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AnySURF: Flexible Local Features Computation

Eran Sadeh-Or and Gal A. Kaminka
Computer Science Department
Bar Ilan University, Israel

Abstract. Many vision-based tasks for autonomous robotics are based
on feature matching algorithm, �nding point correspondences between
two images. Unfortunately, existing algorithms for such tasks require sig-
ni�cant computational resources and are designed under the assumption
that they will run to completion and only then return a complete result.
Since partial results�a subset of all features in the image�are often
su�cient, we propose in this paper a computationally-�exible algorithm,
where results monotonically increase in quality, given additional compu-
tation time. The proposed algorithm, coined AnySURF (Anytime SURF),
is based on the SURF scale- and rotation-invariant interest point detec-
tor and descriptor. We achieve �exibility by re-designing several major
steps, mainly the feature search process, allowing results with increasing
quality to be accumulated.
We contrast di�erent design choices for AnySURF and evaluate the use
of AnySURF in a series of experiments. Results are promising, and show
the potential for dynamic anytime performance, robust to the available
computation time.

1 Introduction

The use of computer vision in autonomous robotics has been studied for decades.
Recently, applications such as autonomous vision-based vehicle navigation [5],
3-D localization and mapping [17,6,3] and object recognition [16] have gained
popularity due to the combination of increased processing power, new algorithms
with real-time performance and the advancements in high quality, low-cost dig-
ital cameras. These factors enable autonomous robots to perform complex, real-
time, tasks using visual sensors.

Such applications are often based on a local feature matching algorithm,
�nding point correspondences between two images. There are many di�erent
algorithms for feature matching, however in recent years there is a growing re-
search on algorithms that use local invariant features (for a survey see [23,19]).
These features are usually invariant to image scale and rotation and also robust
to changes in illumination, noise and minor changes in viewpoint. In addition,
these features are distinctive and easy to match against a large database of local
features.

Unfortunately, existing algorithms for local feature matching [1,17,18] are
designed under the assumption that they will run to completion and only then
return a complete result. Many of these algorithms therefore require signi�cant



computational resources to run in real-time. As we show in the experiments, this
prohibits some of the algorithms from being used in current robotic platforms
(where computation is limited). For instance, a Nao1 humanoid robot computing
the full set of features in an image of size 640× 480 requires 2.4 seconds using a
state-of-the-art implementation of the SURF algorithm [1,22].

Note, however, that for many robotics applications, even partial results�a
subset of all features in the image�would have been su�cient (for example,
to estimate the pose of the robot for obstacle detection). On the other hand,
being able to invest computation time in getting higher-quality results is also
important, e.g., in object recognition or in building accurate maps. Indeed, robots
can bene�t from computationally-�exible algorithms, where the computation
time is traded for the accuracy requirements of the task. To do this, simply
interrupting the algorithm when needed is not enough: We need to guarantee
that the results of the algorithm would necessarily monotonically increase in
quality, given additional computation time. This class of algorithms is called
Anytime [26].

In this paper we present AnySURF, an anytime feature-matching algorithm,
which can accumulate results iteratively, with monotonically increasing quality
and minimal overhead. We achieve �exibility by re-designing several major steps
in the SURF algorithm [1], mainly the feature search process and the order of
interest point detection. We additionally discuss the design choices underlying
AnySURF.

We evaluate the use of AnySURF in a series of experiments. We �rst demon-
strate that non-anytime feature matching indeed su�ers from signi�cant com-
putation time on limited platforms (including, in particular, the Nao humanoid
robot). Then, we contrast di�erent design choices for AnySURF, and analyze
its performance pro�le under di�erent image types. We also demonstrate the
usability of AnySURF in computing approximate homography.

2 Related Work

Image matching using local features (or interest points) has been around for
almost three decades � the term �interest point� was �rst introduced by Moravec
in 1979 [20] who later proposed the use of a corner detector for stereo matching
[21]. The Moravec detector was improved by Harris and Stephens [10]. Harris
used it for e�cient motion tracking and 3D structure from motion recovery [9].
The Harris corner detector has since been used widely for many other image
matching tasks.

Although extensively used, the Harris corner detector is very sensitive to
changes in image scale, so it does not provide a good basis for matching images
of di�erent sizes. There are many works that deal with representations that are
stable under scale change, dating back to 1983 when Crowley and Parker [4]
developed a representation that identi�ed peaks and ridges in scale space and

1 http://www.aldebaran-robotics.com



linked these into a tree structure which could be matched between images of
di�erent scales. More recently, Lindeberg conducted a comprehensive study of
this problem [14] and suggested a systematic approach for feature detection with
automatic scale selection [15].

A decade ago Lowe [16] introduced Scale Invariant Feature Transform (SIFT),
which had a signi�cant impact on the popularity of local features. SIFT de-
scriptors are invariant to a substantial range of a�ne distortion, change in 3D
viewpoint, noise and illumination di�erences. Robust matching is possible be-
tween di�erent views of an object or scene, in the presence of clutter and occlu-
sion. Since SIFT was published, several new algorithms inspired by SIFT have
emerged, including PCA-SIFT [12], GLOH [18] and SURF [1].

SURF [1] is a state of the art algorithm for local invariant feature matching
- a scale and rotation invariant interest point detector and descriptor. SURF is
composed of three steps similar to SIFT, however it uses faster feature detec-
tion / extraction algorithms (approximation of the Hessian matrix and using
the distribution of Haar-wavelet responses within the interest point neighbor-
hood, relying on integral images to reduce computation time). SURF is faster
to compute than SIFT, while allowing for comparable results.

SIFT, SURF and other algorithms are not anytime algorithms. Although
several authors did accomplish complex real-time visual tasks such as Visual
SLAM, using SIFT-like features [3] and correlation with reference templates [6],
these implementations were tailored for a speci�c platform and are not compu-
tationally �exible. Therefore, they do not answer out research goals.

3 Methodology

The proposed AnySURF algorithm is based on SURF, which was selected over
SIFT and SIFT-like algorithms since it is more suitable for an anytime im-
plementation while also having an excellent quality/run-time ratio. It is more
suitable for a �exible implementation because whereas SIFT begins with the
computationally expensive operation of constructing several scale space repre-
sentations (DoG, Di�erence of Gaussians approximation), SURF is based on a
basic approximation of the Hessian matrix where an integral image is computed
once for all scales and only the �lter size changes when working on each scale.
This means that in SURF there is very little overhead for working with speci�c
scales or areas and this is very suitable for a �exible algorithm.

Since our algorithm is based on SURF, we start by explaining some basic
concepts (integral image, Hessian matrix and Scale-Space), continue with a de-
scription of SURF (for a complete description of SURF see [1]) and �nish with
a detailed description of our proposed algorithm.

3.1 Basic concepts

An integral image is an image representation which is computed quickly from
an input image and speeds up the calculation of any sized upright rectangular



area [24]. An integral image IΣ of image I at point (x, y) is de�ned as the sum
of pixel intensities of the rectangular region formed between the point and the
origin. Formally it is de�ned as:

IΣ(x, y) =

i≤x∑
i=0

j≤y∑
j=0

I(x, y)

With IΣ calculated, it only takes four additions to calculate the sum of the
intensities over any upright, rectangular area, independent of its size. SURF
makes excellent use of this property to perform fast convolutions of varying sizes
of box �lters at near constant time.

The Hessian matrix, H, is the matrix of partial derivatives of the function f
:

H(f(x, y)) =

[
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂y

∂2f
∂y2

]

The discriminant, determinant of this matrix, is:

det(H) =
∂2f

∂x2

∂2f

∂y2
−
(

∂2f

∂x∂y

)2

The discriminant can be used to �nd a local extremum of the function, via
the second order derivative test. If the discriminant is positive then either both
eigenvalues are positive or both are negative and so the point is classi�ed as an
extremum. Using this theory on images means that f(x, y) is the image pixel
intensity at I(x, y). In order to calculate derivatives a convolution with an ap-
propriate kernel can be used. SURF uses the Gaussian second order derivatives,
approximated via box �lters.

Scale-space is a continuous function which can be used to �nd extrema across
scales [25]. Scale-space is usually divided into a number of octaves, with each
octave containing a number of layers (response maps) covering a doubling of
scale. SURF creates scale-space e�ciently by applying kernels of increasing size
to the original image, with the processing time being size invariant and without
a need to sub-sample the image.

3.2 How does SURF works?

SURF [1] is composed of three steps: Detecting interest points, calculating de-
scriptors and matching them (Alg. 1).

The �rst step, detection of interest points, starts with scale-space extrema
detection: search over all scales and image locations is performed, using an ap-
proximation of the Hessian matrix to identify potential interest points that are
invariant to scale and rotation. Calculation of the Hessian approximation relies
on an integral image to reduce computation time. Interest points are �rst thresh-
olded so that all values below a predetermined threshold are removed, then a



Algorithm 1 Generic SURF
(Input: image; Output: list of matched descriptors)

0 . Construct i n t e g r a l image
1 .1 Over a l l oc taves ( Fine−to−Coarse )
1 . 2 Pre−c a l c u l a t e d i s c r im inan t s
1 .3 Over inner octave l a y e r s
1 . 4 Over a l l p i x e l s
1 . 5 Find i n t e r e s t po int
2 .1 Over a l l i n t e r e s t po in t s
2 . 2 Ca l cu la t e d e s c r i p t o r
3 .1 Over a l l d e s c r i p t o r s
3 . 2 Match d e s c r i p t o r
3 .3 Add matched d e s c r i p t o r to l i s t
4 . Return l i s t o f matched d e s c r i p t o r s

non-maximal suppression is performed to �nd candidate points (each pixel is
compared to its 26 neighbours, comprised of the 8 points in the native scale and
9 in each of the scales above and below) and �nally they are localized in both
scale and space by �tting a 3D quadratic.

The second step, calculation of the keypoint descriptors, is based on a distri-
bution of Haar-wavelet responses within the interest point neighborhood, again
relying on integral images for speed. The SURF descriptor describes how the
pixel intensities are distributed within a scale dependent neighbourhood around
each detected interest point. It is calculated by �rst assigning a repeatable ori-
entation via Haar wavelet responses weighted with a Gaussian centered at the
interest point, then a square oriented window is constructed around the interest
point, divided into 4×4 regular sub-regions. For each sub-region 4 Haar wavelets
responses are summed up (dx, dy, |dx|, |dy|), so a vector of length 4× 4× 4 = 64
is produced.

The third step, matching di�erent descriptors, is done via the Euclidean
distance of their feature vectors. A fast nearest-neighbor algorithm is used that
can perform this computation rapidly against large databases. SURF uses the
sign of the Laplacian (the trace of the Hessian matrix) to distinguish bright
features on dark background from the reverse situation. Since SURF's descriptor
uses 64 dimensions, time for feature computation and matching is reduced.

3.3 Making SURF computationally �exible

In order to make SURF computationally �exible, several important design deci-
sion has to be made. These are: accumulating results iteratively, using a suitable
search strategy and calculating the Hessian in-place. An in-depth explanation
of these design decision follows. The impact of these decisions is presented in
Section 4.



Guaranteeing Monotonically-Improving Descriptor List The �rst step
in making an anytime version of SURF is trivial: Accumulate results iteratively.
SURF divides the work to several large consecutive steps (get all interest points
from all scales, compute descriptors for all interest points, match all descriptors
against database - Alg. 1, steps 1�3) and so if the �nal stage is not reached �
there might be no useful results. Contrary to this batch approach, we propose
an iterative approach, where results are accumulated during the execution of the
algorithm and are returned when the algorithm is interrupted.

This can be achieved by computing a full result, including a descriptor, in
each iteration. The new descriptor can immediately be used to match against
a database. This change is trivial yet vital as it guarantees good anytime func-
tionality: usable results are generated such that the number of results is mono-
tonically increasing.

Generating Descriptors Faster Now that we can guarantee that the list of
matched descriptors will be monotonically-increasing in length, we can explore
design choices that can make sure quality descriptors are generated faster. Below
we discuss two such design choices.

Search strategy Detection of interest points (Alg. 1, step 1) is done by scanning
the entire image in multiple octaves. This search usually starts with the smallest
kernel and continues applying kernels of increasing size to the image. Since our
�exible algorithm accumulates results iteratively, we have an opportunity to
select an ordering on the search of octaves for interest points (Alg. 1, step 1.1),
thereby allowing detection of more promising features earlier. Note that this
search strategy need not be hard-coded, but can be changed according to the
image or task at hand.

We considered two types of general search strategies: Coarse-to-Fine and
Fine-to-Coarse. Coarse-to-Fine means we start with the largest �lter size and
continue to use smaller �lter sizes so that we �nd larger features �rst and smaller
ones later, while Fine-to-Coarse means the exact opposite. Note that if the al-
gorithm runs to completion the search order does not matter and exactly the
same features are found. Additional search strategies are also possible: order of
going over inner octave layers (Alg. 1, step 1.3), order of going over pixels (Alg.
1, step 1.4), however we did not consider them here.

Selecting an appropriate search strategy according to the image type (e.g.,
blurry image) can maximize the number of features detected during the early
phase of the search. However, sometimes the number of features is not what we
prefer to optimize. For example, some vision tasks work better when the features
have a good spatial distribution over the image (e.g., homography calculation
[11]) or when coarse features are �rst matched and only then �ne features are
searched for in a limited area to complete the match (e.g., object recognition
[16]). In such cases it might be preferable to use Coarse-to-Fine search, even if
the initial number of features is smaller when compared to the Fine-to-Coarse
strategy.



Calculating the Hessian discriminants in-place All SURF implementations we
inspected (Pan-o-matic [22], OpenSURF [7], OpenCV [2]) pre-calculate the de-
terminant of Hessian (discriminant) for each octave, over the entire image (Alg.
1, step 1.2). This step has high initial computational cost, however once calcu-
lated, results are faster to compute so the total running time is lower. Since we
assume the algorithm might not run till completion, it might be preferable to
sacri�ce some of the running-time in order to get initial results sooner.

Memory consumption by the pre-calculated arrays is another issue to con-
sider. Pre-calculating the determinant of Hessian requires several 2D arrays to
be kept in memory. The SURF implementations we inspected (see above) use
arrays the size of a full image to simplify coding (smaller arrays can however be
used). So we have number of layers×image_width×image_height, which means
multiple arrays each one the size of a full image are saved in memory. For large
images or platforms with little memory available, this can be quite problematic.
Obviously, when pre-calculation is not used and the determinant of Hessian is
calculated in-place, there is no need to save multiple arrays in memory.

3.4 AnySURF - Anytime SURF

The following algorithm (Alg. 2), coined AnySURF (Anytime SURF), is a com-
putationally �exible SURF algorithm. Results are accumulated iteratively, with
a descriptor computed in each iteration. Octaves are searched in Coarse-to-Fine
order and the determinant of Hessian is calculated in-place. We believe these
design choices are appropriate for a generic Anytime SURF algorithm and an
analysis of the Anytime performance pro�le is performed in Section 4.

A possible variant of AnySURF is to use pre-calculation. Compared to a
batch approach such as panosurf, this alternative is more suitable to anytime
since results are produced earlier yet the total computation time is exactly the
same. Compared to the AnySURF without pre-calculation, the total computa-
tion time of this variant is lower yet �rst results are generated much later since
pre-calculation has a high initial computational cost (see Figure 1).

4 Results

A �exible algorithm is required only when the non-�exible algorithm is slow and
when partial / low accuracy results are useful. In this section we will show that
both criteria are met in SURF. In addition, we analyze the design decisions ex-
plained in Section 3.3 and present an example of using AnySURF to approximate
homography between 2 images.

To demonstrate that SURF is not fast enough for real-time full image feature
search on current robotic platforms which have limited computational power,
Table 1 shows computation time on multiple platforms for the same image in
di�erent sizes (QVGA: 320× 240, VGA: 640× 480, 3MP: 2048× 1536). Evalu-
ation was done using Pan-o-matic open-source SURF implementation [22] with



Algorithm 2 AnySURF
(Input: image; Output: list of matched descriptors)

0 . Construct i n t e g r a l image
1 . While not i n t e r rup t ed
2 .1 Over a l l oc taves ( Coarse−to−Fine )
2 .2 Over inner octave l a y e r s
2 . 3 Over a l l p i x e l s
2 . 4 Find i n t e r e s t po int
2 .5 Ca l cu la te d e s c r i p t o r
2 .6 Match d e s c r i p t o r
2 .7 Add matched d e s c r i p t o r to l i s t
3 . Return l i s t o f matched d e s c r i p t o r s

Table 1. SURF detector-descriptor computation time (ms) on di�erent image sizes
and platforms

Platform QVGA VGA 3MP

Desktop PC (Intel Q9400 2.66GHz) 27 103 1021

Mini-ITX (Intel T7200 2.0GHz) 74 249 1599

Nao Robot (x86 AMD GEODE 500MHz) 560 2425 26367

Nokia N900 (ARM Cortex-A8 600MHz) 938 3656 442512

default parameters, which produces very similar results compared to the pub-
lished SURF binary [8] to which source code is not available.

From Table 1 it is clear that in order to run real-time full-image feature search
with SURF we need to work on a small resolution image coupled with a powerful
platform. In addition, in this test the CPU and memory were devoted entirely
to the SURF process, while in robotic applications additional non-vision tasks
might also require processing time and memory usage (localization, mapping,
motion generation, behavior selection, etc.).

Table 2 shows where the processing time is spent across the di�erent major
steps. The Intel Q9400 platform was selected for this test, to eliminate as many
bottlenecks as possible and allow the optimal behavior of the algorithm show.

Table 2. Analysis of SURF detector-descriptor computation time (ms), on Intel Q9400
2.66 GHz

Image size integral image keypoints descriptors

QVGA 1 (3.7%) 19 (70.4%) 7 (25.9%)

VGA 3 (2.9%) 80 (77.7%) 20 (19.4%)

3MP 32 (3.1%) 910 (89.1%) 79 (7.8%)



As can be seen in Table 2, calculation of the integral image is minor (~3.2%)
and detection of keypoints takes most of the time (~79%). In the context of
a �exible algorithm, since detecting keypoints takes most of the time, it seems
bene�cial to calculate the descriptor immediately upon keypoint detection, thus
signi�cantly shortening the time till partial results are available. We now turn
to analyzing the impact of the various design choices of AnySURF (presented in
Section 3.3).

The image database used in all following �gures is a standard evaluation set,
provided by Mikolajczyk [18]. It contains 48 images across 8 di�erent scenes. All
images are of medium resolution (approximately 800×640 pixels) and are either
of planar scenes or the camera position is �xed during acquisition, so that in
all cases the images are related by homographies (plane projective transforma-
tions). The scenes contain di�erent imaging conditions: viewpoint changes, scale
changes, image blur, JPEG compression and illumination changes.

Figure 1 shows the averaged rate of acquiring descriptors (%) as a func-
tion of run-time (%). Three alternatives are considered: First, a SURF imple-
mentation called Pan-o-matic [22] (henceforth will be referred to as panosurf).
This implementation �rst detects all keypoints at all scales and only then cal-
culates descriptors (as in Alg. 1). In addition, the determinant of Hessian is
pre-calculated. Next, we tested two variants of the AnySURF algorithm (Alg.
2), where descriptors are computed immediately upon keypoint detection. In
the �rst variant pre-calculation of the determinant of Hessian is used and in the
other it is calculated in-place.
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Fig. 1. The descriptors (%) vs. time (%) graph for di�erent algorithms. Data is aver-
aged across all (48) database images. Time (%) is compared to panosurf time (therefore
can be > 1.0).



Figure 1 allows us to inspect the impact of calculating descriptors immedi-
ately upon keypoint detection and also the e�ect of pre-calculation. First, let us
consider AnySURF with pre-calculation: calculating descriptors immediately is
bene�cial compared to the original panosurf approach since it does not adversely
a�ect the total computation time while allowing results to start accumulating
earlier (after 39% of time passed instead of 57% as in panosurf). Now, let us
consider AnySURF without pre-calculation: although the algorithm does take
longer to complete (13.5% more on average), we start getting results almost
immediately (after 4% of time passed), with a near-linear acquire rate. Note
that pre-calculation is only useful when all descriptors are needed or when it
can be assumed that the algorithm will run to near completion (AnySURF with
pre-calculation supersedes the no pre-calculation version after 80% of the time
passed).

Next, let us inspect the impact of the search strategy. As explained in Section
3.3, since AnySURF accumulates results iteratively, we can select an ordering
on the search for interest points. The following two �gures are of speci�c images
(1st image of �bricks� sequence, 4th image of �bikes� sequence), showing the
number of descriptors as a function of run-time. All four combinations are shown
(with/without pre-calculation, Coarse-to-Fine/Fine-to-Coarse search strategy),
compared to the baseline panosurf.
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Fig. 2. 1st image of bricks sequence (see Figure 4), panosurf displayed as a baseline,
AnySURF with Coarse-to-Fine and Fine-to-Coarse search strategies displayed with and
without pre-calculation
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Fig. 4. A quarter of the 1st image of bricks sequence (see Figure 2)



Fig. 5. A quarter of the 4th image of bikes sequence (see Figure 3)

In Figure 2, the Fine-to-Coarse search strategy produces results much faster
than Coarse-to-Fine, while in Figure 3 the opposite is true. Note that in both
�gures results both start sooner and accumulate faster and the di�erence in
number of descriptors is signi�cant, up to an order of magnitude (e.g., after
~30ms). This means that appropriate selection of the search strategy is vital for
an e�cient Anytime performance.

As for the use of pre-calculation, it seems that our previous conclusion holds
and for an anytime algorithm an in-place calculation is preferred. However,
in Figure 3 the pre-calculated (Coarse-to-Fine) version supersedes the in-place
(Fine-to-Coarse) version. This only stresses that selecting the appropriate search
strategy is very important indeed: when selecting the correct search strategy, the
no pre-calculation (Coarse-to-Fine) version triumphs again (at least until most
of the descriptors are found, as explained earlier).

After witnessing a major di�erence in the above speci�c images according to
the chosen search strategy, it is interesting how the Fine-to-Coarse vs. Coarse-
to-Fine search strategies perform in our full image database, across the di�erent
scenes. To test this, Figure 6 shows the e�ect of search strategy in di�erent
scenes on the �rst 50ms of AnySURF (without pre-calculation).
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Figure 6 demonstrates that it is bene�cial to select the appropriate searching
strategy according to the type of image at hand if the number of descriptors is to
be optimized. The image sequences �bark� and �bricks� are clearly more suited for
Fine-to-Coarse search whereas �bikes� is more suited for Coarse-to-Fine search.
The reason behind this is that �bikes� is a sequence of blurred images (so there
are less �ne features and processing time is wasted on searching for them, see
Figure 5) while �bark� and �bricks� contain images with many �ne features and
few coarse ones (see Figure 4). It is also interesting to note that between 5% to
40% of all descriptors can be acquired within 50ms (however, higher percentages
are usually for images with a lower total number of descriptors and a lower total
computation time). The average number of descriptors acquired after 50ms on
our image database is 119 for Coarse-to-Fine and 138 for Fine-to-Coarse.

A higher number of descriptors is not necessarily better. For example, coarse
features are larger, fewer and usually more spread over the image so they might
suit some tasks better than �ne features. One such task is homography estimation
[11]. Figure 7 shows the time passed till the homography between the 1st and
2nd images in each scene could be estimated (to within an order of magnitude
from the optimal value). Homography was calculated via the RANSAC approach
[11,13].
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deviation units in length.

Figure 7 demonstrates that coarse features enable a quicker homography
estimation compared to �ne features. The Coarse-to-Fine search strategy took
equal or less time to estimate the homography in most scenes (7/8) and more
time in just one scene (the bricks scene, which contains very few coarse features
and so a lot of time is wasted searching for coarse features, see Figure 4). The
results for the bark, cars and trees scenes do not di�er signi�cantly, while results
for others do (two-tailed t-test, p=0.01). Also note that the homography could
be estimated within a very short time (~20 ms).

Finally, we go back to evaluating the use of �exible local feature matching on
the Nao robot platform. Prior to AnySURF, estimating a homography between
two images on this platform took on average 4 seconds (averaged across all
images in database, similar to Figure 7). This processing time was spent not
on estimating the homography itself, but on computing all descriptors in the
image. However, for estimating a homography a subset of the results su�ce,
so AnySURF can be used. Using AnySURF, this task is completed within 0.33
seconds, faster by an order of magnitude. Note that this homography can actually
assist in computing the remaining descriptors faster, since we can now estimate
their location.



5 Conclusion

We presented and analyzed AnySURF, a SURF-based anytime local feature
matching algorithm, which can trade quality of results for computation time:
It guarantees that the number of matched descriptors monotonically increases
with computation. For robotics applications that can work with a subset of
descriptors, this allows for much faster response times.

We discuss and carefully evaluate design choices in the feature search pro-
cess, using several computational platforms. We demonstrate that changing the
feature search order can signi�cantly impact the rate at which descriptors are
generated. Also, we show that surprisingly, avoiding pre-calculation steps that
are intended to optimize the search process, leads to generating results at a faster
rate. Future work will focus on the problem of dynamically managing AnySURF
within the context of a real-time complex application (vision-based autonomous
navigation system).
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Abstract. This paper addresses the problem, how an artificial agent
decouples a partially observable Markov decision process (POMDP) to
several Markov decision processes (MDPs) according to the dimensional
hierarchy of the MDPs. We propose multi-layered reinforcement learning
(MLRL) that selectively uses each layer to learn each MDP to reduce the
learning cost. The MLRL separately learned two MDPs step by step in
a simulated capture task. Also, the MLRL learned faster than SARSAs
in the capture task and a simulated guiding task.

1 Introduction

This paper addresses the problem, how an agent learns for Markov decision
processes (MDPs) that are inside a partially observable Markov decision process
(POMDP).

Traditionally, many kinds of reinforcement learning (RL) systems for MDP
and POMDP have been researched. MDP is a special case of POMDP, and
there are many techniques to solve MDPs (e.g. SARSA and Q-learning are very
famous formulations) [C89,C92,RA00]. On the other hand, there is no technique
to solve general POMDPs, since POMDPs are often computationally intractable
[LM98,Ke00].

To adapt to general POMDPs, an agent requires these capabilities.

1. Utilization for temporal sequence
2. Decision making that is based on statistical state models.

However, utilization for temporal sequence increases the complexity of learning,
and statistical state models require a lot of observation data. In many practical
scene, these problems result in large computational cost.

To relax the cost, we discuss how to find learnable MDPs inside a POMDP.
If an RL system is able to decouple the MDPs from a POMDP, the system
does not need to learn the MDPs using POMDP frameworks as traditional RL
systems do. After the MDPs are learned, the remained POMDP will not require
large cost to be learned. We propose a multi-layered RL formulation to decouple
the MDPs step by step.

The structure of this paper is as follows: In Section 2, we formulate the
proposed RL. In Section 3, we describe the experimental systems for a capture
task and a guiding task. In Section 4, we show the results of the experiments. In
Section 5, we mention our considerations. In Section 6, we conclude this paper.



2 Algorithm

2.1 Definition of a POMDP

POMDP frameworks are defined by a tuple (S,A,O, T,Ω,R), where S is a set
of states, A is a set of actions, O is a set of observations, T is a set of conditional
transition probabilities, Ω is a set of conditional observation probabilities, R :
S × A → R is the reward function. An agent that reaches the state s′ ∈ S
from the state s ∈ S using an action a ∈ A observes o ∈ O with probability
Ω(o|s′, a). In general, observation o is composed of partial observations yis o :=
{y1, y2, · · · , yn}.

2.2 The least combination of elements to describe transition

In POMDP framework, we assume that state transitions follow MDP. The tran-
sition probability T is defined as follows:

T := T (s′|s, a) (1)

Usually, the state transition is not observed directly, since observation o has
smaller number of elements than s = {y1, y2, · · · , yn, ŷ1, ŷ2, · · · , ŷn}. However, in
some cases, s is redundant to describe transition probability T . In these cases,
the state transition is observable. For example, in the case that T (s′|s, a) =
T (s′|o, a), elements ŷ1, ŷ2, · · · , ŷn are redundant, and o has sufficient kinds of
elements to observe the state transition. Generally, each transition T has the
least combination C of elements to be described. If the combination C is inside
the elements of observation o while a transition, the transition is inside an MDP
(sub-task) that is inside a POMDP (whole task). So, there is possibility that
RL system adapts to the MDPs while learning a POMDP problem. This kind
of adaptation will help the system to solve the POMDP, since each MDP is
tractable using traditional RL framework. However, we need to consider the
hierarchy of MDPs to divide MDPs from a POMDP.

2.3 Approach

To divide a POMDP into several MDPs, which are computationally tractable,
and the a remained POMDP, we need to consider the hierarchy of observable
information of an agent. We propose a step by step decoupling method that uses
an RL system, which equips with multi-layers, based on the consideration. Each
layer of the multi-layers is related to one of the hierarchy of MDPs.

In many cases, a POMDP includes many MDPs Ms as sub-tasks of the
POMDP. These MDPs are categorized by the combination C of partial observa-
tions yis. We define an MDP that requires only C to be learned as MC = M{···}.
Among them, the most simple MDPs are M{yi}s that include only one element
yi. An RL system RL1 that learns the POMDP while assuming the POMDP
as M{yi} may converge to local optima. However, another RL system RL2 that



learns the same POMDP while assuming the POMDP as M{yi,yj} may converge
to a better solution than RL1 (or the best solution of the POMDP. See [JS98]
for the case when SARSA converges to an optimal policy of POMDP problems).
Therefore, to find MDPs inside a POMDP, an RL system should select the best
combination C of partial observations yis or the best M for each sub-task inside
a POMDP. We formulated an RL system for the problem, and examined the
system to select Cs.

In our approach, an artificial agent decouples the POMDP to a simple MDP
(e.g. M{yi}) and the remained POMDP (M̄{yi}). To realize the first decoupling,
we use the first layer that corresponds to M{yi}. This layer is able to learn only
for M{yi}. To proceed the decoupling, the agent decouples M̄{yi} into an MDP of
second level M{yi,yj} and the remained POMDP (M̄{yi,yj}) again. This layer is
also able to learn only for M{yi,yj}. This way, the proposed RL system decouples
a POMDP into multi-layered MDPs.

2.4 Formulation

To explain the formulation of the proposed method, we show the formulation of
a two layered RL at first, and extend that for a multi-layered RL.

Two Layered RL The two layered RL is composed of two RLs. The first
layer has an RL, RL1, that consists of SARSA or Q-learning. While an agent
observes os according to its actions as, and receives rewards r. RL1 learns the
relationship between yis, as, rs using its partial observations yis. This means
that RL1 learns Q values for each state action pair Q1(yi, a). If a POMDP has
a sub-problem, MDP M{yi}, inside that, this RL system that has observation yi
is a good solution for the sub-problem.

As in the first layer, the second layer has an RL system, RL2, that also
consists of SARSA or Q-learning. RL2 learns Q values for each state action pair
Q2(yi, yj , a).

If an agent utilizes these two RL systems appropriately while learning a
POMDP that includes M{yi} and M{yi,yj} as sub-tasks, the agent will reduce
the learning cost, since RL1 and RL2 are good solutions for sub-problems M{yi},
M{yi,yj}.

We established the way to combine these two RL systems into an RL system.
To utilize these systems, RL1 and RL2, we need these considerations.

1. How the whole RL system calculates the Q value from Q1 and Q2.

2. How the whole RL system learns Q values.

For the first problem, we use the following linear coupling formulation

Q =
2∑

k=1

wkQk + wremQrem (2)



where wk is a weight for Qk, wrest is a weight for Qrest, Qrest is a Q value
for an RL system that learns for a POMDP M̄{yi,yj} that is the rest of M{yi}
and M{yi,yj}. When we do not use an RL system for the remained POMDP,
wremQrem is 0. In general, an agent inside a POMDP has to consider sub-
tasks of hierarchical MDPs. When an agent takes a state S(yi, yj) in a MDP
M{yi,yj}, the agent takes a state S(yi) in another MDP M{yi} simultaneously.
So, transitions in these MDPs proceed at the same time. Therefore, the agent
needs to consider the weight w of these tasks inside M{yi,yj} and M{yi} to sum
up the benefit of the sub-tasks.

For the second problem, if we assume the use of finite states for each layer,
we are able to derive the learning formulations of the whole system as follows.
When RL1 observes yi, RL2 observes (yi, yj). We define the Q value of RL1 as
Q1 := Q1(yi) and define the Q value of RL2 as Q2 := Q2(yi, yj). When the RL
system is in a sub-task M{yi,yj}, we formulate the error as follows:

E =
1

2

∑
yi,yj

∑
y′
i
,y′

j

pπyi,yj
Pπ
yi,yj ,y′

i
,y′

j
(ryi,yj ,y′

i
,y′

j

+γQ′(y′i, y
′
j , π)− w1Q1(yi)− w2Q2(yi, yj))

2 (3)

where pπyi,yj
is the probability where RL2 observes (yi, yj), Pπ

yi,yj ,y′
i
,y′

j
is the

transition probability when an agent transits from the observation (yi, yj) to
another observation (y′i, y

′
j) using an action selection policy π, ryi,yj ,y′

i
,y′

j
is the

given reward in the transition, and Q′ is the Q value of the selected action, which
is based on a policy π and selected based on the next observation (y′i, y

′
j) when

we apply SARSA type update.

We deduce update functions of each (yi, yj) from the error E using the steep-
est descent method, based on the two assumptions that the terms ryi,yj ,y′

i
,y′

j
+

γQ′(y′i, y
′
j , a

′) to be the output targets of the learning system that are indepen-
dent of yi and yj , and the symbols pπyi,yj

and Pπ
yi,yj ,y′

i
,y′

j
are independent of Qns.

Steepest descent method derives a formulation that is consistent to traditional
RL theory as we mention later.

∆Q1(ym) = −α
∂E

∂Q1(ym)
≈ αw1

∑
yj

∑
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,y′
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(rym,yj ,y′
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,y′

j
γQ′(y′i, y

′
j , π)− w1Q1(ym)− w2Q2(ym, yj)) (4)

∆Q2(ym, yn) = −α
∂E

∂Q2(ym, yn)
≈ αw2

∑
y′
i
,y′

j

pπym,yn
Pπ
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+ γQ′(y′i, y

′
j , π)− w1Q1(ym)− w2Q2(ym, yn)) (5)

We show the obtained online update functions which are derived from these
update functions.



∆Q1 = α1(r + γQ′ − w1Q1 − w2Q2) (6)

∆Q2 = α2(r + γQ′ − w1Q1 − w2Q2) (7)

When we change the formulations as follows, the formulations show that RL1

and RL2 learn separately for TD Error − wnQn as SARSAs. This means that
each RL, RL1 or RL2, learns the rest of TD error that was learned by another
RL.

∆Q1 = α1((r + γQ′ − w1Q1)− w2Q2) (8)

∆Q2 = α2((r + γQ′ − w2Q2)− w1Q1) (9)

In a special case when w1 = 1 and w2 = 0, This formulation is the

Q = Q1 (10)

∆Q1 = α1(r + γQ′ −Q1) (11)

This result is consistent to traditional theory for SARSAs that consider single
MDP. When the weight for the M{yi,yj}, w2, is 0, this multi-layered system
negledts M{yi,yj}. In this case, this system does not consider the POMDP as
mixture of M{yi} and M{yi,yj}, but M{yi}. So, above mentioned formulation,
which is consistent to SARSA, is reasonable to calculate reward estimation.

Multi-Layered RL We show the formulations of a multi-layered RL that was
deduced the same as the two layered RL.

Q =

n∑
k=0

wkQk (12)

∆Qi = αi((r + γQ′ − wiQi)−Σk ̸=iwkQk) (13)

3 Experimental Systems

We conducted two experiments, a capture experiment and a guiding experiment,
to validate the proposed RL system.

3.1 Capture Experiment

We established a PC simulation. In this simulation, a learner (abstract robot)
having a radius R captured the center mass of an agent in a half circle (Fig.1).



Robot The robot was equipped with the two layered proposed RL system.
The robot observes the vertical relative position of the agent x, the horizontal
relative position of the agent y, and the horizontal absolute velocity of the agent
ẏ. We set (x, y) for the first layer’s observation. The observation is related to an
MDP M{x,y}. We set (x, y, ẏ) for the second layer’s observation. The observation
is related to another MDP M{x,y,ẏ}. We divided the input space into 100 × 4
(horizontal direction × vertical direction). For the vertical direction, the robot
approaches an agent with a constant velocity v. For the horizontal direction, the
robot selects its action among three actions: moving the half circle to the left
by the length of ∆, moving the half circle to the right by the length of ∆, and
remaining current position. The robot gets a reward value, 1, when it captures
the agent. If the robot fails that, the robot gets a punishment value, -1.

Settings for the Agent We set two rules for the movement of the agent to
make a POMDP environment for the robot. The first rule is that the agent moves
left and right randomly using a normal random number ϕ(u, σ2). If the robot
learns ϕ, the robot improves capture performance. The second rule is that the
agent changes the sign of u periodically. We noticed that the robot was not able
to observe the sign of u, which decides the state of the agent. Therefore, the sign
of u makes a POMDP environment for the robot.

We are able to control the difficulty to guess the rule of the agent by changing
the parameter σ2. This capturing task is easy when σ2 is small, but is difficult
when σ2 is large. We show the flow of agent’s motion as follows:

1. Decide the parameters of normal random numbers u and σ.

2. Add normal random number ϕ(u, σ2) to the horizontal position of the agent
y.

3. Invert the sign of u.

4. Continue Steps 2 and 3.

Parameters We set the initial position of the agent to be just above the position
of the center of the robot. The robot continued to learn for one set (= 20,000
trials) using the same parameters ∆ = 0.2, u = 0.2, σ2 = 0.15, and R = 0.1. At
the start of the learning process, we initialized all Qs of the first layer and the
second layer to zero. In order to obtain the initial bias of the Q value, we added
a bias directly to the total Q (Q = Q1+Q2+0.007). This bias makes optimistic
selections of the actions [RA00]. We set the learning rate of each layer to 0.08.

Experiment We performed 100 experiments for each of the systems, SARSA1,
SARSA2, and the proposed RL system. The capture rate values, which was
obtained from the 100 experiments, were again averaged as a 2,000 trial moving
average.
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Fig. 1. Simulated capture experiment

Fig. 2. Mechanical model (left) and computational model (right)

3.2 Guiding Task

We established another numerical experiment to examine the applicability of the
proposed RL system for a more complicated POMDP environment. In this ex-
periment, the learner (guiding robot) learns how to guide another robot (guided
robot) to a goal. In previous studies, several researchers attempted such guiding
tasks using traditional systems, such as a control system using a potential field
[RN98,RN00], an evolutionary computation system [AJ96], and a classifier sys-
tem [OP00]. The control system used by Vaughan gathered a flock of animals at
a point using a feedback control [RN98,RN00]. This task is very useful to evalu-
ate the proposed system, since experimenter is able to evaluate the effectiveness
of RL systems from the speed to achieve the task, and the guided robot makes
POMDP environment.

We modeled the hardware of the robots (Fig. 2 right) and the experimental
environment (Fig. 3) on the Webots simulator [URL], which is based on a phys-
ical simulation engine called open dynamics engine (ODE). The specifications of
the robots are shown in Table 1. We used the same model for both robots, the
guiding robot and the guided robot.
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Fig. 3. Experimental environment

The guiding robot (black one) guides the guided robot (white one) into a cage. While the guidance,
the guiding robot observes the guided robot using its head mount camera. The guided robot, which
was equipped with two LEDs, shows the direction of its body to the guiding robot. The image from
the camera is shown at the bottom of this figure.

Table 1. Specifications of the guiding and guided robots

Weight Head 184.7 [g]
Body (front) 370 [g]
Body (back) 300 [g]

Size Body Width 120 [mm]
Length 250 [mm]

Wheels Width 10 [mm]
Radius 40 [mm]

DOF Track Wheels (D.O.F = 2)
Waist Roll (1)
Neck Pitch and Yaw (2)
Jaw Raises and lowers

snout of robot (1)
Devices Camera Field of View 2 radians

Resolution 128×32 pix.
IR Sensor Quantity 4

Placement 30 degrees
from side parallel

Gyroscope (not in the model)

Guiding Robot The software system of the guiding robot has three compo-
nents, a pre-processing system, a learning system, and a behavior generation
system.

[Pre-processing system]: This system process the information, which is ob-
tained from the head-mounted camera image. The result is sent to the learning
system (Table 2). From the image obtained by the head-mounted camera, the
guiding robot extracts the weight centers of the guided robot, the cage, and the
LEDs on the guided robot using the thresholds of their colors. The guiding robot
then calculates the direction of the guided robot from the position of the LEDs.
In addition, the guiding robot extracts the vertical edges of the cage using the
Hough transform. The system normalized the horizontal weight centers of the
guided robot and the cage, the sine and cosine of the direction vector of the
guided robot, and the horizontal positions of the edges of the cage, to the range



Table 2. Observation of the learning system

Target Information (dimension) Range

Self (x) Neck yaw (1) [−1, 1]
Other agent (y) Horizontal weight center (1) [0, 1] (detected)

Rotation (cosθ, sinθ) (2) −1 (not detected)
Cage (z) Horizontal weight center (1) [0, 1] (detected)

Horizontal corner position (2) −1 (not detected)

of [0,1]. If the objects are out of view and the guiding robot fails to detect the
objects, −1 is assigned to the value of the information. The angle of the guiding
robot’s neck , which is obtained from the encoder, is also normalized to the range
of [0,1].

[Learning system] We applied the proposed two layered RL system with a pre-
dictor. The predictor predicts the velocity of the guided robot. We constructed
the predictor, which has a mesh type function approximator, using an online
learning process of the guiding robot. We set each cell of the mesh to output
each prediction of ỹ for the corresponding observation of the robot. The predic-
tor calculates an average value from the training data for ỹ, and fixes the output
of each cell to the value. We let the guiding robot move randomly using its
action primitives (see the following subsection) around the guided robot in the
experimental environment. Simultaneously, the predictor of the guiding robot
was updated. We continued this update for 10 hours of the simulation time.

We set several rewards according to the state of the robots. The guiding robot
rewarded its reinforcement learning system automatically with a reward of 0.1
when the guided robot and the cage overlapped on the image, which is obtained
by the head-mounted camera of the guiding robot. From this state, if the guiding
robot moved toward the guided robot, the learning system received a reward of
1. When the guiding robot successfully completed the guidance and the guiding
robot confirmed the success by the head-mounted camera, the learning system
received a reward of 10.

Action primitives We prepared eight action primitives (Table 3). The guiding
robot executed one of the primitives that was selected by its learning system.
Each action costs each time interval ∆t. So, we used γ′ instead of constant γ.

γ′ = γ∆t (14)

Guided robot The guided robot moves according to its input from the infra-
red sensors (IR-sensors) and the force field that is set in the environment. The
guided robot avoids obstacles and the guiding robot using its IR-sensors (Table
4). This avoidance has higher priority than movement according to the force
field. So, while avoidance, the guided robot neglects the force field.



Table 3. Action primitives

Index Time interval ∆t [s] Motion

A0 1 Stay
A1 1 Move toward the position of the guided robot
A2 2 Turn clockwise around the guided robot
A3 2 Turn counterclockwise around the guided robot
A4 1 Move away from the position of the guided robot
A5 1 Search for the guided robot
A6 5 Move away from the cage
A7 1 Search for the cage

Table 4. Collision Avoidance

Which sensors detect the objects Command

Two front sensors Turn left or right at random

Two rear sensors Move forward

Right sensor only Turn left

Left sensor only Turn right

The guided robot follows the force field when nothing is detected by the IR-
sensors. When the guiding robot is out of the 0.15 [m] radius from the center of
the guided robot, the guided robot follows the force field shown in Fig. 4 (left)
and moves toward the center of the field. If the guiding robot is in the circle,
then this force field changes its flow, as shown in Fig. 4 (right). Fig. 4 (right)
shows the force field when the guiding robot approaches the guided robot from
the downward direction. Even if the relative positions of the robots are the same,
the guided robot moves differently based on its absolute position in the field.

4 Results

4.1 Capture Task

The obtained capture rate is shown with the standard deviation error bars in
Fig. 5. In addition, a 200 trial moving average is shown in Fig. 6 in order to
provide detail. Based on the graphs shown in Figs. 5 and 6, we confirmed that
the proposed system could achieve a higher success rate than the conventional
systems, SARSA1 and SARSA2. The dotted lines in Fig. 5 show references for the
performance when the robot performs optimal actions. The robot of Reference
1 does not observe the sign of u and follows the feedback control toward y(t).
Therefore, Reference 1 shows the maximum capture rate when the robot follows
M{x,y}. The robot of Reference 2 observes the sign of u and follows the feedback
control to y(t)+u. Reference 2 shows the maximum capture rate when the robot
follows M{x,y,ẏ}.
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Fig. 4. Force field (left) and force field while avoiding the guiding robot (right)

In order to analyze the role of each layer of the proposed system, we focused
on the domination of each layer. When the first layer dominates the action of
the robot, the robot moves based only on input (x, y) because the first layer does
not get input ẏ. In this case, the robot is following an MDP M{x,y}. When the
second layer dominates the action of the robot, the robot moves based on input
(x, y, ẏ). In this case, the robot is following another MDP M{x,y,ẏ}. We analyzed
the dominations of the layers. We define the action selection of the first layer,
a1(x, y, ẏ), as whole system’s action when Q2 is neglected (Q2 = 0, Q = Q1).
If the action selection of the first layer, a1, is equal to the action selection of
the whole system, a, then the first layer is the dominant controller of the whole
system. Therefore, the whole system is using M{x,y} to capture the agent in this
case. On the other hand, if a1(x, y, ẏ) is modified by the second layer, a ̸= a1,
then the first layer is no longer the dominant controller of the system. In this
case, the whole system may use M{x,y,ẏ} to decide its action. To confirm the use
of M{x,y,ẏ}, we introduced Reference 1 of Fig. 5. We define dominance of the
first layer, D1, as follows:

D1 =
∑
ẏ

δa(x,y,ẏ),a1(x,y) (15)

where δ is a Kronecker delta. We show the dominance of the robot in Fig. 7. We
confirmed that the robot Learned to switch the dominance.

4.2 Guiding Task

We compared SARSA1, SARSA2, and the proposed system using the same learn-
ing parameters as those used in the capture task. The success rate of the proposed
system tended to be higher than those of the other systems (Fig. 8).
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5 Discussion

5.1 Decoupling MDPs

At the early stage of the capture experiment, the first layer of the proposed RL
dominated the action of the robot. So, the robot utilized M{x,y} at the early
stage. At the last stage, the dominance of the first layer was weak when the
agent was near the robot or was almost out of the sight of the robot. The robot
utilizedM{x,y} andM{x,y,ẏ} according to the situation. Generally, when a human
captures an agent like the robot, the human needs the position y of the agent.
If the agent is slow and far from us, y is sufficient information to approach the
agent. However, if the agent is quick and near to the human, the human may
need the speed ẏ of the agent. We consider that the robot switched of M{x,y}
and M{x,y,ẏ} appropriately according to the situation.
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These images show the dominances of the first layer while the robot learns the capture task. We set
O as the center position of the robot. Each colored pixel shows the dominance of the first layer. In
the color bar at the top of the images, blue indicates that dominance of the first layer is strong (D1

is high), and red indicates that dominance of the first layer is weak (D1 is low). At the early stage
of learning, the first layer dominated a wide area. This means that the robot focuses on M{x,y} and
ignores the velocity ẏ of the agent. During the final stage of learning, dominance of the first layer is
weak at the center, on the left side, and on the right side. While the agent was far from the robot
(top of the figure), the robot focused on M{x,y}. However, when the agent was near the robot or
around the limitation of the sight of the robot, the robot focused on the motion of the agent ẏ and
M{x,y,ẏ}. The proposed learning system realized learning for the switch of two MDPs.

From the analysis for the robot’s learning, M{x,y} was decoupled from the
POMDP at first, and then M{x,y,ẏ} was decoupled. We consider that the reason
why M{x,y} was learned faster than M{x,y,ẏ} is that M{x,y,ẏ} was more difficult
problem, since it includes one more dimension than M{x,y}.

