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Agent-based Model of the Political Election
Prediction Market

Tongkui Yu1,2 and Shu-Heng Chen1 !

1. AI-ECON Research Center, Department of Economics, National Chengchi
University, Taipei 11605

2. Department of Systems Science, School of Management, Beijing Normal University,
Beijing 100875

Abstract. We propose a simple agent-based model of the political elec-
tion prediction market which reflects the intrinsic feature of the predic-
tion market as an information aggregation mechanism. Each agent has
a vote, and all agents’ votes determine the election result. Some of the
agents participate in the prediction market. Agents form their beliefs by
observing their neighbors’ voting disposition. In this model, the mean
price can be a good forecast of the election result. We study the ef-
fect of the agents’ neighbor scope and information distribution on the
prediction accuracy. In addition, we also find the mechanism which can
replicate the favorite-longshot bias, a stylized fact in the prediction mar-
ket. This model can provide a framework for much further analysis on
the prediction market such as complex agent behavioral patterns.

Keywords: Prediction market, Agent-based simulation, Information ag-
gregation mechanism, Prediction accuracy, favorite-longshot bias

1 Introduction

Prediction Markets, sometimes referred to as “information markets,” “idea fu-
tures” or “event futures”, are markets where participants trade contracts whose
payoffs are tied to a future event, thereby yielding prices that can be interpreted
as market-aggregated forecasts [1]. To predict whether a particular event (say,
some candidate winning the election) will happen, a common approach is to cre-
ate a security that will pay out some predetermined amount (say, 1 dollar) if the
event happens, and let agents trade this security until a stable price emerges;
the price can then be interpreted as the consensus probability that the event
will happen. There is mounting evidence that such markets can help to pro-
duce forecasts of event outcomes with a lower prediction error than conventional
forecasting methods [2].

To explain the efficiency of the prediction market in relation to aggregate in-
formation, many researchers use the efficient market hypothesis which attributes
the market efficiency to a pool of knowledgeable traders who are capable of set-
ting prices and acting without bias [3]. While Manski proposed a model [4] to

! Corresponding author: chen.shuheng@gmail.com
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2 Tongkui Yu, Shu-Heng Chen

find that price is a particular quantile of the distribution of traders’ beliefs,
price does not reveal the mean belief that traders hold, but does yield a bound
on the mean belief. It can explain both the market efficiency and another styl-
ized fact in prediction markets - favorite-longshot bias - which means that likely
events (favorite) are underpriced and unlikely events (longshot) are overpriced
[5]. Wolfers and Zitzewitz provided sufficient conditions under which prediction
market prices coincide with average beliefs among traders in a model with log-
utility agents [6]. Snowberg and Wolfers found evidence that misperceptions of
probability drive the favorite-long shot bias, as suggested by prospect theory [7].
Instead of complex assumptions and technique modeling, we provide an intuitive
model of a political election prediction market which reflects the intrinsic fea-
ture of prediction market as an information aggregation mechanism. This model
can replicate the prediction accuracy and favorite-longshot bias of the predic-
tion market. Based on this model, we analyze the effect of agent information
scope, i. e., the distribution of information among agents on market accuracy.
We also diagnose the origin of the favorite-longshot bias. This model can also
provide a framework for much further analysis on the prediction market such as
the complex agent behavioral patterns.

2 Basic Model

In a society represented by a two-dimensional torus grid, each element is a per-
son, and each person has his own disposition on the vote for some candidate,
blue for supporting (1) and green for not supporting (0) as in Figure 1. This is
just a illustration, we use the grid size 200×200 in the simulation. Furthermore,
in the simulations, the agents’ voting disposition is randomly initialized with a
given overall support ratio SupportRatio.

Fig. 1. Illustration of a voting society in a grid.

2



Agent-based Model of the Political Election Prediction Market 3

Some agents randomly sampled from the entire population will participate
in a prediction market which provides a winner-take-all contract that pays a
dollar if the candidate wins, and pays nothing if the candidate loses. Each agent
has a belief bi ∈ [0, 1] that a candidate will win. An agent forms his belief by
observing the voting disposition of all agents in his neighborhood. The neigh-
borhood consists of the center node (the agent himself) and the nearest Moore
neighbors. The neighborhood has 9 agents for neighborhood radius r = 1, and
25 agents for neighborhood radius r = 2, as in Figure 2. For the agent marked
with the red star, his own vote disposition is to support the candidate, and there
are two other agents in his neighborhood with radius r = 1 who also support
the candidate (Figure 2, left panel), so his belief is bi = 3/9 = 1/3. If the radius
r = 2 (Figure 2, right panel), his belief is bi = 5/25 = 1/5.

(a) r=1

(b) r=2

Fig. 2. Moore neighborhood and belief formation

An agent decides to either place a buy (bid) or sell (ask) order with equal
probability. Then the agent with belief bi places a bid order for one share of
the event at a price uniformly on [0, bi], or an ask order for one share at a
price uniformly on [bi, 1], as in figure 3. Agents do not observe current market
prices, and do not react to any result of their actions; they keep no record of
previous orders or if those orders resulted in trades. This is a device of the zero-
intelligence agent initiated by Gode and Sunder [8], which is now widely used in
agent-based models. The zero-intelligence agent is a randomly-behaving agent
or, more precisely speaking, an entropy-maximizing agent. Since normal traders
would not propose or accept a deal which would obviously lead to economic loss
or not lead to welfare improvement, under no further information on what else
they will do, the design of the zero-intelligence agent is minimally prejudiced in
the sense of entropy maximization. The uniform distribution is employed here to
realize maximum entropy. Othman also carried out this design in his pioneering
study on the agent-based prediction market [9].

Following [9], the transactions are closed by the mechanism of continuous
double exchange. Agents place buy or sell orders continuously. Once the highest-
priced bid exceeds the lowest-priced ask, a trade occurs at the price of the or-
der which was placed first. The paper, however, differs from [9] by explicitly
embedding the agent-based prediction market within the network structure, a
checkerboard as demonstrated in Figure 1. We consider this as a first attempt to

3
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Fig. 3. Order price formation

hybridize the spatial agent-based political election models and the agent-based
prediction markets.

The procedure of the model is described by the pseudocode in Algorithm 1.

3 Simulation and Analysis

We perform a great deal of simulations and try to find the regularity in the
simulated data.

3.1 Prediction power and favorite-longshot bias

In the agent-based model of the political election prediction market, the mean of
the transaction price is a good predictor of the real support ratio in the overall
population. Figure 4 provides the relationship between the real support ratio
(vertical axis) and the mean of the transaction price (horizontal axis) in typical
simulations with the neighborhood radius r = 1. This simulation is conducted in
a 200 by 200 checkerboard with 40,000 agents (N = 40, 000), one in each cell (a
checkerboard with full size). For each given support ratio, the continuous double
auction is run once for 40,000 rounds. We then try support ratios from 0.1 to 0.9
with an increment of 0.01; in other words, a total of 91 support ratios are tried.
We then plot the mean of the transaction price over the 40,000 rounds for each
support ratio in Figure 4. As we can see from that figure, the mean transaction
price can trace the true support ratio to some degree.

At the same time, the simulation replicates the favorite-longshot bias, a styl-
ized fact in the prediction market. We can find that likely events (bottom-left
in Figure 4) are underpriced, and unlikely events (top-right in Figure 4) are
overpriced.

3.2 Neighborhood scope and prediction accuracy

We investigate the effect of the neighborhood scope on the prediction accuracy.
Figure 5 provides the relationship between the real support ratio (vertical axis)
and the mean of the transaction price (horizontal axis) in typical simulations
with different neighborhood radii r = 1, 2 and 3. We can find that the prediction

4



Agent-based Model of the Political Election Prediction Market 5

Input: Total number of agents N ; Rounds of the market M ; The overall
support ratio SupportRatio;

Output: Transaction price history TransactionPrice
// INITIALIZATION
Generate a random number rndNum uniformly from 0 to 1;
foreach agent in the population do

if rndNum < SupportRatio then
Set his voting disposition as supporting (1);

else
Set his voting disposition as not supporting (0);

end

end
// RUNNING THE MARKET
foreach round ∈ [1,M ] do

Choose an agent randomly from the whole population ;
Get the voting dispositions of his neighbors ;
Set the agent’s belief b as the number of supporters over neighborhood size ;
Generate a random number rndNum uniformly from 0 to 1 ;
if rndNum < 0.5 then

Set the order side to 1 (buy) ;
Set the OrderPrice as a random number uniformly drawn from 0 to b ;
Get the MinSellPrice in the SellOrderList ;
if OrderPrice > MinSellPrice then

Insert a transaction in the TransactionList with MinSellPrice ;
else

Insert a buy order with OrderPrice in the BuyOrderList ;
end

else
Set the order side to 0 (sell) ;
Set the OrderPrice as a random number uniformly drawn from b to 1 ;
Get the MaxBuyPrice in the BuyOrderList ;
if OrderPrice < MaxBuyPrice then

Insert a transaction in the TransactionList with MaxBuyPrice ;
else

Insert a sell order with OrderPrice in the SellOrderList ;
end

end

end

Algorithm 1: Simulation Procedure

5
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Simulation Result

Fig. 4. Typical simulation result and favorite-longshot bias.

accuracy of the prediction market increases as the neighborhood scope increases.
It is easy to understand that the more information that each participant has, the
more accurate the prediction that the market can provide. This result is similar
to the work of Othman [9]. However,we obtain the result with a totally different
basic assumption. We use the most intuitive assumption that the agent forms
his belief by observing his neighbors’ voting deposition, while Othman’s work
just specifies the belief distribution arbitrarily. We attribute the extent of the
bias to the amount of individual information, while Othman’s work attributes it
to the arbitrarily specified belief distribution.
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Fig. 5. Neighborhood radius and prediction accuracy.
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To measure the prediction accuracy of a prediction market, we define a vari-

able refered to as the mean squared error ρ =
∑N

1 (MeanPricei−SupportRatioi)
2

N ,
where i = 1 : N is the number of simulations. A larger mean squared error
implies less accurate prediction, while a smaller one implies more accurate pre-
diction, and ρ = 0 implies perfect accuracy. With the same neighborhood radius,
we simulate N(N = 200) times with SupportRatio linearly spaced between 0
and 1 and calculate the prediction accuracy. Figure 6 presents the effect of the
neighborhood radius r (horizontal) on the prediction accuracy (vertical axis).
The larger the neighborhood radius r, the more information agents have, and
the more accurate prediction the market can provide.
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Fig. 6. Effect of neighborhood radius on the prediction accuracy.

3.3 Information distribution and prediction accuracy

In a real political election, the voting deposition may be clustered. Some places
may be dominated by the supporter of one candidate, and most of the popula-
tion may support the other candidate elsewhere. So the information is not well
scattered. We wish to study the effect of information distribution on the predic-
tion accuracy. To this end, we use the voting disposition block size to represent
different information distributions.

When initializing the voting disposition of the agents, we use different gran-
ularities or block size s. If the block size s = 1, we initialize the agents’ voting
disposition one by one; if the block size s=2, we initialize the agents’ voting
disposition four by four, i.e., all four agents in the 2× 2 sub-grid have the same
voting disposition randomly generated according to the specified support ratio.
Figure 7 illustrates a comparison of information distributions with block sizes
s = 1 and 2 under the same support ratio 0.3.

Figure 8 depicts the effect of voting disposition block size on prediction ac-
curacy with neighborhood radii r = 2, 3, 5 and 7. We can find the nonlinear

7



8 Tongkui Yu, Shu-Heng Chen

(a) s = 1 (b) s = 2

Fig. 7. Comparison of information distributions with different voting disposition block
sizes

relationship between the voting disposition block size and mean squared error.
The mean squared error is the largest when the voting disposition block size is
close to the neighborhood radius, and the market prediction power is the least
accurate. The farther away the voting disposition block size is from the neigh-
borhood radius, the smaller is the mean squared error, the more accurate is the
market prediction. Further research is needed to understand this phenomenon.

3.4 The origin of the favorite-longshot bias

This model can only replicate the favorite-longshot bias, but cannot answer the
question as to what is the origin of the favorite-longshot bias. To find the mech-
anism that produces the favorite-longshot bias, we perform some experiments.
One possible origin of the favorite-longshot bias is the order price formation
mechanism, which closes transactions at the price of the order first placed. We
thus try another order-matching mechanism that uses the mid-price of the buy
and sell order, but we find that it makes no difference. The other possible origin
of the favorite-longshot bias is the order-formation mechanism, where an agent
places a buy order at a price between zero and his belief bi, and places a sell
order at a price between bi and 1 (as in Figure 3). When the agents’ belief is not
equal to 0.5, there is an inherent asymmetry in the order prices. This may lead
to the favorite-longshot bias. We test the hypothesis by trying to incorporate a
symmetric order price formation mechanism where an agent places a buy order
at a price drawn randomly from [bi − δ, bi], and places a sell order at a price
drawn randomly from [bi, bi + δ] as in Figure 9(a) . We find that the favorite-
longshot bias disappears in this specification as in 9(b). Moreover, we perform
a simulation using the designed asymmetric order price formation mechanism,
where the prices of buy orders are uniformly on [bi − δ, bi] and the prices of sell
orders are uniformly on [bi, bi+2δ] as in Figure 9(c), and we find that the prices
are all overvalued as in figure 9(d). Furthermore, if the prices of buy orders are

8
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(b) r = 3
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(c) r = 5

2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5
x 10

!3

Vote Disposition Block Size

M
e

a
n

 S
q

a
u

re
d

 E
rr

o
r 

(!
)

(d) r = 7

Fig. 8. The effect of voting disposition block size on prediction accuracy

uniformly on [bi − 2δ, bi] and the prices of sell orders are uniformly on [bi, bi + δ]
as in Figure 9(e), the prices are all undervalued as in Figure 9(f). So we can
come to the conclusion that the asymmetry of the order-price mechanism is the
origin of the favorite-longshot bias.

4 Conclusion

In this paper, we build a simple agent-based model of the political election
prediction market which reflects the intrinsic feature of the prediction market as
an information aggregation mechanism. Each agent has a vote, and all agents’
votes determine the election result. Some randomly chosen agents participate in
the prediction market. They form their beliefs by observing neighbors’ voting
disposition. By a great amount of simulation, we find that the mean price can
be a good forecast of the election result. We also study the effect of the agents’
neighborhood scope and distribution of information on the prediction accuracy.
The larger the neighborhood radius, the more information agents have, and the
more accurate prediction the market can provide. The farther away the voting
disposition block size is from the neighborhood radius, the smaller is the mean
squared error, and the more accurate is the market prediction. The model can
replicate the favorite-longshot bias in the prediction market. Moreover, we find

9



10 Tongkui Yu, Shu-Heng Chen

that the asymmetry of the order-price mechanism is the origin of the favorite-
longshot bias based on the simulation of this model. Furthermore, this model
provides a framework for many other studies on the prediction market, such as
more complex agent behavioral patterns, the evolution of participation, etc.
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Fig. 9. Order price formation mechanism and favorite-longshot bias
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Abstract. Despite their use for modeling traffic in ports and regional
waters, agent-based simulations have not yet been applied to model mar-
itime traffic on a global scale. We therefore propose a fully agent-based,
data-driven model of global maritime traffic, focusing primarily on mod-
eling transit through piracy-affected areas. The model uses finite state
machines to represent the behavior of several classes of vessels and can
accurately replicate global shipping patterns and approximate real-world
distribution of pirate attacks. The application of the model to the prob-
lem of optimizing the Gulf of Aden group transit demonstrates the useful-
ness of agent-based modeling in evaluating and improving counter-piracy
measures.

1 Introduction

Due to its inherent dynamism, distribution and complexity of dependencies,
traffic and transportation is a domain particularly suitable for the application
of multi-agent techniques. This has been reflected in the number of multi-agent
simulations developed in the field of air traffic (e.g. [15]) and ground transporta-
tion [1, 11]. The key motivation behind these models is to better understand the
traffic dynamics and to evaluate novel mechanisms for improving its properties.

In the maritime domain, existing models focus on traffic in ports and regional,
nearshore waters [2, 12, 8]. High-level equation-based models are typically used,
which have difficulties capturing vessel interactions and more complex dynamics
of maritime traffic. In contrast, our model focuses on modeling global maritime
traffic and employs the fully agent-based, microsimulation approach. Such a
model is pivotal in the development of measures for countering the complex
problem of maritime piracy, which presents a growing threat to global shipping
industry and consequently international trade. In 2010 alone, 53 cargo vessels
were hijacked and 1181 crew members held hostage [9] and the numbers continue
to rise.

The proposed simulation model is the first agent-based model focusing on
maritime traffic and piracy. It models the operation of all key actors in piracy
scenarios, i.e., the long-range cargo vessels, pirate vessels and navy patrols. Al-
though the simulation is geared towards maritime piracy, it is rather universal

12
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Fig. 1: Locations of pirate incidents over the last 5 years.

and could be used for other applications too. As an example of potential ap-
plications, we show how it can be used to optimize the group transit scheme
established to improve the security of transit through the notorious pirate wa-
ters of the Gulf of Aden.

2 Domain Background

The agent-based model developed reflects the current state of affairs regarding
maritime piracy.

2.1 Piracy around the Horn of Africa

Over the last years, waters around the Horn of Africa have experienced a steep
rise in piracy. For approximately 20 thousand vessels1 that annually transit the
area, insurance rates have increased more than tenfold and the costs of piracy
were estimated at up to US$16 billion in 2008.

Even though attacks and hijackings used to be concentrated into the Gulf
of Aden, in the last two years the pirates have been expanding further from the
coast and attacking vessels on main shipping lanes in the Indian Ocean, more
than 1500 nm from the Somali coast (see Figure 1).

2.2 Existing Antipiracy Measures

In order to counter the rising piracy threat, a number of measures have been
put into effect in the Horn of Africa Area, which encompasses the Gulf of Aden
and the West Indian Ocean. Since 2008, transit through the Gulf of Aden itself
has been organized – transiting vessels are grouped according to their speed and
directed through a narrow transit corridor which is patrolled by international
naval forces.

International Recommended Transit Corridor Initially introduced in 2008,
the International Recommended Transit Corridor (IRTC) was amended in 2009
to reflect the revised analysis of piracy in the Gulf of Aden and to incorporate

1 about 40% of the world fleet
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Speed Entry point A – time Entry point B – time
10 kts 04:00 GMT+3 18:00 GMT+3
12 kts 08:30 GMT+3 00:01 GMT+3
14 kts 11:30 GMT+3 04:00 GMT+3
16 kts 14:00 GMT+3 08:30 GMT+3
18 kts 16:00 GMT+3 10:00 GMT+3

Table 1: IRTC group transit schedule – entry times for vessels travelling at
different speeds.

shipping industry feedback. The new corridor has been positioned further from
established fishing areas, resulting in a reduction of false piracy alerts2.

Navy Patrols Several naval task forces from various countries and allied forces3

operate in the Gulf of Aden (see [10] for details) to protect the transit corridor
and prevent attacks on transiting vessels. Detailed information about the strat-
egy of the naval vessels is classified. On a high-level, their coordination is based
on a 4W Grid on which areas of responsibility are assigned [4].

Group Transit Scheme In August 2010, the Group Transit Scheme was intro-
duced to further reduce the risk of pirate attacks to vessels transiting the Gulf of
Aden [14]. Group transits are designed to group ships into several speed groups
in order to leverage additional protection and assurance of traveling in a group.
Each transit follows a recommended route through the IRTC at a published
speed and schedule, designed to avoid the highest-risk areas and time periods.
There is one transit per day for each speed group (see the Table 1).

3 Model Description

We employ the agent-based modeling approach. Each vessel is implemented as
an autonomous agent with its distinct behavior, capable of interacting with the
simulated maritime environment and other vessels. Three categories of vessels
form the core of the model: (1) long-haul cargo vessels, (2) pirate vessels and
(3) navy vessels. Each behavior model is based on real-world data. Below, we
describe models for each vessel category.

3.1 Cargo Vessel Model

Cargo vessels (also called merchant vessels), traveling repeatedly between the
world’s large ports, form the bulk of international maritime traffic. Our agent-
based model aims to achieve the same spatio-temporal distribution as the real
traffic. We do not simulate the physical dynamics of vessels and we do not take
into account external geographical conditions such as weather or sea currents.

2 MSCHOA, The Maritime Security Centre, Horn of Africa, strongly recommends
transiting vessels to follow the corridor to ensure protection from naval forces.

3 NATO, Combined Maritime Forces including Japan, China, India, Korea and others.
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Fig. 2: Visualization of the simulation output, depicting the cargo shipping traffic
(green) and pirate vessels (red).

Data Used Data from the Automatic Identification System (AIS) – the most
widely used vessel position tracking system – are publicly available4 and contain
time-stamped records of vessel GPS positions along their routes. We use AIS
data to estimate the main shipping lanes and traffic density. Furthermore, we
use data about geography, including locations as ports (and their capacities),
straits, channels or capes through which vessel have to pass while avoiding land,
islands and shallow waters.

Cargo Vessel Model The above data are combined with route planning al-
gorithms in order to generate realistic cargo vessel traffic. As long as it is safe,
vessels follow shortest paths between desired locations, avoiding obstacles. Tran-
sit through high-risk areas is handled separately to reflect vessel’s tendency to
avoid such areas or to use special tactics to make such transit more secure

To approximate global properties of the real-world cargo shipping traffic,
cargo-vessel agents are generated randomly in ports and are assigned a destina-
tion port to reach (taking into account port capacities). Vessel agents plan their
routes between ports using the combination of the following planners:

Shortest Path Planning The shortest route planner is based on the A∗ algorithm
in a spherical environment with polygonal obstacles. The algorithm searches for
the shortest path on a visibility graph, which is proven to correspond to the
shortest path in the free space [13].

Risk-aware Route Planning The risk-aware planner is invoked for planning routes
through high-risk areas. The planner searches for a route which minimizes a
weighted sum of route length and the overall piracy risk along the route. To
quantify risk along a route, we use a risk map representing the number of piracy
incidents in a given area over a given period of time. By integrating incident
density along a vessel route, we obtain the estimate of the number of incidents
N that can be expected when following the route. Using the Poisson probability

4 Large databases are available on http://www.vesseltracker.com or http://www.
aislive.com.
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distribution, we can then estimate the probability of at least one attack as 1−e−N

(for details, see [10]).

Strategic Route Planning In contrast to the previous two route planners, which
reflect practices currently used in the field, the strategic route planning provides
an experimental technique for further reducing piracy risk. This game-theoretic
route planner explicitly accounts for pirate adaptivity and ability to reason about
cargo vessel routes and produces routes in an optimally randomized manner
which minimizes the chance of successful pirate attack. See [16] for details.

3.2 Pirate Vessel Model

Due to the lack of data on real-world pirate vessel trajectories, an indirect ap-
proach is used in modeling pirate behavior.

Data Used Primary source of information for pirate vessel model are anecdotal
descriptions of typical pirate strategies (found e.g. in [6]) which are translated
into executable behavior models (see below). These are then used in conjunction
with additional data about real-world pirate activity. Specifically, we use a public
dataset [5] with the information about places on the Somali coast which serve as
pirate hubs or ransom anchorages. We also use piracy incident records published
since 2005 by the IMB Piracy Reporting Centre5. Each record contains the
incident location in GPS format, the type of attacked vessel, incident date and
the type of the attack (depicted on Figure 1). These data are used to validate
the pirate behavior model (see Section 5.2).

Pirate Behavior Model In order to capture the diversity of real-world pirate
strategies (see e.g. [6]) we have implemented four different pirate vessel models:
(1) Simple pirate with a small boat without any means of vessel detection except
direct line of sight (5 nm), (2) Radar pirate with a radar extending the vessel
detection range to 20-50 nm, (3) AIS pirate with an AIS interception device
monitoring AIS broadcasts and (4) Mothership pirate with a medium-size vessel
and several boats able to attack vessels up 1500 nm from the Somali coast.
The last type can be combined with the radar or AIS interception device to
achieve more complex behavior. Moreover, the pirate models can be extended
with learning ability to model adaptation to changes in transit routing and
patrolling.

Each pirate agent is initialized in its home port and based on the position of
the port, it is assigned a piracy zone (Gulf of Aden, Northern or Southern part
of Indian Ocean) in which it then executes its strategy.

3.3 Naval Vessel Model

The lack of data and general complexity of patrolling strategies – which can vary
from active search for pirates to protecting transiting groups of cargo vessels

5 http://www.icc-ccs.org/home/piracy-reporting-centre
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– makes proper modeling of navy vessel agents very difficult. We have thus
proposed a minimal model based on the information available. As a potential
improvement to the current practices, we have also proposed a game-theoretic
policy for patrolling (see [3] for details).

Data Used The 4W Grid [4], dividing the Gulf of Aden into square sectors, is
used for anti-piracy operation coordination. The highest risk sectors are assigned
to anti-piracy operation forces as their areas of responsibility.

Patrolling Behavior We have implemented a set of naval vessel agents, rang-
ing from static reactive patrols to deliberative agents evaluating the situation
in the assigned area and deciding where to patrol and which vessels to protect.
Naval vessel agents are controlled by a hierarchical structure of authority agents,
reflecting the real-world chain-of-command. A central Navy Authority agent con-
trols a set of Task forces (i.e. group of agents), each disposing of a number of
agents controlling warships with helicopters, able to patrol the area and respond
to reported attacks. More details can be found in [10].

4 Model Implementation

We have implemented the proposed multi-agent model in Java, employing se-
lected components of the A-lite6 simulation platform and using Google Earth
for geo-referenced visualization. Scripts written in Groovy are used for scenario
description. Below we describe the implementation of agent behavior – see [10]
for a detailed description of the (rest of) implementation.

Agent Behavior Implementation Behavior model implementation has to
be efficient enough to allow simulation of hundreds or even thousands of ves-
sel agents and expressive enough to model complex behavior and interaction
between vessels. The agents should be able to execute multi-step plans while
handling possible interruptions. The agents share many behavior similarities
(such as trajectory planning or pirate reasoning) so we want reusable models.
Moreover, we want to implement the ability to learn and adapt directly in the
behavior model.

Finite state machines (FSM) fit our needs well. Individual states correspond
to the principal mental states of the vessel agent (such as move, attack, hi-
jacked, patrol etc.). Transitions between the states are defined by uncondi-
tional state transitions (a pair {sfrom, sto}, e.g. {wait,move}) or by condi-
tional transitions triggered by external events (a tuple {sfrom, event, sto}, e.g.
{move, shipSpottted, attack}). Each state stores its context when deactivated so
that when reactivated, the context can be restored to continue the previously
interrupted plan. Transitions between states can be internally or externally trig-
gered, thus allowing interruption of plans or actions. FSMs are easily extensible

6 http://agents.felk.cvut.cz/projects/#a-lite
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Fig. 3: FSM implementing the behavior of a pirate with a mothership and a
radar.

and state implementations can be easily reused. It is possible to create abstract
skeletons of various FSM and then enrich them with a specific behavior. The
ability to learn can be implemented using internal state variables.

