
Pre-Proceedings of AOSE’2011

The 12th International Workshop on
Agent-Oriented Software Engineering

AAMAS Workshop, 2 May 2011

Editors:

Danny Weyns

Jörg P. Müller

Preface

Since the early 1990s, multi-agent system researchers have developed a large
body of knowledge on the foundations and engineering principles for designing
and developing agent-based systems. The 11 past editions of the AOSE workshop
had a key role in this endeavor. For 2011, the workshop organizers and the
steering committee decided to organize a special edition of AOSE. In particular,
the goal is to wrap up the previous editions of the workshop with a discussion of
the state of the art in the key areas of AOSE and based on that outline the future
of the field. This way, we aim to find a way out of the increasing fragmentation
and fuzziness on software engineering in multi-agent systems.

The workshop program consists of a number of invited papers complemented
with accepted papers from the call for papers. Renowned researches and engi-
neers have contributed with invited papers in different sub-areas of the field,
including agent-oriented methodologies (Jorge J. Gomez Sanz), coordination in-
frastructures for multi-agent systems (Juan Antonio Rodriguez), programming
agents and multi-agent systems (Mehdi Dastani), engineering multi-agent orga-
nizations (Virginia Dignum), engineering self-organizing systems (Van Parunak),
agents and services (Munindar Singh). In addition, we accepted five regular pa-
pers from the nine submissions. The accepted papers cover a broad scope of
topics in AOSE, from dynamic BDI architectures to an assessment of practical
agent applications.

The workshop organizers will edit a special issue in The Knowledge Engi-
neering Review on Challenges in Agent-Oriented Software Engineering based on
a selection of revised workshop papers. Additionally, revised accepted papers are
planned to be published in a volume of the Lecture Notes for Computer Science
series.

We thank all the authors for submitting their work to AOSE. We are grateful
to the members of the AOSE 2011 PC for their valuable reviews. We hope that
the presented papers will stimulate researchers and engineers to outline a future
for agent-oriented software engineering.

Danny Weyns
Jörg P. Müller

Taipeh, May 2011

Workshop Chairs

Danny Weyns KU Leuven, Belgium
Jörg P. Müller TU Clausthal, Germany

Program Committee

Carole Bernon IRIT, Universit Paul Sabatier, France
Juan Antonio Botia Blaya Universidad de Murcia, Spain
Massimo Cossentino Italian National Research Council, Italy
Scott Deloach Kansas State University, USA
Ruben Fuentes Universidad Complutense de Madrid, Spain
Alessandro Garcia PUC-Rio, Brazil
Aditya Ghose University of Wollongong, Australia
Holger Giese University of Potsdam, Germany
Paolo Giorgini University of Trento, Italy
Adriana Giret Technical University of Valencia, Spain
Marie-Pierre Gleizes IRIT, France
Laszlo Gulyas Aitia International, Inc., Hungary
Jorge J. Gmez Sanz Universidad Complutense de Madrid, Spain
Brian Henderson-Sellers Sidney University of Technology, Australia
Jeffrey Kephart IBM T.J. Watson Research Center, USA
Mark Klein Software Engineering Institute, Carnegie Mellon, USA
Joao Leite Universidade Nova de Lisboa, Portugal
Philippe Mathieu University of Lille, France
Frédéric Migeon IRIT, Universit Paul Sabatier, France
Simon Miles King’s College London, UK
Haralambos Mouratidis University of East London, UK
Flavio Oquendo European University of Brittany UBS/VALORIA, France
H. Van Dyke Parunak Jacobs Technology, Jacobs Engineering, Ann Arbor, USA
Michal Pechoucek Czech Technical University Prague, Czech Republic
Anna Perini Fondazione Bruno Kessler, IRST, Italy
Gauthier Picard SMA/G2I - Ecole des Mines de Saint-Etienne, France
Alessandro Ricci University of Bologna, Italy
Fariba Sadri Imperial College London, UK
Onn Shehory IBM Haifa Research Lab, Israel
Michael Winikoff University of Otago, New Zealand
Eric Yu University of Toronto, Canada

Additional Reviewers

Jana Görmer TU Clausthal, Germany
Christopher Mumme TU Clausthal, Germany

Table of Contents

Software Engineering for Self-Organizing Systems . 1
H. Van Dyke Parunak and Sven A. Brueckner

Programming Multi-Agent Systems . 23
Mehdi Dastani

On the Engineering of Multi Agent Organizations . 53
Virginia Dignum, Huib Aldewereld, and Frank Dignum

Institutions as a Basis for Service Engagements . 67
Munindar P. Singh

Engineering Coordination: Selection of Coordination Mechanisms 69
René Schumann

Understanding Agent Oriented Software Engineering Methodologies 81
Jorge J. Gomez-Sanz, Ruben Fuentes-Fernández, Juan Pavón

Assessing Agent Applications – r&D vs. R&d . 93
Benjamin Hirsch, Tina Balke, and Marco Lützenberger

Dynamically Adapting BDI Agent Architectures based on High-level
User Specifications . 105

Ingrid Nunes, Simone Diniz Junqueira Barbosa, Michael Luck, and
Carlos Lucena

Socially-aware Lightweight Coordination Infrastructures 117
Marc Esteva, Juan A. Rodriguez-Aguilar, Josep Llúıs Arcos, and
Carles Sierra

Augmenting Android with Agents for Increased Reuse of Functionality
in Mobile Applications . 129

Christopher Frantz, Mariusz Nowostawski and Martin Purvis

AgentStore — A Pragmatic Approach to Agent Reuse 141
Axel Hessler, Benjamin Hirsch, Tobias Kster, and Sahin Albayrak

Software Engineering for Self-Organizing Systems

H. Van Dyke Parunak and Sven A. Brueckner

Vector Research Center, Jacobs Engineering Group

3520 Green Court, Suite 250

Ann Arbor, MI 48105

{van.parunak, sven.brueckner}@jacobs.com

Abstract. Self-organizing software systems are an increasingly attractive ap-

proach to highly distributed, decentralized, dynamic applications. In some do-

mains (such as the Internet), the interaction of originally independent systems

yields a self-organizing system de facto, and engineers must take these charac-

teristics into account to manage them. This review surveys current work in this

field and outlines its main themes, identifies challenges for future research, and

addresses the continuity between software engineering in general and tech-

niques appropriate for self-organizing systems.

Keywords: software engineering, self-organization, distributed systems, decen-

tralized computing, emergent behavior

1 Introduction

A few decades ago, the idea of self-organization was an intriguing option in the de-

sign of a computer application, and its proponents could engage in spirited debate

with more classical views of software structure. Today, in many domains (particularly

those based on computer networks), the question is no longer whether to use self-

organization. Real-world open systems with thousands of autonomous components do

in fact organize themselves, for better or for worse. The challenge before us is to

understand this dynamic and learn how to manage it [123].

There is no lack of activity around software systems that in one way or another

control themselves without direct human intervention. In an attempt to focus this

review, we distinguish three kinds of systems: autonomous, self-adaptive, and self-

organizing.

An autonomous system is one that senses and responds to its environment. The

vast research world of agent-based and multi-agent systems is concerned with such

systems. Self-organizing systems are made up of autonomous systems, but not every

autonomous system is self-organizing.

A self-adaptive system is an adaptive system that responds to change without in-

tervention by its creator (thus the “self”). The change may be in the environment, or it

may be within the system itself (for example, a fault condition). The difference be-

tween a self-adaptive system and an autonomous system is a matter of perspective. If

1

2

the environment were static, there would be nothing for an autonomous system to

respond do, so every autonomous system in fact adapts in one way or another to envi-

ronmental change. When we call a system self-adaptive, we imply that the change

with which the system must cope is unusually large and potentially disruptive.

The self-organizing system is a special kind of self-adaptive system. We emphasize

two points of refinement.

First, as the use of the term “organize” suggests, a self-organizing system consists

of multiple components that can change their interrelations. A single agent could be

self-adaptive, but we would not call it self-organizing. Definitions of self-organization

often invoke the notion of disorder or “entropy” across the population of elements

[51, 100].

Second, we are particularly interested in systems whose response to change does

not require centralized reflection. Much work on self-adaptive software requires the

system to have an internal representation of its goals [60], or a model of its own archi-

tecture [87], or a set of explicit policies (“in case of X, do Y”) [40, 48], to guide its

adaptation. We are focused on systems that require neither such explicit representa-

tions nor a central module to manage the change in the system in response to disrup-

tion. Because of this distinction, a hierarchical feedback control system, while com-

posed of many different parts, would still be considered self-adaptive rather than self-

organizing.

While this distinction is important and useful [83], we will consider some work

that does not completely meet this objective. After all, we are dealing with software

engineering, not software science, and progress often depends on drawing inspiration

from many sources [40, 142].

In Section 2, we review the state of the art in software engineering for self-

organizing systems. Section 3 summarizes some major trends that we see in current

practice. Section 4 outlines directions for future research. Section 5 summarizes how

this particular flavor of software engineering relates to the broader field, and Section

6 concludes.

2 State of the Art

In this section, we begin by reviewing some of the immense literature in this field,

then survey applications of self-organizing systems and some of the main mechanisms

that they employ.

2.1 Literature

Our focus here is on survey articles or programmatic discussions. Later sections of

this review will consider more specific studies.

While we distinguish self-organization from self-adaptation, we stand on the

shoulders of extensive work in autonomous and self-adaptive software. The classic

notion of a feedback control loop can be traced back to the nineteenth century [82],

and it was natural for the idea to be applied to computer programs, largely under the

2

 3

inspiration of Norbert Wiener [146]. The flavor of adaptive control in robotic and

manufacturing systems was captured in NIST’s Real-time Control System (RCS)

reference architecture [1, 2]. Later, IBM’s Autonomic Computing Initiative [69, 73]

sought to apply these techniques to purely informational systems.

Autonomous systems are the focus of much robotic research, and application con-

cerns have led to recent efforts to define a scale of autonomy [67] and develop me-

thods to test a system’s autonomy [70].

Self-adaptive software has been the object of two recent seminars at Schloss Dag-

stuhl [29, 52], and a special issue of the Journal of Systems and Software is in prepa-

ration on this topic [145]. The topic is the object of a careful review article [114],

whose approach (focusing on the functions of monitoring, detecting, deciding, and

acting) very clearly captures the reflective nature of self-adaptation as opposed to

self-organization.

The design and control of self-organizing software per se was the focus of four edi-

tions of the ESOA (Engineering Self-Organising Applications) workshop [21, 24, 25,

41], and is treated in Gershenson’s recent dissertation [50], and a wide range of short-

er studies will be identified in later sections of this review. The areas of self-adaptive

and self-organizing systems together are the focus of the ongoing IEEE International

Conferences on Self-Adaptive and Self-Organizing Systems (SASO) [116].1

2.2 Applications

Self-organization has been applied to a wide range of problems. As noted in the intro-

duction, self-organization is unavoidable in distributed systems, especially open ones,

such as networks [15, 61, 64, 123] and water distribution [42], and highly desirable in

managing large numbers of robots [53-55, 118, 120] and in agile manufacturing set-

tings [19, 94, 109, 132], where it competes with hierarchical control systems, includ-

ing holonic schemes [26, 133] that we would consider self-adaptive but not self-

organizing. In purely informational settings self-organization has been used to coordi-

nate multiple theorem provers [36], to enable documents to organize themselves [104]

and find likely users [20, 62], and to reassign tasks among agents [31, 88]. Mechan-

isms inspired by wasps and termites have been demonstrated for self-organized con-

struction of physical systems [140].

2.3 Mechanisms

A wide range of instances of self-organization in nature have been isolated and cha-

racterized to the point that they can be applied in artificial systems [14, 27, 93]. These

derive mostly from social animals (pheromone systems [72, 99, 108, 109, 117, 119,

134, 137], stimulus-based load balancing [140], insect clustering [58, 59, 76, 84, 104,

138], firefly synchronization [130]), but markets [32, 106, 107] and physical systems

1 Not all studies that take the name “self-organizing” satisfy our definition of the field as dis-

tinct from self-adaptation.” We would class some of the work reported in venues devoted to

“self-organizing software” as in fact only self-adaptive.

3

such as potential fields [46, 80, 81, 128, 143] have also been invoked. While these

mechanisms can be characterized in terms of feedback control, in their natural settings

they are highly decentralized and do not rely on explicit models of the structure,

goals, or policies of the overall system, thus qualifying as self-organizing and not just

self-adaptive.

2.4 Reflection on the State of the Art

While self-organizing solutions have been widely explored, they tend to have two

limiting characteristics [142]. First, most applications demonstrate the capabilities of

a single mechanism, and do not consider the potential interaction of a toolkit of me-

chanisms. Second, among software engineers there is relatively little work on the

theoretical foundations of these mechanisms. We will return to these themes when we

outline directions for future work.

3 Outline of Main Trends

Several general trends are apparent from this brief and highly selective review: decen-

tralization, openness, imitation of nature, and reliance on simulation. To a large de-

gree, these characteristics reflect our definition of “self-organization,” but they are

common enough in practice to justify focusing on systems that exhibit them.

3.1 Decentralization

Since we distinguish self-organization from self-adaptation partly by the multi-

component decentralized nature of the former, decentralization is not surprising, but it

is worth refinement and reflection.

Decentralization is not a black-or-white dichotomy. It is useful to distinguish three

levels, and in a highly populous system with heterogeneous members, one can im-

agine gradations and combinations along this spectrum.

At one extreme, and outside our purview, are centralized systems, in which all de-

cisions are made at a single location. We include here not only monolithic systems,

but also hierarchical feedback control systems [1]. Holonic systems were originally

motivated by emergent dynamics over a hierarchy that defines scale rather than con-

trol [75], but engineered holonic applications often look very much like hierarchical

control [16, 26, 113]. We can view such systems as centralizing two kinds of informa-

tion: declarative information about the current state of the system, and imperative

information that determines next steps.

At the other extreme are systems in which each entity interacts only with those in

its local vicinity. Its neighborhood defines its view of the state of the world (declara-

tive information), and it can only act within that narrow purview (imperative informa-

tion).

At an intermediate level, the state of the system (declarative information) is col-

lected centrally and made available to all components, but all action is taken locally.

4

In some cases, one can detect movement along this cline. For example, one team

began working with multiple interacting theorem provers in a centralized setting [37],

but then revised the system to use global information but only local decisions [36]. In

recent work in other domains, their design has moved to a distribution of both dec-

larative and imperative information [42]. A motivation for this movement is the in-

creasing need for real-time response [38], which can be hindered if multiple layers of

hierarchy need to be queried to make a decision [144].

There is a limitation to complete localization of interaction: it limits look-ahead. “It

only functions acceptably when the (recent) past is representative for the (near) fu-

ture” [131]. Predictive mechanisms have been proposed to address this problem [30].

A particularly interesting class of problems uses a second-level self-organizing sys-

tem to make these predictions through a model of the world in which interactions are

spatially local but are allowed to evolve faster-than-real-time into the future [63, 97,

102].

Market systems represent an interesting segment of the centralized-decentralized

spectrum. Classical Walrasian markets depend on posting bids centrally so that agents

can make local decisions [32], thus embodying our midpoint of global declarative

information and local imperative information. However, an alternative form of mar-

ket, Edgeworth barter [4], allows agents to interact pairwise, and still guarantees

global convergence. This form of market is completely distributed, and has been ap-

plied to problems of distributed constraint optimization [106, 107].

