Q[Bounds[ j−1],Bounds[ j]](D) − Q[Bounds[ j−1],Bounds[ j]](D′)|

≤ 4
3α′ α

′2 + 2(α′ + α′2)

≤ 6α′

= α.

We note that although the class of intervals is simple, we are able to answer 22d

queries over a universe of size 2d, while needing a database of size only poly(d) and
needing running time only poly(d).

5. LOWER BOUNDS

Could we possibly modify the results of Sections 4 and 3 to hold for nondiscretized
databases? Suppose we could usefully answer an arbitrary number of queries in some
simple concept class C representing interval queries on the real line (e.g., “How many
points are contained within the following interval?”) while still preserving privacy.
Then, for any database containing single-dimensional real-valued points, we would be
able to answer median queries with values that fall between the 50−δ, 50+δ percentile
of database points by performing a binary search on D using A (where δ = δ(α) is some
small constant depending on the usefulness parameter α). However, answering such
queries is impossible while guaranteeing differential privacy. Unfortunately, this would
seem to rule out usefully answering queries in simple concept classes such as halfspaces
and axis-aligned rectangles, that are generalizations of intervals.

We say that a mechanism answers a median query M usefully if it outputs a real
value r such that r falls between the 50 − δ and 50 + δ percentiles of points in database
D for some δ < 50.

THEOREM 5.1. No mechanism A can answer median queries M with outputs that
fall between the 50 − δ, 50 + δ percentile with positive probability on any real-valued
database D, while still preserving ε-differential privacy, for δ < 50 and any ε.
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PROOF. Consider real valued databases containing elements in the interval [0, 1]. Let
D0 = (0, . . . , 0) be the database containing n points with value 0. Suppose Acan answer
median queries usefully. Then we must have Pr[A(D0, M) = 0] > 0 since every point in
D0 is 0. Since [0, 1] is a continuous interval, there must be some value v ∈ [0, 1] such
that Pr[A(D0, M) = v] = 0. Let Dn = (v, . . . , v) be the database containing n points with
value v. We must have Pr[A(Dn, M) = v] > 0. For 1 < i < n, let Di = (0, . . . , 0︸ ︷︷ ︸

n−i

, v, . . . , v︸ ︷︷ ︸
i

).

Then we must have for some i, Pr[A(Di, M) = v] = 0 but Pr[A(Di+1, M) = v] > 0. But
since Di and Di+1 differ only in a single element, this violates differential privacy.

COROLLARY 5.2. No mechanism operating on continuous valued datasets can be
(α, δ)-useful for the class of interval queries, nor for any class C that generalizes in-
terval queries to higher dimensions (for example, halfspaces, axis-aligned rectangles, or
spheres), while preserving ε-differential privacy, for any α, δ < 1/2 and any ε ≥ 0.

PROOF. Consider any real valued database containing elements in the interval [0, 1].
If A is (α, δ)-useful for interval queries and preserves differential privacy, then we can
construct a mechanism A′ that can answer median queries usefully while preserving
differential privacy. By Theorem 5.1, this is impossible. A′ simply computes D̂ = A(D),
and performs binary search over queries on D̂ to find some interval [0, a] that contains
n/2 ± αn points. Privacy is preserved since we only access D through A, which by as-
sumption preserves ε-differential privacy. With positive probability, all interval queries
on D̂ are correct to within ±α, and so the binary search can proceed. Since α < 1/2, the
result follows.

Remark 5.3. We note that we could have replaced a “continuous” universe in our
argument with a finely discretized universe. In this case, we would get a lower bound
in which the accuracy would depend on the discretization parameter.

We may get around the impossibility result of Corollary 5.2 by relaxing our defini-
tions. One approach is to discretize the database domain, as we do in Sections 3 and 4.
Another approach, which we take in Section 6, is to relax our definition of usefulness.

6. ANSWERING HALFSPACE QUERIES

In this section, we give a noninteractive mechanism for releasing the answers to “large-
margin halfspace” queries, defined over databases consisting of n unit vectors in R

d.
The mechanism we give here will be different from the other mechanisms we have
given in two respects. First, although it is a noninteractive mechanism, it will not
output synthetic data, but instead another data structure representing the answers to
its queries. Second, it will not offer a utility guarantee for all halfspace queries, but
only those that have “large margin” with respect to the private database. Large margin,
which we define below, is a property that a halfspace has with respect to a particular
database. Note that by our impossibility result in the previous section, we know that
without a relaxation of our utility goal, no private useful mechanism is possible.

