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Abstract

A Nash Equilibrium is a joint strategy profile at which each agent myopically plays a best
response to the other agents’ strategies, ignoring the possibility that deviating from the equilib-
rium could lead to an avalanche of successive changes by other agents. However, such changes
could potentially be beneficial to the agent, creating incentive to act non-myopically, so as to
take advantage of others’ responses.

To study this phenomenon, we consider a non-myopic Cournot competition, where each
firm selects whether it wants to maximize profit (as in the classical Cournot competition) or to
maximize revenue (by masquerading as a firm with zero production costs).

The key observation is that profit may actually be higher when acting to maximize revenue,
(1) which will depress market prices, (2) which will reduce the production of other firms, (3)
which will gain market share for the revenue maximizing firm, (4) which will, overall, increase
profits for the revenue maximizing firm. Implicit in this line of thought is that one might take
other firms’ responses into account when choosing a market strategy. The Nash Equilibria of
the non-myopic Cournot competition capture this action/response issue appropriately, and this
work is a step towards understanding the impact of such strategic manipulative play in markets.

We study the properties of Nash Equilibria of non-myopic Cournot competition with linear
demand functions and show existence of pure Nash Equilibria, that simple best response dy-
namics will produce such an equilibrium, and that for some natural dynamics this convergence
is within linear time. This is in contrast to the well known fact that best response dynamics
need not converge in the standard myopic Cournot competition.

Furthermore, we compare the outcome of the non-myopic Cournot competition with that of
the standard myopic standard Cournot competition. Not surprisingly, perhaps, prices in the
non-myopic game are lower and the firms, in total, produce more and have a lower aggregate
utility.
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1 Introduction

Understanding competition between firms is a fundamental problem in economics. One of the oldest
and most studied models in this area is the Cournot competition [3]. In a Cournot competition
there is a single divisible good, each firm has a certain production cost per unit to manufacture
the good, and each firm must select a quantity of the good to produce. The price is then set as a
function of the total quantity produced by all of the firms. Naturally, as the quantity increases the
price decreases, and thus the firms face a tradeoff between the amount produced and the market
price.

The Cournot competition model highlights some potential problems with treating the Nash
equilibrium as the inevitable outcome of competitive play. Consider the following example: There
are two oil producing firms, Wildcat Drillers and W. Petroleum. Wildcat Drillers has a production
cost of $0.5 USD per mega-barrel; W. Petroleum has a production cost of $0.3 USD per mega-
barrel. If the price per mega-barrel decreases linearly, specifically, if price = (1 - total supply in
mega-barrels), then the Cournot competition equilibrium price is $0.6. At this equilibrium price,
both firms are producing and no firm can benefit by unilaterally changing its production quantity,
assuming that the other firm does not change its production quantity. (In our toy example the
price drops down to zero when the world supply is one mega-barrel of oil.)

If W. Petroleum were to increase its production such that the price dropped below $0.5, Wildcat
Drillers would be producing at a loss. The inherent assumption in the Cournot-Nash equilibrium
is that if this happened Wildcat Drillers would indeed continue producing at the same level as
before, despite this loss, or that W. Petroleum would never manipulate the market in this manner.
However, W. Petroleum may hypothesize that by driving the price down, Wildcat Drillers will
in fact cease production, rather than continuing production a loss. This hypothesis seems rather
natural, but its predictions are not captured by traditional Cournot-Nash equilibria.

The impetus for our work is a sense of unease about the assumption that agents act myopically
and ignore responses to their own actions. In the context of competition, it seems natural that firms
should be able to predict something about the behavior of other firms, as a function of changes in
pricing.

To further understand this issue, we propose an abstract meta-game of the Cournot competition.
In our meta-game, the firms can select between maximizing their profit (selecting action PM)
or maximizing their revenue (selecting action RM). When a firm selects PM it simply tries to
maximize it profits (similar to the Cournot competition). However, when a firm selects RM, it
ignores its production cost, and attempts to maximize its revenue. After each selecting one of
these two strategies, firms participate in a Cournot competition, where the PM firms use their true
production costs to determine production levels and the RM firms use a production cost of zero
to decide how much to produce. As in the standard Cournot competition, firms in the meta-game
experience utilities as determined by their true production costs. The major difference between the
meta-game and the underlying Cournot competition is that when a firm changes its action in the
meta-game, it results in a change in the production quantities of the other firms (by converging to
an equilibrium of the underlying Cournot competition). We refer to this meta-game as the PM/RM
game.

We show that the PM/RM game always has a pure Nash equilibrium, and that the resulting
equilibrium price of the PM/RM game is at most the Cournot competition market price and at least
half of it. On the other hand, the aggregate utility of the firms participating in the competition
might be significantly lower in the PM/RM game. Conceptually, we show that in our model,
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strategizing about others’ responses increases competition, reduces prices, and improves social
welfare, all while reducing corporate profits.

We are also interested in the dynamics underlying the Cournot competition and the PM/RM
game. Interestingly, a single change of strategy in the PM/RM game may result in a dynamic cas-
cade of best response moves in the underlying Cournot competition. For example, if W. Pertoleum
increases production, then the market price will go down, and if it goes down enough then some
firms may drop out of the market (e.g., Wildcat Drillers might stop production). As firms drop
out of the market, the total supply goes down, and — possibly — firms that previously were not
producing anything (say, a new company called Texas Oil) suddenly start production.1

We show that best response dynamics in the PM/RM game always converge to a pure Nash
equilibrium. We also demonstrate simple dynamics that converge in a linear number of updates,
and thus such an equilibrium is polytime-computable.

We consider two important special cases of the PM/RM game, in which we give a complete
characterization of the pure Nash equilibria: (a) only two firms in the game and (b) all firms have
the same production cost (the symmetric case). In the symmetric case it is interesting to observe
that there are non-symmetric pure Nash equilibria. In fact, for any choice of i firms selecting PM
and m− i firms selecting RM, there is a cost c for which this strategy profile is in equilibrium.

We also extend our two-action meta-game to a continuous PM/RM game, where firms may bid
an arbitrary real value, which is interpreted as their perceived cost. We show that in the continuous
PM/RM game, the firms’ utilities are concave in the relevant region, which implies that there is
always a pure Nash equilibrium.

Related Work

Cournot competition assumes a so-called conjectural variation model, [2], i.e., the Cournot conjec-
tured variation is that if one firm changes it’s production level then other firms will not adjust their
production level accordingly. Under this assumption, the Cournot competition is a Nash Equilib-
rium, in this setting the Nash equilibrium is sometimes referred to as a Cournot-Nash equilibrium.