3.2 Openness

In building a self-organizing system from the ground up, one can impose homogenei-

ty on the elements. However, the kinds of self-organization that are being imposed on

us (say, through the internet) force us to deal with systems whose elements do not

conform to a single blueprint.

Openness greatly increases the complexity of a system. Any single element needs

to be prepared to interact with everything outside of its own boundary, which now

includes not only other elements that are like itself, but also technical, geographic,

political, social and economic realities [39, 123]. Because we cannot predict all of

these influences in advance, the line between the preparation of the system (its speci-

fication, design, implementation, and testing) and its operation is greatly blurred, a

distinction to which we shall return.

In a closed system, entities can be designed to interact directly with each other. The

need to cope with an open system has led researchers to focus on a common frame-

work or infrastructure. Any agent that can interact with this infrastructure can be

included in the system. At the most primitive level, the physical world is the infra-

structure, and agents must have physical sensors and actuators to deal with it (an

approach exploited in the axiom that “the world is its own best model” [18]. In the

natural world, animals sometimes use the physical world to hold arbitrary markers

(for instance, insect pheromones), which is one form of stigmergy [56] (the other

being functional changes in the world). Disembodied agents require a computational

5

framework, and a major line of research [3, 135] is focused on designing such frame-

works and their component mechanisms [90-92, 136].

The framework approach to openness imposes a “lowest-common denominator” on

all interacting components. There is a trade-off between the simplicity of the common

interface to the framework and the range of entities that can interact. A very simple

interface supports the widest range of entities, but also limits the amount of informa-

tion that the entities can exchange [131]. For example, a market is a framework that

permits open interaction among a wide range of economic actors by reducing all con-

siderations to a single scalar, price, discarding much detailed information along the

way. This consideration has led to the development of relatively sophisticated interac-

tion languages, such as tuple spaces [28, 78] and highly structured symbolic “phero-

mones” [109].

Openness has implications for the security of a system, in two opposing directions.

On the one hand, the more open a system is, the fewer restrictions are imposed on an

element that seeks to participate in it, and the easier it is for malicious elements to

insert themselves into the system’s operation. On the other hand, the more decentra-

lized and localized a system’s decisions are, the harder it will be for a malicious ele-

ment to understand and manipulate the overall state of the system. Roughly, open

systems are easier to infiltrate than closed ones, but tend to limit the extent of damage

that can be done. On this subject, engineering of self-organizing systems needs to

draw extensively on work on cyber-security and trust.

3.3 Imitation of Nature

We have already observed (Section 2.3) that mechanisms for self-organizing systems

tend to be drawn from nature, and in particular from biological systems. This tenden-

cy can be traced directly to the problem of openness, which organisms must confront

in order to survive. The more sophisticated the organism, the more structure it can

impose on its own environment, and the less open that environment becomes to other

entities. A parade example is the rich linguistic mechanisms that humans use to coor-

dinate with one another. Computational mechanisms modeled on human conscious-

ness and linguistic interaction are the holy grail of AI research, but still beyond our

grasp. Artificial versions of cognition have been described as autistic [131] and schi-

zophrenic [65, 125], “idiot savants” with focused capability but lacking adaptability.

This may lie behind the preference for simpler insect models in self-organizing soft-

ware [131], though in fact a more careful analysis suggests humans often use the same

kind of simple mechanisms that insects do [95].

3.4 Simulation

Simulation, rather than formal analysis, plays a prominent role in the engineering of

most current self-organizing systems [148]. The complexity of these systems makes

the development of formal models difficult [65]. In fact, a set of even very simple

agents interacting with one another has the computational power of a Turing machine

6

[44], or perhaps even more [139], and by Rice’s theorem [112], any non-trivial fea-

ture of such a system is formally undecidable.

Some proponents of simulation argue that a simulation, being a computer program,

is a partial recursive function, and thus refuse to recognize any distinction between

simulation and formal analysis [45]. The issue is not one of formal structure, but of

insight. A computer program, while every bit as formal as a proof, has a very different

structure. Most program structures are algorithmic: first do X, then do Y, and then do

Z.2 Such a structure does not lend itself to determining properties such as whether the

system will halt, how rapidly it converges, how thoroughly it explores the space of

possible behaviors, and whether its equilibria are stable or unstable. The results of

Edmonds and Bryson [44] warn that in general such characterizations are unattaina-

ble, but as with many formal results, there are special cases where formal methods

can support the engineering of self-organizing systems, as we shall see in the next

section.

4 Challenges for Future Research

The themes of current systems highlight a number of opportunities for future research.

These opportunities are not unexplored, but represent the cutting edge of current work

in this field. We consider first the problem of composing more complex systems, then

the challenge of characterizing and controlling an existing system, and finally the

objective of understanding self-organizing systems formally.

4.1 System Composition

In Section 2.4, we observed that most current applications focus on a single mechan-

ism or phenomenon. Weyns [141] demonstrates the integration of multiple mechan-

isms in an industrial application, but such hybrid approaches are the exception rather

than the rule. Beal suggests that “the composition of phenomena into a larger complex

system is rather understudied” [9], and identifies three areas that must be pursued.

First, self-organizing phenomena must be reduced to primitives with well-

characterized properties and interfaces. The idea of method fragments [111] is to

decompose an approach into fragments using SPEM [89] as the underlying formal-

ism, so that they can be reused and combined with each other. A small but growing

circle of activity in defining self-organization mechanisms as software design patterns

[35, 47, 63, 72] is also a step in this direction.

Second, we need means of composition that allow self-organizing phenomena to be

combined with predictable results. Current efforts that emphasize the centrality of

frameworks [3] and architectures [141] are seeking to address this problem, but the

need for “predictable results” awaits advances in formal analysis (Section 4.3).

Third, we need means of abstraction that allow details of a complex self-organizing

system to be hidden when engineering or analyzing larger subunits. This characteris-

2 Declarative languages are an exception, and represent an important research topic.

7

tic, identified by Simon as critical to artificial systems [126], is also likely to depend

on further formal insights.

The imitation of nature that is so common in identifying individual mechanisms for

self-organization holds promise here as well, if we shift our focus from the individual

organisms or species to the level of the ecosystem [9, 19, 71, 74, 105, 115, 137]

4.2 System Characterization and Control

People build systems to perform some task, and need to be able to characterize their

behavior and control them.

At design time, we need to understand a range of trade-offs that self-organizing

mechanisms impose. These include [38] locality vs. optimality, optimality vs. flexibil-

ity, scalability vs. efficiency, efficiency vs. centralization, centralization vs. decentra-

lization, exploration vs. exploitation, and greediness vs. purposefulness. (All of these

trade-offs presume that we have well-defined measures of each property, itself a ma-

jor research challenge). Depending on the requirements of the application, certain

regions of each of these scales may qualify as faulty behavior, and techniques of safe-

ty engineering can be adopted to identify and avoid them [39].

As the system is operating, we need ways to characterize its behavior. Observing

and analyzing the series of events that it generates is one way to gain this insight [68].

One important challenge in this task is that while the nature of the system’s behavior

as acceptable or unacceptable manifests at the system level, our self-organizing agen-

da requires us to focus on locally observable phenomena. Information theoretic meas-

ures such as the entropy over agent options [22] or over signals passing between

agents [64, 66] have proven a promising local window into global system behavior.

Like behavior characterization, behavior control is difficult in a decentralized set-

ting, and is not widely explored [142]. A system of local constraints with attributes

defined over component interfaces [49] is one promising way forward. Another is to

deploy a control swarm in parallel with the functioning swarm [83]. In some cases

centralization may be unavoidable, and a fruitful avenue of exploration is how to

combine centralized control where necessary with local control most of the time [40].

4.3 Formal Analysis of Self-Organizing Systems

Attempts to gain a formal purchase on self-organizing systems usually involve one or

more of three critical dimensions: a vertical dimension (“emergence”) that relates

lower-level and higher-level behaviors, a horizontal dimension (“organization”) that

relates entities at a single level to one another, and a temporal dimension (“dynam-

ics”) that explores how the system develops through time.

Emergence.—Perhaps the most widely recognized problem in dealing with self-

organizing systems is emergence [147], which we define [103] as system-level beha-

vior that is not explicitly specified in the individual components. Abstracted from

software, the problem has a long history, forming the central focus of the discipline of

8

statistical mechanics (which seeks to relate the observed characteristics of materials at

human scale to the interactions of atoms and molecules). This perspective allows the

application of concepts such as entropy [57, 64, 100, 122], phase shifts [23, 121, 124],

master equations [13, 79], and universality [101] to multi-agent systems. There are

further insights to be gained from this approach. For example, the renormalization

group [12] has the potential to illuminate understand discontinuities in the behavior of

a self-organizing system. By considering the system as it approaches certain limits

(for example, low agent density and high number of agents, allowing the use of a gas

model [5]), we can place bounds on system characteristics of interest, offering “ther-

modynamic guarantees” [123] of system behavior.

The mapping from micro to macro behaviors is not symmetrical. To derive the ma-

cro behavior from the micro, we run simulations, or (in the appropriate limits) apply

techniques from statistical mechanics, and these techniques are useful in system veri-

fication. Earlier in the design process, given a specified macro behavior, we need to

find micro behaviors that will yield it. The best approach to this problem that we

know consists of various forms of generate and test, such as synthetic evolution,

which has been applied successfully to define local agent behaviors satisfying a ma-

cro specification [17, 96, 117]. This approach requires a system architecture whose

representation lends itself to such evolutionary search [19].

An interesting facet of the vertical problem is the level at which goals are satisfied.

Individually selfish agents may not yield good results at the group level. We need to

develop ways to define and achieve “group-selfish behavior” [131], in which the

system as a whole pursues objectives that may not be optimal from the point of view

of the components. Insights into this objective may come from biology. The notion of

the gene, rather than the individual, as the focus of natural selection [34] can be

viewed as a process for favoring a well-defined group of agents (those agents possess-

ing the gene) as opposed to individuals.

Organization.—The horizontal dimension explores the implications of studying

which agents can interact with which other ones on the behavior of the whole system.

The resulting graph structure is amenable to a variety of formal tools [86]. For exam-

ple, useful definitions of autonomy and emergence can be formalized in terms of

entropy on signals over the edges in the interaction graph [64], and usability can be

defined in terms of similar measures on edges connecting the system to users [66]. It

has been suggested [122] that the Laplacian spectrum of a network, which captures

aspects of the graph’s modular and hierarchical structures, may facilitate formaliza-

tion of the relation between these structures and dynamical processes such as distri-

buted consensus, decentralized coordination and information dissemination [123].

Temporal.—Self-organization is a process that takes place through time, and an

adequate formalization of self-organizing systems must support reasoning about the

temporal dimension. In many cases, systems need to predict their own behavior in

order to adapt appropriately [30, 63, 97, 102, 131], but the nonlinear nature of com-

ponent interactions means that trajectories diverge over time, leading to a prediction

9

horizon [98] beyond which any prediction is essentially random. Estimating this hori-

zon is critical to scoping the predictive activity of a system, and quantifying the un-

certainty that is inevitable in a self-organizing system [123].

One approach to formalizing the temporal dimension is in defining formal lan-

guages to specify system development [7]. (At this point, one may invoke Epstein’s

insistence on the formal nature of any computer program [45], since higher-level

primitives nominated by a programming language do offer a useful abstraction that

can give insight to the behavior of the system programmed in the language.) There are

a number of examples that could inspire further work in this area, including languages

modeling gene network development [43], term-rewriting systems modeling plant

growth [110] and its generalization in MGS [129], Coore’s Growing Point Language

for interconnect topologies [33], Nagpal’s Origami Shape Language [85], Werfel’s

system for distributed adaptive structure generation [140], and Beal’s Proto system

for spatial computing [8].

5 Relation to Conventional (Software) Engineering

Engineering of self-organizing systems has drawn much from the engineering of

conventional software. In this section, we highlight some of the points of continuity

and contrast.

Let’s begin with engineering in general. We have already noted the inappro-

priateness of the feedback control metaphor for a decentralized approach to self-

organization. Nevertheless, the engineering of physical systems has a great deal to

teach us. One example is how one handles noise. Engineering of physical systems,

unlike conventional software engineering, devotes much attention to modeling and

quantifying noise in the interfaces between components. Traditional software engi-

neering assumes that noise (i.e., errors) can be eliminated, while other disciplines

recognize that it is unavoidable and seek to damp it or provide for graceful degrada-

tion [9, 10]. Another example is the adaptation of methods for safety engineering to

increasing the robustness and dependability of self-organizing software [39].

The notion of an architecture is a powerful way to engage the challenge of system

composition and openness, providing a framework for algorithms and identify com-

plementarities and system-level issues [141, 145]. Research on frameworks to provide

interaction environments for components [3, 135] is a way to instantiate insights from

an architectural approach.

There has been a historical shift in system analysis away from functional analysis

and toward object-oriented system decomposition. Self-organizing systems benefit

from this shift: system functions are usually distributed over many components, and

even if some group of components specializes to support a function, that association

happens dynamically, rather than being specified in the design [131].

The notion of design patterns provides a useful way to abstract individual self-

organizing mechanisms so that they can subsequently be recombined in novel ways

[127]. The approach has been applied to a number of mechanisms, including market

based control [35], gradient fields [35, 72], predictive swarms [102, 144], replication,

10

collective sort, evaporation, aggregation, and diffusion [47]. It is instructive to ob-

serve that the last three patterns are sub-components of a pheromone approach to

constructing gradient fields, highlighting both the value of this approach and the need

for further development.

Closely related to this work is the application of SPEM [89] to facilitate the isola-

tion and integration of method fragments [111], illustrated by isolating fragments

from Adelfe, CUP, MetaSelf, General Methodology, and SDA, and then recombining

them using PASSI.

Finally, engineers of self-organizing systems can take advantage of recent ad-

vances in iterative and incremental development [9, 77]. It is impossible to antic-

ipate in advance the states accessible to a self-organizing system as it evolves in an

open environment. As a result, the line between development and operation inevitably

blurs [6]. The system must be specified in terms of desired performance and means of

incrementally correcting deficiencies [7], constructing systems that grow and react

rather than being constructed and controlled [122]. The need for this perspective is

particularly strong in the verification and validation (V&V) of a system. Traditionally,

successful completion of V&V is necessary before a system is deployed. Self-

organizing systems require mechanisms for “run-time V&V” [11] that can conti-

nuously monitor the system’s performance as it reorganizes itself in response to unan-

ticipated conditions. It is an open question whether run-time V&V can in fact be done

in a fully decentralized manner, or whether some reference to an explicit model of

system objectives is necessary. That is, a system can be engineered to organize itself

to meet system objectives without carrying a model of those objectives, but it may be

the case that it cannot report whether or not it is in fact meeting the objectives unless

it has such a model, since the latter task is intrinsically reflective.

6 Conclusion

The engineering of self-organizing software is a challenging domain that has attracted

a wide range of creative talent. In spite of the difficulty of the problem and the wide

range of approaches, there are consistent themes and well-defined problems to focus

future research. As the information universe becomes more distributed and decentra-

lized, the difference between the engineering of self-organizing systems and that of

other software will shrink, and the themes that are beginning to manifest themselves

in the self-organizing community will be increasingly recognized as staples of soft-

ware engineering in general.