Definition 6.1 (Halfspace Queries). For a unit vector y ∈ R
d, the halfspace query

fy : R
d → {0, 1} is defined to be:

fy(x) =
{
1, If 〈x, y〉 > 0;
0, Otherwise.

With respect to a database, a halfspace can have a certain margin γ :

Definition 6.2 (Margin). A halfspace query fy has margin γ with respect to a
database D ∈ (Rd)n if for all x ∈ D: |〈x, y〉| ≥ γ .
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Before we present the algorithm, we will introduce a useful fact about random pro-
jections, called the Johnson-Lindenstrauss lemma. It states, roughly, that the norm of
a vector is accurately preserved with high probability when the vector is projected into
a lower dimensional space with a random linear projection.

THEOREM 6.3 (THE JOHNSON-LINDENSTRAUSS LEMMA [DASGUPTA AND GUPTA 1999; ACHLIO-
PTAS 2003; BALCAN ET AL. 2006]). For d > 0 an integer and any 0 < ς, τ < 1/2, let A be
a T × d random matrix with ±1/

√
T random entries, for T ≥ 20ς−2 log (1/τ ). Then for

any x ∈ R
d:

Pr
A

[|||Ax||22 − ||x||22| ≥ ς ||x||22
] ≤ τ.

For our purposes, the relevant fact will be that norm preserving projections also pre-
serve pairwise inner products with high probability. The following corollary is well
known.

COROLLARY 6.4 (THE JOHNSON-LINDENSTRAUSS LEMMA FOR INNER PRODUCTS). For d > 0
an integer and any 0 < ς, τ < 1/2, let Abe a T ×d random matrix with ±1/

√
T random

entries, for T ≥ 20ς−2 log (1/τ ). Then for any x ∈ R
d:

Pr
A

[|〈(Ax), (Ay)〉 − 〈x, y〉| ≥ ς

2
(||x||22 + ||y||22

)] ≤ 2τ.

PROOF. Consider the two vectors u = x + y and v = x − y. We apply Theorem 6.3 to u
and v. By a union bound, except with probability 2τ we have: |||A(x + y)||22 −||x + y||22| ≤
ς ||x + y||22 and |||A(x − y)||22 − ||x − y||22| ≤ ς ||x − y||22. Therefore:

〈(Ax), (Ay)〉 = 1
4

(〈A(x + y), A(x + y)〉 − 〈A(x − y), A(x − y)〉)
= 1

4
(||A(x + y)||22 − ||A(x − y)||22

)
≤ 1

4
(
(1 + ς )||x + y||22 − (1 − ς )||x − y||22

)
= 〈x, y〉 + ς

2
(||x||22 + ||y||22

)
.

An identical calculation shows that 〈(Ax), (Ay)〉 ≥ 〈x, y〉 − ς

2

(||x||22 + ||y||22
)
, which com-

pletes the proof.

Instead of outputting synthetic data, our algorithm outputs a data structure based
on a collection of random projections. The ReleaseHalfspaces algorithm selects m pro-
jection matrices A1 · · · Am to project the original database into a low dimensional space
R

T , as well as a collection of “canonical” halfspaces UT in T dimensions. Release-
Halfspaces then computes these canonical halfspace queries on each projection of the
original data, and releases noisy versions of the answers, along with {Ai} and UT .

More formally, the output of ReleaseHalfspaces is a Projected Halfspace Data Struc-
ture as defined here.

Definition 6.5 (Projected Halfspace Data Structure). A T dimensional projected
halfspace data structure of size m, DH = {{Ai},U, {vi, j}} consists of three parts:

(1) m matrices A1, . . . , Am ∈ R
T ×d mapping vectors from R

d to vectors in R
T .

(2) A collection of T -dimensional unit vectors UT ⊂ R
T .

(3) For each i ∈ [m] and j ∈ U , a real number vi, j ∈ R.

A projected halfspace data structure DH can be used to evaluate a halfspace query fy
as follows. To denote the evaluation of a halfspace query on a projected halfspace data
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structure, we write Eval( fy, DH). When the meaning is clear from context, we abuse
notation and simply write fy(DH) to denote this evaluation:

Eval( fy, DH):

(1) Compute y′ by rounding the components of y to the nearest multiple of γ /(8
√

d)
and projecting the resulting vector onto the nearest point on the d-dimensional unit
ball.