This Cournot conjectured variation is a subject of much debate and criticism in the economics
literature. With conflicting conclusions: To quote Abreu, [1], “In recent times this model has been
criticized for being too static, and thereby yielding predictions which are misleadingly competitive”.
Abreu then goes on to describe how the threat of punishment in an extended game could support
higher prices than the Cournot equilibrium prices. In this setting, the market prices can be higher
than the prices of the Cournot-Nash equilibrium.

Contrawise, Riordan, [7], considers a setting with imperfect information where firms only see
the prices they receive. In a multi stage game, a firm could increase it’s output to lower the market
clearing price, this causes rival firms to think that the demand curve has shifted down, and hence
induces them to lower their outputs in the future. Thus, the market price will be lower than that
projected by the Cournot competition prices.

Like Abreu and Riordan, we consider firms that act non-myopically, firms assume that other
firms with adapt to changes in the environment. We reach a conclusion rather similar to that of
[7], qualitatively, and give quantitative projections as well.

1The dynamics described above are the dynamics of the underlying Cournot competition, and can be inferred as
a consequence of actions in the PM/RM game. In the PM/RM game, there may also be meta-level cascading effects;
for example, firms may move from maximizing profit to maximizing revenue, and then, after other firms respond (in
the PM/RM game), they may go back to maximizing profit.
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The best response dynamics of the linear Cournot competition are known to converge for two
firm (see [6]) and possibly diverge for four or more firms [8]. The regret minimization dynamics are
converge for linear Cournot competition [4].

2 The Model

2.1 Standard (Myopic) Linear Cournot Competition

We consider a set of m firms, M = {1, . . .m}, producing an identical good, where firm i has
production cost ci per unit of production. Every firm chooses a production level xi ∈ [0, 1]. Let
x = 〈x1, x2, . . . , xm〉 be the joint production levels of all m firms. The linear Cournot model we
consider here assumes the market price is a linearly decreasing function of the production levels,
that is,

p(x) = 1−
m
∑

i=1

bixi, (1)

for strictly positive constants b1, b2, . . . , bm. The profit (utility) of firm i ∈ M is the profit per unit
of production times the quantity produced, i.e.,

ui(x) = (p(x)− ci) · xi.

Consider a linear Cournot competition with firms i ∈ M = {1, . . . ,m} and production costs ci.
A Cournot-Nash equilibrium is a joint production level, xeq = 〈xeq1 , xeq2 , . . . , xeqm〉, where for each
firm i, xeqi maximizes the utility for firm i, given xeq−i.

2 That is,

xeqi ∈ argmaxxui(x, x
eq
−i) for all 1 ≤ i ≤ m.

The following proposition, and variants thereof, are well known. We give the proof only for the
sake of completeness.

Proposition 1 Given a linear Cournot competition of m firms with production levels xeq at Cournot-
Nash equilibrium, let N ⊆ M = {1, . . . ,m} be the set of firms with strictly positive production levels
at equilibrium, i.e., N = {i ∈ M | xeqi > 0}, and let n = |N |.

The Cournot-Nash equilibrium has the following characteristics:

1. For any firm i ∈ N (with strictly positive production levels), we have

xeqi =
p(xeq)− ci

bi
. (2)

2. The market clearing price at equilibrium is

p(xeq) =
1 +

∑

i∈N ceqi
n+ 1

= peq(c). (3)

2We denote by x−i the vector x except for the i-th component, and by (xi, a) the vector x where the i-th component
is replaced by a.
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3. The utility of non-producing firms (j /∈ N) is zero, and the utility of producing firms (i ∈ N)
is

ui(x
eq) =

(peq(c)− ci)
2

bi
. (4)

Proof: To compute the Cournot-Nash equilibrium we take the derivative of ui(x) = (p(x) −
ci) · xi with respect to xi. It follows from Equation (1) that

∂

∂xi
ui(x) = (p(x)− ci)− bixi. (5)

It follows from Equation (5) that bix
eq
i = p(xeq)− ci = peq(c)− ci. Note that in equilibrium a firm

i ∈ M has xeqi > 0 iff ci < peq(c). Taking the sum over all the firms N ⊆ M with strictly positive
production levels we have

|N |peq(c)−
∑

j∈N

cj =
∑

j∈N

bjx
eq
j = 1− peq(c) ,

where the second equality follows from the definition of the market price in a linear Cournot
competition (Equation (1)). This implies that the market clearing price at equilibrium is

p(xeq) = peq(c) =
1 +

∑

j∈N cj

n+ 1
.

Thus, the utility of a firm i ∈ N , at equilibrium, is (peq(c)− ci) · xeqi = (peq(c)− ci)
2/bi. �

2.2 The PM/RM Game

To address the issue that actions of one firm may impact the actions of another, resulting in an
outcome other than a Cournot-Nash equilbrium, we introduce a meta-game. In this new game,
which we refer to as the PM/RM game, a firm selects between two strategies (we consider other
variants later on):

1. PM (profit maximization), and

2. RM (revenue maximization).

In this PM/RM game, as in the Cournot competition, we have a set of M firms {1, . . .m}, and
each firm i has a production cost ci. Each firm selects an action in {PM,RM}. Let g(c,RM) = 0
and g(c,PM) = c. Given a joint action z ∈ {PM,RM}m, we define a virtual cost vector y(z) such
that yi(z) = g(ci, zi).

One can interpret playing PM as though the board of directors tells the CEO to maximize profit
in a (standard) Cournot competition. Choosing strategy RM can be viewed as though the board of
directors instructs the CEO to ignore production costs. Effectively, the board determines a virtual
cost, which could be either the true production cost or zero. In both cases, the CEO takes this
virtual production cost and chooses a production level corresponding to that production cost in the
standard Cournot competition. When production costs are zero, profit and revenue are identical,
and thus we can consider such an action as revenue maximizing.

We now consider the Cournot-Nash equilibrium of this virtual Cournot competition, played
with virtual production costs yi(z) = g(ci, zi) rather than ci. For this Cournot-Nash equilibrium
we have production levels xeq(y(z)), and price peq(y(z)). It follows from Equation (2) that the
production levels derived from the virtual Cournot competition are as follows:
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1. If firm i chooses profit maximization (PM) then the production level is xeqi (y(z)) = (peq(y(z))−
ci)/bi

3.