The problem of incorporating time into FSMs is solved by granting the agent
each turn a time quantum which is used for performing the activity associated
with each state. Nevertheless, one notable disadvantages of the FSM-based ap-
proach is the inability to perform multiple concurrent actions.

Pirate FSM Example Figure 3 depicts a FSM of a pirate equipped with a
radar and a mothership. The pirate waits an arbitrary amount of time in its home
port and then sails onto the open sea, scanning with the radar for a potential
target. If it detects a cargo vessel, it approaches it and launches an attack. If
the attack is successful and it hijacks the vessel, it gains full control over the
vessel and forces it to sail to its home port and wait for the payment of ransom.
This cycle can be disrupted by several external events, such as the proximity of
a patrolling vessel or depletion of the pirate’s resources. The pirate can be also
detained and disarmed by a naval patrol.

5 Model Validation

To validate the propose model, we compare simulation output with real-world
data. We first validate the model of long-range shipping (represented by cargo
vessels) alone and then look at the full model. Because the real-world data are
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(a) Real-world ship density (2005-2008). (b) Simulated cargo vessel traffic.

Fig. 4: Comparison of the real-world shipping density (left) and simulated cargo
shipping traffic (right).

not sampled from any distribution and are result of the interaction of thousands
of independent actors, the most straightforward way of comparison is visual
inspection.

5.1 Long-range Shipping Traffic Model Validation

To verify the accuracy of long-range shipping model, we compare the traces
of simulated cargo vessels with the aggregated AIS-based maritime shipping
density map [7] (gathered from 2005 till the beginning of 2008, see Figure 4a).
A few differences are visible: (1) Main corridors are narrower in the simulation.
This difference could be removed by adding perturbations to simulated vessel
routes. (2) The simulated traces do not exactly correspond to the corridors near
the Socotra island. This difference is caused by the introduction of the IRTC
corridor which is not yet reflected in the density map (our traces are more up-
to-date). (3) The routes along the Somali coast extend farther from the coast in
the simulated data. Again, the routing in these waters underwent major changes
in the last years and the density map does not yet fully reflect the tendency
of vessels to stay farther from the dangerous Somali coast. Our model uses the
risk-based planner which takes this factor into consideration.

The reference data [7] also contain samples of trajectories of vessels not con-
sidered in our simulation, such as fishing vessels, maritime-research vessels or
private vessels. These samples account for the irregular traffic outside the main
corridors.

Overall the agreement between the real and simulated traffic is very good. In
the future, we aim to introduce and evaluate a formal measure of model accuracy.

5.2 Piracy Model Validation

Due to the lack of real-world pirate movement data, we are not able to directly
validate pirate behavior models. Instead we compare the pirate attack density, as
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(a) Real pirate attack density for 2010.

!

"

#

(b) Simulated attack density for one year.

Fig. 5: Comparison of real and simulated attack densities for a 1-year period.

produced by the pirate models in conjunction with models of cargo and navy ves-
sels, and compare this density with the data provided by IMB Piracy Reporting
Centre (see Section 3.2).

For comparison, we have simulated one year of cargo vessel traffic through the
region with realistic traffic density (approximately 60 vessels a day in IRTC). We
do not have any estimates of real-world density of pirates in the area. We have
therefore set their number so that the overall number of incidents corresponds
to the number observed in the real-world. We have simulated 15 pirates – 5
simple, 5 radar equipped pirates and 5 pirates with a mothership and a radar.
Finally, we have placed 3 naval task forces, each equipped with 2 warships and
a helicopter, into the IRTC according to the 4W grid.

Figure 5 shows the comparison of the real and simulated density of pirate
attacks. The red circles denote main differences in incident distribution: (1)
Simulated pirates do not attack vessels in the Red Sea; this is because the current
configuration focuses on the IRTC corridor. (2) There are no attacks in the
Arabian Sea in the simulation. This is because the simulated pirates which sail
far from the coast are equipped with a radar, and are thus almost always able
to detect and attack vessels sailing in the shipping lane from the Gulf of Aden
to Malaysia. (3) The density of attacks in the central Indian Ocean is lower; this
is because of the lower density of the simulated cargo vessel traffic itself.

Overall, the agreement between the real-world and simulated pirate attack
density is satisfactory, especially considering the random fluctuations in the real-
world attack density and the fact that the simulated attack density is the result
of the interaction of three types of vessels: cargo vessels, pirates and patrols. Each
deviation in the behavior model is amplified through these interactions and can
have a disproportional effect on the resulting incident density. After fixing the
specific issues mentioned, the agreement between the model and reality should
be further improved.
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(a) Average delays. (b) Number of attacks. (c) Number of hijacks.

Fig. 6: Evaluation of different group transit schemes.

6 Optimization of Group Transit Schedules

As an example application of the developed model, we show how it can be used
to optimize the Gulf of Aden group transit scheme (described in Section 2.2).
The current transit scheme is based on fixed transit schedules designed to split
transiting vessels into five groups travelling at different speeds, uniformly spaced
between 10 and 18 knots. Our motivation is to explore whether the number of
attacks and the transit delay caused by participating in group transit can be
reduced by (1) proposing a different set of speed levels for the fixed-schedule
scheme and (2) employing a dynamic grouping scheme, which takes into account
not only the speeds of transiting vessels but their time of arrival too.

Optimal Fixed Schedule Group Transit The real-world distribution of
cargo vessel speeds is approximated by a histogram (see Figure 7) with bins
of a fixed width (can be set e.g. to 0.1, 0.5 or 1 knot). The optimization problem
can be formulated as partitioning the histogram into N groups, corresponding
to group transit speeds, which minimize the average transit delay (i.e. the delay
caused by traveling at a group speed which might be lower than the vessel’s
normal cruising speed).

Dynamic Group Transit Instead of assigning vessels to groups according to
predefined schedules and speed levels, dynamic grouping forms groups on the
fly. This allows to form groups that better reflect actual arrival times and speed
distribution of incoming vessels, at the expense of a more complex coordination
scheme required. Our current implementation uses a greedy technique which
assigns incoming vessels with similar speeds to the same group (see [10] for
details).

Evaluation We have used the simulation to evaluate the average transit de-
lay (Figure 6a), the average number of transit groups and the number of total
and successful pirate attacks for different grouping schemes. Figure 7 shows the
optimal speed levels for the fixed-schedule group transit with 5 speed levels
({10, 12.2, 14, 15.4, 17} knots). Note that in contrast to the current scheme, new
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Fig. 7: Vessel speed histogram and its
optimum partitioning into 5 speed
groups.

scheme ∆T/ship ∆T/year #groups
current 0 min 0 days 10.73
opt. 5 7 min 97 days 9.16
opt. 6 31 min 430 days 9.88

dynamic 56 min 778 days 12.14

Fig. 8: Time savings and average num-
ber of transit groups for selected
grouping schemes. ∆T is the average
transit time reduction compared to
the current scheme (per one transit
and aggregated for all transits in one
year).

speed levels are not distributed uniformly and are concentrated around the mean
vessel speed. As shown in Table on Figure 8, new speed levels result in shorter
transit times and lower average number of transit groups.

The grouping for 6 speed levels ({10, 11.7, 13.3, 14.6, 16, 17.6} knots) further
reduces group transit delay and saves over a year of total vessel travel time. The
number of pirate incidents does not significantly vary with the increasing number
of speed levels (see Figures 6b, 6c), because even though there are potentially
more groups to attack, the speed of the groups is higher on average. The dynamic
scheme is by far the most efficient in reducing transit delay although at the
expense of higher number of groups (i.e. smaller average group size).

7 Conclusion

Multi-agent simulations have a great potential for designing and evaluating so-
lutions to a range of issues in international shipping, including the threat of
contemporary maritime piracy. To this end, we have developed a first fully agent-
based model of global traffic that accounts for the effects of maritime piracy on
global shipping. The model is based on a range of real-world datasets and rep-
resents the operation of three types of vessels and their interactions. Despite
the lack of hard data on some phenomena related to maritime piracy, the im-
plemented model shows good correspondence in areas where validation data are
available. As an example of potential applications of the developed model, we
have showed how it can be used to optimize the current Gulf of Aden group
transit scheme.

Overall, the implemented model demonstrates the viability of agent-based
modeling in the maritime domain and opens a number of promising research
directions. In the future, we would like to use the model to evaluate novel game-
theoretic transit-patrol coordination and route planning techniques required to
counter the recent expansion of piracy to the vast open areas of the Indian
Ocean, where measures employed in the Gulf of Aden are no longer applicable.
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Abstract. The aim of this paper is to show how to do social simulation in logic.
In order to meet this objective we present a dynamic logic with assignments, tests,
sequential and nondeterministic composition, and bounded and non-bounded it-
eration. We show that our logic allows to represent and reason about a paradig-
matic example of social simulation: Schelling’s segregation game. We also build
a bridge between social simulation and planning. In particular, we show that
the problem of checking whether a given property P (such as segregation) will
emerge after n simulation moves is nothing but the planning problem with hori-
zon n, which is widely studied in AI: the problem of verifying whether there
exists a plan of length at most n ensuring that a given goal will be achieved.

1 Introduction

In a recent debate Edmonds [7] attacked what he saw as “empty formal logic papers
without any results” that are proposed in the field of multi-agent systems (MASs). He
opposed them to papers describing social simulations: according to Edmonds the latter
present many experimental results which are useful to better understand social phe-
nomena, while the former kind of papers only aim at studying some relevant concepts
and their mathematical properties (axiomatization, decidability, etc.), while not adding
anything new to our understanding of social phenomena. In response to Edmonds’s at-
tack, some researchers defended the use of logic in MAS in general, and in particular
in agent-based social simulation (ABSS) [8, 4, 5]. For example, in [4] it is argued that
logic is relevant for MAS because it can be used to construct a much needed formal
social theory. In [8] it is argued that logic can be useful in ABSS because a logical
model based on (a) a philosophical or sociological theory, (b) observations and data
about a particular social phenomenon, and (c) intuitions —or a blend of them— can be
considered to provide the requirements and the specification for an ABSS system and
more generally a MAS. Moreover, a logical system might help to check the validity of
the ABSS model and to adjust it by way of having a clear understanding of the for-
mal model underpinning it. All these researchers consider logic and ABSS not only as
compatible, but also as complementary methodologies.

The idea we defend in this paper is much more radical than those of the above
advocates of logic-based approaches. Our aim is to show that ABSS can be directly
done in logic and that a logical specification of a given social phenomenon can be
conceived as an ABSS model of this phenomenon. We believe that the use of adequate
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theorem provers will allow to obtain results that are beyond the possibilities of existing
simulators. As a first step towards our aim we present in this paper a simple logic called
DL← (Dynamic Logic of Assignments). DL← is an extension of propositional logic with
dynamic operators. These operators allow to reason about assignments p←" and p←⊥
changing the truth value of a propositional variable p to ‘true’ or ‘false’ and about
tests Φ? of the truth of a Boolean formula Φ. More generally, DL← allows to reason
about those facts that will be true after complex events ε that are built from assignments
and tests by means of the operators of sequential composition (ε1; ε2), nondeterministic
composition (ε1∪ε2), bounded iteration (ε≤n), and unbounded iteration (ε<∞).

In order to illustrate the power of our logic we show that a paradigmatic ABSS
model can be represented in our logic: Schelling’s segregation game [15]. The prob-
lem of checking whether (under some initial conditions) a given property P such as
segregation will possibly emerge after n simulation moves is reduced to the problem
of checking in our logic whether the initial conditions imply that formula ϕ encoding
property P will be true at the end of at least one sequence of events ε of length at most
n. Similarly, the problem of checking whether P will necessarily emerge after n simu-
lation moves is reduced to the problem of checking whether the initial conditions imply
that ϕ will be true at the end of every sequence of events ε of length n. Actually the
latter is nothing but the planning problem with horizon n, which is widely studied in
AI and is for example at the base of the state of the art planner SatPlan [13]: the prob-
lem of verifying whether there exists a plan of length at most n ensuring that a given
goal ϕ will be achieved. In the general case this problem is known to be in PSPACE,
i.e. decidable in polynomial space [3]. We show that our logic fits these boundaries. In
the past such PSPACE hard decision problems were considered to be out of reach of
automated theorem provers. However, in the last 20 years huge progress was made on
that kind of problems: state-of-the-art theorem provers for PSPACE complete problems
were shown to be of practical interest in particular in semantic web applications even
for realistic problem instances with thousands of clauses [12].

One might wish to go beyond the simple existential and universal quantifications
that we mentioned above. This can be achieved by means of modal operators with
counting (stemming from graded modal logics [9, 19] and description logics [1]). We
are going to briefly discuss this, and show that complexity stays in PSPACE for such
extensions.

The rest of the paper is organized as follows. In Section 2 we describe the segre-
gation game. In Section 3 we define our basic logic, and in Section 4 we show how it
allows to reason about the segregation game. Finally we sketch some extensions (Sec-
tion 5) and conclude (Section 6).

2 The segregation game

In this section we give an informal description of the segregation game. A formal de-
scription is in Section 4.
The original model. Thomas C. Schelling in [15] studied the phenomenon of segrega-
tion and in particular the conditions of its occurrence due to “discriminatory individual
choices” in groups with recognizable distinctions such as sex, age, colour, etc. The
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best-known example is the formation of color-dependent residential areas, under the in-
fluence of the individual preference of being surrounded by at most a threshold number
of neighbours with different colour: above the threshold inhabitants are unhappy and
will move to another location.

One of the main results of Schelling’s work is to show that the segregation phe-
nomenon emerges even with a quite high tolerance threshold. For example, even if each
inhabitant accepts that the majority of the neighbours surrounding him has a colour dif-
ferent from his, there will nevertheless be a tendency to form groups of inhabitants with
the same colour.

The implemented model. The segregation model has been implemented in many lan-
guages and formalisms, in particular in almost all agent-based simulation platforms.
Good examples are NetLogo [22, 21] and GAMA [17]. Every inhabitant (or family) is
represented by an agent from a finite set of agents A = {1, . . . , |A|}. Typical elements
of A are noted i, j, etc. Each of these agents can move on a chessboard-like grid with
N × N locations, for some integer N such that |A| < N2. Each agent is characterized by
his colour (e.g. red or blue) and his location on the grid. The latter is described by a
couple of integers (k, l) ∈ [1..N] × [1..N], for 1 ≤ k, l ≤ N. The two main parameters of
the simulation are:

– the number of inhabitants |A| and
– the tolerance threshold: the number of different agents from which on an agent is

unhappy, which is supposed to be the same for every agent.

(Alternatively the parameters may be the density of inhabitants and the percentage of
different agents. We also note that most simulation models rather use the inverse of the
tolerance threshold, called the similarity threshold.)

There is a scheduler which at each simulation step generates a random ordering of
the set of agents and then activates the agents according to that ordering during the step.
Upon activation an agent checks his happiness: an agent is happy iff the percentage of
different neighbour agents (having a different colour) is below his tolerance threshold.
If the agent is unhappy then he moves to another free cell on the grid.

The simulation stops when a stable state is reached, i.e. when every agent is happy.
A simulation typically has three different outcomes: (1) the simulation loops be-

cause the system does not reach a stable state where every agent is happy (typically
when the density of agents on the grid is high and the tolerance threshold is low, which
means agents are very intolerant); (2) the simulation stops but we cannot observe any
kind of segregation (this is typically the case when the similarity threshold is very low,
i.e. tolerance is high and/or density is very low); or (3) clusters of inhabitants with the
same colour emerge.

3 Dynamic logic with assignments

This section introduces the syntax and the semantics of the logic DL←.
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3.1 Language

We suppose given a countable set of propositional variables P with typical elements
p, q, . . . Remember that the set of Boolean formulas is built from P by means of the
Boolean operators of negation and disjunction. (The other connectives are defined by
means of abbreviations.) In our running example Boolean formulas allow to express
things such as

∧
(k,l)!(k′,l′) ¬(At(i, k, l) ∧ At(i, k′, l′)), representing the fact that an agent i

cannot be both at location (k, l) and at (k′, l′).
The set of events E is defined by the following BNF:

ε " p←$| p←⊥| Φ? | ε; ε | ε∪ε | ε=n | ε≤n | ε<∞

where p ranges over P, Φ ranges over the set of Boolean formulas, and n ranges over
the set of natural numbers N.

The events p←$ and p←⊥ are assignments modifying the truth value of the propo-
sitional variable p: the event p←$ sets p to true, and the event p←⊥ sets p to false. Φ?
is the test of Φ, which fails ifΦ is false. ε1; ε2 denotes a sequence of events. ε=n denotes
iteration of ε exactly n times, ε≤n denotes iteration of ε up to n times, and ε<∞ denotes
arbitrary iteration of ε. Assignments and tests are atomic events, while the other events
are called complex. An example of a complex event is agent i’s move from location
(k, l) to location (k′, l′), written At(i, k, l)←⊥; At(i, k′, l′)←$.

The set of formulas F is defined by the following BNF:

ϕ" q | $ | ⊥ | ¬ϕ | ϕ ∨ ϕ | ∃ε.ϕ

where q ranges over P and ε ranges over the set of events E. (Observe that we use Φ
for Boolean formulas and ϕ for formulas of DL←.) The formula ∃ε.ϕ reads “there is
an execution of the event ε after which ϕ is true”. Hence ∃ε.$ has to be read “ε may
occur”.

The operators ‘?’, ‘;’, ‘∪ ’ and ‘<∞’ are familiar from propositional dynamic logic
PDL. (We could as well use the Kleene star and write ε∗ instead of ε∞, as customary in
PDL.) In uninterpreted PDL these operators combine abstract atomic programs, while
in interpreted PDL they combine assignments of object variables to values from some
domain. In contrast, atomic programs are here assignments of truth values to proposi-
tional variables, as previously studied in the dynamic epistemic logic literature [20, 6,
2].

The formula ∃(q←$∪q←⊥).ϕ has the same interpretation as the quantified Boolean
formula (QBF) ∃q.ϕ [10]. The language of DL← can therefore be viewed as a generali-
sation of quantification over Boolean variables to complex ‘quantification programs’.

The length of a formula ϕ, noted |ϕ|, is the number of symbols used to write down ϕ
—without ‘〈’, ‘〉’, dots, and parentheses—, where integers are supposed to have length
1.1 For example |∃(q←$)≤3. (q ∨ r)| = 1 + |q←$| + 1 + 1 + |q ∨ r| = 1 + 3 + 2 + 3 = 9.

The logical operators ∧ and → are defined as abbreviations; for example ϕ → ψ
abbreviates ¬ϕ ∨ ψ. Moreover, ∀ε.ϕ abbreviates ¬∃ε.¬ϕ. Hence ∀ε.⊥ has to be read
“ε cannot occur”.

1 Precisely, the length of an integer n should be log n. Our hypothesis is however without harm.
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Remark 1. Note that could define programs εk as abbreviations of the sequential com-
position of ε, k times,2 and then define ε≤n as abbreviations of

⋃
0≤k≤n ε

k. However, the
expansion of these abbreviations would exponentially increase formula length. For the
same reason we avoided to introduce ‘↔’ as an abbreviation.

We use τ as a placeholder for either # or ⊥, and write q←τ in order to talk about
q←# and q←⊥ in an economic way.

3.2 Semantics

A valuation is nothing but a model of classical propositional logic, viz. a subset of
the set of propositional variables P. The truth conditions are the usual ones for #, ⊥,
negation and disjunction, plus:

V |= p iff p ∈ V
V |= ∃ε.ϕ iff there is V ′ such that VRεV ′ and V ′ |= ϕ

where Rε is a binary relation on valuations that is defined by:

Rp←# = {(V ,V ′) : V ′ = V ∪ {p}}
Rp←⊥ = {(V ,V ′) : V ′ = V \ {p}}
Rε1;ε2 = Rε1 ◦ Rε2
Rε1∪ε2 = Rε1 ∪ Rε2
Rϕ? = {(V ,V) : V |= ϕ}
Rε=n = (Rε)n

Rε≤n =
⋃

0≤m≤n(Rε)m

Rε<∞ =
⋃

0≤m(Rε)m

The valuations V ′ such that (V ,V ′) ∈ Rε are called the possible updates of V by ε.
Validity and satisfiability are defined as usual.

3.3 Reduction axioms for the star-free fragment

The fragment of DL← without arbitrary iterations (called the ‘star-free fragment’ in
PDL) can be axiomatised by means of reduction axioms. These axioms allow to elimi-
nate all the dynamic operators from formulas. However, that elimination might result in
an exponential blowup due to the operator of nondeterministic composition∪ . We will
therefore later on characterize the complexity of validity checking by other means.

Proposition 1. The following equivalences are DL← valid.

2 The precise definition is inductive: ε0 = skip, and εk+1 = εk; ε.
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∃ε=n.ϕ ↔


ϕ if n = 0
∃ε=n−1.∃ε.ϕ if n > 0

∃ε≤n.ϕ ↔


ϕ if n = 0
∃ε≤n−1. (ϕ ∨ ∃ε.ϕ ) if n > 0

∃ϕ?.ψ ↔ ϕ ∧ ψ
∃ε1∪ε2.ϕ ↔ ∃ε1.ϕ ∨ ∃ε2.ϕ
∃ε1;ε2.ϕ ↔ ∃ε1.∃ε2.ϕ
∃p←τ.¬ϕ ↔¬∃ p←τ.ϕ
∃p←τ. (ϕ1 ∨ ϕ2)↔ ∃p←τ.ϕ 1 ∨ ∃p←τ.ϕ 2
∃p←τ.) ↔ )
∃p←τ.⊥ ↔ ⊥

∃p←τ. q ↔


τ if q = p
q if q ! p

These equivalences provide a complete set of reduction axioms for ∞-free dynamic
operators ∃ε. Call red the mapping on DL← formulas which iteratively applies the above
equivalences from the left to the right, starting from one of the innermost modal opera-
tors. It allows to first eliminate complex events, then push the dynamic operators inside
the formula, and finally eliminate them when facing an atomic formula.

Proposition 2. Let ϕ be a formula in the language of DL← without the arbitrary itera-
tion operator ε<∞. Then

1. red(ϕ) has no modal operators;
2. red(ϕ)↔ ϕ is DL← valid;
3. red(ϕ) is DL← valid iff red(ϕ) is valid in classical propositional logic.

Proposition 2 indicates a close relationship between star-free DL← and propositional
logic. The merit of former over the latter is to provide a model theory and an intuitive
and more succinct language. Both are valuable from a modelling perspective.

3.4 Complexity

Proposition 2 tells us that DL← is not more expressive than classical propositional logic.
However, reduction may exponentially increase the length of the formula because of
the event operators ∪ and ε≤n. But this is a suboptimal procedure, as we shall see now.

We first give the complexity result for model checking. The inputs of the model
checking problem are a valuation V and a formula ϕ, and the problem is to decide
whether V |= ϕ.

Theorem 1. The problem of DL← model checking is PSPACE-complete.

PROOF. We first establish hardness by reducing the problem of validity of QBFs to DL←
model checking. Consider a fully quantified Boolean formula

Φ = ∃q1∀q2∃q3 . . .∃qm−1∀qm.ϕ
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where m ≥ 0 is even and where ϕ(q1, . . . , qm) is a propositional formula containing no
variables other than q1, . . . , qm. (The hypothesis that the number of quantifiers is even
is without loss of generality: it suffices to add a dummy variable qm not occurring in ϕ).
We define

ΦDL← = ∃ε1.∀ε2. . . .∃εm−1.∀εm.ϕ
where εk = qk←&∪qk←⊥, for 1 ≤ k ≤ m. Consider the valuation over the set P =
{q1, . . . , qm} of propositional variables such that, say, V(qi) = ff for all qi. It is readily
checked that Φ is valid in Quantified Boolean Logic iff ΦDL← is true in V . Since both
the size of ΦDL← and the size of the model are linear in the size of Φ, we conclude that
DL← model checking is PSPACE-hard.

Proof of membership is similar to that for DCL-PC [11]. It requires a recursive
definition of the set of sequences of atomic events admitted by a complex event ε.

adm(p←τ) = {p←τ}
adm(Φ?) = {Φ?}
adm(ε1; ε2) = {α1;α2 : α1 ∈ adm(ε1) and α2 ∈ adm(ε2)}
adm(ε1∪ε2) = adm(ε1) ∪ adm(ε2)
adm(ε=0) = {&?}
adm(ε=n+1) = {α1;α2 : α1 ∈ adm(ε=n) and α2 ∈ adm(ε)}
adm(ε≤n) =

⋃
m≤n adm(ε=m)

adm(ε<∞) =
⋃

n adm(ε≤n)

(Clearly, the set adm(ε) is infinite iff ε contains <∞.) The main point in the proof is that
every possible update of a valuation V by a complex event ε can also be reached by a
sequence of atomic events that is admitted by ε and that is of length exponential in the
length of ε. This is the case despite the presence of the arbitrary iteration operator <∞,
the reason being that any ε<∞ can only bring about a finite number of valuation updates.
Based on that one can prove that membership of a couple of valuations (V ,V ′) in Rε can
be decided in polynomial space. Finally one can prove that a formula ϕ can be evaluated
in space polynomial in the size of ϕ; in particular, when evaluating ∃ε<∞.ϕ one may
decide in polynomial space whether one of the (exponentially many) valuations V ′ is
accessible from V . !

Theorem 2. The problem of DL← validity checking is PSPACE-complete.

PROOF. Hardness can be proved by translating QBF formulas to DL← in the same way
as in Theorem 1.

Membership can be proved for the DL← satisfiability checking problem as follows:
given ϕ we guess a model V . (V can be supposed to be of polynomial size because we
may restrict our attention to the propositional variables occurring in ϕ, and neglect those
that don’t.) Then we check whether V |= ϕ, which can be done in polynomial space
by mirroring the truth conditions. This shows that DL← satisfiability can be checked
in NPSPACE. Now by Savitch’s theorem NPSPACE = PSPACE, and therefore DL←
satisfiability can be checked in polynomial space. It follows that the complementary
DL← validity problem can be checked in polynomial space, too. !
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The above result shows that DL← is more succinct than propositional logic: there
are DL← formulas (and even star-free DL← formulas) such that every equivalent propo-
sitional formula is exponential longer.

4 The segregation game in DL←

In Section 2 we introduced Schelling’s segregation game in an informal way. Let us
now model it in DL←.