We consider that the learning process of the robot was step by step as follows.
The robot that learned M{x,y} followed a sub-optimal policy π{x,y} at the early
stage of learning. The robot searched around π{x,y} using ϵ-Greedy search to
improve the policy. In some observations, the robot found that M{x,y,ẏ} was
more suitable to represent the problem. Then, the robot learned π{x,y,ẏ} during
the observations. We may accelerate this learning process using A* search or
other kind of model predictive searches, since ϵ-Greedy search is not the best
one. However, to utilize model predictive searches, learning system has to make
some model of the environment and/or agents while learning Q-values.

5.2 Consideration for a Traditional Theory

Pendrith et al. investigated the conditions for policy stability in non-Markov
decision processes. Pendrith et al. mentioned that the TD style of credit assign-
ment method is not guaranteed to have equilibrium points [MM98]. We agree on
their consideration. However, in the case when a POMDP includes several MDPs
Ms, the TD style of credit assignment method may have equilibrium points of
the sub-problem M .
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6 Conclusion

In this paper, we proposed multi-layered RL (MLRL) formulations that decouple
a partially observable Markov decision process (POMDP) to several Markov
decision processes (MDPs) step by step according to the dimensional hierarchy
of the MDPs. From the results of the experiments, we confirmed that a two
layered RL that is based on the proposed MLRL formulations decoupled two
MDPs, M{x,y} and M{x,y,ẏ}, step by step. Also, the MLRL got better success
rate and success count than SARSAs in the experiments.
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The iCat as a Natural Interaction Partner

Playing Go Fish with a Robot
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Abstract. To be able to develop robots that naturally interact with hu-
mans it is important to gain a better understanding of the factors that
shape this interaction. Although many aspects have already been stud-
ied in depth, few studies have been performed on the effect that socio-
cognitive abilities may have on this interaction. We have developed a
robot that shows intentional or proactive behavior and that can be used
to conduct research on interaction that is shaped by cognitive abilities.
We have used the iCat robot platform to perform experiments with chil-
dren to test various hypotheses on perceived effects of socio-cognitive
abilities. Two different versions were developed: a socio-cognitive iCat
robot that behaves socially and takes the mood of the child into ac-
count, and an ego-reactive iCat robot that does not do so. These two
robots were evaluated and compared with each other in a scenario where
the robot plays the card game Go Fish with a child. Results indicate that
children are more positive about the interaction with the socio-cognitive
iCat than with the ego-reactive iCat.

1 Introduction

It is well-known that user interaction with a robot is shaped in part by the
use of human-like features of the robot. For example, designing a robot with
explicit anthropomorphic features such as a head with eyes and mouth may
enhance human-robot interaction. A multitude of experiments and studies have
been performed that explore and analyze various anthropomorphic and other
mechanisms that support natural interaction [1].

As argued in [2], the design of robots is a matter of balance: finding the
appropriate level of similarity with humans, and taking into account movement
and appearance, and possibly many other factors. One factor that has not yet
received much attention in human-robot interaction research concerns the socio-
cognitive skills that shape the behavior of a robot. Our aim in this paper is to
present and discuss some initial results related to the effects and contribution
of such skills on human-robot interaction. To this end, we present the design
of a cognitive robot endowed with some human-like socio-cognitive skills that
shape its behavior and interaction with humans. Such skills involve among others
capabilities such as decision-making, attention allocation, anticipation, planning,
and taking mental states of others into account. Here, in particular, we will focus
on aspects related to goal setting in combination with emotion modeling.



Our general motivation for performing this research is our interest in es-
tablishing whether, and, if so, how cognitive skills of a robot can enhance the
anthropomorphic or intentional stance that a human takes towards a robot. In
other words, the question that drives our research is whether a cognitive architec-
ture can contribute to the effect of a human subject taking the intentional stance
towards a robot and attributing mental attitudes to the robot. This research also
contributes to the closely related area of so-called believable social robots [2]. [3,
4] argues that to be intentional, a robot must exhibit goal-directed behavior,
which motivates our choice to focus on goal setting and proactive behavior here.

In this paper we report on a case study in which a robot with facial fea-
tures that facilitate emotion expression and that demonstrates social, proactive
behavior is compared with the same robot platform that makes rather different
use of emotion expression and that does not show social proactive behavior. We
call the first type of robot a socio-cognitive robot and the second one an ego-
reactive robot. The socio-cognitive robot sets goals that contribute to becoming
friends in the context of a game and adapts its behavior accordingly; moreover, it
takes the mood of the human player into account. In contrast, the ego-reactive
robot is only concerned with winning the game and does not respond to the
human player’s mood; this robot only reacts to game events. We have used the
iCat robot platform (see Figure 1(b) below) and performed experiments with
children that play a Go Fish card game with the robot to obtain experimental
results about perceived differences. The main hypothesis is that the behavior of
the socio-cognitive iCat is evaluated more positively than that of the ego-reactive
iCat.

The paper is organized as follows. Section 2 briefly discusses some related
work. Section 3 presents the scenario design and motivates the choice for the
game that we have used. Section 4 discusses the robot design. Section 5 describes
the experimental design and presents our findings. Finally, section 6 concludes
the paper and discusses interesting future work.

2 Related Work

[5] argues that to interact socially with humans a robot must convey intention-
ality and describe an architecture implemented on top of Kismet that facilitates
exhibiting so-called proto-social responses to this end. They argue that by means
of these proto-social responses the robot is able to provide cues for interpreting
its actions as intentional. Kismet is able to express a range of emotions but does
not take the emotions of the human itself into account. The architecture also has
a motivational component which manages drives. In our architecture instead of
drives explicit goals that represent states the robot wants to realize are present
and we focus on cognitive skills to convey intentionality.

Various researchers have used the iCat to study human-robot interaction
and, as we also use this platform, in the remainder of this section we focus on
this research. The iCat has been designed especially for studying interaction and
turns out to be an excellent platform to this end since it is capable of generating



a range of facial expressions and because of its size and the way it looks, many
humans feel immediately connected to it.

[6] reports on the influence of a robot’s social abilities on acceptance by el-
derly users. Two iCats were used in a Wizard-of-Oz experiment where two con-
ditions were compared: one which used a more socially communicative and one
which used a less socially communicative interface. The more communicative
iCat listened attentively, showed nice and pleasant facial expressions, remem-
bered personal details like names and admitted mistakes. Results of this research
show that participants who were confronted with the more socially communica-
tive version felt more comfortable and were more expressive in communicating
with the iCat. The work suggests that a more socially communicative iCat is
more likely to be accepted as a conversational partner.

[7, 8] develops a social iCat that aims at helping children in their daily health-
care related activities. The goal of this research is to use the iCat as a medium
to enable diabetic self-care for children. Three support roles with corresponding
behaviors were developed labeled motivator, educator and buddy respectively.
Results indicate that children value the support roles positively, in particular
the buddy role. In follow-up research reported on in [9], two different versions of
the iCat were developed: one that shows interest in the human (demonstrated
e.g. by remembering names) and displays social behavior at appropriate times
in contrast to the other version that only expresses its ego-centric emotions.
Children were asked to perform various tasks during an experiment such as
answering questions about health-related movies and playing a game of Tic-Tac-
Toe. The results show that the more social robot is rated as more empathetic
than the other robot.

[10] reports on an iCat that is able to play chess. This chess-playing iCat
is different in that it expresses emotions which are influenced by the move the
opponent makes. The results suggest that the childrens’ learning experience of
chess is enhanced by the iCat’s expressions which is explained by the fact that
the children are able to recognize when they made a good or bad move based on
the expressions displayed by the iCat.

Our experimental scenario is also based on a game since a game structures
the interaction and provides for more control with respect to various parameters
of the research. As discussed above, games have been used often in robot research
for similar reasons. However, not every game is suitable for our purposes. For
example, the Tic-Tac-Toe game that has been used by [7, 8] has too limited game
play, game play is too short and the game induces virtually no speech if at all
to be useful for our purposes. Although the game play of the chess robot of [10]
is much more interesting and challenging, in a game of chess the focus again is
more on strategy than on interaction. In the next section we will describe and
motivate our choice for a different game as the basis for an interaction scenario.



3 Scenario Design: Playing Go Fish with a Robot

Partly based on a review of the literature and partly based on requirements on
the type of interaction we are interested in, we decided to use a game-based
scenario. Such a choice has several benefits. Given a specific scenario based on a
game and a human that acts according to the rules of the scenario, it is possible
to more or less reliably predict the actions of humans, what they will expect, and
to create matching behavior and speech. A fixed scenario has benefits also from
an experimental point of view since it provides more control over variables that
potentially impact what we want to measure and it is easier to measure effects
and identify the causes of these effects in a structured environment. Finally, a
scenario based on a game also naturally limits the tasks and speech acts that
are needed to socially interact. This thus greatly eases the design task of both
the environment and the robot.

In order to select a specific game, multiple criteria were used. First of all, since
we planned to perform experiments with children, we need a game that is suitable
for children in the age range from 9 to 12. The game needs to be sufficiently
challenging, but also relatively easy to grasp for children. Moreover, we need a
game that can be played at a sufficiently challenging level of profiency by the
iCat and in particular does not require capabilities that cannot be supported by
the iCat platform or other state of the art technology (e.g. no advanced dialogue
capabilities should be required). The game should not be too easy so that the
iCat would win all games, but it should not lose all games either; ideally the
iCat can be tuned so as to play at the level of an average human player. One of
the main factors determining whether a game is captivating, according to [11],
is the challenge factor. The challenge factor in turn is determined by two other
factors: the activity has a clear goal and the outcome of the game is uncertain.

We have selected the card game named “Go Fish” [12] in which various
players take turns and have to ask for cards to collect complete sets of cards
(which are called ranks and typically consist of four cards). Go Fish has been
selected because it is a fairly easy game that is easy to explain and can be
mastered in a relatively short amount of time. Still Go Fish has the challenge
factor. Go Fish is a game with a clear goal, i.e. to collect the largest number of
card sets. But the outcome of Go Fish is also uncertain because Go Fish is highly
dependent on chance, and even when it looks like one player is clearly winning,
it can still swiftly turn around when the other player receives excellent cards
from the deck. One of the most important aspects of the game for our purposes,
moreover, is that the game requires a significant amount of interaction. Although
the game also requires conversation between players, the set of speech acts that
is minimally needed for playing the game is rather limited.1

We briefly discuss the rules of the game. At the start of the game each player
receives seven cards from a shuffled deck of cards. The remaining cards remain

1 In line with the rules, all that is strictly required is being able to ask for a specific
card and to say “Go Fish”. To make the game fun, however, a little more text seems
required and has been built into the repertoire of the iCat. See below for more details.



facing down in the deck. For the first game the player that begins is chosen
randomly; for all games thereafter, the player who lost the last game starts. If
it is a player’s turn, he or she may ask for a specific card of another player. The
rules of the game dictate that a player can only ask for a card if he or she already
holds at least one card of the same rank. If the card requested is owned by the
player that is being asked, the card must be handed over to the player that asked
for the card and that player continues and asks for another card; otherwise, the
player that was asked for the card says “Go Fish!”, the player whose turn it
is draws a card from the deck and the turn shifts to the player who was asked
for a card. The game ends when all card sets have been collected, typically by
different players; the player with the most card sets wins.

In our experiments, we use a card set consisting of 36 cards (9 ranks) with
zoo animal pictures (monkey, lion, etc.) each of which occurs in four different
colors (red, yellow, green, blue). Moreover, in the experiments we conducted only
two players play the game: one human and one iCat.

4 Robot Design: A Socio-Cognitive & Ego-Reactive iCat

In order to evaluate the main hypothesis that the behavior of a socio-cognitive
iCat is evaluated more positively than that of an ego-reactive iCat we have to
specify the two different architectures that correspond with these types. This
specification should clarify what kind of behavior both types of robot will pro-
duce. Before we describe the architecture design in more detail in this section,
however, we first introduce and discuss the robot platform that we used. Next
the probability model on which the strategic game-play is based is discussed. We
then continue and discuss the two key components in our study, the design of a
cognitive component that enables goal setting and decision making, and the de-
sign of an emotion model. Finally, we then briefly describe the design of various
modalities that are also relevant to the interaction including facial expression
(emotion, mirroring), speech, and eye contact.

4.1 Choice of Robot Platform: The iCat

Social robots differ in their purpose from other robots in that they are specifically
designed to be used in interaction scenarios with humans. As comics designers
have known for decades, the particular representation used to portray characters
in a comic can influence dramatically the way people identify and sympathize
with its characters. Humans, for example, are more likely to identify with Dilbert
then with Albert Einstein. The reason is that people can more easily identify with
iconic universal characters instead of with a unique individual with a particular
biography and personality [2].

Figure 1(a) depicts a triangle known as the Design Space. At the lower left
Human correlates to as human as possible. Iconic is more like a cartoon figure
with a minimum set of characteristics but which is still expressive. The Abstract
corner corresponds with more mechanical and functional designs of the robot,



with minimal human-like aesthetics. The Design Space was originally designed
by McCloud for comics, but may usefully be applied to robotics as well [2].

(a) Robot Head Design Space (b) Facial Expressions of
the iCat

Fig. 1. Robot Head Design

For our research, we have selected the iCat robot platform illustrated in
Figure 1(b). The iCat is a research robot, designed by Philips, to stimulate
research on human-robot interaction. An important reason for selecting it has
been the iconic face of the iCat that is capable of mechanically rendering facial
expressions. Emotion expression is an important aspect of social interaction that
is supported by the iCat. Since we target children as our main subjects, an iconic
head also may be preferable over more human-like heads since [13] suggests that
fear would be increased in young children in that case.

An iconic face more easily can represent the human user which makes it
easier for humans to communicate and identify with an iconic robot, whereas a
human-like face is taken to represent somebody else (with a different personal-
ity). Humans apply a social model to robots and will often approach interactions
with robots holding a set of preconceived expectations based on their experiences
of interactions with other humans. If these social equivalences extend to the in-
terpretation of human-like body language displayed by a robot, it is likely that
there will be corresponding benefits associated with enabling robots to success-
fully communicate in this fashion [14].

The iCat supports human-like facial expressions. It is 38cm tall and equipped
with several servos that control different parts of the face, such as the eyebrows,
eyes, eyelids, mouth and head position. It also incorporates touch sensors in its
ears and feet, a web cam in its nose, stereo microphones and loudspeakers.



4.2 Generating Strategic Game-Playing Behavior

As a start, to ensure a minimum of natural interaction with a human player, it
is important that the robot is able to play a game of Go Fish at a sufficient level
of proficiency. The robot is supposed to play Go Fish by asking specific cards (as
opposed to asking for a rank or class of cards as is also usual). It seems clear that
inconsistent or very bad play (e.g. by asking for a card that is known to be owned
by the robot itself, or by always asking random cards) will not be perceived by
a human opponent as natural (assuming that an opponent is expected to play
such as not to lose quickly). Moreover, if the iCat aims at winning, asking the
opponent for a lot of different cards also means to give away a lot of information
which may not be strategic.

Go Fish is a game with incomplete information. Cases where a player knows
exactly which cards the other player is holding are very rare. It is also not known
exactly which cards are left in the deck. Good game play nevertheless requires
a player to ask for the “best” card from an opponent. Of course, the fact that
it is not known which cards are held by the opponent and which are still in the
deck complicates the task of determining what is the best card to ask. In order
to provide the iCat with appropriate game-playing skills, a probabilistic model
is used to determine the probability that the human opponent holds a particular
card. In addition, an opponent model is used to estimate what information the
human opponent has about the hand of the iCat. These models are used to
decide which card to ask for: The card with the highest probability of being
owned by the opponent.

The probabilistic model that the iCat maintains assigns a probability to each
card of either being held by the opponent, being part of the deck, or being owned
by the player (iCat) itself; the latter, of course, has either a probability of 1 or
0 because the player knows which cards it is holding. To initialize the model,
first a probability of 1 is assigned to each card as being part of the deck. After
distributing the initial cards to players, the probability of cards owned by the
player itself are assigned a probability of 1 but now as being owned by the player.
All other cards are assigned a probability of 7/29 of being held by the opponent
and 22/29 of being part of the deck (here, it is assumed that a deck of 36 cards
is used and there are only 2 players).

The probabilistic model is updated after each of the following game events: A
card is requested, a card is received, a card is given away, a card is taken from the
deck and a rank has been completed (ranks need to be set aside by players when
they are complete). As cards being received, cards being given away, and ranks
that are completed are public events, it is obvious how to update probabilities
associated with these events.

We briefly explain how the remaining events are handled. If a card is re-
quested and the iCat owns the card, the iCat hands over the card; probabilities
for the other cards of that rank then are updated and set to P = 1/(3−R) where
R is the remaining number of cards of the rank the player itself owns (note that
we must have R < 3). If a card is requested and the iCat does not own the
card, however, two things happen. First, the card being asked for is assigned



probability 1 as being part of the deck (it is not allowed to ask for cards that a
player owns). Second, since it is now known that the opponent has at least one
card from the rank of the card requested, the probability P that a card of that
rank is being owned by the opponent is updated (assuming that P 6= 1 for all
of these cards) and set to P = 1/(4−R) where R is the number of cards of the
rank the player itself owns.

Finally, whenever an opponent draws a card from the deck the probability
of a card being held by the opponent needs to be raised. Of course, this needs
to be done only for those cards which are not part of a completed rank or are
otherwise known to be owned by that player. A simple update is applied to all
other cards and 1/D is added to the current probability where D is the number
of cards still in the deck; thereafter, probabilities are renormalized again.

The model just discussed is not perfect and based on some simplifying as-
sumptions. However, the model has been tested during an initial pilot and it was
established that the iCat played Go Fish at a reasonable level while using it. The
model was adapted however to compensate for the fact that by just asking for
the card with the highest probability the iCat would sometimes ask cards in a
strange order. A good example is when there are multiple cards with the same
probability spread over multiple ranks. It is then possible that the iCat first
asks, for example, the red chimpanzee, then the blue camel, and then the blue
chimpanzee and by doing so obtains a complete card set of chimpanzees. This
type of behavior is perceived as strange because a human player typically likes
to first secure a complete card set before asking cards from another rank, and
introduces the risk of not being to complete a rank and invite obvious counter-
play of the opponent. A preference was built into the iCat for selecting cards
from the same rank whenever multiple cards have the same probability.

4.3 Generating Intentional Behavior

To clarify the range of behavior that exists in the Go Fish scenario, we first list
some of the action alternatives that are available and have been implemented.
During the game, the iCat among others can ask for cards, provide hints, stimu-
late the opponent to perform an action, express various emotions, move its head,
and make eye contact. As will become clearer below, only some of these actions
will be performed by the ego-reactive iCat whereas all of the actions may be
performed by the socio-cognitive iCat.

The idea is that the ego-reactive robot only shows reactive behavior. Its in-
teraction is solely based on its intent to win the game (strategic play by reacting
to the opponent’s move) and the only emotions it displays are related to its
own, ego-centric emotions. That is, the ego-reactive robot will express happiness
if it is winning and sadness if it is losing, but it will not take into account the
emotion of the human player. In fact, the ego-reactive robot has been designed
to not even register the human’s emotions. The ego-reactive robot will react to
the same (game) event in the same manner and the robot has been designed as if
it is living in its own world while almost completely disregarding the opponent.



In contrast, the idea of the socio-cognitive robot is that it will take the state
of the human into account while selecting actions. The main goal (which is
implicit by design) of the socio-cognitive robot is to become friends with the
human. It will try to - of course only up to a certain extent - mimic some of
the intentional behavior that would be displayed by humans to this end. In our
context, the socio-cognitive robot will take the game score and the emotions
of the human into account. Of course, the socio-cognitive robot also is able to
play the game at a reasonable level of proficiency and in fact extends the action
repertoire of the ego-reactive robot. Because the socio-cognitive robot can do
whatever the ego-reactive robot can do, we can view the ego-reactive robot as a
base-line for the other robot. We like to note in particular that both iCats have
the same capabilities for winning the game (see also the description of strategic
game-playing behavior below).

One of the main differences between the socio-cognitive and ego-reactive
iCat concerns the goals adopted throughout the game. This difference has been
explicitly designed and has a significant impact on the behavior produced. It is
one of the key factors that makes the socio-cognitive robot different from the
ego-reactive. Whereas the ego-reactive iCat will stay focused on winning, the
socio-cognitive iCat will adopt various other goals depending on the game state
and estimated emotional state of its opponent.2 For example, the socio-cognitive
robot will adopt a goal to cheer up the opponent by saying something like “Cheer
up, I’m sure you’ll win the next one!” and to tone down his emotions when the
opponent has been losing for a while. Another example is that the socio-cognitive
iCat will adopt a goal to provide hints to its opponent when the opponent is
losing and/or sad. These hints will suggest to the opponent which card to ask
for (knowing, of course, which cards are in the hand of the iCat the robot can
give away useful information). The iCat will not suggest a particular card but
say, for example, “If I were you I would try a different color”. A third example
concerns intentionally loosing a card set. A goal to this end may be adopted
if the opponent is badly losing. The iCat can do this when it knows that it is
possible to get a complete set. The iCat’s behavior will then change in a way
that it will ask by accident a card it already asked for; it then will become
clear to the opponent that it can ask these cards back and gain a complete set.
The goal setting behavior and the resulting game playing behavior of the socio-
cognitive iCat thus is significantly different from that of the ego-reactive iCat.
Intentional behavior is based on the intentions or goals of a person. We believe
that by explicitly separating goals from the behavior that is selected to achieve
these goals will help create the perception that behavior is intentional and thus
will increase the intentional stance towards the robot. Below we show that the
difference between the socio-cognitive and ego-reactive robot is also perceived
by subjects in the experiments we conducted.

It is important to realize that the socio-cognitive iCat may have conflicting
goals. The first goal set to win the game conflicts with the other goals set to make

2 Mood detection of the human opponent is rated by a co-experimenter in a Wizard-
of-Oz setup; see Section 5.



friends and enjoy a nice game. Of course, to achieve the latter goals it is still
important to balance the behavior these goals induce with behavior to win the
game. That is, usually you do not make friends by simply losing severely which
is not very natural in the first place. Balancing these goals has been achieved by
making sure that the iCat does not play badly throughout the whole game; i.e.
by interleaving and balancing “friendly” behavior to achieve the goal to make
friends with game-playing behavior to win the game a more natural interaction
is realized.

A cognitive architecture that supports goal setting, decision making and ac-
tion selection has been built on top of the iCat using the cognitive programming
language Goal [15]. The choice for this language is in part based on its support
for goal-directed decision making. Using Goal it is easy to make the robot ex-
plicitly adopt and drop goals based on e.g. the game state or the mood of the
opponent. The cognitive language Goal provides explicit support for updating,
maintaining and acting based on goals. The language also provides support for
managing the knowledge and beliefs of the robot. Knowledge is used to represent
basic facts about the game (e.g. 4 cards of a type form a set) whereas beliefs are
used to keep track of the state of the (gaming) environment.

To explain the main components of the cognitive architecture, we very briefly
discuss each of the components of a Goal program. The interested reader can
find more details in [15]. For representing informational attitudes, a knowledge
and a belief base are used. A knowledge base consists of concept definitions
and/or domain knowledge represented using Prolog. The main difference between
the knowledge and belief component is that the former is static whereas the latter
can be modified at runtime. The belief base consists of beliefs that keep track
of the current state (e.g. which cards are being held by whom in our case).
Motivational attitudes are maintained in the goal base which consists of goals
that represent the state the agent wants to be in. The knowledge, belief and goal
base make up the agent’s mental state. The remaining sections concern actions
and action selection. A so-called program section consists of a set of action rules
and/or modules that define a strategy or policy for action selection. The action
specification section consists of a specification of the pre- and post-conditions
(effects) for each action that the robot can perform. Finally, a special section
deals with events and consists of so-called percept rules. A percept rule is used
to determine how percepts received via sensors from the environment are used
to modify the mental state of the agent.

As a final note, we would like to remark that even though a cognitive architec-
ture is used some of the behavior of the socio-cognitive iCat may also be triggered
by particular events and thus may be generated reactively. For example, when
an opponent asks for a card and the iCat does not have it, the socio-cognitive
iCat may say something like “Better luck next time!” if the estimated valence
(emotion) of the opponent is low.



4.4 Emotion and Mood Model

A second important difference between the two iCats is that the socio-cognitive
robot uses a model that estimates the emotional state of the human whereas
the ego-reactive robot does not. Both maintain a model of the emotion of the
iCat itself. The emotion model of the ego-reactive robot only takes into account
the current game state and how well the robot does itself; basically, this means
that the robot is happy when it is doing well and sad when it is doing badly.
The emotions of the socio-cognitive robot, however, are also influenced by the
estimated affective state of the human. The emotion and mood models are used
to determine when and what kind of emotion expression the iCat will display at
various points during the game. The socio-cognitive robot also uses its emotion
model in its decision mechanism to select actions; e.g. the socio-cognitive iCat
may provide hints when the opponent is unhappy.

We have used a valence-based emotion model [16]. This model is relatively
simple but turned out to work well in practice. Emotion expressions are not
generated only by means of valences which may fluctuate too much to appear
natural but are also determined by mood. Emotions are different from moods.
The latter are more stable and therefore more useful for determining which
emotions to express. Mood is computed as an exponential moving average - a
method also used in e.g. [10] - over the last 20 emotions (valences), a number
which was determined experimentally and which we found provides good results.
The advantage of using an exponential moving average over a simple moving
average is that it gives more weight to recent events.

In this approach it is important to associate valences with events, in our case
game events, to establish current emotion valences. For instance, giving a card
away will generate a valence of a certain value. We have determined the values
for these valences experimentally and balanced things so as to give sufficiently
expressive emotions that can be recognized by human subjects but which result
in more or less stable moods as well. The details can be found in Table 1.

Table 1. Valence Associated with Game Events

Game Event Valence

iCat requests a card 30
Player refutes requested card -30
Player requests a card -30
iCat says Go fish 30
Player confirms requested card 70
iCat gives requested card -70
Waiting for player to request a card 0
iCat has a set complete 90
Player has a set complete -90
iCat won the game 100
iCat lost the game -100



Emotion expressions are generated based on the mood whenever there is no
active valence value; this implies that emotion expressions remain stable in that
case. Otherwise, for a brief interval of time (we used 3 seconds) the iCat will
express an emotion based directly on the valence value.

4.5 Facial Mirroring

Facial mirroring occurs because we share the emotions of others. If someone sees
someone else is smiling at him, this may trigger a positive response and even
a feeling of happiness within the observer. One typical response is to produce
a smile as well. The same principle also applies to other emotions [17]. The
principle of facial mirroring has been partly implemented in the socio-cognitive
iCat, in which the cognitive structure tries to mimic this behavior. This can be
observed during a game, for example, when neither player is winning and the
human is expressing happiness. In that case, the iCat will adapt is own emotions
and also become more happy which in turn will show in its facial expressions.

4.6 Speech

In the game of Go Fish it is important to be able to use speech when aiming for
natural interaction. By design, the iCat will produce game and scenario related
speech. As human subjects likely feel confused or disturbed by a combination of
clearly-human speech with clearly-non-human face [18] we have used a simple
text-to-speech synthesizer.

A pre-configured database of sentences is used to generate speech. These
sentences have been selected so as to fit the Go Fish game setting. The game
setting naturally induces a set of sentences that are typically uttered during game
play. This greatly helps shape the database and limits the amount of work needed
to create such a database. The database contains different sentences related to
different events in the game. As it is important to avoid the impression that the
iCat is very static and robot like multiple sentences for each event were added
to the database which were randomly varied.

The database contains sentences to allow both iCats to introduce themselves
and to ask the opponent for his or her name. After the opponent has told his
or her name, the iCat will say that it thinks the name is very nice. In case
the human subject would start conversing on a quite different topic, the iCat
would produce a sentence such as “My designer only programmed me to play
Go Fish”. Finally, the iCat will also ask the human subject at the end of a game
if he enjoyed his time with the iCat and will ask him to fill in questionnaires.

For the socio-cognitive iCat, additional sentences have been inserted that
are related to some of the intentional behavior discussed above including, for
example, sentences for cheering up (“Next time I am sure you will get a set!”)
and giving hints about cards. Special care has been taken to limit the number
of additional sentences that the socio-cognitive iCat will produce compared to
the ego-reactive iCat to avoid excessive focus on speech which might induce a



preference in the human subject for one iCat over the other based on the speech
interaction.

4.7 Eye Contact and Face Tracking

Listeners look more at the speaker in order to show responsiveness and interest,
typically looking at the speaker about 75% of the time in glances lasting 1-7
seconds. If, as a listener, you want to make a verbal contribution, it is important
that eye contact is reestablished with the speaker. During the experiment the ex-
perimenter determined when to look at the child, as it turned out that automatic
eye contact behavior was hard to implement. During parts of the scenario the
iCat automatically looked at the child, but during the game the experimenter
recognized speech so this would also indicate that the child was talking and that
the iCat should look in the direction of the child.

The iCat by design also looks at its cards when it is its turn to emulate the
behavior of somebody that looks at his cards trying to decide what to ask for.

5 Experimental Design: Setup and Results

We discuss the experimental design and findings but start by discussing the
software used, the experimental setup and the methods for evaluation we used.

5.1 Game Play

A game shell was developed using Java to graphically represent the game and
to handle all game events. This game shell handles the flow of the game and
implements the basic rules of Go Fish. The game shell also keeps track of various
other aspects of the game. The card deck that has been used has nine ranks
including a Bat, Camel, Chimpanzee, Dog, Giraffe, Goldfish, Shark, Lion, and
Rhinoceros. The interface allows a human player to see his or her own hand, the
game score, how many cards the iCat is holding, whose turn it is and facilitates
to freely rearrange cards in a designated area in order to sort them.

5.2 Wizard-of-Oz Interface

One of the two main reasons for introducing a Wizard-of-Oz setup as part of
the experimental design is to be able to reach a high level of correctly rec-
ognized speech. Speech recognition is still in many ways a challenging prob-
lem and not the focus of this research which explains why we have chosen for
this setup. The second reason concerns emotion detection. Current state of the
art technology does not provide easy access to reliably recognize human facial
expressions of emotion. A dedicated GUI was developed to support the main
experimenter in performing these tasks (see Figure 2(a)). Additionally, a co-
experimenter has been introduced to perform some related tasks. Introducing
a co-experimenter ensured that the main experimenter is not overloaded. The



co-experimenter helped with gathering some statistics; this included how often
a child laughed, how much time a child talked with each iCat and how often a
child looks at the iCat. The co-experimenter used a simple GUI (Figure 2(b)).
Note that the items rated by the co-experimenter do not have any effect on the
behavior of the robots but only registers some aspects of this behavior.

(a) Wizard-of-Oz Interface

(b) Mood Detection GUI

Fig. 2. Wizard-of-Oz Interface

5.3 Subjects

For our experiments, we selected subjects in the age range of 9-13. One reason
why children are a particularly interesting subject group is that the emotion



and the mood of a child are easier to determine than that of an adult. Adults
have a tendency to camouflage their emotions which makes it more difficult to
obtain reliable data. The children that participated are going to school and the
experiment was conducted at the school they go to. In each class, the experi-
ment was briefly explained and the reason why participants were needed for the
experiment was explained. A selection of 36 children were picked by a lottery
to participate. These children then received a letter of consent to be signed by
the parents; 27 children returned signed consent forms. Finally, 24 children par-
ticipated and the data of 20 of these could be used. The 20 participants were
aged 9-13 (Median age = 11, SD = 1). They were awarded with a small present
(eraser, sticker, etc) and a photo of the participant with the 2 iCats for taking
part in the experiment, which lasted about 30 minutes.

5.4 iCat Names

Both iCats have been given unisex names. The socio-cognitive iCat has been
named Robin and the ego-reactive iCat has been named Kim. Although few
conclusive results have been published about gender impact on perception of
robot personality, believability and engagement, we believe it is better to stay
on the safe side and not force a gender on the iCat.

5.5 Hypotheses

A number of different hypotheses were formulated in order to verify whether the
socio-cognitive iCat is considered to behave more to the liking of human subjects
than the ego-reactive iCat. The first hypothesis is that the socio-cognitive robot
will be perceived as a friendlier robot than the ego-reactive one. A reason for this
difference in perception would be that the ego-reactive robot does not respond to
the mood of the opponent at all while the socio-cognitive robot does. Moreover,
the socio-cognitive robot gives hints and asks questions such as whether the child
is (still) having a good time.

The second hypothesis is that the ego-reactive robot will be perceived as han-
dling losing worse than the socio-cognitive robot. A reason for this difference is
that when the ego-reactive robot is losing it will express a quite negative mood
by means of facial expressions. The socio-cognitive robot presumably will take
losing better as its reaction also takes the mood of the opponent into account.

The third hypothesis is that the socio-cognitive iCat will be considered as
more fun to play with than the ego-reactive one. A reason for this is that the
socio-cognitive robot will try to help the child and will try to cheer up the child
whenever that seems appropriate.

The fourth hypothesis is that human subjects will not perceive a significant
difference in strategic (i.e. with the aim of winning) game-playing. This hypoth-
esis seems reasonable considering that both iCats use the same strategy and
even though the socio-cognitive iCat sometimes deviates from best game-play
on purpose and gives hints this will most likely not be perceived as bad game-
play either. This hypothesis has been added to verify that the implementation



of social behavior did not result in bad game-playing behavior which would spoil
the fun in playing the game for most human subjects.

The fifth hypothesis is that the socio-cognitive iCat will make the opponent
smile and laugh more than the ego-reactive iCat. A reason for this is that the
ego-reactive robot does not care at all about the mood of the child.

The sixth hypothesis is that with the socio-cognitive iCat more speech events
will be observed from the human subject towards the iCat than with the ego-
reactive robot. A reason to expect this is that the ego-reactive iCat will only ask
for a certain card and shows otherwise very consistent overall behavior focused
on winning the game.

Finally, the seventh hypothesis is that a human subject will look more often
at the socio-cognitive iCat than at the ego-reactive iCat. A reason for this is that
the socio-cognitive iCat will say more and different things than the ego-reactive
iCat, and, according to hypothesis one and three the socio-cognitive robot is
more friendly and fun to play with.

5.6 Experimental Design

A pilot was performed to obtain initial feedback about the experimental design.
This resulted in various improvements related to game play, strategy, speech and
emotion expression, as well as with respect to emotion and mood detection. In
particular, aspects that felt unnatural according to participants during the pilot
were modified (cf. the example concerning the strategy for asking cards above).

A within-subjects design was employed in which children played a game with
2 different iCats, meaning that each child plays against the socio-cognitive as
well as the ego-reactive iCats. Experiments were counterbalanced and half of
the children first played with the ego-reactive and then with the socio-cognitive
iCat whereas the other half played first with the socio-cognitive and then with
the ego-reactive. A game of Go Fish typically took about 10 minutes to finish.

The experiment was conducted in a single room with which the children
were acquainted. In order to give some privacy to both the child and the exper-
imenters they were separated by a screen and the children were facing in the
opposite direction of the screen. The entire experiment was recorded on video
for accountability and for statistical analysis purposes. The setup of the game
environment, the strategy of the iCat, and the type of speech produced were
controlled for throughout the experiment.

The procedure used was as follows. Each participant enters the room and is
greeted by the main experimenter and directed to his seat. It is then explained
that he will play a game of Go Fish against each iCat. The gaming interface for
Go Fish is explained and it is explicitly explained to the participant that the
iCat has its own screen to watch Go Fish on. The participant then is informed
that the experimenters will be sitting behind him in order to monitor whether
things go well. The participant is then asked whether he is already acquainted
with the rules of Go Fish. Depending on the answer more or less time is spent on
explaining the rules. Next the interface and the use of the mouse to control the
game is explained. A piece of paper is put near the screen which shows which



colors a complete set consist of; on the paper also the rule that you are only
allowed to ask for a card of a rank if you have another card of that same rank
is printed. The questionnaire is also briefly discussed to check whether there are
any problems with understanding any of the words and to explain that there are
3 different questionnaires.

5.7 Results

Various methods have been used to verify whether the socio-cognitive iCat is
rated more positively than the ego-reactive iCat. Three questionnaires were de-
veloped which subjects filled in at different stages of the experiment. These
include questions about e.g. the friendliness and how much fun it was to play
with an iCat. Subjects were asked to rate questions on a 5-point Likert scale.
One open question asking for an explanation of a preference for either one of the
iCats was used. Additionally, various observations were made such as how often
the subject looked at the iCat, how often the subject smiled or laughed, and the
percentage of time a subject (or the iCat) was having the upper hand (higher
game score). Finally, various events from the game have been logged, including
among others who won and how often a subject cheated by refuting a card it
did own.

To obtain results from the data collected, one-tailed significance is measured.
A result indicates a trend whenever significance is below 0.10 and indicates a
significant result whenever significance is below 0.05. Due to space limits, we
only present the main results. Detailed findings are available in [19].

Variable Ego-Reactive Socio-Cognitive Neg. Rank Pos. Rank Ties Significance

Friendliness 4.50 4.50 4 4 12 1.000

Loss handling 4.50 4.30 5 2 13 0.412

Fun 4.60 4.75 1 3 16 0.129

Observed Valence 5.25 5.90 5 10 5 .028

Observed Arousal 5.10 5.45 5 10 5 .090
Table 2. Wilcoxon Signed Rank Tests

Tables 2 and 3 summarize our main findings. The first three rows in Table
2 concern the perception of the iCat; results were obtained by a questionnaire.
A clear ceiling effect can be observed. It is interesting, however, to see that
there is a trend in measured expected fun. Children rated on a five-point Likert
scale how much fun they expected to have while playing with both iCats and
rated again afterwards how much fun it actually was. The average before was
4.45 (SD=.605) and afterwards 4.70 (SD=.657). The significance is .096 which
indicates that there is a trend related to fun.

The most interesting result is that the observed valence of the child while
playing with the socio-cognitive iCat is significantly higher than with the ego-
reactive iCat. This is a clear indication that supports our hypothesis that the



Variable Ego-Reactive Socio-Cognitive Significance

Laughing .30 (.801) .70 (1.593) .060

Talking time 34.7 (11.4) 36.3 (10.9) .164

Looking behavior 20.30 (13.6) 26.45 (11.5) .037

Subject winning time 13.0 (19.0) 23.3 (20.2) .027

iCat winning time 31.4 (23.3) 25.9 (25.6) .199
Table 3. T-Test

socio-cognitive iCat is evaluated more positively than the ego-reactive one. A
trend was measured with respect to observed arousal of a child. This can possibly
be explained because children get more aroused when they have a higher chance
of winning during the game (see also the item Subject winning time in Table 3).

There is not much difference in how much time the children talk to each
iCat. This may be explained because practically all of the speech that the chil-
dren produced is related to the game. Looking behavior, however, is significantly
different. Children look more often at the socio-cognitive iCat than at the ego-
reactive iCat. The co-experimenter who observed the children during the exper-
iment mentioned that children seem to look more often at the iCat if they are
happier. When placing these results next to the observed valence this does seem
to be the case, but after formal analysis the results remain inconclusive and this
claim cannot be confirmed.

5.8 Discussion

We conclude that there is evidence that supports our main hypothesis that
the socio-cognitive iCat is evaluated more positively than the ego-reactive iCat.
Strong evidence in support stems from the fact that children looked happier
when playing against the socio-cognitive iCat than against the ego-reactive iCat.
Another relevant observation concerns the fact that on average children were
doing better when playing against the socio-cognitive robot. The hint system
may have contributed to this performance. Moreover, it is also clear that the
gaming experience is more positive with the socio-cognitive iCat compared with
the ego-reactive iCat.

On average, the socio-cognitive iCat tried 0.55 times to lose a set, gave 2.05
hints and 1.2 cheer-ups per child as opposed to the ego-reactive iCat which
does not show this behavior. The data shows a child who got nine “cheer ups”.
Interestingly, this child first played against the ego-reactive iCat and won and
then played a game against the socio-cognitive iCat and lost. Another interesting
observation concerns a child who received 7 hints from the socio-cognitive iCat.
He did lose in the end, but again the observed valence was higher than with the
ego-reactive iCat.

During the experiment, it was interesting to see that some children started
to copy sentences the iCat said. Children started to ask cards in the same way,
refute cards in the same way, etc. This type of mirroring of the iCat’s behavior
by the children can be seen as an attempt to understand the iCat’s actions and



emotions. It is not known whether this mirroring is done more with one iCat
than with the other, but this can perhaps be interpreted as a sign of observed
intentional behavior by the children.

6 Conclusion

Two robots have been developed which both have the capabilities to play Go
Fish and interact with a child in a semi-autonomous way. A platform has been
developed that can be (re)used for research on socio-cognitive human-robot in-
teraction. The experimental design is based on a Wizard-of-Oz setup since au-
tomatic speech and emotion recognition is not yet able to provide the required
levels of recognition. Future work is needed to investigate extensions to fully
automate the recognition tasks of the robot.

The behavior repertoire of the socio-cognitive iCat is an extension of the
behavior of the ego-reactive iCat. The ego-reactive iCat bases its interaction
solely on his own state of mind whereas the socio-cognitive robot also takes the
human with which it interacts into account. Experimental results support our
hypothesis that the behavior of the socio-cognitive iCat is evaluated more pos-
itively than that of the ego-reactive iCat. The evidence that supports the main
hypothesis is derived primarily from the observation that there was a significant
difference between how happy the children appeared to be when they looked at
each iCat. While playing with the socio-cognitive iCat, the children were smiling
more and their overall mood was better than with the ego-reactive iCat. The
results suggest that children have relatively high expectations of the robot, but
also indicate that after the experiment their expectations are more than met.
At the start of the experiment, before playing with the iCat, children estimate
their fun with the iCat to be 4.55 on average, on a 5 point scale. After playing
two games with the two different iCats, children rated it to be a 4.70 average.
These results indicate a trend but more research is needed to show these results
are significant.

An interesting setting to study in future work concerns the more involved
scenario of more than two players. During our studies many people asked whether
they could play against both iCats.

The emotion model used in this research has been based on a valence range.
This is a one dimensional emotion mapping. There are other and more advanced
models to represent emotions, for instance, the well-known Pleasure, Arousal,
Dominance model. This model allows to map possible emotions onto a three
dimensional space.

Concluding, we believe that our results show that the software platform has
been and in the future can successfully be applied and used as a research platform
to study effects of socio-cognitive abilities of robots on human-robot interaction.
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Abstract. Accurate and robust localization is a key challenge toward achieving
successful robot navigation and path planning in new environments. Previously,
particle filtering has been shown to be an effective approach for meeting this chal-
lenge. However, the contexts have typically been single robot settings or involved
the presence of other agents such as humans who have been modeled naively. In
this paper, we present a new method that generalizes particle filtering to allow for
the presence of other robots, possibly non-cooperative, sharing the environment,
and who may disturb the locations of landmarks previously known to the subject
robot. Our approach results in good localization of the subject robot and tracking
of the other robot in these complex settings, and serves to make localization more
robust and practically applicable.

1 Introduction

A class of approaches that have shown promise in localizing are probabilistic and use
particles (samples) to indicate the potential pose of the mobile robot [14]. The parti-
cles are projected using a technique representative of the Bayes filter [11] as the robot
moves and observes. Particle filtering leads to good localization performance despite
limitations such as needing a large number of particles and difficulty in capturing low
probability outcomes. However, its use has been limited to single robot settings or those
involving other agents such as humans which are modeled as random noise in the en-
vironment. While variants of particle filtering have been fielded in museum tour guide
robots [4, 5], these have focused mostly on achieving good performance in single robot
localization and mapping while modeling others minimally.

In this paper, we generalize particle filtering to multi-robot settings in order to lo-
calize the subject robot in a partially observable environment using landmarks and si-
multaneously track the uncertain location of the other robot(s). We assume that the
exact locations of the landmarks are known to the subject robot. Our focus is on the
subject robot’s localization at its own level in the presence of others who may not be
cooperative. Consequently, our approach differs from previous work in multi-robot set-
tings, which has predominantly focused on joint localization by multiple cooperating
robots [6, 8, 10, 12]. In this context, we introduce a nested set of particles to track the
subject robot and others, and recursively project these particles as the subject robot
moves and makes observations. Because the robots sharing the environment need not



be part of a team, communication between them may not be possible. Consequently, the
subject robot attributes a behavioral model to the other in order to predict its actions.

We extend Rosencratz et al.’s laser tag domain [9] for our experimentation. In par-
ticular, we generalize the problem by assuming that the subject robot is itself not lo-
calized. Motivated by the challenges faced in search and rescue, we require the subject
robot to tag the other and then seek to reach the opponent’s base. On being tagged,
the opponent robot may move the nearest landmarks in order to confound the subject’s
localization. This is analogous to independent rescue robots moving obstacles while
searching for victims. This has the effect of delaying the robot’s approach toward the
base. We simulate the laser tag domain and perform our experiments in a 3D environ-
ment using Microsoft’s Robotics Developer Studio. Despite the presence of dynamic
landmarks, we demonstrate that the subject robot using our approach localizes well and
tracks the other robot satisfactorily. While previous approaches isolate dynamic land-
marks and do not use them for localization, our approach continues to utilize them
particularly because landmarks may be few. The divergence between the particle-based
distribution and the actual locations decreases progressively as the game proceeds.

Rest of the paper is structured as follows. We briefly discuss related work in Sec-
tion 2. Localizing a single robot using the standard particle filter is described in Sec-
tion 3. We generalize this particle filter to multi-robot settings using nested particle sets
in Section 5. The algorithm for implementing our approach is outlined in Section 6. We
provide the experimental evaluation of the localization performance in Section 7, and
conclude the paper with a discussion in Section 8.

2 Related Work

Research on localization has traditionally focused on single robot settings where the
particle filter applied under the name Monte Carlo localization has proved to be suc-
cessful [14, 16]. Other types of localization include Markov localization [5] and local-
ization using the extended Kalman filter [13]. Analogous to Monte Carlo localization,
Markov localization utilizes the Bayesian filter to update the pose uncertainty related
to the robot. However, it maintains a full probability distribution over the poses of the
robot thereby requiring compact ways to represent large state spaces. The extended
Kalman filter permits the application of the exact Kalman filter in non-linear environ-
ments by essentially linearizing the state transition and observation models about the
current estimate. In contrast to the latter approaches, particle filters maintain a discrete
set of hypothesized poses and project these across time.

In the multi-robot setting, research has predominantly focused on cooperative lo-
calization and mapping. Kurazume and Nagata [6] describe a cooperative positioning
system in which other agents act as landmarks. Robots alternate in moving in the envi-
ronment and remaining stationary to be considered as a landmark for other robots while
they move. The robots communicate their positions relative to other agents’ positions.
A robot uses a Kalman filter to estimate its own position and of other agents due to
noisy sensory information. Building on this work, Navarro-Serment et al. [8] developed
a system of localizing and mapping for a team of robots in which a group of robots
serve as beacons. Analogous to this work, Tully et al. [12] propose a leap-frog path



planning algorithm that uses the cooperative positioning method described previously
in order to improve the accuracy of localization. All of these approaches exploit cooper-
ation between the robots and focus on jointly localizing multiple robots. In contrast, we
focus on the individual localization of a subject robot when faced with an environment
involving multiple robots who may be non-cooperative or neutral.

Research has also studied localization with dynamic landmarks by maintaining a
separate data structure for objects that are identified as transient, and localizing using
stationary objects only [5, 17]. Another line of research seeks to localize in the pres-
ence of humans thereby posing the problem as involving simultaneous localization and
people tracking [5]. Simple Brownian motion models are utilized to track the move-
ment of people in the environment while localization is performed with respect to sta-
tionary landmarks. While previous research discriminates between fixed and dynamic
landmarks, our approach allows us to use both types of landmarks toward localization,
partly by modeling the movement of the landmarks due to actions of other robots.

Recursive projection of nested particle sets is analogous to the principled approach
in the interactive particle filter [1, 2]. In the latter, nested particle sets represent the
other agent’s possible beliefs, and the approach predicts likely observations of the other
agent in order to project the particles. In comparison, the subject robot’s observations
of the other are used to project the nested particles, which represent possible locations
of the other robot. Consequently, our approach could be seen as adapting the interactive
particle filter toward robotic applications.

3 Background: Localization Using Particle Filter

We briefly review traditional particle filtering (PF) for localizing a robot in partially ob-
servable settings in the context of noisy sensors. This approach has also been called
Monte Carlo localization previously [16]. We focus on localizing using landmarks
whose exact locations are known a priori to the robot.