2. If firm i chooses revenue maximization (RM) then the production level xeq(z) = xeqi (y(z)) =
peq(z)/bi.

Similar to the state of affairs for a (myopic) Cournot competition, the utility of firm i ∈ M in
the PM/RM game is ui(z) = (peq(z) − ci)xi(z). Note that a firm’s utility in the PM/RM game is
determined using the true production costs, not the virtual production costs.

In this model, market prices will always be positive, i.e., peq(z) ≥ 0. Similarly, the production
level of any firm is always non-negative: xi ≥ 0, ∀i. Let Neq(z) be the set of firms with strictly
positive production levels, given the joint action z of the PM/RM game. Let PM(z) be set of
PM players with strictly positive production levels at joint action z, PM(z) = {r : zr = PM, cr <
peq(z)}, and let RM(z) be set of RM players at z, RM(z) = {r : zr = RM}.

A firm i that selects zi = PM is guaranteed a non-negative utility: Either it does not produce
(xi(z) = 0) or it produces (xi(z) = (peq(y(z)) − ci)/bi > 0), and in both cases ui(z) = bix

2
i (z).

A firm that chooses to maximize revenue always has strictly positive production level, and may
find itself with negative utility. However, in the equilibria of the PM/RM game, all firms have
non-negative utility (since all firms always have the option of playing PM).

We define the best response correspondence of a firm i as BRi(z−i) to include all the best
response actions, given that the other firms actions is z−i. Since we have only two actions, we
sometimes abuse the notation and talk about the best response action, when it is unique. A best
response sequence is a sequence of joint actions z1, . . . , zk, in which each joint action zj+1 is derived
from the preceding joint action zj by a single firm doing a best response move.

3 Nash Equilbria and Dynamics of the PM/RM game

In this section, we study the properties of the PM/RM meta-game and establish the existence of
pure Nash equilibria.

3.1 Market price vs. Production cost

The next lemma plays an essential role in understanding the structure of Nash equilibria of the
meta-game. It states that when a firm switches from profit maximization to revenue maximization,
the price increases (and therefore the number of producing firms can only decrease if the switching
firm was already producing).

Lemma 2 Let z−i be a joint action of all firms except of some firm i, and consider the two joint
actions zpm = (z−i,PM) and zrm = (z−i,RM) in which firm i has action PM and RM, respectively.
Let npm = |N(zpm)| and nrm = |N(zrm)| denote the number of producing firms in the two joint
actions and let the corresponding market prices be ppm = peq(z

pm) and prm = peq(z
rm). Then

1. ppm > prm, and

2. if firm i produces at zpm, then npm ≥ nrm.

3As y(z) is a function of z we will use the notation p(z) and p(y(z)) indistinguisably, and do likewise for arbitrary
other functions of y(z).
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Proof: For claim 1, we can derive ppm from prm by doing the computation in two stages. In
the first stage, we consider the increase in the price as firm i changes its action from RM to PM
while the other firms do not react; in the second stage, the other firms react to the price change
and the price drops. We will argue that the price will stay above the original level.

In the first stage, after firm i changes from RM to PM, the price increases regardless of whether
firm i keeps producing or stops producing. Specifically, if it keeps producing, the price increases by

ci
1+nrm

, and if it stops producing, the number of producers decreases by 1, and the price increases

by a factor of 1+nrm

nrm
.

In the second phase, some firms that were not producing at price prm start producing. This
affects the price by increasing the numerator by the sum of the production cost of the new producers;
the denominator increases by the number of new producers. The crucial observation is that the
new producers have production cost at least prm (since they were not producing at this price). It
follows that the changes in the numerator and the denominator of the price will leave the price
above prm.

Claim 2 follows directly from claim 1: Since the price goes up, every firm who produces before
the change keeps producing after the price increase; the only exception may be firm i which changed
its strategy to PM, but the premise is that firm i produces. �

The next lemma bounds the effect on the price when a firm switches from PM to RM.

Lemma 3 With the same premises of Lemma 2 and the additional assumption that firm i produces
at zpm, we have

prm +
ci

1 + npm
≤ ppm ≤ prm +

ci
1 + nrm

.

Proof: Let C =
∑

y∈PM(zrm) cy and C ′ =
∑

y∈PM(zpm) cy. By the premise of the lemma

i ∈ PM(zpm), hence ci is one of the terms in C ′. The difference C ′ − C − ci is the sum of the
production costs of the firms which start producing when i switches from RM to PM. There are
(npm − nrm) such firms, which by the previous lemma is non-negative. Since each of these firms
has production cost between prm and ppm, we have

(npm − nrm)prm ≤ C ′ − C − ci ≤ (npm − nrm)ppm

According to the definition of peq(z) we have:

prm =
1 + C

1 + nrm
; ppm =

1 + C ′

1 + npm
.

Combining these two equations, we have ppm(1+npm)−prm(1+nrm) = C ′−C, which implies that

ci + (npm − nrm)prm ≤ ppm(1 + npm)− prm(1 + nrm) ≤ ci + (npm − nrm)ppm,

and the lemma follows. �

Lemma 4 With the premises of Lemma 3 and the extra assumption that ci ≤ prm:

1. If firm i prefers PM to RM, then ci ≥ prm

(

1− 1
n2
rm

)

.

2. If firm i prefers RM to PM, then ci ≤ prm

(

1− 1
n2
pm

)

.
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Proof: The utilities of firm i in zpm and zrm are ui(z
pm) = 1

bi
(ppm − ci)

2 and ui(z
rm) =

1
bi
prm(prm − ci). If firm i prefers PM to RM, we have ui(z

pm) ≥ ui(z
rm),

prm
bi

(prm − ci) ≤ 1

bi
(ppm − ci)

2;

prm(prm − ci) ≤ (ppm − ci)
2; (6)

prm(prm − ci) ≤ (prm +
ci

1 + nrm
− ci)

2, (7)

where inequality (7) follows from inequality (6) using Lemma 3 and the fact that the terms in the
right-hand side inside the square are non-negative; this follows immediately from the premise of
the lemma that firm i produces at zpm. By simplifying the last inequality, we get the first part of
the lemma.

The second part is similar. Since firm i prefers RM to PM, we have ui(z
pm) ≤ ui(z

rm).
Therefore

(prm − ci)
prm
bi

>
(ppm − ci)

2

bi
;

(prm − ci)prm > (ppm − ci)
2; (8)

(prm − ci)prm > (prm +
ci

1 + npm
− ci)

2, (9)

where inequality (9) follows from inequality (8) using Lemma 3. Again, the right-hand side terms
inside the squares are positive, and this is guaranteed by the extra assumption that ci ≤ prm. The
last inequality is equivalent to the second inequality of the lemma. �

3.2 Existence of pure Nash Equilibrium

We first relate the price after the best response move to the cost of the firms.