7 Acknowledgments

This review relies heavily on many colleagues who were kind enough to share their

observations on the field, and their own work, with us.3 We particularly appreciate the

3 Alphabetically by last name: Bernhard Bauer, Jake Beal, Olivier Buffet, François

Charpillet, Jörg Denzinger, Regina Frei, Kurt Geihs, Arnaud Glad, Nicolas Höning,

11

detailed reviews of the field that several respondents contributed [9, 38, 65, 123, 127,

131, 135, 142]. Even though these reviews are not publicly available, we have bor-

rowed extensively from their ideas and in some cases their wording, and have cited

them in order to give appropriate credit. Naturally, we are responsible for how we

have combined the ideas that they have so generously shared with us. Think of this

exercise as an example of an “open system,” in which the components, in this case the

contributions of our informants, are allowed to interact in ways that they perhaps did

not anticipate. We provide the “infrastructure” for the interaction, and as is often the

case in self-organizing systems, the infrastructure makes a great deal of difference in

the overall outcome.

In selecting the studies that we cite, we draw heavily on the suggestions of our in-

formants, so our citations should be understood as examples and make no claim to be

exhaustive. We look forward to revising this study for publication, and invite the

nomination of other work that should be included.

8 References

[1] J. S. Albus. RCS: A Reference Model Architecture for Intelligent Control. IEEE Computer,

25(5):56-59, 1992.

[2] J. S. Albus. The NIST Real-time Control System (RCS): an approach to intelligent systems

research. J. Exp. Theor. Artif. Intell., 9(2-3):157-174, 1997.

[3] aliCE. aliCE (agents, languages and infrastructures for Complexity Engineering) Home.

Bologna, Italy, 2008. http://alice.unibo.it/xwiki/bin/view/aliCE/.

[4] R. Axtell and J. Epstein. Distributed Computation of Economic Equilibria via Bilateral

Exchange. Brookings Institution, Washington, DC, 1997.

[5] J. Bachrach, J. Beal, and J. McLurkin. Composable continuous space programs for robotic

swarms. Neural Computing and Applications, 19(6):825–847, 2010.

[6] L. Baresi, N. Bencomo, B. Cukic, A. Gorla, P. Inverardi, O. Nierstrasz, S. Park, D. Smith,

T. Vogel, R. de Lemos, and J. Andersson. Dagstuhl Group C: Process. Dagstuhl, 2010.

Available at http://www.dagstuhl.de/Materials/Files/10/10431/10431.SWM12.Slides.ppt.

[7] J. Beal. Functional Blueprints: An Approach to Modularity in Grown Systems. In

Proceedings of the Seventh International Conference on Swarm Intelligence (ANTS 2010),

2010.

[8] J. Beal. MIT Proto. MIT, Cambridge, MA, 2010. http://stpg.csail.mit.edu/proto.html.

[9] J. Beal. Software Engineering for Self-Organizing Systems. 2011.

[10] J. Beal and T. F. Knight Jr. Analyzing Composability in a Sparse Encoding Model of

Memorization and Association. In Proceedings of the Seventh IEEE International

Conference on Development and Learning (ICDL 2008), 2008.

[11] B. Becker, G. Karsai, S. Mankovskii, H. Müller, M. Pezze, W. Schäfer, J. P. S. L.

Tahvildari, G. Tamura, N. M. Villegas, and K. Wong. Dagstuhl Group A: Towards

Holger Kasinger, Andrea Omicini, Ingo Scholtes, Olivier Simonin, Giovanna Di Mar-

zo Serugendo, Paul Valckenaers, Mirko Viroli, and Danny Weyns.

12

Practical Run-Time V&V (For Self-Adaptive Systems). Dagstuhl, 2010. Available at

http://www.dagstuhl.de/Materials/Files/10/10431/10431.SWM10.Slides.ppt.

[12] J. J. Binney, N. J. Dowrick, A. J. Fisher, and M. E. J. Newman. The Theory of

Critical Phenomena - An Introduction to the Renormalization Group. Oxford, UK,

Clarendon Press, 1992.

[13] E. Bonabeau. Agent-based modeling: Methods and techniques for simulating human

systems. Proceedings of the National Academy of Sciences, 99 (Supplement 3):7280-7287,

2002.

[14] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Natural to

Artificial Systems. New York, Oxford University Press, 1999.

[15] E. Bonabeau, F. Henaux, S. Guérin, D. Snyers, P. Kuntz, and G. Theraulaz. Routing

in Telecommunications Networks with "Smart" Ant-Like Agents. In Proceedings of Second

International Workshop on Intelligent Agents for Telecommunications Applications

(IATA98), Springer, 1998.

[16] L. Bongaerts. Integration of Scheduling and Control in Holonic Manufacturing

Systems. Thesis at K.U. Leuven, Department of PMA, 1998.

[17] L. Booker. Learning Tactics for Swarming Entities. In Proceedings of Swarming:

Network Enabled C4ISR, ASD C3I, 2003.

[18] R. A. Brooks. Intelligence Without Representation. Artificial Intelligence, 47:139-59,

1991.

[19] S. Brueckner. Return from the Ant: Synthetic Ecosystems for Manufacturing Control.

Thesis at Humboldt University Berlin, Department of Computer Science, 2000.

[20] S. Brueckner, E. Downs, R. Hilscher, and A. Yinger. Self-Organizing Integration of

Competing Reasoners for Information Matching. In Proceedings of ECOSOA Workshop at

SASO 2008, 2008.

[21] S. Brueckner, S. Hassas, M. Jelasity, and D. Yamins, Editors. Engineering Self-

Organising Systems. Lecture Notes on Computer Science, Springer, 2007.

[22] S. Brueckner and H. V. D. Parunak. Resource-Aware Exploration of Emergent

Dynamics of Simulated Systems. In Proceedings of Autonomous Agents and Multi-Agent

Systems (AAMAS 2003), pages 781-788, ACM, 2003.

[23] S. Brueckner and H. V. D. Parunak. Information-Driven Phase Changes in Multi-

Agent Coordination. In Proceedings of Workshop on Engineering Self-Organizing Systems

(ESOA, at AAMAS 2005), pages 104-119, Springer, 2005.

[24] S. A. Brueckner, G. Di Marzo Serugendo, and D. Hales, Editors. Engineering Self-

Organising Systems. Lecture Notes in Computer Science, 2006.

[25] S. A. Brueckner, G. Di Marzo Serugendo, A. Karageorgos, and R. Nagpal, Editors.

Engineering Self-Organising Systems. Lecture Notes in Computer Science, 2005.

[26] H. V. Brussel, J. Wyns, P. Valckenaers, L. Bongaerts, and P. Peeters. Reference

Architecture for Holonic Manufacturing Systems: PROSA. Computers In Industry,

37(3):255-276, 1998.

[27] S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz, and E.

Bonabeau. Self-Organization in Biological Systems. Princeton, NJ, Princeton University

Press, 2001.

[28] M. Casadei, M. Viroli, and L. Gardelli. On the Collective Sort Problem for

Distributed Tuple Spaces. Science of Computer Programming, 74(9):702-722, 2009.

13

[29] B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, and J. Magee, Editors. Software

Engineering for Self-Adaptive Systems. Lecture Notes in Computer Science, 5525,

Heidelberg, Springer, 2009.

[30] S.-W. Cheng, V. V. Poladian, D. Garlan, and B. Schmerl. Improving Architecture-

Based Self-Adaptation through Resource Prediction. In B. H. C. Cheng, R. de Lemos, H.

Giese, P. Inverardi, and J. Magee, Editors, Software Engineering for Self-Adaptive Systems,

vol. 5525, pages 128-145. Springer, Heidelberg, 2009.

[31] V. A. Cicirello and S. F. Smith. Wasp-like Agents for Distributed Factory

Coordination. Journal of Autonomous Agents and Multi-Agent Systems, 8(3 (May)):237-

266, 2004.

[32] S. H. Clearwater, Editor. Market-Based Control: A Paradigm for Distributed

Resource Allocation. Singapore, World Scientific, 1996.

[33] D. Coore. Botanical Computing: A Developmental Approach to Generating Inter

connect Topologies on an Amorphous Computer. Thesis at MIT, 1999.

[34] R. Dawkins. The Selfish Gene. Oxford University Press, 1976.

[35] T. De Wolf and T. Holvoet. Design patterns for decentralised coordination in self-

organising emergent systems. In Proceedings of the Fourth International Workshop on

Engineering Self-Organising Applications (ESOA) at AAMAS 2006, pages 28-49, Springer,

2007.

[36] J. Denzinger and D. Fuchs. Cooperation of Heterogeneous Provers. In Proceedings of

the 16th International Joint Conference on Artificial Intelligence (IJCAI 1999), pages 10-

15, Morgan Kaufmann, 1999.

[37] J. Denzinger, M. Fuchs, and M. Fuchs. High Performance ATP Systems by

Combining Several AI Methods. In Proceedings of IJCAI-97, pages 102-107, Morgan

Kaufmann, 1997.

[38] J. Denzinger, H. Kasinger, and B. Bauer. Software Engineering for Self-Organizing

Systems. 2011.

[39] G. Di Marzo Serugendo. Robustness and Dependability of Self-Organising Systems –

A Safety Engineering Perspective. In Proceedings of the 11th International Symposium on

Stabilization, Safety and Security of Distributed Systems (SSS 2009), pages 254–268,

Springer, 2009.

[40] G. Di Marzo Serugendo, J. Fitzgerald, and A. Romanovsky. MetaSelf—An

Architecture and Development Method for Dependable Self-* Systems. In Proceedings of

the 25th Symposium on Applied Computing (SAC 2010), 2010.

[41] G. Di Marzo Serugendo, A. Karageorgos, O. F. Rana, and F. Zambonelli, Editors.

Engineering Self-Organising Systems. Lecture Notes in Computer Science, 2004.

[42] F. Dötsch, J. Denzinger, H. Kasinger, and B. Bauer. Decentralized Real-time Control

of Water Distribution Networks Using Self-organizing Multi-Agent Systems. In

Proceedings of the 4th IEEE International Conference on Self-Adaptive and Self-

Organizing Systems (SASO 2010), pages 223-232, IEEE, 2010.

[43] R. Doursat. The growing canvas of biological development: Multiscale pattern

generation on an expanding lattice of gene regulatory networks. InterJournal: Complex

Systems:1809, 2006.

[44] B. Edmonds and J. J. Bryson. The Insufficiency of Formal Design Methods: The

Necessity of an Experimental Approach for the Understanding and Control of Complex

14

MAS. In Proceedings of the 3rd International Joint Conference on Autonomous Agents and

Multiagent Systems (AAMAS 2004), pages 938-945, IEEE 2004.

[45] J. M. Epstein. Generative Social Science. Princeton, NJ, Princeton University Press,

2006.

[46] F. Flacher and O. Sigaud. Spatial coordination through social potential fields and

genetic algorithms. In Proceedings of the Seventh International Conference on Simulation

of Adaptive Behavior (From Animals to Animats), MIT Press, 2002.

[47] L. Gardelli, M. Viroli, and A. Omicini. Design Patterns for Self-organizing

Multiagent Systems. In Proceedings of the 5th International Central and Eastern European

Conference on Multi-Agent Systems (CEEMAS 2007), pages 123-132, Springer, 2007.

[48] J. C. Georgas and R. N. Taylor. Policy-Based Architectural Adaptation Management:

Robotics Domain Case Studies. In B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi,

and J. Magee, Editors, Software Engineering for Self-Adaptive Systems, vol. 5525, pages

89-108. Springer, Heidelberg, 2009.

[49] I. Georgiadis, J. Magee, and J. Kramer. Self-organising software architectures for

distributed systems. In Proceedings of the First workshop on Self-healing systems (WOSS

'02), ACM, 2002.

[50] C. Gershenson. Design and Control of Self-organizing Systems. Thesis at Vrije

Universiteit Brussel, 2007.

[51] C. Gershenson and F. Heylighen. When Can we Call a System Self-organizing? 2003.

http://arxiv.org/pdf/nlin.AO/0303020.

[52] H. Giese, H. Müller, M. Shaw, and R. d. Lemos. Abstracts, Dagstuhl Seminar 10431,

Software Engineering for Self-Adaptive Systems. 2010.

http://www.dagstuhl.de/Materials/index.en.phtml?10431.

[53] A. Glad, O. Buffet, O. Simonin, and F. Charpillet. Self-Organization of Patrolling-ant

Algorithms. In Proceedings of the International Conference on Self-Adaptive and Self-

Organizing Systems (SASO09), pages 61-70, 2009.

[54] A. Glad, O. Buffet, O. Simonin, and F. Charpillet. Influence of Different Execution

Models on Patrollin Ant Behaviors: from Agents to Robots. In Proceedings of the Ninth

International Conference on Autonomous Agents and Multiagent Systems (AAMAS'10),

pages 1173-1180, 2010.

[55] A. Glad, O. Simonin, O. Buffet, and F. Charpillet. Theoretical Study of Ant-based

Algorithms for Multi-Agent Patrolling. In Proceedings of the Eighteenth European

Conference on Artificial Intelligence (ECAI'08), pages 626-630, 2008.

[56] P.-P. Grassé. La Reconstruction du nid et les Coordinations Inter-Individuelles chez

Bellicositermes Natalensis et Cubitermes sp. La théorie de la Stigmergie: Essai

d'interprétation du Comportement des Termites Constructeurs. Insectes Sociaux, 6:41-84,

1959.

[57] S. Guerin and D. Kunkle. Emergence of Constraint in Self-organizing Systems.

Nonlinear Dynamics, Psychology, and Life Sciences, 8(2):131-146, 2004.

[58] A. Hamdi, V. Antoine, N. Monmarché, A. Alimi, and M. Slimane. Artificial Ants for

Automatic Classification. In N. Monmarché, F. Guinand, and P. Siarry, Editors, Artificial

Ants: From Collective Intelligence to Real-life Optimization and Beyond, pages 265-290.

John Wiley and Sons, Hoboken, NJ, 2010.

15

[59] J. Handl, J. Knowles, and M. Dorigo. Ant-based clustering: a comparative study of its

relative performance with respect to k-means, average link and 1d-som. TR-IRIDIA-2003-

24, IRIDIA, 2003. http://wwwcip.informatik.uni-erlangen.de/~sijuhand/TR-IRIDIA-2003-

24.pdf.

[60] W. Heaven, D. Sykes, J. Magee, and J. Kramer. A Case Study in Goal-Driven

Architectural Adaptation. In B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, and J.

Magee, Editors, Software Engineering for Self-Adaptive Systems, vol. 5525, pages 109-127.

Springer, Heidelberg, 2009.

[61] M. Heusse, S. Guérin, D. Snyers, and P. Kuntz. Adaptive Agent-Driven Routing and

Load Balancing in Communication Networks. Advances in Complex Systems, 1:234-257,

1998.

[62] R. Hilscher, S. Brueckner, T. C. Belding, and H. V. D. Parunak. Self-Organizing

Information Matching in InformANTS. In Proceedings of Self-Adaptive and Self-

Organizing Systems (SASO07), pages 277-280, 2007.

[63] T. Holvoet, D. Weyns, and P. Valckenaers. Delegate MAS Patterns for Large-Scale

Distributed Coordination and Control Applications. In Proceedings of EuroPlop, 2010.

[64] R. Holzer, H. de Meer, and C. Bettstetter. On Autonomy and Emergence in Self-

Organizing Systems. In Proceedings of Intern. Workshop on Self-Organizing Systems

(IWSOS), Springer, 2008.