Each particle, x(n) : n = 1 . . . N , represents a possible pose of the robot, x(n) =
〈x, y, θ〉, where x, y are the x and y coordinates of the center of the robot in a two
dimensional plane respectively, and θ is the angle of its orientation w.r.t. the positive
x axis. Traditional PFs project a particle as the robot acts and observes using the three
steps of propagation, weighting and resampling. We illustrate this process in Fig. 1 and
describe the steps below:

• Propagation: Given an action, a, which causes the robot to move for time 4t with
given translational velocity v and rotational velocity, w, we utilize the motion model to
propagate each particle:
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where v̂ = v + εv and ŵ = w + εw are the actual translational and rotational velocities,
respectively. γ̂ is the final rotation that the robot makes when it arrives at its destination.
We sample the error terms, εv and εw, from a zero-mean Gaussian density with variance
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Fig. 1. Conceptual illustration of PF (Monte Carlo localization). Each particle representing a
hypothesized pose of the robot is propagated, weighted and resampled in order to obtain its pro-
jection at time t.

that is a function of the motion noise and the velocities. We denote this motion model
as, p(xt|ut,xt−1), where x

t−1 is the pose at time t − 1 and ut is the velocity vector
(v, w)T . The propagated particle is thus, xt,(n) ∼ Pr(xt|ut,xt−1,(n)).

• Weighting: On observing a landmark k distinguished by the feature vector, ot
k =

(rt
k, φt

k, ct
k), we weight each particle with the likelihood of the observation if the robot’s

pose matched that in the particle. Here, rt
k is the average range of the detected landmark

obtained from a laser range finder, φt
k is the difference in angle between the orientation

of the particle when the robot made the observation and the bearing of the observed
landmark (from the hypothesized position of the robot) and ct

k is the observed color of
the landmark.
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Fig. 2. Illustration of φt
k and φk for a particle. θ is the orientation of the hypothesized pose of the

robot. The observed range, rt
k, and the angular range, φt

k, places the observed landmark at the
location of the dashed rectangle. The solid rectangle is the true location of the landmark.

Let the true feature vector be fk = (rk, φk, ck), where rk is the true range based
on the exact location of the landmark, φk is the difference between the orientation of
the particle and the bearing of the landmark based on its exact location, and ck is the
landmark’s true color. We illustrate φt

k and φk in Fig. 2. In order to weight a particle,



x
t,(n), we compute the following:

r̂ =
√

(kx − x)2 + (ky − y)2

φ̂ = atan2(ky − y, kx − x)
(2)

where kx, ky is the exact location of the landmark, k, and x, y is obtained from the
particle, xt,(n). The weight is then,N (rt

k − r̂, σr)×N (φt
k − φ̂, σφ)×N (ct

k − ck, σc),
where N (µ, σ) represents the Gaussian distribution with mean, µ, and deviation, σ.
We denote the likelihood as Pr(ot

k|fk,xt,(n),m), where m is the map giving the exact
locations of the landmarks.

• Resampling: We utilize a simple scheme for generating unweighted particles at time
t by resampling them using the normalized weights as the sampling distribution. This
method leads to more particles in the high likelihood regions of the state space, as de-
termined by the observations.

On performing these three steps, we obtain a set of projected particles which are
representative of the probable poses of the robot at the next time step, t.

4 Multi-Robot Laser Tag

Motivated by the challenges posed by other independent robots who could be moving
potential landmarks, we modify Rosencratz et al.’s [9] laser tag problem domain.

We adopt the perspective of a robot i whose task is to tag another robot j and
then proceed to reach j’s base within a certain amount of time steps. The physical
environment shared by both robots is populated by multiple objects of different colors
and sizes. Two of these objects are distinguished and serve as bases of each robot. We
show the laser tag environment in Fig. 3. As we focus on localization in this paper, we
assume that robots i and j know the exact locations of these objects. However, they are
unaware of their individual or each other’s locations in the environment and do not have
access to any device, which can inform them about this. 1 Consequently, the objects may
serve as landmarks whose observations could be used by robot i for localizing itself in
the environment. Unfortunately, the presence of multiple objects with the same color
means that the localizing information is often ambigious.

We equip each robot with a laser range sensor which provides range information
about objects in front of the robot, a color sensor whose image data is segmented into
the major color patches and colors of these patches identified, and a bump sensor which
signals if a robot hits an obstacle. Each robot’s set of actions consist of moving straight
for some time,4t, and rotating left or right by 90 degrees. Embedded within the move
action is a collision avoidance procedure that activates if the robot anticipates colliding
with an obstacle during the course of its action. On being tagged, the collision avoidance
of robot j is suspended and it may proceed to push an object if it hits it. We accomplish
this by making the objects sufficiently light. Robot j is considered tagged if it is detected
by i and its range is within a small threshold.

1 Despite possibly having GPS devices, robots are often inhibited by the fact that these devices
do not work well inside buildings.
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Fig. 3. Our laser tag environment simulated in Microsoft Robotics Developer Studio consisting
of two robots (AmigoBots) along with differently colored objects. The two cones are the bases of
robot i and j, respectively. The top view of the 3D environment (map) is shown embedded.

Robot j utilizes a mixed strategy behavioral model that is in play until j is tagged.
The behavioral model takes as input the hypothesized pose of a robot and prescribes
moving straight with a probability of 0.75, and rotating left or right with a probability
of 0.125 respectively. If robot j is tagged, i then uses simple path planning to move
toward j’s base while j proceeds toward the nearest object with the aim of displacing it
thereby possibly disturbing i’s localization and slowing its progress toward j’s base.

5 Individual Localization in Multi-Robot Settings

Within the laser tag domain described in Section 4, it is beneficial for robot i to predict
j’s action at each time step in order to track j. This will allow i to anticipate j’s pushing
of the landmark and subsequently i could update its map with the new potential loca-
tion of the landmark. Consequently, i may continue using observations of the dynamic
landmarks toward its localization.

5.1 Nested Particle Filtering

We generalize the basic PF of Section 3 in order to apply it to settings shared with oth-
ers. For each of its hypothesized pose (particle), robot i maintains a set of hypothesized
poses for j. This differs from a joint pose for both i and j, which is applicable when
both robots must localize and an objective or external view of the multi-robot setting is
taken. In contrast, we adopt a subjective view from the perspective of i. Hence, each par-
ticle of i contains i’s pose and a set of particles reflecting j’s possible poses. Formally,
a particle for robot i is, xt−1,(n)

i = 〈(x, y, θ)i,x
t−1
j 〉, where x

t−1
j is the set of j’s parti-

cles. Each particle, xt−1,(n)
j ∈ x

t−1
j is 〈x, y, θ〉j representing the pose of j. The nested

PF targets settings where subject robot i itself is not localized and simultaneously seeks
to track j. We illustrate this nested set of particles in Fig. 4.
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Fig. 5. Recursively propagating, weighting and resampling j’s particles as part of the particle
filtering process for i. This allows robot i to maintain an updated particle set for j as well.

If the problem setting is highly interactive, the nesting could continue further with
each of j’s particles containing a set of i’s particles and so on. This is useful if i thinks
that j may not be localized either and that j thinks that its localization depends on i. In
this paper, we focus on a single level of nesting by assuming that j is perfectly aware
of its own location and does not track i, at any time in the laser tag environment.



As robot i acts and observes, it projects the nested set of particles (Fig. 4) across
time. Let mj = 4(Aj) where Aj is the set of j’s possible actions, be a mixed-
strategy behavioral model that i believes j possesses. Let at−1

j be an action sampled
from the distribution, at−1

j ∼ mj . During the propagation step, j’s particles are prop-
agated as well based on its predicted action, at−1

j , in addition to propagating i’s pose.

The propagation for j is analogous to the procedure described in Section 3, x
t,(n)
j ∼

Pr(xt
j |u

t
j ,x

t−1,(n)
j ).

Robot i’s observation is now two-fold, ot
i = 〈ot

ik, ot
ij〉: it may observe a landmark,

ot
ik, and robot j, ot

ij , using its laser range finder and color sensor. Observations of robot
j are used to weight the nested set of j’s particles for each particle of i. Finally, the
resampling of i’s particles includes resampling j’s particles using the particle weight as
the sampling distribution. Each of the three steps, propagation, weighting and resam-
pling may be carried out recursively in nesting depth for j’s set of particles. The final
outcome is a set of i’s particles each of which containing a nested set of j’s particles,
which have been projected to the next time step. Thus, robot i maintains an updated set
of j’s possible poses for each of its own hypothesized pose. We illustrate the recursive
particle filtering in Fig. 5.

Because weighting j’s particles using i’s observations of j is not straightforward,
we provide some details about this procedure next.

5.2 Weighting Other’s Particles

Intuitively, if ot
ij is indicative of j being spotted, then all particles of j for some particle

of i, x
t,(n)
i , that are in the vicinity of i whose pose is given by the particle should

receive high weights. Otherwise, the weight should be low. Specifically, each particle
of j contained in x

t,(n)
i is weighted by the likelihood, Pr(ot

ij | x
t,(n)
j , 〈x, y, θ〉i), where

〈x, y, θ〉i is i’s pose in the particle.
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Fig. 6. Weighting j’s particle given an observation of j by i.

Let ot
ij = 〈rt

ij , φ
t
ij , c

t
ij〉 be the observed vector of information about j. Although i

is unaware of the true location of j (but knows the color of j to facilitate detection), the



likelihood is calculated analogously to Fig. 2. As we show in Fig. 6, we use the pose in
j’s particle to obtain φj and the observed range and bearing of j to obtain φt

ij . Next, we
calculate:

r̂ =
√

(xj − xi)2 + (yj − yi)2

φ̂ = atan2(yj − yi, xj − xi)

where (xi, yi) and (xj , yj) are the x and y locations in i’s and j’s particles, respectively.

The weight associated with j’s particle, xt,(n)
j is then,N (rt

ij−r̂, σr)×N (φt
ij−φ̂, σφ)×

N (ct
ij − cj , σc).

Finally, we point out that we utilize negative observations as well for weighting both
i’s and j’s particles. For example, if no landmark is detected, particles with poses of i

near landmarks receive smaller weights than those with poses from which no landmark
could be detected. For particles near landmarks, the observation likelihood is obtained
analogously to Fig. 2, except that in the observation vector, rt is the minimum of all
the ranges returned by the laser range finder, φt is the bearing of this range and ct is
the observed color of the background, and k is the landmark nearest to the particle. For
particles away from any landmark, the errors are zero and a high likelihood is obtained
from the Gaussian densities.

6 Algorithm

We show the algorithm for the PF generalized to multi-robot settings in Fig. 7. It takes as
input a nested particle set, xt−1

i , the action of robot i, at−1
i , and its possible observation

of a landmark or the other robot j and generates the projected nested particle set, x
t
i.

The initial particle set is generated by randomly picking i’s pose Ni times and for each
i’s particle, picking j’s pose randomly Nj times.

LOCALIZATION (xt−1
i , at−1

i , ot
i=〈ot

k, ot
ij〉) returns x

t
i

1: x
t
i ← PROPAGATE (xt−1

i , ai)
2: x

t
i, ŵi←WEIGHT (xt

i ,ot
i)

3: x
t
i ← RESAMPLE (xt

i, ŵi)
4: return x

t
i

Fig. 7. Particle filtering in a multi-robot setting using generalized propagation, weighting and
resampling.

Each of the three steps in the PF, propagation, weighting and resampling, differ
from those in Section 3 in that they deal with particles for the other robot as well. As
we show in Figs. 8, 9 and 10, each of the methods recursively invokes the corresponding
procedure on the nested sample sets. Therefore, in projecting i’s particles, j’s particles
are projected across time as well.

If we consider N particles for both robots i and j, then the complexity of this ap-
proach is due to projecting O(N 2) particles. We may mitigate the complexity by al-



PROPAGATE (xt−1
i ,at−1

i ) returns x
t
i

1: for x
t−1,(n)
i ∈ x

t−1
i do

2: Propagate the pose, (x, y, θ)t−1
i , in x

t−1,(n)
i using Eq. 1 to

obtain (x, y, θ)t
i

3: if x
t−1,(n)
i contains a nested particle set, xt−1,(n)

−i then
4: Predict action, at−1

−i , using model, m
−i

5: x
t
−i← PROPAGATE (xt−1

−i , at−1
−i )

6: x
t,(n)
i ← 〈(x, y, θ)t

i,x
t
−i〉

7: end if
8: x

t
i

+
← x

t,(n)
i

9: end for
10: return x

t
i

Fig. 8. Recursively propagating the nested particle sets. Here, −i denotes the robot j in a two-
agent setting.

WEIGHT (xt
i ,ot−1

i = 〈ot
ik, ot

i−i〉) returns x
t
i, ŵ

1: for x
t,(n)
i ∈ x

t
i do

2: Calculate, r̂,φ̂ using Eq. 2
3: Weight xt,(n)

i : ŵ
(n)
i ←N (rt

k− r̂, σr)×N (φt
k− φ̂, σφ)×

N (ct
k − ck, σc)

4: if x
t,(n)
i contains a nested particle set, xt

−i then
5: x

t
−i, ŵ−i←WEIGHT (xt

−i, ot
i−i)

6: x
t,(n)
i ← 〈(x, y, θ)t, (xt

−i, ŵ−i)〉
7: end if
8: x

t
i

+
← x

t,(n)
i

9: end for
10: return x

t
i , ŵi

Fig. 9. Robot j’s particles are weighted by recursively invoking the procedure on j’s particle sets
for each particle of i.

locating a lesser number of particles for tracking j thereby giving priority to i’s own
localization.

7 Experiments

We implemented the algorithm for the nested particle filtering outlined in Section 6 in a
3D environment and evaluate it in the context of the non-cooporative multi-robot laser
tag environment described in Section 4. As mentioned before, the robots are equipped
with 2D laser scanners, cameras for the purpose of color detection and tactile sensors.
Note that the observation of the subject robot i based on its laser readings as well as
its motion controls are subject to noise. While we did not add noise explicitly to the



RESAMPLE (xt
i ,ŵi) returns x

t
i

1: for x
t,(n)
i ∈ x

t
i do

2: if x
t,(n)
i contains a nested particle set then

3: x
t
−i← RESAMPLE (xt

−i,ŵ−i)

4: x
t,(n)
i ← 〈(x, y, θ)t, (xt

−i)〉
5: end if
6: end for
7: Normalize the weights, ŵi

8: for n← 1 to Ni do
9: Sample x

t,(n)
i using the associated normalized weights as

the distribution
10: x

t
i

+
← x

t,(n)
i

11: end for
12: return x

t
i

Fig. 10. Normalizing and then resampling both robots’ particles using a recursive invocation.

simulator, we noticed that the simulator does not respond perfectly to our commands,
thereby simulating noise as in a physical robot.

Within the laser tag environment, our evaluation scenario involves robot i making
observations of the green landmark near the center of the environment and then moving
with the aim of tagging robot j. As we mentioned previously, tagging is accomplished
by identifying robot j when it is in close proximity of i. On being tagged, robot j pro-
ceeds to the nearest landmark to push it (in this case the red landmark near its base)
while i proceeds to j’s base. On its way to the base, i may observe the pushed land-
mark. Until j is tagged, j utilizes the mixed strategy behavioral model described in
Section 4, which is known to i. Robot i’s task is complicated by the presence of j who
may push landmarks. We compare the performance of our localization with two other
approaches that represent alternate ways of dealing with dynamic environments. Both
these candidate approaches deal with the dynamism in different ways. The first is the
simple method of remaining oblivious to the dynamism. In our context, robot i although
being aware that landmarks may be pushed continues to utilize the original map of the
landmarks for its localization. We label this approach as Original Map. The second
is the method of Wolf and Sukhatme [17], which essentially seeks to identify those
landmarks that are dynamic in order to avoid using them for localization. Within our
context, we use j’s particles to ascertain which landmark could be pushed by j and do
not use that landmark(s) toward robot i’s localization anymore. We label this approach
as Wolf. Consequently, we comprehensively evaluate the performance of our approach,
which is labeled as Nested PF.

We show the laser tag environment, simulated in Microsoft’s Robotics Developer
Studio, when i tags j, in Fig. 11. Additionally, we show the map with i’s particles in
red and a map showing all of j’s particles – for every i’s particle – in blue at this point
in the game. Notice the two distinct groups of i’s particles, which implies that i hasn’t
localized well up to this point. However, one of these groups of particles reflects i’s ac-



����������	
�

�������

����������	
�

�������


Fig. 11. The laser tag environment phyiscally simulated in Microsoft Robotics Developer Studio
when robot i tags j. We show the map with i’s particles (in red) bottom left and the map with all
of j’s particles (in blue) bottom right. Notice the group of j’s particles around the actual pose of
j. This is due to the range information for j obtained during the tagging.

tual pose. On the other hand, tagging robot j leads to many particles for j being around
j’s actual pose. However, groups of particles continue to appear elsewhere because i

itself is not well localized.
What remains to be clarified is how we update the map of landmarks that i refers

to during localizing if it thinks that j has moved a landmark. First, note from the de-
scription of the laser tag environment that j possibly pushes landmarks only after it has
been tagged. On tagging j, i predicts which of j’s particles are sufficiently close to a
landmark such that j could be hypothesized to move that landmark. For particles that
could have pushed landmark(s), we compute the new locations of the landmarks. For
all other particles, the new locations are deemed to be identical to the original landmark
locations. In order to update the map, i averages the new locations of all the landmarks
across all particles of j for every i’s particle. This technique is analogous to unweighted
model averaging [3] and helps reduce the error in arriving at the updated map. Observe
that if j’s particles reflect j’s actual pose well, then we may expect a reasonably accurate
estimation of the pushed landmark’s new location. On the other hand, if j’s particles are
not well localized, map averaging mitigates the error due to the uncertainty. In Fig. 12,
we show the simulated environment after j has pushed a landmark (the red landmark
in the top right corner near j’s base) and the map with i’s particles showing updated
positions of all the landmarks. Notice that the positions of all landmarks except for
the pushed one remain unchanged. Location of the landmark that is pushed is altered
although less than the amount by which it is actually pushed.

We evaluate the performance of our recursive localization with map update in com-
parison to the two alternative methods mentioned previously. Our hypothesis is that by
explicitly tracking j using particles and estimating pushed landmarks, our approach lo-
calizes better in comparison to the others. We measure the mean squared error (MSE)
between the robot i’s particles and its actual pose at different time steps in the simula-
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Fig. 12. The laser tag environment after robot j pushes the red landmark near the top. We show the
updated map with i’s particles. Observe that the landmark in the updated map does not accurately
reflect the new position of the actual landmark due to map averaging and some error in localizing
robot i.

tion. We do this for varying numbers of i’s particles (Ni) and j’s nested particles (Nj).
In Fig. 13(a)–(e), we show the MSE for different settings of Ni and Nj across time
steps in our scenario. The robots move asynchronously, and almost continuously, and
our simulations take place in real-time. We show the standard deviation error in Fig. 13
at discrete time steps for simplicity. Each data point is the average of 3 runs of each
of the three approaches on approximately similar trajectories of i. The paths taken by i

and j may differ between particle settings. Within each plot, we indicate the time step
when j is tagged and when it pushes the landmark. Note that i may move for some time
before it observes the pushed landmark. We are currently running more simulations in
order to get more data.

Observe that as we increase the number of particles allocated to robot i (Ni), the av-
erage MSE of its localization across all time steps reduces. For example, the MSE across
all time steps when Ni=250,Nj=50 is 3.0 in comparison to 2.43 when Ni=500,Nj=50,
and this further drops down to 2.15 when Ni=1,000,Nj=50. This is characteristic of
approaches that use Monte Carlo localization as the number of particles are increased,
although in our case Nj plays a role as well. More importantly, as we increase the
number of j’s particles (Nj) from 20 to 50, we note that the MSE of the Nested PF
approach drops further in the last few time steps after the landmark has been pushed
and i observes it. This is because the greater number of j’s particles help in tracking j

better, which leads to a better estimation of the new location of the pushed landmark.
Indeed, the average MSE for Nested PF dropped from 2.43 to 2.05 when Nj increased
from 20 to 50 while Ni was fixed at 500.

While there is no significant difference in the performance of the three approaches
until the landmark is pushed as we may expect, Wolf does consistently worse subse-
quently. Specifically, Wolf does not utilize the dynamic landmark for observations any-
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Fig. 13. Localization performance of robot i as the particles allocated to i (Ni) and nested particle
set (Nj) change ((a)–(e)). Lower MSE indicates better performance. In each plot, we indicate
when i tags j and when j pushes a landmark. Robot i may move for some time before it observes
the pushed landmark. Performance after j has pushed the landmark is of interest. Observe that
Nested PF consistently localizes better than the other approaches in the time steps of interest.

more, due to which the MSE of robot i does not change much from its previous values.
Clearly, a robot utilizing Wolf for its localization would have difficulties in reaching the
base. Perhaps surprisingly, Original Map’s performance compares with Nested PF
when Nj=20 (see Fig. 13(c)). This is because in this case the estimated landmark is



approximately as far away from the actual pushed landmark as its original position is
from the pushed position. Hence, 20 particles may not be sufficient to track j satisfacto-
rily in this environment. However, on increasing Nj to 50, the performance of Nested
PF is distinctly better than Original Map’s performance in the last couple of time steps
(see Figs. 13(a, b) and (c, d)). Observe that the Nested PF consistently outperforms
the other approaches once the landmark has been pushed by j, and it performs the best
among all particle settings when Ni=1,000 and Nj=50. Thus, robot i when using the
Nested PF is significantly better localized as it closes in on j’s base.

Favorable performance of the Nested PF approach comes at a cost. The approach
took about 6 secs to perform one projection step – propagation (∼3s), weighting and re-
samplng (∼3s) – on an Intel Core 3 with 2.27GHz processor, 4GB RAM and Windows
Vista when Ni=500 and Nj=50. When we increased Ni to 1,000 and Nj remained at
50, a single projection step took 10 secs. Larger environments may require more parti-
cles allocated to both i and j for satisfactory localization, which further increases the
computational time.

In summary, although the nested particle filtering is computationally intensive, it
provides a way to better track other robots in the environment whose actions could
impact the localization of the original robot.

8 Discussion

Application domains such as search and rescue in disaster areas exhibit characteristics
such as multiple other independent robots and movement of obstacles, which motivate
more robust localization techniques. We introduced a recursive localization approach
based on particle filtering in which particles for the other robot are nested within the
particles of the subject robot. We showed how the particle filtering may be performed
recursively to propagate, weight and resample the nested particles. The advantage of this
approach is that it allows us to track the other robot explicitly in comparison to implicit
approaches that marginalize the other robots as noise in the environment. Consequently,
we may better predict the other robot’s actions such as move a landmark, given its
behavioral model. In the context of a modified laser tag environment, we evaluated the
localization accuracy of our approach in a dynamic environment. We demonstrated that
maintaining more information about the other robot leads to better localization in this
complex environment, in comparison to remaining oblivious of the dynamism or not
utilizing dynamic landmarks. This is especially useful if the environment exhibited few
landmarks to begin with.

On the other hand, the total number of particles quickly increases thereby requir-
ing more computational resources. This could be problematic if the approach is im-
plemented on board within the bounded resources available to a mobile robot. Hence,
heuristics that seek to intelligently allocate particles gain importance. Furthermore, be-
cause many particles are lost during the filtering, our next step is to investigate par-
ticle replenishment that replaces lost particles without significantly affecting the per-
formance of the localization. While we utilized simple map averaging to estimate the
updated map, techniques that concurrently build the map and localize [7, 15], could be
suitable provided that they do not assume that the environment is static. In adversar-



ial environments the behavioral model of the other robot or a close estimate may not
be available. In this case, a Bayesian approach in which the subject robot maintains a
belief about the candidate models of the other robot and updates it based on its obser-
vations seems promising. Finally, a logical extension of this work would be to augment
the localization with simultaneous mapping, which would be useful when the position
of the landmarks is not known a priori.
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Abstract. We consider the problem of dynamically adjusting the for-
mation and size of robot teams performing distributed area coverage,
when they encounter obstacles or occlusions along their path. Based on
our earlier formulation of the robotic team formation problem as a coali-
tional game called a weighted voting game (WVG), we show that the
robot team size can be dynamically adapted by adjusting the WVG’s
quota parameter. We use a Q-learning algorithm to learn the value of
the quota parameter and a policy reuse mechanism to adapt the learning
process to changes in the underlying environment. Experimental results
using simulated e-puck robots within the Webots simulator show that our
Q-learning algorithm converges within a finite number of steps in differ-
ent types of environments. Using the learning algorithm also improves
the performance of an area coverage application where multiple robot
teams move in formation to explore an initially unknown environment
by 4− 8%.

Keywords: multi-robot formation, Q-learning, coalition game

1 Introduction

Multi-robot formation control is an important problem in distributed multi-
robot systems. Formation maintenance among autonomous vehicles or robots is
used for various applications such as convoying high-security objects safely [8,
19], mobilizing a team of robots with heterogeneous suite of sensors for extra-
terrestrial applications [7] and carrying heavy payloads to support combat-forces
in military applications. A principal challenge in multi-robot formation is to al-
low a robot team to dynamically split or merge into new teams that can continue
to move in formation, after encountering obstacles or occlusion in its path. In
our previous work on multi-robot formation[9], we have described a coalition
game theory based algorithm to solve this problem. Our technique consists of a
lower-level controller layer that handles the basic navigation tasks for a group
of robots while moving in formation by using a flocking-based technique, along
with an upper game theoretic layer that handles more cognitively involved tasks
such as merging and splitting teams using a coalition game called weighted vot-
ing game (WVG). However, in this technique, the maximum size that a robot



team can have is kept fixed throughout the operation of the algorithm. Chang-
ing the maximum size of a team is an important factor for efficient robotic team
formation because a large team can have difficulty in navigating in tight spaces.
On the other hand, having a small team to perform a task in place of a larger
team that could have operated in the same situation, results in lower operational
efficiency in terms of increased time and energy expended to complete the task.
Developing a mechanism that allows robot teams to autonomously adapt their
maximum size would solve this problem. Therefore, it makes sense to investigate
techniques that can be used to dynamically adjust the size of robot teams within
the framework of the multi-robot formation problem. In this paper, we investi-
gate a policy reuse-based reinforcement learning approach to propose a solution
to this dynamic team size adjustment problem. To illustrate the operation of
our team formation algorithm, we have used a distributed area coverage sce-
nario where multiple mobile robots, organized as teams are placed in an initially
unknown environment. The objective of the robots is to entirely cover the free
space of the environment while reducing the overlap between regions covered by
different robots. To achieve this, the robot teams have to dynamically reorganize
their team structure when they encounter obstacles in their path while cover-
ing the environment, using the algorithm described in this paper. Experimental
results using teams of 5 e-puck robots within the Webots robot simulator show
that when robot teams are able to dynamically adapt their team sizes using our
algorithm, their performance of the area coverage improves by 4− 8%.

2 Related Work

Much of the research on formation control with multi-robot teams [1, 15, 18]
has been based on Reynolds’ model for the mobility of flocks[20]. Reynolds pre-
scribes three fundamental operations for each team member to realize flocking
- separation, alignment and cohesion. In [2], the authors describe three reac-
tive behavior-based strategies for robot teams to move in formation, viz., unit
center-referenced, neighbor-referenced, or leader-referenced. In contrast to these
approaches, Fredslund and Mataric[14] describe techniques for robot team for-
mation without using global knowledge such as robot locations, or the posi-
tions/headings of other robots, while using little communication between robots.
Complementary to these approaches [23, 13] have used a combination of graph
theory and control theory-based techniques to effect multi-robot formations. Our
previous work on multi-robot formation [4, 10] uses techniques where a team sim-
ply reverses its direction to avoid obstacles or other teams, without dynamically
reforming, merging with other teams or splitting into smaller teams, while in [5, 6,
9], we have described a weighted voting game [22] based algorithm for determin-
ing the best partitions among a team of robots and dynamically re-configuring
their formation after the robot team encounters obstacles.

Reinforcement learning [25] is a popular technique in the design of multi-
robot systems [3, 17, 24, 26] with a survey of recent results given in [27]. The
complexity of the state and joint action spaces of the robots and the credit



Fig. 1. (a) A robot team showing the position identifiers of each robot. The angular
separation in the team is u, the separation between adjacent robots is dsep and α is the
heading of the team. (b)-(c) A scenario where a single team in formation encounters
a T-shaped obstacle and needs to split. (d)-(e) A scenario where two teams in close
proximity of each other encounter each other and need to merge.

assignment problem of determining the rewards for each robot [17, 11] pose chal-
lenging problems to adapt reinforcement learning from single to multiple robots.
To improve the learning process in multi-robot scenarios, policy reuse [12] pro-
vides an attractive mechanism when the state and action spaces of the robots do
not change, but only the environment changes. Recently, policy reuse has been
combined with spatial hints [21] for use in simulated multi-robot scenarios for
learning navigation tasks. Our work in this paper extends the concepts of rein-
forcement learning and policy reuse within the framework of a coalition game
to improve the dynamic restructuring and reconfiguration robot teams that are
required to move in formation, after the teams encounter obstacles or occlusions
along their path.

3 Machine Learning For Improving Coalitional
Game-Based Multi-robot Team Formation

The fundamental operation in robotic team formation is to maintain a specific
configuration or shape among the robots in a team, even when the team is in
motion. For our setting, robots are deployed into an initially unknown environ-
ment in teams of a pre-determined size. The leader of a team navigates the team
while maintaining a wedge-shaped formation as shown in Figure 1(a), while us-
ing a leader-referenced flocking technique [4, 10]. Most of the previous work on
multi-robot formation control however do not directly address the problem of
reconfiguring and restructuring robot teams after they encounter obstacles or
other teams, as illustrated in Figures 1 (b) and (d). In [9], we developed an



algorithm called DYN-REFORM that uses a form of a coalition game called a
weighted voting game (WVG) to enable robot teams to dynamically reconfigure
by splitting or merging into new teams after encountering an obstacle or other
teams, while maintaining formation - as illustrated in Figures 1 (c) and (e). The
essential features of the WVG for a multi-robot team formation problem are
discussed below. The main parameters of a WVG are the following:

1. R: Set of players or robots interested in forming a coalition.
2. wi: Weight of robot r ∈ R that is calculated from its individual efficiency in

performing its operation or role while participating in the team.
3. Q: Quota or threshold of the WVG. A set of robots becomes a winning

coalition if the sum of the weights of the robots exceeds the quota. In [5, 9],
we have defined the value of the quota Q of a WVG to Q = ⌈qf ×

∑
i wi, ⌉

where wi is the weight of robot i that is participating in the WVG, and
qf ∈ [0, 1] is called the quota fraction. qf = 0 results in no coalition (all
robots participating in the WVG move individually), qf = 1 results in the
grand coalition (all robots participating in the WVG move together), while
intermediate values of qf result in coalitions of intermediate sizes.

The solution of a WVG is to find the smallest set of players whose weights,
taken together equal to or exceed the quota value Q. This set of players is called
the minimum winning coalition (MWC). A simple example is given be-
low to illustrate the WVG-based robot team formation process: consider a set
of 4 robots A,B,C and D with weights 4, 2, 1, and 1 respectively, which need
to determine the subset of robots to form a team. Let quota Q = 5, that is
any coalition must have a combined weight of at least 5 to be a winning coali-
tion. The set of MWCs for this WVG are {A,B}, {A,C}, {A,D}. Because the
robotic team formation problem requires a unique set of robots to be identified
as a winning coalition, we developed a heuristic called BMWC (best minimum
winning coalition) to break the tie between multiple MWCs [6]. We have used
our DYN-REFORM algorithm for multi-robot dynamic team reconfiguration in
a multi-robot area coverage application and shown that dynamically reforming
robot teams improves the efficiency of the area coverage operation by 5 − 12%
in simulations and 5− 8% with physical e-puck robots.

While the WVG based framework provides a structured technique to dynam-
ically determine stable partitions among a set of robots, it does not provide any
mechanism of adapting the size of the partitions based on current operational
and environmental conditions. Dynamically adapting the team size is important
because the efficiency that a robot team gets by performing its operation is de-
termined to a large extent by the team’s size. Within the WVG framework, the
crucial parameter that determines the size of a robot team is the quota fraction
qf . Because qf determines the quota Q which provides the threshold value by
specifying the minimum number of robots required to form a team.

In our previous work, the value of the quota fraction qf was kept fixed
throughout the duration of the robots’ operation. However, a fixed value of qf
fails to dynamically adapt team sizes based on the perceived operation conditions



in the environment. To illustrate the problem of keeping qf fixed we consider an
example in an area coverage application where a set of 5 robots with individual
weights 1, 1, 1, 1, 1 run a WVG with qf = 0.9, giving Q = 0.9 × 5 = 4.5. The
BMWC that will be output in this case is the grand coalition of 5 robots because
this is the only set of robots whose weights add up to 5, which is greater than the
desired quota Q = 4.5. Now, consider that after some time this team of 5 robots
moves into a region (e.g., a narrow channel) where a team 5 robots does not
have enough space to navigate and a team of 3 robots would provide the most
efficient coverage. Because the team of 5 robots is not able to navigate under
the current conditions, the individual efficiency of each robot reduces from the
earlier value of 1. Suppose the new weights of the robots are 0.9, 0.8, 0.7, 0.6, 0.6.
If qf is kept fixed at 0.9, giving Q = 0.9 × (0.9 + 0.8 + 0.7 + 0.6 + 0.6) = 3.24,
then all 5 robots are still required to form a coalition to reach the desired quota
value. Navigating 5 robots in a space that can accommodate 3 robots impedes
their motion and aggravates their efficiency. The problem of forming the large,
5-robot team could have been avoided if the sizes of the robot teams could be
adjusted by dynamically updating the value of qf based on the operation and en-
vironment conditions. We propose to use machine learning techniques that allow
dynamic updates to the quota value depending of the sensory information about
the environmental and operational conditions. Our proposed learning mecha-
nism for the quota value proceeds in two parts. In the first part, the leader
robot within each team uses an ε-greedy iterated policy selection strategy to
select an action at every step. In the second part, leader robots of teams adapt
their policies using a policy-reuse technique based on the perceived environment
features in their vicinity, so that their operations can continue to receive high re-
wards. A schematic of the controller of a multi-robot team showing the learning
mechanism and the underlying coalition game and controller layers, and their
respective functionalities, is shown in Figure 2.

3.1 Q-Learning for Updating the qf Parameter

The efficiency of a robot team performing area coverage is given by the ratio
between the area of the previously uncovered region covered by the team and
the total amount of the area covered by the team. The highest value of this
coverage efficiency can be 1.0 when the entire team covers previously uncovered
region. On the other hand, if any team member covers region that has been
previously covered by the robots from the same team or another team, the
coverage efficiency reduces. Specifically, when some robots in a team encounter
an obstacle while navigating, the robots that encounter the obstacle have to
backtrack and re-cover their own trail, and thereafter, follow behind other team
members that did not encounter the obstacle. Both of these movements cause the
robots that encountered the obstacle to re-cover the regions already covered by
themselves or by other team members, and ultimately reduces the overall team’s
coverage efficiency. The learning problem we consider here is how to dynamically
determine the size of the team so that the team can continually maintain a high
coverage efficiency.



Fig. 2. A layered controller for controlling multi-robot teams.

The coverage efficiency that a robot team gets is determined to a large extent
by the team’s size. The team size in turn is determined by the quota fraction
qf . The problem of maintaining a high efficiency while performing coverage can
therefore be viewed as a problem of updating the quota fraction qf dynamically
based on the current operational and environment conditions perceived by the
robots in the team. This problem is non-trivial because the noise in a robot’s
distance sensors and the error in localizing the robots results in uncertainty in
the actions performed by a robot. We have modeled the dynamic update of the
quota fraction as a reinforcement learning problem [25]. Reinforcement learning
problems are typically formalized by Markov Decision Processes(MDPs). An
MDP is a tuple < S,A, T,R >, where S is the set of states, A is the set of actions,
R : S×A −→ R is a reward function. T : S×A×S −→ [0, 1] is a stochastic state
transition function. The solution for an MDP is a policyΠ : S −→ A that assigns
one action in A for each state in S. To find the optimal policy, we use the well-
known Q-learning function Q∗(s, a) = R(s, a) + γ

∑
s′ T (s, a, s

′
)maxa′ Q(s

′
, a

′
),

where γ is a discount factor, while following a greedy action selection strategy
to determine the policy.

Using this formulation, we have used each state for our MDP model to rep-
resent the coverage efficiency received by a robot team over its recent history.
We discretize this coverage efficiency, such as S1 represents a coverage efficiency
value of 0.1, S2 represents a value of 0.2, etc., and S10 represents a value of
1.0. We define three actions on this state space corresponding to different quota
fraction qf values. Action AL corresponds to qf = 0.9 which sets the quota value
Q to 90% of the combined weights of the robots (players) participating in the
WVG. This results in the team size remaining close to the grand coalition. Cor-
respondingly, we define two more actions AM corresponding to qf = 0.5 which
results in the team size becoming about half the grand coalition, and, AS cor-



responding to qf = 0.2 which results in the team size becoming about 20% of
the grand coalition. However, because of inaccuracies in the perceived environ-
ment resulting from distance sensor range limitations and noise, and localization
error of the robots, there exists some uncertainty in performing these actions.
For example, as illustrated in Figure 3(a), while attempting to perform action
AL that should result in most of the robots joining the same coalition, some of
the robots perceive an obstacle after they decide to come together as a team.
Repeated attempts by the robots to enter into formation do not alleviate the sit-
uation. This results in the robots ending up in smaller sized teams or coalitions,
corresponding to what would result from qf = 0.5 (action AM ). Figures 3 (b)
and (c) show the uncertainty while performing actions AL and AM in our MDP
model. As shown in the figure, both of these actions, AL and AM , can result in
the formation of smaller teams with a certain probability.

To select an action, we use an ε-greedy strategy [16]. This strategy allows
a trade-off between exploitation and exploration by selecting the action rec-
ommended by the optimal policy using Q-learning with a probability ε while
selecting a random action with probability 1− ε.

The reward at each state of our MDP is calculated as a linear function of the
coverage efficiency corresponding to that state and is denoted by R(Si) = ρ×
coverage efficiency of the robot team corresponding to state Si.

(a) (b) (c)

Fig. 3. (a) Five robots that are within communication range of each other do not
perceive the obstacle when they run a WVG and decide to form a team. The obstacle
impedes their motion when they try to get into formation. Probabilities showing the
uncertainty in performing the action (b) AL and (c) Am corresponding to setting a
high and medium value respectively of the quota fraction.

3.2 Policy Reuse for Adapting to Different Environment Features

Following the example from Section 3 of dynamically adjusting the size of a
robot team depending on the space available in the team’s immediate vicinity,



Algorithm 1 Iterated policy selection strategy

Input: sfinal−lastEpisode, πi, ε0, H
Output: Qπnew

p←− 1.0
scurr ←− sfinal−lastEpisode

ε←− ε0
for h = 1 to H do

if randomly generated number > p then
action←− πi(scurr)

else
action←− ε− greedy(πnew(scurr))

end if
Execute(action), record snext = T (scurr, action) and reward r(scurr, action)

as given by MDP model
Qπnew (scurr, action)←− (1− α)Qπnew (scurr, action)

+α[r(scurr, action) + γmaxa Q
πnew (snext, action)]

p←− p− 1
H

scurr ←− snext

ε←− min(1, ε+∆ε)
end for

the quota fraction derived from a policy which results in a desired efficiency
dynamically varies depending on environment features such as the presence of
obstacles and occlusions in the robot team’s path. This means that the optimal
policy of the MDP underlying the Q-learning process must be updated based
on the environment features. Following [12, 21], we characterize the environment
by a finite set of features represented by the set of states S, set of actions A a
transition function T : S × A × S. Each such tuple < S,A, T > is referred to
as domain D. Depending on the domain, different robot team sizes (resulting
from different qf values or different actions in the MDP) yield different rewards.
For example, a large team can get a high coverage efficiency and hence a high
reward in an environment where its motion is not impeded by obstacles, while
the same team can get a reduced reward owing to reduced efficiency from obsta-
cles in its path, in an environment with significant number of obstacles. Based
on this observation, each domain yields a different reward function. Finally, a
task corresponds to maintaining a team size that results in the best coverage
efficiency (reward) in a domain. It can be represented as a combination of a
domain and its associate reward function, Ω =< D,RΩ >. The optimal policy
corresponding to each domain {D1, D2, D3, ...} ∈ D is maintained as a policy
library LDi = {π1, π2, π3, ....}. The robot team then selects the appropriate pol-
icy corresponding to the domain (environment feature) it perceives around its
vicinity. The transition models for our MDP are shown in Figures 4(a)-(d). As
shown in Figure 4(b), when the robot team perceives no obstacles in its vicinity,
increasing the size of the team improves the efficiency of the team. Therefore,
in this domain, performing the action AL improves the efficiency. Similarly, in
an environment where the robot team perceives 20% of its vicinity occupied



by obstacles, the action AM makes the team smaller and enables the robots to
avoid obstacles, thus improving the efficiency - as shown in Figure 4(c). Finally,
as shown in Figure 4(d), when the robot team perceives 40% of its vicinity oc-
cupied by obstacles, the action AS reduces the team’s size rapidly and enables
the robots to avoid obstacles, thus improving the efficiency.

The leader robot of a robot team executes the Q-learning and policy reuse
algorithms at intervals of H time steps. The duration of each such interval of H
time steps is called an episode. At the end of each episode, the coverage efficiency
achieved by the robot team is calculated by the leader robot to determine the
current state corresponding to the coverage efficiency. We define the expected
average reinforcement from the episode set at the end of K episodes, each of
length H as W (E)K = 1

K

∑K
k=1

∑H
h=1 γ

hrk,h where γh ∈ [0, 1] is the discount
factor for rewards during step h within an episode, and rk,h defines the normal-
ized value of the actual coverage efficiency derived by the team during step h of
episode k. The values of W (E)K and the corresponding policy πk during that
episode are recorded by the leader robot.

Algorithm 2 Policy-Reuse Algorithm

Input: Domain currentDomain, H, numEpisodes,
Output: πΩ∗

h← 1
for k = 1 to numEpisodes do

while h <= H do
W (E)k ←W (E)k + γh × rk,h
h← h+ 1

end while
Add last policy πnumEpisodes to policy library L of domain currentDomain
if currently perceived domain = currentDomain then

πΩ∗ ← πnumEpisodes (last policy used)
else

πΩ∗ ← policy πk with maximum value of W (E)k in randomly selected domain
other than currentDomain

end if
end for
return πΩ∗

Algorithm 2 shows the policy reuse algorithm used by a team’s leader robot.
The algorithm first updates the value of the discounted reward for each episode.
It then adds the most recent policy to the policy library for the current domain
and checks to see if the domain perceived by the robots is the same as the current
domain. If the domain has not changed, the most recently used policy is reused.
On the other hand, if the domain has changed, the policy that corresponds to
the maximum rewards obtained for episode in that domain is selected as the new
policy to use.



(a)

(b)

(c)

(d)

Fig. 4. (a) Effect of performing different actions AL(set qf = 0.9), AM (set qf =
0.5) and AS(set qf = 0.2) in different domains on the state of MDP(team coverage
efficiency of robots). (b)-(d) Corresponding state transition diagrams of the MDPs for
the different domains.



4 Experimental Results

4.1 Parameter configuration and simulation setup

We have tested our algorithms on the Webots robot simulation platform. Webots
allows realistic modeling of robots and environments including the parameters of
different sensors on robots and the physics of the environment. Each robot in our
simulated system is modeled as an e-puck robot with added on-board GPS and
compass for localization1. The speed of each wheel was set to 2.8 cm/sec, which
results in a robot covering an area of 0.07× 0.07meter2 under its own footprint
during each time step. Unless otherwise stated, the experiments are repeated
over 10 times with simulated physical robots for 30 minutes to 2 hours, and we
collected the average results as well as the maximum and minimum values. As
shown in Figure 5 (a)-(c), we tested our algorithm in the 2× 2 m2 environment
with 0%, 10% and 20% of the area of the environment occupied by obstacles.

For the Q-learning parameters, we set the discount factor γ = 0.95, and the
learning rate α = 0.05. The ε-greedy strategy was configured with ε0 = 0 and
△ε = 0.001. The number of time steps per episode H = 100.

4.2 Performance evaluation

The first set of experiments, we evaluated the performance of our algorithm
learning over time in the three scenarios of Figure 5 (a)-(c). As shown in Figure 6,
we test our policy reuse algorithm in an unknown environment without obstacles.
After 70 episodes, the accumulated average reward becomes unchanged around
0.86, which is a normalized value in the interval[0, 1]. In other words, the team
can achieve a high level percentage of the coverage after 100 episodes. Around
50 episodes, the system even achieved W (E) = 0.92, which corresponds to a
reasonably high coverage efficiency of the robot team. The value goes down,
for the environment is boundary by walls at four sides. Figure 7 and Figure 8,
the results are shown for the environments where 10% and 20% of the free space
from Figure 4 is occupied by obstacles. The accumulated average rewards of both
these environments become stable roughly around 0.84. As shown in Figure 8,
the curve becomes flat earlier than the other two cases, because the robot team
encounters obstacles earlier and learns to reuse the policies towards the starting
episodes. In all these three scenarios the robot team can gradually achieve a
high level percentage of the coverage after 100 episodes. In other words, our
Q-learning algorithm converges within a finite number of steps in different type
of environments.

The second set of experiments shown in Figure 9 give the improvement in
coverage achieved using the policy reuse and reinforcement learning algorithms
by a set of 5 robots, initially configured as a team. The robots are placed within
2 × 2 m2 with 20% of the environment occupied by obstacles. The experiment
results were collected after half an hour, an hour, an hour and a half, and two

1 For physical robots we use an overhead camera based system for localizing the robots.



(a)

(b)

(c)

Fig. 5. The environment is 2× 2 m2 arena (a) with no obstacles in it. (b) with 10% of
the arena’s area occupied by obstacles, (c) with 20% of the arena’s area occupied by
obstacles.
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Fig. 6. The accumulated average reward per episode in an environment without ob-
stacles.
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Fig. 7. The accumulated average reward per episode in an environment with 10%
obstacles.
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Fig. 8. The accumulated average reward per episode in an environment with 20%
obstacles.
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Fig. 9. Percentage of the environment covered by a set of 5 robots initially configured
as a team without and with the reinforcement learning algorithm. The environment is
2× 2 m2 with 20% of the environment occupied by obstacles. The results are collected
during half an hour, an hour, an hour and a half, and two hours
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Fig. 10. Percentage of environment covered by different numbers of robot with and
without the reinforcement learning algorithm. Each experiment was run for a period
of 30 minutes with 20% of the environment occupied by obstacles.

hours of simulation. The graph was drew with error bars at each point. We
observe that the robots using the policy reuse algorithm are able to improve
coverage by about 4− 8% at different time periods.

Finally, we quantify the effect of the team formation approach without and
with the reinforcement learning algorithm described in this paper, as shown in
Figure 10 with error bars. The compared approach uses fixed value of the quota
fraciton qf = 0.6. We report results from experiments with 5, 10, 15, 20 robots
each of which were deployed as teams of 5 robots within 2×2 m2 arena with 20%
of the arena’s area occupied by obstacles. Overall, the results of this experiment
suggest that robots that are running a policy reuse algorithm among themselves
produce better results for coverage if they can dynamically choose the optimal
policy from an earlier learning process.

5 Conclusions and Future Work

We have introduced a policy reuse reinforcement learning approach to address
the challenge for adaptive multi-robot team reconfiguration. First, this algorithm
learns to perform a task by using policies from the policy repository which is
built by former tasks in the same domain. Second, we integrated this online
reinforcement learning model with our former designed weighted voting game
mechanism for multi-robot team formation. By using this combined high level
intelligent hierarchy, a group of robots can not only choose who should be in the
team, but also find the best size of the team in an initially unknown complex



environment. We have implemented this approach on Webots robot simulation
and experiment results show it improve the coverage efficiency about 4 − 8%
than the weighted voting game mechanism with the predefined quota value.
Future ongoing research includes extension of this policy reuse model to multiple
teams of robots. We envision multiple robot teams can share and reuse policies
previously learned in different sub regions of an environment to learn a suitable
policy for a previously unvisited environment.
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Abstract. The problem of multiagent patrol has gained considerable
attention during the past decade, with the immediate applicability of
the problem being one of its main sources of interest. In this paper we
concentrate on frequency-based patrol, in which the agents’ goal is to op-
timize a frequency criterion, namely, minimizing the time between visits
to a set of interest points. We consider multiagent patrol in environments
with complex environmental conditions that affect the cost of traveling
from one point to another. For example, in marine environments, the
travel time of ships depends on parameters such as wind, water currents,
and waves. We demonstrate that in such environments there is a need
to consider a new multiagent patrol strategy which divides the given
area into parts in which more than one agent is active, for improving
frequency. We show that in general graphs this problem is intractable,
therefore we focus on simplified (yet realistic) cyclic graphs with possible
inner edges. Although the problem remains generally intractable in such
graphs, we provide a heuristic algorithm that is shown to significantly
improve point-visit frequency compared to other patrol strategies. For
evaluation of our work we used a custom developed ship simulator that
realistically models ship movement constraints such as engine force and
drag and reaction of the ship to environmental changes.