Observation 5 Consider firms i and j with production costs ci > cj. Consider a joint action z
where zi = zj = RM. Let p′ be the price if j changes to PM from z, let p′′ be the price if i changes
to PM from z. Then, p′ ≤ p′′.

Proof: We argue that p′ ≤ p′′. One can view the cost change of firm i in two stages. In first
stage it increases its cost by cj , thus setting price p′ in the system (it can be the case that x does
not produce at p′). At the second change, firm i completes its cost change by increasing it by
remaining ci− cj (in case that i does not produce after first stage we have p′′ = p′). Since the price
is monotone in the cost, we get p′ ≤ p′′. �

We now show that if firm j prefers to switch from RM to PM in the joint action z, then any
firm i with higher production cost, and that plays RM in z, would also prefer to switch to PM.

Lemma 6 Consider firms i and j with production costs ci > cj. Consider a joint action z where
zi = zj = RM. If in z firm j prefers PM, i.e., BRj(z−j) = PM, then firm i also prefers PM, i.e.,
BRj(z−i) = PM. (See Figure 1(a).)

Proof: Let p = peq(z). If ci > p then clearly i prefers PM (since it has a negative utility when
playing RM). For the rest of the proof we assume that ci ≤ p. Consider joint actions z′ = (z−j ,PM),
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i j
| |

z = **** RM **** RM ****
↓ ↓

PM ⇐= PM

(a)

i j
| |

z = **** PM **** PM ****
↓ ↓

RM =⇒ RM

(b)

Figure 1: Consider joint action z with firms i, j such that ci > cj . Figure 1(a) corresponds to
Lemma 6, Figure 1(b) corresponds to Lemma 7.

z′′ = (z−i,PM) with market prices p′ and p′′ respectively. The utility of firm j in joint action z
is uj(z) = p(p − cj)/bj , and the utility of firm j in joint action z′ is uj(z

′) = (p′ − cj)
2/bj . The

utility of firm i in joint action z is ui(z) = p(p − ci)/bi and the utility of firm i in joint action z′′

is ui(z
′′) = (p′′ − ci)

2/bi. By assumption, j prefers to switch to PM when the joint action is z, so
uj(z) < uj(z

′), i.e.,
p(p− cj)/bj < (p′ − cj)

2/bj , (10)

and we want to show that ui(z) < ui(z
′), i.e.,

p(p− ci)/bi < (p′′ − ci)
2/bi . (11)

Let n, n′, n′′ be the number of firms with non-zero production levels in z, z′, z′′, respectively.
Using Lemma 4, since j prefers PM, we have cj > p(1− 1

n2 ).
For fixed p and p′, define f(r) = (p′ − r)2 − p(p − r). Rearranging equation (10), we have

f(cj) > 0. We will complete the proof by showing that f(r) is an increasing function in the
range r > p(1 − 1

n2 ). Given that, since ci > cj > p(1 − 1
n2 ) and f(cj) > 0, we will conclude

f(ci) > 0, and thus p(p − ci) < (p′ − ci)
2. Finally, from Observation 5 we have p′ ≤ p′′ and hence

p(p− ci) < (p′′ − ci)
2, which will complete the proof.

We now show that f is increasing in the desired range. The derivative of f is f ′(r) = 2(r−p′)+p.
From Lemma 3, p′ ≤ p+

cj
1+n

. For r ≥ cj we get

f ′(r) ≥ 2r − 2(p+
r

1 + n
) + p

= 2r
n

n+ 1
− p

≥ 2p

(

1− 1

n2

)

n

n+ 1
− p

≥ p(
2n− 2

n
− 1)

= p
n− 2

n
≥ 0 .

�

We now show that if firm i prefers to switch from PM to RM in the common action z, then any
firm j with lower production cost that plays PM in z would also prefer to switch to RM.
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Lemma 7 Consider firms i and j with production costs ci > cj. Suppose zi = zj = PM. If in joint
action z firm i prefers RM, i.e., BRj(z−i) = RM, then firm j would also prefer to switch to PM
from z, i.e., BRj(z−j) = PM. (See Figure 1(b).)

Proof: Let p = peq(z). We have zi = zj = PM. Consider joint actions z′ = (z−j ,RM),
z′′ = (z−i,RM) with market prices p′ and p′′. The utility of firm j in the joint action z is uj(z) =
p(p− j)/bj , and the utility of firm j in the joint action z′ is uj(z

′) = (p′ − cj)
2/bj . The utilities of

firm i are ui(z) = p(p− ci)/bi and ui(z
′′) = (p′′ − ci)

2/bi, respectively.
By assumption, i prefers RM, so ui(z) < ui(z

′). Assume by way of contradiction that firm j
prefers PM,i.e.,

(p− cj)
2 > p′(p′ − cj) . (12)

We will show that in this case firm i would also prefer PM, i.e.,

(p− ci)
2 > p′′(p′′ − ci) . (13)

For fixed p and p′′, again define f(r) = (p − r)2 − p′(p′ − r). Rearranging equation (12), we
get f(cj) > 0. We will show that f(r) is an increasing function in range r > cj . Given that, since
f(cj) > 0 and ci > cj , we can conclude f(ci) > 0, and thus (p− ci)

2 > p′(p′ − ci).
We now show that f is increasing in the desired range. The derivative f ′(r) = 2(r − p) + p′ ≥

2cj − 2p+ p′. Using Lemma 3, we have p ≤ p′ +
cj

1+n′ . According to Lemma 4, since firm j prefers

PM, we have cj > p′(1− 1
n′2 ). Therefore,

f ′(r) ≥ 2cj − 2p′ − 2
cj

1 + n′
+ p′

≥ 2cj
n′ + 1

(n′ + 1− 1)− p′

≥ 2p′
(n′ − 1)(n′ + 1)

n′2

n′

n′ + 1
− p′

≥ p′
2n′ − 2

n′
− p′

≥ p′
2n′ − 2− n′

n′

≥ p′
n′ − 2

n′
,

and therefore f(r) is a non-decreasing function for n′ ≥ 2.
We have established that, assuming firm j prefers PM, then (p− ci)

2 > p′(p′ − ci).
We now will argue, similar to Observation 5, that p′ ≥ p′′. One can view the cost change of

firm i in two stages. In the first stage the cost decrease by cj , thus setting price p′ in the system
(since utility of j is positive at p′, we have cj ≤ p′, therefore j produces at p′). In the second stage,
firm i decreases the price by the remaining ci − cj . Since the price is monotone in the cost, we get
p′ ≥ p′′. Therefore (p− ci)

2 > p′′(p′′ − ci), contradicting our assumption that i prefers RM. �

We now use the above lemmas to show that certain sequences of joint actions cannot be part
of any best response sequence.