(2) For i ∈ [m], compute the projection ŷ′
i ∈ R

T as: ŷ′
i = Ai · y′.

(3) For each i ∈ [m] compute uj(i) = argminuj∈UT
||ŷ′

i − uj ||2
(4) Output 1

m

∑m
i=1 vi, j(i)

Definition 6.6. A γ -net for unit vectors in R
d is a set of points Ud ⊂ R

d such that for
all x ∈ R

d with ||x||2 = 1:

min
y′∈Ud

||x − y′||2 ≤ γ.

The collection UT of canonical halfspaces is selected to form a γ /4-net such that
for every y ∈ R

T with ||y||2 = 1, there is some u ∈ UT such that ||y − u||2 ≤ γ /4.
The size of UT will be exponential in T , but we choose T to be only a constant (in
n and d—unfortunately not in γ and α), so that maintaining such a set is feasible.
Each vi, j will represent the approximate answer to the query fuj on a projection of
the private database by Ai. The Johnson-Lindenstrauss lemma will guarantee that not
many points with large margin are shifted across the target halfspace by any particular
projection, and the average of the approximate answers across all m projections will
with high probability be accurate for every halfspace.

First, we bound the size of the needed net UT for halfspaces.

CLAIM 6.7. There is a γ -net UT for unit vectors in R
T of size |UT | ≤ ( 2

√
T

γ
)T , such that

all elements of the γ -net are unit vectors.

PROOF. First, construct U ′ by taking the space of all T -dimensional unit vectors and
discretizing each coordinate to the nearest multiple of γ /(2

√
T ) (the coordinates will

remain between 0 and 1), and then transform it into U by projecting each point in U ′

to its nearest point on the unit ball. There are (2
√

T
γ

)T such vectors.
For any unit x ∈ R

T , let y = argminy∈U ||x − y||2, w = argminw∈U ′ ||x − w||2, and
z = argminz∈U ||w − z||2. Note that z is simply the projection of w onto the unit ball,

and ||w − z||2 ≤
√∑T

i=1(γ /2
√

T )2 = γ /2. Similarly, ||w − x||2 ≤
√∑T

i=1(γ /2
√

T )2 = γ /2.
Then, by the triangle inequality, we have:

||x − y||2 ≤ ||x − z||2
≤ ||x − w||2 + ||w − z||2
≤ γ.

We can now present our algorithm.

THEOREM 6.8. ReleaseHalfspaces preserves ε-differential privacy.

PROOF. Privacy follows from the fact that the composition of k ε-differentially pri-
vate mechanisms is kε-differentially private. The algorithm makes m|UT | calls to the
Laplace mechanism, and each call preserves ε/(m|UT |)-differential privacy (since each
query has sensitivity 1/n).
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ALGORITHM 3: ReleaseHalfspaces(D, d, γ, α, ε)
let:

ς ← γ

4
τ ← α

8
T ← ⌈

20ς−2 log (1/τ )
⌉

m ← 2
α2

(
d log (8

√
d/γ ) + log (6/β)

)
let UT be a γ /4-net for unit vectors in R

T .
for i = 1 to m do

let Ai ∈ {−1/
√

T , 1/
√

T }T ×d be a uniformly random matrix for each i ∈ [m].
let D̂i ⊂ R

T be D̂i = {Aix : x ∈ D}, followed by normalization to unit length of each point.
for each xj ∈ U do let pi, j ← Lap( m|U |

εn ), vi, j ← fxj (D̂i) + pi, j

Release DH = ({Ai},U,U ′, {vi, j}).

THEOREM 6.9. Consider a database D of unit vectors in R
d with:

n ≥ m(8
√

T /γ )T

ε
log

(
2m(8

√
T /γ )T

β

)

for m = 2
α2 (d log (8

√
d/γ ) + log (6/β)). Then except with probability at most β, DH =

ReleaseHalfSpaces(D, d, γ, α, ε) is such that for each unit vector y ∈ R
d with margin

γ with respect to D: | fy(D) − fy(DH)| ≤ α. The running time of the algorithm and the
bound on the size of D are both polynomial for γ, α ∈ �(1).

PROOF. The high-level idea of the proof is to argue that the algorithm consists of a
sequence of weakenings or approximations of the true halfspace queries, and that with
high probability all of these approximations are good.