1 Introduction

The problem of multiagent patrol has gained considerable attention during the
past decade [6, 10, 3, 8, 4, 2, 1], with the immediate applicability of the problem
being one of its main sources of interest. The problem is formally described as
repeatedly visiting some interest points in order to monitor them. The points
may either be in a discrete environment, a continuous 1-dimensional environment
(along a line), or a continuous 2-dimensional environment (inside an area).1

The problem is usually divided according to the perspective of the agents. In
multiagent frequency-based patrol, the agents’ goal is to optimize some point-visit
criterion, for example minimizing the maximal time between visits to a point
(e.g. [6, 8]). In multiagent adversarial patrol the agents’ goal is to maximize their
chances of detecting an adversary that tries to penetrate through their patrol
path undetected (e.g. [4, 1]).

1 Of course higher dimensions are also possible.



In this paper we concentrate on the continuous 2-dimensional frequency-
based multiagent patrol problem, with discrete points of interest, in complex
environmental conditions. In this problem, we are given a graph G = (V,E),
and we need to define patrol paths for a team of k agents that will minimize the
maximal time some vertex of the graph is left unvisited. The complexity of the
environment is expressed via the cost of travel between each pair of vertices of
the graph.

Consider the problem of ship patrol, i.e., patrol by agents (ships) in marine
environments. When designing algorithms for ships in such environments, it is
critical to consider the impact of the environment and the specifications of the
ship on the behavior of the ship that might also change over time. In our case, we
incorporate the shape and engine power of the ship, and environment conditions
such as water currents and winds in modeling the environment as graphs, namely
in its affect on the cost of travel between vertices of the graph.

Current strategies for multiagent patrol offer, roughly, two alternatives for
agents’ patrol paths. The first strategy, denoted herein as SingleCycle, is to create
one simple cyclic path that travels through the entire area (graph), and to let all
agents patrol along this cyclic path while maintaining uniform distance between
them [8, 6]. The second strategy, denoted herein by UniPartition, is to partition
the area (graph) into k distinct subareas, where each agent patrols inside one
area.

We suggest a third, general, strategy, denoted by MultiPartition, in which
the graph is divided into m subgraphs, m ≤ k, such that a subteam of agents
jointly patrols in each subgraph. We define the problem of finding k (possibly
overlapping) paths for the agents such that the maximal time between any two
visits at a vertex is minimized, and show that the problem is NP-Hard. The
SingleCycle and UniPartition strategies, as special cases of MultiPartition, are also
intractable in general graphs.

An additional version of the problem, in which the graph is to be divided
into m disjoint cycles, where the k agents are divided among the cycles, is also
intractable in general graphs. We therefore investigate the problem on a special
family of graphs, which are cyclic graphs with non intersecting shortcuts (di-
agonals), called outerplanar graphs [5]. This simplified, yet realistic, family of
graphs have some characteristics that can be of help when looking for optimal
solutions to the multiagent patrol problem. For example, an optimal SingleCycle
strategy is unique and can be found in linear time. Unfortunately, the time com-
plexity of the general problem of finding an optimal MultiPartition strategy even
in such graphs appears to be intractable as well. We therefore suggest a heuristic
algorithm HeuristicDivide for finding a partition of the graph into disjoint cycles
in the outerplanar marine environment, and a partition of the k agents among
those cycles.

For evaluation of our work we used a custom developed ship simulator,
OurSim, that was designed to realistically model ship movement constraints in
marine environments. OurSim simulates the specifications of the ship, namely,
the weight, engine power, and shape of the ship; and how it is influenced by
the environmental conditions, including water, currents and winds. We first



show that in a simple scenario in which the optimal MultiPartition strategy
is easily computable, it outperforms the other two strategies (SingleCycle and
UniPartition). We then show that in a more complex environment, our heuristic
algorithm HeuristicDivide, following the MultiPartition strategy, performs signifi-
cantly better than the tractable SingleCycle strategy.

2 Related Work

The problem of multiagent patrol can be roughly divided into two problems:
multiagent frequency-based patrol (e.g. [10, 6, 8]), and multiagent patrol in ad-
versarial environments (e.g. [1, 4]). The problems differ in the objective function
that should be optimized, namely optimizing frequency-based criteria or opti-
mizing probability of detecting events controlled by an adversary (respectively).
In this paper we focus on the problem of frequency-based patrol, in which we
aim at minimizing the time between two visits at a point.

Mechado et al. [10] were the first to define the problem of multiagent pa-
trol in graph environments, and introduced the notion of idleness, meaning the
time between two visits in a vertex of the graph. They consider environments
with uniform length edges, and perform an empirical evaluation of various ar-
chitectures for multiagent patrol in different graphs. Generally, they distinguish
between reactive and cognitive agents, where the former are locally-driven agents
using minimal coordination (if any), and the latter might try to use global state
while deciding their next move. They did not theoretically define nor evaluate
the multiagent patrol problem on graphs, nor did they consider complex envi-
ronments.

The first theoretical analysis of the problem of multiagent patrol was given by
Chevaleyre [6]. Chevaleyre refers mainly to the worst idleness criterion, which
is the largest amount of time that some vertex remained unvisited through-
out the execution of the patrol algorithm. He discusses two possible strategies: a
Cyclic strategy, in which one cyclic path travels through the entire graph, and all
agents follow this path (denoted by SingleCycle) and a Partition-based strategy,
in which the graph is partitioned into k distinct subgraphs (k being the number
of agents), where each agent visits one subgraph in a cyclic tour (denoted by
UniPartition). He analyzes the idleness criterion in each of these strategies, using
an approximation algorithm to the Traveling Salesman Problem (TSP) under
the assumption that the triangle inequality holds. In our work we redefine the
multiagent patrol problem in a more general form, in which the graph is pos-
sibly partitioned into disjoint subgraphs, however agents can share a subgraph
(denoted by MultiPartition). In addition, we do not assume that the triangle in-
equality holds (as in many realistic scenarios this assumption is not true). This
general definition includes also the two strategies proposed by Chevaleyre as
subcases, i.e., SingleCycle,UniPartition ⊆ MultiPartition.

Ahmadi and Stone [2] investigated the multiagent patrol problem in prior-
itized environments, i.e., where different areas require different attention from
the agents. They suggest a new, learning-based method for determining the op-
timal patrol path for each robot, which is adapted to the different constraints of



the environment. In this paper we consider nodes with uniform priority, i.e., all
nodes should have minimal possible idleness.

Multi-robot patrol in areas was considered by Elmaliach et al. [8], which
offered an optimal patrol algorithm using a cyclic strategy, i.e., one cyclic path
with minimal cost passes through the entire area, and all robots coordinatedly
travel along this path. Their solution assumes that the area and the size of
the robots meet several constraints, allowing them to find an optimal solution
(minimal cost cyclic path) in polynomial time.

Elmaliach et al. [9] considered the problem of frequency-based multi-robot
patrol along an open fence, where they evaluated their patrol algorithm according
to different frequency criteria. They offer a model for determining the patrol
path of the robots in this asymmetric environment, which takes into account
the motion model of the robots (acceleration and velocity changes, and error
in motion). This model results in a realistic cost of travel along the fence. In
our work we consider the case of uncertain cost of travel that depends on the
environment, and is updated during the patrol execution (rather than fixed in
advance given the physical constraints of the robots). Moreover, both the general
graph model and the restricted outerplanar graph model pose a considerable
challenge compared to the linear environment of a fence, due to the number of
new possibilities of patrol paths for the robots.

Recent work by Marier et al. [11] describe a solution to multiagent patrol on
graphs with non-uniform weights on the vertices of the graph, corresponding to
the importance of the node. They offer two algorithms for patrolling. The first
is reactive (based on consequences calculated for a very limited horizon) and
the second is based on an online heuristic algorithm for solving POMDPs. They
describe the problem as information gain (rather than idleness), and examine
the performance of their heuristic algorithms with respect to the known (or
unknown) duration of the patrol. They do not consider uncertainty in travel
time, nor do they refer to the graph theoretic problem.

3 Motivation - Ship Patrol and Marine Environment

As surveyed in Section 2, the problem of multiagent patrol has become a canon-
ical problem in multiagent (and specifically multi-robot) systems in the past
several years. In this paper, we investigate this problem in a realistic ship sim-
ulator that we have designed in our lab and that introduces important new
travel-time constraints to the problem. (a technical description of the simula-
tor is given in Section 5). The general problem defined in graph environments
requires a team of k agents to repeatedly visit all N nodes of the given graph
while minimizing the longest time a node has remained unvisited by some robot.
We first look into the simplest scenario found in the literature, namely patrol in
circular environments. In such environments, the patrol path is linear and the
algorithm that optimizes point-visit frequency was shown to be an algorithm
that requires all robots to travel in a coordinated manner and maintain uniform
(time) distance between each neighboring pair of robots along the path (e.g. [6,
8]).



After implementing a simple scenario, in which three ships patrol along a
cyclic path in order to optimize point-visit frequency over a set of 10 points
(see Figure 1), we discovered several interesting phenomena. First and foremost,
we saw that in environments in which the cyclic path is not along a perimeter
of some closed structure (for example airports, prisons and military bases), it
is necessary to consider paths that create shortcuts between point of interest,
and allow traveling from one point to another that are not necessarily along
the cyclic path. Moreover, even in such environments (especially military bases,
factories and airports), there usually are roads going through the closed area,
creating shortcuts in transitions between points along the perimeter. Second,
when we applied different water current and wave conditions, the cost of traveling
(corresponding to travel time) along some edges of the graph became very high,
encouraging the use of the shortcuts for traveling between points of interest. We
examined solutions that exist in the literature for defining optimal patrol paths
for a team of robots, and found only the SingleCycle and UniPartition solutions,
which consider the entire cyclic path, or divide the patrol paths into k areas,
each under the responsibility of a single agent (respectively).

In the example illustrated in Figure 1, we examined two scenarios. In the
first we had no currents or winds (a “clean” environment), and in the second
we introduced winds and currents, specifically currents between points p2 and
p3, and between points p6 and p7. The travel time between p2 and p3 and be-
tween p6 and p7 (in both directions) is, therefore, very high. The worst idle-
ness results we describe here are calculated by averaging the idleness of each
point along a 10 minute execution of the patrol in the simulator, and choosing
the point with highest average idleness value. In the first (clean) environment,
when the three ships executed the SingleCycle strategy, we got an average worst
idleness of 651 seconds. When dividing the set of 10 points among the three
ships, where one ship patrols along points p3, p4, p5, p6 in a circular path, and
the other two ships divide the remaining points between them (the UniPartition
strategy) we get worst idleness of 786 seconds. However, when looking closely
at this example, it can be clearly seen that there exists another possibility: let-
ting one ship patrol along p3, p4, p5, p6, and having the other two share the cycle
p1, p2, p7, p8, p9, p10 and patrol, coordinatedly, with uniform time distance be-
tween them (the MultiPartition strategy). By executing this algorithm, we got
worst idleness of 614 seconds, a major improvement compared to the previous
two strategies. This improvement becomes more substantial when we examine
the situation with currents. Now, the SingleCycle strategy yields worst idleness
of 795 seconds, the UniPartition yields worst idleness of 792 seconds, and the
MultiPartition strategy yields worst idleness of 613 seconds (note that in the last
two cases there is no significant change from the clean environment, as the ships
did not travel through the stormy weather, i.e., where the strong currents are).

This example, along with other similar phenomena we have viewed in our
simulator, motivated us to redefine the problem of multiagent patrol in a more
general form, denoted as MultiPartition, and discuss possible solutions to the
problem in circular environments, but with additional shortcuts between the
points of interest.



Fig. 1: An example of a scenario handled by the simulator. The circles represent the
points of interest (nodes of the graph), and the drop shapes are the ships. The large
grey shapes are obstacles, and the drawn arrows indicate the direction of the water
current.

4 Problem definition and complexity

In this section, we define the general problem of multiagent frequency based
patrol on general graphs. We describe the decision version of the problem, where
the input is the graph G = (V,E) (|V | = N), an integer k < N that corresponds
to the number of agents, and an integer f which is the maximal worst idleness,
i.e., the maximal requested idleness from all vertices of the graph (similar to
the definition in [6]). Formally, if fi denotes the idleness of a vertex vi, then the
worst idleness of the graph G, wi(G), guaranteed by an Algorithm A is defined
as wi(G) = max1≤i≤N{fi}.

Note that real world constraints dictate modeling the world with directed
graphs, i.e., the travel time from a vertex v to a vertex u is not necessarily the
same as that from u to v. However, we assume that the graph is symmetric, i.e., if
an edge exists from v to u, then an edge exists also from u to v (not necessarily of
the same cost). We therefore describe the general problem on undirected graphs.
Once a cycle is defined, the algorithms will decide whether to go clockwise or
counterclockwise along the cycle, depending on the direction that has lower cost.

4.1 Multiagent patrol in general graphs

Definition: Multiagent Graph Patrol (MGP)
Given a graph G = (V,E,C) where |V | = N , and ∀(vi, vj) ∈ E, cij ∈ C is the
associated cost of the edge, an integer k < N denoting the number of agents, and
a desired maximal worst idleness target f , is there a division of V into m ≤ k



cyclic paths V1, V2, . . . , Vm (not necessarily simple), each assigned with ki agents
such that all ki agents visit all vertices in Vi and

∑m
i=1 km = k, such that the

worst idleness wi(G) is at most f?
In the following theorem we show that the MGP problem is NP complete for

general k’s.

Theorem 1. The MGP problem is NP complete.

Proof. First, the MGP problem is in NP, since given a solution, i.e., a division
of the graph into m paths, it is possible to verify whether wi(G) is indeed f
using a variation of the Algorithm AssignKAgents. MGP is NP-Hard for general
k by a simple Turing reduction from the decision version of the graphical trav-
eling salesman problem (GTSP ). Specifically, we can find whether there exists
a minimal tour of size at most f that travels through all nodes in the graph at
least once by solving the MGP problem given f as input, and k = 1.

In our work, we would like to consider a special case of the MGP problem,
in which each path V1, . . . , Vm is a simple cycle, i.e., it is a closed path with no
repeated vertices. Moreover, we restrict our attention to sets of distinct paths
that do not share any vertices, i.e, V = V1

⊕
V2

⊕
. . .

⊕
Vm (distinct simple

cycles). This problem handles restrictions that are more suitable for realistic
robotic environments, in which two requirements are met:

1. Two robots will not meet during the execution of the algorithm, thus will
not interfere with one another during the patrol.

2. Robots will not need to interact outside of their subteam, i.e., the patrol
algorithm requires only local coordination (unless the environment changes
the optimality of the current patrol algorithm). Moreover, if different human
operators observe each subteam, it does not require continuous coordination
among the human operators.

The formal definition of the problem is as follows.

Definition: Multiagent Cyclic Graph Patrol (MCGP)
Given a graph G = (V,E,C) where |V | = N , and ∀(vi, vj) ∈ E, cij ∈ C is the
associated cost of the edge, an integer k < N denoting the number of agents and
a desired maximal worst idleness target f , is there a division of V into m ≤ k
distinct simple cycles V = V1

⊕
V2

⊕
. . .

⊕
Vm, each cycle Vi assigned with ki

agents coordinatedly traveling along Vi and
∑m

i=1 km = k, such that the worst
idleness wi(G) is at most f?

The MCGP is a special case of the MGP, in which the cyclic paths are re-
quired to be disjoint, and each cycle is simple (with no repeated vertices). The
NP-Hardness proof resembles the proof for the MGP problem, thus we conclude
the following.

Corollary 1. The MCGP problem on general graphs is NP-Hard.

We can define the worst idleness in this problem as follows. If k′ agents
visit a cyclic path, denoted by V C , where V C = {vi1 , vi2 , . . . , vil}, vij ∈ V (G),



(vij , vij+1modl
) ∈ E(G), and denote the total weight of edges in the cycle by

w(V C) =
∑l

h=1 ciji(j+1modl)
, then ∀vij ∈ V C , fij = w(V C)

k′ . Therefore if G is

divided into m distinct cycles, where each cycle V C
i is visited by ki agents, then

wi(G) = max1≤i≤m{w(V C
i )

ki
}.

Algorithm AssignKAgents (described below) is given as input m cyclic
paths, an integer k corresponding to the number of agents, and a maximal
idleness f , and has to answer the question of whether k agents are sufficient to
guarantee a maximal idleness of f on the given graphs. It returns the assignment
of number of agents per graph (K = {k1, . . . , km} such that

∑m
i=1 ki = k and ki

agents are necessary to visit Gi in order to guarantee minimal idleness f) and the
maximal idleness guaranteed by this assignment (floc). Denote the edges along
the cyclic path Gi in clockwise direction by Gcw

i and in the counterclockwise
direction by Gccw

i . The algorithm will work for either symmetric directed graphs
(in which it will refer to the direction with minimal cost — either going clockwise
or counterclockwise) or undirected graphs (in which w(Gcw

i ) = w(Gccw
i ) where

w() is the cycle weight, or length, function).

Algorithm 1 < K, floc > = Algorithm AssignKAgents({G1, . . . , Gm}, k, f)
1: C ← 0, K ← ∅
2: for i← 1, . . . ,m do
3: wi ← min{w(Gcw

i ), w(Gccw
i )}

4: ci ← argminGcw
i ,Gccw

i
{w(Gcw

i ), w(Gccw
i )}

5: ki ← ⌈wi/f⌉
6: if ki > k then
7: Return ∅
8: end if
9: K ← K

∪
ki, C ← C

∪
ci

10: k ← k − ki
11: end for
12: floc ← max1≤i≤m{w(C[i])/K[i]}
13: Return K, floc

4.2 The multiagent patrol problem in outerplanar graphs

Motivated by the problem of multi-robot perimeter patrol (e.g. [1]), we examine
the MCGP problem in circular environments. However, we add more realistic
considerations to the environment, namely adding possible shortcuts between
vertices that pass inside the circle. To avoid possible interference by agents that
travel along the edges, we require the inner edges not to intersect one another.
The resulting graph is planar, and moreover, it is a biconnected outerplanar
graph [5], i.e., it is a planar graph that is cyclic, and there are no nodes that are
inside the cycle (all nodes in the graph are on the same outer face).

An example for such a graph is shown in Figure 2. In this example, if an
edge existed between v4 and v11, then the graph would not be planar (as the



edge (v5, v11) crosses the edges (v6, v12) and (v8, v12)). Also, if an edge existed
between v13 and v11, then the graph would remain planar, but would not be
outerplanar (as v12 is not adjacent to the outer surface anymore).

In the family of outerplanar graphs, several hard problems become very easy
to solve. For example finding a Hamiltonian cycle is done in linear time, as the
only possible simple cycle that visits all nodes in the graph is the external cycle.
Therefore also finding the optimal SingleCycle strategy is done in linear time, as
the solution is unique. Another interesting characteristic of outerplanar graphs is
that every subgraph of an outerplanar graph is outerplanar, thus a biconnected
component of a subgraph of an outerplanar graph also has a unique Hamiltonian
cycle ([5]).

v

v3

4v v5
6v

v7

8v v9

10v

v11

12v

v13

14v

v15

v

2

1

Fig. 2: An outerplanar graph: The vertices of the graph (points of interest for the
agents along the patrol) are all adjacent to one external face, and the inner edges
(shortcuts) do not intersect.

We draw a connection between disjoint cycles and biconnected components
in Lemma 1. Generally, a biconnected component in an outerplanar graph has
a unique Hamiltonian cycle, which is the outer-cycle that visits all vertices. We
would therefore like to find a way to use this property in order to find disjoint
cycles, as defined in the MultiPartition strategy. As a first step, we look at the
case of dividing the graph into two disjoint cycles. We show in the lemma that
in order to find such disjoint cycles, it is sufficient and required (in the general
case) to consider all biconnected components that are created by the removal of
two edges from the graph. We later use this property in the heuristic algorithm
for solving the MCGP problem in outerplanar graphs.

Consider the outerplanar graph G = (V,E) in Figure 2. We will demonstrate
why the removal of only one edge might not result in all disjoint cycles, and



how we can achieve either two or three disjoint cycles by removing every pair of
edges. First, by removing only one edge e ∈ E and computing the biconnected
components in the remaining graph G = (V,E \ {e}) it would be impossible
to get the division of the graph into the two disjoint cycles V C

1 = (v9, v10, v11)
and V C

2 = G \ V C
1 : Removing (v8, v9) would result in the biconnected com-

ponents {v9, v10, v11} and {v1, . . . , v8, v11, v12, . . . , v15}, which are not disjoint,
thus their Hamiltonian cycles are not disjoint. The removal of (v8, v11) results in
one biconnected component (thus cycle) G, and the removal of (v11, v12) results
in the cycles {v8, v9, v10, v11} and {v1, . . . , v7, v8, v12, . . . , v15}, which are again
not disjoint. Therefore by removing only one edge we could not get the disjoint
cycles V C

1 and V C
2 . However, by removing (v8, v9) and (v8, v11), this division

is achieved. Note that the removal of the pair of edges (v2, v3) and (v4, v5) re-
sults in three disjoint biconnected components (thus cycles): {v1, v2, v14, v15},
{v3, v4, v13} and {v5, v6, . . . , v12}.
Lemma 1. Given a biconnected outerplanar graph G = (V,E), each division
of G into two disjoint biconnected components can be achieved by removing one
pair of edges and computing the biconnected components of the remaining graph.
If removing one pair of edges, the number of remaining disjoint biconnected
components (excluding disconnected vertices) will not exceed 3.

Proof. We first show that two disjoint biconnected components V C
1 = {v1, . . . , vl}

and V C
2 = {u1, . . . , uh} in an outerplanar graph G can be connected by either

two or three edges. First, assume that V C
1 and V C

2 are connected by only one
edge (vi, uj), vi ∈ V C

1 and uj ∈ V C
2 . Therefore both vi and uj are articulation

vertices (their removal disconnects the graph), contradicting the nonseparability
characteristic of the biconnected graph G.

We now show that V C
1 and V C

2 cannot be connected by more than three
edges. Without loss of generality, assume that both V C

1 and V C
2 vertices are or-

dered clockwise in ascending order, and that V C
1 is left of V C

2 . Therefore, since
G is outerplanar, two edges connecting V C

1 and V C
2 are necessarily (vi, uj) and

(vi+1, uj+1). Moreover, there cannot be any other edge (v, u) connecting V C
1 and

V C
2 such that v /∈ {vi, vi+1} and u /∈ {uj , uj+1}, otherwise some vertex v′i ∈ V C

1

and/or u′
j ∈ V C

2 are not adjacent to the outer face, contradicting the outerpla-
nar definition of G. Therefore the only possible edges connecting the two dis-
joint components are between vertices vi, vi+1 and uj , uj+1. Since an outerplanar
graph cannot have a subgraph that is a clique of size 4 [5], and since necessarily
(vi, vi+1) ∈ E, (uj , uj+1) ∈ E and we’ve shown that (vi, uj), (vi+1, uj+1) ∈ E,
then there could exist only one more edge connecting the two components: either
(vi, uj+1) or (vi+1, uj), but not both.

Since two disjoint biconnected components can be connected by at most
three edges, by removing every possible pair of edges from the graph, at some
point we will necessarily remove two of the connecting edges of V C

1 and V C
2 ,

resulting in two disjoint biconnected components. Moreover, the removal of one
edge can result in dividing the graph into two disjoint components only if these
components are connected by only two edges. Therefore, removing a pair of
edges can result in up to three biconnected components (cycles) and no more
than that.



This lemma results in the fact that finding two disjoint cycles (and possibly

3) in a graph can be done efficiently in time complexity of at most
(|E|

2

)
. Since

finding the partition of k into two (or three) components is done efficiently as
well, the MCGP problem can be solved optimally in polynomial time if m is
restricted to be 2.

Corollary 2. In an outerplanar graph G = (V,E), finding a division of the
graph into up to two disjoint simple cycles V C

1 and V C
2 such that V = V C

1

⊕
V C
2

and wf(G) (for any value of k) is minimized can be done in polynomial time,
using Algorithm DivideTo2Cycles.

Algorithm DivideTo2Cycles receives as input the graph G = (V,E) and the
maximal frequency criterion f that should be met, and returns the best division
of the graphs into two components such that the division results in maximal
idleness of at most f . If no such division exists, it returns the empty set. Note
that in order to get all possible divisions of G into two disjoint cyclic paths, the
algorithm should be given the value f = w(G)/k. The algorithm removes all
possible pairs of edges from the original graph, and computes the biconnected
components of the remaining graph. For those biconnected components, it checks
whether there is an assignment of k into those biconnected components such that
the maximal idleness of the graph is at most f , using Algorithm AssignKAgents.
By Corollary 2, the algorithm examines all possibilities of dividing the graph into
two cycles (which has time complexity ofO(|E|2)). Since checking all possibilities
of partitioning the number k into at most 3 components is polynomial in k,
and determining the idleness is linear in |E|, then the total time complexity of
Algorithm DivideTo2Cycles is O(|E|3).

Algorithm 2 S = Algorithm DivideTo2Cycles(G = (V,E), f, k)

1: S ← ∅
2: for Every pair of edges ei = (vi, ui) and ej = (vj , uj), ei, ej ∈ E do
3: E′ ← E \ {ei, ej}
4: U ← biconnected components of G′ = (V,E′)
5: if < K, floc >= AssignKAgents(U, k, f)! = ∅ then
6: floc ← optimal assignment of k agents to U
7: S ← S

∪
{< U,K, floc >}

8: end if
9: end for
10: Return S[i] for which floc is minimal

As shown by de Mier and Noy [7], the number of cycles in a maximal out-
erplanar graph is exponential in the number of vertices of the graph, thus if we
need to examine all possible sets that generate a direct sum of V it will result
in at least an exponential time complexity. We therefore believe (although not
proven) that the MCGP problem, also in the simple biconnected outerplanar en-
vironment, is intractable, as the number of all possibilities of the division of the
graph into up to k subgraphs grows exponentially with k.



We therefore describe a heuristic algorithm, Algorithm HeuristicDivide, for
finding a division of the graph into disjoint cycles.

4.3 Heuristic algorithm for multiagent patrol in outerplanar graphs

We describe in this section a heuristic algorithm, Algorithm HeuristicDivide, for
finding a set of any number of disjoint cycles in an outerplanar graph (based
on Algorithm DivideTo2Cycles), and dividing the k agents between these disjoint
cycles in a way that aims to find a low overall maximal idleness.

The algorithm applies algorithm DivideTo2Cycles once, then further applies
itself recursively on each element of the set of disjoint biconnected components
that yield lowest idleness. In this way it performs a greedy heuristic search
and halts once it completes all possible divisions up to k cycles. The algorithm

receives as input the graph G, the number of agents k, and f = w(G)
k .

Note that once the cycles, the direction of travel along the cycles, and the
division of the agents among the cycles are determined, it is only left to distribute
the agents along the cycles (number of agents per cycle as determined by the
algorithm), and require the agents in each cycle to maintain uniform distance
between them and continue traveling coordinatedly along their circular path.

Algorithm 3 Algorithm HeuristicDivide(G = (V,E), f, k)

1: ResSet← DivideTo2Cycles(G, f, k)
2: if ResSets = ∅ then
3: Return G
4: end if
5: CurChoice = argmin<Ui,Ki,fi>∈ResSet{fi}
6: Return

∪
Gi∈U(CurChoice) HeuristicDivide(Gi,Ki, fi)

Time complexity of Algorithm HeuristicDivide:
The time complexity of HeuristicDivide is defined by two components: The depth
of the search and the time to process each level of the search tree. Since at each
step we deepen the recursion we lose at least one vertex (as the minimal division
to two distinct cycles is to a vertex v and to a cyclic graph G \ {v}), the depth
of the tree is at most k − 1. The time complexity of AssignKAgents is linear in
the number of edges, and the complexity of finding biconnected components is
also linear in outerplanar graphs. Therefore the complexity of examining each
pair of edges is O(|E|). When we go down in the recursion, if E is divided
into up to three disjoint biconnected components E1, E2 and E3, then we have
complexity of O(|E1|2 + |E2|2 + |E3|2) where 0 ≤ |E1| ≤ |E2| ≤ |E3| < |E| and
|E1|+ |E2|+ |E3| = |E|. Therefore, since O(|E1|2 + |E2|2 + |E3|2) < O(|E|2) it
leads to a total time complexity of O(k|E2|).



5 Empirical evaluation

We evaluated HeuristicDivide under realistic marine environment using our novel
OurSim Simulator. In the following section we describe the simulator, the exper-
imental setting and the empirical results from executing the patrol algorithms
described above.

5.1 The OurSim Simulator

For our experiments, we use a custom-designed naval surface navigation simula-
tor that will soon be open-source, that we call OurSim.2 The OurSim simulator
is written as a supporting platform for research on autonomous sea navigation.
It uses realistic 2D physical models of marine environments and sea vessels,
and runs both in GUI and in non-GUI modes. Figures 1 and 3 show snapshot
of the simulator’s GUI (with blue highlights added), taken during a real-time
simulation, which animates navigating ships from a top view.

The simulator’s core contains three main modules: a Sea Environment mod-
ule, a Ship module, and a Decision-Makingmodule. The sea environment module
includes models of winds, water currents, waves, and obstacles. The ship mod-
ule models all relevant aspects of a ship, including the ship’s physical properties,
sensing capabilities, and ship actuators. The decision making-module implements
an agent that controls a ship autonomously. At each time step, the agent receives
the perceptions sensed by the ship, processes them to update its current world
state, and decides on control actions for the ship based on its current world state
and its decision-making strategy.

All of the above components are plug-and-play: each one can easily be re-
placed by a component of the same type that uses alternative modeling. This
includes the agent’s perception processing algorithms, world model, and decision
making strategy; the ship’s model; and the different environmental models.

5.2 Experimental Setting and Results

In our experiments, we examined several different environments. Due to space
constraints, we describe one interesting environment, in which the graph is out-
erplanar with a large number of possible division of the graph into disjoint cycles.
The marine environment was implemented in OurSim, and illustrated in Fig-
ure 3 (distances are shown in meters). In this environment, N = |V | = 36, and
the number of ships (k) varies from 1 to 30. Although the points of interest
are arranged in two straight lines, this environment can become equivalent to
many realistic cases by controlling the currents between nodes thus controlling
the edge lengths. Moreover, this environment can represent a man-made group
of points of interest, for instance a sequence of oil rigs.

We examined four different scenarios, where in each one the sea conditions
were different. In the first environment (denoted as Sea Condition 0), there
were no currents and the cost of traveling between two points correlates to the

2 Name removed for blind review.



Fig. 3: The evaluation environment.

geographical distance. We then gradually added more currents to the system
with three different strengths - Sea Condition 1, 2 and 3, for weak, medium
and strong, respectively, where their directions was as shown in Figure 3. We
ran Algorithm HeuristicDivide initially with the worst idleness of ∞ and let it
find the best division it can. We then simulated the patrol-division returned by
the algorithm for 20,000 seconds (333 minutes), and reported the worst node-
idleness, i.e., the highest average time between consecutive node visits, for any
node. Note that in all the results, lower values are better.

Figure 4 shows the worst idleness resulting from HeuristicDivide when running
on sea conditions 0–3. Note that in Sea Condition 0 (no currents) the algorithm
always returned the SingleCycle strategy, which is indeed the best division for
the case of no currents. As expected, the worst idleness becomes higher as the
sea conditions become rougher.

In order to evaluate the performance of our algorithm, we compared its worst
idleness with the worst idleness of the following:

1-Loop The result of the SingleCycle strategy, i.e., a patrol algorithm that in-
structs all ships to patrol around the cycle while maintaining uniform dis-
tance between adjacent pairs.

k+1 Incremental change. In this case, we assumed the HeuristicDivide algorithm
was computed for k ships, and upon the arrival of a new ship it is added to
the cycle with highest worst idleness (for the best improvement in idleness).
This is compared to running HeuristicDivide with k+1 ships, and the goal is
to check whether HeuristicDivide, as a heuristic algorithm, does better than
just a straightforward increment.

k-1 Decremental change. In this case, we assumed the HeuristicDivide algorithm
was computed for k+1 ships, and a ship needs to be removed from the system.
We assume that in this case a ship is removed from the cycle with best worst
idleness (for minimal increase in the worst idleness). This is compared to
running HeuristicDivide with k − 1 ships, again with the goal of checking
whether HeuristicDivide does better than just a straightforward adjustment.



Fig. 4: The worst idleness returned from Algorithm HeuristicDivide in the four different
sea conditions examined.

The results are shown in Figures 5, 6 and 7 for Sea Conditions 1, 2 and
3, respectively. Note that since for Sea Condition 0 HeuristicDivide’s solution is
always the SingleCycle strategy, for every given k HeuristicDivide’s solution is
identical to the 1−loop, k + 1 and k − 1 solutions.

In Sea Conditions 2 and 3, algorithm HeuristicDivide performs statistically
significantly (using paired t-test) better than the 1−loop algorithm and the in-
cremental k + 1 and decremental k − 1 cases, with p-values < 0.002 for Sea
Condition 3 (in all cases) and p-value < 0.04 for Sea Condition 2 (in all cases).
In Sea Condition 1, although the results are generally better, no significant re-
sults are achieved. Interestingly, there are some cases in which 1−loop slightly
outperforms HeuristicDivide, even though HeuristicDivide (theoretically) does not
divide a cycle into smaller cycles unless it improves the worst idleness. The rea-
son for that lies in the fact that deciding whether to break a big cycle into
smaller cycles is done using an estimation of the cost of traveling along an edge,
by averaging across simulations of ships patrolling along the edges of arbitrary
paths, which are usually different then the paths found by HeuristicDivide’s so-
lution. For instance, consider the case where the final solution requires a 180◦

turn towards the next point. The physics of the ship movement dictates the ship
to travel in an arc, which makes the path to the next point longer than its esti-
mate. We leave the incorporation of the cost of traveling along angular paths in
HeuristicDivide to future work.



Fig. 5: The results of HeuristicDivide, 1−loop, k+1 and k−1 in Sea Condition 1 (weak
currents).

Fig. 6: The results of HeuristicDivide, 1−loop, k + 1 and k − 1 in Sea Condition 2
(medium currents).



Fig. 7: The results of HeuristicDivide, 1−loop, k+1 and k−1 in Sea Condition 3 (strong
currents).

6 Conclusions and Future Work

In this paper we introduced a new class of strategies for the frequency-based mul-
tiagent patrol problem suitable for multiagent patrol in complex environmental
conditions. In this new strategy class, which we call MultiPartition, a graph is
divided into disjoint cycles in which a subteam of the agents travel coordinat-
edly such that the maximal time between visits to interest points is minimized.
This strategy class is a generalization of existing strategies that either create
one cyclic path throughout the entire graph (SingleCycle strategies) or divide
the graph into k disjoint subgraphs (k being the number of agents), where each
agent patrols in its own subgraph—the UniPartition strategy. We showed that
finding an optimal strategy to the problem is NP-Hard in the general case, and
also intractable in a realistic simplified family of outerplanar graphs. We then
introduced a heuristic algorithm that divides the outerplanar graph into disjoint
cycles. We evaluated our heuristic algorithm in a custom-developed ship simula-
tor that realistically models ship movement constraints such as engine force and
drag, and reaction of the ship to environmental changes. Results indicate that
this algorithm significantly improves the frequency of visits compared to other
known patrol strategies.

This paper opens up several directions for future work. First, it would be
interesting to consider the problem of multiagent patrol in prioritized environ-
ments, i.e., where vertices of the graph should be visited with different frequen-
cies. Second, we intend to add more learning methods for determining the cost
of travel, especially in prioritized environments. From a larger perspective, this



paper raises the challenge of finding effective heuristics for the MultiPartition
problem on general graphs.
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Abstract. The problem of robot navigation is a fundamental problem
for every mobile robotic system: How to make a robot travel from point A
to point B on a given map with maximal efficiency. The problem is easily
solvable if the robot has means to determine its current location with
respect to the world. However, when this is not the case, for example for
robots with weak sensing capabilities, this problem becomes non trivial
and even impossible to solve. In this paper we consider the problem of
robot navigation with weak sensors, for example sonar. If a robot travels
without sensing its destination, it will not necessarily reach its target,
but arrive within some proximity to it. We model this error in movement,
and along with an evaluation of the environment produce a stochastic
graphical representation of the possible ways the robot can travel in the
given area. Based on this graph, we determine the optimal navigation
path for the robot, i.e., a path that maximizes the probability that the
robot will reach its destination.

1 Introduction

The problem of robot navigation is a fundamental problem for every mobile
robot: How to make a robot travel from point A to point B on a given map
with maximal efficiency. Solving the problem of robot navigation can be trivial
if the robot has means to determine its position in the world at any time by
using, for example, reliable sensors. However, in some cases localization means
are nonexistent (for example the use of a GPS in indoor environments) or costly
(for example the use of laser sensors). In these cases, the problem of robot
navigation becomes far more complicated, even when a map is given, and in some
cases impossible. The main objective of this paper is to determine a quantitative
measure for determining the possibility of navigating in indoor environments
given a map for a robot without perfect localization, and to find a navigation
path that maximizes the chances of arriving at the destination point safely.

The growing use of robots in indoor domains, for instance vacuum cleaning
and robotic toys, requires the use of inexpensive components in the robots, to
make them financially accessible for mass production and retail. In addition,
robots might be required to have low power consumption in other robotic appli-
cations such as military use or search and rescue. Specifically, the robots should
be able to perform their tasks with low-quality sensors, for example sonar/IR sen-
sors. Consequently, algorithms for such robots are generally straightforward and



do not require the robots to exercise navigation skills. By developing navigation
skills for such robots, the possible use of the robots could enhance significantly,
potentially resulting in more efficient algorithms for general tasks such as area
sweeping.

For a robot that has poor sensing capabilities, moving from a point p to point
q that is not under its sensorial range, will usually be done with movement error,
i.e., the robot will not necessarily arrive at q, but will reach some point that could
be anywhere from a close proximity to q to a completely distant location. Our
goal is, therefore, to determine a path for a robot from a given point A on the
map to a destination point B such that the probability that we can assure it will
arrive at B is maximized.

We describe a probabilistic movement error model of the robot that captures
its actual movement model, along with its errors. We then use this model to find
the optimal direct destination point for each pair of points (p, q) in the map, that
maximizes the probability of arriving at q (thus minimizing the probability that
the robot will get lost along the way from the origin to the destination point).
After determining the optimal direct link from a point to its destination, we can
determine a path from the origin source point A to the destination point B that
maximizes the probability of safe arrival of the robot, i.e., solve the navigation
problem optimally.

The solution to the problem is, therefore, threefold: First, we model the
environment as a graph based on the movement error model of the robot (this
is done for the environment once, regardless of the robotic model). Second, we
determine the optimal destination point for each edge in the graph, based on the
error model of the robots’ movement (this is done per robot, regardless of the
source and destination nodes in the graph). Last, we find a path from a source
node s to a destination node d in the graph that maximizes the probability that
the robot will arrive at its destination.

This paper reports the theoretical contribution of our work. Initial results us-
ing real robots seem promising, and we are currently pursuing massive empirical
evaluation of the work in both simulation and in real robots.

2 Related Work

The general subject of robot navigation, due to its immense impact on almost
every robotic missions, has received considerable attention in the literature. The
main problem that arises in navigation from a source point to a destination point
is the question of localization, i.e., where is the robot?

There are various approaches for determining the paths a robot should take
when navigating to a destination, where the approaches also differ in the local-
ization aspect, i.e., how to know where the robot is located along the path. In
outdoor environments the concerns for planning a navigation are different, as
the localization aspect is usually more trivial, using a GPS. We therefore con-
centrate on navigation in indoor environments, where the use of a GPS is usually
impossible.



The most common way used in robotic systems for navigation are Simultane-
ous localization and Mapping (SLAM) techniques (e.g. [3, 10]), in which a robot
simultaneously construct the map of the environment, and localize itself in the
map according to landmarks it can relate to. Specifically, in indoor navigation
usually laser based or vision based SLAM methods are used (e.g. [4, 10]). In these
methods, the robots can identify their location using laser sensors or cameras.
However, both methods are are expensive and have high power consumption,
thus irrelevant for use if designing low-price or low energy consuming robots.
Moreover, the main objective in mapping methods is to efficiently cover the en-
tire area while merging the constructed maps. Our goal is to efficiently navigate,
given a map, hence we are not interested in neither exploration nor unified map
construction.

Other methods for indoor navigation include the use of cameras. Recent work
by Chrysanthakopoulos and Shani [1] describe an approach for indoor navigation
using a camera. In their work, they describe a generalized appearance-based
localization approach that uses a combination of several techniques including
POMDPS, hierarchical state representation an more to be used by a navigating
robot. In their work, the robot goes through a learning phase after which it is
possible for the robot to use their methods for navigation. In our work, however,
we assume the map is given, however the robot does not have to go through any
training phase. In addition, we can provide guarantees as for the probability of
arriving at the destination and plan alternative paths based on the price the
system is willing to pay (in time vs. probability of safe arrival).

O’Kane and S. M. LaValle [7] examined the problem robot localization with-
out sensors. They prove that a robot equipped with only a compass, a contact
sensor an a map of the environment can successfully localize itself in it. Although
their world assumption are similar to our work, they do not consider the prob-
lem of navigation, and moreover, they do not assume a stochastic model of the
robots movement. Okane [6] also considered the problem of robot localization
using odometry, by alternating rotations and forward translations in the known
space. His model could potentially account for uncertainty in the robot’s world
model, however his evaluation is not analytic with respect to the probability of
movement, but he refers to the problem as a discrete time planning problem.

Erickson et al. [2] offer a solution to the problem of localization of a blind
robot in a known environment (given a map), where they distinguish between
active and passive localization. In active localization the robot’s mission is to lo-
calize itself, where in passive localization the robot should maintain a probability
distribution over a set of possible positions in the environment while performing
some other task. In both cases, the problem is handled as a set of possible states
the robot might be in, with a probability distribution over them. Their approach
differs from our solution, as they offer a continuous solution (updates of state),
whereas we suggest to create a-priori a path that mill minimize the probability
that the robot will lose its localization.



3 The environment and error models

In the following section, we describe the modeling of the error in the robot’s
movement and the representation of the environment. These models are used as
base for computing the optimal navigation path, i.e., a path that maximizes the
probability of guaranteed arrival at the destination point. A path is composed
of a set of edges, i.e., pairs of points (p, q) in the plane. We call the point q
an immediate destination point from p. Generally, if a robot cannot view its
immediate destination point due to poor sensorial capabilities, it might not reach
that specific point but some point around it. We therefore base our path on
moving from a source point to an immediate destination point that lies along a
wall. In this case, we are able to eliminate some uncertainties in the movement,
specifically, the possibility that the robot will accidently stop before of after the
destination point, and relate only to the probability of reaching points along the
wall to the left or to the right of the destination point. We assume that if a robot
travels from p and does not arrive along the wall it intended to arrive along, it is
lost. Thus we want to minimize the probability that this will happen. We assume
that a robot, even with poor sensing capabilities, is able to walk along a wall
without wandering around and losing its way.

3.1 The robotic error movement model

In order to model the actual point in which the robot arrived with respect to
the target point towards which it intended to travel, we use triangle error model,
described in this section, which defines how far from either side of the destination
point the robot will arrive.

We assume the robot is guaranteed to arrive within some spectrum surround-
ing its actual trajectory (see Figure 1). Assume robot R travels from a point p
towards a point q which is on a wall. It does not see q from p, hence it will
either arrive exactly at q or along the wall from either of its sides. The possible
range in which R will arrive is defined as the error angle, denoted by α, divided
into αl and αr, which are the angles to the left and right of the course towards
q (respectively) within which it is guaranteed to arrive. We relate to these two
angles separately, as it is very common for a robot to diverge differently towards
each direction (depending, for example, on its actuators or motors).

The probabilites of arriving within αl and αr are not necessarily equal (real-
istically, they rarely are). Therefore we associate a probability of arrival within
αl and αr, denoted by Pl and Pr (where Pl + Pr = 1). The triangle created by
p, q, αl, αr and the wall q resides on, is referred to as the error triangle of the
robot. Note that Thrun et al. [9, 8] describe various models for estimating the
actual final position of the robot given a map. Generally, the motion model of
the robots create a banana-like possible destinations, where the center of the
banana is the most probable actual destination points. When we limit our des-
tination points to points along a wall, we get the triangular shaped error range,
rather than a banana shape.
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Fig. 1. An illustration of the triangle error model - the robot is going from p to q, yet
could arrive between dl and dr along the wall.

3.2 Initial environment representation

The input to our procedure is a map, from which we extract all obstacles and
represent them as simple polygons P = {P1, P2, . . . , PM}, i.e., each polygon Pi

corresponds to an obstacle in the given area (where the area inside the polygon
is unreachable by the robot). Every polygon includes a set of sorted vertices
Pi = {vi1, vi2, . . . , viqi}. The graph G′ = (V ′, E′) is initialized as follows: ∀vij ∈ Pi,,

add vij to V ′ ; (v, u), (v, u) ∈ E′ if v = vij , u = vi(j+1)mod(qi+1) or the segment
vu does not intersect any polygon Pi ∈ P and is not internal to some polygon
Pi ∈ P . Note that the graph G′ is an unweighted graph. In the next section we
describe how G′ is modified to become a weighted directed graph with associated
cost and probability of traveling along the edges of the graph.

4 Determining immediate optimal destination point

After creating the initial graph representation of the environment (the unweighted
directed graph G′), we wish to determine the optimal way to travel from a point
p to an immediate neighbor q in the graph. As stated previously, if the robot has
perfect localization means, allowing it to travel from p to q without any errors,
then it will set its course directly to q. However, in most cases it is impossible to
guarantee arrival at the destination point with 100% accuracy. Thus we modify
the immediate destination point to some point qo that will maximize the prob-
ability that the robot will arrive at q. Our goal is to find qo for each edge in the
graph.

An additional challenge rises from the fact that once the robot arrives at
a wall, it does not necessarily know whether q is to its left or to its right.
Therefore, in order to guarantee that the robot will be oriented with respect to



q, we examine two different actual destination points: one along the wall to the
left of q (denoted by qol ), and one along the wall to the right of q (denoted by qor).
These destination points should be chosen such that the probability of arriving
along the wall, if setting its course towards this point, is maximized.

The cost of traveling from p to qol or qor is set to the length of the segment
pqol and pqor , respectively. The probability of arrival at qol or qor is the weighted
average of the base of the error triangle (set by pqol and pqor , respectively) and
the length of the wall these points lie on. Therefore, in order to determine the
optimal destination points qol and qor , we must first calculate the length of the
wall these point lie on, that is visible from the point p. We call this area the
physical triangle. The left base point of the physical triangle to the left of q is
denoted by ql and the right base point of the physical triangle to the right of q
is denoted by qr. We refer to the segments qql and qqr as the left and right wings
(respectively).

If the error triangle is smaller than the physical triangle, then qor (qol ) is
simply the one that places the error triangle’s leftmost point (or rightmost) at q
(see Figure 2(a)). If the physical triangle is smaller than the the error triangle,
then the chosen destination point is the one that maximizes the congruence of
the triangles with respect to the probability of arrival at the respective wing (see
illustration in Figure 2(b) and (c)).
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Fig. 2. An illustration of the change in the optimal destination point when going from
p to q - when the physical triangle is larger than the error triangle (a), or when it is
smaller (b)

Algorithm InitializeWorld creates the graphical model corresponding to the
environment, i.e., given the polynomials that exist in the target area, it does the
following:

1. Creates the graph G = (V,E) including all vertices from the polygon V ,
where (u, v) ∈ E if and only if there is a straight line between u and v that
is not met by any other polygon in the area, i.e., if there is a straight line of
sight between u and v.



