
Compressing Rectilinear Pictures and Minimizing Access Control Lists

David L. Applegate ⁄ Gruia Calinescu y David S. Johnson z

Howard Karloff x Katrina Ligett { Jia Wang k

Abstract
We consider a geometric model for the problem of minimiz-
ing access control lists (ACLs) in network routers, a model
that also has applications to rectilinear picture compression
and figure drawing in common graphics software packages.
Here the goal is to create a colored rectilinear pattern within
an initially white rectangular canvas, and the basic opera-
tion is to choose a subrectangle and paint it a single color,
overwriting all previous colors in the rectangle. Rectangle
Rule List (RRL) minimization is the problem of finding the
shortest list of rules needed to create a given pattern. ACL
minimization is a restricted version of this problem where
the set of allowed rectangles must correspond to pairs of
IP address prefixes. Motivated by the ACL application, we
study the special cases of RRL and ACL minimization in
which all rectangles must be strips that extend either the
full width or the full height of the canvas (strip-rules). We
provide several equivalent characterizations of the patterns
achievable using strip-rules and present polynomial-time al-
gorithms for optimally constructing such patterns when, as
in the ACL application, the only colors are black and white
(permit or deny). We also show that RRL minimization

is NP-hard in general and provide O(min(n1=3;OPT1=2))-
approximation algorithms for general RRL and ACL mini-
mization by exploiting our results about strip-rule patterns.

1 Background and Motivation

1.1 Rectilinear Pictures. Many of today’s soft-
ware packages that generate graphics, from Xfig to
PowerPoint, share a common method for creating recti-
linear patterns. Starting with a white rectangular can-
vas, the user repeatedly applies a “rectangle tool” with
which one sweeps out a rectangular area and colors the
interior with a specified color, overwriting any previous
contents of that area. Most of the figures in this ab-

⁄david@research.att.com. AT&T Labs – Research, Room
C224, 180 Park Avenue, Florham Park, NJ 07932.

ycalinesc@iit.edu. Computer Science Department, Illinois
Institute of Technology, Stuart Building, Room 236, 10 West 31st
Street, Chicago, IL 60616. Research supported in part by NSF
grant CCF-0515088.

zdsj@research.att.com. AT&T Labs – Research, Room C239,
180 Park Avenue, Florham Park, NJ 07932.

xhoward@research.att.com. AT&T Labs – Research, Room
C231, 180 Park Avenue, Florham Park, NJ 07932.

{katrina+@cs.cmu.edu. Department of Computer Science,
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
15213. Research supported in part by AT&T.

kjiawang@research.att.com. AT&T Labs – Research, Room
A165, 180 Park Avenue, Florham Park, NJ 07932.

stract were produced using such a tool. See for instance
Figure 1, where the underlying canvas is a 4 £ 4 grid,
and a sequence of three rectangle operations is applied.

Figure 1: Creating a figure using rectangle rule applications.

The sequence depicted is inefficient since two op-
erations would have sufficed. Given the manual work
involved in producing such figures, one might well
want to determine efficient plans of action in advance.
Call a pair (R; c), where R is a rectangle and c is a
color, a rectangle rule, and a sequence of such rules
(R1; c1); (R2; c2); : : : ; (Rn; cn) a rectangle rule list or
RRL. For an RRL R, let PR denote the pattern it pro-
duces. Given a target pattern P , our goal is to find
a minimum-length RRL R such that PR = P . Such
an RRL also provides a scheme for picture compression
that is potentially more effective than the classic scheme
in which a black rectilinear figure is represented by a
collection of black rectangles that covers it. Moreover,
a restricted version of the problem has an important
application to Internet management.

1.2 Access Control Lists. Access control lists
(ACLs) are used in network router line cards to de-
termine which arriving packets should be forwarded to
their destination and which should be dropped. For in-
stance, an Internet Service Provider (ISP) might want
its access routers to forward only packets that came
from or are destined to customers who have officially
been assigned to that router. ACLs can also be used to
implement firewalls and to provide a range of levels of
quality of service [Cis01]. An ACL consists of a sequence
of rules. In an extended ACL a rule can be viewed
as having five components: Source Range, Destination
Range, Protocol, Port(s), and Action. The source and
destination ranges are specified by binary strings s of
length w or less, where w is the length of an IP ad-
dress, currently 32 but expanding to 64 in IPv6. The
string s matches all IP addresses that have it as a prefix;
an empty string matches everything. Possible protocols



include IP, TCP, UDP, and ICMP, with IP matching
all protocols and the others matching only packets la-
beled by that particular protocol. Ports can either be
an individual port number, a range of such numbers,
or “any,” which matches everything. The action can
either be permit, which allows the packet through, or
deny, which causes the packet to be dropped. A basic
ACL omits the protocol and port fields.
An ACL operates as follows. When a packet arrives,

the router determines the first rule in the list that
it matches and performs the action specified by that
rule. If there is no match, the packet is dropped.
In high-speed routers the classification is performed
by special hardware called “Ternary CAMs” (TCAMs)
that evaluate all the rules in parallel and output the
lowest indexed match. These are expensive and impose
limits on the size of ACLs, as do the overall memory
constraints in a line card. Thus a natural optimization
criterion for ACLs is to minimize their length while
preserving the results of their actions. This will also
reduce the maximum delay in routers that evaluate rules
sequentially.
Other optimization criteria have also been studied.