[65] N. Höning. Comments on Software Engineering for Self-Organizing Systems. 2011.

[66] N. Höning and H. La Poutre. Designing comprehensible self-organising systems. In

Proceedings of the Fourth IEEE International Conference on Self-Adaptive and Self-

Organizing Systems (SASO 2010), pages 233-242, IEEE Computer Society, 2010.

[67] H.-M. Huang, K. Pavek, B. Novak, J. Albus, and E. Messina. A Framework For

Autonomy Levels For Unmanned Systems (ALFUS). In Proceedings of AUVSI Unmanned

Systems 2005, 2005.

[68] J. Hudson, J. Denzinger, H. Kasinger, and B. Bauer. Efficiency Testing of Self-

Adapting Systems by Learning of Event Sequences. In Proceedings of the 2nd

International Conference on Adaptive and Self-adaptive Systems and Applications

(ADAPTIVE 2010), pages 200-205, IARIA, 2010.

[69] IBM. An Architectural Blueprint for Autonomic Computing. IBM, 2006. http://www-

03.ibm.com/autonomic/pdfs/AC_Blueprint_White_Paper_4th.pdf.

[70] ITEA. Agenda In Proceedings of the Developing And Testing Autonomy (DATA)

Workshop, International Test and Evaluation Association (ITEA), 2010.

[71] M. A. Janssen, Editor. Complexity and Ecosystem Management: The Theory and

Practice of Multi-Agent Systems. Cheltenham, UK, Edward Elgar, 2002.

[72] H. Kasinger, B. Bauer, and J. Denzinger. Design Pattern for Self-Organizing

Emergent Systems Based on Digital Infochemicals. In Proceedings of EASe 2009, pages

45-55, 2009.

[73] J. O. Kephart and D. M. Chase. The Vision of Autonomic Computing. Computer, vol.

36, pages 41-50, 2003. Available at

http://www.research.ibm.com/autonomic/research/papers/AC_Vision_Computer_Jan_2003.

pdf.

[74] J. O. Kephart, T. Hogg, and B. A. Huberman. Dynamics of Computational

Ecosystems. Physics Review, 40A:404-421, 1989.

16

[75] A. Koestler. The Ghost in the Machine. 1967.

[76] P. Kuntz and P. Layzell. An Ant Clustering Algorithm Applied to Partitioning in

VLSI Technology. In Proceedings of Fourth European Conference on Artificial Life, pages

417-424, MIT Press, 1997.

[77] C. Larman and V. Basili. Iterative and Incremental Development: A Brief History.

IEEE Computer, pages 2-11, 2003. Available at

http://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-

ieee-computer.pdf.

[78] M. Lejter and T. Dean. A Framework for the Development of Multiagent

Architectures. IEEE Expert, 11(December):47-59, 1996.

[79] K. Lerman, A. Martinoli, and A. Galstyan. A Review of Probabilistic Macroscopic

Models for Swarm Robotic Systems. In S. E. and S. W., Editors, Swarm Robotics

Workshop: State-of-the-art Survey, pages 143-152. Springer-Verlag, Berlin, Germany,

2005.

[80] M. Mamei and F. Zambonelli. Field-based coordination for pervasive multiagent

systems. Springer, 2008.

[81] S. A. a. M. Masoud, A. A. Constrained Motion Control Using Vector Potential Fields.

IEEE Trans. on Systems, Man, and Cybernetics, 30(3):251-272, 2000.

[82] J. C. Maxwell. On Governors. Proceedings of the Royal Society of London, 16:270–

283, 1867.

[83] D. Merkle, M. Middendorf, and A. Scheidler. Swarm Controlled Emergence -

Designing an Anti-Clustering Ant System. In Proceedings of IEEE Swarm Intelligence

Symposium, pages 242-249, 2007.

[84] N. Monmarché. On data clustering with artificial ants. In Proceedings of AAAI-99 &

GECCO-99 Workshop on Data Mining with Evolutionary Algorithms: Research Directions,

pages 23-26, 1999.

[85] R. Nagpal. Programmable Self-Assembly: Constructing Global Shape using

Biologically-inspired Local Interactions and Origami Mathematics. Thesis at MIT, 2001.

[86] M. E. J. Newman. Networks: An Introduction. Oxford, UK, Oxford University Press,

2010.

[87] O. Nierstraz, M. Denker, and L. Renggli. Model-Centric, Context-Aware Software

Adaptation. In B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, and J. Magee, Editors,

Software Engineering for Self-Adaptive Systems, vol. 5525, pages 128-145. Springer,

Heidelberg, 2009.

[88] J. J. Odell, H. V. D. Parunak, S. Brueckner, and J. Sauter. Temporal Aspects of

Dynamic Role Assignment. In Proceedings of Workshop on Agent-Oriented Software

Engineering (AOSE03) at AAMAS03, pages 201-213, Springer, 2003.

[89] OMG. Software & Systems Process Engineering Meta-Model Specification. Object

Management Group, 2008. http://www.omg.org/spec/SPEM/2.0/PDF.

[90] A. Omicini. Towards a notion of agent coordination context. In D. Marinescu and C.

Lee, Editors, Process Coordination and Ubiquitous Computing, pages 187–200. CRC

Press, 2002.

[91] A. Omicini, A. Ricci, M. Viroli, C. Castelfranchi, and L. Tummolini. Coordination

Artifacts: Environment-based Coordination for Intelligent Agents. In Proceedings of 3rd

17

 international Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS

2004), pages 286-293, ACM, 2004.

[92] A. Omicini and F. Zambonelli. Coordination for Internet application development.

Autonomous Agents and Multi-Agent Systems, 23(3):251-269, 1999.

[93] H. V. D. Parunak. ’Go to the Ant’: Engineering Principles from Natural Agent

Systems. Annals of Operations Research, 75:69-101, 1997.

[94] H. V. D. Parunak. From Chaos to Commerce: Practical Issues and Research

Opportunities in the Nonlinear Dynamics of Decentralized Manufacturing Systems. In

Proceedings of Second International Workshop on Intelligent Manufacturing Systems,

pages k15-k25, Katholieke Universiteit Leuven, 1999.

[95] H. V. D. Parunak. A Survey of Environments and Mechanisms for Human-Human

Stigmergy. In D. Weyns, F. Michel, and H. V. D. Parunak, Editors, Proceedings of E4MAS

2005, vol. LNAI 3830, Lecture Notes on AI, pages 163-186. Springer, 2006.

[96] H. V. D. Parunak. Real-Time Agent Characterization and Prediction. In Proceedings

of International Joint Conference on Autonomous Agents and Multi-Agent Systems

(AAMAS'07), Industrial Track, pages 1421-1428, ACM, 2007.

[97] H. V. D. Parunak. Generation and Analysis of Multiple Futures with Swarming

Agents. In Proceedings of the International Joint Conference on Autonomous Agents and

Multi-Agent Systems (AAMAS 2010), pages 1549-1550, IFAAMAS, 2010.

[98] H. V. D. Parunak, T. C. Belding, and S. A. Brueckner. Prediction Horizons in Agent

Models. In Proceedings of Engineering Environment-Mediated Multiagent Systems

(Satellite Conference at ECCS 2007), pages 88-102, Springer, 2008.

[99] H. V. D. Parunak and S. Brueckner. Ant-Like Missionaries and Cannibals: Synthetic

Pheromones for Distributed Motion Control. In Proceedings of Fourth International

Conference on Autonomous Agents (Agents 2000), pages 467-474, 2000.

[100] H. V. D. Parunak and S. Brueckner. Entropy and Self-Organization in Multi-Agent

Systems. In Proceedings of The Fifth International Conference on Autonomous Agents

(Agents 2001), pages 124-130, ACM, 2001.

[101] H. V. D. Parunak, S. Brueckner, and R. Savit. Universality in Multi-Agent Systems.

In Proceedings of Third International Joint Conference on Autonomous Agents and Multi-

Agent Systems (AAMAS 2004), pages 930-937, ACM, 2004.

[102] H. V. D. Parunak, S. Brueckner, D. Weyns, T. Holvoet, and P. Valckenaers. E

Pluribus Unum: Polyagent and Delegate MAS Architectures. In Proceedings of Eighth

International Workshop on Multi-Agent-Based Simulation (MABS07), pages 36-51,

Springer, 2007.

[103] H. V. D. Parunak and S. A. Brueckner. Engineering Swarming Systems. In F.

Bergenti, M.-P. Gleizes, and F. Zambonelli, Editors, Methodologies and Software

Engineering for Agent Systems, pages 341-376. Kluwer, 2004.

[104] H. V. D. Parunak, R. Rohwer, T. C. Belding, and S. Brueckner. Dynamic

Decentralized Any-Time Hierarchical Clustering. In Proceedings of Proceedings of the

Fourth International Workshop on Engineering Self-Organizing Systems (ESOA'06),

Springer, 2006.

[105] H. V. D. Parunak, J. Sauter, and S. J. Clark. Toward the Specification and Design of

Industrial Synthetic Ecosystems. In M. P. Singh, A. Rao, and M. J. Wooldridge, Editors,

18

Intelligent Agents IV: Agent Theories, Architectures, and Languages, Lecture Notes in

Artificial Intelligence 1365, pages 45-59. Springer, Berlin, 1998.

[106] H. V. D. Parunak, A. C. Ward, M. Fleischer, and J. A. Sauter. The RAPPID Project:

Symbiosis between Industrial Requirements and MAS Research. Journal of Autonomous

Agents and Multi-Agent Systems, 2:2 (June):111-140, 1999.

[107] H. V. D. Parunak, A. C. Ward, and J. A. Sauter. The MarCon Algorithm: A

Systematic Market Approach to Distributed Constraint Problems. AI-EDAM: Artificial

Intelligence for Engineering Design, Analysis and Manufacturing, 13(3):217-234, 1999.

[108] D. Payton, Daily, M., Estowski, R., Howard, M., and Lee, C. Pheromone Robotics.

Journal Autonomous Robots, 11(3):319-324, 2001.

[109] P. Peeters, H. Van Brussel, P. Valckenaers, J. Wyns, L. Bongaerts, M. Kollingbaum,

and T. Heikkila. Pheromone based emergent shop floor control system for flexible flow

shops Artificial Intelligence in Engineering, 15(4 (Oct)):343-352, 2001.

[110] P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of Plants. New York,

NY, Springer-Verlag, 1990.

[111] M. Puviani, G. Di Marzo Serugendo, R. Frei, and G. Cabri. A method fragments

approach to methodologies for engineering self-organising systems. ACM Transactions on

Autonomous and Adaptive Systems, forthcoming, 2011.

[112] H. G. Rice. Classes of Recursively Enumerable Sets and Their Decision Problems.

Trans. Amer. Math. Soc., 74:358-366, 1953.

[113] S. Ricketts. Holonic Manufacturing Systems. 1996. Web

[114] M. Salehie and L. Tahvildari. Self-adaptive software: landscape and research

challenges. ACM Transactions on Autonomic and Autonomic Systems (TAAS), 4(2):1-42,

2009.

[115] SAPERE. EU Sapere Project (Self-Aware Pervasive Service Ecosystems). 2011.

http://www.sapere-project.eu/.

[116] SASO. Self-Adaptive and Self-Organizing Systems. 2011. http://www.saso-

conference.org/.

[117] J. A. Sauter, R. Matthews, H. V. D. Parunak, and S. Brueckner. Evolving Adaptive

Pheromone Path Planning Mechanisms. In Proceedings of Autonomous Agents and Multi-

Agent Systems (AAMAS02), pages 434-440, ACM, 2002.

[118] J. A. Sauter, R. Matthews, H. V. D. Parunak, and S. A. Brueckner. Performance of

Digital Pheromones for Swarming Vehicle Control. In Proceedings of Fourth International

Joint Conference on Autonomous Agents and Multi-Agent Systems, pages 903-910, ACM,

2005.

[119] J. A. Sauter, R. Matthews, H. V. D. Parunak, and S. A. Brueckner. Effectiveness of

Digital Pheromones Controlling Swarming Vehicles in Military Scenarios. Journal of

Aerospace Computing, Information, and Communication, 4(5):753-769, 2007.

[120] J. A. Sauter, R. S. Matthews, J. S. Robinson, J. Moody, and S. P. Riddle. Swarming

Unmanned Air and Ground Systems for Surveillance and Base Protection. In Proceedings

of AIAA Infotech@Aerospace 2009 Conference, AIAA, 2009.

[121] R. Savit, S. A. Brueckner, H. V. D. Parunak, and J. Sauter. Phase Structure of

Resource Allocation Games. Physics Letters A, 311:359-364, 2002.

[122] I. Scholtes. Harnessing Complex Structures and Collective Dynamics in Large

Networked Computing Systems. Thesis at University of Trier, 2010.

19

[123] I. Scholtes. Thoughts on Engineering Self-Organizing Systems. 2011.

[124] I. Scholtes, J. Botev, A. Höhfeld, H. Schloss, and M. Esch. Awareness-Driven Phase

Transitions in Very Large Scale Distributed Systems. In Proceedings of the Second IEEE

International Conferences on Self-Adaptive and Self-Organizing Systems (SASO), IEEE,

2008.

[125] P. Sengers. Designing comprehensible agents. In Proceedings of Sixteenth

International Joint Conference on Artificial Intelligence (IJCAI), pages 1227–1232,

Lawrence Erlbaum, 1999.

[126] H. A. Simon. The Sciences of the Artificial. Cambridge, MA, MIT Press, 1969.

[127] O. Simonin, F. Charpillet, O. Buffet, and A. Glad. Engineering Self-Organizing

Systems. 2011.

[128] O. Simonin, F. Charpillet, and E. Thierry. Collective Construction of Numerical

Potential Fields for the Foraging Problem. ACM TAAS, (forthcoming), 2011.

[129] A. Spicher and O. Michel. Declarative modeling of a neurulation-like process.

BioSystems, 87:281–288, 2006.

[130] A. Tyrrell, G. Auer, and C. Bettstetter. Biologically Inspired Synchronization for

Wireless Networks. In F. Dressler and I. Carreras, Editors, Advances in Biologically

Inspired Information Systems: Models, Methods, and Tools, Studies in Computational

Intelligence, pages 47-62. Springer, 2007.

[131] P. Valckenaers. Self-organizing systems with emergent behavior. 2011.

[132] P. Valckenaers, H. V. Brussel, K. Hadeli, O. Bochmann, B. S. Germain, and C.

Zamfirescu. On the design of emergent systems: an investigation of integration and

interoperability issues. Engineering Applications of Artificial Intelligence, 16:377-393,

2003.

[133] P. Valckenaers and H. Van Brussel. Holonic manufacturing execution systems CIRP

Annals of Manufacturing Technology, 54(1):427-432, 2005.

[134] M. Viroli and M. Casadei. Biochemical Tuple Spaces for Self-Organising

Coordination. In Proceedings of Coordination Languages and Models, pages 143-162,

Springer, 2009.

[135] M. Viroli and A. Omicini. The "Self-organising Coordination" Paradigm in the

Software Engineering of SOS. 2011.

[136] M. Viroli, A. Ricci, F. Zambonelli, T. Holvoet, and K. Schelfthout. Infrastructures for

the environment of multiagent systems. Journal of Autonomous Agents and Multi-Agent

Systems, 13, 2007.

[137] M. Viroli and F. Zambonelli. A Biochemical Approach to Adaptive Service

Ecosystems. Information Sciences, 180(10):1876-1892, 2010.