2. Determines the left and right wings - the physical triangle - of each vertex
v ∈ V such that (u, v) ∈ E.

3. Determines the best actual destination point for each edge, update this point
in the graph (by adding a new vertex) and adjust the new graph accordingly
(by adding new edges and removing old ones).

4. Stores the cost of traveling along each edge and the probability of actually
arriving at the end vertex.

Algorithm 1 Algorithm InitializeWorld

1: Find all edges E′ in the graph (sets of points p, q in the plane that can be reached
directly from one another)

2: for every edge (p, q) ∈ E′ do
3: Compute the left and right wings as follows.
4: Set ql ← left neighbor of q in its polygon.
5: Set qr ← right neighbor of q in its polygon.
6: for all {q′|(p, q′) ∈ E′} do
7: if q′ ∈ △p, q, ql then
8: ql ← intersection point of the line pq′ and qql
9: end if
10: if q′ ∈ △p, q, qr then
11: qr ← intersection point of the line pq′ and qqr
12: end if
13: end for
14: Compute left optimal point (qol , P

l)← FindOptDestP(p, q, ql)
15: Compute right optimal point (qor , P

r)← FindOptDestP(p, q, qr)
16: Update G with new vertices and edges:
17: if qol ̸= q then
18: Add (p, qol ) to E with P(p,qo

l
) = P l

19: Remove (q, ul) from E
20: Add (q, qol ) with cost dst(q, qol ) and P(q, q

o
l ) = 1

21: Add (qol , ul) with cost dst(qol , ul) and and P(q
o
l , ul) = 1

22: end if
23: if qor ̸= q then
24: Add (p, qor) to E with P(p,qor )

= P r

25: Remove (q, ur) from E
26: Add (q, qor) with cost dst(q, qor) and P(q, q

o
r) = 1

27: Add (qor , ur) with cost dst(qor , ur) and P(qor ,ur) = 1
28: end if
29: if qol ̸= q AND qor ̸= q then
30: Remove (p, q) from E
31: end if
32: end for

Recall that the head angle of the error triangle is denoted by α, where αl is
the error angle to the left of the destination point with probability Pl and αr and
Pr to its right. We describe the calculation of the probability of arrival and the



optimal destination point to the right of q, i.e., Pr and qor , and the calculation
to the left of q is symmetric. Let qr denote the rightmost point in the physical
triangle, denote the head angle of the physical triangle by β, the angle ̸ qorpq

by
βl and ̸ qorpqr

by βr (see Figure 3).
Denote the left point of the error triangle (exceeding q) by l, and the right

point of the error triangle (exceeding qr) by r. The expected probability of
arriving at the line qqr is the area of the triangle pqorq divided by the area of
triangle pqor l multiplied by the probability of arriving at that triangle (Pl) plus
the area of the triangle pqorqr divided by the area of triangle pqorr multiplied by
Pr. Formally,

P (arriving at qqr) = P (qqr) = Pl ×
dst(qor , q)

dst(qor , l)
+ Pr ×

dst(qor , qr)

dst(qor , r)

We represent all the unknown variables as a function of ϵ = ̸ plqr . The follow-
ing can be calculated from only dst(p, q),dst(p, qr) and dst(qr, p) using the sine
theorem or the law of cosines.

γ = ̸ pqqr = cos−1(dst(p,q)
2+dst(q,qr)2−dst(p,qr)2

2dst(p,q)dst(q,qr)
)

θ = ̸ pqrq = sin−1(dst(p,q) sin(γ)
dst(p,qr)

)

We can represent all the unknown variables as function of ϵ, thus we get:

P (qqr) = f(ϵ) =

Pl ×
sin(αl − γ + ϵ) sin(ϵ)

sin(αl − γ + ϵ) sin(ϵ) + sin(γ − ϵ) sin(αl + ϵ)
+

Pr ×
sin(β − αl − ϵ+ γ) sin(α+ ϵ)

sin(β + γ − αl − ϵ) sin(α+ ϵ) + sin(al + ϵ) sin(α− β + ϵ− γ)
(1)

If we derive f(ϵ), we can determine the value of ϵ yielding maximal f(ϵ),
hence maximal P (qqr). From that we can determine the optimal destination
point qor as follows, where βl = αl − γ + ϵ and δ = π − (αl + ϵ).

dst(q, qor) =
sin(βl)dst(p, q)

sin(δ)
(2)

The time complexity of the procedures is polynomial in the map size. Specif-
ically, if the number of points in the original map is N (nodes of the polygons
describing the obstacles in the environment), then the number of edges in G′ is
at most N2. Creating the physical triangles (left and right wings) require at most
N3 operations. Last, each edge in G′ is replaced by two edges in G, therefore
the number of edges in G is 2N2, and the number of vertices is 3N (for each
vertex, we add two new vertices - qol and qor). Note that this algorithm can be
computed a priori, and not during run time.
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Algorithm 2 Algorithm FindOptDestP(p, q, qw)

1: a← dst(p,q) sin(α)
sin(θ)

2: if a ≤ dst(q, qw) (Physical triangle is larger than ET) then

3: dst(q, qow)← dst(p,q) sin(αl)
sin(γ+αl)

4: Pw ← 1
5: else
6: ϵ∗ ← ϵ that maximizes equation 1 (maximal point between 0 and π)
7: Pw ← Equation 1, given ϵ∗

8: dst(q, qow)← Equation 2, given ϵ∗

9: end if



4.1 Probabilistic robot navigation - determining the optimal path

The main goal of the navigation problem is to determine the optimal path for
the robot from its source to its destination point. In the previous section we have
determined the immediate destination point that will maximize the probability
of arriving at this immediate destination (point p to point q) for every pair of
visible points in the map, and creates a graph G with the costs of traveling along
edges and the probability that the robot will successfully travel along the edge.
Given this graph with the probabilities of arrival on each edge, we can determine
the probability of arriving at the global destination.

Note that the probability of reaching a destination point is the multiplication
of the probability associated with each of the edges the robot travels through.
Therefore, using a shortest path on the probabilities (summing up the probabili-
ties) as the weight of each edge will not bring us to the desired actual probability
of arrival, and we need to use an algorithm for maximizing the multiplicity of
the probabilities on all traveled edges.

We therefore use a method commonly used in QOS of networks (e.g. [5])
for determining a path that minimizes the probability of packet loss along the
network. Recall that the probability of arriving at the immediate destination
point when traveling along an edge e ∈ E is Pe. In this method, we assign a
weight to each e ∈ E, w(e), which is set to the absolute value of the logarithm of
Pe, i.e., w(e) = | log(Pe)|. The advantage of using this method is twofold. First,
since 0 ≤ Pe ≤ 1, then as Pe is higher the weight of the edge (| log(Pe)|) is lower
(encouraging the use of edges with higher probability of arrival). Second, if we
run Dijkstra’s shortest path algorithm on the logarithms of Pe,∀e ∈ E, then we
get a path (e1, . . . , ek) minimizing the values log(Pe1)+log(Pe2)+ . . .+log(Pek),
hence (by logarithmic characteristics) minimizes log(Pe1 × Pe2 · · · × Pek), which
maximizes Pe1 × Pe2 · · · × Pek , i.e., maximizes the probability of arrival at the
destination point. The formal algorithm is described by Algorithm OptimalPath
(Algorithm 3) with s as the source node in G and d the destination point.

Algorithm 3 Algorithm OptimalPath(G, s, d)

1: Compute W (G) as follows:
2: for Each e ∈ E(G) do
3: Set w(e)← | log(Pe)|
4: end for
5: Run Dijkstra’s shortest path algorithm with s, d on graph G with W (G)

4.2 Possible Extensions

Finding the optimal path that maximizes the probability of arrival at the desti-
nation point uses only one aspect of the information we gathered: the probability
associated with traveling along each edge. It is possible that we are interested



in a taking the risk of traveling along an edge with low probability of arrival,
but that is physically shorter, i.e., has lower cost (similar to a risk seeking strat-
egy). In this case, we can omit the probability factor, and run Dijkstra’s shortest
path algorithm on our graph with only the cost of travel (yet still walking along
edges that individually maximize the probability of reaching successfully the
immediate destination point).

However, a more risk neutral approach can also be adopted. In this case,
we can eliminate edges with probability of arrival lower than some value Plimit

we are willing to accept. Another possibility is to calculate the expected cost
of traveling along an edge, where we multiply the probability of not arriving
at the endpoint of the edge and the cost of the edge (yielding an expected cost
complying to lower is better). By finding the shortest path algorithm in this case,
we combine both cost and probability of arrival, however we do not account for
probabilities of not reaching the endpoint of the edge that is carried from one
edge to another.

We plan on evaluating the performance of these possible extensions in our
empirical work.

5 Conclusions and Future Work

In this paper we set a theoretical basis for determining an optimal navigation
path for a robot with (possibly) weak sensors. We describe a polynomial time
algorithm for determining a path from a source point A to a destination point
B, given a map, such that the probability that the robot will arrive at B is
maximized.

As ongoing work, we are pursuing massive empirical evaluation of the theoret-
ical results in both simulation and real robots. There are various possible direc-
tion for future work. First, we would like to generalize our solution to stochastic
and/or dynamic environments. Specifically, it could be possible that the map we
base our path upon is outdated, but the probabilities that a blockage occurs in
certain places is known. Moreover, in office environments there are stationary
objects (walls) that are not likely to move, whereas there are objects that tend
to be moved around (tables, closets). Therefore accounting for the possibility
of changes in the environment is important. Another possible extension of the
work includes sensor-dependent navigation, i.e., given a (not necessarily weak,
but not perfect) sensor model of a robot, find the optimal navigation path. In
addition, there is growing interest in removing the dependency on GPS in out-
door navigation, thus applying these methods to outdoor navigation could be
interesting as well.
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Abstract. Frontier-based exploration is the most common approach to
exploration, a fundamental problem in robotics. In frontier-based explo-
ration, robots explore by repeatedly computing (and moving towards)
frontiers, the segments which separate the known regions from those un-
known. However, most frontier detection algorithms process the entire
map data. This can be a time consuming process which slows down the
exploration. In this paper, we present two novel frontier detection algo-
rithms: WFD, a graph search based algorithm and FFD, which is based
on processing only the new laser readings data. In contrast to state-of-
the-art methods, both algorithms do not process the entire map data.
We implemented both algorithms and showed that both are faster than
a state-of-the-art frontier detector implementation (by several orders of
magnitude).

1 Introduction

The problem of exploring an unknown territory is a fundamental problem in
robotics. The goal of exploration is to gain as much new information as possible
of the environment within bounded time. Applications of efficient exploration
include search and rescue [13], planetary exploration [1] and military uses [11].

The most common approach to exploration is based on frontiers. A frontier
is a segment that separates known (explored) regions from unknown regions.
By moving towards frontiers, robots can focus their motion on discovery of new
regions. Yamauchi [22, 23] was the first to show a frontier-based exploration
strategy. His work preceeded many others (e.g, [6, 15, 16, 5]).

Most frontier detection methods are based on edge detection and region ex-
traction techniques from computer vision. Thus, to detect frontiers, they process
the entire map data with every call to the algorithm. State of the art frontier
detection algorithms can take a few seconds to run, even on powerful computers.
If a large region is explored, the robot actually has to wait in its spot until the
frontier detection algorithm terminates. Therefore, many exploration implemen-
tations call the frontier detection algorithm only when the robot arrives at its
destination.

Thus, a real-time frontier detection can shorten the exploration time. We
present two examples:

A Single-Robot Example. A common situation of single-robot exploration can
be seen in Figure 1: Figure 1(a) shows a robot exploring its environment and has



just decided navigating to a target. Figure 1(b) shows that the target has been
covered by the robot’s sensors and it does not have any reason to keep moving.
Figure 1(c) shows that because of the lack of real-time frontier computation, the
robot moved to its target, unnecessarily.

(a) (b) (c)

Fig. 1. Single-robot example: 1(a) the robot is heading towards the target on the
frontier. 1(b) the target is being covered by the robot’s sensors. 1(c) the robot has
reached the frontier.

A Multi-Robot Example. A common situation of multi-robot exploration can be
seen in Figure 2: Two robots, R1 and R2 which are located on bottom and top,
respectively, are exploring the environment. Their start position is as in Figure
2(a). Figure 2(b) describes the world state after a while when each robot was
heading to its target. R2 has covered with its sensors the frontier of t1. Therefore,
there is no need for R1 to go to t1. If R1 does not calculate frontiers in real-time,
it would continue moving towards target t1.

(a) top robot, R2 is heading towards
right target, t2 and bottom robot, R1 is
heading towards top target, t1.

(b) top robot has reached its target.

Fig. 2. Multi-robot example.



In this paper, we introduce two algorithms for fast frontier detection: The
first, WFD (Wavefront Frontier Detector, Section 4) is an iterative method that
performs a graph-search over already-visited map points. The advantage over
state of the art methods is that WFD does not have to scan the entire map,
only the regions that have already been visited by the robot. The second, FFD
(Fast Frontier Detector, Section 5) is a novel approach for frontier detection.
FFD processes only the new received laser readings. It can be much faster, but
requires interfacing with the mapping algorithms and data structures, so that
frontiers are maintained even when they are no longer within sensor range.

In Section 6, we compare these algorithms to a state of the art edge-detection
method for frontier detection. The results shows that WFD and FFD are faster
by at least two orders of magnitude than previous methods. Moreover FFD is
faster than WFD by an order of magnitude.

2 Related Work

An outline of the exploration process can be described as follows: while there is an
unknown territory, allocate each robot a target to explore and coordinate team
members in order to minimize overlaps. In frontier-based exploration, target
are drawn from existing frontiers, segments that separate known and unknown
regions (see Section 3 for definitions).

There are two aspects that are often tackled in existing literature on explo-
ration: deciding on next target to be explored and coordinating team members
in order to minimize overlaps. The latter is not related to this paper and so, we
focus on the former.

To the best of our knowledge, all of the following works utilize a standard
edge-detection method for computing the frontiers. They therefore recompute
target locations whenever one robot has reached its target location or whenever
a certain distance have been traveled by the robots or after a timeout event.

Yamauchi [22, 23] developed the first frontier-based exploration methods. The
robots explore an unknown environment and exchange information with each
other when they get new sensor readings. As a result, the robots build a common
map (occupancy grid) in a distributed fashion. The map is continuously updated
until no new regions are found. In his work, each robot heads to the centroid,
the center of mass of the closest frontier. All robots navigate to their target
independently while they share a common map. Frontier detection is performed
only when the robot reaches its target.

Burgard et al. [5, 6] focus their investigation on probabilistic approach for
coordinating a team of robots. Their method considers the trade-off between the
costs of reaching a target and the utility of reaching that target. Whenever a
target point is assigned to a specific team member, the utility of the unexplored
area visible from this target position is reduced for the other team members.
In their work, frontier detection is carried out only when a new target is to be
allocated to a robot.



Wurm et al. [21] proposed to coordinate the team members by dividing the
map into segments corresponding to environmental features. Afterwards, explo-
ration targets are generated within those segments. The result is that in any
given time, each robot explores its own segment. Wurm [20] suggests to call
frontier detection every time-step of the coordination algorithm. Moreover, he
claims that updating frontiers frequently is important in a multi-robot teams
since the map is updated not only by the robot assigned to a given frontier but
also by all of the robots in the team. In the real world the algorithm should be
executed every 0.5-1m or every second or whenever a new target is requested.

Stachniss [17] introduced a method to make use of background knowledge
about typical structures when distributing the team members over the environ-
ment. In his work, Stachniss computes new frontiers when there new target are
needed to be allocated. This happens whenever one robot has reached its des-
ignated target location or whenever the distance traveled by the robots or the
elpased time since last target assignment has exceeded a given threshold.

Berhault et al. [2] proposed a combinatorial auction mechanism where the
robots bid on a bunch of targets to navigate. The robots are able to use different
bidding strategies. Each robot has to visit all the targets that are included in his
winning bid. After combining each robot’s sensor readings, the auctioneer omits
selected frontier cells as potential targets for the robots. Frontier detection is
performed when creating and evaluating bids.

Visser et al. [19] investigated how limited communication range affect multi-
robot exploration. They proposed an algorithm which takes into account wire-
less constraints when selecting frontier targets. Visser [18] suggests recomputing
frontiers every 3–4 meters, which on his opinion, has positive effect.

Lau [15] presented a behavioral approach. The authors assume that all team
members start from a known location. The team members follow the behavior
and spread in the environment while updating a shared map. Frontier detection
is called when the robot plan its next direction of movement.

Many other works omit details of their frontier detection timing. For exam-
ple, Sawhney et al. [16] presented an exploration method which uses a novel
visibility per-time metric that can reduce exploration time. Bouraqadi et al. [3]
proposed a flocking-based approach for solving the exploration problem, where
robots act according to the same set of rules. One of their rules (R5) makes the
robot navigate towards the nearest frontier. Ko et al. [14] presented a decision-
theoretic approach to the mapping and exploration problem. Their approach
uses an adopted version of particle filters to estimate the position in the other
robot’s partial map.

One previous work [7] mentions frontier detection algorithm that utilizes
breadth-first search, similar to one of the algorithms that we present here (WFD).
However, it does not provide details of the algorithm and so exact similarities
and differences cannot be assessed.



3 Frontier-Based Exploration: Definitions and Terms

In this section we define and explain the terms that are used in the following
sections. We assume the robot in question uses an occupancy-grid map repre-
sentation in the exploration process (Figure 3) within the map:

Unknown Region is a territory that has not been covered yet by the robot’s
sensors.

Known Region is a territory that has already been covered by the robot’s
sensors.

Open-Space is a known region which does not contain an obstacle.
Occupied-Space is a known region which contains an obstacle.
Frontier is the segment that separates known (explored) regions from unknown

regions. Frontier is a set of unknown points that each have at least one open-
space neighbor.

Fig. 3. Image taken from [23]: evidence grid, frontier points, extraction of different
frontiers (from left to right).

Existing algorithms for frontier detection rely on edge-detection methods.
The algorithms systematically search for frontiers all over the occupancy-grid,
i.e., both in known and unknown regions.

4 Wavefront Frontier Detector (WFD)

We present a graph search based approach for frontier detection. The algorithm,
WFD (Algorithm 1), processes the points on map which have already been
scanned by the robot sensors and therefore, does not always process the entire
map data in each run, but only the known regions.



WFD is based on Breadth-First Search (BFS). First, the occupancy-grid
point that represent the current robot position is enqueued into queuem, a queue
data-structure used to determine the search order (Lines 1– 3).

Next, a BFS is performed (Line 4–39) in order to find all frontier points
contained in the map. The algorithm keep scanning only points that have not
been scanned yet and represent open-space (Line 33). The above scanning policy
ensures that only known regions (that have already been covered by the robot’s
sensors) are actually scanned. The significance of this is that the algorithm does
not have to scan the entire occupancy-grid each time.

Because frontier points are adjacent to open space points, all relevant frontier
points will be found when the algorithm finishes (Line 39). If a frontier point
is found, a new BFS is performed in order to extract its frontier (Lines 14–30).
This BFS is searching for frontier points only. Extracting the frontier is ensured
because of the connectivity of frontier points.

At the end of the frontier extraction process (Line 30), the extracted fron-
tier data is saved to a set data-structure that stores all frontiers found in the
algorithm run.

In order to avoid rescanning the same map point and detecting the same
frontier reachable from two frontier points, WFD marks map points with four
indications:

1. Map-Open-List: points that have already been enqueued by the outermost
BFS (Line 34)

2. Map-Close-List: points that have already been dequeued by the outermost
BFS (Line 5)

3. Frontier-Open-List: points that have already been enqueued by the frontier
extraction BFS (Line 23)

4. Frontier-Close-List: points that have already been dequeued by the frontier
extraction BFS (Line 15)

The above marks indicate the status of each map point and determine if there
is a need to handle it in a given time.

The key innovation in WFD is that it prevents scanning unknown regions,
since frontiers never appear there. However, it still searches all known space.



Algorithm 1 WFD

Require: queuem // queue, used for detecting frontier points from a given map
Require: queuef // queue, used for extracting a frontier from a given frontier cell
Require: pose // current global position of the robot

1: queuem ← φ
2: ENQUEUE(queuem, pose)
3: mark pose as “Map-Open-List”

4: while queuem is not empty do
5: p← DEQUEUE(queuem)

6: if p is marked as “Map-Close-List” then
7: continue
8: end if

9: if p is a frontier point then
10: queuef ← φ
11: NewFrontier ← φ
12: ENQUEUE(queuef , p)
13: mark p as “Frontier-Open-List”

14: while queuef if not empty do
15: q ← DEQUEUE(queuef )

16: if q is marked as {“Map-Close-List”,”Frontier-Close-List”} then
17: continue
18: end if

19: if q is a frontier point then
20: add q to NewFrontier
21: for all w ∈ adj(q) do
22: if w not marked as {“Frontier-Open-List”,“Frontier-Close-List”,

“Map-Close-List”} then
23: ENQUEUE(queuef ,w)
24: mark w as “Frontier-Open-List”
25: end if
26: end for
27: end if

28: mark q as “Frontier-Close-List”
29: end while

30: save data of NewFrontier
31: end if

32: for all v ∈ adj(p) do
33: if v not marked as {“Map-Open-List”,“Map-Close-List”} and v has at least

one “Map-Open-Space” neighbor then
34: ENQUEUE(queuem,v)
35: mark v as “Map-Open-List”
36: end if
37: end for

38: mark p as “Map-Close-List”
39: end while



5 Fast Frontiers Detector

Unlike other frontier detection methods (including WFD), our proposed algo-
rithm (Algorithm 2) only processes new laser readings which are received in real
time. It therefore avoids searching both known and unknown regions. The reason
for such an approach lies within the characteristics of new frontiers, as can be
seen in Figure 3.

New frontiers are never contained within known (scanned) regions: According
to Yamauchi’s frontier definition [22, 23], a frontier cell is an unscanned cell which
has at least one neighbor which was previously scanned and represents an open
space.

Also, new frontiers are never wholly within unknown (unscanned) regions:
frontiers represents the boundaries between the known and unknown regions of
the environment. Hence, scanning all unknown regions is definitely unnecessary
and not time-efficient.

The FFD algorithm contains four steps (see Algorithm 2), and can be called
with every new scan.

5.1 Sorting

The first step sorts laser readings based on their angle, i.e., based on the polar
coordinates with the robot as the origin. Normally, laser-readings are given as a
sorted set of polar coordinated points. However, if this is not the case, a sorting
is needed to be applied on the received laser readings because next steps of FFD
relies on an internal order of the received laser readings.

In this case, we assume that a laser reading is a set of Cartesian coordinated
points, which consists of the locations of laser hits (

{
(x0, y0), . . . , (xn, yn)

}
where

n is the number of readings), sorted by the angle and distance from the robot
as the origin. The naive method for converting Cartesian coordinates to polar
coordinates uses two CPU time-consuming functions: atan2 and sqrt. Therefore,
we use a cross product [8] in order to avoid using the above and still get a result
of sorted Cartesian points according to polar coordinates.

Cross Product. Given 3 Cartesian coordinated points:

P0 = (x0, y0), P1 = (x1, y1), P2 = (x2, y2)

the cross product is defined as:

(p1 − p0)× (p2 − p0) = (x1 − x0) · (y2 − y0)− (x2 − x0) · (y1 − y0)

If the result is positive, then
−−−→
P0P1 is clockwise from

−−−→
P0P2. Else, it is counter-

clockwise. If the result is 0, then the two vectors lie on the same line in the
plane.

Therefore, by just examining the sign of the cross product, we can determine
the order of the Cartesian points according to polar coordinates, without cal-
culating their actual polar coordinate value; only by applying five subtractions



Algorithm 2 FFD

Require: OldFrontiers // data-structure that contains last known frontiers
Require: pose // current global position of the robot
Require: lr // laser readings which were received in current iteration. Each element

is a 2-d cartesian point

// polar sort readings according to robot position
1: sorted← SORT POLAR(lr, pose)

// get the contour from laser readings
2: prev ← POP (sorted)
3: contour ← φ

4: for all Point curr ∈ sorted do
5: line← GET LINE(prev, curr)
6: for all Point p ∈ line do
7: contour ← contour ∪ {p}
8: end for
9: end for

// extract new frontiers from contour
10: NewFrontiers← φ // list of new extracted frontiers
11: prev ← POP (contour)

12: if prev is a frontier cell then // special case
13: create a new frontier in NewFrontiers
14: end if

15: for all Point curr ∈ contour do
16: if curr is not a frontier cell then
17: prev ← curr
18: else if curr and prev are frontier cells then
19: add curr to last created frontier
20: prev ← curr
21: else
22: create a new frontier in NewFrontiers
23: add curr to last created frontier
24: prev ← curr
25: end if
26: end for

// maintainance of previously detected frontiers
27: MAINTAIN FRONTIERS(NewFrontiers,OldFrontiers)



and two multiplications which are far less time-consuming than calling atan2
and sqrt.

5.2 Contour

In this step we use the angle-sorted laser readings. The output of the contour
step is a contour which is built from the sorted laser readings. The algorithm
computes the line that lies between each two adjacent points from the set. The
line is computed by calling the function GET LINE. In our implementation we
use Bresenham’s line algorithm [4]. Next, all points that are represented by all
the lines (including the points from the laser readings set) are merged into a
contour (Figure 4).

Fig. 4. example of produced contour.

5.3 Detecting New Frontiers

In this step the algorithm extracts new frontiers from the previously calculated
contour. There are three cases correspond to each two adjacent points in the
contour:

1. Current scanned point is not a frontier cell: therefore, it does not
contribute any new information about frontiers and can be ignored.

2. Current and previous scanned points are frontier cells: therefore,
both points belong to the same frontier and current scanned point is added
to last detected frontier.

3. Current point is a frontier cell but the previous is not: a new starting
point of a frontier was detected. Hence, the algorithm creates a new frontier
and adds the new starting point to it.



5.4 Maintaining Previously Detected Frontiers

FFD gains its speed by processing the laser readings only, rather than entire
regions of the map. However, if the robot navigates towards a specific frontier,
other previously detected frontiers are no longer updated because they are not
covered by the robot’s sensors. In this step, in order to get complete information
about the frontiers, the algorithm performs maintenance over previously detected
frontiers which are no longer covered in the range of the sensors.

Maintaining FFD In order to keep in memory all available frontiers, FFD has
to run in the background, in contrast to other approaches that can be executed
in a certain time, and only then. However, because of its high speed, in our
opinion, keeping FFD running in background is preferable over waiting for a few
seconds for other frontier detector to finish.

Particle Switching FFD requires the previously detected frontiers to be ro-
bust against map orientation changes caused by loop-closures of the mapping
algorithm. In a Particle Filter based SLAM infrastructures, changes in active
particles probably occur. Hence, because particles do not share maps, previously
detected frontiers by FFD cannot be easily maintained.

The situation is different in Extended Kalman-Filter (EKF) based SLAM
infrastructures. These infrastructures have one map that is updated. Hence,
data can be stored within a map in EKF SLAM infrastructures because the
information about changing map orientation is available (in contrast to particle-
based systems in which every particle is independent from the other particles).
We find Kalman-Filter (EKF) based SLAM implementations best for integrating
FFD. In Section 7, we suggest a solution to integrate FFD into Particle-Filter
based SLAM implementations.

6 Experimental Results

We have fully implemented WFD and partially implemented FFD (all steps
except maintenance) and performed testings on data obtained from the Robotics
Data Set Repository (Radish) [12]. Figure 5 shows a few of the environments
used for the evaluation. WFD and FFD were compared with a state of the art
frontier detection algorithm1, denoted SOTA (state of the art).

To evaluate the algorithms, we integrated them into a single-robot explo-
ration system. The system is based on GMapping, an open-source SLAM im-
plementation [9, 10]. We integrated our code into the ScanMatcher component
which is contained inside gsp thread (Grid SLAM Processor). By the time that
a new MapEvent is raised, all frontier detection algorithms are executed accord-
ing to current world state. Execution times are measured by Linux system-call

1 We thank Kai M. Wurm and Wolfram Burgard for providing us with their own
implementation.



(a) Cartesium Building, University of
Bremen

(b) Freiburg, Building 079

Fig. 5. some of the testing environments

getrusage, which measures the CPU-process time. We used a desktop computer
containing Intel Q9400 CPU with clock speed of 2.66 GHz and and Random
Access Memory (RAM) in size of 4 GB.

We used several environments taken from Radish2 [12]:

– Edmonton Convention Centre (site of the AAAI 2002 Grand Challenge),
marked (A)

– Outdoor dataset recorded at the University of Freiburg, marked (B)

– Freiburg, Building 079, marked (C)

– 3rd Floor of MIT CSAIL, marked (D)

– Cartesium Building, University of Bremen (E)

FFD is called every-time a new laser reading is received. Therefore, in order
to compare FFD execution time to other algorithms correctly, we accumulate
FFD ’s execution times between calls to other algorithms. In other words, if we
call WFD in time-stamps ti and ti+1, then FFD ’s accumulated execution time
is calculated by:

ti+1∑
x=ti

ExecutionT imeFFD(x)

Figure 6 shows the results of the comparison. Each group of bars represent
a separate run. For each algorithm, we calculate the average execution time. Y
axis measures the calculated execution time in microseconds, on a logaritmic
scale.

Figure 6 shows that WFD is faster than SOTA by two orders of magnitude.
Furthermore, FFD is faster than WFD by an order of magnitude, which means it
is much faster than state-of-the-art frontier detection algorithm. In our opinion,
one can boost FFD ’s execution time by not executing it on every received laser
reading. The reason is that the frequency of receiving new laser readings is higher
than the speed of processing and updating the map.

2 Thanks go to Cyrill Stachniss, Giorgio Grisetti and Nick Roy for providing this data.



Fig. 6. Comparing WFD and FFD to State of the Art algorithm.

7 Conclusions and Future Work

Frontier-based exploration is the most common approach to solve the exploration
problem. State of the art frontier detection methods process the entire map data.
The result is a frontier detection which hangs the exploration system for a few
seconds.

We introduced two novel faster frontier detectors, WFD and FFD. The first,
a graph based search, processes the map points which have already been scanned
by the robot sensors and therefore, does not process unknown regions in each
run, in contrast to state of the art frontier detection methods. The second, a
laser-based approach for frontier detection, only processes new laser readings
which are received in real time. Thus, eliminating also much of the known area
search. However, maintaining previous frontiers knowledge requires tight inte-
gration with the mapping component, which may not be straight-forward.

In future, we plan to address efficient methods for maintaining frontiers in
FFD. In addition, in order to integrate FFD into particle-based systems, we
suggest executing FFD on all particles concurrently, which is feasible given its
runtime. We intend to test the suggested solution.

References

1. Apostolopoulos, D., Pedersen, L., Shamah, B., Shillcutt, K., Wagner, M., Whit-
taker, W.: Robotic antarctic meteorite search: Outcomes. In: IEEE International



Conference on Robotics and Automation. pp. 4174–4179 (2001)

2. Berhault, M., Huang, H., Keskinocak, P., Koenig, S., Elmaghraby, W., Griffin, P.,
Kleywegt, A.: Robot exploration with combinatorial auctions. In: Proceedings of
the International Conference on Intelligent Robots and Systems. pp. 1957–1962
(2003)

3. Bouraqadi, N., Doniec, A., de Douai, E.M.: Flocking-Based Multi-Robot Explo-
ration. In: National Conference on Control Architectures of Robots (2009)

4. Bresenham, J.: Algorithm for computer control of a digital plotter. IBM Systems
Journal 4(1), 25–30 (2010)

5. Burgard, W., Moors, M., Fox, D., Simmons, R., Thrun, S.: Collaborative multi-
robot exploration. In: IEEE International Conference on Robotics and Automation.
Vol. 1. pp. 476–481 (2000)

6. Burgard, W., Moors, M., Stachniss, C., Schneider, F.: Coordinated multi-robot
exploration. IEEE Transactions on Robotics 21(3), 376–378 (2005)

7. Calisi, D., Farinelli, A., Iocchi, L., Nardi, D.: Multi-objective exploration and search
for autonomous rescue robots: Research articles. J. Field Robot. 24, 763–777 (Au-
gust 2007)

8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press (2001)

9. Grisetti, G., Stachniss, C., Burgard, W.: Improving grid-based SLAM with Rao-
Blackwellized particle filters by adaptive proposals and selective resampling. In:
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA). pp. 2443–2448 (2005)

10. Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping
with Rao-Blackwellized particle filters. IEEE Transactions on Robotics 23, 34–46
(2007)

11. Hougen, D.F., Benjaafar, S., Bonney, J., Budenske, J., Dvorak, M., Gini, M.L.,
French, H., Krantz, D.G., Li, P.Y., Malver, F., Nelson, B.J., Papanikolopoulos, N.,
Rybski, P.E., Stoeter, S., Voyles, R.M., Yesin, K.B.: A miniature robotic system
for reconnaissance and surveillance. In: ICRA. pp. 501–507 (2000)

12. Howard, A., Roy, N.: The robotics data set repository (RADISH) (2003),
http://radish.sourceforge.net/

13. Kitano, H., Tadokoro, S., Noda, I., Matsubara, H., Takahashi, T., Shinjou, A.,
Shimada, S.: Robocup rescue: Search and rescue in large-scale disasters as a domain
for autonomous agents research. In: IEEE International Conference on Systems,
Man, and Cybernetics. pp. 739–746. IEEE Computer Society (1999)

14. Ko, J., Stewart, B., Fox, D., Konolige, K., Limketkai, B.: A practical, decision-
theoretic approach to multi-robot mapping and exploration. In: Proc. of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
pp. 3232–3238 (2003)

15. Lau, H., NSW, A.: Behavioural approach for multi-robot exploration. In: Aus-
tralasian Conference on Robotics and Automation (ACRA), Brisbane, December
(2003)

16. Sawhney, R., Krishna, K.M., Srinathan, K.: On fast exploration in 2D and 3D
terrains with multiple robots. In: Proceedings of the 8th International Conference
on Autonomous Agents and Multiagent Systems. Vol. 1. pp. 73–80 (2009)

17. Stachniss, C.: Exploration and Mapping with Mobile Robots. Ph.D. thesis, Uni-
versity of Freiburg, Department of Computer Science (2006)

18. Visser, A.: personal communication. Email (January 4th, 2011)



19. Visser, A., Slamet, B.A.: Including communication success in the estimation of
information gain for multi-robot exploration. In: Proceedings of the 6th Interna-
tional Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless
Networks (WiOpt 2008). pp. 680–687. IEEE Publishing (April 2008)

20. Wurm, K.M.: personal communication. Email (January 20th, 2011)
21. Wurm, K., Stachniss, C., Burgard, W.: Coordinated multi-robot exploration us-

ing a segmentation of the environment. In: Proc. of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). Nice, France (Sep 2008)

22. Yamauchi, B.: A frontier-based approach for autonomous exploration. In: Proceed-
ings of the 1997 IEEE International Symposium on Computational Intelligence in
Robotics and Automation. pp. 146–151. IEEE Computer Society, Washington, DC,
USA (1997)

23. Yamauchi, B.: Frontier-based exploration using multiple robots. In: Proceedings of
the Second International Conference on Autonomous Agents. pp. 47–53 (1998)



Lazy auctions for multi-robot collision avoidance
and motion control under uncertainty

Jan-P. Calliess1, Daniel Lyons2 and Uwe D. Hanebeck2

1 Dept. of Engineering Science, University of Oxford, Parks Road, OX1 3PJ, UK.
jan@robots.ox.ac.uk

2 Intelligent Sensor-Actuator-Systems Lab, Karlsruhe Institute of Technology,
Kaiserstr. 12, D-76128 Karlsruhe, Germany

Abstract. We present an auction-flavored multi-agent planning mech-
anism where coordination is to be achieved on the occupation of atomic
resources. Introducing virtual obstacles, we show how this approach can
be applied to particle-based multi-robot control, offering a decentralized,
auction-based alternative to previously established centralized methods.
Furthermore, we discuss conditions under which it is possible to prove our
method achieves coordination in a finite number of iterations in discrete
environments. Finally, we link our method to particle-based open-loop
control and illustrate the effectiveness of our new approach by presenting
simulations for typical spatially-continuous multi-robot path-planning
problems with collision avoidance under uncertainty.

1 Introduction

Due to its practical importance, multi-agent coordination has been subject to
ever increasing research efforts over the past decades. One of its subfields, multi-
robot coordination focusses on problems that reflect the specific nature of robotic
agents and their environment. In contrast to strategic settings, a multi-robot
mechanism designer can typically afford to assume obedient agents and hence,
does not need to burden herself with ensuring design goals such as incentive
compatibility or strategyproofness. On the other hand, this freedom should be
much welcomed considering that robots typically interact in a complex and un-
certain physical world and typically can choose from a continuum of control
signals (actions).

While in principle, slightly abstracted models of such problems could of-
ten be solved optimally with centralized optimization techniques (eg cf. [22])
these are known to suffer from substantial architectural and tractability defi-
ciencies, which rule them out for many real-world sized applications. Therefore,
distributed coordination mechanisms have been heavily investigated in various
areas of application [11, 9].

Auction methods have been identified as a particularly promising method-
ology that typically requires little communication bandwidth [12, 2]. They are
based on the observation that many multi-robot problems can be stated as co-
ordination of resource consumptions.



We consider the following multi-robot path planning problem (MRPPP): A
team of robots 1, ..., A desires to find individual plans p1, ..., pA that translate to
collision-free paths in free-space such that each robot’s path leads from its start
position to a predefined goal location.

In our setting, an individual robot’s plan could translate to a sequence of
locations in free-space. Interpreting locations as non-divisible (atomic) resources
an agent’s plan (path) corresponds to a set of resource claims.

How do we coordinate the planning process such that the joint outcome of
plans is socially optimal, i.e. that the sum of the robot path costs over all robots
is minimized?

With our resource interpretation in mind, we could set up a combinatorial
(VCG-)auction in the course of which each robot needs to compute a bid for any
possible combination of plans which guarantees social optimality [21]. However,
it should come as no surprise that the winner determination problem for combi-
natorial VCG-mechanisms is known to be NP-hard and difficult to approximate
[8] even for a finite number of resources.

Of course, in a continuous planning space, trying to compute the costs (on
which the bids would have to be based) seems computationally hopeless, because
the number of combinations each robot would have to asses is uncountably in-
finite. Therefore, the multi-robot auction literature is presently restricted to a
finite number of resources and hence, assumes prior spatial discretization.

In general, even for a finite number of resources, variations of such prob-
lems are known to be NP-hard. Hence, we cannot hope to find a coordination
mechanism that is simultaneously computationally efficient and optimal. There-
fore, most threads of works have focussed on developing suboptimal coordination
mechanisms whose performance was evaluated experimentally (e.g. [25, 24]) .

In this work, we present two contributions that address problem MRPPP.

First, we present a distributed auction mechanism for this problem that can
cope with a finite number of resources (locations). Our mechanism is lazy in the
sense that, instead of asking for bids on all conceivable combinations of plans, all
agents plan independently and bidding only takes place for resources that turn
out to be overbooked (i.e. which two or more robots plan to use simultaneously).
Thereby, their coordinated paths are guaranteed to be collision-free, while at the
same time the exponential blow-up resulting from considering all combinations
is avoided.

Second, we show how this mechanism can be combined with particle-methods
for open-loop control [4] which have been successfully applied to single-agent
path planning and control problems in continuous spaces with obstacles. The
result of this merger is a distributed multi-robot path planning mechanism
that (with adjustably high certainty) generates collision-free paths without prior
space-discretization and which can take uncertainty into account (which may be
desirable due to sensor noise and model-inaccuracies).



2 General Model and Task Description

Let A = {1, ..., A} denote the index set of our robotic agents we desire to co-
ordinate. Each robot a ∈ A needs to find a plan pa that corresponds to a path
starting at its start state S(a) and ending at its destination D(a).

Since our approach is motivated by multi-robot path planning, we interpret a
plan as being in a one-to-one relationship with a path in free space. For instance,
a plan could be a sequence of control inputs that linearly relates to a trajectory
of locations (resources) in an environment. For simplicity of exposition, we will
from now on assume that plan pa is a time-indexed sequence (pat )t∈N where
pat corresponds to a decision specifying which resource to consume at time t.
However, we will lift this assumption again in Sec. 4 where the plans are indeed
control inputs that linearly relate to locations.

Obviously, the agents need to make sure that plans are legal, that is they
adhere to the laws of the environment. We call the set of all legal plans the
global feasible set G.

For example, consider a routing scenario in a graph with edges E and vertex
set V . A plan could be to find a path through the network represented as a
sequence of vertices that respects the graph’s topology. To enforce this, we could
specify a global feasible set as a subset of {(pt)t|∀t : (pt, pt+1) ∈ E}. The global
feasible set is global in the sense that the constraints it enforces apply to all
agents in the system.

By contrast, each agent a may desire to enforce individual constraints upon
the plans it generates. We can represent them as a local feasible set La. For
instance, in the routing example, agent a may wish to ensure that he finds a
path that leads from its start location to its destination: pa ∈ La ⊂ {pa =
(pat )t|pa0 = S(a),∃k∀t ≥ k : pat = D(a)}.

Depending on the environment, there might be many (possibly infinitely
many) plans that are both legal and locally feasible. In most applications how-
ever, robots may have a preference over different plans implied by a local cost
function ca : G → R that assigns a cost to different plans. (For instance, ca(pa)
may quantify the path length.) So, if robot a could plan independently, he would
like to execute the solution to optimization problem:

minpa∈G∩La ca(pa).

Unfortunately, this is not possible in environments with multiple agents as
they need to avoid collisions (i.e. plans where two agents simultaneously use the
same non-divisible resource). Let p¬a = (pr)r∈A−{a} denote the collection of
plans of all agents except a. If a knew fixed p¬a, he could react to it by solving

min
pa∈G∩La∩R(p¬a)

ca(pa) (1)

where R(p¬a) is the set of all paths that are not in conflict with the paths
generated by p¬a. If p¬a is a tentative, we can interpret R(p¬a) as the set of all
plans that do not use any resource that are already used by any agent in A−{a}
based on the current belief that all other resources will be available.



For all a, R(pa) is unknown a priori and hence, the individual optimization
problems are undetermined (since the feasible sets are interdependent). This is
where the necessity for coordination arises.

We can now restate the overall task description (comprising (MRPPP) as a
special case) in general terms:

TASK: Assume each agent a (a = 1, ..., A) can choose a plan pa ∈ G ∩ La.
Coordinate the planning process such that the overall outcome (p1, ..., pA) of plans
is conflict free (i.e. ∀t : pat ̸= prt ,∀a, r ∈ A, a ̸= r) and such that the social cost∑

a∈A ca(pa) is small.
The socially optimal solution can be stated quite easily as the solution of the

centralized optimization problem

min
(p1;...;pA)∈GA∩×aLa∩I

A∑
a=1

ca(pa) (2)

where I is a set defined by inter-agent constraints that prohibit collisions. In
other words, I is the set of all overall plans p = (p1; ...; pA) such that all plans
pa, pr use distinct resources (for a, r ∈ A, r ̸= a).

Unfortunately, such centralized approaches are known to scale poorly in the
number of agents, even in expectation. They are NP-hard in the worst case and
are limited by the typical architectural down-sides of multi-agent systems that
rely on centralized planners. For example, central planners constitute computa-
tional and communication choke-points and a single points of failure ( cf. e.g.
[7]).

Since the centralized optimization problem acc. to (2) scales poorly, we will
seek to replace it by iteratively solving a sequence of individual, tractable prob-
lems acc. to (1). Due to the hardness of the original problem we will have to be
satisfied if the ensuing overall solution is not always socially optimal.

3 Mechanism

We propose an iterative mechanism that proceeds as follows:
In each iteration, agents plan independently based on their current beliefs of avail-

able resources. Initially each agent assumes all resources are available. The planning
process in each agent r is done solving an opt. problem of the form (1).

Whenever a conflict is detected, the conflicting agents participate in an auction for
the contested resource. The winner is allowed to proceed as if no conflict had occurred
while the losers add new constraints preventing them from using the lost resource at
the specific time t where the conflict occurred in future iterations (i.e. they update their
beliefs about the available resources as encoded by R). Conflicts are resolved in time
step order. That is, a conflict that would lead to a collision at time t is resolved before
a detected conflict that would lead to a collision at time step t′ > t. If we define the
auction horizon to be the largest time step t where a conflict has been resolved then
this horizon increases monotonically from coordination iteration to iteration until no
more conflicts arise.



Whenever an agent has won a resource for a certain time step t in past iterations

that she does not need anymore in her current plan, she releases it for t and informs

the other agents of this event. Once all conflicts are resolved, the agents can execute

their final plans.

Winner determination of an auction proceeds as follows: All agents who si-

multaneously (at the same coordination iteration i ∈ N0) plan to use a resource at

the same time step t submit a bid. The bid br(i) that each contestant r submits equals

lr(i) − sr(i). Here, lr(i) is the cost a expects to experience (given its current belief

in i of the available resources) if it would lose the resource. And, sr(i) is the cost r

expects (given its current belief of the available resources) to incur if it can keep us-

ing the contested resource. The winner is determined to be the agent who submits the

highest bid. If multiple agents have greater or equal high bids than all the other ones

(| argmaxa∈A ba(i)| ≥ 2), the robot with the highest index wins.

To gain an intuitive motivation for the bidding rule, notice the bid quantifies the
regret an agent expects to have for losing the auction (given its current belief of
the availability of resources). Acknowledging that swinner(i)+

∑
a∈ losers l

a(i) is
the estimated social cost (based on current beliefs of available resources) after the
auction, we see that the winner determination rule greedily attempts to minimize
social cost: ∀r : bw(i) ≥ br(i) ⇔ ∀r : sr(i) +

∑
a̸=r l

a(i) > sw(i) +
∑

a̸=w la(i).

Notice, there are several degrees of freedom regarding the architectural im-
plementation of the mechanism. For instance, to detect a conflict, all agents
communicate their their current plans to all other agents. With broadcast mes-
sages the communication effort per coordination iteration is hence in O(A) where
A is the number of agents. Then each agent would be responsible to detect the
next conflict and arrange an auction with the other agents. Alternatively, the
mechanism designer could set up a number of additional dedicated conflict de-
tectors and auctioneers (e.g. one for a set of time steps or a set of resources).

As an illustration, consider a simple graph routing example. Two agents
desire to find low-cost paths in a graph with transition costs as depicted in Fig.
1(a). Agent 1 desires to find a path from Node 1 to 5, Agent 2 from Node 2 to
6.

In the first iteration (i = 1), Agent 1 and Agent 2 both assume they can
freely use all resources (nodes). Solving a binary linear program they generate
their shortest paths as p1 = (1 3 4 5 5...) and p2 = (2 3 4 6 6...), respectively.
Detecting a conflict at time step 2 and 3, the agents enter an auction for contested
Node 3. Agent 1’s estimated “detour cost” for not winning Node 3 (assuming
he will be allowed to use all other nodes in consecutive time steps) is 2 which
he places as a bid b1(i) = 2. On the other hand, Agent 2’s detour cost ist
b2(i) = l2(i)− s2(i) = 12− 4 = 8 and hence, she wins the auction. Having lost,
Agent 1 adds a constraint to his description of his feasible set (more precisely to
R) that from now on prevents it from using Node 3 in time step 2. Replanning
results in updated plans p1 = (1 4 5 5 ...) and p2 = (2 3 4 6 6...). Being conflict-free
now, these plans can be executed by both agents.
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Fig. 1. Two examples. Numbers next to the edges denote the transition costs.

Notice how the laziness of our method protected us from unnecessary com-
putational effort: the initial conflict at time 3 (Node 4) was implicity resolved
by the first auction without the need to set up an explicit auction for Node 4 or
bidding on all combinations of availability of Nodes 3 and 4.

Of, course, this positive effect of laziness may not always bear fruit - in
several situations resolving a collision at one node may not prevent collisions
from happening (or, trigger new ones) at other nodes. As an example consider
Ex. 2 in Fig. 1(b) and assume Agent 2’s initial plan visits Vertex I11 - after this
conflict is resolved there will be a second at Vertex I21.

Nonetheless, Ex. 1 was designed to provide an intuition that it often can.
In Sec. 4, we provide an experimental investigation of the number of collisions
triggered in a typical multi-robot path planning scenario.