Many researchers have studied data structures and
algorithms for quickly determining which rule in an
ACL is the first match [GM99, EM01, KMT03, Tho03]
or, when information about the data traffic is known
in advance, trying to minimize the average time to
find the applicable rule, either simply by reordering
the ACL [Ful05] or by devising sophisticated decision
tree classifiers [CL05]. None of these approaches have
yet been implemented in real-world routers, however.
Although such approaches can be of value when using
software simulation to study router behavior, for now
ACL minimization remains the most direct way to
improve the access control performance of current real-
world routers. AT&T’s interest in ACL minimization
was the inspiration for this paper.
In modeling the ACL minimization problem we

can simplify matters by ignoring the protocol and port
restrictions. These fields are not present in the simpler
basic ACLs that are still sometimes used, and even
within extended ACLs, most rules (85% or more of the
rules in ACLs studied by Cohen and Lund [CL05] and
similar proportions in access router ACLs we ourselves
sampled) are basic in that the entries for protocol and
port match everything. The more restrictive rules, even
when present, are likely to have priority over the basic
ones, so that optimizing over the basic rules would at
least be a component of an effective heuristic for the
general problem. Thus in what follows we assume that
our ACLs are restricted to basic rules.
The problem of ACL minimization can be modeled

in geometric terms. Consider a 2w £ 2w grid with a
cell for each combination of a source and destination IP
address (columns and rows indexed from 0 to 2w ¡ 1).
The action of an ACL can be viewed as coloring the
cells of this grid, with the cell colored white if packets
with that combination are denied, and black if they are
permitted. Each rule applies to the rectangle in this
grid whose x-coordinates are the IP addresses in the
rule’s source range and whose y-coordinates are those
in the destination range. Thus each rule in an ACL is
once again a pair (R; c), where R is a rectangle and c is
a color, just as in our RRL application.
There are two distinctions between ACLs and

RRLs, one minor and one major. The minor distinc-
tion is that the rules in an ACL are in the reverse order
from those in an RRL. The major distinction is that the
set of possible rectangles is highly constrained in ACLs
since their x- and y-coordinates are determined by IP
address prefixes. The widths and heights of rectangles
must all be of the form 2k for 0 • k • w, and if a
rectangle’s width (height) is 2k, then it must start in a
column (row) whose coordinate is congruent to 0 mod
2k. Note that this means that the projections of the
rectangles on the axes are laminar in that for any two
rectangles the projections are either disjoint or one is
contained in the other.

1.3 Outline. The rest of this paper is organized as
follows. In Section 2 we discuss previous results related
to RRL and ACL minimization. In Section 3 we in-
troduce and motivate the special case of strip-rule pat-
terns. In ACL terms, this is the commonly encountered
case in which no single rule restricts both the source
and the destination address. We characterize the pat-
terns that can be constructed with such rules and show
that they can be efficiently recognized. In Section 4
we present polynomial-time algorithms for constructing
optimal strip-rule RRLs and ACLs for 2-color strip-rule
patterns. In Section 5 we show that RRL minimization
for general 2-color patterns is NP-hard by exploiting in-
sights into the strip-rule special case. In Section 6 we
use subroutines for the strip-rule special case to build
polynomial-time approximation algorithms for general
RRL and ACL minimization with worst-case ratios
of O(min(n1=3;OPT1=2)) and O(w2min(n1=3;OPT1=2))
respectively, where we assume the pattern is given to us
by a length-n RRL/ACL that generates it. These are
currently the best guarantees known to be attainable in
polynomial time. We conclude in Section 7 by mention-
ing some additional results and open problems.
Note that all our results also hold if the rule lists

must specify the color of the entire canvas/grid, i.e.,
when the background color does not come for free.



2 Previous Results

We know of no previous theoretical work on the
RRL/ACL minimization problems as formulated here,
but several special cases have been studied. The one-
dimensional case where only the destination is restricted
corresponds to the problem of minimizing routing ta-
bles, where under most routing protocols, the link out
which a packet is sent depends only on its destination
address. Here our rules correspond simply to intervals,
rather than rectangles. The one-dimensional ACL prob-
lem can be solved in polynomial time by dynamic pro-
gramming [DKVZ99, SSW03]. This holds even when
K > 2 colors are allowed, as is the case with routing
tables. If the pattern is specified by an ACL of length n
using length-w IP addresses, the algorithm of Suri et al.
[SSW03] produces an optimal equivalent ACL in time
O(Knw). Dynamic programming also can be used to
minimize one-dimensional RRLs. We know of no formal
references, but the problem was given with a solution
as part of a June 2003 TopCoder programming contest
under the name StripePainter [TC03] and it is not
difficult to obtain a O(Kn3) running time bound.
Returning to two dimensions, the case of RRL mini-

mization in which only black rectangle rules are allowed
has been well-studied under the name RECTILINEAR
PICTURE COMPRESSION. It was shown NP-Hard by
Masek [Mas78] and MaxSNP-hard by Berman and Das-
Gupta [BD97]. The best polynomial-time achievable
approximation guarantee known is O(

p
log n), where n

is the number of black grid cells in the pattern [AR99].
In contrast, the optimal all-black ACL for a given pat-
tern can be found in polynomial time. This was shown
by Lakshmanan et al. in a database context [LNW+02].
The key insight is that when the projections of the al-
lowed rectangles on both axes are laminar in the sense
defined in Section 1.2, the ACL consisting of all the
maximal black subrectangles has minimum length.
Unfortunately, the optimal all-black RRL/ACL can

be a very poor approximation to the optimal black-and-
white one. Consider a (2n¡1)£(2n¡1) grid in which the
only black cells are those both of whose coordinates are
odd. The optimal RRL/ACL consists of one black rule
covering the whole pattern, overwritten by n ¡ 1 white
column rules and n ¡ 1 white row rules, for a total of
2n¡1 rules, whereas the best all-black-rule list contains
n2 rules, yielding a ratio that is Θ(n) = Θ(OPT(P )).

3 Strip-Rule Patterns: Definitions and
Characterizations

In examining a sample of thousands of extended ACLs
from AT&T’s access routers, we observed that 95% of
these lists contained no rule that restricted both source
and destination IP addresses. In other words, in the vast

majority of ACLs, every rule was a strip-rule, that is,
one that colored either a set of contiguous full columns
or a set of contiguous full rows of the grid. We refer to
ACLs/RRLs made up entirely of strip-rules as “strip-
rule ACLs/RRLs” and the patterns they generate as
“strip-rule patterns.” (Note that the set of patterns
generated by strip-rule ACLs is identical to the set of
patterns generated by strip-rule RRLs.)
Not all patterns are strip-rule patterns; for example,

the simple 4-cell checkerboard pattern, with the lower
left and upper right cells black and the other two white,
is not. In fact, every black-and-white non-strip-rule
pattern must contain such a checkerboard as a subarray.
This is just one of many equivalent characterizations
of strip-rule patterns, as illustrated by the following
theorem.