4.1 Propositional variables

We need three kinds of propositional variables:

At(i, k, l) “agent i is at location (k, l)”
R(i) “agent i is red”
Done(i) “it was already i’s turn in the present step”

where i is an agent in A = {1, . . . , |A|} and every (k, l) is a location in [1..N] × [1..N].
The following abbreviations will be useful:

B(i) def
= ¬R(i)

NB<1(k, l) def
=
∧

i
∧

k′,l′≤N : |k′−k|,|l′−l|≤1 ¬ (At(i, k′, l′) ∧ B(i))
NR<1(k, l) def

=
∧

i
∧

k′,l′≤N : |k′−k|,|l′−l|≤1 ¬ (At(i, k′, l′) ∧ R(i))
Hpy<1(i, k, l) def=

(
R(i) ∧ NB<1(k, l)

)
∨
(
B(i) ∧ NR<1(k, l)

)

Free(k, l) def
=
∧

i ¬At(i, k, l)
Segreg<1 def

=
∧

i
∨

k,l

(
At(i, k, l) ∧ Hpy<1(i, k, l)

)

NB<1(k, l) can be read “location (k, l) has no blue neighbour” and similarly for NR<1(k, l).
Moreover, i is happy at a given location (k, l) —noted Hpy<1(i, k, l)— if and only if “at
(k, l), agent i has no neighbour with a different colour”. Free(k, l) can be read “location
(k, l) is free”. Finally, the property of segregation holds —noted Segreg<1— if and only
if “every agent is happy at his place”.

Let us compute the length of these formulas. The length of both NB<1(k, l) and
NR<1(k, l) is in O(|A|) (the quantification over the locations (k′, l′) being void because
there are exactly 9 such locations including (k, l) and his neighbours), and is therefore
in O(N2) (because |A| < N2). The same holds for the length of Hpy<1(i, k, l). Finally, the
length of Segreg<1 is in O(|A| × N2 × N2), i.e. it is in O(N6).

4.2 Describing the agents’ moves

Every move of agent i from location (k, l) to location (k′, l′) can be described by a
complex event in our language of events.

move(i, k, l, k′, l′) def= At(i, k, l)? ; Free(k′, l′)? ; At(i, k, l)←⊥ ; At(i, k′, l′)←)
Then a move of the simulation is described by a nondeterministic composition of agent
moves (plus some turn taking management):
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move def
=
⋃

i,k,l

(
¬Hpy<1(i, k, l)?;¬Done(i)?;

⋃
k′,l′ move(i, k, l, k′, l′); Done(i)←#

)
;

(#? ∪ ¬∨i,k,l(¬Hpy<1(i, k, l) ∧ ¬Done(i))?; Done(1)←⊥; . . . ; Done(|A|)←⊥)

Nondeterministic choice corresponds to the scheduler in simulation model imple-
mentations. A simulation step consists in |A| executions of move.

Just as Hpy<1(i, k, l), the length of move(i, k, l, k′, l′) is in O(N2). The length of
move is in O(|A| × N4 × N2) = O(N8).

4.3 Domain and initial state

In order to properly model the segregation game, we must describe the domain laws
relating the propositional variables At(i, k, l), R(i) and Done(i). They say that there can-
not be a location inhabited by two different agents (χ1), that an agent cannot be at two
different places (χ2), and that an agent is at least at one place (χ3):

χ1 =
∧

i1!i2,k,l ¬(At(i1, k, l) ∧ At(i2, k, l))
χ2 =

∧
i, (k,l)!(k′,l′) ¬(At(i, k, l) ∧ At(i, k′, l′))

χ3 =
∧

i
∨

k,l At(i, k, l)

(In order not to overload notation we left implicit that 1 ≤ k, l ≤ N.) Together these
formulas make up the domain laws:

Laws = χ1 ∧ χ2 ∧ χ3

The length of Laws is determined by that of χ1, which is in O(|A|2 × N2) = O(N6).
The initial state is described by

Init =
(∧

i∈J R(i)
) ∧ (∧i"J ¬R(i)

) ∧ (∧i∈A ¬Done(i) ∧ At(i, ki, li)
)

where J ⊆ A is the set of red agents and (ki, li) is the initial location of agent i. Its length
is in O(|A|) = O(N2).

4.4 Describing and proving properties

In our language we can express things such as “segregation will always occur after n
moves” (ϕ1), “segregation may occur within n moves” (ϕ2), “when segregation occurs
then none of the agents will move” (ϕ3), etc.:

ϕ1 = ∀move=n.Segreg<1

ϕ2 = ∃move≤n.Segreg<1

ϕ3 = Segreg<1 → ∀move.⊥

Other kinds of properties will be discussed in Section 5.
Given a property described by a formula ϕ, what we are interested in is to check

whether the formula
(Laws ∧ Init)→ ϕ

is DL← valid, where ϕ is one of the above properties.
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The difference between Init and Laws is that while Init has just to be true in the
initial state, the laws must be true in any update of the current state. In order to ensure
that our modelling works properly the first thing to do is to check that the domain laws
are preserved by any sequence of events from move. To prove this it suffices to prove
that

Laws→ ∀move. Laws

is DL← valid.3
It is important to note that the lengths of the formulas Laws, Segreg<1, Hpy<1(i, k, l),

Init and of the complex event move are polynomial in the domain size parameter N.
Therefore the length of the formulas Laws → ∀move. Laws and (Laws ∧ Init) → ϕk
is polynomial in N (precisely, their length is in O(N8)). The validity problem in DL←
being in PSPACE we obtain the following results.

Proposition 3. The validity of Laws → ∀move. Laws and of (Laws ∧ Init) → ϕk, for
ϕk ∈ {ϕ1,ϕ2,ϕ3}, can be checked in space polynomial in N.

All our decision problems being in PSPACE, we can envisage to use existing the-
orem provers for PSPACE problems to check the above properties, such as provers for
modal logic K, for description logic ALC, or for Quantified Boolean Formulas. This
requires a polynomial transformation of the formulas to be checked into the language
of the respective logic.4

4.5 Varying the agents’ tolerance

The agents modelled here are extremely intolerant. More tolerant agents can be de-
scribed as follows:

NB<2(k, l) def=
∧

i1,i2 : i1!i2
∧

(k1,l1),(k2,l2) : |k1−k|,|l1−l|,|k2−k|,|l2−l|≤1
¬(At(i1, k1, l1) ∧ At(i2, k2, l2) ∧ B(i1) ∧ B(i2))

NB<p(k, l) def=
∧

i1,...,ip : im!in if m!n
∧

(k1,l1),...,(kp,lp) : |km−k|,|lm−l|≤1
¬(At(i1, k1, l1) ∧ . . . ∧ At(ip, kp, lp) ∧ B(i1) ∧ . . . ∧ B(ip))

NB<p(k, l) is read “location (k, l) has less than p blue neighbours”. NR<p(k, l) is de-
fined accordingly. Hpy<1(i, k, l) and Segreg<1 can be generalised to Hpy<p(i, k, l) and
Segreg<p in the obvious way. One may also stipulate that an agent is happy if the per-
centage of agents in his neighbourhood with a colour different from his is below some
threshold.

The length of NB<2 is in O(|A|2) and is therefore in O(N4). It follows that the length
of Hpy<2(i, k, l) is also in O(N4), that of Segreg<2 is in O(N8), and that of move is
in O(N10). Generally, the length of NB<p(k, l) is in O(|A|p); the parameter p being at
most 8, it follows that the length of NB<p(k, l) is in O(N16), that of Hpy<p(i, k, l) is in
O(N16), too, that of Segreg<p is in O(N20), and that of move is in O(N22). Overall, such
properties can still be checked in polynomial space just as those of Section 4.4.

3 From this it follows by standard principles of modal logic that Laws → ∀moven. Laws and
Laws → ∀move≤n. Laws are DL← valid. By the induction axioms of PDL one can also prove
that Laws→ ∀move<∞. Laws is DL← valid.

4 While we know that such a transformation exists because all these problems are in the same
complexity class, it remains to find an elegant such transformation.
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5 More expressive languages

We now discuss some generalisations of our logic that allow to naturally express other
properties one would like to check in simulations.

Let us introduce two new modal operators ≥k ε and ≥ 1
2 ε, where ≥k ε.ϕ reads “ϕ is

true in at least k of the possible updates by ε” and ≥ 1
2 ε.ϕ reads “ϕ is true in most of the

states after ε”. So the formula ∃ε.ϕ of Section 3 is nothing but ≥1 ε.ϕ .

V |= ≥k ε.ϕ iff |{V ′ : (V ,V ′) ∈ Rε and V ′ |= ϕ}|≥ k
V |= > 1

2 ε.ϕ iff |{V ′ : VRεV ′ & V ′ |= ϕ}| > |{V ′ : VRεV ′ & V ′ %|= ϕ}|
This allows to formulate interesting properties of segregation game such as the fol-

lowing.

– “segregation will occur within n moves at least k times” (ψ1);
– “segregation will occur at some point in the future at least k times” (ψ2);
– “segregation will occur within n moves exactly k times” (ψ3);
– “segregation will occur at some point in the future exactly k times” (ψ4);
– “segregation will occur after n moves in most of the cases” (ψ5).

ψ1 = ≥k move≤n.Segreg<p

ψ2 = ≥k move<∞.Segreg<p

ψ3 = ≥k move≤n.Segreg<p ∧¬≥ k+1 move≤n.Segreg<p

ψ4 = ≥k move<∞.Segreg<p ∧¬≥ k+1 move<∞.Segreg<p

ψ5 = >
1
2 move=n.Segreg<p

Model checking requires some more bookkeeping in order to count valuations, but can
still be done in polynomial space. We obtain a PSPACE completeness result for the
validity checking problem by using Savitch’s theorem in the same way as we did in the
proof of Theorem 2.

6 Conclusion

In this paper we have shown how to do social simulation in a dynamic logic with as-
signments, tests, sequential and nondeterministic composition, and bounded and non-
bounded iteration.

Instead of our logic we could also have used other logical approaches to reasoning
about actions such as the Situation Calculus [14], the Fluent Calculus [18], or the Event
Calculus [16]. However, while these formalisms allow to represent more or less the
same things, their mathematical analysis is less developed: while there are some decid-
ability results, there are no complexity results that could be compared to the PSPACE
completeness result for our logic.

As we have said in the introduction the kind of properties we want to prove can be
viewed as planning problems with a finite horizon. We could therefore have used exist-
ing finite horizon planners in order to prove properties of simulations. It has to be noted
that planners typically build plans, while we are only interested in proving plan exis-
tence. However, it is an interesting research avenue to exploit a possible convergence of
the fields of simulation and planning.
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Simulating Research Behaviour
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Abstract. This paper proposes a simulation for research behaviour, fo-
cusing on the process of writing papers, submitting them to journals and
conferences, reviewing them, and accepting/rejecting them. The simu-
lation is currently used to evaluate the OpinioNet reputation model,
which calculates the reputation of researchers and research work based
on inferred opinions. The goal is to verify whether the reputation model
succeeds in encouraging ‘good’ research behaviour or no, although the
simulator is elaborate enough to be used for the analysis of other aspects
of paper writing, submission, and review processes.

1 Introduction

The classical way in which scientific publications are produced, evaluated and
credited, is being challenged by the use of modern computer science technolo-
gies [1, 5]. In particular, software versioning tools and reputation mechanisms
make it realistic to think about a publication process where the publications
are ‘liquid’, in the sense that they are persistently accessible over Internet and
modified along time. Credit is then given to authors based on opinions, reviews,
comments, etc. This would produce many beneficial results, for instance, to re-
duce the current large number of very similar publications (i.e. salami papers)
or to organise conferences by just searching for the most prestigious liquid pub-
lications satisfying certain keywords. OpinioNet [4] is one reputation model that
has been proposed with the intent of encouraging ‘good’ research behaviour. For
instance, its equations are designed to give more attention to the quality of a
researcher’s work than their quantity.

This paper proposes a simulator that would simulate the course of scientific
publications, from writing papers and submitting them to journals and confer-
ences to reviewing them and accepting/rejecting them. The main goal of the
simulator is to verify whether the OpinioNet reputation model succeeds in en-
couraging ‘good’ research behaviour or not, although the simulator is rich enough
to be used for the analysis of other aspects of paper writing, submission, and
review processes.

The rest of this paper is divided as follows. Section 2 provides the background
needed for understanding the followed formal publications model and the Opin-
ioNet reputation model being evaluated. Section 3 introduces the basics of the
simulator. The simulator’s algorithm is then presented by Section 4, and its as-
sumptions and hypothesis are presented by Section 5. Section 6 then discusses
the preliminary results, before concluding with Section 7.
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2 Background

Reputation is widely understood as the group’s opinion about the entity in
question. The OpinioNet reputation model [4] is based on the concept that in
the case of the lack of explicit opinions, opinions may be deduced from related
entities. For instance, in the field of publications, one may assume that if a
paper has been accepted by a reputable conference, then the paper should be
of a minimum quality. Similarly, a conference becomes reputable if it accepts
high quality papers. OpinioNet is essentially based on this notion of opinion
propagation in structural graphs, such as the publications graphs (where nodes
of this graph may represent knowledge objects, such as conference proceedings
and conference papers, and relations stating which is part of what).

OpinioNet understands opinions as probability distributions over an evalu-
ation space, for a particular attribute, and at a moment in time; for example,
one can define a set of elements for the evaluation space for quality of a node as
{poor, good, v.good, excellent}. The set of attributes that opinions may address
can be, for instance, {novelty, clarity, significance, correctness}. OpinioNet then
defines the structural graph accordingly: SG = 〈N, G, O, E, A, T, E , F〉, where
N is the set of nodes, G is the set of agents that may generate opinions about
nodes, O is the set of all opinions, E is the ordered evaluation space for O, A
is the set of attributes that opinions may address, T represents calendar time,
E ⊆ N ×N specifies which nodes are part of the structure of which others (i.e.
(n, n′) ∈ E implies n is part of n′), F : G × N × A × T → O is a relation that
links a given agent, node, attribute, and time to their corresponding opinion.

A single opinion is then represented as the probability distribution
P(E|G, N, A, T ) ∈ O. We note that probability distributions subsume classical
approaches and are more informative. Hence, the adoption of this approach by
our simulator does not necessarily restrict its application to other scenarios.

3 Simulation Basics

In theory, it is researchers’ behaviour (defined through their profiles) that would
influence the creation and evolution of papers, journals, and, eventually, fields
of research. However, to keep the simulation simple, our example focuses on the
evolution of one specific aspect of a research community—namely, the growth of
the community’s contributions—and neglects other aspects that are not deemed
crucial for the evaluation of the reputation module—such as the rise and fall of
the community itself, its journals, its fields of research, etc. As such, and for the
sake of simplifying the simulation, we choose to simulate a single community
with a fixed number of researchers researching a given subject; we say it is
the researchers’ profiles that control the production and dissemination of single
contributions; and we keep the number of journals that could accept/reject these
contributions fixed. In other words, we say one ‘top rated’ journal is sufficient
to represent the acceptance of a contribution by any ‘top rated’ journal. We
argue that since our current interest is in the future of authors’ contributions
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(such as papers or book chapters), the number of journals becomes irrelevant:
what is crucial is the quality of the journals (if any) that accept the authors’
contributions. In what follows, we define the simulator’s input and output.

3.1 The Simulator’s Input and Output

The simulator requires the following tuple as input: 〈SG0, J, U,J ,U ,T〉, where
SG0 describes the initial state of the system (or the initial SG graph), which
should include at least a fixed number of researchers and journals; J describes the
set of journal profiles (defined shortly); U describes the set of researcher profiles
(defined shortly); J ⊆ N × J is a function that maps a journal in N (where N
is the set of knowledge objects in SG0) to a journal profile in J ; U ⊆ G×U is a
function that maps a researcher in G (where G is the set of researchers in SG0)
to a researcher profile in U ; and T ∈ N∗ describes the number of years to be
simulated. Then, every simulation year Y results in a modified structural graph
SGY . The evolution of the SG graph is then presented: ESG = {SG0, · · · , SGT}.

3.2 Journals’ Profiles

Journals are categorised through profiles that define their quality and their re-
quired number of reviewers. A journal’s profile j ∈ J is defined as the tuple:
j = 〈J,RN〉, where similar to the opinions on quality, J is a probability distri-
bution over the evaluation space E describing the quality of the journal; and RN
describes the number of reviewers needed to review a paper, and it is specified
as a Gaussian function over the set of natural numbers N.

The rules for accepting/rejecting contributions depends on the quality of the
journal J. For example, very good journals are very strict about the quality of the
papers they accept, other lower quality ones are not as strict. Hence, a journal’s
acceptance threshold AT may be defined in terms of its quality J. A preliminary
definition could be to have AT= emd(J, T), where emd is the earth movers
distance that calculates the distance (whose range is [0, 1], where 0 represents
the minimum distance and 1 represents the maximum possible distance) between
two probability distributions [6],1 and T= {en &→ 1} (where ∀ei ∈ E · en > ei)
describes the ideal distribution, or the best distribution possible.

3.3 Researchers’ Profiles

Similar to journals, researchers’ behaviour is also categorised through profiles
that define their quality, their productivity, etc. A researcher’s profile u ∈ U is
defined as the tuple: u = 〈Q,RP,CN, C,CA,CP,SC,V,SS,RvP,RV,RT〉,
where
1 If probability distributions are viewed as piles of dirt, then the earth mover’s distance

measures the minimum cost for transforming one pile into the other. This cost is
equivalent to the ‘amount of dirt’ times the distance by which it is moved, or the
distance between elements of the ordered evaluation space E.
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– Q describes the researcher’s research quality, and it is specified as a proba-
bility distribution over the evaluation space E (we assume that researchers
have a fixed and ‘intrinsic’ quality of research — Section 5 argues the need for
this intrinsic value — which is different from reputation values that reflect
the view of the community and are calculated by reputation algorithms);

– RP describes the research productivity in terms of the produced number of
papers per year (since produced research work is usually presented and pre-
served through papers, whether published or unpublished), and it is specified
as a Gaussian function over the set of natural numbers N;

– CN describes the researcher’s usual number of coauthors per contribution,
and it is specified as a Gaussian function over the set of natural numbers N;

– C describes the accepted research quality of coauthors, and it is specified as
a probability distribution over the evaluation space E;

– CA describes the accepted affinity level of coauthors (currently, affinity mea-
sure describes how close are two researchers’ profiles; however, in future sim-
ulations, one may also consider affinity measures that describe how close are
two researchers with respect to numerous social relations), and the range of
its value is the interval [0, 1], where the value 0 represents minimum affinity
and the value 1 represents maximum affinity;

– CP describes the level of persistency in sticking with old coauthors, it is
defined in terms of the number of past papers that two researchers have
coauthored together, and it is specified as a Gaussian function over the set
of natural numbers N;

– SS describes the submission strategy of the researcher, and the range of
its value is the interval [−1,+1], where a value −1 represents an extreme
‘risk-averse’ strategy in which the researcher does not submit a paper to
any journal unless its paper is of the highest quality possible, a value of +1
represents an extreme ‘risk-seeking’ strategy in which the researcher doesn’t
mind submitting a paper to a journal of much higher quality, and the value
0 represents a more neutral approach in which the researcher usually sub-
mits its papers to journals of the same quality (of course, values in between
represent different levels of risk-averse and risk-seeking strategies);2

– RvP describes the researcher’s review productivity in terms of the number
of papers the researcher accepts to review per year, and it is specified as a
Gaussian function over the set of natural numbers N;

– RV describes the review quality in terms of how close the researcher’s reviews
are from the true quality of the papers in question, it is defined in terms of
the distance from the true quality of the paper in question, and the range of
this distance is the interval [−1,+1]; and

– RT describes the reviewers’ threshold for accepting to review a paper for a
given journal, it is defined in terms of the earth mover’s distance between

2 We assume that the quality of journals and that of researchers may be compared
since they are measured on the same scale. Our assumption is based on the idea that
the quality of the researchers, their papers, and the journals that accept those papers
are all based on the quality of the research work being carried out and presented.

39



the reviewer’s quality of research and that of the journal’s, and the range of
its value is the interval [0, 1].

We note that although the researchers’ profiles may seem too complex, (1)
many ideas have already been overly simplified, as illustrated by Section 5.1,
and (2) additional simplifications are straightforward.

4 Simulation Algorithm

While the previous section has introduced the simulator as a black box, this
section presents an overview of the simulation algorithm. (For the simulator’s
technical details, we refer the interested reader to our technical document [3].)
The algorithm’s steps are outlined below.

1. Generate the groups of coauthors for the given year
The idea is that each group of coauthors will produce one paper that will
then be added to the SG graph. In summary, the algorithm selects the
authors one by one, giving the authors that intend to write more papers
this year (specified by the research productivity RP of the researcher) a
higher probability of being selected first. Then, for each selected author, the
algorithm searches, in an iterated manner, for a suitable group of coauthors,
where the ‘suitability’ is based on the restrictions imposed by each researcher
through its preferred number of coauthors (CN), the accepted quality of
coauthors (C), the accepted affinity of coauthors (CA), and the accepted
persistency of coauthors (CP)). The algorithm iterates until all researchers
are assigned to as many coalitions as needed.

2. Then, for each paper resulting from a created group of coauthors, the simu-
lator performs the following:
(a) Calculate the intrinsic quality of the paper

We base our simulation on the idea that papers have a true quality
that researchers (and reviewers) often try to guess. Of course, in reality,
this value does not exist. However, simulation may assume such values
to compare and analyse the performance of researchers. We assume that
when researchers from various qualities (where a researcher’s true quality
is specified by the parameter Q) are grouped together then the resulting
paper’s true value would be an aggregation of the researchers’ true value.

(b) Choose the journal to submit the paper to
After a paper is created, it is submitted to some journal. The selection
of the journal assumes that researchers tend to have certain submis-
sion strategies (specified through the parameter SS), and the submission
strategy for a given journal is an aggregation of its authors’.3 The final

3 Although, in fields that are known to have an enormous number of authors per
paper (for example, it is not uncommon for Physics articles to have a few thousand
authors each) and by the law of large numbers, the simple aggregation method of
the authors’ SS values would fail since it would result in similar values for all papers.
In such cases, it might be useful to calculate the resulting submission strategy by
adopting it from the leading author.
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calculated submission strategy is then used to help select the journal to
submit to by enforcing constraints on the distance between the paper’s
true quality (calculated by step 2(a) above) and that of the journal’s (J).

(c) Choose the reviewers to review the paper
This action is based on the number of reviews needed RN, the availabil-
ity of the reviewers (researchers are assumed to review a certain number
of papers per year, determined by RvP, and they accept the journals’
requests to review papers based on a first come first serve basis), the qual-
ity of the researcher Q, the quality of the journal J, and the reviewer’s
threshold for accepting a journal (RT).

(d) Generate the reviewers’ opinions (reviews) about the paper in question
Reviewers’ opinions are based on the intrinsic quality of the paper (cal-
culated by step 2.(a).) and the researcher’s review quality (RV), which
determines how close the review would be to the paper’s true value.

(e) Accept/Reject the paper by the chosen journal
This calculation is based on the quality of the journal J, the journal’s ac-
ceptance threshold (AT), and the reviewers’ aggregated opinions, where
the aggregation take into consideration the reviewers’ reputation at the
time. Note that if the paper is accepted, then it is linked (in the SG
graph) to the journal through the part of relation.

(f) Reputation measures are calculated by OpinioNet
After reviews are created and papers are accepted/rejected accordingly,
the simulator calls the OpinioNet reputation model to calculate the rep-
utation of papers based on the new reviews and acceptance results, as
well as the authors’ reputation based on the reputation of their papers.

3. Repeat the entire process for the following year.

5 Assumptions and Hypotheses

After introducing the proposed simulation algorithm, and before moving on to
the experiments and results, this section is intended to clarify our stance by
highlighting and discussing the assumptions we make as well as clarifying the
claims the simulation algorithm is designed to test.

5.1 Assumptions

As discussed earlier, trying to simulate the real behaviour of researchers requires
a thorough study of various aspects, from how people choose their coauthors
and how they choose where to submit their work to, to how do journals select
reviewers, and how is the quality of a paper related to the research quality of
its authors. We argue that the proposed simulation algorithm is sophisticated
enough to capture the actions that have an impact on reputation measures, yet it
is simplified enough to overlook unnecessary complicated behaviour. As a result,
a bunch of assumptions are made, which we discuss below. We note that many
of the fixed values that we refer to in our assumptions are in fact either drawn
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from a predefined Gaussian function, or some noise is added to them to make
our scenarios more realistic.

On the Static Nature of the Research Community. We say both the community
and the researchers’ behaviour are static: researchers do not join or leave the
community; journals do not evolve or die; the field of research is fixed; each
paper cites a fixed number of other papers; a researcher’s productivity does
not change with time; a researcher’s quality of research does not evolve with
time; a researcher’s review productivity does not evolve with time; a researcher’s
review quality does not evolve with time and his reviews always fall at a fixed
distance from that of the true quality of the paper being reviewed; a researcher’s
submission strategy does not evolve with time; a researcher’s acceptable journal
quality for reviewing papers is fixed; and journals do not evolve and they always
accept papers of the same quality.

These assumptions are introduced to keep the simulation simple. Although,
to keep the simulation more realistic, some randomness is introduced when gen-
erating the measures specifying a ‘fixed’ behaviour. We postpone the study of
dynamic and evolving behaviour for future work.

On Selecting Coauthors. Selecting the coauthors to collaborate with is usually a
complex matter that depends on a variety of issues, such as the subject of study,
the practicality of collaboration, and so on. Our proposed simulator, however, is
not aimed at studying the dynamics of human relations, their collaboration, and
coalition formations, but the production of papers on an annual basis. Hence,
for simplicity, the production of papers assumes researchers produce a fixed
number of papers per year, and coauthor their papers with a group of other
researchers. Again, for simplicity, we assume the strategy of selecting coauthors
is fixed and that coauthors are selected based on their quality, their affinity, and
their persistence. Of course, different weights may be given to each.

On the True Quality of Researchers and Research Work. Although in reality the
true quality of a researcher is neither definite nor accessible, we do assume that
researchers have defined true and fixed qualities, since we feel the need to base
several other actions on these qualities. For example, we say the true quality of a
paper is based on the true quality of its authors. And this is crucial because we
say, for instance, that how good a reviewer is depends on how close its opinion
is from the true quality of the paper in question.

But how is the true quality of the paper calculated? We argue that when re-
searchers from various qualities are grouped together then the resulting paper’s
true (quality) value would be an aggregation of the researchers’ true (quality)
value. However, we also assume that when the dispersion in quality is large
(where the Gini coefficient [2] is used to describe dispersion), the aggregation
tends to follow a mean nature; and when the dispersion in quality is low, the ag-
gregation tends to follow a more superadditive nature. The equation we propose
for calculating a paper’s true value X is then defined as follows:

X = G · mean({Qa}) + (1−G) · superadd({Qa}) (1)
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where, {Qa} represents the set of all authors’ true value Q, G represents the
Gini coefficient, mean represents some mean function, and superadd represents
some superadditive function.45

The superadditivity implies that when a group of researchers in the same
quality range are combined, then they may be able to produce some work that is
a little bit better than what each may produce on their own. However, when very
good researchers coauthor papers with very poor ones, then the poor ones could
possibly pull the quality of the produced paper below the excellent researcher’s
standard quality. In other words, the effect that a single researcher has on the
true quality of a paper is dependent on its quality of coauthors.