4 Coordination in a spatially continuous world and under
uncertainty

4.1 Preliminaries- Sampling-based control and obstacle avoidance

Multi-robot motion planning and control problems in continuous maps have been
addressed with mixed-integer linear programming (MILP) techniques [22]. Typ-
ically they rely on time-discretization only, without prior space-discretization.
However, they are commonly solved with a centralized planner and typically
do not take uncertainty into account. Recently, stochastic control methods have
been suggested for single-robot path planning that accommodate for uncertainty
in the effect of control signals. For instance, Blackmore et. al. [4] discuss a



particle-based method that can be used to generate a low-cost trajectory for
a vehicle that avoids obstacles with adjustably high confidence. In their model,
the plans pa are time-discrete sequences of control inputs. The spatial location
xa
t of Robot a at time t is assumed to be a linear function of all previous con-

trol inputs plus some iid random perturbations ν0, ..., νt−1 ∼ D. So, given plan
pa, drawing n samples of perturbations for all time steps generates N possible

sequences of locations (particles) (x
a,(j)
t )t (j = 1, ..., N) Robot a could end up

in when executing his plan.

Formally, x
a,(j)
t = ft(x

a,(j)
0 , ua

0 , ..., u
a
t−1, ν

(j)
0 , ..., ν

(j)
t−1) (j = 1, ..., N) where ft

is a linear function and ua
0 , ..., u

a
t−1 is a sequence of control inputs as specified by

Robot a’s plan. Due to this functional relationship we can constrain Robot a’s
MILP’s search for optimal control inputs by adding constraints on the particles.

Let T be the number of time steps given by the time horizon and temporal
resolution. That is, t ∈ {1, ..., T}. Furthermore, let F be the free-space, i.e. the set
of all locations that do not belong to an obstacle. Obstacle avoidance is realized
by specifying a chance constraint Pr((xa

t )t∈T /∈ F ) ≤ δ on the actual location
of the robot. The chance constraint can be approximated by the constraints
1
N |(xa,(j)

t )t∈T /∈ F, i = 1, ..., N | ≤ δ [4] which we add to Robot a’s individual
MILP.

If D is a unimodal and light-tailed distribution, the particles x
a,(1)
t , ..., x

a,(N)
t

for a at time step t typically form a cluster mostly centered around the mean.
Note that the uncertainties due to the random perturbations accumulate over

time. Hence, the standard error of the particle clusters along a robot’s trajectory
can be expected to increase with t.

4.2 Multi-Robot motion control under uncertainty

As collision-free plans are found by solving a MILP we could combine both
approaches to a multi-robot stochastic control mechanism: Integrating the in-
dividual MILP’s into one large central MILP (cf. to Eq. 2 in Sec. 2) we could
then add an appropriate inter-robot constraint for each combination of particles
in order to avoid collisions. Unfortunately, the number of integer constraints
would grow superlinearly in the number of particles and even exponentially in
the number of robots, rendering this approach computationally intractable.

Instead, we propose to apply our mechanism as follows: Each robot solves its
local MILP to find a plan that corresponds to sequences of n particle trajectories.

When two (or more) robots a, r, .. detect their particle clusters {xa,(1)
t , ..., x

a,(N)
t },

{xr,(1)
t , ..., x

r,(N)
t },.. ‘come too close’, they suspect a conflict and participate in

an auction. The winner gets to use the contested region, while the losers receive
constraints that correspond to a virtual obstacle (that is valid for time step t)
and replan. Notice, for notational convenience, we omit the explicit mention of
the coordination iteration i in our notation throughout the rest of the section.

Next, we will explain the application of our mechanism to the continuous
path planning problem in greater detail. Every robot employs the path planning
algorithm as described in [4] to generate a particle-trajectory that is optimal for



him. As explained in Sec. 3 the mechanism requires the robots to exchange their
plans in every coordination iteration. However, they do not need to exchange all
particles constituting their trajectories – it suffices only to exchange the optimal
control inputs that lead to the particle trajectories (alongside the state or seed
of their own pseudo-random-generator with which they drew their disturbance
parameters).3

With this knowledge all the other robots are able to exactly reconstruct each
others’ particle trajectories. Now each robot locally carries out a test for collision
by calculating the probability of a collision for each plan of every other robot.

Let {xa,(1)
t , . . . , x

a,(N)
t } be the particle cluster that probabilistically describes

the desired position of Robot a at time step t. Furthermore, let {xr,(1)
t , . . . , x

r,(N)
t }

be the particle cluster of Robot r. Let ϵ be a predetermined parameter represent-
ing the minimum distance allowed between two robots. For instance, we could
set ϵ = 2d where d is the diameter of the robots which is a reasonable choice
when defining a robot’s location as the cartesian coordinates of his center point.

The probability of a collision of Robot a and Robot r at time step t is

Pr(∥xa
t − xr

t∥ < ϵ) = Exa
t , xr

t
{χC} (3)

=

∫ ∫
χC(x

a
t , x

r
t )f(x

a
t )f(x

r
t )dx

a
t dx

r
t (4)

≈ 1

N2

N∑
k=1

N∑
j=1

χC(x
a,k
t , xr,j

t ) , (5)

where f(xa
t ) and f(xr

t ) are the densities representing the uncertainty regarding
Robot a’s and Robot r’s locations, respectively, given the histories of their control
inputs and where

χC(x
a
t , x

r
t ) :=

{
1 , for ∥xa

t − xr
t∥ < ϵ

0 , otherwise.
(6)

Therefore, the probability of a collision of Robot a and Robot r at time step t is
approximated by their respective particle representations. If this approximated
probability is above a predefined threshold δ, the robots engage in an auction for
the contested spatial resource, as described in previous sections. The resource
in this case corresponds to the right to pass through. We propose its denial to
be embodied by a new virtual obstacle the loser of the auction, say Robot r,
will have to avoid (but only at time t). By placing the virtual obstacle around
the winner’s location estimate at time step t, we will reduce the chance of a
collision. We represent the new obstacle by a square (if planning takes place in
higher dimensions a hypercube) Bα+ϵ(µ

a
t ) with edge length α+ϵ and centered at

the sample mean µa
t of Robot a at time step t. The choice of this representation

3 Note, the approach is still distributed as the computationally demanding task of
computing the individual, optimal control sequences are still left to the individual
robots.



is motivated by the fact that the chance constraints for a square-obstacle can be
encoded by merely four linear and a few additional integer constraints [3, 4].

Obviously, the larger the virtual obstacle, the lower the probability of a colli-
sion between the robots. On the other hand, an overly large additional obstacle
shrinks the free-space and may unsuitably increase path costs or even lead to
deadlocks. Next, we will derive coarse mathematical guidelines for how to set
the size of the virtual obstacle in order to avoid a collision with a predefined
probability.

Let t be a fixed time step. Let C := {(xa
t , x

r
t )|(∥xa

t − xr
t∥ < ϵ)} be the event

of a collision and E := {(xa
t , x

r
t )|∥xa

t −µa
t ∥ ≤ α} the event that the true position

of Robot a at time step t deviates no more than α from the mean of its position
estimate given by sample mean µa

t . By introducing a chance constraint with
threshold δ

2 ,

Pr[xr
t ∈ Bϵ+α(µ

a)] <
δ

2
(7)

we enforce a bound on the collision probability. Introduction of the virtual
obstacle to Robot r’s constraints induces his planner to adjust the control inputs

such that the fraction of particles (x
r,(j)
t )i=1,...,N that are inside the square box

Bϵ+α(µ
a) with edge length α + ϵ around sample mean µa

t is bounded (and by
particle approximation of the chance constraint, hence also the (approximated)
probability that Robot r is inside the box). Parameter α needs to be specified
after the desired δ is defined and we will now discuss a proposal how this can be
done.

Let K be the event {xr
t |xr

t ∈ Bϵ+α(µ
a))}.

We have Pr(C) = Pr(C ∩ E) + Pr(C ∩ ¬E) = Pr(C ∩ E ∩K) + Pr(C ∩ E ∩
¬K) + Pr(C ∩ ¬E) = Pr(C ∩ E ∩ K) + Pr(C ∩ ¬E) where the last equality
holds since Pr(C ∩ E ∩ ¬K) = 0. Furthermore, Pr(C ∩ E ∩ K) ≤ Pr(K) and
Pr(C ∩ ¬E) ≤ Pr(¬E). Hence,

Pr(C) ≤ Pr(K) + Pr(¬E) (8)

Due to chance constraint (7) we know that control inputs are found that (for
sufficiently large N) ensure that Pr(K) < δ

2 . Hence, all we are left to do is to
determine box parameter α such that

Pr(¬E) ≤ δ

2
.

Let the distributions of Robot a be an isotropic Gaussian with covariance
matrix Σ = σ2I where I is the identity matrix. We can then control Pr(¬E) by
computing the σ-bounds of the normal distribution (considering the masses of
its tails). For instance, an upper bound δ

2 = 0.05 on the collision probability can
be achieved by setting α := 2σ and a bound of 10 percent by setting α := 1.64σ.

4.3 Experiments

We consider three different path planning scenarios, all with planning horizon
of length ten, in our simulations:



– A simple example with only two robots to illustrate the very basic function-
ality of the mechanism.

– A quantitative evaluation of the average runtime behaviour for an increasing
number of robots in an environment with a fixed number of obstacles.

– A quantitative evaluation of the average number of conflicts to be resolved by
the mechanism in an increasingly complex environment for a fixed number
of robots.

In all simulations the sample distribution for the robots was chosen as isotropic
zero-mean white Gaussian noise with standard deviation σ = 0.01.

For an illustration, consider the simulations of a two-robot planning scenario
depicted in Fig 2. Here two robots 1 and 2 start at locations at the bottom of
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Fig. 2. Simple example. Blue box: obstacle. Dashed box: virtual obstacle for Robot 2
for time step 3 (after he lost an auction against Robot 1).

a map. When generating paths to destinations at the far side of the map, they
desire to avoid the obstacle (blue rectangle). Planning independently with the
particle-control method, they find their individually cost-optimal trajectories as
depicted in Figs. 2(a) and 2(b). Note, how the spread of their particle clusters
increases as the uncertainties accumulate over time. Coming too close to each
other on time step three (i.e. causing our coll. probability estimate to exceed our
threshold δ), Robot 1 is determined to be the winner in the invoked auction.
Hence, Robot 2 gets a virtual obstacle (dashed box) for time step 3 which in-
creases the length for the path to its destination on the left to the (real) obstacle
enough to induce him to take the (initially longer) way around on the right hand
side of the obstacle (Fig. 2(c)).

It should be expected that the number of iterations of our mechanism de-
pends on the number of collisions during coordination, which in turn, should
increase with the number (and size) of obstacles (or decrease with available free-
space) and the number of robots in the system. To develop an intuition for the
dependence of run-time on these factors we conducted randomized experiments
(with varying robot destinations and obstacle placements) in which run-time
and number of collisions were recorded. The results for ten robots with varying
starts, destinations and obstacles are depicted in the left part of Fig. 3.



In a third round of simulations, the obstacles were placed at fixed positions
together with fixed, equally spaced, starting positions for the robots. In order
to provoke potential conflicts, the agents’ goals were drawn at random from a
uniform distribution. We iteratively added more agents to the planning scenario
and set up the mechanism to calculate conflict-free plans for varying numbers of
robots. The results are depicted in the right plot of Fig. 3.

The simulations were implemented in MATLAB, with no particular empha-
sis on run-time optimization and all experiments were executed on a standard
desktop computer. In summary, Fig. 3 illustrates that both the number of coordi-
nation iterations (collisions) and run-time increased moderately with increasing
problem complexity.

Fig. 3. Right: Runtime in seconds vs. number of robots. Left: Number of arising con-
flicts vs. varying number of obstacles. Plots show averages over 50 Monte-Carlo runs
of randomized problems.

5 Related Work

Multi-robot coordination is a broad topic with numerous strands of works. The
approach we present to collision avoidance and control is germane to a number
of these strands comprising both approaches designed to operate in both con-
tinuous and in discrete worlds. It is beyond the scope of this paper to present
an exhaustive survey of the extensive body of previous work that ranges across
various disciplines. For surveys focussing on market-based approaches refer to
[9, 14].

As a rather coarse taxonomy, present methods can be divided into centralized
and decentralized approaches. Centralized approaches (e.g. [22][20]) typically rely
on combining the individual agents’ plans into one large, joint plan and opti-
mizing it in a central planner. Typically, they are guaranteed to find an optimal
solution to the coordination problem (with respect to an optimality criterion,
such as the sum of all costs). However, since optimal coordination is NP-hard it
is not surprising that these methods scale poorly in the number of participating
agents and the complexity of the planning environment. With worst-case compu-
tational effort growing exponentially with the number of robots, these methods



do provide the best overall solutions, but are generally intractable except for
small teams.

In contrast, decentralized methods distribute the computational load on mul-
tiple agents and, combined with approximation methods, can factor the optimal
problem into more tractable chunks.

There are two classes of decentralized coordination mechanisms. The first
class imposes local interaction rules designed to induce a global behavior that
emerges with little or no communication overhead. For instance, based on a
specific robot motion model, Pallottino et. al. [19] propose interaction policies
that result in guaranteed collision avoidance and can accommodate new robots
entering the system on-line. Furthermore, under the assumption that robots
reaching their goals vanish from the system, the authors prove that eventually
all robots will reach their respective destination locations. While in its present
version uncertainty is not explicitly taken into account, it may be worthwhile
endowing their method with an explicit error model and performing a similar
analysis as we provide in Sec. 4.

The second class focusses on the development of mechanisms where coor-
dination is achieved through information exchange succeeding the distributed
computations.

Distributed optimization techniques have been successfully employed to sub-
stitute the solution of a centralized optimization problem by solving a sequence
of smaller, decoupled problems (e.g. [5], [16], [17], [2] and [13]). For example,
Bererton et. al. [2] employ Dantzig-Wolfe Decomposition [6] to decentralize a
relaxed version of a Bellman MIP to compute an optimal policy. However, due
to the relaxation of the collision constraints, collisions are only avoided in ex-
pectation. Many of these algorithms have a market interpretation due to passing
Lagrangian multipliers among the subproblems.

Generally, market-based approaches have been heavily investigated for multi-
robot coordination over the past years [23] [12] [9]. Among these, auction mech-
anisms allow to employ techniques drawn from Economics. They are attractive
since the communication overhead they require is low bandwidth due to the fact
that the messages often only consist of bids. However, as optimal bidding and
winner determination for a large number of resources (as typically encountered
in multi-robot problems) is typically NP-hard, all tractable auction coordina-
tion methods constitute approximations and few existing works provide any
proof of the social performance of the resulting overall planning solution beyond
experimental validation. An exception are SSI auctions [14, 15]. For instance,
Lagoudakis et. al. [15] propose an auction-based coordination method for multi-
robot routing. They discuss a variety of bidding rules for which they establish
performance bounds with respect to an array of team objectives, including social
cost. While multi-robot routing is quite different from the motion control prob-
lem, we consider some of their bid design to be related in spirit to ours. It may
be worthwhile considering under which circumstances one could transfer their
theoretical guarantees to our setting. One of the main obstacles here may be the
fact that in SSI auctions, a single multi-round auction for all existing resources



(or bundles) is held. This may be difficult to achieve, especially if we, as in Sec.
4, desire to avoid prior space discretization and take uncertainty into account.

Among all multi-robot path planning approaches, fixed priority methods are
perhaps the most established ones. In its most basic form introduced by Erd-
mann and Lozano-Perez [10], robots are prioritized according to a fixed ranking.
Planning is done sequentially according to the fixed priority scheme where higher
ranking robots plan before lower ranking robots. Once a higher ranking robots is
done planning, his trajectories become dynamic obstacles4 for all lower ranking
robots, which the latter are required to avoid. If independent planning under
these conditions is always successful, coordination is achieved in A planning it-
erations that spawn the necessity to broadcast A− 1 messages in total (plans of
higher priority agents to lower priority ones) where A is the number of robots.

By contrast, in our mechanism, A such messages need to be sent per coordina-
tion iteration. Although our results indicate that the number of these iterations
scale mildly in the number of robots and obstacles in typical obstacle avoidance
settings, such an additional computation and communication overhead needs to
be justified with better coordination performance.

Note, our mechanism also incorporates an (in-auction) prioritization (as ex-
pressed by the robots’ indices) that becomes important for winner determination
whenever | argmaxa∈A ba(i)| ≥ 2.

For a simple example where our method outperforms the fixed priority method
reconsider Ex. 2 in Fig. 1(b). Regardless of whether Agent 1 had higher priority
than Agent 2 or vice-versa the social cost would be (1+1+1)+(1+9+9) = 22.
In contrast, the coordination with our mechanism achieves a social cost of
(1 + 1 + 9) + (1 + 1 + 1) = 14.

As a first systematic performance test, we pitted the simple fixed priority
method against our mechanism in 1000 randomized graph planning problems.
In each trial, the planning environment was a forward directed graph similar in
structure to the one in Fig. 1(b). Each graph had a random number of vertices
(TxM - graphs where number of layers T unif({3, ..., 10}) and number of nodes
per layer M unif({3, ..., 10} ) and randomized vertex-transition costs drawn from
unif([1, ..., 100]). The coordination task was to find a cost optimal path for each
agent through the randomized graph where both agents had a randomized start
location in the first layer and a destination vertex in the last layer. The results
are depicted in Fig. 4. Let Sp(τ) be the social cost when coordination is found
with the fixed priority scheme for the τth randomized graph problem and Sl(τ)
be the social cost incurred when coordination was achieved with our lazy mech-
anism using agent indices that coincided with the priorities of the fixed priority
algorithm. Each point on the plot in Fig. 4 represents the difference in social
cost (Sp(τ) − Sl(τ)/Tτ ) where Tτ was the number of forward layers in the τth

4 The notion dynamic obstacle loosely corresponds to our virtual obstacles (cf. Sec. 4).
The difference is that our virtual obstacles are only present at a particular time step
whereas the dynamic obstacles span the whole range of all time steps. Furthermore,
we described how to adjust the box-sizes to control the collision probability in the
presence of uncertainty.
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Fig. 4. Differences in social cost of priority method and lazy auction mechanism over
100 randomized graph problems. Our lazy auction method outperforms the fixed pri-
ority algorithm on the problem sample.

graph. The division was done to have comparable results since larger graphs
would otherwise correspond to higher average path costs.

As can be seen from the plot, in the vast majority of trials, the social cost
achieved with our mechanism was at least as low as the one achieved with the
fixed priority method. In particular, our method performed strictly better than
the fixed priority method on 296, equally good on 692 and poorer only on 12
randomly generated problem instances. These results do look promising and may
serve as an indication that our mechanism can indeed outperform the basic fixed
priority method on a larger number of randomized problems. Nonetheless, these
first experiments where somewhat limited in scope and further research needs
to be done to elucidate the exact nature of the problems where our method is
guaranteed to outperform the fixed priority method and where it is not.

In priority methods, the overall coordination performance depends on the
choice of the ranking and a number of works have proposed methods for a priori
ranking selection (e.g. [1]). Conceivably, it is possible to improve our method
further by optimizing its in-auction prioritization (robot indexing) with such
methods. Exploring how to connect our mechanism to extensions of priority
methods, such as [18], could have the potential to improve the communication
overhead. Investigating the feasibility of such extensions will have to be done in
the course of future research efforts as well.

6 Conclusions

In this paper, we presented a distributed, auction-flavoured multi-robot coordi-
nation mechanism. It is lazy in the sense that the agents only coordinate when
necessary (due to conflicting resource usage), generating conflict free plans. We
applied the mechanism to the MILP formulation of a multi-robot path planning
problem, taking uncertainty about the robots’ positions into account. Using our
distributed mechanism in this scenario can be expected to be computationally
more attractive, since the complexity of a single-agent MILP is significantly lower



than that of a centralized model. Our simulations suggest that the effort and
communication overhead scales well in the number of agents and the complexity
of the environment.

Since this paper reflects work in progress it can be the outset for several
research questions that can be addressed in the context of future work. For in-
stance, can we identify problem classes where our mechanism can provably be
expected to be efficient and iterate to socially optimal paths? Our initial exper-
iments support the intuition that our approach mostly outperforms simple fixed
priorities, justifying an additional overhead in communication and computation.
In future work, we would like to aim at deriving a theoretical explanation for
which problem classes this can always be guaranteed to be the case. Comple-
menting our experimental results in Sec. 4, we believe to able to establish an
upper bound on the number of collisions that can arise during coordination un-
der reasonable assumptions. This could provide theoretical underpinning for our
observed experimental results that indicate that our coordination overhead does
not suffer from a combinatorial blow-up. Moreover, we would hope to be able to
establish distribution independent collision bounds that relate our confidence in
collision avoidance to the number of particles.

At the bottom line, we hope this work succeeded in introducing our method
to the reader and in convincing the research community that this work could
form the basis for various fruitful future research endeavors.
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Abstract. This paper presents the design of an offline collision-free path 
planning algorithm for multiple mobile robots travelling simultaneously on a 
2D gridded map. We first solved this problem by extending the traditional A* 
algorithm into 3D, namely two spatial and one time dimensions. This 3D 
approach proved computational costly and this led to the development of a 
novel and faster Spatio-Temporal (S-T) A* algorithm. This is a modified A* 
algorithm, which uses discrete time stamps and a temporal occupancy table to 
communicate previously planned routes and potential collision among robots. 
We further adapted the S-T A* algorithm to allow robots to stop and wait near 
nodes where potential collision is detected in order to increase their probability 
of finding a viable path to their destination. Using a time-based objective 
function that requires all robots in the environment to reach their respective 
destination in the shortest possible time, this decoupled planning strategy was 
done using a fixed priority based on the slowest robot first. Another variant 
using an adaptive priority scheme was then introduced to improve the success 
rate of finding a viable path for all robots as the number of robots in the fixed-
sized environment increased. We present experimental results comparing the 
performance of the various path planning and priority schemes.  

Keywords: Multi-robot path planning, A* algorithms, Offline path planning. 

1   Introduction 

A tangible interactive system for teaching children how to spell words in the English 
language is shown in Figure 1. This system consists of a set of passive and active 
cubes marked with letters of the English alphabets, which the child can arrange to 
form words. The active cubes are intelligent autonomous agents in the shape of 
mobile cube-like robots that can interact and assist the child by maneuvering 
themselves to appropriate localities so as to provide meaningful contextual scaffold to 
the child while he is forming a word. Overseeing the entire workspace is a video 
camera that is able to track the position and orientation of each individual letter block 
and mobile robot, essentially providing an instantaneous map of the entire operating 
environment. The central host PC uses this map to plan the traversal path of relevant 
mobile robots so that they can travel to appropriate positions in the map to form a 



     

required word. Critical to the success of this interactive system is the need for a 
speedy offline path planning algorithm for the multiple mobile robots, which is the 
subject of this paper.  

 Overhead video camera 
Central 
host PC 

Wireless link between 
robot and host PC 

 

 

 

 

 

Fig. 1. An interactive educational system for teaching children spelling. A swarm of cube-like 
mobile robots helps the child by rearranging themselves to form words (e.g. ‘HELLO’). An 
overhead camera observes the instantaneous location and orientation of each robot in the 
environment. 

   Algorithms for path planning have been widely researched. In our context, the 
problem of path planning could be described simply as follows: given a starting point 
and a target point in an environment with static and moving obstacles, the path 
planner is required to determine an optimal path between these two points based on 
some associated cost functions related to the path and the motion sequence of the 
agent. There are of course many other examples where path planning algorithms are 
relevant. For instance, a delivery truck needs to move from city A to city B, while 
there are several different paths between A and B, each path has an associated cost 
(e.g. distance, traffic lights, etc). So the truck driver needs to choose the shortest path 
to minimize fuel cost associate with the delivery of his goods to a client in city B. 

Path planning algorithms can generally be divided into global or local. In global 
path planning, the information regarding the environment is known in advance. On 
the other hand, in local path planning, only the information related to the immediate 
vicinity surrounding the current robot is known (e.g. in autonomous navigation in 
unchartered terrains). In the context of our work, the overhead camera provides us a 
global view of the environment. Approaches using global path planning are able to 
determine a feasible solution if it exists but complex scenarios with large search 
spaces can be computationally costly if a guaranteed optimal solution is desired. Most 
practical solutions are sub-optimal and may suffice for applications such as ours. 
Computational speed is of reasonable importance even though the problem is resolved 
in an offline manner since an interactive system needs to be responsive to the actions 
of the user. 

Many methods have been proposed to solve the global path planning problem. 
These include the Dijkstra algorithm, A* algorithm, variants of A* algorithm and so 
forth. These algorithms are guaranteed to find an optimal path if it exists. However, 
path planning for multiple robots is still an active research area with it many 
unresolved problems. Not only is there a need to determine a optimal path for each 
individual robot, there is also the need to coordinate the motion sequences of the 
robots to avoid collision when their paths intersect. Approaches for path planning of 



    

multiple robots can be generally divided into coupled or decoupled. In a coupled 
approach, all robots plan their path simultaneously using a centralized planner to 
avoid colliding into one another. The advantage of a coupled approach is that its 
solution is complete. However, the dimension of this approach is the sum of degree of 
freedom of all robots. This means its computational time increases exponentially with 
the robot count. An example of a coupled approach is by Svestka and Overmars [1], 
who used a super graph method to coordinate the path for all robots. It combines the 
workspace of all robots into one workspace and each robot plans its path 
simultaneously. But only one robot can move at a time. This approach is 
probabilistically complete but does not scale well with increasing robot count. 
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Fig. 2. A deadlock situation in prioritized planning. 

The alternative approach is a decoupled approach that reduces the dimension of 
path planning by making each robot plan its path individually. Associated with the 
decoupled approach are the issues related to prioritized planning and path 
coordination. In prioritized planning, each robot is given a priority. The robot with the 
highest priority plans its path first and its resulting path influences the way the next 
highest priority robot would plan its path and so on. In path coordination, each robot 
searches its path independently and then adopts some strategy such as speed 
modification or stop-and-wait delays to avoid collisions. Guo and Parker [2] proposed 
a distributed approach for path planning of multiple robots. In this approach, the D* 
algorithm is used to search the path for each robot independently. The coordination 
between robots is realized using a simple priority scheme where the robot with a 
lower priority has to give way when there is an imminent collision with another with a 
higher priority. However, this approach can suffer from deadlocks such as that shown 
in Figure 2. In a distributed approach, robots R1 and R2 will plan shortest paths 
denoted by red and dashed lines respectively. No matter which one has the higher 
priority, when one chooses the most efficient path, the other will not be able to reach 
its destination. Such situations could be solved using a coupled planner that searches 
for a solution that will move one robot to the place denoted by × first, so that the other 
one can pass through to its destination. Marchese [3] adopted a potential field method 
for path planning of multiple robots. However, this approach suffers from local 
minima in which the cooperation between attractive force and repulsive force is equal 
to 0. Lee [4] proposed a collision map for path planning of two robots. Time delay or 
speed change strategies are used for coordinating robots to avoid collisions. Ji et al. 
[5] extended this idea to multiple robots. However, this decoupled method also suffers 
from deadlocks. 

In this paper, we introduce a modification of the standard A* algorithm called the 
Spatio-Temporal (S-T) A* algorithm for path planning of multiple mobile robots. We 
have adopted a decoupled approach, where a centralized planner uses the proposed S-



     

T A* algorithm to find the lowest cost path for each robot in a sequentially order 
based on its assigned priority. A novel adaptive priority re-assignment scheme is 
proposed to improve the probability of path solution for all the multiple robots.  

2   Related Work 

The problem of path planning for multiple robots is in many ways similar to the 
problem of path planning for single robot in a dynamic environment where there are 
unpredictable obstacles. One could view the other robots as dynamic obstacles. In an 
unknown environment, incremental heuristic search algorithms have been proposed 
like Lifelong planning A*[6], D*[7], D* lite[8], and others. D* searches all 
configuration space at the start and then updates only the affected parts when there are 
changes in environment. Lifelong planning A* searches the configuration space until 
the goal is found. The search space is less than D* algorithm in general, and Lifelong 
planning A* only updates the affected parts which have been searched. D* lite is a 
backward lifelong planning A*. The major difference between them is that lifelong 
planning A* determines the optimal path between the start point and the goal point 
repeatedly as the edge costs of a graph change, while D* lite determines the optimal 
path between current point of the robot and the goal point as the edge costs of a graph 
change while the robot moves towards the goal point. These online algorithms are 
suitable for dynamic environment with unknown static obstacles but for an 
environment with moving obstacles, they do not work efficiently. To improve 
efficiency, strategies such as abstraction and path refinement have been proposed. In 
grid-based map, high grid resolution is good for finding an optimal solution but this 
comes at increased computational cost. Abstraction is a technique to search a 
workable path in coarse resolution and path refinement can subsequently be used to 
refine the solution using a high resolution map. Unfortunately, abstraction and path 
refinement tend to suffer from sub-optimality. Koenig and Likhachev [9] proposes the 
Adaptive A* algorithm as a means to speed up the searching process instead of 
lowering the map resolution. Adaptive A* algorithm updates the heuristics according 
to the search result obtained from an initial application of the standard A* algorithm. 
In this way, Adaptive A* could make subsequent search operations expand less states 
and therefore run faster. Fiorini and Shiller [11] proposed using velocity obstacles for 
path planning in a dynamic environment with known moving obstacles. However, this 
approach may suffer from oscillations problems when used for path planning of 
multiple robots. More recently, Snape et al. [12] extended velocity obstacle to the 
hybrid reciprocal velocity obstacle for online path planning of multiple robots. It 
avoids oscillation by explicitly considering reciprocity where each robot assumes 
other robots are cooperating to avoid collision. 

During past decades, many offline algorithms have also been proposed. Wang and 
Botea [10] proposed a modified A* algorithm for multi-agent path planning on grid 
maps. This approach searches alternative path for each vertex on map to avoid 
collisions between robots. The robot with the lower priority gives way to the one with 
a higher priority by moving into an alternative path to avoid collision and then 
returning back to its intended path. However, the grid map resolution used by this 



    

approach is not flexible since it is inherent tied to the size of the moving robot and the 
computation of the alternative paths is costly. Silver [13] proposed the Cooperative 
A* (CA*) algorithm for cooperative pathfinding among multiple robots. It searches 
for a solution in a 3D space-time map. Two variants of CA* were proposed. He 
claimed that both the Hierarchical CA* and Windowed Hierarchical CA* can be used 
in a real time environment. Jansen and Sturevant [14] introduced a direction map for 
cooperative pathfinding. This direction map is used to change traversed path cost of 
each node. The direction map is changed using a learning formulation. 

Unlike CA* [13], the proposed Spatial-Temporal (S-T) A* algorithm searches the 
path solutions in a 2D spatial map.  Using a 2D map reduces the size of the search 
space and therefore reduces the time required to compute the solution. However, 
search space compression makes it harder to find viable solutions for all robots when 
their numbers are increased. We proposed additional mechanisms such as a wait time 
insertion strategy and adaptive re-ordering of the robot’s priority to improve the 
performance of the S-T A* algorithm.    

3   Problem Description 

In a configuration space C, there are n homogeneous robots and m static obstacles. 
Each robot Ri has a unique initial state (xi ,yi ,�i ) and end state (x’i ,y’i ,�’i ). The values 
x and y represent the 2D location of the robot in a grid-based map, while the value � 
represents the direction of the robot. All robots can rotate and move to their four 
directly connected neighbors with a constant velocity. The spatial coordinates and 
orientation of each robot at any time t is known to the central planner. All robots will 
move simultaneously toward their respective target point and do so without colliding 
into each other or known static obstacles. Let ti represents the cooperative time cost of 
robot Ri, Ti is the individual time cost for robot Ri to reach its destination if there is no 
other robots.  The goal is to find a viable solution that will allow all n robots to reach 
their respective target positions without incurring any collision and to achieve this 
based on the time-based objective function given by  

T = max(Ti)      where T = argmin(max(ti)), i=1,2….n (1) 

 
In other words, the goal is to find the coordinated paths for all n robots such that 

the time (T) taken by the last robot to arrive at its target is minimized. For this reason, 
our decoupled path planning approach uses a priority strategy based on meeting this 
objective function. In our fixed priority (FP) scheme, the highest priority robot 
(whose path will be planned first) is the one that takes the longest time to reach its 
destination among the n robots. The time taken by the highest priority robot is 
essential the objective function T. We estimate this time by applying the standard A* 
algorithm on each robot to compute the fastest path while all other robots are at rest in 
their initial position. The next highest priority is given to the robot with the next 
longest path and so on. 

The configuration space C is shown in Figure 3. It is a space-time configuration 
consisting of two spatial dimensions given by (x,y) and a time dimension given by t. 



     

At each discrete time interval dt, a new map is generated since the moving robots 
(with constant velocity v) will move a unit grid node to a new location on the map as 
shown in Figure 3. Two equal-sized robots R1 and R2 are required to travel to their 
respective goal G1 and G2 in the fastest possible manner without colliding into each 
other or the static obstacle block O in the map. 
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Fig. 3.  The space-time configuration defined by two spatial dimensions x and y, and one time 
dimension t. 

In our problem definition, the following assumptions were made: 
 All objects in the environment (i.e. movable robots and static obstacle blocks) are 

square and of equal-sized width w;  
 They can occupy more than one grid node and at any given time step, they are 

always centered about a grid node; 
 The minimum safe distance between robots’ centers ds is given by 1.414w (see 

Figure 3). Since static obstacle blocks are the same size as the robot, the minimum 
safe distance between the robot’s center and the center of the closest static obstacle 
block is computed in the same manner; 

 Each robot is constraint to travel in any four directions along the grid lines with a 
constant velocity v. They travel by either going forward or reversing and therefore 
only required to make discrete rotations of 90 degrees to traverse all four 
directions. 

4. Path Planning 

The A* algorithm is a popular path planning algorithm. It has three cost values g, h, 
and f. The value g computes the path cost between the current and initial node. The 
value h estimates the path cost between current and target node. And f is the sum of g 
and h. The A* algorithm keeps a data structure called openlist for caching nodes to be 
expanded and another called closelist for storing the expanded nodes. The nodes in 
closelist should not be explored and added back into openlist again. At the beginning, 



    

both openlist and closelist are empty and it puts the starting node into openlist. The 
starting node will then be expanded and the nodes around starting nodes will be 
explored and put into openlist. The expanded starting node will be deleted from 
openlist and put into the closelist. Then it will expand next node with the least f value 
in openlist. The node in openlist will be replaced if the same node with lower g value 
is added into openlist. This procedure is repeated until the target node is expanded, 
which in this case will cause the A* algorithm to return a successful search. If 
openlist eventually becomes empty, this signifies a failed search. 

The A* algorithm is often use for planning the path of a single robot in a stationary 
environment. In its standard form, it is not suitable for path planning of multiple 
robots since other moving robots need to be considered when searching a collision-
free path for each robot. We next introduce the 3D A* algorithm for solving this 
problem. 

4.1   The 3D A* Algorithm 

Given the configuration space C shown in Figure 3, the path search must now be 
performed within a three dimensional (3D) grid map consisting of two spatial 
dimensions and one time dimension, where each grid node is represented as (x,y, t ). 
Assume the robots can translate a distance dp during one time interval dt (with no 
rotation). So for each time interval dt, the robot has five possible action to choose 
from: (x+dp,y, t+dt), (xdp,y, t+dt), (x,y+dp, t+dt), (x,ydp, t+dt) and (x,y, t+dt). 
The path solution is a collision free path from (x0,y0,0) to (xd,yd, td). The values x0 and 
y0 represent the coordinate of starting point, while the values xd, yd and td represent the 
coordinate of target point and the time taken to get to destination. 

Cooperative A* (CA*) [13] is one variants of a 3D A* algorithm for multiple 
robots. In CA*, each robot searches its path in a 3D space-time map and takes into 
account the planned routes of other robots. These planned paths are marked into a 
reservation table and entries that are considered impassable are avoided in the 
searches of subsequent robots. A wait move is provided in the robot’s action set to 
allow it to remain stationary in order to avoid collision. Due to the large search space 
generated by the 3D grid map, the 3D A* algorithm can be computationally intensive, 
especially if in the worst case, it searches all grid nodes in the 3D space. In order to 
address this limitation, we propose the Spatio-Temporal A* algorithm, which runs 
significantly faster. 

4.2   Spatio-Temporal A* 

In the Spatio-Temporal (S-T) A* algorithm, we adopt a 2D spatial grid map instead of 
3D map. Collision detection with static obstacles is monitored using direct distance 
check. On the other hand, collision detection with other moving robots in the 
environment is done with the aid of a data structure called the temporal occupancy 
table (TOT), which stores the time-indexed planned path that has been computed for 
each of the n robots. The TOT has dimensions similar to the 2D spatial grid map, so 
every node in the grid map has a corresponding table entry in the TOT. The table 



     

entries in the TOT are multi-layered, which means each of the n robot is able to input 
their own time stamp numbers from 0 to t indicating their respective planned path at 
any instance in time (incremented in discrete time step of dt ). The robot moves along 
their respective ascending numbers as shown in Figure 4. When a robot Ri is currently 
searching its path and intents to move to the next node p(x,y) at time stamp Sj, it 
queries all time stamp entries around the vicinity of table entry p(x,y) in the TOT. It 
then checks to see if Sj matches any of the existing TOT entries populated by the 
higher priority robots Ri-1, Ri-2 to R0 earlier. Collision is detected if a time stamp match 
is found within the minimum safe distance vicinity ds around p(x,y). 

The main difference between the S-T A* and the standard A* algorithm is that 
each explored node will query the TOT in the manner described earlier to check for 
possible collision with higher priority robots (whose path has already been planned) 
before it is added into openlist. Based on the stated objective function T, time is taken 
as the cost to update g values in S-T A* algorithm. The time cost is not just associated 
with the distance travelled but it also includes the time (trot) taken for the robot to 
perform a 90 degree rotation each time the travel direction changes. The heuristic 
function h used in our grid map environment is the Manhattan distance, which is 
converted to a time cost using a proportional distance-time relationship. So the S-T 
A* algorithm can be summarized as follows: 
1.  Initialize an empty openlist and closelist; and the g and h values of all nodes.  
2.  Put starting node into openlist.  
3.  Expand node vi with the least f value in openlist. Where f is given by the sum of 

the two time-related cost values g and h.  
4.  Explore all neighboring nodes around vi and consider adding newly explored nodes 

into openlist if they have no collisions detected in the TOT. 
5. These explored nodes that are to be added to openlist will replace similar nodes 

already in openlist if their g values are lower. Otherwise, they will not be added 
into openlist.  

6.  Put expanded node vi into closelist.  
7.  Goto step 3 unless target node is expanded or openlist is empty.  
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Fig. 4.  The Spatio-Temporal A* algorithm makes use of the time stamp information in the 
temporal occupancy table (TOT) to detect potential collision. 

The 2D spatial grid map in Figure 4 shows an example of the S-T A* algorithm in 
action. Robots R1 and R2 will move to their respective destinations G1 and G2. Robot 



    

R1 with a higher priority plans its path first, which means R2 needs to plan its path 
taking into considering the path of R1. The shortest path for R2 to G2 is denoted by 
dotted arrow. However, it detects a collision at t=3 and will then search other 
expanded nodes in openlist to find the next fastest alternative path to G2 (solid arrow). 

Though the S-T A* algorithm computes very efficiently, it quickly fails to find a 
viable path for all n robots when the number of robots in the environment increases. 
One way to improve this situation is to allow the robot to wait at an appropriate node 
to allow a colliding robot to move on before proceeding to the intended node. This is 
the strategy proposed in the next section. 

4.3   S-T Wait-near-collision A* 

In the basic S-T A* algorithm, nodes which are deemed to have collision are not 
added into openlist. This often results in a more time consuming longer path to the 
destination if the shorter path is blocked by a moving obstacle for a short period of 
time. If the robot could stop and wait for a short duration at an appropriate node, the 
shorter path could still be taken. The simplest way to add wait time to avoid collision 
is to delay the robot at the starting point before it begins moving, as adopted by Ji et 
al. [5]. This approach is problematic since the starting point may itself be a collision 
point if a higher priority robot has determined that this point is to be part of its fastest 
path while the lower priority robot is waiting. Moreover, the starting point wait delay 
inserted could be unduly long if we need to ensure every node in the current path is to 
be collision free.  In our work, we adopted a more flexible wait time insertion 
strategy. Our goal is to wait as close to the node where collision has been detected. 
We call this the S-T Wait-near-collision (S-T-W) A* algorithm. We insert wait time 
at the closest possible antecedent node near the collision node. In this way, wait time 
insertion is not limited to only the starting node but any node in the current path that 
has already been planned. Preference is given to the node closest to where collision 
would have happened if the robot did not stop. 
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Fig. 5.  The S-T A* Wait-near-collision algorithm makes the robot wait next to the node where 
collision has been detected. 

S-T-W A* algorithm works in a similar way to the basic S-T A* algorithm except 
for the process of exploring nodes. The basic S-T A* algorithm ignores an explored 



     

node if it has collision. However, the S-T-W A* algorithm will do a backward search 
to find the node’s nearest antecedent node where the robot Ri can stop and wait for a 
period of time tw necessary for the collision nodes to become passable. For instance, if 
an explored node vi is found to have collision with a dynamic obstacle, then the 
backward path vi, vi-1 .. v0 (where vi represent current explored node, vi-1 is vi’s parent 
and v0 is the starting node) need to be checked sequentially until a node vk (where 
0≤k<i) can be found where enough wait time can be added to make all nodes vj 
(where k<j≤i) collision-free. If vk is found, then vi can be added into openlist, or else 
vi is ignored and we go on to explore or expand the next node. Figure 5 shows an 
example of the S-T-W A* algorithm in action. Robot R2 takes a wait action at time 
stamp t=3 to let robot R1 pass by without collision. R2 then carries on moving again. 
Compared to the basic S-T A* algorithm in Figure 4, the path for robot R2 in this case 
is faster by one unit time. 

4.4   S-T A* with Adaptive Priority 

So far, all the variants of the decoupled path planning algorithms introduced will 
sequence the n robots using a fixed priority that is dependent on the individual time 
cost for each robot to reach their respective destination if no other robot is moving. 
The highest priority robot is the one that takes the longest time. In order to improve 
the probability of finding a viable solution for all n robots in a crowded environment, 
we introduce an adaptive priority re-assignment strategy. In adaptive priority re-
assignment, the robot’s priority is first given based on the fixed priority. If the current 
path searching robot Ri fails to find a viable path to its destination, its priority is raised 
by one level and is allowed to re-plan its path again. It continues to escalate its 
priority until it finds a viable path. This can at times leads to a priority adjustment 
racing problem, where a lower priority robot escalate its priority only to have the 
displaced higher priority robot regaining back its original priority when it cannot find 
a new path to its destination. A simple check is used to detect this cyclical priority re-
assignment so that the path planning algorithm can terminate and return an 
unsuccessful result. 

In prioritized planning an additional consideration needs to be catered for. A higher 
priority robot R1 will not take into account the path planned by a lower priority robot 
R2. As a result, a collision may happen when R2 reaches its destination and remain at 
rest while R1 has to pass through R2’s destination point. So before a robot Ri reaches 
its destination pd at time stamp Sj, it will query the temporal occupancy table (TOT)  
to ensure all existing TOT entries populated by the higher priority robots Ri-1, Ri-2 to 
R0 earlier around the vicinity of pd  is less than Sj. If not, robot Ri is made to wait at an 
appropriate node near pd until it is safe to harbor at its target destination. 

5. Experimental Results 

In our simulation environment, a grid map with 100×100 nodes was used. Each robot 
is a square that occupies 5×5 grid nodes. Robots are limited to 4 directions of travel 
(with constant velocity) and 90 degrees for rotation. For convenience, no static 



    

obstacles are used. All robots are expected to move to a new unique location from its 
unique starting point. 

 

(a) (b)  

Fig. 6.  Two random initial scenarios. The robots’ initial and destination states are shown in 
solid and dashed outline red squares respectively. (a) 4 robots and (b) 20 robots in a 100×100 
grid map. 

In our experiments, we compare the performance of various algorithms in 100 
random initial scenarios for different number of robots (i.e. from 2 to 20).  Two 
examples are shown in Figure 6. For a fair comparison, all algorithms used the same 
100 initial scenarios. The simulations were carried out on an Intel(R) core™ 2 quad 
(2.83 GHz) with 3.25 GB of memory. This simulation program is written in the Java 
language on the Eclipse development environment. 

5.1 Performance comparison of the 3D A* and variants of the S-T A* algorithms 

We compare the performance of four algorithms, namely the 3D A* algorithm and 
three variants of the S-T A* algorithm. Fixed priority assignment was used when 
simulating the 3D A* (3D-FP A*), basic S-T A* (S-T-FP A*) and S-T A* with Wait-
near-collision strategy (S-T-W-FP A*). The final S-T A* variant is the S-T-W A* 
algorithm with an adaptive priority re-assignment strategy (S-T-W-AP A*). In these 
set of simulations, the time taken to traverse one grid node is the basic unit time stamp 
dt and time to rotate 90 degrees was set at 9dt. In these experiments, we compared 
two performance measures. The first is the success rate of finding viable paths for all 
n robots. Success rate is defined as the number of times in the 100 random initial 
scenarios all n robots found a path to their respective destinations without collision. 
The second is computational time. This is the average computational time taken to 
compute viable paths for all n robots. Simulation runs that had no solutions were 
discarded in computing these average times.  

5.1.1 Comparison of success rate 

Since S-T-FP A*, S-T-W-FP A* and 3D-FP A* algorithms use a fixed priority 
assignment. This means the robots with higher priorities may block the path of those 
with lower priorities, making it difficult for low priority robots to find a viable path to 
their destinations. The effectiveness of the proposed adaptive priority re-assignment 
strategy is evident in the success rate results shown in Figure 7, especially in a 



     

crowded environment. S-T-W-AP A* continued to maintain a success rate of above 
65% in a 20 robots simulation scenario (see Figure 6b). Failures with high robot 
counts were mainly due to deadlock situations similar to that shown in Figure 2.  

 

Fig. 7. Success rates of the four algorithms plotted against number of robots. 

The strategy of inserting wait time also clearly improves the chances of finding 
viable solutions for all n robots, as can be seen from the better success rate of S-T-W-
FP A* compare to the basic S-T-FP A* algorithm. The slower 3D-FP A* algorithm 
does perform better than the S-T-FP A* and S-T-W-FP A* algorithms, which suggest 
that searching within a 3D space-time grid map does provide a more extensive search 
than when it is done using a 2D spatial grid map. However, this comes at an 
unacceptably high computational cost (see Figure 8). A good compromise is to use 
the S-T-W-AP A* algorithm, which incorporates Wait-near-collision time insertion 
and adaptive priority re-assignment. 
 

5.1.2 Comparison of computational time 

As expected, the computational time results in Figure 8 clearly show that the slowest 
algorithm is the 3D-FP A* algorithm. Even with only two robots, due to the large 3D 
search space, the computational time remains high. The fastest algorithm is the basic 
S-T-FP A* algorithm. Its computational time increases linearly and gradually with 
increasing robot. This fast algorithm would be ideal for our application but its poor 
success rate may suggest that it would have to be used in conjunction with one of the 
other S-T variants as a 2-pass strategy (e.g. use basic S-T-FP A* first, if fail than use 
S-T-W-AP A*). 

The computational time for S-T-W-FP A* algorithm was observed to increase 
much faster than the basic S-T-FP A* algorithm. This is because of the additional 
computational burden of performing wait time insertion when collisions are detected 
and more collisions are likely as the number of robots increase. Of the four algorithm, 
the one that is most influenced by the increasing number of robot is the S-T-W-AP A* 
algorithm that used adaptive priority re-assignment. The permutation of re-assignment 
priority increase significantly with increasing number of robots. The likelihood of 
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performing priority re-assignment also increases with more robots. This is evident in 
the steep slope in the computation time result of S-T-W-AP A* in Figure 8.  

 

Fig. 8. Computational time of the four algorithms plotted against number of robots. 

5.2 Meeting the Objective Function T 

We studied the ability of the three different version of the S-T A* algorithms to meet 
the time-based objective function T defined in section 3. It is presented as the 
percentage of times the slowest robot to reach its destination actually did so within the 
objective function T.  

 

Fig. 9. The percentage of runs from all simulation runs that satisfy the objective function T, for 
all three algorithms. 