Theorem 3.1. Suppose P is a 2-color pattern. The
following statements are equivalent.

1. P is a strip-rule pattern.

2. P contains no checkerboard subpattern; that is,
every 2£2 (not-necessarily-contiguous) subarray of
P contains a monochromatic column or row.

3. (Monotonicity Property) For any color C the rows
of P are hierarchical: For any two rows, the set of
columns where C is present in the first row either
contains or is contained in the set of columns where
C is present in the second.

4. The monotonicity property holds with the roles of
row and column reversed.

5. The following “Pick-Up-Sticks” algorithm always
results in an “all-gray” grid: Let gray be a color
not used in P . Call a column or row pseudo-
monochromatic if it contains at most one color
other than gray. Perform the following loop: While
there is a pseudo-monochromatic column or row
containing a cell with a non-gray color, choose such
a column or row and color all its cells gray (“pick
it up”).

The proof of Theorem 3.1 is relatively straightfor-
ward. Things get more complicated when we consider
patterns P having more than 2 colors. For example,
property (2) is no longer a characterization, as can be
seen from Figure 2, which shows a 3 £ 3 non-strip-rule
pattern with three colors that has no monochromatic
column or row, but each of whose 2 £ 2 submatrices
does have a monochromatic column or row. Surpris-
ingly, this is the worst counterexample possible, as we
have the following general characterization theorem.



2

23

3

3

2

1 1

1

Figure 2: A non-strip-rule pattern for which every 2 £ 2
subarray has a monochromatic column or row.

Theorem 3.2. Suppose P is a k-color pattern, k > 2.
The following statements are equivalent.

1. P is a strip-rule pattern.

2. Every 2 £ 2 and 3 £ 3 subarray of P contains a
monochromatic column or row.

3. The “Pick-Up-Sticks” algorithm always results in
an empty grid.

The forbidden subarray characterizations in Theo-
rems 3.1 and 3.2 are of combinatorial interest, but are
not the key to fast recognition of strip-rule patterns. For
that we can simply run the Pick-Up-Sticks algorithm.
By the characterization theorems, P is a strip-rule pat-
tern if and only if the algorithm succeeds in reducing it
to the empty grid, and the Pick-Up-Sticks test can be
implemented to run in O(n2) time (O(n2w) for ACLs),
where n is the length of an RRL/ACL that produces P ,
or is the maximum dimension of the effective grid for
the pattern, defined as follows.
For any rectilinear pattern P , call a horizontal or

vertical line segment that separates and bounds two
differently-colored regions a boundary line. Extend each
boundary line in both directions so that it crosses the
full canvas. We call the resulting grid the “effective
grid” for the pattern, and note that all its grid cells
will be monochromatic. Moreover, if the pattern is
generated by an RRL/ACL with n rules, then the
number of (internal) grid lines is at most 4n (or 2n if it
is a strip-rule RRL/ACL).
In what follows it will be convenient to consider the

variant on Pick-Up-Sticks we shall call Maximal Pick-
Up-Sticks (MPUS), where instead of graying individual
columns or rows we gray maximal contiguous sequences
of columns or rows that collectively contain precisely
one non-gray color. (In the case of ACLs we are further
restricted to maximal contiguous sequences that yield
legal strips, i.e., ones that correspond to IP prefixes.)
We halt as soon as the only colors left in the pattern are
gray and the background color (white). Like Pick-Up-
Sticks this is not a well-defined algorithm – we don’t say
how to choose the next operation when more than one
are available. However, even without specifying a tie-
breaking rule we do get the following results. For a strip-
rule pattern P , let OPTS(P ) denote the length of the
minimum-length strip-rule RRL/ACL that generates P

132 C CC 3

1

2

21312 C

R

R

CCCCC

Figure 3: Pattern with columns and rows labeled by their
equivalence class.

(it will always be clear from context whether we are
talking about RRLs or ACLs).

Theorem 3.3. For any strip-rule pattern P ,

1. All RRLs generable for P using MPUS are no
longer than 2OPTS(P ) + 1, and.

2. All ACLs generable for P using MPUS are no
longer than wOPTS(P ) + 3.

These bounds hold for any number of colors. The
bound for RRLs follows from the fact that any maximal
rule except possibly the last must reduce the number
of effective grid lines by 1. The bounds cannot be
significantly improved as we will show in the full paper.

4 2-Color Strip-Rule Patterns: Constructing
Optimal RRLs and ACLs

In this section we sketch our polynomial-time algo-
rithms for constructing optimal strip-rule RRLs and
ACLs for 2-color strip-rule patterns. We shall assume
that the pattern is given by its effective grid. It is not
difficult to see that finding an optimal RRL/ACL is
equivalent to finding an optimal ordering of operations
for MPUS. In what follows, say that a column/row is
“picked-up” by a rule if it is covered by the rule and was
not all gray at the time the rule was applied. Hence no
column/row can be picked up more than once. The
“color” of the rule will be the color of the non-gray
cells in the columns/rows picked up by the rule. We
exploit the fact that the columns and rows of a pat-
tern P can be divided into equivalence classes, with two
columns (rows) being equivalent if their corresponding
cells are identically colored in the original pattern P .
For example, see Figure 3. Here the column equiva-
lence classes are all-black columns (C1), black-above-
white columns (C2), and all-white columns (C3). Each
of the row equivalence classes has a single member, with
R1 consisting of the top row and R2 consisting of the
bottom row. The following observations are easy to ver-
ify for any 2-color strip-rule pattern P .

1. In any MPUS rule, all the columns/rows that are
picked up are in the same equivalence class.

2. If some member of an equivalence class is picked up
by a rule of color c, then all members of that class
must eventually be picked up by c-rules.