[138] B. Walsham. Simplified and Optimised Ant Sort for Complex Problems: Document

Classification. Thesis at Monash University, Department of School of Computer Science

and Software Engineering, 2003.

[139] P. Wegner. Why Interaction is More Powerful than Algorithms. Communications of

the ACM, 40(5 (May)):81-91, 1997.

[140] J. Werfel. Anthills built to order: Automating construction with artificial swarms.

Thesis at MIT, Department of CSAIL, 2006.

[141] D. Weyns. Architecture-based design of multi-agent systems. Springer 2010.

[142] D. Weyns. Software Engineering for Self-Organizing Systems. 2011.

20

[143] D. Weyns, N. Boucke, and T. Holvoet. A Field-Based Versus a Protocol-Based

Approach for Adaptive Task Assignment. Journal on Autonomous Agents and Multi-Agent

Systems, 17(2):288-319, 2008.

[144] D. Weyns, S. Dustdar, H. Giese, K. Göschka, V. Grassi, J. Kramer, S. Malek, R.

Mirandola, C. Prehofer, R. Schlichting, B. Schmerl, and J. Wuttke. Dagstuhl Group D:

From Centralized to Decentralized Control in Self-Adaptation. Dagstuhl, 2010. Available

at http://www.dagstuhl.de/Materials/Files/10/10431/10431.SWM9.Slides.ppt.

[145] D. Weyns, S. Malek, J. Andersson, and B. Schmerl. Call for Papers, Special Issue on

“State of the Art in Self-Adaptive Software Systems," Journal of Systems and Software

(JSS). 2011. Available at http://www.elsevierscitech.com/cfp/CFP-JSS-special-issue-

2010.pdf.

[146] N. Wiener. Cybernetics. Cambridge, MA, MIT Press, 1948.

[147] T. D. Wolf and T. Holvoet. Towards a Methodology for Engineering Self-Organising

Emergent Systems. In Proceedings of the 2005 conference on Self-Organization and

Autonomic Informatics, pages 18-34, IOS Press, 2005.

[148] T. D. Wolf, T. Holvoet, and G. Samaey. Engineering Self-Organising Emergent

Systems with Simulation-based Scientific Analysis. In Proceedings of the Fourth

International Workshop on Engineering Self-Organising Applications, pages 146-160,

2005.

21

22

Programming Multi-Agent Systems

Mehdi Dastani

Utrecht University
The Netherlands
mehdi@cs.uu.nl

Abstract. With the significant advances in the area of autonomous
agents and multi-agent systems in the last decade, promising technolo-
gies for the development and engineering of multi-agent systems have
emerged. The result is a variety of programming languages, execution
platforms, and tools that facilitate the development and engineering of
multi-agent systems. This paper provides an overview of the multi-agent
programming research field by focusing on the aim and characteristics
of various multi-agent programming languages and development tools.
This overview is complemented with a discussion on the current trends
and challenges in this research area.

1 Introduction

Multi-agent systems consist of a set of autonomous and interacting comput-
ing systems called agents [92, 42, 97]. Agents are assumed to be autonomous in
the sense that they can decide for themselves which actions to perform in or-
der to achieve their individual objectives. Agents interact either with each other
through communication or with their environments through their sensors and ac-
tuators. As agents may have different architectures being developed by different
designers, the global properties of multi-agent systems can be guaranteed if the
behaviour of individual agents can be controlled and coordinated. The coordina-
tion of agents’ behaviours can be done either endogenously or exogenously [2]. In
an endogenous approach the coordination models reside within the agents while
in an exogenous approach the coordination models reside outside the agents. In
particular, in an endogenous approach agents are internally designed to behave
in a coordinated manner, while in an exogenous approach agents are coordinated
by means of an external entity that controls their behaviours.

Multi-agent systems constitute a promising software engineering paradigm
for the development of distributed intelligent systems. The agent-oriented soft-
ware engineering paradigm provides cognitive and social concepts and abstrac-
tions in terms of which software systems can be specified, designed, and im-
plemented. Examples of such concepts and abstractions are beliefs, goals, plans,
actions, events, roles, organisational rules and structures, communication, norms
and sanctions. In order to develop multi-agent systems in an effective and system-
atic way, different analysis and design methodologies [10], specification languages
[74, 22, 62, 31], programming languages and development tools [14, 15, 13, 94, 69,

23

50, 57, 17, 78, 60, 43, 45, 79] have been proposed. While most agent-oriented anal-
ysis and design methodologies assist system developers to specify and design
system architectures in terms of agent concepts and abstractions, the proposed
multi-agent programming languages and development tools aim at providing pro-
gramming constructs and operations to facilitate direct, explicit, and effective
implementation of concepts and abstractions involved in multi-agent systems.
This is the main challenge of the multi-agent programming research field.

Engineering multi-agent systems requires engineering three different types
of entities: individual agents, multi-agent organisations, and multi-agent envi-
ronments. Although ontological differences between these entities and their im-
plications for programming multi-agent systems have been emphasized during
the early ProMAS technical fora [29, 28], the main focus of the multi-agent pro-
gramming community has been on engineering and development of individual
agents. Although multi-agent organisations and environments have been active
research areas for many years, resulting in a variety of proposals and models, the
need for programming languages that support the implementation of multi-agent
organisations and environments has only recently been recognized.

This paper starts with a discussion on the aims and objectives of the multi-
agent programming research field from a software engineering point of view.
In particular, it presents concepts and abstractions for which multi-agent pro-
gramming languages aim at providing programming constructs to implement
them. The paper presents then an overview of the state of the art in multi-
agent programming by focusing on the aims and characteristics of some existing
multi-agent programming languages. Of course, there are too many programming
languages and frameworks to mention in this paper. We chose programming lan-
guages for which an interpreter and an execution platform have been developed.
Subsequently, the current trends in this research field will be explained and dis-
cussed by means of recent foci and developments. The paper finalizes with a
discussion on issues that are currently challenging the multi-agent programming
research field.

2 Aims and Objectives

Multi-agent systems can be seen as a development in software engineering which
has resulted in a new software development paradigm. Multi-agent systems pro-
vide high-level concepts and abstractions to model and develop distributed in-
telligent systems. Like other software development paradigms, multi-agent sys-
tems cover different software engineering phases such as requirement, specifica-
tion, design, implementation, and testing. Various multi-agent system software
methodologies have been proposed (e.g.,Gaia [98], Promethose [67], Tropos [20],
INGENIAS [46], and others [10]), each focusing on specific phases of the soft-
ware development process. For example, Gaia focuses mainly on the analysis
and design phases, while Prometheus covers the implementation phase as well.
Existing multi-agent system software development methodologies propose con-
cepts and abstractions such as beliefs, goals, plans, events, roles, interaction,

24

agents, environment, organisation rules, norms, permission, responsibility and
capability.

The main aim of the multi-agent programming research field from the soft-
ware engineering perspective is to propose programming languages that can fa-
cilitate direct and effective implementations of multi-agent systems. In partic-
ular, the aim of this research field in the context of software engineering is to
provide programming constructs that support the implementations of the multi-
agent system architectures. In this sense, one can see a multi-agent programming
language as a computational specification language for implementing a certain
class of multi-agent system architectures, making programming languages depen-
dent on the development methodologies. As different multi-agent development
methodologies propose different abstractions and architectures, one may argue
that a standard multi-agent programming language cannot emerge as long as
different multi-agent system development methodologies do not converge.

Based on concepts and abstractions originated from multi-agent system de-
velopment methodologies, programming languages for multi-agent systems can
be characterised along different dimensions. First, the focus of multi-agent pro-
gramming languages can be on individual agents, multi-agent organisations,
multi-agent environments, or their combinations. Programming languages fo-
cussing on individual agents are concerned with issues such as autonomy of
agents, reactive behaviours, social awareness, reasoning about norms and organ-
isations, communication and interaction with other agents, and capabilities to
sense and act in a shared environment. In order to facilitate the implementation
of multi-agent organisations, programming languages should support the imple-
mentation of social and organisational issues such as norms (obligation, prohibi-
tion, permission) that should be respected or followed by agents, sanctions that
should be imposed if norms are violated, roles that the agents can play, dele-
gation of tasks and responsibilities, and the synchronisation of agents’ actions.
Of course, multi-agent organisations can be implemented either endogenously
or exogenously, i.e., either individual agents are implemented in terms of social
and organisational concepts, or organisations are implemented as computational
entities outside agents controlling their behaviours. Finally, programming lan-
guages that support the implementation of multi-agent environments need to
provide programming constructs to implement sense and act abilities of agents,
tools, artifacts, services, and resources that can be used by agents.

Second, multi-agent programming languages can be characterised based on
the language style and their formal or practical foundations. In particular, multi-
agent programming languages can be declarative, imperative, or a combination
of them. Some multi-agent programming languages are extensions of existing
programming languages such as Java or Prolog, while others combine these
languages. Declarative languages are often used to represent and reason with
concepts such as beliefs, goals, norms, and actions, while imperative languages
are often used to implement tasks, services, and processes. Declarative and im-
perative languages are used to implement various aspects of individual agents,
multi-agent organisations, and multi-agent environments. Some multi-agent pro-

25

gramming languages are abstract and have been proposed as theoretical contri-
bution, while others come with their corresponding development tools and exe-
cution platforms. Finally, some multi-agent programming languages come with
formal and computational semantics, an implemented interpreter, or both. The
existence of formal semantics for multi-agent programming languages is essential
for a better understanding of the programming constructs and the verification
of multi-agent programs. Without a formal semantics one cannot guarantee the
correctness of programs.

Third, multi-agent programming languages can be analysed by means of
general programming principles they respect and support. Examples of such
principles are modularity, encapsulation, reuse, separation of concerns, recur-
sion, abstraction, exception handling facilities, and support for legacy codes.
Of course, the very concept of agent itself supports some of these principles
such as encapsulation and reuse. Similarly, the idea of implementing environ-
ments and organisations separately support the separation of concerns principle.
Multi-agent programming languages can be used in a more efficient and effective
manner when they support such principle at different levels. For example, at the
individual agent level modularity can be used to support the implementation of
different functionalities and roles, recursion can be used to implement complex
plans, and exception handling can be used to implement plan failure operations.

Finally, multi-agent programming languages can be evaluated in terms of the
functionalities provided by their corresponding integrated development environ-
ments. An integrated development environment supports the development of
multi-agent programs by means of functionalities such as editing tools allowing
easy browsing of codes, debugging tools that help to localize errors and anoma-
lies, and automatic testing tools allowing the automatic generation of test cases
for specific part of the programs. The main difficulty for such an integrated de-
velopment environment is the distributed nature of multi-agent programs, e.g.,
how to browse through a program that is distributed by means of agents, mod-
ules, environment, and organisation programs. Debugging is even harder as it is
not clear how to debug one single agent when the execution of the agent depends
on the execution of other agent programs, the environment program, and the
organisation program.

3 Abstractions in Multi-Agent Programming

In this section, we present key concepts and abstractions that need to be ad-
dressed when programming multi-agent systems. The following subsections re-
flect the highest level of abstraction in multi-agent systems: agents, organisa-
tions, and environments. Each subsection discusses the concepts and further
abstractions.

26

3.1 Individual Agents

The focus of most multi-agent programming languages has been on programming
individual agents. In these works, multi-agent programs are considered as being
composed of a set of individual agent programs that are executed concurrently.

An essential characteristic of individual agents is their autonomy. With-
out getting into the exact nature of autonomy, we consider an agent as au-
tonomous if it has a decision making component that governs its decisions
based on its informational (beliefs/distributions/knowledge) and motivational
(desires/utilities/preferences) attitudes. One can argue that any computational
system that interacts with other systems (e.g., other agents or environment) can
be seen as autonomous, at least from an external point of view. However, the
development of an autonomous agent can also be considered from an internal
point of view. Such a view requires an explicit decision making component that
can be specified, designed, implemented in terms of informational and motiva-
tional attitudes. The decision making component should allow a programmer
to implement different issues related to an agent’s decisions such as decision
strategies, resolving decision conflicts, and rationality of decisions. In this sense,
programming languages that support the implementation of autonomous agents
should provide programming constructs to support the implementation of deci-
sion concepts (informational and motivational attitudes) as well as issues related
to an agent’s decisions.

POMDP [86], BDI [74], and a combination of both [64] can be used as deci-
sion models for autonomous agents. POMDP is a quantitative framework that
can be used to model a sequential decision process in terms of actions, states,
transition probability, observation probabilities, and reward function. In order to
determine an agent’s decisions, its corresponding POMDP (the agent’s decision
model) should be solved. However, solving POMDP’s are in general computa-
tionally intractable such that approximate methods are often proposed to solve
POMDP’s. Moreover, POMDP’s are not suitable to model agents that have
complex goals and need to interact with dynamically changing environments
[76]. These problems make POMDP not a plausible model to be integrated in a
programming language for individual agents.

In contrast, the BDI model has been considered as a qualitative decision
model that explains an agent’s rational decision in terms of the agent’s informa-
tion about the current state of the world (Beliefs), the states the agent wants to
achieve (Desire), and its commitments to already made choices (intentions). The
BDI model has proven to be an efficient model for reactive planning and for the
agents that have complex goals interacting with highly dynamic environments.
The existing BDI-based agent programming languages provide constructs to im-
plement an agent’s beliefs, goals, and conditional plans. The conditions that are
assigned to plans are specified in terms of beliefs and goals such that a plan can
be decided/selected if its belief and goal conditions are satisfied, i.e., an agent
can decide a plan if the agent believes the belief condition of the plan and has
a goal that entails the goal condition of the plan. The reasoning engine of the
BDI agents is often a process that continuously decides a plan to execute. In

27

some BDI-based programming languages the choice for a plan does also depend
on the agent’s commitments in the sense that plans are selected if there are no
selected plans that aim at achieving a conflicting goal.

Another characteristic of individual agents is their reactive behaviours [63].
The implementation of reactive agents requires an event handling mechanism
that generates reactions to the received events. There are many types of events
such as messages that are received from other agents, information that are orig-
inated from the environment, and the information about the internal working of
an agents (e.g., the failure of a plan). Programming languages that support the
implementation of reactive agents provide constructs to implement conditional
plans where the plan’s conditions are defined in terms of events. The reasoning
engine of reactive agents continuously check if plans can be selected based on the
received events. It should be noted that there is an essential difference between
events and goals. In principle, an event causes the generation of a plan and, as
soon as the plan is generated, the event is deleted and considered as being pro-
cessed. Goals are similar to events in the sense that they cause the generation
of plans. However, and in contrast to events, goals are not dropped after they
have caused the generation of plans. An achieve goal is, for example, dropped
if the state denoted by it is achieved, i.e., if the agent believes that the state
denoted by the goal is achieved. The relation between beliefs and goals is an es-
sential characteristic of BDI agents which is formulated by means of rationality
axioms in the BDI logics [75, 22]. It should also be noted that autonomy and
reactive behaviours are two different characteristics and that agents can be both
autonomous and reactive, be autonomous without being reactive, or vice versa.

3.2 Multi-Agent Environment

Soon after the emergence of the first generation of the interpreters of agent-
oriented programming languages, the need for the implementation of shared en-
vironments with which agent programs can interact became apparent. An imme-
diate solution was to model an environment as an external software component
with which individual agents could interact. In most multi-agent programming
frameworks the environments became simply a software component that were
implemented in the same programming language as that of the interpreter of
the agent-oriented programming language (e.g., Jave or C++). The state of the
software component were considered as the state of the environment while the
methods that allow the interaction with the software component were used to
implement the effect of the actions that agents could perform in the environment.