Figure 9 show the percentages of runs from all simulations that satisfy the time-
based objective function T defined in (1). Under fixed priority assignment, the S-T-
W-FP A* algorithm met the objective function better than the S-T-FP A* algorithm. 
The wait time strategy not only increased success rate but also the number of 

2 4 6 8 10 12 14 16 18 20 10 -2 

10 -1 

10 0

10 1

10 2

10 3

10 4

Number of Robots 

C
o
m

p
u
ta

ti
o
n

a
l 
ti
m

e
 (

s
e

c
.)
 

 

 

 

S-T-FP A*

S-T-W-FP A*

S-T-W-AP A*

3D-FP A*



     

simulation runs that satisfies objective function T. Unfortunately, the fixed priority 
strategy falters as the number of robots increased. Under these circumstances, the 
novel adaptive priority strategy in the S-T-W-FAP A* algorithm is much better in 
producing higher percentage of runs that can meet the objective function T, besides 
producing more successful runs. 

5.3 Rotation Speed of Robot (trot) 

We ran simulations to observe how the rotation speed of the robot (relative to its 
translation speed) affected the performance of the S-T A* algorithm. Simulations 
were done using the S-T-W-FP A* algorithm for rotation speeds of dt, 3dt, 6dt, 9dt, 
15dt and 30dt.  The time to translate from one node to another remains at the basic 
time stamp unit of dt.  

 

Fig. 10. Success rates of the S-T-W-FP A* algorithm with different rotation time trot plotted 
against number of robots. 

The results in Figure 10 shows that the various rotation speeds of the robot does 
not significantly affect the success rate of the algorithm. Some improvement was 
observed at rotation speed of 15dt but it was not significant enough to have a 
meaningful interpretation. However, rotation speeds has a significant impact on the 
computational time of the S-T-W-FP A* algorithm as shown in Figure 11. This is 
because a longer rotation will increase the number of time stamps embedded within 
the overall path of each robot. This effectively increases the need for the S-T-W-FP 
A* algorithm to do more collision detection for each additional time stamp entry into 
the TOT, thus increasing the overall computational time. This result suggests that 
significant reduction in interactive response time for a path planning system (such as 
that shown in Figure 1) can be obtained if the physical robots can be designed to 
perform a rotation maneuver as quickly as possible 

2 4 6 8 10 12 14 16 18 20 0

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

Number of Robots 

S
u
c
c
e
s
s
 r

a
te

 (
%

)

 

  

trot = dt 
trot = 3dt 
 trot = 6dt

 trot = 9dt 
 trot = 15dt 
 trot = 30dt 
 



    

 

Fig. 11. Computational time of the S-T-W-FP A* algorithm with various rotation time trot 
plotted against robot count. 

5.4 Different Wait Time Insertion Strategies 

Section 4.3 discussed two possible wait time insertion strategies. The one adopted in 
[5] inserts wait time at the starting point and we propose inserting wait time as close 
to the collision node as possible. Using the S-T-W-AP A* algorithm, we simulated 
the performance of both these strategies from the perspectives of success rate and the 
computation time (as defined in sections 5.1.1 and 5.1.2 respectively). In these 
experiments, we set dt as the time for traversing one grid node and 3dt as the time to 
perform a 90 degree rotation.  

 

Fig. 12. Success rates of the S-T-W-AP A* algorithm with various wait time insertion 
strategies and robot count. 
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Figure 12 shows that the Wait-near-collision strategy has a higher probability of 
finding viable paths for all n robots as the number of robots in the environment 
increased. The better success rate over the starting point wait time insertion strategy 
became more evident with increasing number of robots. When comparing 
computational time (see Figure 13), the Wait-near-collision strategy also proved to 
perform better. The approach of inserting wait time at the starting point must ensure 
all nodes in the path are collision free and this takes more computational time to 
perform then the backward search technique of our Wait-near-collision approach. 

 

Fig. 13. Computational time of the S-T-W-AP A* algorithm with different wait time insertion 
strategies and robot count. 

6   Conclusions and Future Work 

In this paper, we proposed a Spatio-Temporal A* algorithm for path planning of 
multiple robots. It searches viable path solutions for robots in 2D spatial grid map and 
checks for collision with moving obstacles by using a temporal occupancy table. Our 
simulation results show that the basic S-T A* algorithm has poor success rate in 
crowded environments. However, with the addition of a strategy to insert wait time 
near collision nodes and the sequencing of path planning using an adaptive priority re-
assignment scheme, we are able to obtain success rates that are superior to the more 
computationally demanding 3D A* algorithm.  We are currently researching the 
coordination strategy between multiple robots to improve our ability to meet the time-
based objective function T even in crowded scenarios. We are also looking into 
improving the computational time of the S-T-W-AP A* algorithm by adopting some 
abstraction and path refinement techniques for hierarchical planning.  
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Abstract. In this workshop paper, we share the design and on-going im-
plementation of our HRTeam framework, which is constructed to support
multiple robots working with a human operator in a dynamic environ-
ment. The team is comprised of one human plus a heterogeneous set of
inexpensive, limited-function robots. Although each individual robot has
restricted mobility and sensing capabilities, together the team members
constitute a multi-function, multi-robot facility. We describe low-level
system architecture details and explain how we have integrated a pop-
ular robotic control and simulation environment into our framework to
support application of multi-agent techniques in a hardware-based envi-
ronment. We highlight lessons learned regarding the integration of mul-
tiple varying robot platforms into our system, from both hardware and
software perspectives. Our aim is to generate discussion amongst multi-
robot researchers concerning issues that are of particular interest and
present particular difficulties to the Multi-Robot Systems community.

1 Introduction

This paper reports on the design and on-going implementation of a framework to
support experimentation with mixed-initiative human/multi-robot teams. Our
HRTeam framework is constructed to support multiple robots working with a hu-
man operator in a dynamic, real-time environment. The team is comprised of one
human (the operator) plus a heterogeneous set of inexpensive, limited-function
robots. Although each individual robot has restricted mobility and sensing ca-
pabilities, together the team members constitute a multi-function, multi-robot
facility. The robots can be controlled directly by the human operator, or they can
operate autonomously, without needing to wait for tele-operator input. Control
of the robots is shared between the human operator and a software controller,
and the locus of control can switch during run-time. The research questions we
are investigating center around issues well-studied in the (virtual) Multi-Agent
Systems (MAS) community: how to coordinate activity and allocate tasks to



team members in a real-time, dynamic environment; and how to integrate input
from the human operator and find a balance between requiring too much direct
control of many agents (robots), which may overwhelm the operator, and too lit-
tle input from the operator, which may cause overall task completion to suffer.
These issues present particular difficulties to the Multi-Robot Systems (MRS)
community—and finding ways to address them is the focus of discussion here.

Our research is motivated by two related application areas: urban search
and rescue [48, 67, 102] and humanitarian de-mining [38, 82]. In both instances,
teams of robots are deployed to explore terrain that is potentially unsafe for
humans and to locate targets of interest. In the first case, robots explore an
enclosed space, such as a collapsed building, and search for human victims who
may be physically trapped. The goal is to locate these victims and transmit their
positions to human operators, so that human first responders can remove the
victims to safety. In the second case, robots explore an open space, such as a
field in a war zone, to search for anti-personnel mines that may be hidden from
view. The goal is to locate these mines and transmit their positions to human
operators, so that the mines can be disarmed and the area rendered safe for
people to traverse.

Both application areas have a number of fundamental tasks in common. First,
a robot must be able to explore a region (traverse and maneuver in the physical
space) and localize (determine and track its position there). Second, a robot
must be able to recognize objects of interest, using on-board sensors and possibly
augmented intelligence to interpret sensor input. Third, a human operator must
be able to communicate with the robots remotely and strategize so that the
team can accomplish its overall task effectively. Ideally, in such a collaborative
system, the human operator should not be overloaded with tasks, and the robots
should not be idle. The team members should work together to accomplish the
team’s goal(s), taking advantage of members’ individual abilities and strengths
to complete tasks effectively and efficiently. Strategies to address these issues
often stem from the MAS literature, where solutions have been implemented
successfully in virtual environments—where agents can have perfect and often
complete information. Unfortunately, in a multi-robot setting, most information
is noisy, incomplete, and often out-of-date. So the challenge is to identify which
MAS solutions can work in an MRS environment and adapt them accordingly.

As with any robotics research, a substantial effort must be made on the
engineering side before any of these research questions can be investigated fully
or satisfactorily. These efforts are more challenging in a multi-robot environment,
simply because there are more hardware issues to contend with. Further, in
a heterogeneous multi-robot environment, solving hardware problems for one
(class of) robot does not necessarily solve the same problems for another (class
of) robot; indeed, sometimes fixing one can break another. Finally, because we
restrict our choice of hardware to inexpensive, limited-function robot platforms,
additional constraints are presented. Note that this last aspect is not purely
a function of budgetary realities, but rather part of our philosophy. There are
always issues that arise when transferring results from a research environment to



a real-world setting. Often these issues are of a practical nature—e.g., network
interference or uneven lighting conditions that did not occur in the lab suddenly
confront a system deployed in a new venue—and can render elegant laboratory
solutions useless outside the lab. By creating a less-than-ideal lab environment,
we hope to be addressing some of these practical issues in our everyday setting.

In this workshop paper, we share the design of our HRTeam framework.
We describe low-level system architecture details and explain how we have in-
tegrated a popular robotic control and simulation environment (Player/Stage
[35, 97]) into our framework to support application of multi-agent techniques in
a hardware-based environment. We highlight lessons learned regarding the inte-
gration of multiple varying robot platforms into our system, from both hardware
and software perspectives. Our aim is to generate discussion amongst multi-robot
researchers concerning issues that are of particular interest and present partic-
ular difficulties to the MRS community. Finally, we close with a brief summary
and status report on our ongoing research investigations.

2 Related work

Research on Multi-Robot Systems, where more than one mobile robot is used,
considers challenges faced by individual robots and how a robot team might help
address these challenges. Areas of investigation include localization [23, 28, 71],
mapping and exploration [19, 89], and strategies to manage wireless connectivity
among robots [77]. With simultaneous localization and mapping (SLAM) [3,
39, 46, 94], additional information from several robots can simplify a problem
and speed the solution that would have been provided by a single robot [28];
although multi-robot SLAM can also lead to inconsistency in position estimates
[47, 58]. Other challenges for a multi-robot team are similar to those for one
robot, complicated by the need to merge or expand single-robot solutions to
incorporate other robots. Path planning [2, 11, 57, 93] is one well-studied example
of this. Another example is the learning of controllers for teams of robots [69,
70], which is more complex than learning for individual robots.

The largest category of work on multi-robot systems, however, cannot be
compared with work on single robots. Some tasks cannot be accomplished by
one robot, such as the transport of an object too large for a single robot to move
[24, 76, 91, 101]. Other issues, such as the dynamic allocation of tasks to robots
[4, 5, 16, 60, 64, 87, 96], simply do not arise with a single robot. Task allocation is
particularly challenging and has received substantial attention. The distribution
of responsibilities among a group of individuals is a complex optimization prob-
lem. It is made more difficult because robot team requirements change over time
[96], and because the abilities of individual robots to address particular tasks are
conditioned on their changing locations. Heterogeneous robot teams, where each
member has different capabilities, further complicates the optimization problem.

The task allocation literature for multi-robot teams includes a strong thread
on the use of auctions [32, 54, 56, 83] and market-based mechanisms in general
[20, 22, 33, 34, 103]. This work offers the various tasks for “sale” to robot team



members. Individual robots indicate how much they are willing to “pay” to ob-
tain tasks, and tasks are allocated based on bids for them—typically to the robot
that makes the best offer. For example, this approach has been used to orga-
nize robots for exploration tasks [50, 51, 104]. Areas to explore were offered “for
sale,” and robots bid based on their distance to the locations on offer. Allocation
favored lower bids, and thereby tended to allocate areas closer to robots. The
market was constructed, however, to ensure that robots did not remain idle when
several robots were initially close to the same unexplored area. Another example
is the use of simple auctions to allocate roles, and correspondingly, tasks asso-
ciated with those roles, to robots in a multi-robot soccer team [30, 31]. Robots
“bid” on roles based on their proximity to the ball and the goal. Roles changed
in real time, as the game progressed. The ability both to consider individuals’
changing abilities and to balance those against the performance of a team as a
whole makes market-based approaches attractive.

Early work on multi-robot systems [14, 73] included foraging, a standard task
that had robots systematically sweep an area as they searched for objects (e.g.,
[61, 59]). This has much in common with search and rescue, and with humanitar-
ian demining—our target areas of application. Techniques have been developed
to ensure that the entire boundary of a space is visited [99], that search finds
a specific target [6, 7, 41, 42, 80, 84], that a mobile target is kept under constant
observation [75, 68], and that a human-robot team can exchange search roles
flexibly and appropriately [43].

Finally, given our focus on the deployment of many small robots, we should
mention work on swarm robotics [88, 61]. Though recent work on swarms has
looked at more focused task allocation to different robots [63] and on ensuring
that the swarm spreads across different target sites [40], work in this area differs
from ours in by being less deliberative, relying on numbers and randomness to
get coverage rather than thoughtful deployment of resources.

Human-Robot Interaction (HRI) supports collaborative activities by humans
and robots to achieve shared goals. Typical HRI research concentrates on the de-
velopment of software and/or hardware to facilitate a wide range of tasks. These
include robots maneuvering in physical spaces, both those designed for humans
(e.g., [53]) or unfit for humans (e.g., [66]); people programming complex robots
(e.g., [81]) or different types of simple robots (e.g., [8]); robots cooperating with
human partners (e.g., [12, 25, 86, 98, 100]) and with other robots (e.g., [21, 55, 62,
92]); and user interfaces for communicating with robots (e.g., [49, 79]). Deployed
HRI applications include cleaning [78], helping the elderly [95], assisting first
responders in search and rescue tasks [17], demining in military settings [29],
and teaching [52].

There are three main categories of control architectures for human-robot
systems [37]: fully autonomous, where robots make decisions and control their
actions on their own; directly controlled, where robots are driven by human op-
erators; and mixed-initiative [15, 45], where robots share decision making with
human users. Mixed-initiative systems reflect recent trends within the HRI com-
munity toward socially intelligent interfaces [9, 10, 26, 18] in which the aim is



for robots and humans to respond to each other naturally. We highlight several
mixed initiative approaches here. Adjustable autonomy in a human-robot sys-
tem permits dynamic transfer of control from human to robot and vice versa
(e.g., [36, 85]). Collaborative control offers a dialog-based architecture in which
decisions are “discussed” and made in real-time (e.g., [27]). Other examples of
mixed-initiative systems include an affect-based architecture [1], and statistical
techniques to infer missing information in human-robot communication [44].

We see our work as fitting into the area of adjustable autonomy. Our main
research goals are to establish how best to transition control of a robot from
human to robot and, especially, vice-versa (with a large robot team the human
operator must be sued sparingly to avoid overload), and to investigate how best
to coordinate the robot team when it is operating autonomously. With regard
to this latter aim, we plan to test a range of coordination techniques from the
multiagent systems literature, taking techniques that have been polished theo-
retically and in simulation, and seeing how they perform in the rough and ready
world of robotics.

3 Physical Environment

Our test arena, shown in Figure 1a, is a physical environment that is divided
into seven regions: six rooms and a hallway. Each region contains color-coded
landmarks to guide the robots using vision-based localization. Figure 1b contains
a schematic of the landmarks5. These are composed of vertically-aligned markers
with stacked bands of one, two, or three colors. The entire color palette consists
of four colors: yellow, pink, orange, and purple. On the northeast corner of
each of the six rooms, a “purple-over-yellow” landmark is placed. The northwest
corner contains a “yellow-over-purple” landmark; the southwest corner contains
“yellow-over-pink”; and the southeast corner contains “pink-over-yellow”. Inside
each room, a unique 3-color marker distinguishes that room from the others;
each of the room markers include a purple band. In the hallway, a set of 3-color
markers (without purple bands), using four unique color band permutations,
mark the north, west, south and east walls of the hallway. Inside the hallway,
the entrance to each room is marked with a single-colored purple landmark on
the right side of the “doorway”, and an orange landmark on the left.

The lighting conditions in the arena vary from one room to another. This
means that it is not possible to have a single, non-overlapping color map with
which to calibrate the colored landmarks; e.g., the orange and yellow color ranges
tend to bleed together in some parts of the arena. The process of identifying
landmarks involves first capturing images with robots’ cameras and analyzing
the images for “blobs” of color, then the color blobs are matched with landmarks

5 Note that the landmarks are a proxy for more sophisticated vision processing that
would allow us to recognise unique features of the test arena. Using the landmarks
allows us to test other aspects of our environment as we develop this vision capability.
The large number of landmarks are required because of the fixed cameras used by
most of the robot platforms.



(a) view of test arena (b) schematic of arena landmarks

Fig. 1. Robots’ physical environment

from a dictionary of known objects. An example is shown in Figure 2. The figure
on the left shows a perfect match between a robot’s image and the markers that
were identified. The figure on the right, however, has missed one blob of color
(a purple band at the top of the second marker from the left), which makes it a
problem to identify that marker correctly. Some of our research involves applying
machine learning techniques to a participatory human/robot process in which
the system learns a reliability metric for the images with help from the human
operator. While the system can recognize that problems exist without the help
of a human, having a human in the loop can speed the learning process. In the
example shown in Figure 2b, the system can quickly detect a problem with the
image simply because there are no markers in its dictionary that consist of only
an orange band on top of a pink band.

As mentioned earlier, the robots on our team are inexpensive, limited-function
platforms. These are pictured in Figure 3. We have been experimenting with five
different platforms, spanning a range of sensing and locomotion capabilities and
communication technologies. Table 1 lists the hardware differences. Only the
AIBO has a powerful enough on-board processor to function as a stand-alone
platform. The Create is mounted with a Hokuyo URG-04LX Scanning Laser
Rangefinder and a Dell laptop that communicates, via USB, to the robot and
the laser device. The Fribbler and the SRV-1 have minimal on-board memory
and so are controlled by off-board laptops with dedicated communication chan-
nels. The NXT has limited on-board memory and processing capabilities—more
than the Fribbler and SRV-1, but substantially less than the AIBO. Currently,
we operate the NXT in the same way as the Fribbler and SRV-1: via off-board
laptop with dedicated communication channel. All of the devices listed as “wire-
less” in Table 1 use 802.11. The SRV-1 platform was originally built using an
XBee radio device. Newer “Blackfin” models are now available with 802.11. We
have found that the XBee radio suffers greatly from interference with the 802.11,
particularly when the two types of communicating devices are in close proxim-



(a) perfect match (b) faulty match

Fig. 2. Landmark identification

ity with one another. We have also found that we must make judicious use of
802.11 communication, otherwise it is quite easy to flood our local network—for
example, when multiple robots try to transmit high-frame-rate video feeds.

(a) AIBO (b) Create (c) Fribbler (d) NXT (e) SRV-1

Fig. 3. Robot gallery

The human team member—the operator—is positioned physically away from
the test arena so that her only view of the space is via camera images sent to her
by the robots. The operator’ interface is shown in Figure 4. The right half of the
window shows a bird’s eye view that indicates the position of each robot in the
arena. The system uses vision-based localization (albeit somewhat unreliable due
to the landmark identification problems mentioned above) and a particle filter
to estimate the (x, y) location and orientation of each robot in the arena. The
origin (0, 0) of the robot’s environment is defined as the middle of the arena
(in the middle of the hallway), with positive x moving north and positive y

moving east. Orientation (θ) is measured in degrees, with 0◦ facing east, 90◦

facing north, 180◦ facing west and 270◦ facing east. Returning to the operator
interface in Figure 4, the upper left region contains a “robot’s eye view” of the
environment. The lower left region contains manual controls that the human
can use to drive one robot at a time. Depending on the experimental conditions,



platform sensing locomotion communication

AIBO ERS-7 (www.sonyaibo.net) camera legged wireless

Create (www.irobot.com) laser wheeled wireless
(with external laser device mounted on top)

“Fribbler” camera wheeled bluetooth
( = Scribbler: www.parallax.com + Fluke: www.roboteducation.org)

Mindstorms NXT (mindstorms.lego.com) sonar wheeled bluetooth

SRV-1/ARM (www.surveyor.com) camera tracked radio/wireless
Table 1. Robot platform capabilities

the other robots are either idle when the human operator is not driving them
(primarily this mode is used for taking experimental control measurements), or
they are operating autonomously (most of the time).

Fig. 4. Operator interface

4 Software Framework

Our software system employs a multi-layer architecture that combines multiple
clients and multiple types of servers. A high-level overview of the system is shown
in Figure 5. In the agent layer, the Central Server acts as the communication
hub for all the components in the system, and is discussed separately, below.
The Intelligence Engine supports system learning, task allocation and multi-robot
coordination, as well as collaborative decision making with the human operator.
This component is not discussed in detail here; for further description, see [90].
The Database Manager logs system activity. It collects experimental data and
maintains a database of known objects and other shared data structures (e.g.,



a map). The Object Recognizer identifies objects in the environment, by using
the Open Source Computer Vision Library (OpenCV) [72] to perform feature
extraction on robot imagery. Colored “blobs” are segmented and Canny edge
detection [13] is applied to outline object shapes. A Näıve Bayes classifier [65]
matches input images with previously tagged images from our database. The
Operator Interface comprises the human layer, and was described in the previous
section. The robot layer is detailed below. Then we will return to discussion of
the overall system architecture and focus on multi-server/multi-client aspects.
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Fig. 5. The HRTeam system architecture. Each box is a process. The boxes outlined
with thick borders are servers; the remaining boxes are clients.

4.1 Robot Layer

The robot layer is built on Player/Stage6 [35, 97], a popular robot control and
simulation environment. Player/Stage provides an open-source, modular client/-
server framework for robotics programming that allows for unified control of
multiple robot platforms. An abstract client class contains high-level robot con-
trol functionalities or behaviors (e.g., wall-following) and is extended to support
the needs of a particular application. Hardware-specific drivers, implemented as
servers, contain low-level sensor and actuator control functions (e.g., move for-
ward, capture an image, etc.). In our framework, the client implements robot

6 http://playerstage.sourceforge.net/



behaviors, such as perception, including some image processing, and low-level de-
cision making for each robot. A platform-specific server, or driver, communicates
directly with the robot hardware.

The advantage of using Player/Stage is that, for each hardware platform we
initiate onto our team, we only need to write one driver for that platform; and
for each set of robot behaviors, we only need to write one behavior client. We
have adapted Player drivers for each of the five different robot platforms that
are listed in Table 1. We have written one behavior client program that can
control each of the robots in our system. A different behavior client process is
instantiated for each robot, as explained below.

The use of Player/Stage presents an interesting system architecture ques-
tion. It is possible to implement a system having a one-to-one correspondence
between the robot behavior module, the hardware driver, and the physical robot
(see Figure 6a). There may also be a one-to-many correspondence between the
hardware driver and multiple physical robots (Figure 6b). In order to main-
tain individuality amongst robot team members, we always employ a one-to-one
correspondence between robot behavior modules and physical robots.
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client
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behavior
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robot:2
behavior
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one hardware abstraction, one hardware abstraction,

one agent controller three agent controllers

Fig. 6. Player Framework

4.2 Central Server

An unusual aspect of our architecture is that there are multiple servers: the
Central Server and a Player hardware server for each (class of) robot platform.
The Central Server must be started up first, because it handles message passing
and bookkeeping for the whole system. The Central Server keeps track of the
instantiated components and of the robots that are connected to the system at
any given time. All inter-process communication is handled asynchronously. All
components have their own state machines; an example for the robot behavior



client is shown in Figure 7. The components are designed to handle unexpected
messages, as well as normal operations. The Central Server is written in C++ and
establishes a server socket that binds to a particular host name and port number,
establishing a point of communication for the entire system; then it listens for
clients to connect. All of the processes in the system are multi-threaded, in order
to handle communication asynchronously, independent of the process’s primary
functionality. For example, the Central Server creates a thread for each new
client that connects to it, to allow asynchronous processing of messages between
the Central Server and each client.

Table 2 contains sample messages that are passed between the Central Server
(CS) and a robot behavior client (RB). Table 3 contains sample messages that
are passed between the Central Server (CS) and the operator interface (OI).

Fig. 7. State diagram for Robot Behavior client



RB → CS: init < uds >

An RB sends this command to CS when it first logs in.
< uds > stands for “unified data structure” that contains a string that identifies
the type of robot (e.g., “aibo”); a string containing the name of the robot (e.g., “rosie”);
a unique numeric identifier, which is treated like a session id in the system and is
determined by the server when a client first connects; and a list of the services that
this robot provides, such as: “position2d”, “camera”, “distance”, “contact”.

RB ← CS: ack < id >

Upon receiving the ack command, the RB will set the value of the id field in its local
copy of the unified data structure. < id > is a unique identifier (integer) that that CS sends
to the RB to acknowledge its registration. It returns a unique ID number that the robot
will need to use for all further communication, to identify itself in the system. This value is
treated like a session id.

RB ← CS: askpose
The CS sends an “askpose” message to the RB requesting information about its pose
(location and heading).

RB → CS: pose < x > < y > < θ > [< ρ >]
The RB sends back its (x, y) location and θ heading (degrees) within its
environment. The last argument is confidence value, 0 ≤ ρ ≤ 1, indicating the
RB ’s confidence in its location.

RB → CS: broadcast found < color >

The RB sends this message whenever it finds an object of interest.
CS strips “broadcast” part of the message and passes “found” < color >

message to all connected clients, both robots and the GUI.

RB ← CS:move < id > < x− velocity > < y − velocity > < angular − velocity >

The CS sends a “move” message to the robot requesting it to set its x, y
and angular speeds to < x− velocity >,< y − velocity > and < angular − velocity >.
If the < id > of the message does not match robots own id, the message is disregarded.

RB ← CS: goto < id > < map− x > < map− y >

The CS sends a “goto” message to the robot requesting it to move to a
particular location, (< map− x >,< map− y >), on the field. If the < id > of the
message does not match robots own id, the message is disregarded.

RB → CS: moving
The RB sends back an acknowledgment that it has received the “move”
command and is executing the command. GUI does not need this confirmation,
it will be used for data logging.

Table 2. Sample commands that flow between Central Server (CS) and Robot Behavior
client (RB).



OI → CS init uds

where uds is defined as in Table 2.

OI ← CS ack < id >

where < id > is defined as in Table 2.

OI → CS askpose < id >

The OI sends “askpose” to CS to retreive the (x, y) location and
θ heading of a particular robot, by attaching its < id >. To retrieve pose
information for all robots, < id > is set to −1.

OI ← CS pose < num robots > [< robot pose info >]
The CS sends back the number of robot pose information the message contains.
Each pose information consists of robot’s id, (x, y) location, θ heading (degrees)
and confidence value, 0 ≤ ρ ≤ 1, indicating the GUI’s confidence in its location.

OI → CS askplayer < id >

The GUI requests for player CS information that a particular robot is using.
This information is needed to communicate directly with player CS to receive camera
feed of the robot.

OI ← CS player < id > < player− ip > < player − port >

The CS sends back the player server information, < player− ip >,< player− port > of the
robot with id=< id >.

OI ← CS found
The GUI receives this message from the CS when a robot finds the object that the
team is searching for. Currently it is used to stop the clock for the experiment.

OI → CS move < id > < x− velocity > < y − velocity > < angular − velocity >

The OI sends a “move” message to the CS to pass it to robot with id=< id >,
requesting it to set its x, y and angular speeds to < x− velocity >,< y − velocity >

and < angular − velocity >.

OI → CS goto < id > < x > < y >

The GUI sends a “goto” message to the CS to pass it to robot with id=< id >,
requesting it to move to a particular location, (x, y), on the field.

OI → CS lock < id >

The GUI sends a “lock” message to the GUI, requesting to take control of the
robot with id=< id >.

OI → CS unlock < id >

The GUI sends an “unlock” message to the GUI, requesting to release control
of the robot with id=< id >.

Table 3. Sample commands that flow between Central Server (CS) and Operator
Interface (OI).



5 Lessons Learned

In this section, we describe some of the main lessons that we have learned from
our work so far, largely in the form of problems we have had to struggle with.

The main problem that we have faced has been getting the robots to localize
while engaged in their exploration tasks. As mentioned above, we are using
vision-based localization. The underlying approach is a standard particle filter,
and the particular implementation we are using is one we developed for our
Aibo-based RoboCup soccer team [74]. The main difference, as far as vision is
concerned, between the Aibo, the Surveyor and the Fribbler—the robots that
we have been using most often in our experiments—is that the last two have
fixed cameras. It turns out that this has a large effect on their ability to see
landmarks. When the robots start up, and move to maximize the number of
landmarks they see, they localize relatively quickly. However, when they are
carrying out their assigned task, which typically involves navigating through the
test arena to explore a designated room, they often go for several minutes without
seeing more than a single landmark clearly enough to recognize it. As a result,
they rapidly become unsure of their location and have to spend time specifically
relocalizing. This is in contrast to the Aibo, which can track its position quite
effectively even with many fewer landmarks in the environment.

A subsidiary problem has been the wireless control of the robots. Several
of our robots do not have sufficient on-board processing to run a controller (as
mentioned in the previous section). Rather, they are controlled over a wireless
connection, either 802.11, radio or Bluetooth. The first issue with wireless was
mentioned above: 802.11 and radio interfere, and so if we are using the two
modes of communication, we have to keep the robots physically separate. This,
of course, adds another layer of complexity to the control of the team. However,
even if all the robots on the team use 802.11, there can still be issues. Even in the
lab, where we have excellent wireless coverage, and little interference from other
networks, it is easy to overload the bandwidth. With off-board processing, it is
tempting to pull video off the robots at full-speed, but with more than a couple
of robots, this floods the network. As a result we throttle the video feeds, though
this naturally limits the use that both the robots and the human operator can
make of the feeds. On the robot side, of course, this only makes the localization
problem worse.

Finally, a more positive note. Despite the problems noted above, which are
problems that would go away if we used robots with multiple camera angles and
more on-board processing7, we have found our experience of using sub-$1000
robots to be a positive one. With the Player drivers we have developed, it is
possible to use such robots for serious research purposes, and their cost means
that with even a modest budget, it is possible to deploy a fleet of robots.

7 Our future work will explore building cheap custom robots with Gumstix or Arduino
controllers and multiple cameras to explore this option.



6 Summary

We have described the design and on-going implementation of our HRTeam
framework, which we have developed to support studies in human/robot team-
work. Our philosophy has been to deploy multiple low-cost, limited-function
robots, to force the necessity of collaboration in order to complete tasks. Our
rough-’n-ready laboratory environment offers special challenges, ranging from
lighting variations and network interference to managing a suite of software
components to control a heterogenous collection of hardware platforms. Several
research activities are underway using the HRTeam framework. First, we are
investigating ways to coordinate activity and allocate tasks to team members in
a real-time, dynamic environment, concentrating on market-based mechanisms.
Second, we are examining ways to incorporate real-time, dynamic input from
the human operator into the multi-robot system. Finally, we are developing a
participatory human/machine learning process to obtain reliability measures for
the imaging data used in the localization process.
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Abstract. Many domains, such as emergency assistance, agriculture
and construction, will increasingly require effective coordination of teams
of mobile robots and humans to accomplish a collection of spatially dis-
tributed heterogeneous tasks. Although some tasks are independent, oth-
ers may be related by constraints arising due to the complementary ca-
pabilities of different types of agents, which require them to cooperate
to achieve certain goals. This paper addresses the problem of optimally
assigning spatially distributed tasks to a team of heterogeneous mobile
agents in domains where tasks may be related by precedence or simul-
taneity constraints and have a choice of locations at which they can be
performed. Both the manner in which constraints are satisfied and the
locations chosen for tasks impact the overall team utility. We present a
novel mathematical model of the problem, describe how it can be solved
optimally in a branch-and-price framework, and analyze the impact of
problem features on the efficiency of the solution process.

Keywords: Multi-agent coordination, branch-and-price

1 Introduction

Multi-agent coordination problems range from those that require loosely co-
ordinated teams in which agents independently perform their assigned tasks,
to those that require tightly coordinated teams. Between the two extremes are
many scenarios in which agents in a team must perform tasks, some of which are
independent, and others of which are related by constraints such as precedence
or simultaneity constraints. The efficiency of the team is related both to how ef-
ficiently each agent performs its own tasks and to how well sub-teams of agents
coordinate with each other when performing tasks related by constraints. For
example, a delay by one agent in performing its assigned task can negatively im-
pact the efficiency of the team as a whole by causing a chain of delays for other
agents, due to precedence or simultaneity constraints between the tasks. Fur-
thermore, when there is a choice of locations at which a task may be performed,
� Also published as G. Ayorkor Mills-Tettey



the team’s efficiency can be improved by choosing a location that minimizes the
travel time for the team. We tackle the problem of planning for a team of het-
erogenous mobile agents, such as robots, humans, and vehicles, in such domains.
This problem is significantly harder than a typical task allocation and routing
problem because of the existence of cross-schedule dependencies [8] in the form
of inter-task constraints and delay penalties. These cross-schedule dependencies
result in a joint interdependent schedule optimization problem that must be
solved simultaneously with task allocation.

While it is sometimes acceptable to simply find a feasible solution to the
coordination problem, in many domains we seek high quality, or even optimal
solutions. For example, in commercial applications such as agriculture, efficiency
translates into higher profits and so it is useful to strive for optimality, or to be
able to bound the suboptimality of a given solution. In other domains, striving
for optimality may be motivated by the potentially high cost of suboptimal
solutions. For example, in emergency response, inefficient solutions may translate
into the loss of human life or damage to property. Certainly, the time it takes to
compute the optimal solution is an important consideration, since waiting too
long to find the optimal solution may cost more than executing a suboptimal
solution. In situations when it is necessary to execute a suboptimal solution, it
is useful to have a bound on the suboptimality of the chosen solution. In this
work, we focus on computing bounded optimal solutions to the constrained team
coordination problem we have described.

Consider a problem in which individuals with special needs must be evac-
uated or sheltered in an emergency. These individuals may have special trans-
portation or sheltering needs that must be taken into account during emergency
planning. Considering available transportation options (e.g. vans, ambulances,
helicopters), support teams, and shelters, an emergency assistance plan for these
individuals will determine which vehicle will pick up each individual and when.
It will also schedule any support teams (e.g. medical personnel) which need to
be available before, at the time of, or after pickup or drop-off of an individual.
The evacuation plan must also determine which shelter each individual will be
taken to, considering the individual’s particular requirements. With appropriate
information about the individuals needing service, an optimal evacuation plan
can be created ahead of time, and this optimal plan can become a seed plan that
is adjusted as needed in the event of an actual emergency [9]. For illustrative
purposes in this paper, we consider a simplified version of this problem, in which
there are a number of clients that must be visited by a medical agent before they
are then moved by a transportation agent to an appropriate shelter. Given the
starting location of all clients as well as the locations of the shelters, we wish to
compute an optimal plan for the team of medical and transportation agents.

This paper presents a novel set-partitioning mathematical model for the prob-
lem of allocating, scheduling and choosing locations for tasks in such domains.
We present a branch-and-price approach to solving this problem. Our approach
enables finding a bounded optimal solution, considering the value of tasks com-
pleted, travel costs, as well as delay costs due to satisfying temporal constraints.



We use simulation experiments to characterize the performance of the algorithm
as a function of key problem features, namely delay penalties and location choice.

2 Problem Definition

We consider a problem in which a set of mobile agents, K, is available to perform
a collection of tasks. Each compound task, which may involve the collaboration
of multiple agents, can be decomposed into a number of simpler single-agent
tasks related by precedence and/or simultaneity constraints. We designate the
set of single-agent tasks as J . Each single-agent task j ∈ J in turn consists of one
or more spatially distributed primitive tasks or subtasks that must be performed
in a given order. For example, the compound task of attending to a client in our
example scenario consists of the two single-agent tasks of a medical visit and a
transportation service. A medical visit is a task with a single subtask, whereas
transporting a customer comprises two subtasks: a pickup at one location and
a drop-off at another. Different single-agent tasks are suited to different types
of agents in the system, based on available capabilities and resources. In our
example problem, medical tasks cannot be performed by transportation agents
and vice-versa. Each subtask, i ∈ I may have a fixed location or a choice of a
small set of locations Li at which it may be performed. For example, a client may
be dropped off at one of a small number of shelters. Subtasks might have time
windows constraining their start time, and in the case of transporting items from
one location to another, subtasks might use up a finite capacity available on the
assigned agent. Pairs of subtasks in the problem might be related by precedence
or simultaneity constraints, thus creating constraints between different agents’
schedules. For example, the medical visit task, comprising a single subtask, must
be performed before the pickup subtask of the transportation service. In sum-
mary, the problem features that need to be considered in assigning agents to
tasks are capability constraints, location choice, time window constraints, agent
capacity constraints, precedence/simultaneity constraints, and routing and de-
lay costs. The time and precedence/simultaneity constraints may result in delays
in the agents’ schedules, which may increase the cost, or conversely, reduce the
total value of the solution.

Table 1. Nomenclature for problem definition

Symbol Definition

K Set of agents
J Set of tasks
I Set of subtasks
Li Set of possible locations for subtask i ∈ I



3 Related Work

Various forms of the problem of allocating and scheduling spatially distributed
tasks are the subject of large bodies of work in multi-robot systems and oper-
ations research. However, existing approaches do not adequately address cross-
schedule dependencies and those approaches that have begun to incorporate
cross-schedule precedence and synchronization constraints have done so for fairly
simple problems with homogenous agents and single-step tasks.

Market-based task allocation strategies have been proven efficient in many
multi-robot task allocation problems [5, 6]. Based on the principles of markets
and auctions, agents are designed as self-interested agents that operate in a
virtual economy by bidding on tasks. While highly efficient, market-based ap-
proaches in general do not provide optimality bounds or guarantees, which is
the focus of this work. Some mathematical programming approaches have been
applied to multi-robot coordination. For example, Koes [7] discusses allocating
joint tasks to a team of robots, where tasks have associated rewards that de-
cay linearly, and the system can be constrained through capability constraints.
While an interesting and related problem, the model does not capture our desired
problem features of delay penalties, multi-step tasks, and location choice.

Vehicle routing problems (VRPs) address the transportation of passengers or
the distribution of goods between depots and final users. VRPs can be expressed
as mixed integer programming problems (MIP), defined on a graph in which the
nodes correspond to locations of tasks to be performed, and edges correspond to
travel segments between these locations. Proposed mathematical models can be
broadly categorized as 3-index models and 2-index (or set-partitioning) models.
For example, Cordeau [4] defines, for the dial-a-ride (DARP) problem (a variant
of the VRP), a 3-index binary variable xk

ij which is equal to 1 if vehicle k travels
from node i to node j in the final solution. In contrast, Savelsbergh and Sol [12]
propose a set-partitioning model for the DARP in which Ωk is the set of feasible
routes for vehicle k, and the 2-index variable xk

r is a binary decision variable that
takes on the value 1 if route r ∈ Ωk is performed by vehicle k and 0 otherwise.
Each route in Ωk is a path through a subset of nodes, and is feasible in that all
capacity and time constraints are satisfied along the route. A branch-and-price
process is used to find a solution.

Recent work in the vehicle routing literature has begun to consider prece-
dence constraints and simultaneity constraints. In particular, Bredstrom and
Ronnqvist present two different approaches. In one case [3], they create a three-
index formulation of a vehicle routing problem, taking into consideration tim-
ing/synchronization constraints between individual tasks. In another case [2],
they present a set-partitioning formulation that takes into consideration prece-
dence constraints. Larsen et al [10] and Rasmussen et al [11] similarly address
vehicle routing problems with precedence and synchronization constraints. None
of this work, however, addresses cost-related cross-schedule dependencies such as
delay penalties, nor do they address heterogeneous agents and tasks, multi-step
tasks, agent capacity constraints and location choice.



This paper presents a set-partitioning model which addresses location choice
and precedence (and/or simultaneity) constraints, while also being able to pe-
nalize delay time as needed. A significant contribution of this work is a model of
an important problem for which no model currently exists. Another important
contribution of this work is the analysis of the impact of these problem features,
particularly delay penalties, on the performance of the solution approach.

4 Mathematical Model

We present a set-partitioning model with side constraints for this problem. The
set-partitioning model, while representing complete feasible routes with single
variables, also exposes time variables in the master problem formulation, thus
allowing delays to be penalized by putting delay time variables in the objective
function. We adopt the terminology of the vehicle routing literature and use the
term route to represent a single agent’s plan – that is, a sequence of subtasks that
the agent will perform at given locations according to the computed schedule.

In a set-partitioning approach, feasible routes for agents are represented by
columns in the mixed integer linear program. In particular, a binary variable xk

r

indicates whether an agent k performs a route r chosen from among all feasible
routes Rk for agent k. In our problem, a feasible route is an ordered set of sub-
tasks to be performed at chosen locations, such that all subtasks corresponding
to the same single-agent task occur on the same route and agent capacity con-
straints are not violated. A typical set-partitioning formulation would consist of
these variables alone, with constraints specifying that each agent must perform
only one route, and each task must appear on only one route.

In our formulation, however, we include additional time variables that appear
in side constraints enforcing the precedence constraints between subtasks that
may appear on different routes. The real-valued variable dk

i (the execution-delay
variable) represents the amount of time that agent k, having arrived at the chosen
location for subtask i, has to wait before it can begin execution of subtask i.
This delay might be due to precedence constraints involving other subtasks being
performed by other agents, or it might be because subtask i has a specific time
window during which it must be performed. dk

i is 0 if agent k is not assigned to
subtask i, or if there is no execution delay. The real-valued variable ti represents
the time that execution begins on subtask i. If subtask i is not executed in the
optimal solution, ti is 0. In addition to the domain variables xk

r , dk
i , and ti, the

model includes helper variables ai�i representing the indirect delay in the arrival
time for subtask i due to the execution-delay time for subtask i� occurring earlier
on the same route. If subtasks i� and i are not on the same route in the chosen
solution, ai�i is 0. This is also the case if i� and i are on the same route, but
there is no arrival delay. These helper variables are needed to ensure a linear
formulation; without these variables, the model would need to be non-linear,
containing product terms of the form dk

i xk
r .

Table 2 summarizes the variables and defined quantities appearing in the
mathematical model. The quantity vj represents the value or reward of complet-
ing a single-agent task j, which may of course comprise more than one subtask.



Table 2. Defined variables and constants

Variable Definition Type

xk
r Whether agent k performs route r Binary

dk
i Delay time of agent k for subtask i Real

ti Execution start time for subtask i Real
ai�i Arrival delay for subtask i caused by subtask i� (helper variable) Real

Term Definition Type

Rk Set of feasible routes for agent k Set
P Set of precedence constraints Set
vj Value of completing task j Real
ck
1r Travel cost for route r ∈ Rk Real

ck
2 Wait cost per unit time for agent k Real

πk
jr Whether task j is on route r ∈ Rk Binary

γk
ilr Whether subtask i occurs at location l on route r ∈ Rk Binary

δk
i1i2r Whether subtask i1 occurs before subtask i2 on route r ∈ Rk Binary

τk
ilr No-wait start time of subtask i at location l on route r ∈ Rk Real

τ∞ End of planning horizon Real
Di Maximum allowed delay for subtask i Real
�P
i1i2 Minimum desired time gap between service completion on sub-

task i1 and service commencement on subtask i2 for (i1, i2) ∈ P
Real

[αil, βil] Valid time window within which to start subtask i at location l Real
λk

il Service time for subtask i performed by agent k at location l Real
λi Service time for subtask i in chosen solution Real

=
�

k∈K

�

r∈Rk

�

l∈Li

λk
ilγ

k
ilrx

k
r

yi Whether subtask i is performed in chosen solution Binary

=
�

k∈K

�

r∈Rk

�

l∈Li

γk
ilrx

k
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The value ck
1r represents the total travel cost of the route r ∈ Rk, and ck

2r repre-
sents the delay penalty per unit time for agent k. The indicator πk

jr is 1 if task
j occurs on route r ∈ Rk and 0 otherwise. Similarly, γk

ilr is 1 if subtask i occurs
at location l on route r ∈ Rk and 0 otherwise, and δk

i�ir is 1 if subtask i� occurs
before subtask i on route r ∈ Rk and 0 otherwise. The value τk

ilr represents the
time that subtask i would be started on route r ∈ Rk assuming no delay time
was necessary. It is computed during route-planning from the travel time and
the execution time for all earlier tasks on the route. τ∞ represents the end of
the planning horizon. The value Di represents the maximum allowed execution
delay time for subtask i; αil and βil represent the earliest and latest times re-
spectively that service can begin on subtask i when it is performed at location
l. λk

il represents the service time for subtask i when it is performed at location
l by agent k. In the model, we use λi to represent the service time of subtask
i in the chosen solution (0 if i is not performed), and yi to indicate whether
or not subtask i is performed in the selected solution. That is, λi and yi are



placeholders for the following expressions, respectively:

λi =
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ilγ

k
ilrx

k
r

yi =
�

k∈K

�

r∈Rk

�

l∈Li

γk
ilrx

k
r ≡

�

k∈K

�

r∈Rk

πk
jrx
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(where j is the task to which subtask i belongs)

Finally, P represents the set of precedence constraints in the problem. Each
precedence constraint p = (i�, i) ∈ P indicates that execution of subtask i� must
end at least �P

i�i time units before service begins on subtask i.

In the model, the objective function (1) strives to maximize the difference
between total value or reward and overall travel cost and delay penalty. (C1)
specifies that each agent is assigned to exactly one route (which may be an empty
route, allowing an agent not to be used). (C2) specifies that each task is assigned
to at most one agent, and can in fact be rejected by assigning it to no agent.
These two are variations on the standard set-partitioning constraints.

Constraints (C3) through (C7b) are side constraints resulting from including
time variables in the master problem formulation and from enforcing precedence
constraints. (C3) computes the start time for a subtask and (C4) represents a
bound on the delay times. (C5a-C5c) represent constraints on the arrival delay
helper variables, which enable the start time of each subtask to be computed
correctly, taking into consideration the delay time of all prior subtasks on the
selected route. These constraints (C5a-C5c) together represent a linearization of
the nonlinear equation ai�i =

�

k∈K

�

r∈Rk

δk
i�ird

k
i�x

k
r . Constraints (C6a) and (C6b)

represent the time window bounds for the subtask. Finally, (C7a) and (C7b)
capture the precedence constraints of the problem: (C7a) indicates that the
second task i in the precedence constraint (i�, i) ∈ P is performed only if the
first task i� is performed; (C7b) ensures that the start times of the task satisfy
the precedence constraints. Similar constraints to (C7a) and (C7b) can represent
simultaneity constraints, by changing the inequalities to equalities, and removing
the λi� and τ∞(yi − yi�) terms from (C7b).

It should be noted that capacity constraints do not appear directly in this
model for the master problem but are dealt with when generating feasible routes.
Route generation also performs location choice by fixing the location of each
subtask on the route. The solution of the master set-partitioning problem then
selects between all generated feasible routes for an agent, thus finalizing the
location choice for each subtask. It also fixes the time for each task by setting
delay times as needed to ensure that cross-schedule precedence constraints are
satisfied while still respecting the travel and execution times.
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yi − yi� ≤ 0 ∀(i�, i) ∈ P (C7a)

ti� − ti + λi� + τ∞(yi − yi�) + �P
i�iyi� ≤ 0 ∀(i�, i) ∈ P (C7b)

5 Branch-and-Price Algorithm

Mixed integer programming problems are generally solved in a branch-and-
bound framework. To begin, a bound on the solution is computed by relaxing the
integrality constraints and solving the resulting linear program. This bound is
an upper bound for a maximization problem and a lower bound for a minimiza-
tion problem. Subsequently, branching decisions are made on fractional variables
that should be integer, and the solution process is repeated at each node of the
branch-and-bound tree, until a solution is found that satisfies the integer con-
straints and whose objective function is at least as good as the best bound on
the nodes in the tree.



In a set-partitioning model like ours, it is not possible to enumerate all possi-
ble variables/columns in the integer program up front, and this is where a column
generation process is useful. The algorithm starts out by considering only a sub-
set of columns (in our case, feasible routes), and new columns are added as
needed. The columns to be added are determined by solving a problem called
the pricing subproblem, derived from the dual variables of the master problem.
A branch-and-price algorithm is a branch-and-bound algorithm in which col-
umn generation occurs at each node of the branch-and-bound tree. A detailed
explanation of branch-and-price, such as how the pricing problem is derived, is
outside the scope of this paper. Barnhart et al [1] provide a useful introduction
and theoretical discussion.