3. Every class is either picked up by a white rule,
picked up by a black rule, or not picked up, and
there is at most one row class and one column class
in the third category.

4. For an equivalence class E, let Nw(E) be the
number of white cells its members contain in P
and Nb(E) the number of black cells. Then no two
distinct column (row) equivalence classes have the
same value of Nw(E) or Nb(E) (this follows from
the monotonicity property in Theorem 3.1).

5. For any color c, no member of a class E can be
picked up by a c-rule until all members of classes
E0 of the same type (column or row) with Nc(E

0) >
Nc(E) have also been picked up by c-rules.

6. At any point before the all-gray pattern is reached
in the MPUS process, precisely two equivalence
classes will be pseudo-monochromatic and hence
ripe for pick-up. We will either have a “mixed
state,” where one class is a row class and the other
a column class and both have the same color, or a
“column state,” where the two classes are column
classes of different colors, or a “row state,” where
the two classes are row classes of different colors.

In light of the above, any RRL/ACL created by
MPUS can be divided into a sequence of segments, each
segment containing all the rules applied when a given
pair of equivalence classes were pseudo-monochromatic.
We can associate a 5-tuple label (E1; c1; E2; c2; U) with
each such segment, whose entries are specified as follows:
E1 and E2 are the two monochromatic classes and c1
and c2 are the colors of their non-gray cells just before
the segment was applied. E1 is the “newer” of the
two classes in that it is the one that was not pseudo-
monochromatic during the previous segment. The final
parameter, U , is the set consisting of those members of
E2 that had not yet been picked up when the segment
started. (Note that none of the members of E1 can
have been picked up earlier because this class was not
previously pseudo-monochromatic.) The fact that some
members of E2 may already have been picked up in
earlier segments, even in an optimal RRL/ACL, follows
from the observation that the best way to pick up
one equivalence class may sometimes involve picking
up members of the other. This is illustrated by the
pattern in Figure 3. Recall that an RRL must reduce
the pattern to one in which all cells are either gray
or (the background color) white. Here the initially
available classes are C1 (all-black columns) and C2 (all-
white columns). Any RRL that picks up all of C1 before
any member of C2 or vice versa will require at least six
rules, whereas there is an RRL of length five for the

pattern that finishes C1 first but picks up one member
of C2 in doing so.
In addition to a label, each segment has an action

i 2 f1; 2g, which is the index (from the segment’s label)
of the equivalence class that gets completely picked up
as a result of the segment.
Our algorithms exploit several structural lemmas.

First, suppose P is the target pattern, L is an
RRL/ACL for P , and S is a segment of L. Define
pattern(P; L; S) to be the pattern that existed after all
the rules in segments of L preceding S have been ap-
plied, i.e., P as modified by turning gray all columns
and rows covered by rules in those segments.

Lemma 4.1. Suppose L and L0 are two RRLs/ACLs for
a given pattern P , and S and S0 are segments of L and
L0 respectively whose associated 5-tuples are identical.
Then pattern(P; L; S) = pattern(P; L0; S0).
This follows from property (5) above and additional

arguments about the relationship between row and
column equivalence classes that are picked up with
different colors.

4.1 RRL-Specific Details. The next lemma speci-
fies a normal form for segments of optimal RRLs. Call a
pseudo-monochromatic column/row active if it contains
at least one non-gray cell, and otherwise call it gray.
Call an active column/row color-c if the non-gray cells
it contains are color c. Call a sequence of contiguous
pseudo-monochromatic columns/rows a color-c block if
each member of the sequence is either gray or color-c,
at least one member is color-c, and the sequence is max-
imal with respect to these properties. If c is a non-gray
color (black or white), let c̄ denote the other non-gray
color. Say a color-c block is embedded if the columns
(rows) immediately to its left and right (above and be-
low it) are color-c̄ columns (rows).

Lemma 4.2. For i 2 f1; 2g, suppose a minimum-
length RRL L for P contains a segment S with label
(E1; c1; E2; c2; U) that picks up all active members of
class Ei.

1. If c1 = c2, then one class consists of rows and
the other of columns. Assume for specificity that
Ei is a column class. (The row case is handled
analogously.) Then there is a minimum-length
RRL for P containing a segment S0 with the same
label and action as S that consists of a sequence of
rules that pick up all the color-ci column blocks in
pattern(P; L; S), one rule per block.

2. If c1 6= c2, then both classes are column classes
or both are row classes. Assume for specificity that
they are column classes and i = 1. (The other cases
are again handled analogously.)



(a) If pattern(P; L; S) contains a non-embedded
color-c2 block, then there is a minimum-length RRL
for P containing a segment S0 with the same label
and action as S that has the following structure.
Start with rules that pick up all the embedded color-
c2 blocks in pattern(P; L; S), one rule per block.
Then pick up all the (possibly newly-created) color-
c1 blocks, one rule per block.

(b) Otherwise, there is a minimum-length RRL for
P containing a segment S0 with the same label as S
whose action is to pick up all the active c2 columns
(instead of all the active c1 columns).