Lemma 8 Consider joint action z with zi = PM, zj = RM and ci > cj. In addition, consider
following joint actions: z′ = (z−i,RM) , z′′ = (z′−j ,PM). Then the sequnce of joint actions z,
followed by z′, followed by z′′ cannot be best response sequence. (See Figure 2(a).)
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i j
| |

z = **** PM **** RM ****
↓

z’ = **** RM **** RM ****
↓

z” = **** PM **** PM ****

(a)

i j
| |

z = **** PM **** RM ****
↓

z’ = **** PM **** PM ****
↓

z” = **** RM **** RM ****

(b)

Figure 2: Impossible series of best response moves with firms i, j such that ci > cj . Figure 2(a)
corresponds to Lemma 8, Figure 2(b) corresponds to Lemma 9.

Proof: If z′′ is a best response to z′, then uj(z
′′) > uj(z

′). From Lemma 6 follows that it
should also hold ui(z

′) > ui(z) in contradiction to z followed by z′ is a best response sequence. �

Lemma 9 Consider joint action z with zi = PM, zj = RM and ci > cj. In addition, consider
following joint actions: z′ = (z−j ,PM) and z′′ = (z′−i,RM). Then sequence of joint actions z,
followed by z′, followed by z′′ cannot be best response sequence. (See Figure 2(b)).

Proof: If z′′ is a best response to z′, then ui(z
′′) > ui(z

′). From Lemma 7 follows that it should
also hold uj(z

′) > uj(z) in contradiction to z followed by z′ is a best response move. �

The following lemma will play a central role in showing that any best response dynamics con-
verges to a pure Nash equilibrium. The lemma shows that if there is a sequence of firms switching
from RM to PM, then in the initial joint action, the lowest cost firm among them would have a
best response to switch from RM to PM.

Lemma 10 Let z be a joint action with both firms i and j playing RM. Let n be the number of
producers at z, such that n ≥ 3. Consider a best response move of firm i followed by a best response
move of j both changing their strategy from RM to PM. If ci > cj, a best response action of j to
z−j is PM.

Proof: Consider joint actions ẑ = (z−j ,PM), ž = (z−i,PM), and joint action z̄ that differ from
z by actions of both firms i and j, i.e., z̄−i,−j = z−i,−j and z̄i = z̄j = PM. Let p, p̂, p̌ and p̄ be
market prices, and let number of producers be n, n̂, ň and n̄, respectively.

By assumption of the lemma we have n ≥ 3. If cj > p, then firm’s utility uj(z) < 0, thus it
prefers ẑ where its utility is nonnegative. For the rest of this lemma we consider cj < p.

By the assumption of the lemma, j prefers z̄ to ž. Using Lemma 4 we have: cj ≥ p̌(1 − 1
ň2 ).

Assume j prefers z to ẑ. Using Lemma 4 we have: j ≤ p(1− 1
n̂2 ). Combining together, we have

p̌(1− 1

ň2
) ≤ cj ≤ p(1− 1

n̂2
). (14)

According to Lemma 2 we have p̌ > p. For inequality (14) to hold, we need

1− 1

ň2
< 1− 1

n̂2
;

ň < n̂.

10



We can have ň < n̂ only if ci > p̌ and i stops producing when it changes from RM in z to PM
in ž.

From Observation 5 we have p̌ > p̂, therefore PM(ẑ) \ {j} ⊆ PM(ž). Clearly, RM(z) =
RM(ẑ) ∪ {j} = RM(ž) ∪ {i}. Hence, n̂ ≤ ň+ 1. Combining together, we get

ň < n̂ ≤ ň+ 1,

which holds only for n̂ = ň+1, therefore PM(ẑ) = PM(ž)∪{j}. We also have |PM(ž)|− |PM(z)| =
n̂− n. In addition, each firm i that produces at ž and not in z has production cost ci ≥ p. Using
the above, we get

p =
1 +

∑

y∈PM(z) cy

1 + n
<

1 +
∑

y∈PM(ž) cy

1 + n̂
=

1 +
∑

y∈PM(ž) cy

n̂

n̂

1 + n̂
= p̌

n̂

1 + n̂
,

Therefore ,
p

p̌
<

n̂

1 + n̂
.

Using Inequality (14) we obtain,

p̌(1− 1

ň2
) ≤ p(1− 1

n̂2
);

p̌
(ň2 − 1)

ň2
≤ p̌

n̂

1 + n̂

(n̂2 − 1)

n̂2
;

(ň2 − 1)

ň2
≤ (n̂− 1)

n̂
;

1− 1

ň2
≤ 1− 1

n̂
;

ň2 ≤ n̂.

Since, n̂ = ň + 1, we have (n̂ − 1)2 ≤ n̂, that holds only for n̂ ≤ 2. Since n ≤ n̂ it contradicts
the assumption of the lemma that n ≥ 3. �

The following theorem establishes that any sequence of best response moves converges to a pure
Nash equilibrium.

Theorem 11 Any sequence of best response moves in the PM/RM game converges to a pure Nash
equilibrium.

Proof: Suppose that game does not converge to Nash equilibrium, so there is a sequence of
best response moves that cycles. Consider firm j with highest cost on the cycle. Let P the maximal
chain of RM → PM moves that includes j.

Consider P of length at most 2. If j is the first best response move of P , then it contradicts to
Lemma 8 (Figure 2(a)). If j is the last best response move of P , then it contradicts to Lemma 9
(Figure 2(b)).

We are left with P of size at least 3. Let z be a joint action in the beginning of P . Applying
Lemma 10 recursively, we get that BRj(z−j) = PM. Let i be firm that made best response move
before P (it has to be BRi(z−i) = RM). Using Lemma 8 we get contradiction that a cycle exists.
�
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3.3 Best Response Dynamics Converge to Nash Equilibrium

Consider a current joint action z in the PM/RM game. If z is not a Nash equilibrium then at
least one of the firms prefers to switch strategy. We will show that a particular order of changing
strategies leads quickly to a Nash equilibrium.