One of the first overview papers in the field of multi-agent system environ-
ments showed that the concept of environment was originally used with different
meanings causing confusions about the exact nature of this abstraction [93, 68].
As argued in this overview paper, some researchers considered multi-agent sys-
tem environments as equivalent of infrastructures such as message transport
system and other infrastructural tools, for example, brokers and management
tools, while other researchers considered multi-agent system environments as
encapsulating resources, services, and objects. Research on multi-agent system

28

environments starts receiving popularity by considering environment as a first-
class abstraction in multi-agent systems having its own characteristic state and
processes.

A multi-agent system environment in [93] is claimed to be used for vari-
ous purposes, for example to facilitate and coordinate agents’ interactions by
means of exchanging information through it (blackboard architectures and tuple
spaces)1, or to provide agents the sense and act abilities in order to observe
and modify the environment’s state, respectively. For example, an environment
can provide artifacts or services to allow agents managing their coordination or
exchanging information. An environment can also provide various sense and act
modalities such as blocking and non-blocking sense operations, event broadcast-
ing, event subscription mechanisms, and synchronous or asynchronous actions.

The implementation of environments requires therefore dedicated program-
ming languages that allow direct and effective implementations of its related
concepts and abstractions. Like the development in agent-oriented programming
languages, one may expect typical architectures for multi-agent environments.
Such architectures would suggest specific concepts, concerns, or components
that often need to be implemented when developing a multi-agent system envi-
ronment. In particular, a dedicated environment programming language should
provide programming constructs to implement resources, services, artifacts, pro-
cesses, several sense and action types and mechanisms. The A&A model [66] has
been proposed as a generic paradigm for modelling environments. In the A&A
paradigm, an application is composed of agents as well as the so-called artifacts.
An implementation of the A&A model is available in form of the distributed
architecture and middleware infrastructure CArtAgO [77]. Such an environment
architecture consists of a dynamic set of artifacts each of which encapsulates
some functions designed by the environment developer.

3.3 Multi-Agent Organisation

The overall objectives of multi-agent systems can be guaranteed by regulating
and organising the behaviour of individual agents and their interactions. This can
be done either endogenously by integrating the organisation mechanism within
the agents themselves, or exogenously by designing the organisation mechanism
outside the agents, or a combination of both. An endogenous organisation im-
plies that agents are internally designed to follow, for example, specific interac-
tion protocols, norms or organisational rules, while in an exogenous approach
agents are coordinated by means of external artifacts that control the agents’
actions according to some interaction protocols, norms, or organisational rules.
Generally speaking endogenous coordination mechanisms can be used for the
development of closed multi-agent systems where the structure and specification
of agents and environments are decided at the design time while exogenous coor-
dination mechanisms can be used for open multi-agent systems where individual

1 In contrast to direct communication by means of send and receive messages, a shared
environment can be used to communicate indirectly by reading and writing infor-
mation from/to it.

29

agents may dynamically enter and leave the system. However, from the software
engineering perspective an exogenous organisation can also be effective for the
development of closed multi-agent systems since such an approach supports the
separation of concerns and encapsulation principles.

There have been various proposals for regulating and organising the be-
haviours of individual agents. Some of these proposals advocate the use of coor-
dination artifacts that are specified in terms of low-level coordination concepts
such as synchronization [3, 26]. Other approaches are motivated by organisa-
tional models, normative systems, or electronic institutions [41, 40, 47, 55, 56, 30].
In these approaches, the behaviours of individual agents are regulated by means
of norms and organisational rules that are either used by individual agents to
decide how to behave, or being enforced or regimented through monitoring and
sanctioning mechanisms. In these approaches, the social and normative per-
spective is conceived as a way to make the development and maintenance of
multi-agent systems easier to manage. A plethora of social concepts (e.g., roles,
groups, social structures, organisations, institutions, norms) has been introduced
in multi-agent system methodologies (e.g. Gaia [98]), models (e.g. OperA [37]),
specification and modelling languages (e.g. S-MOISE+ [53] and ISLANDER [40])
and computational frameworks (e.g. AMELI [41]).

The implementation of organisations requires programming languages that
provides programming constructs to implement social and organisational con-
cepts and abstractions. In particular, the implementation of endogenous mech-
anisms implies that the agent programming languages provide constructs to
allow the representation and reasoning about norms, sanctions, and organisa-
tional rules. Such constructs should allow multi-agent programmers to implement
agents that make their decisions not only based on their individual goals and
beliefs, but also based on the existing norms, sanctions, and other organisational
rules. The idea is that individual agents can be implemented in terms of cognitive
and social abstractions such that their behaviours are decided upon reasoning
about such abstractions. The implementation of exogenous mechanisms requires
abilities to monitor and control the behaviours of individual agents. The idea is to
have an external organisation software entity that is able to monitor and control
the behaviour of individual agents. The question is what should be monitored
and how the agents’ behaviours can be influenced. As the internals of individual
agents cannot be assumed in general, their external behaviours (i.e., communi-
cation and interaction with the environment) are the only controllable entities.
The organisation software entity can thus observe agents’ external behaviour and
determine what needs to be done. For example, if the organisation specification
disallows certain agents to interact, then the organisation software should be
able to block or respond to such interactions. This suggests that the agents’ ac-
tions (e.g., communication, environment actions including sense actions) should
be processed and managed through the external organisation software, i.e., the
organisation software intermediates the interaction between agents as well as the
interaction between agents and the environment.

30

4 The State of the Art in Multi-Agent Programming

In this section, we provide an overview of some of the existing multi-agent pro-
gramming languages together with their development and execution platforms.
This overview is by no means complete and does not cover some related and
relevant multi-agent programming proposals. The programming frameworks in
this overview are chosen because they illustrate different ways to program (some
of) the abstractions discussed in previous section, have a development and ex-
ecution platform, and of course, because of the author’s familiarity with the
frameworks. Other multi-agent programming frameworks can be found in [14,
15]. This overview will be structured along the focus of the programming lan-
guages for individual agents, multi-agent environments, and multi-agent organi-
sations. The programming languages and their corresponding development and
execution platforms will be discussed in terms of the concepts explained in sec-
tion 2.

4.1 Programming Languages for Individual Agents

One of the earliest agent-oriented programming languages is AGENT-0 [82]. In his
seminal paper, Shoham proposes to implement agents in terms of mental compo-
nents such as beliefs, commitments, capabilities and actions. An agent program
in AGENT-0 consists of an initial belief base, a set of capabilities, a set of com-
mitment rules, together with a repertoire of private actions. Agents can perform
different types of actions such as communication, private, conditional and uncon-
ditional actions. Agents enter into new commitments by means of commitment
rules. A commitment rule consists of conditions on an agent’s mental state and
the incoming messages. The application of a commitment rule generates a com-
mitment consisting of an action together with the agent identifier towards whom
the commitment is made. In fact, the commitments define the actions that an
agent have to perform. The execution of an agent is a continuous cyclic process.
At each cycle, the received messages are processed, commitments are generated,
and actions are performed. AGENT-0 is undoubtedly one of the first attempts
to design an agent programming language that supports the implementation of
autonomous agents, i.e., agents that decide actions based on their mental states.
However, as indicated in the discussion section of this seminal paper, the state
of an AGENT-0 agent lacks motivational attitudes such as utility, desires, goals,
or preferences such that an agent’s decisions are based only on events and mes-
sages rather than the agent’s motivational attitude. Strictly speaking one can
therefore argue that the decision behaviour of an agent implemented in AGENT-0

is not in accordance with the rational decision theories.
Since AGENT-0 various agent-oriented programming languages have been pro-

posed that extend AGENT-0 with a larger repertoire of agent concepts and ab-
stractions. The aim of these programming languages is to support the implemen-
tation of multi-agent systems, although most of them do not support the imple-
mentation of organisational abstractions. Some of these agent-oriented program-
ming languages have an imperative programming style as they extend Java with

31

agent concepts and abstractions, some languages have a declarative programming
style as they extend logic programming languages, and yet other programming
languages combine both imperative and declarative styles by integrating for ex-
ample Java and Prolog. The programming languages that are based on Java
have no explicit formal semantics. In the following, we give a brief overview of
some of these programming languages.

Imperative Style Agent-Oriented Programming Languages Jade (Java
Agent DEvelopment framework) [9] extends Java with a set of multi-agent con-
cepts and abstractions. An agent is created by extending a predefined Jade agent
class and redefining its setup method. After an agent is created, it will receive
an identifier and be registered with the agent management system (a Jade built-
in service). The agent is then put in the active state and its setup method is
executed. The setup method is therefore the point where any agent activity
should start. Jade agents are behaviour-based in the sense that they can create
and execute behaviours. A behaviour can be created by extending the Jade be-
haviour class via a special construct that adds behaviours (initially in the setup

method). The created behaviours are added to a behaviour pool. Behaviours are
selected for execution from this pool based on a scheduler that constitutes the
execution model of the Jade agents. Agents are executed concurrently as differ-
ent pre-emptive Java threads. The Jade programming framework is developed
for practical and industrial applications and comes with a development environ-
ment providing a set of graphical tools that support monitoring, logging, and
debugging multi-agent programs. The Jade platform is based on a middleware
that facilitates the development of distributed multi-agent applications based
on a peer-to-peer communication architecture. The Jade execution platform is
distributed in the sense that it can run over multiple machines while seen as a
whole from the outside world. The Jade platform implements the basic services
and infrastructure of a distributed multi-agent application. It supports agent
life-cycle, agent mobility, and agent security, and provides services such as white
and yellow-pages that can be used by the agents to register their services and
search for each other.

Jadex [69] builds on Jade and extend it with programming constructs to
implement BDI concepts such as beliefs, goals, plans, and events. It uses XML
notation to define and declare an agent’s BDI ingredients and Java constructs
to implement the agent’s plans. Jack [94] extends Java with programming con-
structs to implement BDI concepts. In both Jack and Jadex a number of syntac-
tic constructs are added to Java to allow programmers to declare beliefsets, to
post events, and to select and execute plans. The execution of agent programs
in both languages are motivated by the classical sense-reason-act cycle, i.e., pro-
cessing events, selecting relevant and applicable plans, and execute applicable
plans. Beliefs and goals in Jack and Jadex have no logical semantics such that
an agent cannot reason about its beliefs and goals. A consequence of this is that
a Jack or Jadex agent is not able to generate plans that can contribute to the
achievement of its goals, but not necessarily achieve them. Moreover, the con-

32

sistency and the rational balance of an agent’s state in Jack and Jadex, as far
as they are defined, is left to agent programmers, i.e., the agent programmer is
responsible to make sure that state updates preserve the state consistency and
that the rational balance (e.g., between beliefs and goals) is maintained. In these
programming languages, an agent’s goal is not automatically dropped because
it is derivable from the agent’s beliefs. Jadex provides a programming construct
to implement non-interleaving execution of plans.

Declarative Style Agent-Oriented Programming Languages KGP [57,
17, 78] is based on a model of agency characterized by a set of modules. The
model has an internal state module consisting of a collection of knowledge bases,
the current agent’s goals and plans. The knowledge bases represent different
types of knowledge such as the agent’s knowledge about observed facts, actions,
and communication, but also knowledge to be used for planning, goal decision,
reactive behaviour, and temporal reasoning. The KGP agent model includes also
a module consisting of a set of capabilities such as planning, reactivity, temporal
reasoning, and reasoning about goals. These capabilities are specified by means
of abductive logic programming or logic programming with priorities. Another
KGP module contains a set of transitions to change the agent’s internal state.
Each transition performs one or more capabilities, which in turn use different
knowledge bases, in order to determine the next state of the agent. Finally, the
KGP model has a module, called cyclic theory, that determines which transition
should be performed at each moment of time. The KGP model is based on
propositional language.

Minerva [60] aims at specifying an agent’s state and its dynamics. A Min-
erva agent consists of a set of specialized sub-agents manipulating a common
knowledge base, where sub-agents (i.e., planner, scheduler, learner, etc.) eval-
uate and manipulate the knowledge base. These subagents are assumed to be
implemented in arbitrary programming languages. Minerva gives both declara-
tive and operational semantics to agents allowing the internal state of the agent,
represented by logic programs, to modify. Minerva is based on multidimensional
dynamic logic programming and uses explicit rules for modifying its knowledge
bases.

The family of Golog languages [45, 79] propose high-level program execu-
tion as an alternative for controlling the behaviour of agents that operate in
dynamic environments with partial observation. In fact, the high-level (agent)
program consists of a set of actions, including the sense action (in IndiGolog
[79]), composed by means of conditionals, iteration, recursion, concurrency and
non-deterministic operators. Instead of finding a sequence of actions to achieve
a desired state from an initial state, the problem is to find a sequence of ac-
tions that constitute a legal execution of the high-level program. When there
is no non-determinism in the agent program, then the problem is straight for-
ward. However, if the agent program consists of actions that are composed only
by non-deterministic operators, then the problem is identical to the planning
problem. The Golog language family represents the state of an agent as a set of

33

fluents.The execution of Golog programs is on-line planning (based on situation
calculus) and plan execution.

Concurrent MetateM [43] is based on the direct execution of an extension of
propositional temporal logic specifications. A multi-agent system in Concurrent
MetateM consists of a set of concurrently executing agents with the ability to
communicate asynchronously. Each agent is programmed by means of a temporal
logic specification of the behaviour that the agent have to generate. In particular,
it consists of rules that can be fired when their antecedents are satisfied with
respect to the execution history. The consequent of a fired rule, which can be a
temporal formula, forms the commitment of the agent that needs to be satisfied.
The execution of an agents builds iteratively a logical model for the temporal
agent specification. In Concurrent MetateM, the beliefs of agents are propositions
extended with modal belief operators (allowing agents to reason about each
others’ beliefs), goals are temporal eventualities, and plans are primitive actions.

CLAIM [80] is a declarative multi-agent programming language focusing on
mobile agents. It comes with a distributed platform called SyMPA that enables
the execution of multi-agent programs. A multi-agent system in CLAIM is a set
of hierarchies of agents distributed over a network. An agent in CLAIM can be a
sub-agent of another one such that the hierarchies determine the parent-child re-
lation between agents. Agents in CLAIM are BDI based and can be programmed
in terms of knowledge, goals, capabilities, messages, parent and children. Agents
can migrate within a hierarchy as well as between hierarchies by means of the
move operation. The migration of agents in CLAIM is a strong migration, i.e.,
the state of the agent just before the migration is saved, encrypted, and trans-
ferred to the destination. At the destination, the agent’s state is restored and
processes are resumed from their interruption point.

Hybrid Style Agent-Oriented Programming Languages 3APL (An Ab-
stract Agent Programming Language), as originally proposed in [50], is a pro-
gramming language for single agents. The state of an agent in 3APL consists
of declarative beliefs and plans, where plans consist of belief update, test, and
abstract actions composed by sequence and conditional choice and iteration op-
erators. This version of 3APL provides only plan revision rules that are applied
to revise an agent’s plan. The execution of a 3APL agent program is a cyclic
process. At each cycle a plan revision rule is selected and applied after which
a plan from the plan base is selected and executed. The execution of a plan
modifies the belief base of the executed agent program. This original version of
3APL was an abstract programming language which lacked a development and
execution platform. This version is extended with declarative goals and a variety
of action types [33]. Also, an execution platform is developed for the extended
version of 3APL [35].