On Selecting the Journal to Submit a paper to. We say researchers have different,
and ‘fixed’, submission strategies. We define submission strategies following the
prospect theory classification of strategies into risk seeking, risk averse, and risk
neutral ones. The submission strategy of a paper is then an aggregation of its
authors’. For example, if the submission strategy is ‘risk seeking’, then the paper
may be submitted to some journal which is of better quality than the paper in
question. If the submission strategy is ‘risk averse’, then the paper cannot be
submitted to a journal unless it is of higher quality. Of course, varying levels of
these strategies are considered.

On Selecting the Reviewers. Journals usually try to get good reviewers, based
on availability. But how do reviewers choose whether to accept/reject reviewing
papers for a given journal. We assume that reviewers accept journals based on
a first come first serve basis, as long as the journal is of acceptable quality and
the reviewer is available to do more reviews.

On Accepting/Rejecting papers by a given Journal. We assume accepting/rejecting
a paper is only based on reviewers’ opinions, and not on the number of papers
submitted, the acceptance rate, etc. This is necessary because we have already
assumed the number of journals to be fixed. In other words, we say one journal of
a given quality is enough to represent all potential journals of that same quality.

Furthermore, when accepting/rejecting a paper, the journal’s editors do not
base their decision on the true quality of the paper (since this information is not
available), but on the aggregated reviewers’ opinions. When aggregating review-
ers’ opinions, we say that the reliability of a review (or opinion) is based on the
researcher’s current reputation in his/her community (as calculated by the Opin-
ioNet algorithm), rather than how confident it claims to be (which is how the
current review process works). We believe this is a stronger reliability measure
since the reviewer does not assess himself, but is assessed by the community.
4 We argue that it does not matter much which exact mean or superadditive functions

we choose, since the effect of that would be minute. In any case, we hope future
extensive simulations would clarify which choices are better.

5 It is not clear yet whether the proposed approach for calculating a paper’s true values
would provide better results than a simple variance of authors’ quality values. Future
extensive simulations could also clarify which choices are better.
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On the Fate of Papers. Finally, we say that, for the sake of simplicity, both
accepted and rejected papers are forgotten. Neither of them is submitted to
other journals in the following years; only new papers are created each year. In
practice these new papers would in fact be a modification of (i.e. a new version
of) already existing ones. However, we currently postpone the simulation of
the version of relation that links related papers for future simulations. This
assumption is acceptable since the current simulation simply focuses on the
number of journals and the quality of the journals that accept them, rather than
the evolution of papers.

5.2 Hypotheses

The OpinioNet reputation model has been used in an attempt to encourage
‘good’ research behaviour [3]. The proposed simulator aims at verifying whether
OpinioNet achieves its goal or not through testing the following hypotheses.

Hypothesis 1 It is more profitable to produce few high quality papers than sev-
eral lower quality ones.

Hypothesis 2 It is more profitable to follow a ‘risk-neutral’ submission strategy.

The first hypothesis implies that it would be more profitable, in terms of
reputation, to spend more time on producing few high quality research papers
than numerous papers of lower quality. This, we believe, lowers the dissemination
overhead in researchers’ contributions and encourages researchers to spend more
time on high quality research, as opposed to wasting time on repackaging already
existing ideas for the sole purpose of increasing reputation.

The second hypothesis implies that it is more profitable (again, in terms of
reputation) to submit one’s contributions to journals that lie in the same qual-
ity range of the paper. For instance, if authors choose journals that are much
better, then they end up wasting the community’s time and resources, and they
also waste time before their work is accepted. However, if the authors choose
journals that are of much lower quality than the work submitted, then they
miss the chance of having this work published in more reputable journals. Nat-
urally, proving/disproving this hypothesis will be influenced by the assumption
that papers may only be submitted once. We believe resubmitting usually re-
quires the creation of news versions, which we postpone for future (and more
advanced) simulations. Nevertheless, the current simulation may illustrate the
effort, time, and potential gain in reputation that could be wasted by preferring
one submission strategy over another.

To test the claims above, we define two different simulations, one for each
of these claims. In each of these simulations, we keep the value of the relevant
parameters in the researchers’ profiles fixed while we vary the other values. For
instance, the parameter describing the researcher’s productivity (RP) should
be fixed when testing the first hypothesis, while the parameter describing the
researcher’s submission strategy (SS) should be fixed for testing the second hy-
pothesis. The following section discussed the details of our simulation examples
and their results.
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6 Results and Analysis

For our preliminary simulation, we choose to simulate a small research commu-
nity composed of a fixed set of 20 researchers. The simulation then runs for 10
time-steps, where each time-step represents one calendar year. In other words,
our simulated example represents a fixed community of 20 researchers with vary-
ing behaviour and its evolution over 10 years.

At each time-step, papers are added following the constraints of the various
profiles. With the addition of each paper, the following measures are calculated:
(1) the OpinioNet reputation of the papers affected by this addition, and (2) the
OpinioNet reputation of authors affected by this addition. The evolution of these
measures along time is then plotted for further analysis, as illustrated shortly.

Evaluating Hypothesis 1. In this experiment, we divide the researchers into 3
groups: (1) those with a high quality research and low productivity level, (2)
those with a medium quality research and a medium productivity level, and (3)
those with low quality research and a high productivity level. We note that the
productivity level represents the number of papers produced per year. All the
other values defining the researchers’ profiles are kept fixed. For example, all
researchers share the same criteria in selecting their co-authors.

The results are presented by Figure 1, which shows that those who focus
on the quantity cannot do better than those who focus on the quality of their
work. However, if we have two researchers that have the same quality of work,
then it is not very clear whether focusing on quantity would help or not. For
this reason, we run a second experiment, where all the researchers now share the
same quality of work, but have different productivity levels. Four categories of
productivity are distinguished: (1) those with very high productivity level per
year, (2) those with an average productivity level per year, (3) those with a very
low productivity level per year, and (4) those who produce a paper every several
years (around 5 years on average). The results of this experiment are presented
by Figure 2, which illustrates that as long as a researcher is producing papers
relatively ‘frequent’ enough, then s/he needs not focus on the quantity of their
papers. However, there is a limit for this ‘frequency’. For example, we show that
researchers who produce only one paper every 5 years cannot compete with those
who are continuously active.

These results confirm hypothesis 1, which states that it is more profitable to
produce few high quality papers than several low quality ones; yet, researchers are
required to remain active not become dormant for long periods of time.

Evaluating Hypothesis 2 In this experiment, we divide the researchers into 3
groups: (1) those with a ‘risk-seeking’ submission strategy, (2) those with a
‘risk-neutral’ submission strategy, and (3) those with ‘risk-averse’ submission
strategy. All the other values defining their profiles are kept fixed. For exam-
ple, all researchers are of a medium-high quality; all researchers share the same
criteria in selecting their co-authors, etc. The results of this experiment are pre-
sented by Figure 3, which shows that the researchers that are more picky in their
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Fig. 3. Reputation of authors: experiment results evaluating hypothesis 2

selection of the journals to submit their papers to have their reputation fluctu-
ating much more than others. This is because they risk their work being rejected
by some journals, but when they do get published, their gain in reputation is
relatively high.

An intriguing issue to note is that all three groups tend to have a similar
reputation after a long period of time (10 years in this case). We believe that
this might be related to the quality of the researchers. For example, researchers
with a very high quality might be better off choosing a ‘risk-seeking’ submission
strategy than a ‘risk-averse’ one. We hope future simulations to clarify this issue.
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7 Conclusion

This paper has presented a simulator that simulates the details of the publica-
tion process, from writing papers and submitting them to journals, to the review
process and the final decision of accepting/rejecting papers. The simulator is
rich enough to be used in analysing different aspects of the publication process.
However, this paper has focused on using it to verify the OpinioNet reputation
model’s success in encouraging ‘good’ behaviour, such as encouraging the focus
on the quality of work produced as opposed to its quantity. Future work should
help us understand the details and preconditions of hypotheses 1 and 2 better.
We also plan to extend our future simulations for testing additional hypotheses
such as: (1) Is it more profitable to collaborate with researchers of high research
quality? (2) Are more reputable researchers less susceptible to the selected qual-
ity of coauthors? (3) Is it more profitable to repackage one’s research work into
different versions? And so on.
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don Press, 1912. Reprinted in Memorie di metodologica statistica (Ed. Pizetti E,
Salvemini, T). Rome: Libreria Eredi Virgilio Veschi (1955).

3. Nardine Osman, Jordi Sabater-Mir, Carles Sierra, Adrián Perreau de Pinninck Bas,
Muhammad Imran, Maurizio Marchese, and Azzurra Ragone. Credit attribution
for liquid publications. Deliverable D4.1, LiquidPublications Project, June 2010.

4. Nardine Osman, Carles Sierra, and Jordi Sabater-Mir. Propagation of opinions in
structural graphs. In Helder Coelho, Rudi Studer, and Michael Wooldridge, editors,
Proceeding of the 19th European Conference on Artificial Intelligence (ECAI’10),
volume 215 of Frontiers in Artificial Intelligence and Applications, pages 595–600,
Amsterdam, The Netherlands, The Netherlands, 2010. IOS Press.

5. Nardine Osman, Carles Sierra, Jordi Sabater-Mir, Joseph R. Wakeling, Judith Si-
mon, Gloria Origgi, and Roberto Casati. LiquidPublications and its technical and
legal challenges. In Danièle Bourcier, Pompeu Casanovas, Mélanie Dulong de Ros-
nay, and Catharina Maracke, editors, Intelligent Multimedia: Managing Creative
Works in a Digital World, volume 8, pages 321–336. EPAP, Florence, 2010.

6. Shmuel Peleg, Michael Werman, and Hillel Rom. A unified approach to the change
of resolution: Space and gray-level. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 11(7):739–742, 1989.

47



Agent Simulation of Peer Review: The PR-1
Model

Francisco Grimaldo1, Mario Paolucci2, Rosaria Conte2

1 Departament d’Informàtica
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Abstract. Peer review lies at the core of current scientific research. It
is composed of a set of social norms, practices and processes that con-
nect the abstract scientific method with the society of people that apply
the method. As a social construct, peer review should be understood by
building theory-informed models and comparing them with data collec-
tion. Both these activities are evolving in the era of automated com-
putation and communication: new modeling tools and large bodies of
data become available to the interested scholar. In this paper, starting
from abstract principles, we develop and present a model of the peer
review process. We also propose a working implementation of a subset of
the general model, developed with Jason, a framework that implements
the Belief-Desire-Intention (BDI) model for multi agent systems. After
running a set of simulations, varying the initial distribution of reviewer
skill, we compare the aggregates that our simplified model produces with
recent findings, showing how for some parameter choice the model can
generate data in qualitative agreement with measures.

1 Introduction

Science is both a method - a logically coherent set of norms and processes -
and a social activity, in which people and organizations endeavour to apply the
method. One of the most important elements of the social structure of science is
peer review, the process that scrutinizes scientific contributions before they are
made available to the community.

As with any social process, peer review should be the object of scientific inves-
tigation, and should be evaluated with respect to a set of parameters. Common
sense would suggest, at least, considerations of fairness and efficiency. In addi-
tion, two specific dimensions very relevant to research are innovation promotion

A preliminary version of this paper has been presented at EUMAS 2010 with the
title “A proposal for agent simulation of peer review.”
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and fraud detection. Science evolves by revolutions [6], and peer review should
be evaluated with respect to its reaction to novelty. Is the current system of peer
review supporting radical innovation, or is it impeding it?

Fraud detection, especially for politically relevant matters as medicine and
health, is also extremely important; its actual effectiveness at ensuring quality
has yet to be fully investigated. In [7], the review process is found to include a
strong “lottery” component, independent of editor and referee integrity. While
the multiple review approach to a decision between two options is supported by
Condorcet’s jury theorem, if we move beyond simple accept/reject decisions by
considering scoring and ranking, we find several kinds of potential failures that
are not waived by the theorem.

These questions are particularly relevant right now, because, on the one hand,
peer review is ready to take advantage of the new information publishing ap-
proach created by Web 2.0 and beyond. On the other hand, we perceive a diffuse
dissatisfaction of scientists towards the current mechanisms of peer review. This
is sometimes testified just anecdotally; list of famous papers that were initially
rejected and striking fraudulent cases abound. Leaning on examples is an ap-
proach that we do not support because it is known to induce bias [12]. However,
some recent papers have shown some numerical evidence on the failures of peer
review [4].

In fact, peer review is just a specific case of mutual scoring. Following [8, 9],
it is a reciprocal and symmetric type of evaluation which includes narrow access
and transparency to the target (at least this is how it is designed in the case of
teamwork, see the example of scientific research evaluation). Peer review is the
standard that journals and granting agencies use to ensure the scientific quality
of their publications and funded projects.

The question that follows is then - can we improve on this process? We are
not going to fall for the technology trap, and just suggest that by updating
peer review to the Web X.0 filtering, tagging, crowdsourcing, and reputation
management practices [9], every problem will disappear - in fact, change could
make the problems worse; consider for example the well known averaging effect
of searching and crowd filtering [3].

Instead, we propose to create a model (or better, a plurality of models) of peer
review, that takes into account recent theoretical developments in recommender
systems and reputation theories, and test “in silico” the proposed innovations. In
this work, we draw an overview of how we foresee such a model, and we present
a first, partial implementation of it. The literature of simulation models about
peer review is scarce; the only other approach we have found is [11], where the
authors focus on an optimizing view of the reviewer for his or her own advantage.

The rest of the paper is organized as follows: the next section outlines a
general model of peer review as well as a restricted model focusing on the roles
of the reviewer and the conference. Section 3 explains how the latter has been
implemented as a Multi-Agent System (MAS) over Jason [2]. In section 4 we show
the aggregates that our simplified model produces when varying the distribution
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of reviewers ability. Finally, in section 5 we state the conclusions of this work
and discuss about future lines of research.

2 Description of the proposed model

In this section, we draw the outline of a model of peer review (PR-M in the
following) and of its subset that we have implemented. We use agent-based
simulation as a modelling technique [1]. With respect to statistical techniques
employed for example in [4] or [7], the agent-based or individual-based approach
allows us to model the process explicitly. In addition, it helps focusing on agents,
their interaction, and possibly also their special roles - consider for example the
proposal in [7] of increasing pre-screening of editors or editorial boards. Such a
change is based on trust in the fair performance of a few individuals who take up
the editors role. Thus, these individuals deserve detailed modeling, that could
allow us to reason on their goals and motivations [5].

In this model, we want to catch the whole social process of review, and not
just the workings of the single selection process. We will try to simulate the whole
lifecycle of peer review, that will allow for example - in the complete model -
to reason about role superposition between author and reviewer. This approach
distinguishes our effort from that of other authors like [4].

2.1 PR-M

The key entities in our system are: the paper, as the basic unit of evaluation; the
author of the paper; and the reviewer, which participate in a program committee
of a specific conference. We define them in the following paragraphs.

Paper. Here, we do not focus on research but on its evaluation. We assume that
the actual value of a paper - that we take as the basic research brick - is difficult
to ascertain. Thus, while we give to each paper an actual value, we speculate
that the value is only accessible through a procedure that implies the possibility
of mistakes.

As a consequence, value is hidden by noise and evaluating papers is modeled
as a difficult task - though, noise can obviously be canceled by repeated inde-
pendent evaluations. In our model, we give papers an intrinsic fixed value. But
there is another, different value that can be calculated and that changes in time:
the number of citations that the paper receives.

The value of a paper as the number of its citation should, in an ideal case,
reflect its actual value. In PR-M, we plan to implement a citation system so
that approved papers can be cited by other papers, thus creating a network of
citations. The decision process will be carried on by the simulated author. With
both an intrinsic value and a citation count, after an initial bootstrapping phase,
we could check the correlation between these two. The larger the correlation, the
better the whole system of peer review is performing.

50



4

Author. Authors create papers and submit them to the conferences. With the
citation network, the author will also decide on what papers are to be included
in the bibliography. We plan to develop a probabilistic choice where a paper will
have a higher chance to be cited depending on a list of factors including paper
presence in a conference where the author is in the PC, or has submitted a paper;
being co-authored by the author himself; and being a highly cited paper, thus
mirroring the positive feedback mechanism that operates in research. Authors
could have individual preferences on the weights. By varying the distribution of
the intrinsic value of the papers submitted as well as the author preferences, the
PR-M model will allow us to analyze the evolution of the quality of the papers
published by each conference.

Reviewer. Reviewers can be part of the program committee (PC) of any number
of conferences. In every simulation cycle, representing one year or conference
edition, they evaluate a certain number of papers for each conference that enlists
them in the PC.

The PR-M model characterizes reviewers by a probability value, named re-
viewer skill (s), that represents the chance they actually understand the paper
they are reviewing.

The distribution of s values is the primary cause of reviewing noise. We
will experiment with several distributions, including a uniform distribution of s
values across reviewers (which we consider a low level of noise in evaluations)
and other, left-skewed distributions where a low level of reviewing skill is more
frequent.

Conference. As with the paper, we use the term conference in a general sense;
it covers also, for example, the journal selection process. The authors’ decision
about what conference to send their works to is crucial, since the number of
papers received is a measure of success for the conference, and their quality
will determine the conference’s quality. Can the review-conference system en-
sure quality in the face of very strong noise, variable reviewers skill, thanks to
some selection process of PC composition that leans on the simplest measurable
quantity - disagreement? The number of evaluations a paper receives are just a
few - three being a typical case. Thus, the conference is where all the process
comes together - are three reviews enough to cancel noise? For what distributions
of papers and reviewers skill?

2.2 PR-1

In this paper, we only present a restricted implementation of the full model. This
restricted model, that we call PR-1, contains a subset of the features in PR-M,
focusing on the roles of the reviewer and the conference only. Thus, the authors
and the papers are not included in the following PR-1 definition.

PR-1 represents the peer review problem by a tuple 〈R,C〉, where R is the
set of reviewers participating in the PC of a set of conferences C.
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Each reviewer r ∈ R has an associated skill value s ∈ [0, 1]. The result of
reviewing is accurate with probability s, and completely random with probability
(1 − s). To test different distributions in the unit segment, we use the beta
distribution. Depending on its two parameters (see figure 1), this distribution
can easily express very diverse shapes such as: a uniform skill distribution (α =
1, β = 1); a set of moderately low skill reviewers (α = 2, β = 4), and a mix of
very good and very bad reviewers (α = 0.4, β = 0.4).

Conferences c ∈ C are represented by the tuple:

c = 〈np, rp, pr, Rc, pa, ac, I, d, e〉

Each conference receives a number of papers np every year, and employs a
subset of reviewers Rc ⊆ R to prepare rp reviews for each paper. The size of the
PC (|Rc|) depends on the number of reviews done per PC member pr.

Papers have an associated value representing their intrinsic value, and recieve
a review value from each reviewer. The intrinsic values follow a uniform distri-
bution over a N -values ordered scale, interpretable as the standard from strong
reject to strong accept scores. Conferences accept the best pa papers whose aver-
age review value is greater than the acceptance value ac. That is, pa determines
the size of the conference measured in terms of the number of papers accepted.

After the reviewing process, the conference updates the images i ∈ I of each
reviewer in R, according to the disagreement with the other reviewers of the
same paper. This disagreement is calculated for each paper as the difference be-
tween the review value given by the reviewer and the average review value for
that paper. When this difference gets higher than a disagreement threshold d,
the reviewer disagreement count grows by one; values are recorder in an image
representation of the form i = 〈r, nd, nr〉, where r is the reviewer, nd is the accu-
mulated number of disagreements and nr is the total number of reviews carried
out. These images are then used to discard the e reviewers with a higher ratio
nd/nr and select e new reviewers from R. This way, conferences perform a selec-
tion process which selects reviewers who provide similar evaluations. Given our
choice for reviewers’ mistakes (if they don’t understand the paper, the evaluation
is random), this mechanism should also select good reviewers.

Fig. 1. Beta distributions used in the paper. From left to right, values for (α, β): (2,4)
corresponding to low skill reviewers, (0.4, 0.4) corresponding to a mix of very good and
very bad reviewers. The uniform distribution, also used in the paper, is not shown.
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3 Implementation details

The PR-1 model has been programmed as a MAS over Jason [2], which allows
the definition of BDI agents using an extended version of AgentSpeak(L) [10].
This MAS represents both conferences and reviewers as agents interacting in a
common environment.

The reviews carried out by the pool of reviewers can be simply programmed in
AgentSpeak(L) as shown in Table 1. Here, we use the belief skill to set the skill
value associated with each reviewer. As already mentioned, we can change the
distribution of these values through the (α,β ) parameters of a beta distribution
(lines 1–3). Each time the reviewer has to review a paper, the +?review test
plan is executed (lines 6–11). Then, the review is accurate with probability S,
and completely random with probability (1− S).

Table 1. reviewer.asl file defining the reviewer’s behavior.

1 skill(tools.beta(1,1)). // Uniform distribution
2 // skill(tools.beta(2,4)). // Low skill reviewers
3 // skill(tools.beta(0.4,0.4)). // Polarized reviewer skill
4

5 // Plan to review papers
6 +?review(IdPaper, Value, Review) : skill(S) & paper_scale_values(N)
7 <- if (math.random < S)
8 {
9 Review = Value

10 } else {
11 Review = math.floor(math.random(N)) + 1
12 }.

Conferences can be configured through a set of beliefs in the conference.asl
file. Table 2 shows the ontology of beliefs used to set parameters such as: the
number of papers received (n received papers), how many of them can be ac-
cepted (max papers accepted) or the number of discordant reviewers that get
substituted per year (n reviewers exchanged). Additionally, a set of image
beliefs will be managed by each conference in order to represent the images of the
reviewers in the pool. In addition to the previous beliefs, the conference.asl
file contains the set of plans dealing with the goals involved in the peer review
system. Table 3 shows some snippets of the plans in this file. For instance, the
plan +!celebrateConference (lines 1–4) first launches the subgoal related
to the reviewing process (!reviewProcess). For each paper received, a num-
ber of RxP reviews are collected (line 11). Then, the conference accepts the
best PA papers (lines 30–34) amongst those exceeding the acceptance value AC
(lines 13–17). The image of the reviewers in the PC is updated according to the
disagreements with the other reviewers of the same paper (lines 19–27). These
new images will be used to satisfy the goal of updating the members of the PC
(!updateReviewers) in line 3.
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Table 2. The ontology by the conference agents.

Belief formula Description
n received papers(NP) NP is the amount of papers received by the conference.
reviews x paper(RP) RP is the number of reviews done for each paper.
papers x reviewer(PR) PR is the number of papers reviewed by each reviewer.
max papers accepted(PA) PA is the maximum number of papers the conference accepts.
paper scale values(N) N is the scale of values for the papers.
accept value(AC) AC is minimum value for a paper to be accepted.
image(R, ND, NR) R is the number of the reviewer,

ND is the accumulated number of disagreements, and
NR is the number of reviews done by reviewer R.

disagreement threshold(D) D is the disagreement threshold to punish reviewers.
n reviewers exchanged(E) E is the number of reviewers exchanged each year.

4 Results

As a proof of concept, in this paper we show what happens in our simplified
model (PR-1) if we change the distribution of reviewers’ abilities. Thus, we
experiment with different initial probability distributions for the only charac-
teristic of reviewers’ skill, that is, the probability that a reviewer gets his/her
paper right. We consider three cases, that is, uniform ability, low average skill,
and polarized skill1. The shape of the beta distributions that we apply are shown
in Fig. 1.

For this first set of experiments, we have ten conferences (which are essen-
tially the same) receiving 100 submissions each (np), drawn from a uniform
distribution. Papers are assigned an intrinsic value in a 10-values ordered scale,
interpretable as the standard from strong reject to enthusiastically accept scores.
We have fixed pa = 100 and ac = 5.5, so that all papers whose average review
value is greater than 5 are accepted. We have set rp = pr = 3, i.e., the same
number of reviews per paper and per PC member. Thus, a conference will need
as many reviewers as it receives papers. That is, conferences will employ 100 re-
viewers each from a pool of 500 reviewers. There is no limit to PC memberships
for an individual reviewer. Ideally, the same group of 100 reviewers could consti-
tute the PC of all ten conferences. Finally, we use a disagreement threshold of 4
(d) and a 10% reviewer turnover rate(e = 10). Substitute reviewers are selected
randomly in the pool.

4.1 Measured quantities

For each set of experiments, we measure several quantities, that we present,
in their time evolution, in the following figures. The results are presented with
five number summary (the central line marks the median, then the successive
quartiles), collecting together the data of the different conferences (that are
equivalent in PR-1) and in a window of five consecutive years.
1 High average skill is not considered because the uniform distribution already yields

a high quality selection process.
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Table 3. Plan snippets from the conference.asl file.

1 +!celebrateConference(Year)
2 <- !reviewProcess;
3 !updateReviewers;
4 !!celebrateConference(Year + 1).
5

6 +! reviewProcess : n_received_papers(RP) & reviews_x_paper(RxP) &
7 accept_value(AC) & max_papers_accepted(PA) &
8 disagreement_threshold(D) & ...
9 <- for ( .range(PaperId,1,RP) ) {

10 PaperValue = math.floor(math.random(MaxValue)) + 1;
11 for ( .range(I,1, RxP) ) { /* Ask for reviews ... */ }
12 // Evaluate the paper
13 .findall(Review, review(PaperId,_,Review), Reviews);
14 AvgReview = math.average(Reviews);
15 if ( AvgReview > AC ) {
16 +accepted_paper(PaperId, PaperValue, AvgReview);
17 }
18 // Update the image of the reviewers
19 for ( review(PaperId, R, Review) ) {
20 ?image(R, ND, NR);
21 .abolish(image(R,_,_));
22 if ( math.abs(AvgReview - Review) > D ) {
23 +image(R, ND+1, NR+1);
24 } else {
25 +image(R, ND, NR+1);
26 }
27 }
28 }
29 // Limit the number of accepted papers
30 while ( .count(accepted_paper(_,_,_)) > PA ) {
31 .findall(acc_paper(R, PId), acc_paper(PId,_,R), AcceptedPapers);
32 .min(AcceptedPapers, acc_paper(_,PaperIdMin));
33 .abolish(accepted_paper(PaperIdMin,_,_));
34 }.

The average accepted quality is the primary measure of success for the selec-
tion system. Paper quality, if the review process works perfectly, should select 20
top score papers, 20 with quality 9, and 10 of quality 8, leading to an ideal score
of 9.2. The worst possible case (papers are accepted completely at random), as a
reference value, would simply be the mean of scores from one to ten, amounting
to 5.5.

In parallel to the paper selection process, based on disagreement measures
between reviewers, program committees are reorganized with the aim to select
the best reviewers. Thus, another quantity we measure is the average quality of
reviewers that are part of program committees, under different initial conditions
for their distribution. In principle, better reviewers should select better papers.

We also show the number of good papers (i.e., with an intrinsic value greater
than 5.5) rejected, and the number of bad papers (i.e., with an intrinsic value
less than 5.5) accepted. While the previous quantities can be seen as measures
of efficiency, these two can be thought of as measures of fairness.