The initial rounding step in the evaluation of a halfspace query against a projected
halfspace data structure serves to discretize the set of halfspaces, to allow us to ap-
ply a union bound later in the proof. Essentially, we implicitly introduce a γ /4-net
Ud on R

d. Consider any y ∈ R
d such that fy has margin γ with respect to D, and

let y′ = argminy′∈Ud
||y − y′||2. Note that fy′ has margin at least 3

4γ with respect to
D and thus fy(D) = fy′ (D). Thus, in the remainder of the proof, we will consider
halfspace queries corresponding to the elements of Ud. If our algorithm can main-
tain accuracy for these halfspaces, it will also maintain accuracy for all large margin
halfspaces.

We first argue that with high probability, the value of a halfspace query y′ ∈ Ud on a
point x ∈ D is not changed substantially by projecting both x and y′ into T -dimensional
space before evaluating it. By Corollary 6.4, for each i ∈ [m] and each x ∈ D, given the
values of ς, τ, and T used in Algorithm 3,

Pr
Ai

[∣∣〈(Aix), (Ai y′)〉 − 〈x, y′〉∣∣ ≥ ς

2
(||x||22 + ||y′||22

)]
= Pr

Ai

[∣∣〈(Aix), (Ai y′)〉 − 〈x, y′〉∣∣ ≥ γ

8
(1 + 1)

]
= Pr

Ai

[
|〈(Aix), (Ai y′)〉 − 〈x, y′〉| ≥ γ

4

]
≤ α

4
.

By linearity of expectation, the expected number of points in D moved by more than
γ /4 with respect to some y′ in a given projection Ai is at most αn/4. Recall that each y′

has margin at least 3
4 with respect to D, and so the expected number of points in D such

that the projected halfspace and the original halfspace y′ agree and the evaluation of
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the query in the projected space still has substantial margin (γ /2) is

E
[∣∣∣∣{x ∈ D :

(
fy(x) = fAi y(Aix)

) ∧
(

|〈Aix, Ai y〉| ≥ 1
2

γ

)}∣∣∣∣] ≥ n
(
1 − α

4

)
.

Next, we see that a projected halfspace query is always well approximated by the
resulting closest net point in UT , with respect to its answer on any unit vector x̂ ∈ R

T .
Recall UT is a γ /4-net for unit vectors in R

T . Consider the net point closest to the
projection of y′ under Ai, ui,y′ = argminu∈U ||u − Ai y′||2. By the property of the net,
||ui,y′ − Ai y′||2 ≤ γ /4, so

|〈Ai y′, x̂〉| = |〈ui,y′ , x̂〉 + 〈Ai y′ − ui,y′ , x̂〉|
≤ |〈ui,y′ , x̂〉| + ||Ai y′ − ui,y′ ||2||x||2
≤ 〈ui,y′ , x̂〉 + γ

4
.

We can combine these facts to see that the number of points on which the evaluation
of the nearest canonical vector in the low-dimensional space agrees with the original
vector y′ is:

E
[∣∣∣∣{x ∈ D :

(
fy′ (x) = fui,y′ (Aix)

) ∧
(

|〈Aix, ui,y′ 〉| ≥ 1
4

γ

)}∣∣∣∣] ≥ n
(
1 − α

4

)
.

In other words, fy′ (D) − α/4 ≤ E[ fui,y′ (D̂i)] ≤ fy′ (D) + α/4.

There are three possible reasons the projected halfspace data structure might not
provide accurate answers for all large-margin halfspaces, and we bound the probability
of each failure mode by β/3.

(1) There is a halfspace query y′ such that the average value (over the m projections)
of its canonical halfspace query on the projections of the database is far from the
true value of query y′ on the true database D.
Note that for each i, fui,y′ (D̂i) is an independent random variable taking values in
the bounded range [0, 1], and so we are able to apply a Chernoff bound. For each y′:

Pr

[∣∣∣∣∣ 1
m

m∑
i=1

fui,y′ (D̂i) − E[ fuy′ (D̂)]

∣∣∣∣∣ ≥ α

2

]
≤ 2 exp

(
−mα2

2

)
.

Taking a union bound over all (8
√

d/γ )d vectors y′ ∈ Ud in the implicit high-
dimensional net, plugging in our chosen value for the number of samples m, and
recalling our bound on E[ fuy′ (D̂)] we find that:

Pr

[
max
y′∈Ud

∣∣∣∣∣ 1
m

m∑
i=1

fui,y′ (D̂i) − fy′ (D)

∣∣∣∣∣ ≥ 3α

4

]
≤ β

3
.