2APL (A Practical Agent Programming Language) [25] is designed to im-
plement multi-agent systems. It provides two sets of programming constructs
to implement multi-agent and individual agent concepts. The multi-agent pro-
gramming constructs are designed to create individual agents, external environ-

34

ments, and to specify the agents’ access relations to the external environments. In
2APL, an environment (Java object) has a state and can execute a set of actions
(method calls) to change its state. At the individual agent level, 2APL agents are
implemented in terms of beliefs, goals, actions, plans, events, and three different
types of rules. The beliefs and goals of 2APL agents are implemented in a declar-
ative way, while plans and (interfaces to) external environments are implemented
in an imperative style. The declarative part of the programming language sup-
ports the implementation of an agent’s reasoning and update mechanisms. The
imperative part of the programming language facilitates the implementation of
plans, control flow, and mechanisms such as procedure call, recursion, and inter-
facing with legacy codes. 2APL agents can perform different types of actions such
as belief update actions, belief and goal test actions, external actions (including
sense actions), actions to manage the dynamics of goals, and communication
actions. Three types of rules are used to generate plans. The first type of rules is
designed to generate plans to achieve goals, the second to process (internal and
external) events/messages, and the third to repair failed plans. A key feature of
2APL is the distinction between declarative goals and events.

GOALS [49] is a BDI-based programming language designed to implement
autonomous agents. It provides programming constructs to implement an agent’s
knowledge, beliefs and goals declaratively. It also provides programming con-
structs to implement action selection rules that can be used to select actions
based on the agent’s current knowledge, beliefs and goals. A characteristic fea-
ture of GOAL is the distinction between knowledge and beliefs. Knowledge rep-
resents an agent’s general information that are not the subject of modification,
for example the agent’s domain knowledge, while beliefs represents an agent’s
current information that can be modified during the agent execution, for example
by sensing the environment or performing mental actions. Another characteris-
tic feature of GOAL is the absence of plans. The action selection rules generate
only atomic actions when they are applied. GOAL provides different types of
actions such as user defined actions, built-in actions, and the communication
actions. The execution of a GOAL agent is a cyclic process where at each cycle
the agent senses the environment, applies action selection rules, and performs
the generated actions.

Jason [13] is introduced as an interpreter of an extension of AgentSpeak,
which is originally proposed by Rao [73]. Jason distinguishes multi-agent system
concerns from individual agent concerns, though it does not allow the specifica-
tion of agents’ access relation to external environments. An individual agent in
Jason is characterized by its beliefs, plans and the events that are either received
from the environment or generated internally. A plan in Jason is designed for a
specific event and belief context. The execution of individual agents in Jason is
controlled by means of a cycle of operations encoded in its operational semantics.
In each cycle, events from the environment are collected, an event is selected,
a plan is generated for the selected event and added to the intention base, and
finally a plan is selected from the intention base and executed. A plan rule in
Jason indicates that a plan should be generated by an agent if an event is re-

35

ceived/generated and the agent has certain beliefs. Jason is based on first-order
representation for beliefs, events, and plans. Jason has no explicit programming
construct to implement declarative goals, though goals can be indirectly simu-
lated by means of a pattern of plans. Moreover, the beliefs and plans in Jason
can be annotated with additional information that can be used in belief queries
and plan selection process. Finally, plan failure in Jason can be modelled by
means of plans that react to the so-called deletion events.

IMPACT [38] is a multi-agent programming framework based on the idea of
agentisation, i.e., agents are built around given legacy code. This programming
framework comes with a formal semantics and an execution platform. An agent
is built around a legacy code by abstracting from the legacy code and describing
its main features. In particular, an agent is defined in terms of the set of all
datatypes managed by the legacy code, a set of functions over the datatypes
allowing external processes to access the datatypes, and a set of composition
operators defined on the datatypes generating new composed datatypes. The
state of an agent is determined by the state of the data in terms of which the
agent is defined. Each agent has a set of actions that it can perform in its
environment. An action can have different status such as permitted, obliged, or
forbidden. The execution of an agent follows a cycle where messages from other
agents are processed (which may in turn change the data and thus its state),
the status of each action is determined, the actions that can be executed are
determined, and the state is updated accordingly.

4.2 Programming Languages for Multi-Agent Organisations

In the literature on multi-agent systems, there have been many proposals for
specification languages and logics to specify and reason about normative multi-
agent systems, virtual organisations, and electronic institutions (e.g., [56, 72, 11,
1]). How to develop, program, and execute such normative systems was one
of the central themes that were discussed and promoted during the AgentLink
technical fora on programming multi-agent systems (see [29, 28] for the general
report of these technical fora). In this section, we discuss three proposals for
specifying and implementing normative multi-agent systems.

One of the early modelling languages for specifying institutions in terms of
institutional rules and norms is ISLANDER [40]. In order to interpret institution
specifications and execute them, a computational platform, called AMELI [41],
has been developed. This platform implements an infrastructure that, on the one
hand, facilitates agent participation within the institutional environment and
supports their communication and, on the other hand, enforces the institutional
rules and norms as specified in the institutional specification. The key aspect
of ISLANDER/AMELI is that norms can never be violated by the agents. In
other words, systems programmed via ISLANDER/AMELI make only use of
regimentation in order to guarantee the norms to be actually followed. The
norms in [41, 44, 83] are related to actions that the agents should or should
not perform. In these approaches the issue of expressing more high-level norms
concerning a state of the system that should be brought about is ignored. Such

36

high-level norms can be used to represent what the agents should establish —
in terms of a declarative description of a system state — rather than specifying
how they should establish it.

Another approach concerning specification of normative multi-agent systems
by means of social and organisational concepts is MOISE+ [54]. This modelling
language can be used to specify multi-agent systems through three organisa-
tional dimensions: structural, functional, and deontic. In a series of papers, dif-
ferent computational and programming frameworks have been proposed to im-
plement and execute MOISE+ specifications. Examples of such frameworks are
S-MOISE+ [53] and its artifact-based version ORG4MAS [55]. These frame-
works are concerned with norms that are about declarative descriptions of a
state that should be achieved. Following the MOISE+ specification language,
S-MOISE+ is an organisational middleware that provides agents access to the
communication layer and the current state of the specified organisation. More-
over, this middleware allows agents to change the organisation and its specifi-
cation, as long as such changes do not violate organisational constraints. In the
artifact version of this framework, ORG4MAS, various organisational artifacts
are used to implement specific components of an organisation such as group and
goal schema. In this framework, a special artifact, called reputation artifact, is
introduced to manage the enforcement of the norms.

To summarize, in the work on electronic institutions ISLANDER/AMELI
norms pertain to low-level procedures that directly refer to actions, whereas
MOISE+/S-MOISE+ are concerned with more high-level norms pertaining
to declarative descriptions of the system. However, S-MOISE+ does not allow
agents to violate organisational rules and norms by ensuring that they respect
organisational specification. This suggests that norms in S-MOISE+ are regi-
mented rather than being enforced by means of sanctions. In the artifact version
of this framework, ORG4MAS, the enforcement of norms is assumed to be man-
aged indirectly through a reputation mechanism, but it remains unclear how
such a reputation system realizes sanctioning. Another important issue is that
AMELI and S-MOISE+ lack a complete operational semantics that capture
all aspects of normative systems, including the enforcement of norms. An ex-
plicit formal and operational treatment of norm enforcement is essential for a
thorough understanding and analysis of computational frameworks of normative
multi-agent systems. Also, the computational frameworks related to MOISE+

are not grounded in a logical system such that the soundness and properties of
the programmed systems cannot be analysed through formal analyses and ver-
ification mechanisms. Finally, it should be noted that ISLANDER/AMELI and
MOISE+/S-MOISE+ provide a variety of social and organisational concepts.

powerJava [7] and powerJade [6] are designed to implement institutions in
terms of roles. While powerJava extends Java with programming constructs
to implement institutions, powerJade proposes similar extensions to the Jade
framework. In these programming frameworks, an institution is considered as an
exogenous coordination mechanism that manages the interactions between par-
ticipating computational entities (objects in powerJava and agents in powerJade)

37

by means of roles. A role is defined in the context of an institution (e.g., a stu-
dent role is defined in the context of a school) and encapsulates capabilities, also
called powers, that its players can use to interact with the institution and with
other roles in the institution (e.g., a student can participate in an exam). For
an object or an agent to play a role in an institution in order to gain specific
abilities, they should satisfy specific requirements as well. In powerJava roles
and organisations are implemented as Java classes. In particular, a role within
an institution is implemented as an inner class of the class that implements the
organisation. Moreover, the powers that a player of a role gains and the require-
ments that the player of the role should satisfy are implemented as methods of
the class that implements the role. In powerJade, organisations, roles and play-
ers are implemented as subclasses of the Jade agent class. The powers that the
player of a role gains and the requirements that a player of a role should satisfy
are implemented as Jade behaviours (associated to the role).

Finally, a recent programming language that is designed to support the im-
plementation of multi-agent organisations is 2OPL (Organisation Oriented Pro-
gramming) [30, 89]. This is a rule-based programming language that facilitates
the implementation of norm-based organizations. In this programming frame-
work, an organisation is considered as a software entity that exogenously coordi-
nates the interaction between agents and their shared environment. In particular,
the organisation is a software entity that manages the interaction between the
agents themselves and between agents and the shared environment. 2OPL pro-
vides programming constructs to specify 1) the initial state of an organisation,
2) the effects of agents actions in the shared environment, and 3) the applica-
ble norms and sanctions. In 2OPL norms can be either enforced by means of
sanctions or regimented. In the first case, agents are allowed to violate norms
after which sanctions are imposed. In the second case, norms are considered as
constraints that cannot be violated. The enforcement of norms by sanctions is
a way to guarantee higher autonomy for the agents and higher flexibility for
the multi-agent system. The interpreter of 2OPL is based on a cyclic control
process. At each cycle, the observable actions of the individual agents (i.e., com-
munication and environment actions) are monitored, the effects of the actions
are determined, and norms and sanction are imposed if necessary. An advantage
of 2OPL approach is its complete operational semantics such that normative
organisation programs can be formally analysed by means of verification tech-
niques [4]. This organisation oriented programming language is extended with
programming constructs that support the implementation of concepts such as
obligation, permission, prohibition, deadline, norm change, and conditional norm
[89, 87, 88].

4.3 Programming Languages for Multi-Agent Environments

A programming framework for multi-agent environments is CARTAGO (Com-
mon ARtifact Infrastructure for AGent Open environment) [77]. This framework
is based on the A&A model which proposes a working environment to be used

38

by agents for supporting their working activities. A working environment is con-
sidered as consisting of a set of artifacts organised in workspaces (containers of
artifacts). The artifacts are meant to encapsulate specific functionalities and can
be added, removed, and organised in the workspaces by agents at runtime. Ar-
tifacts can be used by agents through their usage interfaces that allow agents to
trigger and control the execution of artifacts’ operations and perceiving events
from them. Different operations are supported by artifact interfaces. An agent
can for example create, remove, or search for artifacts and workspaces. Agents
can also execute operations of artifacts and sense the events generated by the
artifacts, or inspect the artifacts by retrieving their descriptions. This framework
can be distributed in the sense that a working environment can consists of one
or more workspaces that can be mapped onto a different nodes of a network.
CARTAGO is implemented in Java and has been connected to various agent
platforms such as Jason and 2APL.

Beside this generic architecture and programming framework designed for the
development of environments, there have been many interesting environments
implemented using existing programming languages such as Java or C++. These
environments are initially developed in an ad-hoc manner either for one of the ex-
isting agent platforms such as 2APL, GOAL, Jadex, and Jason, as a stand-alone
application such as Unreal Tournament 2004, or as a simulation environment.
The availability of these implemented environments raises the question how they
can be (re)used and applied to arbitrary agent platforms. In practice, agent de-
velopers rebuild similar environments from scratch. Apart from this duplicating
works, the interaction between agents and environments are managed in an ad-
hoc manner making the reuse of the environments a dedicated task that depends
on the specific agent platform and the environment at hand. This problem has
lead to the initiative for creating a generic environment interface standard which
provides the required functionalities for connecting agents to environments in a
standardized manner [85]. If environments were developed using such a standard,
they could be exchanged freely between agent platforms that support the stan-
dard and thus would make already existing environments widely available. In
order to develop a generic environment interface standard various issues should
be addressed. An important issue is the right level of abstraction for modelling
the interaction between agents and environments. This generic environment in-
terface standard supports the interaction between agents and environment in two
ways. On the one hand, agents can perform actions, including sense action, in the
environment. On the other hand, the environment can send events to individual
agents. This interface provides constructs to establish and manage the relation
between agents with entities (agent bodies) in the environment, the registration
of agents by the interface, adding and removing entities from the environment,
and performing actions and retrieving percepts from the environment. Several
agent platforms such as 2APL, GOAL, and Jason have already integrated the
environment interface standard.

39

5 Current Trends

Existing agent-oriented programming languages are the result of continuous de-
velopments. Despite their characteristic differences, these developments and ex-
tensions have been quite similar causing the programming languages to converge
in the sense of providing programming constructs for the same set of concepts and
abstractions. For example, most agent-oriented programming languages provide
currently similar types of actions such as actions to modify an agent’s state, com-
munication actions, and external actions allowing individual agents to interact
with a shared environment. In the logic-based programming languages for BDI
architectures, an agent’s beliefs and goals are often implemented using Prolog
allowing the programmed agent to reason about its beliefs and goals. Most agent
programming languages provide constructs to process various types of events by
means of generating and executing plans. In order to respect programming prin-
ciples such as reuse and encapsulation, most agent programming languages pro-
vide constructs to support implementation of modules. The similarity between
these languages is not only due to similar programming constructs, the underly-
ing semantics of these languages converge as well. Programming languages with
declarative beliefs and goals establish rational constraints in their underlying
semantics by, for example, requiring that agents should have consistent beliefs
and that agents cannot aim at achieving the current (belief) state. Finally, the
development and execution platforms corresponding to agent programming lan-
guages also converge in the sense that they provide similar functionalities and
development tools. Most development platforms provide editors that support the
syntax of their corresponding programming languages, different tools to moni-
tor and control the execution of agents, and different platform facilities such as
agent management and directory facilitator.

An advance in the field of agent programming languages concerns the con-
cept of goals. Goals are essential for agents with pro-active behaviour [97]. The
initial focus of agent-oriented programming languages was on achievement goals,
which represent a desired state that the agent aim at reaching. In due course
other goal types have been studied, e.g., perform goal (the goal to execute cer-
tain actions), test goal (the goal to test an agent’s state), and maintain goal (the
goal to maintain a state) [18, 36, 39, 52]. In order to allow the implementation
of various goal types existing agent programming languages provide a variety of
constructs to represent and reason with these goal types. For example, JACK
[94] provides programming constructs to implement, among others, test, achieve,
insist, and maintain goals, and Jadex [69] has achieve, query, perform and main-
tain goals. The way in which goals are treated by these programming languages
differs. In Jadex goals are represented in XML in terms of a label/name and a
number of other parameters while JACK goals are particular types of events.
Moreover, neither JACK nor Jadex provide the formal semantics of their goal
types. Winikoff et al. [96] provides a survey of existing literature on goal types. A
more recent (theoretical) trend in this direction is to go beyond these goal types
and to introduce more expressive goal types or even a language for expressing
goal types. For example, Dastani et al. [34] proposes six types of multiple state

40

goals (goals expressing a property that should hold over a number of states),
while other approaches propose to take arbitrary Linear Temporal Logic (LTL)
formulae as goals [5, 8, 51, 58, 81]. The advantage of the approach proposed by
Dastani et al. is their computational setting. The six multiple state goal types
can be defined in terms of achieve and maintain goals. This makes it possible to
implement these goal types in the agent programming frameworks that already
have an operationalization of achieve and maintain goals.