In fact, good papers rejected and bad papers accepted are especially impor-
tant because of the high-stakes nature of investment that researchers do on each
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Fig. 2. Results (shown as five-number summary) for a beta distribution with param-
eters (1.0, 1.0 ), that is, a uniform distribution, averaged over ten conferences and in
periods of five years. First column, above, average quality of accepted papers; below,
quality of reviewers. Both observable quantities improve substantially in time. Second
column, above, good papers rejected, below, bad papers accepted, both showing a small
improvement in time. Third column, divergence values calculated at 1/3 and 2/3, both
decreasing in time.

paper - on the one hand, an “out-of-the-blue” rejection can seriously impact
career, especially in small research groups; on the other hand, the publication of
bogus papers creates a stigma on journals and conferences. Finally, another in-
teresting measure of success for a conference review process had been defined in
[4] as divergence: the normalized distance between the ordering of the accepted
papers, and the ordering induced by another quality measure.

In [4], divergence was calculated with real data of an anonymised “large
conference”, comparing review results against paper citation rates registered
five years later. We perform a similar calculation, not against citation rates but
against our idealized paper quality. The distance used is calculated simply by the
(normalized) number of elements ranked in the top (1/3 or 2/3) by the review
process that are not in the top (1/3 or 2/3) in the ideal quality ordering. The
result for the large conference, that the authors of [4] claim to be disappointingly
comparable to random sorting, is a value of 0.63 at 1/3 and 0.32 at 2/3.

Note how this ordering concerns only the set of accepted papers; good rejected
papers or bad accepted ones do not enter this calculation. This value can be
considered as another measure of efficiency of the system: the lower it is, the
more efficient the peer review.

4.2 Uniform ability

Here we show the results obtained from a reviewer skill distribution with pa-
rameters (1,1) - a uniform distribution.

From figure 2, we can see how the quality of accepted papers starts already
over the average. The process improves in time for both the paper quality and
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reviewer skill; however, only the second has a significant effect. The convergence
process seems to manage selecting good reviewers, but this happens without
a substantial quality improvement. Mistakes in paper evaluations show only a
slight decrease. Finally, divergence from the optimal acceptance ordering remains
constant - perhaps after a slight improvement in the first years. At about 0.28
and 0.2, it remains far better than the levels 0.63 and 0.32 reported in [4].

4.3 Low average skill

Apparently, our simulated reviewers perform better than the real ones. What
if we decrease their average skill, for example drawing them from a beta dis-
tribution with parameters (2.0, 4.0), shown in figure 1 (left)? The results are
presented in figure 3. With such a bad average reviewer skill, the quality of ac-
cepted papers results lower than in the previous case, and the agreement process
yields no or little improvement in time - except in reviewers skill, whose increase
however does not seem enough to improve the quality of accepted papers. There
just aren’t enough good reviewers around to make the process work. Good pa-
pers rejected and bad papers accepted abound, making up for more than half
the body of accepted papers; divergence, ending at 0.6 and 0.25, seems directly
comparable to the values in [4].

Fig. 3. Results (shown as five-number summary) for a beta distribution with parame-
ters (2.0, 4.0 ), averaged over ten conferences and in periods of five years. First column,
above, average quality of accepted papers; below, quality of reviewers. There is no
substantial improvement, apart from an increase in reviewers quality. Second column,
above, good papers rejected, below, bad papers accepted, both stable in time. Third
column, divergence values calculated at 1/3 and 2/3.

4.4 Polarized skill

So fare we have shown a relatively good selection process, starting with reviewers
with uniform distribution, and a relatively bad one, where most reviewers are of
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low skill. With yet another shape of the skill distribution, we want to measure
how effective the agreement process is in selecting good reviewers. To this pur-
pose, we choose an initial distribution with a double peak - in this experiment,
as can be seen from figure 1 (right), most reviewers are very bad or very good.
We surely have more than enough good ones for a nearly perfect review process
- but will the system be able to select them? Figure 4 shows this is indeed the
case. This time, the success of the reviewer selection process takes the average
paper quality up with it, obtaining better results than in the uniform case. There
are nearly no bad papers accepted, nor good papers rejected towards the end.
Divergence is similarly affected, leveling at 0.2 and 0.12 at the end.

Fig. 4. Results (shown as five-number summary) for a beta distribution with parame-
ters (0.4, 0.4 ), averaged over ten conferences and in periods of five years. First column,
above, average quality of accepted papers; below, quality of reviewers. Both observable
quantities improve substantially in time. Second column, above, good papers rejected,
below, bad papers accepted. Both show a marked decrease in time. Third column,
divergence values calculated at 1/3 and 2/3, both decreasing in time.

5 Discussion and Future work

This paper is a first step towards a model of peer review devoted to study and
to enhance the way of evaluating scientific research. We have sketched the main
elements involved as well as the relations amongst them. A first restricted version
of the full model, that we call PR-1, has been implemented as a MAS over Jason.
The results show how a conference review process based on disagreement control
between reviewers can i) improve in time both the quality of accepted papers and
the reviewer skill of PC members; ii) reduce the number of good papers rejected
and bad papers accepted; and iii) lower the divergence between the ordering of
the accepted papers and an ideal quality ordering. Reviewer selection improves
on both the efficiency and the fairness of the review process. The results, for
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what regards a measure of divergence between reviews and actual quality of the
paper, are shown to be qualitatively comparable with the observed data in [4].

Quite a large number of issues still remain open for future work. Limiting PC
memberships for individual reviewers and considering role superposition between
author and reviewer is one of the next steps. Furthermore, subsequent versions
of the PR model should include the active role of the authors when deciding
which conference to send their works to, as it can vary the distribution of the
papers submitted to a conference.
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Abstract. The simulation of pedestrian dynamics is a consolidated area of appli-
cation for agent-based models: successful case studies can be found in the litera-
ture and off-the-shelf simulators are commonly employed by end-users, decision
makers and consultancy companies. These models, however, generally consider
individuals, their interactions with the environment and among themselves, but
they generally neglect (or treat in a simplistic way) aspects like (i) the impact
of cultural heterogeneity among individuals and (ii) the effects of the presence
of groups and particular relationships among pedestrians. This work is aimed,
on one hand, at introducing some fundamental anthropological considerations on
which most pedestrian models are based, and in particular Edward T. Hall’s work
on proxemics. On the other hand, the paper describes an agent-based model en-
capsulating in the pedestrian’s behavioural model effects representing both prox-
emics and a simplified account of influences related to the presence of groups in
the crowd. The model is tested in a simple scenario to evaluate the implications
of some modeling choices and the presence of groups in the simulated scenario.
Results are discussed and compared to experimental observations and to data
available in the literature.

Key words: crowd modeling and simulation, agent-based models

1 Introduction

There are several features of crowds of pedestrians suggesting that they can be consid-
ered as complex entities: the mix of competition for the space shared by pedestrians and
the collaboration due to the (not necessarily explicit but generally shared) social norms,
the dependency of individual choices on the past actions of other individuals and on
the current perceived state of the system, the possibility to detect self-organization and
emergent phenomena they are all indicators of the intrinsic complexity of a crowd. The
relevance of human behaviour, and especially of the movements of pedestrians, in built
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environment in normal and extraordinary situations, and its implications for the activ-
ities of architects, designers and urban planners are apparent (see, e.g., [1] and [2]),
especially considering dramatic episodes such as terrorist attacks, riots and fires, but
also due to the growing issues in facing the organization and management of public
events (ceremonies, races, carnivals, concerts, parties/social gatherings, and so on) and
in designing naturally crowded places (e.g. stations, arenas, airports). Computational
models for the simulation of crowds are thus growingly investigated in the scientific
context, and these efforts led to the realization of commercial off-the-shelf simulators
often adopted by firms and decision makers4. Even if research on this topic is still
quite lively and far from a complete understanding of the complex phenomena related
to crowds of pedestrians in the environment, models and simulators have shown their
usefulness in supporting architectural designers and urban planners in their decisions
by creating the possibility to envision the behaviour/movement of crowds of pedestri-
ans in specific designs/environments, to elaborate what-if scenarios and evaluate their
decisions with reference to specific metrics and criteria.

A Multi-Agent Systems (MAS) approach to the modeling and simulation of com-
plex systems has been applied in very different contexts, from the study of social sys-
tems [3], to biology (see, e.g., [4]), and it is considered one of the most successful types
of applications of agent–based computing [5], even if this approach is still relatively
young, compared, for instance, to analytical equation-based modeling. The MAS ap-
proach has also been adopted in the pedestrian and crowd modeling context, especially
due to the expressiveness of the approach, that is particularly suited to the definition of
models in which autonomous and possibly heterogeneous agents can be defined, situ-
ated in an environment, provided with the possibility to perceive it, decide and try to
carry out the most appropriate line of action, possibly interacting with other agents as
well as the environment itself. The approach can lead to the definition of models that
are richer and more expressive than other approaches that were traditionally adopted in
the modeling of pedestrians, that respectively consider pedestrians as particles subject
to forces (see, e.g., [6]), in physical approaches, or particular states of cells in which the
environment is subdivided, in CA approaches (see, e.g., [7, 8]).

The main aim of this work is to present the motivations, fundamental research ques-
tions and directions, and some preliminary results of an agent–based modeling and
simulation approach to the multidisciplinary investigation of the complex dynamics
that characterize aggregations of pedestrians and crowds. This work is set in the con-
text of the Crystals project5, a joint research effort between the Complex Systems and
Artificial Intelligence research center of the University of Milano–Bicocca, the Centre
of Research Excellence in Hajj and Omrah and the Research Center for Advanced Sci-
ence and Technology of the University of Tokyo. The main focus of the project is on
the adoption of an agent-based pedestrian and crowd modeling approach to investigate
meaningful relationships between the contributions of anthropology, cultural character-
istics and existing results on the research on crowd dynamics, and how the presence

4 see, e.g., Legion Ltd. (http://www.legion.com), Crowd Dynamics Ltd.
(http://www.crowddynamics.com/), Savannah Simulations AG (http:
//www.savannah-simulations.ch).

5 http://www.csai.disco.unimib.it/CSAI/CRYSTALS/
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of heterogeneous groups influence emergent dynamics in the context of the Hajj and
Omrah. The last point is in fact an open topic in the context of pedestrian modeling
and simulation approaches: the implications of particular relationships among pedes-
trians in a crowd are generally not considered or treated in a very simplistic way by
current approaches. In the specific context of the Hajj, the yearly pilgrimage to Mecca
that involves over 2 millions of people coming from over 150 countries, the presence
of groups (possibly characterized by an internal structure) and the cultural differences
among pedestrians represent two fundamental features of the reference scenario. Study-
ing implications of these basic features is the main aim of the Crystals project.

The paper breaks down as follows: the following section describes some basic an-
thropological and sociological theories that were selected to describe the phenomenolo-
gies that will be considered in the agent-based model definition. Section 3 briefly de-
scribes a model encompassing basic anthropological rules for the interpretation of mu-
tual distances by agents and basic rules for the cohesion of groups of pedestrians, while
Section 4 summarizes the results of the application of this model in a simple simulation
scenario. Conclusions and future developments will end the paper.

2 Interdisciplinary Approach

Pedestrian and crowd modeling research context regards events in which a large number
of people may be gathered or bound to move in a limited area; this can lead to serious
safety and security issues for the participants and the organizers. The understanding of
the dynamics of large groups of people is very important in the design and management
of any type of public events. In addition to safety and security concerns also the comfort
of event participants is another aim of the organizers and managers of crowd related
events. Large people gatherings in public spaces (like pop-rock concerts or religious
rites participation) represent scenarios in which crowd dynamics can be quite complex
due to different factors (the large number and heterogeneity of participants, their inter-
actions, their relationship with the performing artists and also exogenous factors like
dangerous situations and any kind of different stimuli present in the environment [9]).
The traditional and current trend in social sciences studying crowds is still characterized
by a non-dominant behavioral theory on individuals and crowds dynamics, although it
is recognized that a behavioural theory is needed to improve the current state of the art
in pedestrian and crowd modeling and simulation [10].

2.1 Proxemics

The term proxemics was first introduced by Hall with respect to the study of set of mea-
surable distances between people as they interact [11]. In his studies, Hall carried out
analysis of different situations in order to recognize behavioral patterns. These patterns
are based on people’s culture as they appear at different levels of awareness. In [12] Hall
proposed a system for the notation of proxemic behavior in order to collect data and in-
formation on people sharing a common space. Hall defined proxemic behavior and four
types of perceived distances: intimate distance for embracing, touching or whispering;
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personal distance for interactions among good friends or family members; social dis-
tance for interactions among acquaintances; public distance used for public speaking.
Perceived distances depend on some additional elements which characterize relation-
ships and interactions between people: posture and sex identifiers, sociofugal-sociopetal
(SFP) axis, kinesthetic factor, touching code, visual code, thermal code, olfactory code
and voice loudness.

Proxemic behavior includes different aspects which could it be useful and interest-
ing to integrate in crowd and pedestrian dynamics simulation. In particular, the most
significant of these aspects being the existence of two kinds of distance: physical dis-
tance and perceived distance. While the first depends on physical position associated to
each person, the latter depends on proxemic behavior based on culture and social rules.

It must be noted that some recent research effort was aimed at evaluating the impact
of proxemics and cultural differences on the fundamental diagram [13], a typical way
of evaluating both real crowding situations and simulation results.

2.2 Crowds: Canetti’s Theory

Elias Canetti’s work [14] proposes a classification and an ontological description of the
crowd; it represents the result of 40 years of empirical observations and studies from
psychological and anthropological viewpoints. Elias Canetti can be considered as be-
longing to the tradition of social studies that refer to the crowd as an entity dominated
by uniform moods and feelings. We preferred this work among others dealing with
crowds due to its clear semantics and explicit reference to concepts of loss of individ-
uality, crowd uniformity, spatio-temporal dynamics and discharge as a triggering entity
generating the crowd, that could be fruitfully represented by computationally modeling
approaches like MAS.

The normal pedestrian behaviour, according to Canetti, is based upon what can be
called the fear to be touched principle:

“There is nothing man fears more than the touch of the unknown. He wants to
see what is reaching towards him, and to be able to recognize or at least classify
it.”
“All the distance which men place around themselves are dictated by this fear.”

A discharge is a particular event, a situation, a specific context in which this princi-
ple is not valid anymore, since pedestrians are willing to accept being very close (within
touch distance). Canetti provided an extensive categorization of the conditions, situa-
tions in which this happens and he also described the features of these situations and
of the resulting types of crowds. Finally, Canetti also provides the concept of crowd
crystal, a particular set of pedestrians which are part of a group willing to preserve its
unity, despite crowd dynamics. Canetti’s theory (and precisely the fear to be touched
principle) is apparently compatible with Hall’s proxemics, but it also provides addi-
tional concepts that are useful to describe phenomena that take place in several relevant
crowding phenomena, especially from the Hajj perspective.

Recent developments aimed at formalizing, embedding and employing Canetti’s
crowd theory into computer systems (for instance supporting crowd profiling and mod-
eling) can be found in the literature [15, 16] and they represent a useful contribution to
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the present work. Two recent works represent a relevant effort towards the modeling
of groups, respectively in particle-based [17] and in CA-based [18] approaches: in both
cases, groups are modeled by means of additional contributions to the overall pedestrian
behaviour representing the tendency to stay close to other group members.

3 An Agent-Based Proxemic Model

This section will describe a first step towards an agent–based model encompassing
abstractions and mechanisms accounting based on fundamental considerations about
proxemics and basic group behaviour in pedestrians. We first defined a very general and
simple model for agents, their environment and interaction, then we realized a proof–
of–concept prototype to have an immediate idea of the implications of our modeling
choices.

The simulated environment represents a simplified real built environment, a corridor
with two exits (North and South); later different experiments will be described with
corridors of different size (10m wide and 20 m long as well as 5m wide and 10 m long).
We represented this environment as a simple euclidean bi-dimensional space, that is
discrete (meaning that coordinates are integer numbers) but not “discretized” (as in a
CA). Pedestrians, in other words, are characterized by a position that is a pair 〈x, y〉
that does not not denote a cell but rather admissible coordinates in an euclidean space.
Movement, the fundamental agent’s action, is represented as a displacement in this
space, i.e. a vector. The approach is essentially based on the Boids model [19], in which
however rules have been modified to represent the phenomenologies described by the
basic theories and contributions on pedestrian movement instead of flocks. Boundaries
can also be defined: in the example Eastern and Western borders cannot be crossed
and the movement of pedestrians is limited by the pedestrian position update function,
which is an environmental responsibility. Every agent a ∈ A (where A is the set of
agents representing pedestrians of the modeled scenario) is characterized by a position
posa represent by a pair of coordinates 〈xa, ya〉. Agent’s action is thus represented by
a vector ma = 〈δxa , δya〉 where |ma| =

√
δ2xa

+ δ2ya
< M where M is a parameter

depending on the specific scenario representing the maximum displacement per time
unit.

More complex environments could be modeled, for instance by means of a set of
relevant objects in the scene, like points of interest but also obstacles. These objects
could be perceived by agents according to their position and perceptual capabilities,
and they could thus have implications on their movement. Objects can (but they do
not necessarily must be) in fact be considered as attractive or repulsive by them. The
effect of the perception of objects and other pedestrians, however, is part of agents’
behavioural specifications. For this specific application, however, the perceptive capa-
bility of an agent a are simply defined as the set of other pedestrians that are present
at the time of the perception in a circular portion of space or radius rp centered at the
current coordinates of agent a. In particular, each agent a ∈ A is provided with a per-
ception distance pera; the set of perceived agents is defined as Pa = p1, . . . , pi where
d(a, i) =

√
(xa − xi)2 + (ya − yi)2 ≤ pera.
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Fig. 1. Basic behavioural rules: a basic proxemic rule drives an agent to move away from other
agents that entered/are present in his/her own personal space (delimited by the proxemic distance
p) (a), whereas a member of a group will pursue members of his/her group that have moved/are
located beyond a certain distance (g) but within his/her perception radius (r) (b).

Pedestrians are modeled as agents situated in an environment, each occupying about
40 cm2, characterized by a state representing individual properties. Their behaviour has
a goal driven component, a preferred direction; in this specific example it does not
change over time and according to agent’s position in space (agents want to get out
of the corridor from one of the exits, wither North or South), but it generally changes
according to the position of the agent, generating a path of movement from its starting
point to its own destination. The preferred direction is thus generally the result of a
stochastic function possibly depending on time and current position of the agent. The
goal driven component of the agent behavioural specification, however, is just one the
different elements of the agent architectures that must include elements properly captur-
ing elements related to general proxemic tendencies and group influence (at least), and
we also added a small random contribution to the overall movement of pedestrians, as
suggested by [20]. The actual layering of the modules contributing to the overall is ob-
ject of current and future work. In the scenario, agents’ goal driven behavioural compo-
nent is instead rather simple: agents heading North (respectively South) have a deliber-
ate contribution to their overall movement mg

a = 〈0,M〉 (respectively mg
a = 〈0,−M〉).

We realized a simulation scenario in a rapid prototyping framework6 and we em-
ployed it to test the simple behavioural model that will be described in the following.
In the realized simulator, the environment is responsible for updating the position of
agents, actually triggering their action choice in a sequential way, in order to ensure
fairness among agents. In particular, we set the turn duration to 100 ms and the maxi-
mum covered distance in one turn is 15 cm (i.e. the maximum velocity for a pedestrian
is 1.5 m/s).

6 Nodebox – http://www.nodebox.org
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3.1 Basic Proxemic Rules

Every pedestrian is characterized by a culturally defined proxemic distance p; this value
is in general related to the specific culture characterizing the individual, so the overall
system is designed to be potentially heterogenous. In a normal situation, the pedes-
trian moves (according to his/her preferred direction) maintaining the minimum dis-
tance from the others above this threshold (rule P1). More precisely, for a given agent a
this rule defines that the proxemic contribution to the overall agent movement mp

a = 0
if ∀b ∈ Pa : d(a, b) ≥ p.

However, due to the overall system dynamics, the minimum distance between one
pedestrian and another can drop below p. In this case, given a pedestrian a, we have
that ∃b ∈ Pa : d(a, b) < p; the proxemic contribution to the overall movement of a
will try to restore this condition (rule P2) (please notice that pedestrians might have
different thresholds, so b might not be in a situation so that his/her P2 rule is activated).
In particular, given p1, . . . , pk ∈ Pa : d(a, pi) < p for 1 ≤ i ≤ k, given c the centroid
of posp1 , . . . , pospk , the proxemic contribution to the overall agent movement mp

a =
−kp · c− posa, where ka is a parameter determining the intensity of the proxemic
influence on the overall behaviour.

These basic considerations, also schematized in Figure 1-A, lead to the definition
of rules support a basic proxemic behaviour for pedestrian agents; these agents are not
characterized by any particular relationship binding them, with the exception of a shared
goal, i.e. they are not a group but rather an unstructured set of pedestrians.

3.2 Group Dynamic Rules

We extended the behavioural specification of agents by means of an additional contri-
bution representing the tendency of group members to stay close to each other. First
of all, every pedestrian may be thus part of a group, that is, a set of pedestrians that
mutually recognize their belonging to the same group and that are willing to preserve
the group unity. This is clearly a very simplified, heterarchical notion of group, and in
particular it does not account for hierarchical relationships in groups (e.g. leader and
followers), but we wanted to start defining basic rules for the simplest form of group.

Every pedestrian is thus also characterized by a culturally defined proxemic distance
g determining the way the pedestrian interprets the minimum distance from any other
group member. In particular, in a normal situation a pedestrian moves (according to
hie/her preferred direction and also considering the basic proxemic rules) keeping the
maximum distance from the other members of the group below g (Rule G1). More
precisely, for a given agent a, member of a group G, this rule defines that the group
dynamic contribution to the overall agent movement mg

a = 0 if ∀b ∈
(
Pa∩(G−{a})

)
:

d(a, b) < g.
However, due to the overall system dynamics, the maximum distance between one

pedestrian and other members of his group can exceed g. In this case, the it will try to
restore this condition by moving towards the group members he/she is able to perceive
(rule G2). In particular, given p1, . . . , pk ∈

(
Pa ∩ (G − {a})

)
: d(a, pi) ≥ g for

1 ≤ i ≤ k, given c the centroid of posp1 , . . . , pospk , the proxemic contribution to the
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Fig. 2. Screenshots of the prototype of the simulation system.

overall agent movement mg
a = kg · c− posa, where ka is a parameter determining the

intensity of the group dynamic influence on the overall behaviour.

This basic idea of group influence on pedestrian dynamics, also schematized in Fig-
ure 1-B, lead to the extension of the basic proxemic behaviour for pedestrian agents of
the previous example. We tested the newly defined rules in a similar scenario but includ-
ing groups of pedestrians. In particular, two scenarios were analyzed. In the first one,
we simply substituted 4 individual pedestrians in the previous scenario with a group of
4 pedestrians. The group was able to preserve its unity in all the tests we conducted,
but the average travel time for the group members actually increased. Individuals, in
other words, trade some of their potential speed to preserve the unity of the group. In
a different scenario, we included 10 pedestrians and a group of 4 pedestrians heading
North, 10 pedestrians and a group of 4 pedestrians heading South. In this circumstances,
the two groups sometimes face and they are generally able to find a way to form two
lanes, actually avoiding each other. However, the overall travel time for group members
actually increases in many of the simulations we conducted.

In Figure 2 two screenshots the of the prototype of the simulation system that was
briefly introduced here. Individual agents, those that are not part of a group, are depicted
in blue, but those for which rule P2 is activated (they are afraid to be touched) turn
to orange, to highlight the invasion of their personal space. Members of groups are
depicted in violet and pink. The two screenshots show how two groups directly facing
each other must manage to “turn around” each other to preserve their unity but at the
same time advance towards their destination.
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Fig. 3. Experiments on facing groups: several experiments were conducted on real pedestrian dy-
namics, some of which also considered the presence of groups of pedestrians, that were instructed
on the fact that they had to behave as friends or relatives while moving during the experiment.

4 Experimental results

4.1 Proxemic Distance Evaluation

We conducted several experiments with the above described model and simulator, to
evaluate the plausibility of the overall system dynamics achieved with such simple ba-
sic rules and to calibrate the parameters to fit actual data available from the literature
or acquired in the experiments. In particular, we first of all focused on the influence of
the proxemic distance p on the overall system dynamics. We started considering Hall’s
personal distance as a starting point for this model parameter. Hall reported ranges for
the various proxemic distances, considering a close phase and a far phase for all the dif-
ferent perceived distances (described in Section 2.1). In particular, we considered both
an average value for the far phase of the personal distance (1m) and a low end value
(75 cm) that is actually the border between the far and the close phases of the personal
distance range. In general, the higher value allowed to achieve relatively results in sce-
narios characterized by a low density of pedestrians in the environment. For densities
close and above one pedestrian per square meter, the lower value allowed achieving a
smoother flow, more consistent with the results available in the literature.

A summary of the achieved results is shown in Figure 4: the graphs represent the
fundamental diagrams [9] of the data achieved in the simulation of a 10 m long and 5
m wide corridor. For these experiments we considered that the influence of the different
components of pedestrian behaviour (i.e. the weights of their contribution to the overall
movement vector), that is goal attraction, proxemic repulsion and group cohesion, is
equal for the first two components while the third is less significant (about one third
of the previous ones). This setting supported a good balance between flow smoothness,
collision avoidance and group cohesion in a preliminary face validation phase.

We varied the number of agents altering the density of pedestrians in the environ-
ment; to keep constant the number of pedestrians in the corridor, the two ends were
joined (i.e. pedestrians exiting from one end were actually re-entering the corridor from
the other). For each run only complete pedestrian trips were considered (i.e. the first
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Fig. 4. Fundamental diagrams for the 10m long and 5m wide corridor scenario. The two data
series respectively refer to different values for the proxemic distance, respectively the low end
(75cm) and the average value (1m) of personal distance.

pedestrian exit event was discarded because related to a partial crossing of the corridor)
and in high density scenarios a significant number of starting turns were also discarded
to avoid transient starting conditions. The results of the simulations employing the low
personal distance are consistent with empirical observations discussed in [9].

In parallel to the modeling effort, a set of experiments were conducted (in June
2010) to back-up with observed data some intuitions on the implications of the pres-
ence of groups in specific scenarios; two photos of one of the experiments are shown
in Figure 3. In particular, this experiments is characterized by two sets of pedestrians
moving in opposite directions in a constrained portion of space. In the set of pedestri-
ans, in some of the experiments, some individuals were instructed to behave as friends
or relatives, tying to stay close to each other in the movement towards their goal. It must
be noted that this kind of situation is simple yet relevant for the understanding of some
general principle on pedestrian movement and on the implications of the presence of
groups in a crowd. The analysis of a first set of experiments were not conclusive on the
effects of the presence of groups in the two facing sets of pedestrians (in some experi-
ments the overall travel time was lower when groups were present, in other occasion it
was longer), but the simulation results achieved with a low personal distance were con-
sistently more in tune with the observed data than those achieved with a high personal
distance.