Case 1 holds because column and row rules that
are adjacent in a segment and have the same color can
be interchanged without affecting the resulting pattern.
Case 2 is more complicated, but essentially follows from
the fact that the sequence prescribed in 2(a) uses the
minimum possible number of rules to pick up all of
E1, and at the same time picks up a maximum set of
columns from the E2 “for free.”
We can exploit Lemmas 4.1 and 4.2 to construct a

minimum-length RRL by running a Dijkstra-like short-
est path algorithm on the following (implicitly con-
structed) segment graph for P . The vertices of our graph
are the 5-tuples that can occur in an RRL for P , with
the “source” vertex being the 5-tuple (F1; c1; F2; c2; F2),
where the Fi are the two monochromatic classes in P
and the ci are their colors. Note that since both classes
are new in this case, we can fix an arbitrary order for
them. The “sink” vertices are those 5-tuples that cor-
respond to patterns in which no black cells remain.
Every non-sink vertex v has two out-arcs, each corre-
sponding to the action of picking up one of the vertex’s
two pseudo-monochromatic classes, except for vertices
to which case 2(b) of Lemma 4.2 applies. For these all
the members of one of the two classes are in embedded
blocks and we omit the arc for the action that picks up
the other class. (Note that only one out-arc per vertex
can be omitted, since if the members of one class are all
contained in embedded blocks, there must be at least
one member of the other class that is not.) The out-arc
for action i corresponds to the Lemma 4.2 normal-form
segment for v and action i and leads to the 5-tuple that
results when one applies that segment to the pattern
corresponding to v. The length of the arc is the num-
ber of rules in the normal-form segment. Our goal is to
find the shortest path from the source vertex to a sink
vertex.
Since the segment graph is layered, we can evalu-

ate vertices in breadth-first order. The running time
will thus be proportional to the number of vertices en-
countered multiplied by the time to construct the nor-

mal form segments for each. Unfortunately, the number
of vertices is not a priori polynomially bounded. We
might have to consider labels with all 2jE2j ¡ 1 possible
nonempty subsets of E2 as candidates for U . The next
lemma shows that this is fortunately not the case.

Lemma 4.3. (Containment Lemma) If vertices v =
(E1; c1; E2; c2; U) and v0 = (E1; c1; E2; c2; U 0) are both
reachable from the source vertex in the segment graph
for P and U 6= U 0, then either U ‰ U 0 or U 0 ‰ U .

Thus there can be at most jE2j reachable labels of
the form (E1; c1; E2; c2; U) for given values of Ei and ci.
A careful analysis, taking into account the fact that the
column classes are all disjoint, as are all the row classes,
then leads to the conclusion that the total number of
reachable states is O(n2) where n is the number of
effective grid lines. The overall running time for the
algorithm can then be shown to be O(n3).

Proof of Lemma: The proof is by induction on the depth
of the vertices in the graph. The lemma clearly holds
for depth 0, since the source vertex is the only vertex at
this depth. Suppose it holds for depth d ‚ 0 and that
v = (E1; c1; E2; c2; U) and v0 = (E1; c1; E2; c2; U 0) are
vertices at depth d + 1. We may assume that neither
U nor U 0 is the full class E2, as otherwise the desired
conclusion would hold trivially. There are two main
cases to consider.
Case 1. E1 and E2 are both column classes or

both row classes, in which case we must have c1 6= c2.
Assume for specificity that they are column classes. The
reader may verify that the only possible arcs into v
and v0 come from the mixed-state vertices of the form
(E0
1; c2; E2; c2; U) and (E0

1; c2; E2; c2; U 0), respectively,
where E0

1 is the previously-picked-up row equivalence
class that in the original pattern P had the fewest color-
c2 cells while still having color c2 in all cells it had in
common with the columns of E1. But then, by induction
either U ‰ U 0 or U 0 ‰ U , as desired.
Case 2. One of E1 and E2 is a column class

and the other is a row class, in which case c1 = c2.
Assume for specificity that E2 is the column class.
Arcs into these two vertices can be from vertices of
only two types, either (E0

1; c; E2; c2; X) (Type 1) or
(E2; c2; E0

1; c; Y ) (Type 2), where c is the other color
from c2 and E0

1 is the previously-picked-up column class
that has the fewest cells of color c while having color c
in the cells it shares with the rows of E1. Since v and v0

are reachable from the source vertex, there must be at
least one arc into each from a reachable vertex of depth
d. Let a be such an arc into v and a0 be such an arc
into v0 and let x and x0 be the tail vertices for a and
a0 respectively. We break into three cases depending on
the types of x and x0.



Case 2a. Both x and x0 are Type-1 vertices.
Denote them by x = (E0

1; c; E2; c2; X) and x0 =
(E0
1; c; E2; c2; X 0), where U µ X and U 0 µ X 0 since

the actions applied to x and x0 could not have enlarged
the set of active columns in E2. By our induction hy-
pothesis we know that either X µ X 0 or X 0 µ X. As-
sume without loss of generality that X µ X 0. We claim
that this implies that U µ U 0. Let Px and Px0 be the
patterns corresponding to x and x0 respectively, and as-
sume, again without loss of generality, that c2 is black.
Each of the normal-form segments corresponding to a
and a0 picks up all the embedded black blocks in its
pattern. For an active black column in X to survive to
be included in U , it must be the case that on at least
one side of it there is no active white column between
it and the boundary or between it and a non-pseudo-
monochromatic column. Turning some set of all-gray
columns into active black columns, as one does toX 0¡X
when one goes from x to x0, will not change this fact.
Thus all active columns that survive to be included in
U will also be included in U 0 and U µ U 0 as desired.
Case 2b. Both x and x0 are Type-2 vertices.

Denote them by x = (E2; c2; E0
1; c; Y ) and x0 =

(E2; c2; E0
1; c; Y 0). By the induction hypothesis we know

that either Y µ Y 0 or Y 0 µ Y . We can assume with-
out loss of generality that Y µ Y 0. We claim that
this implies that U 0 µ U . Once again assume c2 is
black. For an active black column to survive to be in-
cluded in U 0, it must again be the case that on at least
one side of it there is no active white column between
it and the boundary or between it and a non-pseudo-
monochromatic column. Turning gray some set of ac-
tive white columns, as one does to Y 0 ¡Y when one goes
from x0 to x, will not change this fact. Thus all active
columns that survive to be included in U 0 will also be
included in U and U 0 µ U as desired.
Case 2c. One of x and x0 is of Type 1, say x, and

the other is of Type 2 In this case we can denote them
by x = (E0

1; c; E2; c2; X) and x0 = (E2; c2; E0
1; c; Y ).