To do this, let us define BRF (z) to be set of firms that prefer to switch strategy: BRF (z) =
{i|zi /∈ BRi(z−i)}. Intuitively, among the firms in PM(z), the one with lower production cost is
more likely to prefer to switch strategy. Similarly, among the firms in RM(z), the one with the
maximum production cost is more likely to switch strategy. We will consider the dynamics that
take advantage of this intuition. Let us define minPM(z) to be the firm with minimum production
cost among firms in PM(z) and maxRM(z) to be the firm with maximum production cost among
firms in RM(z).

Consider the following natural best response dynamics:
While BRF (z) 6= ∅, perform one of the following actions
1. If minPM(z) ∈ BRF(z), firm minPM(z) changes its strategy.
2. If maxRM(z) ∈ BRF(z), firm maxRM(z) changes its strategy.

In the proof of the following lemma, we show that if BRF (z) 6= ∅ then one of the actions is
applicable.

Lemma 12 The above procedure converges to a Nash equilibrium in at most 2m steps.

Proof: According to Lemma 7, if minPM(z) /∈ BRF(z) then no firm PM(z) is in BRF(z).
Similarly if firm maxRM(z) /∈ BRF(z), then no firm in RM(z) is in BRF(z). Therefore, one of the
two steps can be always performed while BRF(z) 6= ∅.

If we order the firms in decreasing order according to their production cost, the current joint
action is a vector in {PM,RM}m. The procedure either replaces the rightmost PM or the leftmost
RM. Furthermore, the most recent action cannot be undone immediately (it wouldn’t be best
response otherwise).

The claim is that the procedure finishes in at most 2m steps. To see this, observe that at the
beginning the procedure changes the leftmost RM or the rightmost PM until the vector consists of
a sequence of PM’s followed by a sequence of RM’s. From that point on, all the PM’s precede the
RM’s in the current vector. It follows that it takes at most m steps to reach the point where the
PM’s precede the RM’s and at most m more steps to reach the final vector. �

Starting from a joint action in which all firms play PM, the above dynamics will converge in at
most 2m steps to a Nash equilibrium (in fact, the proof shows that only m steps suffice). It follows
that

Corollary 13 There is a polynomial time computation to find some Nash equilibrium.

One might mistakenly assume that the Nash equilibria are all of the RM for low production cost
firms, PM for high production cost firms, the following shows that this is false:

Example 14 Consider two firms that have costs 0.30 and 0.28. It is straightforward to see that
(RM,PM) is a Nash equilibrium (and also (PM,RM) is an equilibrium).

12



4 Comparison of the PM/RM game and Cournot competition

In this section we compare the outcome of the PM/RM game versus the myopic Cournot compe-
tition. We start by comparing the prices. For simplicity we assume that bi = 1.

Assume z is a pure Nash equilibrium of the PM/RM game, where k firms are producing. Since
this is an equilibrium, all other firms that select PM, do not produce and have zero utility. Any
producing firm i ∈ M has production cost ci < p(z), and any firm which has ci < p(z) is producing.

Consider the Cournot competition price, which is equivalent to having all firms play PM. In
this case, we can think of computing the price in two steps, first, we let the firms that selected RM
to switch to PM, and then let any firm that was not producing before (since its cost was higher
than p(z)) to produce. After the first stage, the price is at least the previous price, and at most

p′ ≤ 1 + kp(z)

1 + k
= p(z) +

1− p(z)

1 + k
.

After the second step, since we are adding firms with production cost ci ∈ [p(z), p′], the price can
only go down (but remains above the price of p(z)). We can also lower bound p(z), since clearly
p(z) ≥ 1

k+1 .
We can now bound the difference between the Cournot competition price, pc, and the PM/RM

game price, as follows,

1 ≤ pc
p(z)

≤ p′

p(z)
= 1 +

1− p(z)

p(z)(1 + k)
= 1 +

1

p(z)(1 + k)
− 1

(1 + k)
≤ 2− 1

1 + k
≤ 2− 1

1 + n
,

where in the first inequality uses the fact that p(z) ≥ 1
k+1 .

We can also show that the above bound is almost tight. Consider the case of symmetric firms
with production cost of c = 1

n
− 1

n2 . The pure Nash equilibrium in this case is all the firms selecting

RM (see Section 5.2). The Cournot competition price is 1+nc
1+n

=
2− 1

n

1+n
while when all the firms select

RM, which is the pure Nash equilibrium, the price is 1
1+n

. In this case the ratio between the prices

is 2− 1
n
. We have established the following theorem.

Theorem 15 Let pc be the Cournot competition price and ppr be the PM/RM game price. Then,

1 ≤ pc
ppr

≤ 2− 1

1 + n
,

and there is a case where pc
ppr

= 2− 1
n
.

In our setting the price p defines the total production, since
∑

i∈M xi = 1 − p. Therefore the
total revenue (of all firms) is p(1− p), when the price is p. Since the price in the PM/RM game is
at least half the price of the Cournot competition, the total revenue is at least half. (Note that the
produced amount increases while the price decreases.)

We now can compare the utility of the firms in the two settings. We will show that the utility
can be dramatically different. Consider again the case of symmetric firms with production cost of
c = 1

n
− 1

n2 . The utility of each firm in the Cournot competition is,

(

2− 1
n

1 + n
− 1

n
+

1

n2

)2

=

(

2n2 − n− n(n+ 1) + (n+ 1)

n2(1 + n)

)2

= Θ(
1

n2
).
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The utility of each firm in the PM/RM game is,

(

1

1 + n
− 1

n
+

1

n2

)

1

1 + n
=

(

n2 − n(1 + n) + (1 + n)

n2(1 + n)

)

1

1 + n
= Θ(

1

n4
).

This implies that the ratio in the utilities can be as large as n2. Since all the utilities are identical,
the same ratio holds for the sum of the utilities.

Theorem 16 There is a case where the sum of the utilities in the Cournout competition is a factor
of Θ(n2) larger than the sum of the utilities in the PM/RM game.

5 Instances of special interest for the PM/RM Game

In this section we consider two cases: when only two firms on the market and when all firms have
the same cost.

5.1 PM/RM game: Two firms, complete characterization

In this section we give a complete characterization of all the pure Nash equilibria for the case of
two firms. The characterization is divided to four cases, depending on the firms’ costs, compared
to 1/2.

Theorem 17 For two firms in the PM/RM game, there is always at least one pure Nash equilibria,
and the characterization when a joint action is a pure Nash equilibrium is as follows are:

(RM,RM) when c1 <
1
4 and c2 <

1
4 .