We develop a custom branch-and-price algorithm to solve our mathematical
model. We discuss two aspects of our solution process, namely, how we perform
column generation, and how we make branching decisions.

5.1 Pricing and Column Generation

Designating the dual variables corresponding to constraints (C1) to (C7b) in our
mathematical model as u1 to u7b respectively, we derive the pricing subproblem
for our model to be the problem of finding feasible routes r for agent k for which
the following quantity is positive:
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(2)

Such routes, if they exist, could potentially increase the objective function
of the solution. At each node of the branch-and-bound tree, we find such “prof-
itable” routes, add one or more of them to the master problem, re-solve the
relaxed master problem, and continue the column generation process. When no
such route is found, column generation ends at that node, and the branch-and-
bound process continues.

To gain a better understanding of the pricing subproblem represented by
equation 2, note that for a given instance of the subproblem, the dual variables
u are constants. Also recall that γk

ilr indicates whether subtask i is performed at
location l on route r ∈ Rk. Thus, all terms in the equation that are multiplied
by γk

ilr represent costs for {subtask, location} pairs that are visited along the



route. Some of these terms, such as the third line, are included for all {subtask,
location} pairs along the route. Others are included only if the {subtask, loca-
tion} pair satisfies certain properties. For example, the third line has terms that
are included only for subtasks representing the first step of their corresponding
tasks and the fourth lines has terms that are included only for subtasks that are
involved in precedence constraints. All the terms described thus far are constant
values that can be computed independently for each subtask along the route.
However, the first term on the fifth line is a value that is linear in the arrival time
at the subtask, assuming no delays. Finally, the last term depends on the rela-
tive order of every pair of subtasks along the route, since δk

i�ir indicates whether
subtask i� occurs before subtask i on route r ∈ Rk.

We can think of the pricing problem as the problem of searching for a route
through a graph in which nodes represent {subtask, location} pairs, edges indi-
cate that an agent can perform one subtask after another, and transition costs
in the graph are determined by equation 2. A feasible route is one that satisfies
agent capacity constraints as well as the branching constraints at the current
branch-and-bound node.

To enable the search process to compute the overall price of a route as ex-
pressed by Equation 2, we decompose the equation into a value for each node
visited and each edge traversed along the route. Whereas in a typical route-
planning problem, the transition cost from from one node to another would
depend only on the two nodes in question, the last two terms of Equation 2
complicate the cost structure. As a result, the transition cost to a node from
another in the graph depends not only on these two nodes, but also on the time
spent traveling from the beginning of the partial route up to these nodes, and
on what subtasks have been performed earlier on that partial route.

To solve this pricing subproblem, we have developed a route-planning algo-
rithm that performs a search through a multi-dimensional state space, to find a
path from a start node to a goal node while satisfying the necessary constraints.
Each state in the space being searched is identified by the graph node n repre-
senting a given {subtask, location} pair, the no-wait arrival time ta of the agent
at the node along the route, and the unordered set Sp of subtasks that have
been previously completed along the route to that state: state := {n, ta, Sp}.
The route-planning algorithm can use either a depth-first search or a best-first
search focused with a heuristic. For the experiments in this paper, we use the
depth-first search mode. Our branch-and-price process can use either the com-
mercial solver CPLEX or the open-source solver LPSolve to solve the relaxed
master problem. For the experiments in this paper, we use CPLEX.

5.2 Branching

A simple branching decision for our problem would be to set a fractional xk
r

variable to either 0 or 1. However, it is necessary to make higher-level branching
decisions, both for efficiency and in order not to complicate the column genera-
tion procedure described earlier. We adopt the following branching decisions, in
the priority order listed below.



– Branching on task pairs ‘together’ : When there are fractional routing vari-
ables such that two tasks occur together on some route but not on another,
we branch by forcing the two tasks to be on the same route (“together”) in
one branch or on different routes (“not together”) in the other branch.

– Branching on subtask pair order : When the fractional routing variables in-
clude two routes with the same subtasks performed in different orders, we
branch by constraining the subtasks to occur in a specific order in one branch
and in the opposite order in the other branch

– Branching on subtask location: When the the fractional routing variables
include two routes with the same subtasks such that a subtask is performed
at two different locations on each route, we branch by forcing the subtask to
be performed at one location in one branch and not at that location in the
other branch.

– Branching on task agent : Lastly, when the fractional routing variables repre-
sent the same route performed by two different agents, we branch by forcing
a task on that route to be performed by a given agent in one branch, and
not by that agent in the other branch.

6 Experiments and Results

The problem addressed in this paper is a complex combinatorial optimization
problem which is strongly NP-hard. There are several features that affect the
computed solutions, as well as the performance of the solution process. In this
section, we focus on two of these features, namely delay penalty and location
choice. We first describe these problem features. We then present a sample prob-
lem and illustrate the impact of these features on the computed solutions. Fi-
nally, by presenting performance metrics on several randomized experiments,
we characterize how these key problem features impact the performance of the
branch-and-price algorithm.

6.1 Problem Features of Interest

Delay Penalty: The delay penalty is the cost associated with the execution
delay time for an agent and subtask. We express delay penalty per unit time as
a fraction of the travel cost per unit time for that agent. For example, a delay
penalty of 0.5 means that it costs an agent half as much to be idle for a given
amount of time as it does to travel for that same amount of time. In a given
domain, travel costs might capture fuel, personnel costs and vehicle wear-and-
tear when the vehicle is moving, whereas delay penalties might cover personnel
costs and a fraction of fuel and vehicle wear-and-tear costs for when the vehicle
is stationary.

Location Choice: The number of location choices for a given subtask is
the number of possible locations at which the subtask can be performed. For
example, in the evacuation scenario, if there are two possible shelters to which a
given client can be transported, the drop-off subtask of the transportation task
has two location choices.



6.2 Example Problem and Solution

We illustrate the approach with an evacuation problem with 6 clients, 1 medical
agent, 2 transportation agents and 2 shelter locations (Figure 1). The agents
and tasks are illustrated in a simulated 10km x 10km environment. The agents
travel at a speed of 60 km/hr or 1 km/minute. The transportation agents have a
capacity of 3, meaning that they can carry 3 clients at a time. To serve more than
3 clients, one or more drop-offs would be needed before picking up additional
clients. The compound task of serving a client requires two single-agent tasks,
the first comprising 1 subtask (a medical visit) and the second comprising 2
subtasks (a pickup subtask followed by a drop-off subtask). There is a single
precedence constraint between the medical visit and the pickup subtask. No
explicit precedence constraint is needed between the pickup subtask and the
drop-off subtask because subtasks of a single task are defined to be strictly
ordered. As such, there are a total of 18 subtasks to be allocated by the system,
with 6 pairwise precedence constraints to satisfy.
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Fig. 1. Example problem with 6 clients, 2 transportation agents, 1 medical agent, and
2 shelters.

Figure 2(a) shows the optimal solution when there is no delay penalty and
each client must be transported to its closest shelter (that is, there is only 1
drop-off location choice per client). The left illustration shows the computed
routes, while the right one shows the agent schedule, coded by travel time, delay
time, and service time. Service times are annotated with the subtask type (V for
“visit”, P for “pickup” and D for “dropoff”) and client IDs. For drop-off subtasks,
they are further annotated with the shelter ID. Because there is no delay penalty
in this first example, the algorithm computes the routes that minimize the total
travel time for all agents, with no consideration of whether a given client is
ready to be picked up at the time the transportation agent arrives at the client’s
pickup location. This results in significant delays for the transportation agents
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Fig. 2. Solution routes (left) and schedules (right) to example problem, with (a) no
delay penalty and 1 location choice, (b) delay penalty of 0.5 and 1 location choice, (c)
delay penalty of 0.5 and 2 location choices.

when they arrive at a client’s location before the client has been seen by the
medical agent.

When we introduce a delay penalty of 0.5, the optimal solution computed
by the algorithm changes significantly, as illustrated in Figure 2(b). Because
medical visits are the bottle-neck in the problem and it is now costly to have a
transportation agent wait for a medical agent, the optimal solution makes use



of only 1 transportation agent. In this way, it is able to reduce the overall delay,
at the expense of increased total travel time for the team.

Figure 2(c) shows the impact on the solution when there is a delay penalty
of 0.5 and each client is not constrained to be transported to its closest shelter,
but may be transported to either shelter; that is, there are 2 drop-off location
choices per client. This flexibility in the drop-off location enables the algorithm
to come up with a better solution with reduced travel time.

Table 3 summarizes the optimal solution to this example problem as a func-
tion of delay penalties and the number of location choices. It can be noted that
when there is no delay penalty for this problem, the solution is the same for 1
or 2 drop-off location choices – that is, the optimal drop-off location for each
client is its closest shelter. When there is a delay penalty, it is beneficial to have
a choice of locations at which the clients can be dropped off.

Table 3. Optimal solution as a function of delay penalty and location choices

Delay Penalty Location Total travel time Total delay time Total team cost
(dp) Choices tt (mins) td (mins) tt + dp ∗ td

0.0 1 81.66 100.93 81.66
0.0 2 81.66 100.93 81.66
0.5 1 96.68 3.62 98.49
0.5 2 91.76 7.62 95.57

Figure 3 shows the best solution and best bound over time for the example
above, with 1 drop-off location choice and a delay penalty of 0.0 (left) and 0.5
(right). In both cases, the algorithm finds good solutions early, demonstrating its
usefulness as an anytime solution approach. However, a non-zero delay penalty
has a significant impact on the time it takes to find and prove the optimal
solution. This is because the algorithm must essentially evaluate the trade-off
between travel time and delay time in potential solutions it encounters during
the solution process.

6.3 Simulation Experiments

The simulation experiments characterize the behavior of the solution process as
a function of problem features. We used the same evacuation problem with one
medical agent, two transportation agents with a capacity of 3, and two shelter
locations. We varied the number of clients from 2 to 10, resulting in a range of
6 to 30 subtasks, since each client requires 3 subtasks. We create 5 instances of
each problem configuration with random client, agent, and shelter locations. We
considered delay penalties of 0 or 0.5, and 1 or 2 drop-off location choices per
client, resulting in 4 combinations of problem features. The experiments were
run on a 2.67 GHz Intel processor.
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Fig. 3. Example solution profiles (current best solution and best bound over time).

Figure 4(a) shows the time to find and prove the optimal solution, averaged
over 5 random instances of each problem configuration. The horizontal axis rep-
resents the number of clients, which is proportional to the number of subtasks,
since each client requires a total of 3 subtasks: a medical visit, a pickup and
a drop-off. The error bars on the time plots represent one standard deviation
from the mean for each problem configuration. Under the plots of solution time,
there is a bar chart indicating, for each problem configuration, how many of
the 5 random instances were solved successfully. For these experiments, solution
time to compute and prove the optimal solution was capped at 30 minutes. The
combinatorial nature of the problem is apparent in the rapid increase in the time
needed to prove solution optimality as the problem size increases. Figure 4(b)
shows the average ratio of solution to bound at termination of the algorithm for
each problem configuration. A ratio of 1 indicates an optimal solution. Under
the graph of bound ratios, there is a bar chart indicating in how many cases the
algorithm found a provably optimal solution.

Figures 4(a) and 4(b) illustrates a significant distinction between the solution
complexity of problems with and without delay penalties. The steep increase in
planning time begins after 7 clients for problems without delay penalties, and
after only 5 clients for problems with delay penalties. The increased complexity
of problems with delay penalties in this scenario is also illustrated in the solution
bounds in Figure 4(b). For problems with no delay penalties, we can find opti-
mal or effectively optimal solutions for problems with up to 9 clients, and the
terminating bound ratios for problems with 10 clients are small. With a delay
penalty of 0.5, however, most of the solutions are provably optimal for only up
to 6 clients. For 10 clients, the average ratio of the solution to bound at termina-
tion was larger than the case with no delay penalties. The figures also illustrate
that problems with 2 location choices are slightly more difficult than those with



only 1 location choice. The gap between these cases is more significant with a
non-zero delay penalty than without.
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(b) Solution bound after 30 mins

Fig. 4. Overall planning time and bound
.

The above results illustrate that, as expected from the strongly NP-hard
nature of the problem under consideration, overall planning time increases sig-
nificantly as the problem gets larger. As illustrated in the previous section, an
advantage of the branch-and-bound framework is that the algorithm may find
several feasible solutions before it finds and proves the optimality of the final so-
lution. It can thus be used as an “anytime” algorithm which gives progressively
better solutions as it proceeds, and can be terminated early with a possibly
suboptimal solution. Furthermore, the algorithm provides a bound on how sub-
optimal the provided solution might be.

Figures 5(a) and 5(b) further illustrate the “anytime” nature of the algorithm
by showing the time required to find a solution within a factor of 2 of the bound
and within a factor of 1.1 of the bound, respectively. Underneath the time plots,
the bar graph indicates the number of instances of each problem configuration
for which the algorithm successfully found a solution within the specified bound
sometime within the maximum allotted time. This is the number of instances
over which the planning time is averaged for each configuration. Within the
maximum allotted planning time of 30 minutes, we were able to find solutions
within a factor of 2 of the bound for problems with 9 or fewer clients within
a minute and a half, and for problems with 10 clients in less than 10 minutes
(Figure 5(a)). In the maximum allotted planning time of 30 minutes, we could
find solutions that were within a factor of 1.1 of the bound for most problems
with up to 9 or 10 clients and without delay penalties. With delay penalties,
however, there were much fewer problems with more than 6 clients for which we
were able to find solutions within a factor of 1.1 of the bound (Figure 5(b)).
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Fig. 5. Planning time to specific bound ratios
.

7 Discussion

This paper focuses on optimal planning for task allocation, scheduling and rout-
ing with cross-schedule dependencies. Since the solution approach finds and
proves the optimal solution, it is advantageous and most suitable for pre-planning
in domains where information about the tasks and key features of the environ-
ment are known ahead of time. The approach enables the team to begin execu-
tion with a plan that is guaranteed to be of high quality. During plan execution,
real-world timing variations may necessitate minor adjustments in the computed
plan. In other work [8], we outline and demonstrate on a set of indoor robots, a
flexible strategy for executing such pre-computed optimal plans to ensure that
cross-schedule constraints are satisfied, even in the presence of timing variations
during execution. The strategy also enables graceful degradation of the plan if
tasks fail.

Due to the highly combinatorial nature of the problem under consideration,
the optimal planning approach is not suitable for real-time re-planning in dy-
namic domains in which new tasks come in over time, or failed tasks must be
reallocated. However, the initial optimal plan can be used as a seed plan for
more heuristic re-planning approaches. Such an approach combining optimal
pre-planning and market-based dynamic task allocation has been demonstrated
for problems without cross-schedule dependencies [9].

8 Conclusions

We have presented a novel mathematical formulation and a branch-and-price
approach to task allocation and scheduling for a team of heterogenous mo-
bile agents addressing a set of spatially distributed tasks related by precedence



and/or simultaneity constraints. The approach computes the optimal solution,
taking into consideration delay penalties and reasoning about location choice for
task execution. We characterize the performance of the algorithm as a function
of the existence of delay penalties and location choice. Ongoing work extends
the model and solution approach to address additional inter-task constraints.
Furthermore, we will explore heuristic solution approaches to complement the
presented bounded optimal solution approach.
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Flood Disaster Mitigation: A Real-world
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Abstract. As we advance the state of technology for robotic systems,
there is a need for defining complex real-world challenge problems for the
multi-agent/robot community to address. A well-defined challenge prob-
lem can motivate researchers to aggressively address and overcome core
domain challenges that might otherwise take years to solve. As the fo-
cus of multi-agent research shifts from the mature domains of UGV and
UAVs to USVs, there is a need for outlining well-defined and realistic
challenge problems. In this position paper, we define one such problem,
flood disaster mitigation. The ability to respond quickly and effectively
to disasters is essential to saving lives and limiting the scope of damage.
The nature of floods dictates the need for a fleet of low-cost and small
autonomous boats that can provide situational awareness (SA), dam-
age assessment and deliver supplies before more traditional emergency
response assets can access an affected area. In addition to addressing
an essential need, the outlined application provides an interesting chal-
lenge problem for advancing fundamental research in multi-agent systems
(MAS) specific to the USV domain. In this paper, we define a technical
statement of this MAS challenge problem based and outline MAS spe-
cific technical constraints based on the associated real-world constraints.
Core MAS sub-problems that must be solved for this application include
coordination, control, human interaction, autonomy, task allocation, and
communication. This problem provides a concrete and real-world MAS
application that will bring together researchers with a diverse range of
expertise to develop and implement the necessary algorithms and mech-
anisms.

Keywords: multi-agent systems, challenge, communication, autonomy,
path-planning, coordination, task-allocation

1 Introduction

Robotics challenge problems like FIRST, DARPA Challenges, BotBall, MAGIC,
etc [17, 24, 23, 7] have shown to be an effective motivational tool for invigorating
robotics researchers at all levels, from high-school to experienced professionals,
while solving real-world problems. Such challenges offer an incredible opportu-
nity to shorten the time-cycle required to advance the state of the art in au-
tonomous vehicle technology. The success of the DARPA challenges, Grand and



Urban, are a testamant to this. Robots such as Stanley and Boss have become
part of the robotics lore, while the developed technological solutions have be-
come the backbone for translating commercially developed autonomous vehicles
on our roads from a dream to reality. Furthermore, as we look to translate the
developed technology and success over different applications, there is a need to
define real-world challenges in alternate domains like USVs.

According to the United Nations, annual flooding currently impacts in excess
of 500 million people, costs the world up to $60 billion USD and the number of
casualties exceed 20,000 in Asia alone [22]. Changes to the environment, such
as mining, deforestation, and general industrialization are likely to worsen the
problem worse over time. Unfortunately, flooding disasters disproportionately
effect people in under-developed countries due to lack of early warning systems,
flood control and emergency response infrastructure. The scope and application
of the problem have far-ranging implications. Currently, despite large scale flood-
ing disasters world over, in the immediate aftermath, victims are largely left to
fend for themselves. The lack of relief aid is in part due to a limited knowledge of
the affected areas and specific needs of the victims. Thus, any reliable solution,
regardless of efficiency, will have immediate real-world benefits, while further re-
search and development can increase the value of the system over time. In most
cases, floods occur over large areas and over relatively long time-scales. Often
their occurrence can be cyclical in nature and can be predicted well in advance,
e.g., monsoonal or hurricane flooding can be expected annually during a well-
defined season. We believe that the inherent properties and the scale of impact
of a flooding disaster make it an ideal problem to be addressed with robot teams
with multi-agent technology playing a central role. Finally, the cyclical nature of
flooding means that it is likely that solutions can be iteratively evaluated and im-
proved in real disaster environments over time. We believe that flood mitigation
might be the seminal challenge for MAS because it is an important real-world
problem for which MAS appears to be an ideal and essential technology.

In order to effectively address the problem, small, autonomous watercrafts
are ideal for flood mitigation and response. Relative to other types of vehicles,
watercraft are simple, robust and reliable. By keeping the vehicles small, most
safety issues can be avoided simply by ensuring that if there is a collision, it
can cause at most very minor damage. Influenced in part by field experiences
of Murphy et al. [18], we believe unmanned surface vehicles (USV’s), such as
airboats, rather than unmanned underwater vehicles (UUVs), are better suited
to this operational domain. Airboats are flat-bottomed boats that use an above-
water fan to propel themselves forward safely and effectively through shallow or
debris-filled water.

The challenge, then is to be able to construct and deploy small and capable
airboats at a low cost. The low cost is particularly important for feasibly de-
ploying sizable teams capable of covering large areas. In the immediate future,
three or four cooperative boats might be deployed to provide some situational
awareness over a small area, but as algorithms become more scalable, hundreds
or thousands of vehicles could be used to provide detailed situational awareness



Fig. 1. Flood Disaster Mitigation Challenge

over dramatically larger areas. Longer term, a combination of autonomous air-
craft and surface boats might be able to quickly cover a large area, being robust
to obstacles and debris and able to safely navigate in places where large numbers
of civilians are moving around.

2 Problem Definition

The contribution of this paper is not a description of algorithms for controlling
boats for flood mitigation, but rather a technical description of the problem from
the perspective of multi-agent systems. We present constraints descriptions for
sub-areas of MAS so as to provide target problem descriptions for algorithm
developers to overcome. Specifically, we pose the challenge as a sustained dis-
tributed situational monitoring problem in flood affected areas over a relative
large area (25 sq km) using a large team (25-50) of autonomous watercrafts
with minimal human oversight. This primary system objective leads naturally
to a number of specific technical challenges that must be overcome to successfully
complete the challenge (see Figure 1). Our challenges to the research community
are:

Vehicle Design: How to develop a robotic watercraft platform specific to the

demands and requirements of flood disaster mitigation activities?



Vehicle Intelligence: How to robustly control a single boat and perform funda-

mental tasks of way-point following, collision avoidance, information gath-

ering, energy management, payload management, etc?

Team Intelligence: How to develop efficient techniques for coordinating a team

of airboats, identifying the scale of autonomy, situational awareness, estab-

lishing and maintaining communication network, path planning and task al-

location?

We need to bring together mature technologies from different areas including
autonomy, robotic watercraft, coordination, networking, fault-tolerance, cover-

age, exploration and human-robot interaction towards building an integrated,
large scale, autonomous system capable of monitoring and payload delivery in
dynamic environments over an extended period of time.

3 Vehicle Design

For the principal task of providing situational awareness, identifying potential
victims, and augmenting current first responder capabilities, any prototype de-
sign should address essential components pertaining to cost, sensing, payload,
power. Relative to other types of vehicles, surface boats or airboats are simple,
robust and reliable. Cognizant to the operating domain, we argue that the the
overall size and weight of the boats should be relatively small. By keeping the ve-
hicles small, most safety issues can be avoided simply by ensuring that if there is
a collision, then the relatively low operational speeds cause only minor damage.
Specifically, the following issues must be considered:

– Sensors are a major component of the cost of the boat and are most likely to
fail. Hence, there is significant advantage to be able to use simple and cheap
sensors. However, this typically makes control more difficult. For effective
operation, the vehicles should have four essential capabilities: adequate range,
communications, navigation, and environmental sensing.

– The surface boats must be inexpensive and reliable so that we can build,
maintain, and deploy a large numbers of them at a fraction of the cost of
commercial alternates.The challenge is to find the right balance between
using low-cost simple sensors and making the boat useful.

– Using large numbers of boats over extended periods will inevitably result
in individual failures. The large number of hours that boats will be in the
water in this project will provide data that quantifies the type, nature and
rate of failures, providing key input to future development and for evaluating
the effectiveness of the overall solution. Hence, the boats must be easy to
construct, maintain and to repair.

– Power will be a limiting factor in boat performance, having a direct impact on
attributes such as range and speed. The boats must be capable of traversing
a set distance within a given amount of time in order to preserve the quality
of the acquired information. Based on initial analysis of the problem domain,
we estimate the operational range for exploration to be in the range of 5 km



over the course of several hours. This translates to average operating speeds
of 2− 3 km/hr, which confirms to operational safety standards.

– The boats must have some payload capability for dropping off essential sup-
plies as well as picking up water samples for contamination analysis.

Vehicle navigation in the intended environment involves two basic challenges
pertaining to obstacle avoidance, negotiating surface debris, and adapting to
“waterscape” changes as flood waters rise or recede. Development of novel indi-
vidual and joint control schemes to handle these requirements is therefore a key
area of research. Control in an aquatic environment has been studied widely in
larger surface vehicles, primarily at oceanic scales, and complex active control
problems in semi-autonomous vehicles. In the former, a “follow-the-carrot” style
approach is often sufficient, as the larger vehicle size coupled with high confi-
dence measures in vehicle and obstacle position makes trajectory errors small.
However, there are several aspects of the flood mitigation domain that warrant
further research. The small size of the boat and unstructured nature of the en-
vironment mean that a-priori planning is limited and necessarily uncertain. It
is impractical to precisely map and localize the boat with sufficient precision
to avoid all obstacles, making reactive control a necessity for short-range obsta-
cle avoidance. Second, while complete avoidance is necessary for safety at higher
speeds, it is primarily a matter of efficiency at lower speeds. Low-speed collisions
with obstacles often do not lead to damage or entanglement, and it is possible
for boats to bump objects occasionally at low speeds. Finally, the high speed
of the boats and water currents and eddies, relative to boat size, make vehicle
dynamics significantly less predictable. Large discrepancies in trajectory may be
effected by small changes in ambient current and vehicle hydrodynamics. Thus,
building accurate motion models through physics alone may not be practical or
possible.

In developing control strategies, it is important to note that given the na-
ture of these vehicles, the objectives of the strategy are to minimize power con-
sumption and travel time under the constraint of safe traversal of the environ-
ment. The uncertainty and complexity of realistic aquatic motion models make
learning-based approaches particularly attractive. Methods such as reinforce-
ment learning offer a number of advantages, including the ability to adapt to
changing environmental conditions such as water currents, changes in payload,
and the possibility of transferring learning between vehicles. While the environ-
ment is unstructured at a fine scale, it is evident that particular classes exist by
virtue of human development. Areas such as towns provided a semi-structured
but dense lattice where potential for human interaction is high, while rural ar-
eas or existing waterways will be less dense in terms of static obstacles, but
potentially rich in manned vehicle traffic. In order to move efficiently in these
and other classes of environment, it may be necessary to implement hybrid or
layered control approaches that explicitly model the different areas.



4 Vehicle–Level Intelligence

Flood environments are uniquely cluttered, and for practical purposes, unknown
a-priori. Situation awareness constitutes the collection of data that enable op-
erators to better characterize the state of flooded areas for the prioritization
of emergencies, the allocation of resources, and the establishment of further
relief infrastructure. Information such as imagery of affected areas, traversabil-
ity roadmaps or obstacle maps, and sampling of environmental factors such as
water quality and temperature can play a role in creating this representation.
The on-board sensor package must ensure vehicle safety, and, moreover, provide
useful situation awareness to human operators to facilitate rescue and response
activities. Safe traversal of the environment requires ego-motion estimation and
obstacle detection. The former problem is made challenging by the small scale
of the vehicles and obstacles, and the chaotic nature of water currents. Unlike
ground robots, aquatic surface vehicles drift with prevailing currents that are
hard to measure and model, resulting in motion that cannot easily be predicted.
Absolute positioning using GPS can significantly assist in correcting for this,
but commercial receivers at the price point of the vehicle cannot resolve to the
require accuracy. In addition, bearing cannot be directly estimated from these
measurements, and is also subject to drift. Obstacle detection requires sensors
to look out over the surface of the water for potential hazards, both above and
at the surface. The distance at which this can be done safely is a critical factor
in determining the maximum rate of travel of the vehicle.

The sensory constraints can be overcome by novel estimation and filtering
methods that will enable useful streams of information to address these three
tasks while incorporating only data provided from relatively low-cost sensors.
Such sensors include many of the staples of ground robotics, including MEMS
accelerometers, gyros, and magnetometers, physical contact switches, local optic
flow sensors, in-air IR and sonar range finders, and stereo or monocular vision.
Interestingly, many of these sensors are already present in modern mobile devices
such as smart phones, making these embedded platforms even more attractive
as a low-cost, integrated solution to consider.

A key area of study for the MAS community lies in using vehicles jointly
to improve perception of local and environmental features. While boats cannot
control many aspects of the environment, they can (a) exchange information that
allows other boats to reduce uncertainty or correlate features between vehicles
and (b) use other boats for relative localization through direct or indirect relative
tracking (i.e. boat-mounted fiducials). Since large teams of these vehicles are
expected, this may be a very powerful alternative to more expensive local sensing
strategies. Successful joint sensing strategies can bring down the cost of the
vehicles by requiring less of individual sensors.

5 Team–Level Intelligence

This section outlines the key sub-problems that arise at the level of the team
– the boats and the human controllers. We break the challenge problem into



six key areas, each of which is an important problems in its own right and has
already received significant attention from the MAS research community. These
are:

1. Autonomy and human interface,
2. Situational awareness,
3. Communications & networking,
4. Path planning,
5. Team planning,
6. Task allocation.

The Airboats Challenge brings with it the domain specific constraints of operat-
ing in the midst of a flood disaster and the added complexity of integrating the
sub-problems to produce a coherent system. This is a key reason why Airboats
Challenge is so appealing as a challenge problem: although big, the global MAS
problem is relatively modular, and does not need to be treated as a whole. In-
stead, each of the sub-problems we have identified can be tackled by separately,
and this paper is written in the hope that many separate research groups with
different interest and expertise will all be able to contribute.

5.1 Autonomy and Human Interface

One of the most interesting research challenges for the Airboats Challenge is to
design a system that will be able to provide the appropriate level of autonomy
for the agents. A set of exemplar tasks follow to demonstrate the necessary types
of autonomy, as well as identifying the underlying research challenges imposed
by these behaviors.

Task 1 : Autonomous exploration. Prior knowledge about the terrain might
be useful for identifying potentially traversable areas. However, realistically in
such a fluid environment, many areas may become (un)traversable by the boats,
necessitating alternate agent behavior. Exploration will be essential towards up-
dating the local and, subject to communication constraints, the global maps. As
a consequence the team, on an individual and sub-team levels, must be capable
of performing autonomous exploration of its surrounding environments. Interest-
ingly the autonomy level for exploration could be varied from fully-autonomous
to tele-operated on a case-to-case basis.

Task 2 : Human interaction. The agents must be capable of detecting and
interacting with civilians towards providing accurate situational awareness to
the responders. To this end, agents should be able to integrate information com-
ing from the on-board sensors (e.g. cameras and microphones) for detecting
survivors. Civilians should then be approached to provide information to the
base station about their position, photographs of the area, voice transmissions,
etc. This throws up very interesting challenges in identifying the most effective
manner of interaction with humans. Moreover, the airboats must be able to
autonomously identify adversarial behaviors. Potential countermeasures include
sending a “SOS” signal, identifying potentially hostile people by taking pictures
for later identification, etc.



Task 3 : Self awareness. The unpredictability of communication range dictates
that the agents be capable of autonomously returning to the base station or to
dynamically determine an alternate rendezvous point. The ability to return to
the base station would be necessary for enabling agents to return with collected
information in the absence of communication connectivity. Direct communica-
tion to base station may be infeasible due to limited network structure and the
agents will likely need to coordinate to construct a network infrastructure. This
might require autonomous task-switching on a sub-team level. Furthermore, in
Airboats Challenge , operations will be carried out over a long time scale; as a
consequence the agents should be self aware and capable of switching states to
operate for days, up to approximately two weeks. Agents will need to return to
the base station for recharging, resupply, repair, etc.

Task 4 : Situational awareness. The agents should be able to recognize dan-
gerous situations and activate specific behavior. For example, the agents should
be able to recognize when the agent is going to hit an obstacle, or when the
agent’s localization has failed. Actions to address such situation may include
sending broadcasting an alarm signal, quickly changing direction, or activating
a search routine. It is important to note that “recognizing a situation” here refers
to the agents ability to reason about abstract concepts such as “the agent is in
trouble” and “the agent is having difficulty navigating to point X”. Moreover
the agent must be able to identify these crucial situations quickly, reliably and
using inexpensive sensors.

While the above autonomous behaviors have been broadly addressed in the
autonomous agents and robotics community, we believe that deploying a systems
which is able to perform this kind of autonomous tasks in Airboats Challenge
poses many interesting research challenges. Among the many issues which pre-
vents direct application of off-the-shelf solutions in this domain, the most impor-
tant address are: (a) algorithms must work in real time with low-power devices
and will be unlikely to find guaranteed optimal solutions; (b) humans opera-
tors not experts in controlling nor repairing the agents – any proposed solution
must be very simple and reliable; (c) agents should use adjustable autonomy:
when human operators can provide help, the agents should try to take advan-
tage of their expertise; (d) agents must work in a broad range of non-optimal
conditions: for instance, if the weather or lighting conditions change, the agents
should continue to work, even if it reduces their efficacy.

5.2 Situational Awareness

Providing situational awareness (SA) for human operators is a primary goal of
the system. The task involves collecting information about the environment and
getting it to the operators to allow them to understand the disaster that they
are dealing with. SA also has a role to play in informing the networking, path
planning and task allocation problems of the Airboats Challenge . Specifically,
SA is is used to put constraints on the set of feasible paths, and consequently
network configurations, that the agents can take, and also to assign levels of
importance to different tasks. From a MAS perspective, we are only interested



in the task of collecting information and communicating it back to the human
operators and among the agents members; We are not interested in the important
human factors issues related to its presentation.

The rate of change of different parts of the environment will be very different,
with some requiring new information be collected and transmitted regularly
and others only requiring an occasional visit for new information. Primarily,
we anticipate that cameras will provide the majority of the data for getting
situational awareness. Often still imagery will be sufficient, however under certain
situations video data might be essential to to do situational awareness, for e.g. the
rate of water movement. However, other sensors such as microphones or wind-
gauges might provide useful information. In flood disasters where water sits for
long periods of time, it may be necessary to collect water samples to allow for
checking for diseases. This would necessitate boats bringing samples all the way
back to operators for analysis.

Two additional factors make the SA problem more complex from the MAS
perspective. First, not all areas are as important as others. For example, areas
that are likely to have high population density or will be critical for moving
humans around the environment are more important than open areas where
humans are not expected. The relative importance of different areas maps to
preferences on locations to visit. Second, incoming data might be ambiguous
or unclear and humans might request clarification in the form of additional
information about an area. Both of these factors link SA to task allocation, in
we expect that SA information will be used to identify tasks of high importance
or value.

The problem can be formalized as follows. Consider the world to be made up
of a set of locations, L = {l1, . . . , ln}. For each li ∈ L, a cost function Cli(t) → R
defines the value of not getting information on that location for a length of time
t. Each time the location is visited, the function resets and might change. For
example, areas found to have nothing of interest, will reset to a function that
increases very slowly over time, while areas with a lot of interest will reset to
functions that increase very rapidly over time. The system will not know in
advance how the function will reset after it is visited, but we assume it will
know as soon as it is visited. Another function, Vli(t) → R gives the relative
value of that location over time. The overall optimization is to minimize the cost
of not seeing locations multiplied by the value of the location over time. That is,

min
t=te�

t=ts

�

li∈L

Cli(t)Vli(t)

where we assume time is discretized and ts and te represent the start and end
of the mission respectively.

5.3 Communications & Networking

The networking aspect of the flood mitigation problem is working out how to
configure the boats to form an ad hoc network, in addition to making use of



any available infrastructure such as cell phone networks, to allow communica-
tion among the team and human operators. This component of the Airboats
Challenge is of fundamental importance, since without a functioning communi-
cation network, the other team-level sub-problems – the situational awareness,
path planning and task allocation capacities – of the system will be severely
curtailed. Furthermore, in addition to running the algorithms that address these
problems, maintaining a communications network itself places hard constraints
on the solutions to the path planning and task allocation problems.

Regarding the SA goals of the system, we anticipate that the boats will be
collecting a lot of potentially useful information, and will benefit from tight coor-
dination with other boats when possible. However, this is likely to lead to there
being far more data than communication bandwidth. The physical locations of
the boats will create the physical network, hence the networking challenge is
fundamentally to work out how the boats should move get the “best” network
structure. Clearly, the positions of the boats cannot be dictated solely by the
requirements of the networking, since this will impede their ability to do their
primary task. However, it may be possible or necessary to dedicate some boats
solely to the task of being network routers. Low-level issues of how to efficiently
communicate data or to create more powerful transmitters are considered be-
yond the scope of the multi-agent problem. Similarly, it is anticipated to be the
case that energy use for receiving and sending data is negligible versus energy
costs of moving the boats around.

One network concept sometimes used in environments without wireless in-
frastructure is the idea of delayed communication, where robots will hold onto
information and actively plan to get back to a location to transmit that in-
formation at some later time. Delayed communication is likely to be a useful
mechanism in the flood mitigation problem, especially since delays on the order
of minutes are unlikely to be important.

The wireless network connecting the boats and ground stations is required for
sending three types of messages. First, messages are required to get information
from the robot sensing the information to the boat or human who can utilize that
information. Second, messages are required to facilitate coordination between the
boats. Third, messages are required for human override of autonomous action,
e.g. tele-operation. Appropriately designed coordination algorithms should mean
that no particular message is absolutely critical to overall operation, instead each
message will have some value to the team. Messages should only be delivered
once and may pass through intermediate nodes to get to their destination. Nat-
urally, there will be some time before which a message has no value and often
a time after which a message has no value, e.g. information has become stale or
opportunity for coordination has passed.

The movement of the boats around the environment and the availability of
infrastructure, e.g. mobile phone towers, induces a network that changes over
time. Because small vehicles moving in a complex environment, carefully placed
mobile phone towers and human operators will have dramatically different com-
munications equipment, it is not reasonable to assume that links are symmetric.



There will be constraints on edges in the network which restrict traffic on that
edge. For example, a boat may have links to four other boats, but it cannot
communicate with them at the same time, since the same wireless medium is
being used for each link. More complex models might include constraints that
capture interference between links degrading capacity, e.g. two different boats
cannot broadcast on the same channel at the same time, but we believe these
details are practically unimportant for this domain.

The network aspect of this problem is focused on providing the infrastructure
to allow message delivery, other parts of an overall system will actually determine
which messages are delivered. Thus, we have to think about the problem of
optimizing the network structure as one of optimizing the potential for message
delivery. This optimization must include the possibility that messages fail to be
delivered and that the coordination is inefficient.

5.4 Path Planning

Path planning sits at the interface of vehicle- and team-level intelligence. For
example, some path plans can be generated independent of other agents, such
as return routes to a base station, while others require tight coordination of
the actions of several agents, as when network connectivity requirements are
paramount. Furthermore, solutions to a path planning problem may be con-
strained by environmental conditions (garnered from SA), network considera-
tions, task requirements and vehicle power constraints.

The path planning component for a boat will be impacted by all other parts
of the system, e.g. the networking component will tell it how it must move to
maintain an appropriate network and the task allocation component will tell it
what it must achieve in the environment. In an ideal solution, feedback from a
path planner would impact other parts of the system, e.g. by indicating that it
is expected to take the boat a long time to perform a particular task, hence it
is better allocated elsewhere.

To generate even an independent path, the boat must deal with partial ob-
servability, because the environment is not perfectly known and action uncer-
tainty since movement through the environment is inherently uncertain. Given
multiple tasks, e.g. places to take observations or deliver supplies, the robot must
appropriately order its tasks for best overall performance. It must also carefully
balance risks, e.g. taking unknown but potentially more direct routes or mov-
ing at higher speed, time to complete time-sensitive tasks and the need to keep
the boat intact for future efforts. The environment will not be completely static,
making it necessary for the path planner to reason intelligently about the impact
of any possible obstacles in advance and planning around them when they occur.
Planning will need to occur over significant amounts of time, since boats may
travel to tasks that take on the order of hours to reach. Therefore, in its most
general formulation the single vehicle path planning problems can be considered
as a Partially Observable Markov Decision Process (POMDP).

The path planning will be mostly individual but cooperation could dramat-
ically improve overall performance. For example, if it is not known whether a



particular route is traversable, it may be optimal for one boat to first go down
that street while others wait or take longer, safer routes. This type of exploit
versus explore tradeoff is often studied in the literature, but not in the context
of such complex individual planning. Cooperation will also be required to avoid
hindering progress of other boats, e.g. impeding progress down a narrow alley, A
natural and general framework for the multi-agent path planning problem is that
of Decentralized POMDP. However, Dec-POMDPs are known to be intractable
in general settings [1]. Therefore, a main research issue here is to find alternative
formalizations or approximate techniques that can provide good solutions while
meeting the real time constraints of the application.

Finally, while we anticipate that the primary focus of the path planner will be
coming up with a path that achieves all the objectives of the boat at a minimal
cost, some attention will need to be paid to actually being able to move the boat
around the environment. While we consider issues of control outside of the scope
of the MAS problem, environment features such as currents in the water, winds
and narrow passageways will significantly effect what the boat can achieve and
should be considered as a part of the path planning process. For example, in an
area expected to have significant currents, it is not reasonable to plan or expect
a fast path directly across or against the current.

5.5 Team Planning

Disaster response domains, like the one discussed in this paper, typically
involve multiple sub-teams of agents working together towards achieving a com-
mon goal, saving lives and disaster mitigation. Each team-member has specific
capabilities particularly suited to certain tasks. While some tasks are indepen-
dent of each other, other tasks may be related by different constraints. As agents
move about the environment, they have a direct influence on other team mem-
bers from tightly-coupled scenarios [2, 8, 19] where multiple agents are required
to complete a task, to loosely-coupled ones where the action of one agent might
block the movement of others [6]. Team planning addresses the problem of de-
composing a high-level set of goals into smaller independent, primitive tasks.

5.6 Task Allocation

Task allocation impacts the performance efficiency of teams in significant ways.
Allocating vehicles to different tasks in an efficient and effective way is a cru-
cial issue for the Airboats Challenge . More than any other sub-problem, task
allocation connects together the components of the team-level intelligence of the
system: The set of tasks may represent both SA and networking goals; The cost
and benefits of completing tasks are computed using outputs from path planning
and SA problems, and may be constrained by network considerations; and, we
expect there to be human oversight of the weights attributed to tasks.

Task allocation is a very well known and widely studied problem in MAS,
and many solutions have now been proposed, however, in the Airboats Challenge
scenario, the task allocation problem is particularly challenging as the system



is composed of a large number of vehicles that will be equipped with cheap and
low power devices and will have to coordinate in a highly dynamic and partially
unknown environment.

Task allocation is usually formalized considering a set of tasks T = {T1, · · · , Tm},
a set of agents A = {A1, · · · , An} and a reward matrix R = {rij} where rij
indicates the reward achieved by the system when agent Ai execute task Tj .
An allocation matrix A = {aij} defines the allocation of agents to task with
aij ∈ {0, 1} and aij = 1 if agent Ai is allocated to task Tj . The goal of the
system is then to find

argmax
A

|A|�

i=1

|T |�

j=1

rijaij

Moreover, a set of constraints C usually describes valid allocations of agents
to tasks, for example, one task could be executed at most by one agent or exactly
k agents, or completing a task could be outright infeasible because of constraints
on the actions of an agent. Therefore the above optimization must be performed
subject to C.

A first important challenge for the task allocation approach is to deal with a
dynamic environment, where tasks appear, disappear and the reward to execute
them may change during the mission execution: in the Airboats Challenge do-
main, vehicles will deal with tasks such as searching for civilian in a predefined
area, approaching a group of detected civilians, collaborating with a set of other
vehicles to relay information to the base station and so forth. These tasks are
not known before hand and will be discovered during the mission; in addition,
failures of vehicles should be taken into account: vehicles could be potentially
stolen or the communication infrastructure could experience temporary break
down. Hence, the above problem formulation must take time into account and
one way to express this is to have that agents, tasks, reward matrix and conse-
quently allocation matrix dependent on time and then find a series of allocation,
one for each time step, such that the sum of reward over time is maximized:

arg max
{Ats ,···,Ate}

te�

t=ts

|At|�

i=1

|T t|�

j=1
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t
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Therefore, the solution algorithm should be capable of continuously moni-
toring the environment and adapt the task allocation solutions to unexpected
changes.

Second, in the Airboats Challenge vehicles should be able to take decision
on their own, without necessarily relaying on information, or directives, from
the base station; moreover, such decentralized task allocation approach must
be designed to run on low power, cheap devices (such as smart phones). The
low cost devices combined with the large scale operational domain, eliminates
the use of intense computation and communication resources, typical of complete



algorithms1, as their coordination overhead (computation time, message number
and size), would be simply unacceptable in this scenario.

Third, since vehicles act in the real world without a complete knowledge of
the environment, the benefit that the whole system would acquire for a given
allocation of tasks is very hard to predict: vehicles are uncertain of their action
outcome (e.g, a boat might be stalled while traveling towards an interesting area)
and, more important, even if a task is completed successfully the reward for the
team might be different than what is expected (e.g. it could be very hard to
decide which group of civilians is more in need of help without having accurate
information about their situation).

Finally, vehicles might need to form coalitions to execute tasks. Consider
the example where agents might need to form sub-teams to approach a group
of civilians while maintaining connectivity with the base station, or to search
a given area of the environment where there is a high chance of discovering
civilians. In our formulation coalition effects can be expressed by representing
rewards as a set of functions instead of as a matrix: Rt = {rtj(at1j , · · · , at|A|tj)}
and considering the following objective function2:

arg max
{Ats ,···,Ate}

te�

t=ts

|T t|�

j=1

rtj(a
t
1j , · · · , at|A|tj)

Coalition formation is known to be a very hard problem to solve and current
solutions can find optimal coalitions only for relatively small number of agents
(in the order of 30) [20], so there is a clear need for approximate solutions in
this context.

As mentioned above, there exists many potential approaches to address our
task allocation problem, that range from approximate DCOP solution techniques
[21, 5, 11, 4], to decomposing the problem as mixed integer linear programming
problems [12, 15], market based approaches [9, 16], hybrid approaches [14, 13], etc
and that have been used in similar application domains. Despite the fairly rich
suite of algorithms for addressing team planning, the dynamic and complex en-
vironments, continuous configuration and observation spaces, and relative large
team sizes coupled with limited computing and sensing far exceed the complexity
handled by many existing approaches. Deciding how to represent the problem
and determining which classes of algorithms are effective remains an open area
of research.

6 Discussion

In order for the problem to be accepted in the MAS community as an open chal-
lenge problem, a case-study and subsequent feasibility analysis of the various de-

1 With complete algorithms we are guaranteed to find the optimal solution
2 If we aim to solve this problem using linear programming techniques we need to rep-
resent the reward for each possible coalition, this results in a combinatorial element
in the complexity of the problem.



scribed components including vehicle design, intelligence and team-intelligence
for the outlined problem must be performed. The feasibility analysis would allow
us to identify system bias and weight associated with individual components as
it affects overall system performance. This subsequently would allow us to for-
mulate the challenge as a mathematical problem that can then be modeled for
a simulator or real-world system. Genuine practical success may require that a
modular open source architecture is developed into which various algorithms can
be inserted. The development of such an architecture would also separate the
hardware development from the software development and allow for researchers
to collaborate and focus on specific domain. As part of the development frame-
work, we are working on building a realistic simulator for the project as well
as developing a prototype vehicle model.The simulator is intended as a open
source resource that will allow the community to test and evaluate individual
component algorithms as well as a full-system model on a common platform.

Furthermore, the feasibility study will also address an important component
of any multi-robot system, evaluation metrics.The mission critical nature of the
operating domain dictates the need for a high operating efficiency for the Air-
boats Challenge . In order to objectively evaluate operational performance, there
is a need to have a well-defined and detailed set of metrics. Based on observations
from earlier work in developing metrics for multi-robot teams [10]. we believe
that for the challenge problem the success metric should be a combination of
qualitative and quantitative measures that can be used to analyze, evaluate, and
subsequently improve performance of a team of airboats towards the overall goal
of mitigating disasters during flooding. The goal therefore is to identify a set of
flexible tools for researchers to use for in-depth system analysis. In addition, it
is important to identify evaluation criteria that can help determine the quality
of a metric in terms of the domain specific constraints, comprehensive under-
standing, construct validity, statistical efficiency, and measurement technique
efficiency [3]. The idea of identifying generalizable classes allows researchers to
independently evaluate specific sub-problems that constitute the challenge.

Finally, the unfortunate prevalence of floods will give many opportunities
for solutions to be field tested, requirements to be updated and new designs to
be explored. Beyond constrained environment testing, real world evaluation in
places like the Philippines are essential for extended evaluation.

7 Conclusions

In this position paper, we present a challenge problem of using cooperative
airboats to perform flood disaster mitigation. Floods are the natural disaster
with the biggest annual impact and dis-proportionally affect the economically
backward. We have outlined the key technical challenges and argued that the
research from the MAS community is well suited to tackle many of the tech-
nologies that are necessary to develop a low-cost, high-impact solution. We are
currently developing prototype simulators and robots to work on this problem
and anticipate initial testing to occur in the near future. We plan to make the



simulation environment open for anyone in the community to test and contribute
algorithms. It is also planned to make it possible for anyone in the community
to provide code for key MAS functions on the robots themselves. This will pro-
vide both a realistic and important test for the algorithms and allow the MAS
community to make a genuine contribution to the world.
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