Consider the potential vertex x00 = (E0
1; c; E2; c2; E2),

which corresponds to the same pattern Px00 as does
(E2; c2; E0

1; c; E0
1), and consider the result of applying

the normal-form segment that picks up all members of
E0
1, which we can denote by (E1; c1; E2; c2; U 00). Then,
since X µ E2, we have by the argument in the first
case above that U µ U 00. On the other hand, since
Y µ E0

1, we have by the argument in the second case
that U 00 µ U 0. Hence U µ U 0, as needed. Thus
the desired conclusion holds in all three cases and by
induction the lemma follows.

4.2 ACL-Specific Details. Our algorithm for find-
ing optimal strip-rule ACLs is more complicated than

that for RRLs, although the basic structure is the same.
The key insight is to identify the normal form for a seg-
ment when the two pseudo-monochromatic classes are
either both rows or both columns.
In ACLs the rectangles allowed in rules are re-

stricted, and any legal column or row strip-rule can be
specified by a color and an IP-address prefix p, repre-
senting the set of all columns/rows whose coordinate
x, when written as a w-bit binary number, has p as a
prefix. In what follows we shall represent such rules as
pairs (p; c) where p is the prefix and c is the color. If
(p; c) and (p0; c0) are both row or both column rules and
p is a proper prefix of p0 we shall say that (p; c) contains
(p0; c0) – every column/row addressed by the latter rule
is addressed by the former. Note that in any optimal
ACL, (p0; c0) must precede (p; c) if it is contained in it;
otherwise it would have no effect and could be deleted.
Now let us consider the segments of an ACL. Say

a rule in such a segment is undominated if it is not
contained in any other rule from that segment, and
note that the set of columns picked up by the segment
is completely determined by the undominated rules it
contains. Moreover, in a minimum-length ACL the
undominated rules in a segment can all be postponed
to the end of the segment and arranged in any order
without altering the resulting pattern, since they must
already be preceded by any rules they dominate.
Define the signature for a segment to be a (w + 1)-

tuple (x0; x1; x2; : : : ; xw), where xi is the number of
prefixes of length i that are undominated rules in the
segment. Given two different signatures, consider the
first component in which they disagree. We say that
the signature with the larger value in this component
is the stronger of the two. The dominant signature
for a collection of segments is the strongest of their
signatures.

Lemma 4.4. Suppose a minimum-length ACL for P
contains a segment S with label (E1; c1; E2; c2; U) that
picks up all active members of class Ei, i 2 f1; 2g. Let
S0 be a segment with the same label that is a minimum-
length list of rules that picks up all active members of
Ei, consists only of rules of the same type (column/row)
as Ei, and has the dominant signature among all such
minimum-length segments. If S0 does not pick up all
active members of both Ei and the other class E3¡i, then
there is a minimum-length ACL for P that contains S0.
Otherwise, there is a minimum-length ACL for P that
contains a segment with the same label as S that picks
up class E3¡i.

Note that in the latter case it can be shown that
the normal-form segment that picks up all of E3¡i does
not pick up all active members of Ei.



Proof of Lemma. Suppose the Lemma is false, and
consider an ACL L for P with the maximum number
of initial segments that do satisfy the Lemma. Consider
the first segment S in L that fails to satisfy the Lemma.
Suppose first that c1 = c2, in which case one class

is a row class and the other is a column class. Since all
the rules of the optimal segment must be color-c1 rules,
they can be permuted in any way without affecting the
resulting pattern. Thus we may rearrange rules so that
the rules applying to Ei come first and pick up all the
active members in Ei. Thus in the revised ACL the
segment will end with the last of these rules. If the
overall ACL is of minimum length, this segment must
itself be of minimum length, and hence can have the
structure claimed by the Lemma for this case. Thus the
new ACL satisfies the Lemma for one additional initial
segment, a contradiction.
So suppose that c1 6= c2 and hence we are dealing

either with two column classes or two row classes.
Assume for specificity that they are both column classes
and that i denotes the white class. As remarked
above, we may assume that in S all undominated rules
come at the end, with the undominated white rules
preceding the undominated black rules. But note that
this means that all the active white columns must have
been picked up before the first undominated black rule
is encountered, and so the segment must end before the
first undominated black rule appears.
Thus S can be assumed to contain no undominated

black rules. Suppose it nevertheless fails to have the
desired properties. If S picks up the same set of active
columns as S0, we can replace S by S0 (which by
definition is no longer) and obtain an overall ACL for
P that is no longer than the given one and satisfies
the Lemma for one additional initial segment, again a
contradiction. So S must either pick up some active
black column not picked up by S0 or fail to pick up
some active black column that S0 does pick up.
In what follows we assume that, over all minimum-

length ACLs that contain segments S with the given
label and action, S is one of minimum length. First
suppose there is an active black column x picked up by
S but not by S0. Let (p; c) be the undominated rule in
S that covers column x. By the above argument, (p; c)
must be a white rule. S0 cannot contain (p; c) or any rule
that dominates (p; c) since if it did it would pick up x.
Let L1 be the set of rules in S used to pick up columns
addressed by p, and L0

1 be the corresponding set of rules
for S0. Note first that we must have jL1j > jL0

1j, as
otherwise we could replace L0

1 by L1 in S0 and obtain a
new segment that was no longer than S0 and yet had a
stronger signature, contradicting our assumption that
S0 had the dominant signature among all minimum-

length segments that picked up all active members of Ei.
Let L00

1 be the set of rules obtained by adding (p; black)
to L0

1. Then we have jL00
1 j • jL1j. Moreover, L00

1 will
correctly pick up all the active columns addressed by p
– all columns addressed by L0

1 must already be correctly
picked up and any active column addressed by p but not
picked up by L0