(PM,RM) when either: 1. c1 ∈ [14 ,
1
2 ] and c2 <

1+c1
4 , or 2. c1 <

3
2

√
1− 2c2−(1−2c2) and c2 ≤ 1

2 .

(RM,PM) when either: 1. c1 <
1+c2
4 and c2 ∈ [14 ,

1
2 ], or 2. c1 ≤ 1

2 and c2 <
3
2

√
1− 2c1−(1−2c1).

(PM,PM) when one of the cases below holds:

1. c1 ∈ [1+c2
4 , 12 ] and c2 ∈ [1+c1

4 , 12 ].

2. c1 ≤ 1
2 and c2 ∈ [32

√
1− 2c1 − (1− 2c1),

1+c1
2 ].

3. c1 ∈ [32
√
1− 2c2 − (1− 2c2),

1+c2
2 ] and c2 ≤ 1

2 .

4. c1 >
1
2 , and c2 >

1
2 .

Proof: We consider four cases, depending on the firms’ costs, compared to 1/2.
Case 1 {c1 ≤ 1/2 and c2 ≤ 1/2}: This is the most interesting case, in which the two firms are
producing, as we will see later. We first define the price as a function of the action of the firms.4

RM PM

RM 1
3

1+c2
3

PM 1+c1
3

1+c1+c2
3

4In all matrices that we use, row firm is firm 1 and column firm is firm 2.
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Next we derive the production level xi(z), at each joint action.

RM PM

RM
(

1
3b1

, 1
3b2

) (

1+c2
3b1

, 1−2c2
3b2

)

PM
(

1−2c1
3b1

, 1+c1
3b2

) (

1+c2−2c1
3b1

, 1+c1−2c2
3b2

)

Each entry of production level matrix is non-negative for ci ≤ 1/2. Therefore, firm i that plays
PM will produce. For two firms we have the following payoff matrix:

RM PM

RM
(

1
3b1

(13 − c1),
1
3b2

(13 − c2)
) (

(1+c2
3 − c1)

1+c2
3b1

, (1−2c2
3 )2 1

b2

)

PM
(

(1−2c1
3 )2 1

b1
, (1+c1

3 − c2)
1+c1
3b2

) (

(1+c2−2c1
3 )2 1

b1
, (1+c1−2c2

3 )2 1
b2

)

To compute the pure Nash equilibria, we compute the preference of the firms. We start with
firm 1.

• Firm 1 prefers (PM,RM) to (RM,RM) when 1
3b1

(13 − c1) < (1−2c1
3 )2 1

b1
, which holds for

c1 >
1
4 .

• Firm 1 prefers (PM,PM) to (RM,PM) when (1+c2
3 − c1)

1+c2
3b1

< (1+c2−2c1
3 )2 1

b1
, which holds

for c1 >
1+c2
4 .

• Firm 2 prefers (RM,PM) to (RM,RM) for c2 >
1
4 .

• Firm 2 prefers (PM,PM) to (RM,PM) for c2 >
1+c1
4 .

The conditions for each joint actions to be a pure Nash equilibrium, are as follows:

RM PM

RM c1 <
1
4 , c2 <

1
4 c1 <

1+c2
4 , c2 >

1
4

PM c1 >
1
4 , c2 <

1+c1
4 c1 >

1+c2
4 , c2 >

1+c1
4

Case 2 {c1 > 1
2 and c2 > 1

2}: If both firms select RM then the price is 1/3 and they both have
negative utility. Assume firm 1 selects RM. If firm 2 selects PM then the price is p = 1+c2

3 . Since
c2 > 1/2, then c2 > p, and firm 2 is not producing. If the firm 2 selects PM and is not producing
then the price is 1/2 < c1, thus firm 1 has negative utility. Therefore, in this case both firms have
PM as a dominating action.
Case 3 {c1 ≤ 1

2 and c2 > 1
2}: If firm 2 selects RM, then the price is at most 1+c1

3 ≤ 1
2 . Therefore,

in this case, action PM will be a strictly dominating action for firm 2.
Consider joint action (RM,PM). We have production level x2 = 1+c2

3 − c2 < 0, thus firm
2 not producing. For joint action (PM,PM), firm 1 always produces (production level x1 ≥
min {1+c1+c2

3 , 1+c1
2 } − c1 > 0, so we have firm 2 produces if p = 1+c1+c2

3 > c2.
In the case that c2 > 1+c1

2 firm 1 produces alone, so her dominating action is PM, and her
utility is (1−c1

2 )2 1
b1
.
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Figure 3: Characterization of two firms pure Nash Equliria

For c2 <
1+c1
2 , since firm 2 dominating action is PM, the payoff values are:

u1(RM,PM) =

(

1

2
− c1

)

1

2b1
;

u2(PM,PM) =

(

1 + c2 − 2c1
3

)2 1

b1
.

Firm 1 will prefer action PM if c2 ∈ [32
√
1− 2c1 − (1 − 2c1),

1+c1
2 ], otherwise, when c2 <

3
2

√
1− 2c1 − (1− 2c1) firm 1 prefers RM.

Case 4 {c1 > 1
2 and c2 ≤ 1

2}: Similar to the previous case, firm 1 will select PM. Firm 2 will prefer
action PM if c1 ∈ [32

√
1− 2c2 − (1− 2c2),

1+c2
2 ], otherwise, when c1 <

3
2

√
1− 2c2 − (1− 2c2) firm 2

prefers RM. �

In each of the four regions, we showed that for any value of the production cost, there exists a
pure Nash equilibrium. (For some values there exists two pure Nash equilibria, see Example 14.)
The different pure Nash equilibria can be observed in Figure 3.

5.2 Symmetric firms

We consider the case of m symmetric firms with cost c for each, playing the PM/RM game.
Namely, each firm selects an action in {RM,PM}. The firms that select the action RM will be
revenue maximizer (behave as though their production cost is zero). The firms that select PM
would be profit maximizers. Note that since this is a symmetric case, in equilibrium all the firms
would be producing, i.e., n = m. We assume that for each firm i, bi = 1.

Suppose that k firms select the action PM and n−k firms select the action RM. In this case the
price is pk = 1+kc

n+1 . Firms that select PM will produce xkp = pk− c = 1−(n+1−k)c
n+1 , and firms that will

select RM will produce xkr = pk = 1+kc
n+1 . The utility of firms that select PM is ukp = xkp(p

k − c) =

(1−(n+1−k)c
n+1 )2, while the utility of firms that select RM will be ukr = xkr (p

k − c) = 1+kc
n+1 (

1−(n+1−k)c
n+1 ).