4.2 Groups and Individuals

We also analyzed the implications of the presence of groups in the environment. The
generated data, as well as the empirical observations, still do not lead to conclusive
results. In simulations carried out in low density scenarios, however, the average speed
of group members is consistently lower than the one of single individuals. It must be
considered that, when compared to basic individuals, their overall movement has an
additional component that sometimes contrasts the tendency to move towards the goal,
to stay close to other group members. In high density scenarios, instead, the average
speed of group members is generally higher than that of single individuals. This is
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Fig. 5. Average number of turns per travel, individuals compared to group members.

probably due to the fact that the presence of the group has a greater influence on the
possibility of other individuals to move, generating for instance a higher possibility
of members on the back of the group to follow the “leaders”. Figure 5 compares the
average number of turns per complete travel time of individuals and group members in
the same conditions of the experiments described in the previous section.

5 Conclusions and Future Works

The paper has presented the research setting in which an innovative agent–based pedes-
trian an crowd modeling and simulation effort is set. Preliminary results of the first
stage of the modeling phase were described. Future works are aimed, on one hand, at
consolidating the preliminary results of this first scenarios, but also extending the range
of simulated scenarios characterized by relatively simple spatial structures for the en-
vironment (e.g. bends, junctions). On the other hand, we want to better formalize the
agent behavioural model and its overall architecture, but we also plan to extend the no-
tion of group, in order to capture phenomenologies that are particularly relevant in the
context of Hajj (e.g. hierarchical groups, but also hierarchies of groups). Finally, we are
working at the integration of these models into an existing open source framework for
3D computing (Blender7), also to be able to embed these models and simulations in real
portions of the built environment defined with traditional CAD tools.
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Abstract. Agent-based modeling as a methodology for understanding
natural phenomena is becoming increasingly popular in many disciplines
of scientific research. Validation is still a significant problem for agent-
based modelers and while various validation methodologies have been
proposed, none have been widely adopted. Data plays a key role in the
validation of any simulation system, typically large amounts of observable
real world data are necessary to compare with model outputs. However,
the complex nature of the studied natural systems will often make data
collection difficult. This is certainly true for crowd and egress simulation,
where data is limited and difficult to collect. In this paper we propose
a new technique for validation of agent-based models, particularly those
which relate to human behavior. This methodology adopts ideas from
the field of Human Computation as a means of collecting large amounts
of contextual behavioral data. The key principle is to use games as a
means of framing behavioral questions to try and capture people’s nat-
ural and instinctive decisions. We outline some key design challenges for
such games and present one example game in the form of Escape. Escape
is an egress based game where people are tasked to escape from rooms
inhabited by other people. We show some preliminary studies which high-
light some interesting applications of the game in addressing validation
of behavioral based crowd and egress simulation.

Keywords: Simulation, Validation, Games, Human Computation

1 Introduction

The term Complex System [9] has been used to describe systems, which are a for-
mation of interconnected components that exhibit emergent complex behavior.
The field of Agent-Based Modeling and Simulation (ABMS) is a popular field
of modeling and simulation that is ideally suited to simulate such systems. An
agent-based model is defined by a collection of interacting autonomous agents
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with individually defined properties and behaviors. Through development of sim-
ple rules and the complex temporal interactions of the many agents, more com-
plex macro level system properties will emerge. From a modeling perspective this
is an attractive method for reasoning about complex systems since many forms of
complex system the individual behaviors and characteristics are well understood,
or easy to describe. Given this understanding it is clear to see why ABMS has
seen a dramatic increase in its application in a wide variety of disciplines includ-
ing: Sociology, Biology, and Economics. However, the major motivation for using
ABMS to understand complex systems has an undesirable consequence when as-
certaining the validity of models. One central motivation for ABMS is that the
behavior of the system emerges in some unknown and unexpected way. This un-
predictable nature of the system makes agent-based models very challenging to
validate and current approaches and techniques are still under-developed with
many philosophical and methodical questions remaining unanswered [14].

Validation is important for simulation; without some form of validation and
verification there can only be limited confidence in the accuracy of the model. As
explained, agent-based models pose unique challenges with regard to validation
and these challenges become even more significant when trying to model natural
systems which involve human behavioral aspects, such as crowd or egress simu-
lation. For these types of model, challenges occur in many aspects of validation:
collection of appropriate data, the non-determinism of human free will, etc. Es-
tablishing hard validation for such systems is very difficult [10, 14]; it is perhaps
better to state that one gains confidence in the simulation by experimentation
and comparison with observable data. Despite these problems associated with va-
lidity, simulations which consider human behavior still have their place, and are
widely applied in areas of critical importance (e.g., epidemics [4], finance [12]).
Due to the stochastic nature of these systems, both simulation replication and
an abundance of related data are critical. Through repetition, results will have
an associated confidence, which can help modellers understand the likelihood of
the obtained result.

It is possible to achieve validation in a number of ways, and the suitability of
approaches is often dependent on the motivation of modelling [3, 17]. Epstein [3]
pointed out that the goal for models is not always prediction, but rather ex-
planation. Epstein believes that in social science, models can be used to help
guide data collection. In this way models can be meaningful in illuminating core
dynamics. However, for ensuring predictive power, validation and data are im-
portant; modellers must be able to show that their model is capable of producing
some known output data for a given set of known input data. Without this val-
idation process it is hard to make any claims about the predictive power of a
model. As well as validation, the data available from a physical system affects
the experimental frame, the model resolution and model instantiation. This is
what makes egress or crowd simulation so hard to validate and justify; data for
emergency evacuation scenarios is very limited. The data that is available, is of-
ten at an aggregate level, e.g., number of people through exit, density of people,
etc. More sophisticated techniques, such as video tracking, are still limited in
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terms of accuracy and throughput of data collection. The use of engineered ex-
periments also has significant limitations, recreating the stressful conditions of a
real evacuation is very difficult under controlled conditions. Safety constrains the
experimental conditions such that participants must be given prior knowledge
of the conditions and therefore will not feel the same pressure or fear. Another
key challenge is the non-deterministic nature of people’s behavior during egress.
Therefore, to obtain confidence in the data, and hence validation, one must ob-
tain multiple instances of the same data sets. Again, the difficulty of obtaining
such data makes this validation an exigent task.

In this paper we propose a novel method for validation of agent-based evac-
uation and crowd simulation using concepts from the field of Human Computa-
tion [21]. We introduce our iPhone/iPad evacuation game which is intended to
procure data and information, which can then be utilized in agent-based crowd
and evacuation simulations we are currently developing [11]. The game is still in
the early stages of development and as such the data collected is intended to be
illustrative. The key contribution of this paper is therefore to introduce the con-
cept of validation through human computation and to illustrate the usefulness
and feasibility of such an approach. The remainder of this paper is organized
as follows, section two introduces the simulation application area of crowd sim-
ulation and discusses what type of data is necessary for different simulation
approaches and how it can be applied. Section three summarizes the field of Hu-
man Computation and provides a survey of significant and related work in the
area. Section four continues with a detailed description of the evacuation game
and its design. Section five outlines the three test cases used in this paper and
presents some initial findings and the implications for crowd simulation models.
The paper concludes with a summary and some possible directions for future
work.

2 Related Work

Human crowds and their egress can and have been modelled in a number of ways;
existing systems apply techniques such as flow modeling , particle systems, cel-
lular automata and agent-based behavioral models. Each modeling approach has
its own benefits along with its own drawbacks. A flow-based approach [19] works
well under certain conditions where a homogeneous, optimal behavior is appro-
priate. This is typically in very high density locations where individual choice
has little impact on the overall crowd motion or egress. The force-based par-
ticle systems [8] assume individuals (or particles) in the crowd exert forces on
each other. Motion of individuals is then calculated by resolving the interacting
forces on each individual agent. This approach allows for greater heterogeneity
in the crowd, but interactions between individual must be described in terms
of opposing forces, which can make it hard to quantify complex interactions
and decisions. Cellular automata models [24] offer a great deal of heterogeneity,
for example models for exit choice can consider exit size and exit density [5].
Many models focus on the physical aspects of crowd motion, such as density,
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exit throughput and congestion. While these issues are clearly essential when
analyzing egress or crowd motion, there are other, non-physical factors, which
can greatly affect egress effectiveness. In [11] a cognitive agent framework was
developed to provide tools for modeling human crowds. This framework incor-
porated many non-physical issues, for example: emotion, group formation, and
gender and age variation. Other existing egress and crowd models have consid-
ered different cognitive aspects, in particular socials norm [15], panic [15] and
emotion [11]. While the arguments for this naturalistic approach seem convinc-
ing, the real challenge comes about in validating the approach and verifying its
implementation.

Validation is typically application specific, every natural system will present
unique challenges for validation. The ABMS community has identified specific
issues associated with validating agent-based models. Some have correctly ar-
gued the need for a systematic approach and methodology for validating the
models which are developed [10]. Others have discussed traditional (empirical)
and alternative notions of validity and their implications in the context of agent-
based modeling [14, 25]. From the perspective of behavioral simulation some have
suggested expert based facial validation as one feasible approach [6]. This pop-
ular approach involves generating observable output from the simulation and
asking a domain expert to assess the likelihood of the derived output from the
given input. Sterman [18] proposed direct experimental validation as the most
appropriate way to validate behavioral simulations. His arguments and approach
closely mirror those which we propose in this paper. Sterman designed contex-
tual games and scenarios in which to place subjects. These real life “role-play”
scenarios, or interactive surveys, would be used to verify and test rules proposed
within the simulation. The game would be controlled to present the subject with
the precise scenarios in which the rules are intended to apply. The response can
then be compared with the contextual rules, as specified in the model. While we
agree with this approach to validating behavior based models, the approach does
not scale well when the model requires the response of many participants. One
of the distinct advantages which the human computation approach affords the
experimenter, is the ability to conduct large scale interactive surveys. Having a
ubiquitous game also allows data to be collected from many different countries
with vastly different cultural and social behavior.

From the perspective of egress or crowd simulation there have been a number
of attempts to validate various types of models. Statistical validation approaches
generally look at macroscopic or aggregate properties of the real crowd and try
to recreate the same properties within the model [1]. Obtaining data from a real
crowd is also difficult, this can be achieved through manual counting, simple
mechanical counting or through the use of video analysis [2]. Such approaches
are valuable, but validation is still very context dependent and a model with
various individual characteristics would need some way of knowing the approx-
imate initial crowd composition in order to guarantee the model and system
correspond. Facial validation is also one popular approach for validating virtual
crowds, [16] uses a form of interactive survey whereby participants were placed
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in a virtual world and surrounded by a computer generated crowd. Participants
were then questioned about their experience and in particular their impressions
of the artificial crowd.

3 Human Computation

Human computation is a method for utilizing humans as computational ele-
ments. In much the same way as other distributed computing platforms utilize
idle clock cycles of a CPU (e.g., BOINC), human computation attempts to uti-
lize idle human cycles through games. Typically the games will be carefully
designed in order to make a repetitive mundane task interesting, which in turn
will encourage people to play the game and unknowingly perform the task. Many
researchers have collected fascinating statistics as to the number of man-hours
spent on gaming around the world. As one example Jane McGonigal [13] has
suggested the average American 21 year old will have spent 10000 hours of their
lives playing games, which is approximately the same number of hours that
same person will have spent within the education system. On May 23rd 2010
the Google main page was changed to include a version of the classic PacMan
game, some estimations are that 4.82 million man hours of productivity were
lost in a single day (approximately US$120 million). The core motivation of Hu-
man Computation is to attempt to exploit this resource by designing games with
some productive or positive side-effect.

As well as the massive amount of computational resources offered, humans
are also capable of types of computation which machines cannot perform. One
example of this is the ability to assign meaning to images through meta tagging,
see (ESP Game and Peek-a-boom [22, 23]). The principle can be further refined
to state that humans can be used to generate data by playing games, which can
then be used by machines. In the ESP game for example, players are asked to
textually identify contents of images and will succeed once they match the same
word with their playing partner (who is randomly assigned via the internet based
game). This way the humans, by playing the game, are generating image meta
data (i.e., stating an image contains a car, house, grass, etc.) which can then be
used by Google image search (or similar search engine). Current machine vision
techniques are not capable of assigning such semantics to image contents, and so
the alternative to such games would be to ask thousands of people to manually
describe the contents of the billions of images on the internet. In this paper we
adapt this concept to the validation of beahvioral models, that is we propose
developing games which will be used to collect instictive beahvioral responses,
which can then be used to quantitatively validate behavioral models.

4 The Game : Escape

When designing games with a specific purpose, as is the case with human compu-
tation, there are a number of important considerations which must be accounted
for [20]. From the perspective of simulation validation, there are further unique
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design criteria which must be incorporated in the game design. During the design
process we have considered the following principles:

1. Accuracy: The game mechanics and artificially controlled players need to be
designed carefully so as to closely reflect reality. We don’t claim or strive
for completely correct behavior for the artificial crowd in the game. What
is important is that the player perceives the artificial crowd as human-like
and therefore, makes the same decision in the game as they would in the
equivalent real world scenario.

2. Experimental Control: In order to be able to draw conclusions from each of
the scenarios, it is important that the experimenter is able to easily control
conditions. If the experimenter wants to study the effects of one particular
control on the players decision, the levels should be designed carefully to
factor out as many other possible variables which may affect decisions.

3. Ubiquity: One fundamental benefit of the human computation approach for
validation is the ability to collect large amounts of data. Therefore it is
critical that the game receives the correct level of exposure and is played by
as many people as possible.

4. Playability: Obviously it is important that the game is enjoyable to play so
players will continue to play the game. This principle in fact contains all
the standard game design fundamentals which have been developed over the
past four decades of computer game development.

None of the above are trivial tasks and the development of a successful com-
puter game is typically a slow and iterative process. The current incarnation of
Escape has attempted to address the first three design principles of accuracy, ex-
perimental control and pervasiveness. The experiments conducted for this paper
attempt to somewhat verify the accuracy of the game mechanics. It is important
to note that the above principles will often lead to conflicting requirements for
the game, which necessitate a number of trade-offs. For example, The choice of
the iPhone as the platform was mainly for reasons of exposure and the ubiquity
of the system. We decided against a more immersive, powerful 3D platform as
this would be both harder to develop and would have lesser exposure, which in
turn would result in fewer samples.

Our game, Escape, has been developed as an iPhone application using an open
source game engine Cocos2D-iPhone. The game is still in the developmental stage
and while all the game mechanics and level designer have been fully developed,
the game still lacks a polished graphical front-end and storyline. We currently
have two separate applications available: the Escape game itself and a convenient
level editor for experimenters to quickly develop new scenarios with specific
objectives in mind. The game itself consists of a single human agent controlled
by the player and some number of competing AI controlled agents. Obstacles
and walls are configured, as well as specific target locations which trigger level
completion. In the level editor, level designers can simply click, drag and drop
to design the shapes and positions of obstacles and goals (and sub-goals) and
positions of agents.
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The level designer is used in four distinct stages, firstly obstacles are drawn
as a polygon from a set of user specified points. The designer must then specify a
series of roadmaps, which are necessary for the RVO2 [7] motion planning system
we adopt. In the third stage the designer specifies the AI controlled agents initial
location and desired goals, and in the final stage the player agent is specified
along with its goal. Once complete, the level specification is output to an XML
file which can be loaded into the game or loaded back into the level editor if
modification is required.

Fig. 1. The Escape game.

.

The game itself (see Figure 1) is essentially a time-stepped simulation where
the AI agents are performing sense-think-act cycles within each time step. Ob-
viously the hardware on even modern iPhones is somewhat limited, so the time
step must be chosen appropriately to achieve the correct level of interactivity
and playability - this is currently set to be 0.25 seconds. The AI controlled
agents use the RVO2 motion planning system which has previously been ap-
plied to crowd simulation. The agents are 0.4m in diameter and have a series of
specified waypoints, a preferred velocity for each agent is calculated using the
current location of the AI agent and its current sub-goal. This preferred velocity
is passed into the RVO2 calculation and an actual velocity is calculated, which
will try to avoid any oncoming collisions with minimal deviation from the spec-
ified preferred velocity. The human player controls the player agent by drawing
(i.e., dragging with a finger) a preferred velocity, the actual motion of the player
agent is also governed by the RVO2 mechanism1. Once a level is completed and
the user agent escapes, a file is written to the phone which records the positions
of all agents at every time step during that level. These files are then processed
and analysed to obtain the desired results from the game.

1 In theory any motion planning system could be employed within the game, we chose
RVO2 in particular as it produces high quality motion with high computational
efficiency
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5 Test Scenarios

In this paper we present preliminary results from two test scenarios we feel are
important for validating behavioral crowd simulation models. These tests have
been conducted on a relatively small scale, with 25 participants. This preliminary
study is intended to achieve a number of different objectives. Firstly, the results
will offer an initial insight into the behavior of people in the chosen scenarios.
Secondly, they should highlight any issues with the current game mechanics
and allow the game to be improved prior to general release. Finally, the initial
tests should enable refinement of the scenarios and test cases to ensure we are
measuring the correct behavioral decisions.

Each participant is asked to play a total of 12 different level instances (6
of each type) with varying environmental configurations. The sample set are
predominantly members of Parallel and Distributed Computing Centre (PDCC)
within the school of Computer Engineering. Other participants have been sourced
through word of mouth. All tests are conducted on an iPad running IOS 4.2.1.
The game begins with an information entry screen where a participant is asked
to enter their name, gender, age and place of birth. This information is stored
within each output file generated during the game. Once the participant has
entered their details, they are presented with a short game description outlining
the purpose of the game and their objectives.

5.1 Density and Distance

One behavior which is common to many egress models is the trade-off made by
people when opting for less crowded but longer routes. Obviously this trade-off is
different for different people and any correct behavioral model should account for
this, the difficulty is in understanding the average tradeoff made by an average
person, or by a specific type of person. The scenario used here presents the player
with two route choices R1 and R2 (See Figure 2(a) )the experimenter can vary
the relative distance and density of both routes, thereby obtaining the average
behavior of a number of players for a given configuration.

Figure 2(a) shows the environmental configuration for this experiment. The
player is presented with two exit choices involving a longer route (R1) and a
shorter route (R2). Six different initial conditions of this scenario are presented
to the player during the experiments. The number of agents occupying space
on route R2 is varied from zero to fifty in increments of ten. The computer
controlled agents will always choose exit E2 and are created within the area
A (See Figure 2(a)). Given the initial configuration (and a fixed random seed)
for each scenario it would be possible to calculate the optimal route choice in
terms of escape time. However, one of the critical aspects of this experiment is
that humans do not necessarily make optimal decisions in such scenarios, our
experiments will hopefully offer some insight into exactly when and why humans
choose the non-optimal route.

Figure 2(b) presents the summarized results from this test case. The results
indicate even with a relatively small sample size we are achieving a definite tran-
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sition in behavior. Once the route R2 is occupied with more than 10 agents the
majority of people will opt for the longer, but empty route R1. Further exper-
iments could clarify the exact point at which the likelihood of choosing either
of the two routes becomes the same. It would also be interesting to understand
how the choice varies with a greater distinction in route length.
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Fig. 2. Density and Distance Scenario

5.2 Exit Size

The second case study examines the effect that exit size has when an evacuee
chooses their exit. The literature contains many examples of behavioral rules
which use exit size, exit throughput and exit density (e.g., [5]). However, the
assumption that a human can quickly and accurately calculate exit throughput
and density is perhaps incorrect. This game scenario is intended to investigate
the hypothesis that in fact exit size alone can be the determining factor when
making an exit choice.

Figure 3(a) depicts the environment used in this case study, the player is
placed in the centre of the room with two exits at equal distance. The environ-
ment is populated with 50 other AI controlled agents placed uniformly in the
circular area indicated by A in Figure 3(a). The AI agents will attempt to leave
the environment through either of the two exits. There are again six different
instances of this case study (presented as six different levels), with the relative
number of agents choosing each exit varying in each instance. The larger exit is
chosen to be twice the size of the smaller exit and the probability of an AI agent
choosing the small exit (E1) varied between 0, 0.2, 0.4, 0.6, 0.8 and 1.0.

Figure 3(b) presents the summarized results from this test case. As expected,
it seems that in most cases the participants will opt for the larger of the two
exits regardless of the relative proportion of AI agents choosing the small exit.
However, a slight increase in those players choosing E2 can be observed as the
number of AI agents choosing E2 decreases. For the case when all agents choose
exit E1 the results show a surprising change in behavior. From experimental
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observation we realize this is due to the level specification. In this case the
player is pushed toward the smaller exit by the other agents who are all moving
to E1. The player typically attempts to move towards the larger exit, but due
to pushing, eventually submits to the will of the crowd and chooses the smaller
exit. This result emphasizes the need for careful scenario testing to ensure they
are correctly designed to present a valid set of choices to the player.
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6 Discussion and Future Work

In this paper we have proposed a new approach to validating agent-based models
which uses principles from the field of Human Computation. This approach is
well suited to validating human behavior models which are known to present
unique challenges in terms of validation. We do not see this methodology as a
single technique for achieving validation for all forms of agent-based models or
behavioral models. Instead we view it as a complementary approach to existing
methods and another technique modelers can utilize when building confidence
in their models. Importantly, our technique has the key advantage of being able
to generate large sets of data from a large sample set. The approach also offers
the advantages outlined by Sterman [18], in that using carefully designed sce-
narios and games provides a more contextual and interactive form for phrasing
the question. This paper also presented the game Escape as an example of us-
ing human computation as a way to validate behavioral crowd simulation. Our
assumption is that the simple 2D interface is capable of capturing the same reac-
tive decisions that people make in reality. This may be a strong assumption and
is something which we plan to investigate in future work. One can argue that
this is equivalent to other forms of facial validation where experts are asked to
observe 2D animation output from the crowd simualtion. Initial results indicate
the feasibility of the approach, but also highlight the challenges in designing
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appropriate scenarios. We believe that eventually the resultant focused and sta-
tistical data can be applied in the development, parameterization and validation
of decision models and route algorithms for crowd simulation.

There are still a number of issues we hope to address in our continued work.
Firstly, Escape will be completed and a game story will be constructed around
the current basic game mechanics. Once the graphics and story have been com-
pleted, we plan for further testing before placing the game on general release.
We still have to clarify issues of data collection from phones prior to release and
methods for distributing new game levels and scenarios. Game controls may also
be developed to allow for other scenario types. For example, in all current scenar-
ios the player has complete information regarding the environment, we plan to
develop scenarios with limited sensor range to test other possible decision cases.
One important question is the accuracy of the game and the correctness of the
behavioral data that is collected. It is important that the game itself is validated
against real world data. We are currently looking at the use of video or RFID
tracking with real world experiments as two possible methods for validating Es-
cape. Finally, we have not shown explicitly how to use this data, or the game, for
validating an agent-based model. In future work we plan to functionally validate
a group-based perception model we are developing.
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Abstract. The computational cost of large-scale multi-agent based sim-
ulations (MABS) can be extremely important, especially if simulations
have to be monitored for validation purposes. In this paper, two methods,
based on self-observation and statistical survey theory, are introduced in
order to optimize the computation of observations in MABS. An empiri-
cal comparison of the computational cost of these methods is performed
on a toy problem.
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1 Introduction

Theoretical and practical advances in the field of multi-agent based simulations
(MABS) allow modelers to simulate very complex systems to solve real world
problems. However the analysis and validation of simulations remain engineering
problems that do not have ”turnkey” solutions. Thus, MABS users conducting
such tasks face two main issues:

1. define validation metrics for the simulation,
2. compute efficiently the metrics.

The first issue is generally solved by constructing a set of ad-hoc qualitative or
quantitative rules on simulation properties. To evaluate these rules, it is then
mandatory to observe the corresponding simulation properties and thus to con-
sider the second issue. A distinctive characteristic of MABS is that global sim-
ulation properties are not necessary directly observable: they may need to be
computed from local agent properties. Fortunately, most of modern MABS plat-
forms come with observation frameworks and toolboxes. Basically, three types
of observation methods are generally available [9]:

1. interactive observation: users select observed properties during simulations,
e.g., using a point and click interface,
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2. brute-force direct observation: simulation agents sharing a given property
are monitored; agent properties are then aggregated by a so-called observer
agent that computes the observation (fig. 1),

3. indirect observation: the observed property is inferred from the observable
consequences of agent actions, e.g., in the environment.

observer observation

simulation agents

Fig. 1. Brute-force direct observation method

While the first method is clearly unadapted to the observation of large-scale
or batch simulations, the second has an important computational cost. This issue
is illustrated with a simple case study inspired by ”StupidModel” [8]: N agents
move randomly in a two dimensional environment E discretized into 100 · 100
square cells with Moore neighbourhood during 1000 steps. An area Z ⊆E is
defined. The number of agents Z in the area Z is observed at each simulation
step. This simulation is implemented on the MadKit/TurtleKit platform4 [7].
Figure 2 shows the CPU times needed to compute unobserved and observed
simulations on a Dell Precision 650 workstation5, using indirect and brute-force
direct observation methods, for the given expected value E(Z) = N/5, as a
function of the number of simulation agents N .

This work is based on existing implementations (by MadKit/TurtleKit and
MASON) of the direct observation method. Thus, an empirical computational
complexity metric, i.e., the CPU time needed to compute simulations, is used.
This metric, denoted C, depends, in our case study, on the number of simulation
agents, N , and on the expected value of the cardinal of the subset of simulation
agents computed by filter, E(Z).

These results show that, in this case, indirect observation has a minor impact
on the computational cost of the simulations. Kaminka et al. also note that
this method is not intrusive: simulation agents do not have to be modified or

4 All the simulations and observation methods described in this paper have also been
implemented on the MASON platform [6], leading to similar results.

5 CPU: 2 × 3.06 GHz Intel XeonTM, RAM: 4 × 1 GB. Full specification:
http://www.dell.com/downloads/emea/products/precn/precn_650_uk.pdf.
All the results presented in this paper have been computed by this machine.
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Fig. 2. CPU times (log scale) needed to compute observed and unobserved simulations
for E(Z) = N/5

accessed during the observation process [5]. However, Wilkins et al. underline
that the applicability of this method is limited: the observed property might not
be inferred [12]; it is often true in complex, i.e., in most of the real world, cases.
Thus, direct observation often remains the only available option.

The brute-force direct observation method is, for this particular and very sim-
ple toy-problem, linear in the number of simulation agents6, i.e., C(obs) ∝ N ,
while the model is exponential, i.e., C(model) ∝ αN ,α> 1. However, complex
simulations generally involve non-linear observation problems [11]. Thus, im-
proving direct observation appears to be a good lead to improve the efficiency
of large-scale complex MABS.

In this paper, two non-brute-force direct observation methods, based on self-
observation and statistical survey theory are introduced. An empirical compar-
ison of the computational cost of these methods is performed and discussed on
the presented case study.