(2) Any one of the |pi, j | is very large.
The algorithm makes m|UT | draws from the distribution Lap( m|UT |

εn ) during its run,
assigning these draws to values pi, j . Except with probability at most β/3, we have
for all i, j:

|pi, j | ≤ m|UT |
εn

log
(

2m|UT |
β

)
≤ 1,

plugging in the value of n from the theorem statement.
(3) Even though all of the |pi, j | are less than 1, there exists a sequence j(1), . . . , j(m)

that could be summed as a result of computing fy(DH) = 1
m

∑m
i=1 vi, j(i), such that

the average contribution of the noise is very large.
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Conditioning on |pi, j | ≤ 1 for all i, j and applying another Chernoff bound, we find
that for any sequence of indices j(i):

Pr

[∣∣∣∣∣ 1
m

m∑
i=1

pi, j(i)

∣∣∣∣∣ ≥ α/4

]
≤ 2 exp

(
−mα2

8

)
.

Again taking a union bound over y′ ∈ Ud and plugging in our value of the number
of samples m, we find that:

Pr

[
max

j(1),..., j(m)

∣∣∣∣∣ 1
m

m∑
i=1

pi, j(i)

∣∣∣∣∣ ≥ α/4

]
≤ β

3
.

Assuming we are in the 1 − β probability situation when none of the three failure
modes occur, we have for any y with margin γ with respect to D, for the corresponding
y′:

fy′ (DH) = 1
m

m∑
i=1

vi, j(i)

= 1
m

(
m∑

i=1

fui,y′ (D̂i) +
m∑

i=1

pi, j(i)

)

≤ 1
m

(
m∑

i=1

fui,y′ (D̂i)

)
+ α/4

≤ fy′ (D) + α

= fy(D) + α,

which completes the proof.

7. CONCLUSIONS AND OPEN PROBLEMS

In this article, we have shown a very general information theoretic result: that small
nets are sufficient to certify the existence of accurate, differentially private mechanisms
for a class of queries. For counting queries, this allows algorithms that can accurately
answer queries from a class C given a database that is only logarithmic in the size of C,
or linear its VC-dimension. We then also gave an efficient algorithm for releasing the
class of interval queries on a discrete interval, and for releasing large-margin halfspace
queries in the unit sphere.

The main question left open by our work is the design of algorithms that achieve
utility guarantees comparable to our Net mechanism, but have running time only
polynomial in n, the size of the input database. This question is extremely interesting
even for very specific classes of queries. Is there such a mechanism for the class of
conjunctions? For the class of parity queries?

APPENDIX

A. RELEASING COUNTING QUERIES WHILE KEEPING n PRIVATE

In this section, we briefly sketch the adaptation of our mechanism for releasing data
useful for counting queries to the private-n version of differential privacy. The tech-
nique for converting between private n and public n versions of differential privacy is
standard.

For the private n version of differential privacy, we think of datasets D ∈ X∗, which
can be multisets of any cardinality. Two datasets D, D′ ∈ X∗ are now said to be neigh-
boring if one can be obtained from the other by adding or removing a single element:
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ALGORITHM 4: PrivateNRelease(D, C, ε, α)
let n̂ = |D| + Lap(2/ε).
let m ← log |C|/α2

let R ← {D′ ∈ X∗ : |D′| = m}
let q : Xn × R → R be defined to be:

q(D, D′) = − max
Q∈C

∣∣Q(D) − Q(D′
m,n̂)

∣∣
Sample D′ ∈ R with the exponential mechanism ME(D, q,R, ε/2)
Output D′

m,n̂.

that is, D and D′ are neighbors if |D�D′| ≤ 1. Private n differential privacy is identical
to public n differential privacy, except that it uses this slightly modified definition of
neighbors.

Definition A.1 (Differential Privacy (private n version)). A database access mecha-
nism A : X∗ → R is ε-differentially private if for all neighboring pairs of databases
D, D′ ∈ X∗ and for all outcome events S ⊆ R, the following holds:

Pr[A(D) ∈ S] ≤ exp(ε) Pr[A(D′) ∈ S].

When the size of the database n is private, it is more natural to discuss unnormalized
counting queries.

Definition A.2. An unnormalized counting query Qϕ , defined in terms of a predicate
ϕ : X → {0, 1} is defined to be

Qϕ(D) =
∑
x∈D

ϕ(x).

It evaluates to the number of elements in the database that satisfy the predicate ϕ.