We will now compute for which costs c is it a Nash equilibrium to have k firms selecting PM
and n− k firms selecting RM.

Theorem 18 Let ak = n−1
n(n−k)+k+n−1 for k ∈ [1, n], a0 = 0, bk = n−1

n(n−k)+k
for k ∈ [0, n − 1] and

bn = 1. If players’ cost c ∈ [ak, bk] then there is a pure Nash with k firms selecting PM and n− k
firms selecting RM.

Proof: If a firm selecting RM deviates to PM (k ≤ n − 1), then its new utility would be
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uk+1
p = (1−(n−k)c

n+1 )2. Action RM will be a Best Response if,

1 + kc

n+ 1

(

1− (n+ 1− k)c

n+ 1

)

≥
(

1− (n− k)c

n+ 1

)2

(1 + kc)(1− (n+ 1− k)c) ≥ (1− (n− k)c)2

1− (n+ 1)c+ 2kc− k(n+ 1− k)c2 ≥ 1− 2(n− k)c+ (n− k)2c2

(n− 1)c ≥ ((n− k)2 + k(n+ 1− k))c2

n− 1

n(n− k) + k
≥ c

If a firm selecting PM deviates to RM (k ≥ 1), then its new utility would be uk−1
r = 1+(k−1)c

n+1 (1−(n+2−k)c
n+1 ).

Action PM will be a Best Response if,

(

1− (n+ 1− k)c

n+ 1

)2

≥ 1 + (k − 1)c

n+ 1

(

1− (n+ 2− k)c

n+ 1

)

(1− (n+ 1− k)c)2 ≥ (1 + (k − 1)c)(1− (n+ 2− k)c)

1− 2(n+ 1− k)c+ (n+ 1− k)2c2 ≥ 1− (n− 2k + 3)c− (k − 1)(n+ 2− k)c2

((n+ 1− k)2 + (k − 1)(n+ 2− k))c2 ≥ (n− 1)c

(n(n− k) + k + n− 1)c ≥ (n− 1)

c ≥ n− 1

n(n− k) + k + n− 1

This implies that for ck ∈ [ak, bk] there is a pure Nash with k firms selecting PM and n−k firms
selecting RM, where ak = n−1

n(n−k)+k+n−1 for k ∈ [1, n] and bk = n−1
n(n−k)+k

for k ∈ [0, n − 1]. Note

that ak = bk−1, and let a0 = 0 and bn = 1. This covers the entire range of symmetric production
costs. �

6 The continuous game

In this section we extend the PM/RM game, where each firm selects between two actions, to a
continuous PM/RM game. In the continuous PM/RM game, each firm i selects a bid zi ∈ [0, 1]. Let
z1, . . . , zm be the reported bids. Given the bids z, the price p(z) is set using a Cournot competition
assuming costs z, i.e., we have p(z) = peq(z). Let N(z) = {i | zi < p(z)} and n(z) = |N(z)|. Recall,
the price as a function of firm i’s bid is p(z−i, y) =

1+
∑

j∈N(z−i,y)
zj

n(z−i,y)+1 . In our analysis we fix the bids
of the other firms, i.e., z−i. Therefore we can write the functions as a dependent on y, while they
have an implicit dependency, for example, p(y) for p(z−i, y).

Firm i’s utility is

Ui(z−i, y) =

{

(p(y)− y)(p(y)− ci), for y < p(y)
0, for y ≥ p(y)

again, to simplify the notation, we refer to Ui(z−i, y) as Ui(y).

Lemma 19 p(y) and Ui(y) are continuous functions in firm i’s bid.
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Proof: Clearly, the price is a continuous function when it takes a value not equal to any firm’s
bid. Now consider a price p such that k firms’ bids take value p. It is straightforward to show that
the addition of these firms to the set N(z−i, y) does not cause a jump in price: The price p before
those firms join is some p = A

1+n
, where n is the number of producing firms. The price after they

join is A+k·p
1+n+k

= (1+n)·p+k·p
1+n+k

= p. Thus, the price function is continuous.
Player i’s utility function is continuous (taking value zero) when i’s bid matches the price or

falls above it. Elsewhere, the utility is the multiplication of two continuous functions and thus also
continuous. �

When we fix z−i, Ui is continuous over a compact space [0, 1]. Thus, (quasi) convexity is sufficient
to establish existence of pure Nash equilibria according to Debreu-Fan-Glicksberg theorem (see, [5]).

Lemma 20 For any fixed z−i the function Ui(y) is convex when it is non-negative.

Proof: Note that the derivative of Ui exists except at points where the value of n(y) changes.
In regions where y is greater than or equal to the price, the derivative of Ui is zero. In regions
where n(y) is fixed but y is less than the price, the derivative of Ui is monotonically decreasing in
y.

In order to complete the proof that Ui is convex, we will show that the limit from below of
the derivative at a point where n(y) changes is strictly greater than the limit from above of the
derivative at that point.

Consider the derivative of Ui (between points where N(y) changes):

∂

∂y
Ui(y) = 2p(y)p′(y)− p(y)− (y + ci)p

′(y) + ci

= p′(y)(2p(y)− y − ci)− p(y) + ci .

Assume that for y ∈ [α−ǫ, α) we have a price p−(y) and n− firms producing, and for y ∈ (α, α+ǫ]
we have p+(y) and n+ firms producing. Now, when y increases, p(y) increases, and when p increases
n(y) increases. Since the price p(y) is continuous (even when the number of producing firms
changes), we have p+(α) = p−(α). Let p(α) be that value. We can also assume that p(α) ≥ α
otherwise the utility is zero, and that p(α) ≥ ci, otherwise the utility is not positive. This implies
that 2p(α)− α− ci ≥ 0. Since n− < n+ we have that p′−(α) > p′+(α). This implies that

∂

∂y−
Ui(α) = p′−(y)(2p(α)− α− ci)− p(α) + ci > p′+(y)(2p(α)− α− ci)− p(α) + ci =

∂

∂y+
Ui(α)

which completes the proof. �

Since firms can always achieve non-negative utility, any Nash equilibrium of the game will reflect
non-negative utility for all firms, so the above lemma is sufficient to establish existence of pure Nash
equilibria for the continuous game.

Theorem 21 Any continuous PM/RM game has a pure Nash equilibrium.
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