1 must be pseudo-monochromatic black.
Thus replacing L1 by L00

1 in S will yield an ACL that is
no longer and has the same effect. However, note that
the segment now has an undominated black rule, which
we can assume goes at the end, and hence is no longer
part of the segment. Thus the resulting segment S00

is shorter than S, contradicting our assumption that S
had minimum length.
Thus we may assume that S only picks up active

black columns that are also picked up by S0. Since S
picks up all active members of Ei and S0 has minimum
length among segments that do so, we must have jS0j •
jSj. Thus we can swap S0 for S in our ACL without
increasing its length. At the end of the segment fewer
black columns may be active than before, but this will
not prevent subsequent rules in the ACL from being
applied. Thus the ACL will still handle the pattern P . If
no active black columns remain after applying S0, then
we have constructed a minimum-length ACL in which
the segment with the same label as S picks up the black
class. Otherwise, this new ACL satisfies the Lemma for
an additional initial segment, a final contradiction. ¥
In the full paper we will show that for any label

(E1; c1; E2; c2; U) and action i, every minimum-length
segment with the dominant signature picks up precisely
the same members of E1 and E2. We then present
an O(nw) dynamic programming algorithm that con-
structs such a segment. As in the RRL case, this can be
incorporated into an overall dynamic programming al-
gorithm for computing a minimum-length ACL for any
given pattern P . That the state space for this algorithm
is again of size O(n2) (and hence the algorithm runs in
polynomial time) follows by a somewhat more compli-
cated analogue of the Containment Lemma for RRLs.

5 NP-completeness for 2-color RRLs

In this section we provide a brief overview of our proof
that the problem of constructing a minimum-length
(general) RRL is NP-hard. The proof is by a transfor-
mation from RECTILINEAR PICTURE COMPRES-
SION. Suppose we are given a rectilinear black pattern
P on a grid with a white background and asked if there
is a collection of k or fewer black rectangles whose union
is the pattern. We will construct a rectilinear black and
white pattern P 0 and an integer k0 such that P 0 can be
generated by a length-k0 RRL if and only if P can be
represented as the union of k or fewer black rectangles.



If we could somehow restrict the RRL to use only
black rules, we could simply use P 0 = P . Unfortunately,
as we have seen, white rules cannot be ignored. Our
solution is to embed P into a much bigger pattern which
will effectively eliminate the usefulness of white rules in
constructing P . To do this, we design a background
for the figure that must be picked up by strip-rules if
the RRL is to be sufficiently short. The background is
a large grid constructed out of multiple copies of the
7£ 7 tile depicted in Figure 4, for which the minimum-
length RRL is a strip-rule RRL with a specific structure.
The construction is relatively straightforward, but the
argument that it works is quite intricate due to the
flexibility that 2-color rules provide.

6 Approximation Algorithms for Unrestricted
Patterns

Given that the general problem of RRL minimization is
NP-hard and the general ACL problem may be NP-hard
as well, it is reasonable to look for good approximation
algorithms. The only previously-studied algorithms
that can be viewed as approximation algorithms for
these problems are the ones that construct RRLs/ACLs
using only black rules. Unfortunately, as observed in
Section 2, even the best possible RRL/ACL consisting
only of black rules can be off by a factor of OPT(P ) for
patterns where OPT(P ) = Θ(n).
Our new algorithms, which work for arbitrary num-

bers of colors and use Maximal Pick-Up-Sticks as a
subroutine, represent a substantial improvement. In
the RRL case, our algorithm, which we call the Iter-
ated Strip-Rule algorithm (ISR), works as follows. We
assume we are given the pattern by a length-n RRL
that generates it. Suppose the effective grid for the
pattern has Ncol columns and Nrow rows and assume
without loss of generality that Ncol ‚ Nrow. Note that
OPT(P ) ‚ bNcol=2c since no rule can introduce more
than two new effective vertical grid lines. Our basic
approach is to partition P into subrectangles that are
all strip-rule patterns, each of which can be handled by
MPUS. We do this for several different partitions, and
take the best result, unless all are worse than the input
RRL, in which case we return the latter.
More formally, for each integer q, 1 • q • Ncol,

Figure 4: Tile in NP-completeness proof for RRLs.

we do the following. First we partition the grid into q
vertical strips of widths as close to Ncol=q as possible.
Then we partition each strip into a sequence B1; B2; : : :
of blocks, starting from the bottom. The odd-indexed
blocks (the good blocks) are subrectangles that extend
to the full width of the strip and as far up as they
can while still constituting a strip-rule pattern. Each
good block that does not extend all the way up to
the top boundary of P is followed by a bad block that
is a height-1 subrectangle immediately above the good
block, extending the full width of the strip. (Note that
such rectangles are trivially strip-rule patterns.) Let
Rq be an RRL constructed by using MPUS to handle
each of the blocks separately. (Strips for a block will
typically be rectangles in terms of the overall pattern.)
Our output is the best of the original RRL and the Ncol

constructed RRLs.

Theorem 6.1. The iterated strip-rule algorithm runs
in polynomial time and produces an RRL whose length
is O(OPT(P )min(n1=3;OPT1=2)). Moreover, the bound
is tight in that there exist patterns with arbitrarily large
values of OPT(P ) for which the algorithm produces
RRLs whose lengths are Θ

¡
OPT(P )3=2

¢
.

Key to the proof are the observations that (1) the
RRL created by MPUS for a p £ q rectangle uses at
most p + q rules, (2) the union of each bad block with
its preceding good block contains either a 2£ 2 or 3£ 3
subarray with no monochromatic columns or rows (an
obstacle subarray in what follows), and (3) the following
lower bound lemma.
Denote the grid cells by Pi;j , 1 • i • Ncol and

1 • j • Nrow. If 1 • h • i • Ncol and 1 • j • k •
Nrow, let R(h; i; j; k) be the subrectangle of the grid
formed by the intersection of columns h through i with
rows j through k. Such a subrectangle R is a forbidden
rectangle if it contains an obstacle subarray that has the
same leftmost and rightmost columns and the same top
and bottom rows as R.

Lemma 6.2. Suppose there are r disjoint forbidden
rectangles. Then OP T (P ) ‚ r=4.