2 Filtrated direct observation of MABS

Basically, there are two ways to compute a direct observation:

1. a set of agentsA (generally all the simulation agents that share the properties
that have to be observed), statically defined, is probed by an observer agent,

2. a subset A′ of A, computed at runtime, is probed (fig. 3).

6 Authors would like to thank anonymous reviewers for raising this issue.
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obs′ observation

AA′

filter

Fig. 3. Filtrated direct observation

Formally, we consider an observation function

obs : 2A → I, (1)

where A is a set of agents and I represents the values that can be observed. We
define A′ ⊆ A as the minimal subset of agents, dynamically defined by a set of
constraints (e.g., in the case study, a unique constraint related to the position of
the agent), needed to compute obs correctly. In other words, A′ is a set of agents
such as

obs′(A′) = obs(A) and
! A′′ ⊂ A′ | obs′(A′′) = obs(A),

(2)

where obs′ is a ”simplified”observation function, i.e., that can be computed faster
than obs because it is specific to A′:

∀ A′′ %= A′ ⊆ A, obs′(A′) = obs(A′). (3)

Thus, in the case study, the observation function obs(A) observes the position
of each agent in A to count only the ones that are situated in Z, while an
observation function obs′(A′) would only returns |A′| because the agents of A′

are by definition situated in Z.
To use obs′, it is necessary to consider a filtering function filter able to

identify the subset A′ (in the case study, this subset only contains the agents
situated in Z):

filter : 2A → 2A | ∀A′,A′′ ⊆ A,
if filter(A′) = A′′, then A′′ ⊆ A′.

(4)

The goal is to define and implement a filtering function, such as the cost of
the observation computation is reduced, i.e.,

C(obs′(filter(A))) < C(obs(A)). (5)

In the following section, two different implementations of this idea are pre-
sented.
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3 Implementation of filtrated direct observation methods

3.1 Self-observation

The core idea of this method is to implement the filtering function in the simula-
tion agents themselves. Then, using an organizational structure, denoted group,
allows to identify the set of agents that has to be observed. Thus, a group is de-
fined as the set of agents that contains the sufficient and necessary information
to compute an observation. In other words, a group defines, for a given observa-
tion, the minimal set of agents that is mandatory to compute it. Agents observe
themselves to determine if they have to join, leave or stay in a group. A filtering
function is defined by a set of rules R, that specifies the conditions under which
an agent has to be observed, evaluated at each simulation step (fig. 4).

Thus, in our case study, we consider a group G, that contains the agents
situated in Z. The following set of rules, defined here in natural language, is
associated to each agent:

– if the agent is in Z and does not belong to G, then the agent joins G,
– if the agent is not in Z and belongs to G, then the agent leaves G.

The observation system (obs′) only probes the agents of G. Figure 5 presents
the CPU time difference between simulations observed with self-observation and
brute-force methods as a function of the number of agents in the simulation,
N , and the mean rate of observed agents, E(Z)/N . The dashed line represents
the isoline 0, i.e., the conditions for which there is no difference between the two
methods. Thus, the area below this line maps the cases for which self-observation
is faster.

obs′

filter: set of rules R

group G

organisational structures

observation

A

if R = !

Fig. 4. The self-observation based method
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Fig. 5. CPU time difference between simulations observed with self-observation and
brute-force methods as a function of the number of agents in the simulation, N , and
the mean rate of observed agents, E(Z)/N (response surface estimation)

3.2 Statistical survey

If the equation 2 is rewritten as follows:

obs(A′) ! obs(A) and
! A′′ ⊂ A′ | obs(A′′) ! obs(A),

(6)

i.e., if imprecise observations are authorized, it becomes possible to filter the ob-
served population on a statistical basis. As a result, we do not consider a specific
observation function anymore as the set of agents returned by the filtering func-
tion is not necessary the set of agents that contains the sufficient and necessary
information to compute the observation.

Statistical survey theory7 provides a formal ground to determine optimal
sampling method and size of observed population sample.

Let once again consider our case study; we denote n the size of the observed
population, randomly sampled at each simulation step. An estimator of Z, de-
noted Ẑ is constructed from this sample. Many estimator definitions can be
found in the literature. In this case, as the population of simulation agents is
homogeneous with respect to E(Z) (all the agents have the same probability to

7 Proofs of statistical survey theory results presented in this paper will not be given.
Interested readers may refer to [1] for an exhaustive presentation of sampling designs,
estimator construction and variability estimation methods.
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be in Z), n is determined with the Horvitz-Thompson estimator [4] :

n−1 =
d2

4S2
+

1

N
, (7)

where d is the maximal absolute error accepted for the observation and

S2 ! (1− E(Z)

N
) · E(Z)

N
. (8)

Impact on the computational cost is shown in figure 6. The semantic is the
same than figure 5: the left area maps the cases for which the statistical survey
based method is faster than brute-force method.
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Fig. 6. CPU time difference between simulations observed with statistical survey (d =
0.08) and brute-force methods as a function of the number of agents in the simulation,
N , and the mean rate of observed agents, E(Z)/N (response surface estimation)

3.3 Discussion

Figure 7 sums up the previous results qualitatively: conditions for which it is
preferable to use one method over another are identified. These results are specific
to our case study and its implementation; however, they highlight that the choice
of an observation method is not trivial and that the performance of the different
available methods should be analyzed on a set of simulations before using the
model in a production context.
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Fig. 7. Map of the fastest observation methods (response surface estimation); A: self-
observation, B: brute-force, C: statistical survey (d = 0.008)

In a given context, knowing the map of the fastest observation methods
allows to dynamically adapt the observation method to use the most efficient
one. Impact of dynamic adaptation of the observation method on CPU time is
presented in the context of the first example (cf. fig. 2) in figure 8.

4 Conclusion and perspectives

Observation methods presented in this paper allow, under specific conditions
identified on a simple case study, to reduce significantly the computational cost
of MABS composed of numerous agents. However, filtering is not the only op-
tion. Considering that imprecise observations are acceptable, while a precision
level is guaranteed, the optimal observation frequency could be determined from
the observed property variation. Roughly, the more the variation, the more the
observation frequency. However, MABS are used to simulate complex systems
with nonlinear dynamics. Dynamic adaptation of observation frequency could
be an interesting lead to reduce MABS computational cost.

Moreover, in the statistical survey based method (cf. section 3.2), we consider
a simple random sampling method, assuming the population is homogeneous.
Real world MABS often involve heterogeneous agents for which the distribution
of observed individual properties is not uniform. Clever sampling methods, e.g.,
a stratified random sampling approach, should then be used. In very complex
cases, a machine learning system should be implemented to analyze the impact
of sampling method properties on the observation quality and computational
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Fig. 8. CPU times (log scale) needed to compute observed and unobserved simula-
tions for E(Z) = N/5, filtrated observation method being dynamically adapted to the
context

cost, and determine the optimal ones. Similarly, the organizational model used
to implement the self-observation based method is very simple: the only orga-
nizational structure that is defined is the ”group”. Using a more comprehensive
one, e.g., AGR [2], would allow to consider very complex and fine observations.

From a methodological point of view, authors experimented that setting up
an observation method, generally improves the design of simulation validity met-
rics. Indeed, it forces simulation designers and users to explicitly define local and
global observed properties and their sufficient and necessary conditions of ob-
servability, and then the validity constraints over them.

While this paper focuses on reducing the complexity of observation, many
published works concentrated on agent interactions by dynamically scaling up
and down simulated entities or using more structured interaction artifacts [3,
10]. Together, these approaches should lead to the conception of highly efficient
large-scale MABS simulators.
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Abstract. In social psychology, emotional contagion describes the widely ob-
served phenomenon of one person’s emotions being influenced by surrounding
people’s emotions. While the overall effect is agreed upon, the underlying mech-
anism of the spread of emotions has seen little quantification and application to
computational agents.
In this paper, we explore computational models of emotional contagion by im-
plementing two models (Bosse et al., Durupinar et al.) and augmenting them to
better model real world observations. Our additions include examining the impact
of physical proximity and authority figures. We show that these additions provide
substantial improvements to the qualitative trends of emotion spreading, more in
line with expectations than either of the two previous models. We also evaluate
their impact on evacuation safety in an evacuation simulation, ESCAPES, show-
ing substantial differences in predicted safety based on the contagion model.

1 Introduction

Emotional contagion has been shown to arise in a wide range of scenarios in everyday
life. Its effects are felt in homes everyday when comedic shows employ laugh tracks
to elicit stronger emotional responses from audiences. Less often, but with far more
severe implications, it is also felt during the spread of fear and anxiety that surrounds
any crowd-based disaster. With the growing interest in emotional modeling in agents,
the contagion of these emotions can no longer be marginalized when modeling crowds.
Recent work has sought to quantify the qualitative findings of social psychology into
useable models with varying degrees of success. Bosse et al. (VU University) intro-
duced one of these in 2009 [3] that used an interaction-based model derived directly
from social psychology theories of emotional contagion wherein members of the sim-
ulation converged towards a weighted average of each emotional type. Durupinar et al.
[6] used an epidemiological-style threshold-based model wherein successive interac-
tions with emotionally ‘infected’ people raises the chance of infection.

While both of these models showed predictions in line with some qualitative find-
ings in social psychology studies, they are inherently very different models of the same
phenomenon. Although this type of detail may not be important for understanding the
contagion of joy with the use of laugh tracks, it may offer substantially different pre-
dictions on the outcome of emotionally-charged crowd simulations. It is in this context
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that we explore the modeling of emotional contagion. In particular, we use an evac-
uation simulation called ESCAPES, described more in Section 3, as the test bed for
different models of fear contagion.

Despite their promise, both models come short when applied to an evacuation sim-
ulation such as ESCAPES. First, the models do not explore the impact of proximity
on the effect of contagion. The VU model provides a parameter (channel strength) that
can allow for this manipulation, but never provides guidance on how it should be done.
Second, the authors have not introduced guidelines for designing ‘special’ agents such
as authority figures that might have stronger resistance to fear contagion and be trained
to reduce fear in other agents. Again the VU model provides parameters that allow for
this manipulation (receiver openness, sender expressiveness), but have not explored this
in their work thus far. The Durupinar model provides no mechanism for either feature.

We propose to augment the VU and Durupinar models with proximity-based ef-
fects and authority figure calming and examine their performance in the context of
ESCAPES. Through extensive experimental results, we show that without proximity’s
effect on contagion, neither model produces qualitatively believable results. After incor-
porating authority calming effects into each model, we show that the spread of emotions
through the population again changes drastically. Finally, as a second-order effect, we
also show that the evacuation simulation’s outcome predictions vary substantially, mo-
tivating the need for an accurate model of contagion and authority effects.

2 Related Work

Seminal works in social psychology first began the discussion around emotional con-
tagion. In particular, Hatfield et al. [7] first codified the observed phenomena that were
just beginning to receive researcher attention. Follow-up work by the co-authors as
well as in related fields such as Barsade et al. [1] in managerial sciences continued to
detail the effects of the phenomenon in new domains. Recently, there have been at-
tempts to begin quantifying emotional contagion and explore cross-cultural variations
in attributes that effect emotional contagion [5, 9].

From a computational perspective, the previously mentioned work of Bosse et al.
(VU model) and Durupinar et al. are two of the most recent models of emotional con-
tagion upon which a few follow-up works have been based [2, 8].

3 ESCAPES

Although not the focal point, the ESCAPES evacuation simulation [10] serves as the test
bed for our models of emotional contagion, so we describe it briefly here. ESCAPES
focuses on the features identified by experts that particularly effect airport evacuations,
including first time visitors’ incomplete knowledge of the area, the presence of families,
and the presence and effects of authority figures [4]. We also model fear and model its
impact on behavior by increasing the speed of more fearful agents.

Although the second-order impacts of changing the emotional contagion model,
such as evacuation rates and safety, are dependent upon the specific simulation imple-
mentation, we use ESCAPES as a test bed to illustrate obvious deficiencies in the base
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models that would occur in any simulation with a spatial component. We detail these in
Sections 8 and 9 and also highlight second-order impacts that the different models have
upon the evacuation as a whole.

For all the experiments discussed in Section 8 and 9, the same scenario was used
(spatial layout can be seen in Figure 3) and 30 trials were run for each setting. It features
2 large spaces, each with an exit, connected by hallways which are lined with smaller
spaces that represent shops. 15 seconds into the simulation, an event occurs at the center
of the scenario, inciting fear (0.75 for nearby agents, 0.1 for further agents) and a need to
evacuate that is communicated by authority figures to pedestrians. The scenario features
100 normal pedestrians, including 10 families of 4 each, as well as 10 authority figures
that patrol the scenario.

4 VU Model

Introduced in 2009 by Bosse et al. [3] and built upon in [2, 8], this model is an in-
dependent interaction-based model. The initial version that we use here moves people
towards a weighted-average of the group’s emotional levels. Since subsequent works do
not address the needs of our evacuation simulation, we begin with a discussion of the
original model and its attributes. In Sections 6 and 7 we will further explore this base
model to examine the impact of proximity and a partcular model of authority figures.

We briefly mention the primary components of interest in the VU model here. In
particular, emotional contagion is modeled using 5 parameters for every pair of people
that may interact: level of sender’s emotion qS , level of receiver’s emotion qR, sender’s
expressiveness εS , receiver’s openness δR, and the channel strength between S and R
αSR. All values are numbers in the interval [0, 1]. The parameters are derived from the
theory put forth in [1], giving the model a theoretical foundation.

At each time step, each agent calculates the average emotional transfer from all
relevant agents. Specifically, from a sender S to a receiver R, the strength of the emotion
received would be γSR = εS · αSR · δR. Logically, stronger channel, stronger sender
expressiveness, and stronger receiver openness all lead to stronger emotional transfer to
the receiver. [3] details the mathematical formulation, but, qualitatively, the fear level
of an agent converges towards a weighted average of the group’s fear level. The speed
at which this convergence occurs as well as the weighting depend on the parameter
settings for the channel strength, expressiveness, and openness for each agent.

5 Durupinar Model

As opposed to independent interaction models, Durupinar et al. used a threshold model
based on epidemiological models of disease contagion. While many types of epidemi-
ological models exist, Durupinar implemented a simple version with only susceptible
and infected states (as opposed to recovered, innoculated, etc. states). The model’s ap-
plicability to emotional contagion was not discussed in the initial publication, but its
use assumes similarity between disease spread and emotion spread.

Each agent begins with a randomized threshold drawn from a pre-determined log-
normal distribution. At each time step, for each agent, a random agent is chosen from

96



4

the relevant population group and if the agent is infected, will generate a random dose
drawn from a pre-determined log-normal distribution and pass it to the original agent.
If the agent is not infected, then a dose of 0.0 is generated. Each agent maintains a
running history of the last K doses received. If the cumulative total of all doses in the
agent’s history exceeds his threshold, the agent enters the infected state. This causes the
emotion level to be set to 1.0 with an exponential decay towards 0.0, at which point the
agent re-enters the susceptible state. The random dose and threshold are generated from
log-normal distributions with user-specified averages and standard deviations and K is
a static global variable.

6 Proximity

When used in a simulation that includes physical space, an immediate deficiency arises
in both models - the lack of specification of proximity’s role in contagion. In any such
simulation, proximity must enter the equation in some form. The VU model provides
the channel strength parameter, which, if varied properly, can incorporate proximity
effects into the contagion. Despite this, the authors did not provide guidance or explo-
ration of possible implementations, thus we explore one in this work. The Durupinar
publication did not provide experimental results specifically pertaining to the contagion
and do not have a variable parameter such as in the VU model.

In this work, we implement a fixed neighborhood of effect for all agents within both
models. Only agents within the specified distance are used in the model’s calculations
for contagion. In the VU model, this is equivalent to setting all channel strengths to
0.0 for pairs of agents that are too distant from each other and setting the remaining
channel strengths to their pre-set levels otherwise. In the Durupinar model, this was a
direct augmentation to the contagion effect, where we restrict the population used to
neighboring agents only.

7 Authority Figure Effects

The second important modification that we require is specific to our scenario of evac-
uations, but is an example of the more general need for a contagion model to allow
‘special contagion’ agents. As noted in recent research [4], the role of authority figures
is extremely important in evacuations not only for the information they provide but also
for the calming effect they bring to anxious or fearful crowds. Neither model inherently
discusses the implementation of agents with unique contagion attributes.

The VU model’s individual-specific parameters allows for simple settings that would
logically correspond with an authority figure (or to other special agents), but the authors
did not explore possible impacts or implementations. While many implementations are
possible, we choose to set all authority figures’ openness parameters to 0.0, simulat-
ing the effect of proper training preventing authority figures from being susceptible to
others’ influences on their emotions. In combination with the proximity effect, this en-
courages agents near authority figures to calm their emotions towards 0.0 at each time
step, producing the desired effect.
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The Durupinar model specifies only population-wide, randomized parameter set-
tings, necessitating model-level augmentations to include unique authority effects. Again,
many implementations are possible. We choose to reproduce the resistance of authority
figures to fear contagion by removing their contagion module entirely. In addition, to re-
produce the calming effect that the VU model can naturally produce with the openness
and expressiveness parameters, we introduce two changes to the base Durupinar model.
First, we halve the level of fear in the agents surrounding authority figures at each time
step. Second, we introduce an inoculated state that agents enter upon contact with an
authority figure. They remain in this state for a fixed period of time that is reset as long
as they remain in the presence of an authority figure. The second addition prevents the
situation where a group of fearful agents at different points in the decay process simply
pass fear back and forth to each other despite the presence of an authority figure. With
these two augmentations, we are able to reproduce the authority calming effect noted
by [4].

8 VU Experiments

We first explore the implications of varying the parameters in the base VU model when
applied to the scenario described in Section 3. Then we show results pertaining to the
rate and strength of emotion spread under the different versions of the model. Finally,
we briefly touch on the implications on the predictions of safety under each of the
versions of the model as they appear in the ESCAPES simulation engine.

8.1 Sensitivity Analysis

The parameters of interest in the VU model were the channel strengths, individual ex-
pressiveness settings, and individual openness settings. Given that we had a whole pop-
ulation of agents, we elected to use randomly drawn values for each of these based on
a normal distribution. We explored variations of the averages and standard deviations
used, but surprisingly, none yield substantial changes in the outcome of the simulation
from both a contagion perspective (i.e., how the fear spread) and a safety analysis (i.e.,
how safe the evacuation was). The only exception was, unsurprisingly, when the re-
ceiver openness parameter varied tightly around a very low mean, leaving many agents
with 0.0 openness. This caused the majority of agents to remain at their initial fear level,
sometimes raising all agents’ fear levels, which was vastly different from the conver-
gence behavior seen in the other settings.

Figure 1 plots the percentage of people with low fear (≤ 0.1) on the y-axis and the
time step on the x-axis. Figure 1a shows the results for variations in average channel
strength whereas Figure 1b shows the same results for variations in average receiver
openness. In both cases, the parameter being explored varied from 0.1 to 0.9 in incre-
ments of 0.2 while keeping a fixed standard deviation of 0.1 and the other two param-
eters were fixed with an average of 0.5 and a standard deviation of 0.1. As expected,
when an event first occurs, those near it become fearful, hence the initial dip. However,
due to the global convergence of fear levels and the fact that the vast majority of agents
have 0.0 fear and do not know of the event, fear levels quickly decrease back to ≤ 0.1
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levels. The tightness of the lines implies that the trend is robust to variations in the aver-
age channel strength. The same trend can be seen when the average openness is varied,
with the exception of the previously mentioned situation. Similar tightness of lines was
observed in other parameter variations.

We also conducted experiments exploring the second-order effects on safety, as
measured by the ESCAPES system. In particular we examined the evacuation rates of
pedestrians as well as the number of collisions experienced on average. Neither set of
results showed significant variation through the parameter space, indicating the results’
robustness to parameter variation.

(a) Variations in Channel Strength (b) Variations in Openness

Fig. 1. Percentage of low-fear agents

8.2 Contagion Analysis

Now we discuss the effect on contagion as we include proximity effects and authority
figure calming in the base model . Given the relative indifference of the model to param-
eter variations, we elect to use median values of 0.5 for the average of all parameters
and fix the standard deviations at 0.1 for the results shown in this section.

Figure 2 shows the contagion trends of agents in the simulation under the three
different models: original base model with ‘worldwide’ neighborhood, a model with
a limited neighborhood of contagion, and a model with the limited neighborhood in
conjunction with the authority figure modification. Each graph shows the percentage
of agents remaining in the simulation that possess the labeled level of fear: ≤ 0.1 and
≥ 0.75 on the y-axis and time steps on the x-axis.

As can be seen, the trends are drastically different in each case. In particular, the
base model always sees an extremely steep decrease in fear levels as the majority of
agents do not know of the event and possess 0.0 fear, lowering the convergence target
to near 0.0. When proximity is introduced, the fear levels reduce slowly, as high fear
agents must pass close to low fear agents for this to occur. This leaves a large percent-
age of agents hovering above 0.1 through the entire duration of the simulation (recall
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that there is no decay of emotion in the VU model). When authority figure calming is
introduced, a middle ground between ‘worldwide’ and ‘proximity’ is achieved as au-
thority figures are able to constantly reduce nearby agents’ fear levels despite them not
encountering new 0-fear agents.

(a) Low fear pedestrians (b) High fear pedestrians

Fig. 2. Comparison of model with additions

Perhaps the strongest indication of the impact that our proximity addition has on
realism comes from a series of illustrative snapshots in time of the locations of fear-
ful agents in the scenario. In Figure 3, agents with fear greater than 0.1 are shown as
red dots, agents with less than 0.1 but non-zero fear are shown as white dots. Figure 3b
shows the location of fearful agents at time step 16 in the base model without proximity.
Figure 3c shows the same snapshot for the model with proximity and without authori-
ties. As can be seen, in the first few seconds following the event, agents throughout the
scenario instantly become slightly fearful as they converge towards the fearful agents’
emotional level. When proximity is incorporated, however, a much more realistic spread
can be seen with nearby agents becoming fearful.

(a) Both models at 15s (b) Base model at 16s (e) Proximity at 16s

Fig. 3. Effect of proximity in VU model.
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8.3 Safety Analysis

Now we evaluate the impact of the models of contagion on the actual evacuations as
measured in the ESCAPES system. In particular we show the evacuation rates and av-
erage number of collisions of pedestrians in the simulation. Clearly, faster evacuation
rates and lower number of collisions indicate better evacuations.

Figure 4a shows the percentage of pedestrians remaining in the simulation on the
y-axis and the time step on the x-axis. Figure 4b shows the average number of colli-
sions accumulated by people remaining in the simulation on the y-axis and the time
step on the x-axis. The evacuation rate remains unchanged but there are noticeable dif-
ferences in the number of collisions. In the ‘worldwide’ model and the model with both
proximity and authorities, the number of collisions slopes up substantially slower than
the model with proximity only as a result of the slower pace of people. The number of
authorities was very high in these simulations, creating a situation similar to the ‘world-
wide’ model with very little fear in the population. Thus, although the augmentations
do not impact evacuation time, the prediction of safety as measured by the number of
collisions is strongly affected.

(a) Percent pedestrians unevacuated (b) Avg no. of collisions per person

Fig. 4. Comparison of safety between models

9 Durupinar Experiments

Just as for the VU model, we begin with a sensitivity analysis of the Durupinar model.
We then evaluate the implications of the augmentations on the way emotions spread in
the simulation. Finally we discuss the implications for safety as they manifest in the
ESCAPES simulation.

9.1 Sensitivity Analysis

Sensitivity analysis of the Durupinar model is considerably more complex than the
VU model, because although the number of key parameters remain the same, they are
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interdependent. Lower thresholds, higher dose strengths, or longer dose histories (K)
would lead to more agents that are fearful because they would accumulate necessary
doses faster. Clearly the relative values are what are important. Thus, we begin with
fixed relative values and vary the parameters to identify key sensitivities. In particular,
we begin with a baseline of K of 4, dose average of 2, dose standard deviation of 0.5,
threshold average of 7, and threshold standard deviation of 2.

Unsurprisingly, altering any one of the parameters’ averages OR standard devia-
tions individually drastically alters the magnitude of the contagion effect, but not the
overall trends. The exceptions are at extremely low values for K or dose distribution
average and at extremely high values for threshold distribution average, when very few
agents become fearful at all due to insufficient doses, dose sizes, or extraordinarily high
thresholds. Figure 5a shows the percentage of low-fear pedestrians (≤ 0.001) on the
y-axis and time steps on the x-axis, with each line representing a different setting of K.
Figure 5b shows the same, but with each line showing different settings of the thresh-
old distribution’s standard deviation. We use 0.001 instead of 0.1 as before because the
decaying aspect of the Durupinar model quickly causes people to fall below 0.1 fear,
making 0.001 comparable to 0.1 in the VU experiments. As can be seen, the qualitative
trends remain the same over the tested parameter-spaces, with the aforementioned ex-
ception. This implies that the model remains robust to parameter changes with respect
to the contagion trends that emerge.

We again explored the second-order impacts of parameter variations on the safety
of the evacuation by measuring the evacuation rates and average number of collisions of
pedestrians in the simulation. As in the VU experiments, we again found no significant
variation as the parameters varied across the non-trivial parameter space.

(a) Variations of K (b) Variations of Threshold SD

Fig. 5. Percent low-fear pedestrians

9.2 Contagion Analysis

Now we examine the effects that the augmentations have on actual contagion in the
simulation. Unlike in the VU model, larger populations cause an increase in the overall
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level of fear because of the infection model. Figure 6 shows the percentage of the re-
maining population with ≤ 0.001 fear and ≥ 0.75 fear on the y-axis and time step on
the x-axis. The results use the baseline parameter settings mentioned in Section 9.1, but
the tightness of trends is consistent through the non-trivial parameter space.

As expected, in the ‘worldwide’ model, a larger percentage of the population be-
comes fearful than in the other two cases, as shown by the lower point reached by the
line. This is due to the fact that the entire population can potentially be infected. The
model with proximity has a similar dip, although less pronounced since the suscep-
tible population available consists only of neighboring agents. As shown by the less
steep increase towards the tail, the number of fearful people tapers off more slowly in
the proximity case than in the worldwide case because new susceptible people are en-
countered over time. The high fear graph, Figure 6b, shows no real surprises with the
exception of the abrupt spikes, which is due to the fact that so few people have high fear
at any given point in time and fear levels are set immediately to 1.0 upon infection.

(a) Low fear pedestrians (b) High fear pedestrians

Fig. 6. Comparison of model with additions

As with the VU model, he effect of proximity on the Durupinar model provides far
more realism in the contagion of fear than does the base model. This time we show
agents with fear greater than 0.001, but the same dramatic increase in realism remains.

(a) Both models at 20s (b) Base model at 30s (e) Proximity at 30s

Fig. 7. Effect of proximity in Durupinar model.
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9.3 Safety Analysis

Now we evaluate the impacts of the model augmentations on the actual predictions of
evacuations as measured in the ESCAPES system. Again, we show the evacuation rates
and average number of collisions of pedestrians in the simulation.