Note that the global sensitivity of an unnormalized counting query is 1, independent
of the size of the database n. This allows us to apply techniques such as the Laplace
mechanism and the Exponential mechanism without knowledge of n. Recall that in-
stantiated for counting queries, the Net mechanism outputs a database of smaller car-
dinality than the private database D. When we were working with normalized queries,
this did not matter: queries were evaluated at the same scale on all databases. When
we are working with unnormalized queries, we must rescale the answers computed on
a small database if we wish to interpret them as approximating their value on a larger
database. Towards this end, suppose D′ ∈ X∗ is a database of size |D′| = m. For fixed n′,
we write: D′

m,n′ to denote that answers computed on database D′ should be rescaled to
the range [0, n′]. That is, given a counting query Qϕ , define:

Qϕ(D′
m,n′ ) = n′

m

∑
x∈D′

ϕ(x).

Note that because n = |D| must remain private, we will use a private estimate n′ of n,
rather than n itself when defining the rescaling factor for our output.

We can now give the private n version of the Net mechanism, adapted to counting
queries.

THEOREM A.3. PrivateNRelease preserves ε-differential privacy in the private-n
model.

PROOF. We access the database only twice: once using the Laplace mechanism
of [Dwork et al. 2006b], which is ε/2-differentially private, and once using the
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exponential mechanism of McSherry and Talwar [2007], which is ε/2-differentially
private. Therefore, the mechanism in total is ε-differentially private by the privacy
composition theorem of [Dwork et al. 2006a].

THEOREM A.4. With probability 1 − δ, the private n release mechanism outputs a
database D′

m,n̂ such that for all Q ∈ C: |Q(D′
m,n̂) − Q(D)| ≤ αn whenever:

α ≥
(

8 log |C| log |X |
εn

+ 4
ε

ln
(

2
δ

))1/3

,

where a and b are absolute constants.

PROOF. The proof is largely the same as for the public nversion of the Net mechanism.
Let n = |D|. First, by the properties of the Laplace distribution, we have that with
probability 1 − δ/2, |n̂− n| ≤ 2 ln(2/δ)

ε
. For the rest of the argument, we condition on this

event occurring. We also have by Lemma 3.7 that for all D, there exists a database
D′ ∈ R such that | f (D′)

m − f (D)
n | ≤ α (recall that our queries are now unnormalized). In

other words: ∣∣∣ n
m

f (D′) − f (D)
∣∣∣ ≤ αn.

Combining these two facts, we have:∣∣∣∣ n̂
m

f (D′) − f (D)
∣∣∣∣ ≤ αn + 4 ln 2/δ

ε
.

In other words, we have that R is an α′/2 ≡ (αn+ 4 ln 2/δ

ε
)/2-net for C. We may therefore

reason analogously to Proposition 3.4.
By the definition of an α′/2-net, we know that there exists some D∗ ∈ R such that

q(D, D∗) ≥ −α′/2. By the definition of the exponential mechanism, this D∗ is output
with probability proportional to at least exp(−εα′

8 ). Similarly, there are at most |X |log |C|/α2

databases D′ ∈ R such that q(D, D′) ≤ −α′. Hence, by a union bound, the probability
that the exponential mechanism outputs some D′ with q(D, D′) ≤ −α′ is proportional
to at most |X |log |C|/α2

exp(−εα′
4 ). Therefore, if we denote by A the event that the Net

mechanism outputs some D∗ with q(D, D∗) ≥ −α′/2, and denote by B the event that
the Net mechanism outputs some D′ with q(D, D′) ≤ −α′, we have:

Pr[A]
Pr[B]

≥ exp(−εα′
8 )

|X |log |C|/α2 exp(−εα′
4 )

= exp( εα′
8 )

|X |log |C|/α2 .

Note that if this ratio is at least 2/δ, then we will have proven that the Net mechanism
is (α′, δ) useful with respect to C.

Recalling that α′ = αn + 4 ln(2/δ)/ε, we have that this inequality holds whenever:

ε

8
αn + ln(2/δ)

2
≥ log |C| log |C|

α2 + ln(2/δ).

Solving for α, we find that this is the case whenever:

α ≥
(

8 log |C| log |X |
εn

+ 4
ε

ln
(

2
δ

))1/3

.
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Finally, we remark that whenever n = �(ln(1/δ)/ε) (a necessity for the above bound
to be nontrivial), the optimal value of α can be approximated within a small constant
factor by using n̂ instead of n.
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