Proof. Let R be a collection of r disjoint forbidden
rectangles, and let E be any rectangle in R. Note
that by definition of forbidden rectangle, all the bound-
ing columns/rows of E (the top and bottom rows
and the leftmost and rightmost columns) are non-
monochromatic in P . Let A be an optimal RRL for
P , which we shall view in pick-up-sticks order. The first
rule in A to include a corner of E can include only one of
its four corners, as otherwise a bounding column/row of
E would be monochromatic in P . This means that the
rectangle corresponding to the rule must have one of its
corners in E. Since all the rectangles in R are disjoint



and nonmonochromatic, every one must be intersected
by at least one rule. Since no rule has more than four
corners, we conclude that r • 4jAj = 4 ¢ OP T (P ), and
the claim follows. ¥
The rest of the proof of Theorem 6.1, including

lower bound examples, will be given in the full paper.
To get an approximation algorithm for ACLs, simply
replace each rectangle in the RRL solution by the mini-
mum set of ACL rules needed to generate it, yielding an
O(w2OPT(P )min(n1=3;OPT1=2)) worst-case bound.

7 Additional Results and Open Problems

In much of this paper we have concentrated on strip-
rule RRLs and ACLs for strip-rule patterns. However,
in some applications one might be able to use arbitrary
RRLs/ACLs for strip-rule patterns, in which case the
performance penalties imposed by the restriction to
strip-rule RRLs/ACLs is relevant. Fortunately the
penalty is not too severe, at least in the case of RRLs.

Theorem 7.1. For RRLs and for any strip-rule pat-
tern P , OPTS(P ) • 4 ¢OPT(P ) + 1.
This follows from the fact that no rectangle rule

can introduce more than 4 effective grid lines and
every strip-rule must eliminate at least 1, with the
possibility of one final rule to color any cells remaining
after all effective grid lines have been eliminated. The
asymptotic bound is at least 3.5, based on a sequence of
patterns Pk to be presented in the full paper that have
OPT(Pk) = 2k+2 and OPTS(Pk) = 7k+6. It would be
interesting to close this gap, as well as that for ACLs,
where we get upper and lower bounds proportional to
the IP address length w.
At present, however, the main open problem con-

cerns the complexity of general ACL minimization.
Our NP-completeness result for RRL minimization does
not preclude the fact that ACL minimization might
be in P. Also open is the question of whether ei-
ther of these problems is MaxSNP-hard. (Our NP-
completeness transformation for RRLs destroys the
MaxSNP-hardness of the source problem.)
Another open problem is that of improving on the

approximation algorithms of the previous section for the
case of arbitrary patterns, both for RRLs and ACLs.
We can prove that the greedy heuristic that repeatedly
picks up the pseudo-monochromatic rectangle with the
most non-gray cells has worst-case examples that are
at least as bad as those for ISR. Are polylogarithmic
guarantees possible in polynomial time, as they are for
the black-rule-only case? Are additional Ω(w) factors
necessary in the guarantees for ACLs?
Finally, can our strip-rule optimization algorithms

be extended to more than 2 colors, where for ACLs

the extra colors might correspond to different quality
of service guarantees?

References

[AR99] V. S. Anil Kumar and H. Ramesh. Covering recti-
linear polygons with axis-parallel rectangles. In Proc.
31st Ann. ACM Symposium on Theory of Computing,
pages 445–454, New York, NY, 1999. ACM.

[BD97] P. Berman and B. DasGupta. Complexities of
efficient solutions of rectilinear polygon cover problems.
Algorithmica, 17:331–356, 1997.

[Cis01] Cisco Systems. Controlling network access with
access control lists (Chapter 10). In Catalyst 6500
Series Switch and Cisco 7600 Series Firewall Ser-
vices Module Configuration Guide, 2001. Available
at http://www.cisco.com/univercd/cc/td/doc/pro

duct/lan/cat6000/mod icn/fwsm/fwsm 2 2/fwsm cfg?

mngacl.pdf.
[CL05] E. Cohen and C. Lund. Packet classification in large

ISPs: Design and evaluation of decision tree classifiers.
In Proc. ACM Sigmetrics ’05, pages 73–84, 2005.

[DKVZ99] R. Daves, C. King, S. Venkatachary, and B. Zill.
Constructing optimal IP routing tables. In Proc. IEEE
INFOCOM 1999, pages 88–97, 1999.

[EM01] David Eppstein and S. Muthukrishnan. Internet
packet filter management and rectangle geometry. In
Proc. 12th Ann. ACM-SIAM Symp. of Discrete Algo-
rithms, pages 827–835, Philadelphia, PA, 2001. SIAM.

[Ful05] E. W. Fulp. Optimization of network firewall poli-
cies using directed acyclic graphs. In Proc. IEEE In-
ternet Management Conf., 2005.

[GM99] P. Gupta and N. McKeown. Packet classification
on multiple fields. In Proc. Conf. on Applications,
Technologies, Architectures, and Protocols for Comp.
Communication (SIGCOMM), pages 147–160, New
York, NY, 1999. ACM.

[KMT03] H. Kaplan, E. Molad, and R. E. Tarjan. Dynamic
rectangular intersection with priorities. In Proc. 35th
Ann. ACM Symposium on Theory of Computing, pages
639–648, New York, NY, 2003. ACM.

[LNW+02] L. V. S. Lakshmanan, R. T. Ng, C. X. Wang,
X. Zhou, and T. J. Johnson. The generalized MDL
approach for summarization. In Proc. Int. Conf.
on Very Large Databases (VLDB’02), pages 766–777,
2002.

[Mas78] W. J. Masek. Some NP-complete set covering
problems. Unpublished manuscript, 1978.

[SSW03] S. Suri, T. Sandholm, and P. Warkhede. Com-
pressing two-dimensional routing tables. Algorithmica,
35:287–300, 2003.

[TC03] June 2003. TopCoder Match Summary, Sin-
gle Round Match 150, http://www.topcoder.com/

index?t=statistics&c=srm150 prob.
[Tho03] M. Thorup. Space efficient dynamic stabbing with

fast queries. In Proc. 35th Ann. ACM Symposium on
Theory of Computing, pages 649–658, New York, NY,
2003. ACM.