Figure 8a shows the percentage of people that remain unevacuated in the simulation
on the y-axis and time step on the x-axis. As can be seen, the evacuation rate remains
relatively unchanged. Figure 8b, however, shows very noticeable differences between
the models in the number of collisions caused on average. In the ‘worldwide’ case,
as with VU, the number of collisions slopes up substantially faster than the other two
models for the same reasons. Next, the model with only proximity follows the same
overall trend, but with a lower peak due to the fewer number of fearful people for
the majority of the simulation. Finally, the model with both proximity and authority
effects shows the lowest peak due to the lower number of infected people in addition
to the authority calming effect slowing the pace of pedestrian travel and, therefore,
making it easier for agents to avoid collisions with each other. Thus, although the model
augmentations do not appear to impact overall evacuation time, the prediction of safety
as measured by the number of collisions is again strongly affected.

(a) Percent pedestrians unevacuated (b) Avg no. of collisions per person

Fig. 8. Comparison of safety between models

10 Conclusions

Although both Durupinar and VU attempt to model emotional contagion, the underlying
mechanisms differ drastically, with the VU model using an independent interaction-
based approach and the Durupinar model using a threshold framework inherited from
epidemiological studies. In the tests conducted, the VU model seemed to reproduce the
contagion phenomenon with higher fidelity.

The Durupinar model possesses a number of inherent flaws due to its origins in epi-
demiological modeling. Its lack of a representation of ‘strength’ of the emotion means
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that agents with more fear have the same impact as agents with only slight fear. Qual-
itatively, this is inconsistent with observations in social psychology [7]. Furthermore,
the Durupinar model possesses no mechanism for ‘reverse’ contagion where a fearful
agent might be impacted by the lack of fear of other agents. This means that a handful
of fearful agents entering a room with 100 0-fear agents will not lose their own fear
any faster than if they were alone. In fact, if their fear decays slowly enough and the
infection sampling is done quickly enough, they will inevitably infect the entire crowd
with their fear. While this may occur, the Durupinar model unrealistically implies that
duration of exposure even to an extreme minority will inevitably lead to escalation.

The VU model, however, is not without its shortcomings. In particular, the lack of a
decay function for the emotions means agents will never lose fear unless they encounter
lower fear agents. The base VU model implemented here also never exhibits escalation
because it enforces convergence to the weighted average. However, follow-up work has
attempted to address this in [2]. Finally, the proximity and authority figure implemen-
tations used here, although an improvement over the base model, are but one of the
possible ways that they can be done and further exploration is necessary to determine
the most accurate, theoretically-based methods.
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Abstract. Some agent-based models use analogs of insect pheromones for 

coordination. We situate these techniques in the spectrum of modeling tools. 

Analysis and simulation show that pheromone models are intermediate between 

classical agent-based models and mean-field models, inspired by statistical 

physics. This position is not fixed, but can be adjusted by pheromone parame-
ters (notably, the propagation factor), providing new design options for ABMs. 

Keywords: Pheromones, mean-field models, agent-based models 

1 Introduction 

Many problems to which agent-based models (ABMs) are applied can also be mod-
eled using mean-field models, typically as differential equations describing the time 
evolution of system variables. Each type of model has advantages and disadvantages.  

One approach to ABM imitates insect pheromones. This paper’s central claim is 
that pheromone-based coordination is intermediate between classical multi-agent 
systems and mean-field models. Pheromones provide “lumpy-field models”: each 
agent generates a non-uniform field whose mode is related to the agent’s location. 

We extend a simple model of population dynamics [13] to contrast agents and 
mean-field models. We analyze this model in both mean-field and conventional agent 
configurations, to develop intuitions as to the mediating position of pheromone based 
models. Then we confirm and refine these intuitions using simulations of the system. 

Section 2 compares agent-based vs. mean-field models. Section 3 situates phero-
mone-based coordination this approach in the agent-equation space. An experiment in 
Section 4 validates and illustrates the claims of Section 3, with special attention to the 
mapping between computational and physical models of propagation. Section 5 dis-
cusses implications of the research, and Section 6 concludes. 

2 Agents and Mean Fields 

Agent-based modeling is an alternative to equation-based modeling (EBM) [11, 14], 
in which differential or difference equations capture the evolution of variables. A 
salient difference [11] is that agent-based modeling directs the modeler’s attention to 
the individual entities in the domain, while equation-based models focus on variables. 
These variables may be extensive (e.g., the total population or agent density), or in-
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tensive (e.g., parameters of individual agents). Intensive variables may reflect indi-
vidual agents, or (as averages) the system as a whole.  

EBM favors extensive variables, or averages over intensive ones, which permit 
parsimonious closed-form equations. The perspective of such a model is centralized, 
since such variables require global information. In contrast, the natural tendency in 
ABM is to define agent behaviors in terms of observables accessible to the individual 
agent, favoring a local rather than a global viewpoint. The evolution of system-level 
observables does emerge from an ABM, but the modeler is less likely to use these 
observables to drive the model’s dynamics than in an EBM. 

Statistical physics offers an analog to this contrast between local and global infor-
mation. Systems of many interacting particles are analytically intractable. Physicists 
consider a single typical particle, and estimate the influence of all the others on it as 
an average influence. The resulting model is called a “mean-field model” (MFM), 
because it replaces many individual entities by averages over them.  

The canonical example is the Ising model of ferromagnetism [3].An n-dimensional 
lattice has z sites indexed with i, each with a spin Si  of either +1 or -1. These spins are 
subject to two influences. The first is an external field of strength h. The second is the 
influence of neighboring spins. The Hamiltonian of the system (roughly, its energy) is  
(1) !"#$%&' ( )*+ $%% ) , + $%-%./ $. 

where the second sum is over all nearest neighbors and J >0 is the strength of pair-
wise interactions. The first sum measures the energy due to the interaction of spins 
with the external field (lowest when aligned, thus negative), and the second sum, the 
contribution of the nearest neighbor interactions (again lowest when aligned). 

In three or more dimensions, this system is analytically intractable. To circumvent 
this problem, note that the contribution of a single spin to the Hamiltonian is 
(2) 0"$%' ( )*$% ) ,$% + $. 

summing over all sites adjacent to Si. The mean field approach replaces the individual 
Sj’s in the summation with their average value <Si>. The contribution of a single site 
can now be written as a linear function of that site, 
(3) 012"$%' ( 3)*$% ) 3,$% + 4 $. 53( 3)*12$%3, where *12 6 * 7 ,8 4 $. 5 

This simplified system is tractable, but neglects the interaction between spins. We 
have replaced the average of the interactions, <SiSj>, with the interaction of the aver-
ages, <Si><Sj>. This replacement corresponds to an assumption that the spins are 
statistically independent. In fact, the problem is interesting just because the spins are 
not independent of one another. The consequences of the approximation vary with the 
dimension of the lattice. In one dimension, it yields qualitatively false results, but as 
the number of dimensions increases, in spite of the a priori unreasonableness of the 
mean-field assumption, it quantitatively approximates the exact result. 

Following this terminology, we describe any model that relies on system-level av-
erages over agent variables as a mean-field model. EBMs using extensive and aver-
aged system variables are the most common example of mean-field models, but an 
agent-based model that uses global knowledge can also do mean-field reasoning. In 
both cases, the mean-field approach accepts an unrealistic assumption of indepen-
dence among key variables in exchange for improved tractability. 

As in physics, so in multi-agent systems, an MFM has limited accuracy. A given 
agent parameter may vary widely over the population, and encounters among agents 
may depend critically on that parameter. Replacing diverse values with a single aver-
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age may qualitatively change the behavior of the system [13]. Still, MFMs can give 
concise insight into the behavior of a system that is obscured by discrete models, and 
researchers increasingly present both models for a system [4, 7]. 

3 Pheromone-Based Agents 

Some social insects coordinate their activities by depositing and sensing chemicals 
called “pheromones” in a shared environment [15]. Some research in software agents 
[9] imitates these mechanisms, using a structured environment to implement funda-
mental information processing tasks. 1) Cells aggregate deposits by separate agents, a 
form of information fusion. 2) Pheromone propagates from cells of high concentra-
tion to those of low concentration, a form of communication. 3) Evaporation discards 
obsolete information, a primitive form of truth maintenance that runs in constant time 
(as opposed to NP-complete truth maintenance with non-trivial logics [5]). 

Digital pheromones were originally used for spatial problems: agents move over a 
map of the world and the peak of the pheromone field converges to a shortest path 
[12]. Their quantitative nature makes them seem inappropriate for modeling more 
complex problems, such as social behavior and human decisions based on symbolic 
reasoning. In fact, pheromones can be applied to such problems by capturing the 
logical structure of the problem in the environment over which agents move and in 
which they deposit and sense pheromones. In traditional behavior modeling, each 
agent manipulates a logical model inside its head. Pheromone agents handle such 
problems by externalizing the logical structure and moving over it. An example of 
this approach is the rTÆMS system for reasoning about plans [2, 8]. In principle, 
pheromone agents can address any problem that can be represented as a graph. 

These mechanisms resemble an MFM. In statistical physics, MFMs simplify com-
putation. Instead of accounting for each particle’s interaction with many other par-
ticles, we replace the other particles by an average influence, and then compute the 
behavior of the particle of interest with that average influence. The pheromone field 
in a pheromone-based agent system is analogous to the average influence in a physi-
cal MFM. The field consists of deposits by individual agents. Up to a normalizing 
constant, this field gives the probability of encountering an agent of the type 
represented by the field at a given location. When one agent makes decisions based on 
the field, rather than on explicit representation of other agents, it is reasoning about a 
weighted average influence of the other agents—weighted because the field is gener-
ated by those agents as they move about, and reflects their recent locations. 

This weighting is an important refinement over the naïve average in the mean-field 
approximation to the Ising model in Section 2. Consider one robot coordinating with 
four others in a 20x20 grid. A naïve mean-field estimate of the probability of encoun-
tering another robot in any given cell is 4/400 = 0.01. This probability is isotropic, 
and so gives no guidance to the robot. At the other extreme, the robot could commu-
nicate directly with other robots, remember their most recent locations, and determine 
with high certainty whether or not a given cell contains another robot.  

The pheromone approach is intermediate. Each agent contributes to a field in its 
vicinity. Other agents in the vicinity also contribute to the field. So the field is an 
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average over multiple agents, but a localized average. This localized average is not 
just over agents, but also over space and time. 

• Aggregation collects contributions from multiple agents that are in the same area, 
averaging over multiple agents. The larger the cells into which the environment is 
divided, the more agents are included in the average. 

• Propagation spreads out the deposits, averaging over space. The stronger the prop-
agation, the larger the area of space over which the averaging occurs. 

• Evaporation determines how long pheromones persist, averaging over time. The 
stronger the evaporation, the shorter the period over which averaging occurs. 

Let’s explore the interaction of these dynamics analytically, as they function with 
chemical pheromones.1 A single stationary agent at the origin deposits pheromone at a 
constant rate D. The pheromone field !(r, t) is multiplied by a constant evaporation 

rate E ∈ (0, 1) at each time step, thus removing pheromone at a rate (1 – E)!, and 
propagation takes the form of a diffusion process with rate F. We assume a separable 
solution as a product of spatial and temporal terms of the form !"#$% &' (
)!*"#$')!+"&'. Empirically, the resulting field reaches equilibrium with a constant 

strength !0 at the origin, providing the boundary condition !(0,∞) = !0, and this result 

together with conservation of matter implies !(∞, t) = 0.  
The spatial component !r(r) must satisfy  

(4) ,-.!/ 0 "1 0 )2'!/ ( 3 
That is, the gain in field strength at any location due to propagation of pheromone is 
balanced by the loss due to evaporation. (4) is the Helmholtz equation 
(5) -.!/ 4 5.!/ ( 3 

with k = iB, 6 ( )789:
; . !/ does not vary with angle, so we use polar coordinates 

#$ ( ) "#% <', for which the solution is a Bessel function. Because k is pure imaginary, 
we have a modified Bessel function (in this case, of order zero). The boundary condi-

tion !r(∞) = 0 means it is of the second type, AK0(Br), where A and B are scale factors 
that do not vary with location and Kn is the modified Bessel function of the second 
type of order n. In Cartesian coordinates, the corresponding solution would be Ae-Br, 
and the shape of Kn is similar to e-r, so we call A the amplitude and B the exponent. 

This function is undefined at r = 0. To achieve the boundary condition !(0,∞) = !0, 
we assume that deposits occur in a disk of radius r0 around the origin, within which 
density is constant. For comparison with a discrete implementation with cells of unit 

area, we choose #= )( ) 1 >?@  , so that the disk corresponds to the cell where the depo-

sit is made. Then we normalize the Bessel function to yield !(0) at the boundary, so 

(6) !/"A$' ( B
!"3'% # C #=

!"3' DE"F)/'
DE"F)/E'

% # G #=)
H 

To get !0, examine the temporal behavior at r = 0. Based on the observed conver-
gence behavior of the system, !+"&' ( "I 0 JK9L+', where " is the asymptotic value 
we seek. So the overall solution will be of the form 

                                                           
1 I am grateful to Robert Savit for suggestions in formalizing these dynamics. Unlike [1], and 

like natural systems, our propagation conserves total pheromone. 
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(7) !"#$% &' ( )
*"+ ,-./01'% # 2 #3

*"+ ,-./01' 45"6-7'45"6-75'
- % #- 8 #3

9 

where the boundary condition !"#% :' ( :-requires ! = ".  

As t ! ∞, the rate of deposit D into the deposit disk must equal the sum of two 
flows out of the disc: evaporation (with value (1 – E) "), and diffusion (by Fick’s law, 

F∇#). Integrating the flux around the perimeter of the deposit disk yields  

(8) ; <=!"#3'-#3->?@A
3 ( BC#3<=!"#3'  

( -BC#3<D*
EF"G-#3'
E3"G-#3'

( -BC#3H<-"+ , I'*
EF"G-#3'
E3"G-#3'

 

So 

(9) J ( "+ , I'* K -BC#3H<-"+ , I'* 4L"M-75'
45"M-75'

 

Solving for the equilibrium concentration ", 

(10) * ( -!3 ( N
"F/O'P-@A75HQ-"F/O'RSL"T-U5'S5"T-U5'-

 

Thus each agent’s contribution to the field is peaked about its location, decaying ex-
ponentially with distance. The width of the peak (reflected in the exponent B) depends 
on the evaporation and propagation rates. Evaporation also localizes the peak tempo-
rally. If the agent is moving, it leaves a tear-drop shaped pheromone field, widest and 
highest near its current location and the tail tracing its recent history. 

A pheromone-based agent reasons about other agents, not by tracking their indi-
vidual locations, but by monitoring their aggregate pheromone field. If it wants to 
meet another agent, it climbs the field. If it wants to avoid other agents, it moves 
down the gradient. This process is simpler than monitoring individual agent locations. 
It is approximate, since each agent’s location is represented only by a distribution 
about its actual location. But the exponential decay of K0(r) guarantees that that dis-
tribution does not become uniform until it evaporates completely. We might say that 
the agent is using, not a mean-field theory, but a “lumpy-field” theory. 

Like the Ising example, the pheromone approach simplifies by discarding informa-
tion about higher-order interactions. For example, the field representing the other 
agents does not distinguish them from one another, and so cannot coordinate a strate-
gy that requires the agents to interact in a specified order. This information could be 
recovered, even in a pheromone model, by maintaining different fields for each agent, 
increasing processing complexity. Techniques based on parallel exploration of alter-
native sequences can also address this problem with pheromone-based agents, again 
requiring additional processing to recover the information lost in the aggregate field. 

Now consider the polyagent technique of estimating alternative futures for a Red 
and Blue avatar and their ghosts. A single Red ghost makes successive moves that 
require it to decide whether, at each move, its avatar would meet Blue. It estimates the 
probability of meeting Blue at each move by sampling Blue’s pheromone at its loca-
tion. That pheromone field is generated by multiple Blue ghosts. Red’s ghost may 
simulate successive encounters with Blue at successive time steps, representing a 
future in which the Red avatar and the Blue avatar repeatedly encounter one another. 
But the presence of a non-zero Blue pheromone field at successive locations visited 
by the single Red ghost does not guarantee the existence of any single future for Blue 
that visits those locations. Imagine a future in which the first encounter of Red and 
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Blue removes Blue from the system. In this case, it is clearly unrealistic for a Red 
ghost to simulate a later encounter with Blue. Yet it may encounter Blue pheromone 
later in its trajectory. The different portions of the field that the Red ghost encounters 
may have been generated by different Blue ghosts, whose distinct identities have been 
discarded by the field representation. As in the MFM of the Ising system, the phero-
mone representation simplifies computation by an independence assumption: it as-
sumes that Blue’s future is independent of the encounter with Red, even though the 
simulation is interesting just because its future is not independent of Red.  

In spite of this simplification, polyagents can forecast the trajectory of complex 
systems better than other computational techniques with which they have been com-
pared, and better than human experts [6]. The reason appears to be that most of the 
futures that one can enumerate are not in fact accessible. The domain itself constrains 
the ghosts’ movements to a relatively limited number of trajectories.  

4 An Experiment 

We illustrate the lumpy-field nature of pheromone-based systems with a simulation 
experiment [13] that contrasts the behavior of a system of discrete agents with a set of 
differential equations that capture the mean-field behavior. A pheromone version 
shows behavior intermediate between the other two models. 

4.1 Description of Experiment 

A toroidal arena hosts two species of agents. Species I is immortal, uniformly distri-
buted with average density nI , and diffuses with diffusion coefficient DI. Species M is 
mortal, with initial uniform density nM. Mortal agents die at a constant rate !, divide 
with rate ! when they encounter an immortal, and diffuse with coefficient DM.  

Continuity and symmetry predict that immortals will remain homogeneously dis-
tributed, nI(x) = nI. The time evolution of nM is represented by  

(11) 
!"#$

!%
& '()

*+( , -.+/ 0 12+( 

For initially uniform spatial distributions of both species, the solution is 

(12) +(-32 & +(-425
%-6"7892 

If "nI < !, mortals will become extinct.  
An agent-based simulation (NetLogo, 

Table 1) shows different behavior.  
Fig. 1 plots the population of mortals 

over time for ! – "nI = 0.3, a regime in 
which Equation (12) predicts extinction. 
Instead, the mortal population explodes. 

The difference between models is due to 
a mean-field assumption in the EBM. Overall, immortal agents are homogeneously 
distributed, but as sampled by mortal agents, they are not. Mortals are born only when 
a mortal encounters an immortal, and come into existence close to an immortal. The 
density of immortals near mortals is far greater than nI. Fig. 2 shows a screen shot at 

Table 1. General Parameters for NetLogo 
Simulations 

Arena size 81 x 81 cells 
Immortal population 50 
Immortal diffusion 0.14 
Mortal population 150 
Mortal diffusion 0.11 
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though the density of mortals were 
nearly 100 times greater than nA. 
Factors like mortal population and 
rate of diffusion modulate this 
effect (Fig. 4). Low initial mortal 
population and high diffusion lead 
to extinction; the opposite corner 
leads to survival. 

4.2 Adaptation for 
Pheromone-Based Agents 

In both models, the probability p(birth) that a mortal gives birth is p(parent)*!. ! is 
just the probability of a birth conditioned on the presence of an immortal parent. 
p(parent) is the probability that a parent is present. The models differ in how they 
estimate p(parent). For the MFM, p(parent) = nI. In the discrete agent model,  

!"!#$%&'( ) *+,-.,-//0$'#1,-2,-&,3%114,0'5%$6-2%
7 

(If a cell contains multiple immortals, the computation is repeated for each.) 
Pheromones offer an intermediate “lumpy-field” approach with simpler computa-

tion than the discrete model and more accuracy than the mean field approach.  
Each immortal deposits one unit of pheromone per step at its location. The total 

deposit per step is nI. Each mortal samples the field ! at its location, estimates 
p(parent), and computes p(birth). If ! > 1, the mortal behaves as though it encoun-
tered 89: immortals, plus one more with probability 9 ; 89:. A single deposit by 
stationary immortals and no evaporation or propagation recovers the discrete model. 

Constant deposit and exponential evaporation lead to an asymptotic fixed point. By 
setting the deposit rate to 1 per immortal and evaporation to 0.5, the total pheromone 
is constant, and equal to the immortal population. With stationary immortals and no 
propagation, this configuration also recovers the discrete model. 

When immortals move, or when we allow propagation, the field extends beyond 
the cell containing the immortal. This spreading can allow an invalid birth: a mortal 
may think it is in the presence of an immortal when it is not. As in the Ising model, 
increased error is the cost of simpler computation.  

We use NetLogo’s diffuse function for propagation. diffuse takes an argument " in 

[0,1], subtracts  ρ!ϕ from each cell, and distributes ρ!ϕ evenly among the cell’s eight 
neighbors, conserving the total field. The function is applied to all cells at once.  

Propagation modeled on chemical diffusion in an insect system (4) is a function of 
the second derivative of !, not its absolute strength. NetLogo’s diffuse operator (like 
most implementations of digital pheromones) depends only on the local strength of 
the field and relies on exchanges from neighboring cells to incorporate information 
analogous to the local derivative. So we need to qualify our claim that the NetLogo 
implementation represents propagation. The two processes share some features: the 
form of (6) is a good fit to the fixed point of the observed distribution. But quantita-
tively, the correspondence is weaker. 

 

Fig. 4. Observed probability of survival as function 

of mortal diffusion rate and initial population 
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Under the dubious mapping F = !, 
diffuse yields an exponent related to 

the exponent ! " #$%&'
( , but an am-

plitude less clearly related to (10). 
Fig. 5 plots observed vs. theoretical 
amplitude. The theory is off by more 
than an order of magnitude. Fig. 6 
plots the ratio of observed exponent 
obs to theoretical exponent the. This 
relationship is closer, a good fit to 
)*+
,-. " /0/1234056#)*+ 7 #89, but hardly 

constant, much less 1. Nevertheless, 
we press ahead. 

As ! increases, a pheromone model 
should behave less like a discrete 
model and more like an MFM. Be-
cause of the lumpiness of the field, 
the resulting error will never be as 
bad as in the MFM, as Fig. 7 shows. 
As ! increases, the probability of 
survival approaches zero everywhere 
except when "= 0, as in the MFM. 

We can quantify this difference. 
Each scenario (mean-field and phe-
romone with various diffusion rates) 
yields survival rates as a function of # 
and " that differ from the discrete 
agent system. We weight these differences by the differences observed in the MFM, 
and normalize by the sum of these weights. On this scale, the MFM scores 1, and the 

 

Fig. 5. Relation between observed and theoretical 

amplitude 

 

Fig. 6. Relation between observed and theoretical 

exponent 

 

Fig. 7. Survival, propagation = (from top left, clockwise) 0.01, 0.05, 0.1, 0.4 
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discrete agent system scores 0. Fig. 8 shows 
this score as a function of propagation. As 
anticipated, the error grows with propaga-
tion rate, and asymptotes before it reaches 
the mean-field level. 

In Fig. 8, error increases when diffusion 
is 0, compared with 0.01. We expect to 
recover the discrete model in this case. The 
difference is that propagation of 0 corres-
ponds to the discrete model only if the agent 
depositing the pheromone is stationary. Our 
immortal agents move occasionally, and 
may leave behind a deposit that can mislead mortals. Propagation, as well as evapora-
tion, reduces this obsolete information. To confirm this effect, we run the system with 
stationary immortals, and obtain the error scores in Table 2. Now propagation 0 does 
indeed yield error less than 0.01, and almost achieves the 0 score of discrete agents. 
(The residual error is due to the difference between stochastic decisions in the phero-
mone agent and deterministic ones in the discrete agents.)  

5 Discussion 

Both analysis and simulation show that pheromone-based agents are intermediate 
between MFMs and conventional agents. Such mediating techniques provide a richer 
array of techniques to balance computational complexity and model fidelity. At the 
same time, the richer the toolbox, the more skills are required to use it. Though pre-
liminary, our results suggest some guidelines concerning the use of pheromone sys-
tems. 

Pheromones can reduce fidelity. When agents base decisions on fields rather than 
on direct observation, they make independence assertions that may violate the struc-
ture of the problem. Whether these violations are empirically meaningful is problem-
dependent. In practice, pheromones often yield very useful results. We speculate  that 
just as the mean-field analysis of the Ising model becomes more accurate as dimen-
sionality increases, the high dimensionality of many domains to which pheromones 
are often applied makes the violations less significant. 

Two conditions recommend pheromone methods: problem complexity and the 
need for statistical estimates. 

A conventional ABM may require much knowledge engineering, computational ef-
fort, or both, making pheromones attractive. Still, the approach is a heuristic, and 
validation against domain-specific experiments (e.g., [6]) is essential. 

Statistically, many domains require estimating alternative outcomes. The space of 
outcomes is often so large that even thousands of replications of a conventional agent 
model may not give a meaningful sample 
[10]. This requirement is a clear indicator 
for the polyagent technique of virtual or 
“ghost” agents that interact indirectly 
through fields summarizing the distribution 

 

Fig. 8. Dependence of weighted error on 
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over multiple futures of each agent. 
One benefit of pheromones over an EBM is the ability to tune fidelity using propa-

gation, which governs the degree of spatial averaging over agents. (We can also tune 
using the evaporation rate, adjusting the degree of temporal averaging.) Lower propa-
gation improves fidelity (Fig. 8). Models more complex than ours may show a trade-
off between fidelity and other characteristics (e.g., stability or convergence). 

Finally, comparison of a representative computational analog of propagation (Net-
Logo’s diffuse operator) with the physical diffusion that propagates insect phero-
mones shows qualitative similarity between the mechanisms, and suggestive though 
non-trivial quantitative relations with the exponent of the spatial decay and the 
asymptotic amplitude of the temporal stabilization that merit further study. 

6 Conclusion 

MFMs simplify the computational burden of tracking detailed multi-agent interactions 
by replacing individual interactions with statistical summaries of the population from 
the perspective of a single agent. This simplification imposes unwarranted indepen-
dence assumptions. In spite of these assumptions, the results are useful often enough 
that these models continue to be widely used. 

Conventional ABMs compute each interaction, yielding higher accuracy than an 
MFM, but the computational burden precludes thorough sampling. 

Pheromone-based constructs such as the polyagent reduce the computational cost 
of modeling the space of interactions. There is no free lunch. This simplification (as 
in the corresponding physics theories) can usually be described as an independence 
assumption. Because the agent framework retains the discrete structure of the prob-
lem, the resulting error is often much less than in a complete mean-field treatment, 
and can be tuned by adjusting the degree of propagation of the pheromones. 

Table 3 offers a summary comparison of the three approaches. 
Recognizing the mediating position of pheromone models between conventional 

agents and equation-based MFMs allows modelers to make more appropriate use of 
this promising technology. 
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