From the software engineering point of view, the ultimate aim of design-
ing a multi-agent programming language is to support practitioners to develop
multi-agent systems for industrial applications. To this aim it is important that
programming languages satisfy essential principles in structured programming
such as modularity. Of course, the separation of concerns at the level of individual
agents, organisation, and environment support modularity in multi-agent pro-
gramming. However, the programming languages for agents, organisations, and
environments can be considered as specific programming languages that in turn
need to satisfy modularity as well. There have been some proposals for support-
ing modules in BDI-based programming languages, e.g., [19, 21, 48, 90, 32, 61]. In
these proposals, modularization is considered as a mechanism to structure an
individual agent’s program in separate modules, each encapsulating cognitive
components such as beliefs, goals, and plans that together model a specific func-
tionality and can be used to handle specific situations or tasks. However, the
way the modules are used in these programming approaches are different. For
example, in Jack [21] and Jadex [19], modules (which are also called capabilities)
are employed for information hiding and reusability by encapsulating different
cognitive components that together implement a specific capability/functionality
of the agent. In these approaches, the encapsulated components are used during
an agent’s execution to process events that are received by the agent. In other
approaches [48, 90], modules are used to realize a specific policy or mechanism
in order to control an agent execution. More specifically, modules in GOAL [48]
are considered as the ‘focus of execution’, which can be used to disambiguate
the application and execution of plans. This is done by assigning a mental state
condition (beliefs and/or goals) to each module. The modules whose conditions
are satisfied form the focus of an agent’s execution such that only plans from
these modules are applied and executed. In 3APL [90] a module is a set of plan-
ning rules that is associated with a specific goal indicating which planning rules
can be applied to achieve the goal. In other words, a module implements spe-
cific means for achieving specific goals. In 2APL [32] modules are introduced
for encapsulation of different cognitive components that together implement a
specific agent functionality. The significant difference with other approaches is
that a programmer can perform a wide range of operations on modules. These
module-related operations enable a programmer to directly and explicitly con-
trol when and how modules are used. For instance, a programmer can create an
instance of the module specification, query and update its internals, and execute
the updated module instance. An agent that executes a module instance, stops
deliberating on its current cognitive state and starts deliberating on a new cog-

41

nitive state that is encapsulated by the executed module instance. The proposed
notion of module can be used to implement a variety of agent concepts such as
agent role and agent profile. Recently, a modularization idea for Jason [61] have
been proposed. In this proposal, a module encapsulates a subset of an agent’s
functionalities and consists of cognitive ingredients such as belief, goal, and event
bases, a plan library, and a list of exported belief and goal predicates. An agent is
then defined as a composition of modules (modules cannot be nested), together
with a slightly modified version of the Jason’s original interpreter. Finally, it
should be noted that the concept of module as used by Novak and Dix [65] is
different than other approaches. A module in [65] is considered as one specific
cognitive component (e.g., an agent’s beliefs) and not as a functionality modelled
by different cognitive components. Note also that behaviours in Jade, which can
be used to implement an agent’s functionality, can be seen as a kind of modular
programming.

6 Current Challenges

There are many challenges to meet in the multi-agent programming research
field. Examples of these challenges are scalability and automatic code genera-
tion. In this overview, we focus on two challenges that require both theoretical
and practical investigations. The first challenge is a principle integration of pro-
gramming languages for individual agents, organisations, and environments. The
second challenge is the debugging and testing of multi-agent programs.

6.1 Integration of Programming Languages

Respecting the separation of concerns principle advocates separate program-
ming languages for the implementation of individual agents, environments, and
organisations. A multi-agent programming framework for the development of
multi-agent systems should therefore facilitate a systematic integration of the
corresponding programming languages. Ideally, one should be able to write pro-
grams for different components of a multi-agent system separately and inte-
grate these programs either by means of another program that indicates how
the programs of different components should interact and executed, or through
a development platform that facilitates an integrated execution of all involved
programs. It should be noted that this challenge is only relevant when differ-
ent components of multi-agent systems need to be programmed separately using
dedicated programming languages.

One proposal for integrating programming languages for various components
of multi-agent systems is based on the integration of 2APL and 2OPL. In this ap-
proach, a multi-agent program is implemented by specifying a number of agents
programmed in 2APL, one or more environments programmed in Java, and an
organisation programmed in 2OPL. An execution of such a multi-agent program
is a concurrent execution of the specified individual agents programs, the envi-
ronment program, and the organisation program. The execution of individual

42

agents programmed in 2APL may cause agents to interact with each other and
with the environment. The resulting actions are not directly effectuated in the
environment, but passed to the organisation implemented in 2OPL. The organ-
isation decides the effects of those actions based on the specified organisational
norms and sanctions. In particular, the performance of actions by individual
agents is effectuated by the organisation program, which allows/disallows ac-
tions and realizes the effect of actions in the environment. The organisation will
also evaluate the updated state of the environment with respect to the specified
organisational norms and impose sanctions when violations are detected. Impos-
ing sanctions is seen as specific updates of the environment state according to
the sanctions specified by the organisation. This integration approach views an
organisation as an exogenous coordination mechanism.

Another integration proposal is JaCaMo [12]. This approach aims at integrat-
ing Jason, Cartago, and Moise to program individual agents, environments, and
organisations, respectively. The idea is to integrate on the one hand Moise and
Cartago, and on the other hand Jason and Cartago. The integration of Moise
and Cartago is by means of organisational artifacts and based on the earlier
work on ORA4MAS [59]. The integration of Jason and Caratgo is through arti-
fact operations performed by the Jason agents. In this integrated approach, the
organisational infrastructure of a multi-agent system consists of organisational
artifacts and organisational agents that together are responsible for functionali-
ties concerning the management and enacting of the organisation. Organisational
agents manage organisational activities such as observing and reasoning about
organisation dynamics. The violation of norms is detected by organisational ar-
tifacts after which organisational agents have to deal with those violations. The
organisational artifacts and agents are intended to implement norm regimenta-
tion and enforcement by means of sanctions, as originally proposed in [30]. A
characteristic of this integration is that the management of organisational activi-
ties such as norm enforcement is the responsibility of the so-called organisational
agents. It is, however, not clear why such activities should be performed by an
agent rather than, for example, by the organisation itself. An agent has by defi-
nition its own objectives that is used to motivate its actions. It is the question
why norm enforcement should be modelled and programmed in terms of such
an agent.

6.2 Debugging and Testing Multi-Agent Programs

Debugging is the art of finding and resolving errors or possible defects in a
computer program. In general, there are various types of bugs such as syntax
bugs, semantic bugs (logical and concurrent bugs), or design bugs. Design bugs
arise before the actual programming and are based on erroneous design of soft-
ware programs. In contrast to design bugs, both syntax and semantic bugs arise
during programming and are related to the actual code of the programs. Al-
though syntax bugs depends on specification of programming languages and are
(most of the time) simple typos, which can easily be detected by the program
parser (compiler), semantic bugs are mistakes at the semantic level. Because

43

they often depend on the intention of the developer they can rarely be detected
automatically by the program parsers. Therefore, special tools are needed to
detect semantic bugs. The ease of the debugging experience is largely dependent
on the quality of these debugging tools and the ability of developers to work
with these tools.

The main challenge with respect to debugging multi-agent programs are the
semantic bugs caused by the execution of autonomous agent programs, and those
caused by the interaction between agents, environments, and organisations. The
bugs causing by the interaction between agents are often dealt with by means
of different types of visualization tools such as sniffer and causality graphs [9,
13, 25, 69, 16, 91]. The visualization tools allow the developer to browse through
exchanged messages, inspect the messages, and present them using different vi-
sualisation techniques. Debugging the interaction between agents, environments,
and organisations are still an unexplored research area. The semantic bugs caused
by the execution of individual agent programs are dealt with by a variety of tech-
niques such as breakpoints, assertions, and execution tracers [23, 84, 24, 9, 25, 13].
A breakpoint is a marker that can be placed in the program’s code to control
the program’s execution. When the marker is reached the program execution is
halted. Assertions are statements that can be annotated to specific elements of
the programming language. When an assertion is evaluated to false, a warning
is generated to inform the developer about the agent and the element where
the assertion is evaluated to false. The execution tracer is a standard tool that
is present in most multi-agent development frameworks. This is a window that
enables a developer to view, inspect, and trace an agent’s internal state, and to
start, stop, and step through the execution of the agent program.

Debugging agent programs that are based on BDI abstractions requires ad-
ditional tools to monitor and control temporal and cognitive properties of the
agent program executions. In [27], a debugging framework is proposed which is
based on a specification language to express temporal and cognitive execution
properties of multi-agent programs and a set of debugging tools. The expressions
of the specification language are related to the proposed debugging tools such
that the debugging tools are activated as soon as their associated properties
hold for the multi-agent program execution thus far. The specification language
is based on linear temporal logic extended with the BDI operators. Given an ex-
ecution of a multi-agent program, one can check if an agent drops a specific goal
when it is achieved, when two or more agents have the same beliefs, whether a
protocol is suited for a given task, whether important beliefs are communicated
and if they adopted/rejected once they are communicated.

Recent developments in multi-agent programming languages [41, 53, 89, 30]
have proposed specific programming constructs enabling the implementation of
social concepts such as norms, roles, obligations, and sanctions. Debugging such
multi-agent programs requires specific debugging constructs to specify properties
related to the social aspects and to find and resolve defects involved in such
programs. The presented debugging frameworks assume all agents are developed
on one single platform such that their executions for debugging purposes are not

44

distributed on different platforms. One important challenge and a future work on
debugging multi-agent systems remains the debugging of multi-agent programs
that run simultaneously on different platforms.

The techniques mentioned above are helpful when errors manifest themselves
directly to the developer or user. However, errors in a program do not always
manifest themselves directly. For mission and industrial critical systems it is nec-
essary to extensively test the program before deploying it. This testing should
remove as many bugs (and possible defects) as possible. However, it is infeasi-
ble to test every single situation the program could be in. A testing approach
proposed for multi-agent programs is proposed by Poutakidis and his colleagues
[71, 70, 95]. Testing is an indispensable part of evaluating multi-agent programs
and should therefore be integrated in the existing debugging approaches. This
allows the generation of a set of critical test traces which will be the subject of
debugging in post mortem mode.

7 Conclusion

The design and development of multi-agent programming languages is still a
main issue in the multi-agent programming community. From the software en-
gineering perspective, the aim is to propose programming languages that can
support direct and effective implementations of large-scale multi-agent systems
by proposing programming constructs to facilitate the implementation of ab-
stractions used in the analysis and design of multi-agent systems. Up until now
many multi-agent programming languages have been proposed. They differ from
each other in the set of abstractions, programming constructs, and principles
they convey. Although these programming languages are developing towards a
certain level of maturity in the sense that their programming concepts and op-
erations are well motivated and have profound semantics, a majority of them
are still not being employed for the development of large-scale industrial ap-
plications. Currently, these programming languages, in particular those that are
based on cognitive and social constructs, are mainly considered as research works
that aim at designing and prototyping high-level abstract programming patterns.

The incorporation of social and cognitive concepts in the design of multi-
agent programming languages requires semantic and computational analyses for
these concepts. Moreover, the development of multi-agent programming lan-
guages requires formal theories and computational techniques for representing
and reasoning about concepts such as beliefs, goals, actions, roles, norms, and
sanctions. For these reasons the design and development of multi-agent pro-
gramming languages have been attractive to researchers from various scientific
disciplines such as logic, artificial intelligence, philosophy, cognitive science, and
social science. The aim of multi-agent programming research field from this in-
terdisciplinary perspective is to propose computational models of multi-agent
systems, which may not necessarily satisfy the software engineering requirement
to support building large-scale industrial applications. Within this perspective,
multi-agent programming languages based on social and cognitive concepts can

45

be considered as formal and computational architectures for social organisations
and cognitive agents.

The state of the art in the field of multi-agent programming languages shows
the development of specialised programming languages for individual agents,
organisations, and environments. The main focus of multi-agent programming
community has been on the development of programming languages for individ-
ual agents. Although research on (formal) models for multi-agent organisations
and environments has relatively a long history, the development of program-
ming languages that are designed to support the implementation of multi-agent
organisations and environments is a recent phenomenon. The development of
programming languages for individual agents show a convergence in the sense
that they propose programming constructs for an established set of concepts and
abstractions. These programming languages differ from each other as they use
different programming styles (declarative, imperative, or both), support differ-
ent programming principles such as modularity, abstraction, recursion, exception
handling, support for legacy codes, and as their corresponding integrated devel-
opment environments provide different sets of functionalities such as editing,
debugging, and automatic generation of codes.

One of the current challenges in multi-agent programming research field is
the integration of programming languages for individual agents, multi-agent or-
ganisations and multi-agent environments. Although there have been several at-
tempts to integrate specific programming languages, the ultimate goal is a mech-
anism to facilitate the integration of arbitrary programming languages for indi-
vidual agents, multi-agent organisations, and multi-agent environments. A possi-
ble solution to realize such a goal is to design and develop standard interfaces that
can manage the interactions between individual agent programs, multi-agent or-
ganisation programs, and multi-agent environment programs. There have already
been some initiatives to establish standard interfaces for managing the interac-
tion of individual agent programs and environment programs, but the research
in this direction is still in a preliminary phase and needs support and collabo-
ration from the community. Another issue currently challenging the multi-agent
programming community is the debugging and testing of multi-agent programs.
There is a need for powerful debugging facilities and testing tools that can cope
with the distributed nature of multi-agent systems, the autonomy of individual
agents, and the interactions between individual agent, multi-agent organisation,
and multi-agent environment programs. There have been some initial attempts
for enriching debugging tools with expressive specification languages such that
tools can be initialized and activated when the execution of multi-agent programs
satisfy certain properties, but such attempts ignore multi-agent organisation and
environment programs.

As noticed before, this overview is by no means complete. There are still many
issues related to multi-agent programming that need to be investigated. Among
these issues are mechanisms to deal with plan failure, goal types, reasoning about
organisations and environments from an agent’s point of view, the integration of
concepts such as sensing, planning, acting, learning and emotions in the agent’s

46

deliberation process, the adaptivity of organisation and environment p based on
the executions of individual agent programs, and formal verification of multi-
agent programs.

References

1. T. Ågotnes, W. van der Hoek, and M. Wooldridge. Robust normative systems.
In Padgham, Parkes, Muller, and Parsons, editors, Proceedings of the Seventh In-
ternational Conference on Autonomous Agents and Multiagent Systems (AAMAS
2008), pages 747–754, Estoril, Portugal, May 2008. IFAMAAS/ACM DL.

2. F. Arbab. What do you mean, coordination? In Bulletin of the Dutch Association
for Theoretical Computer Science (NVTI, pages 11–22, 1998.

3. F. Arbab, L. Astefanoaei, F. de Boer, M. Dastani, J.-J.Ch. Meyer, and N. Tinner-
meier. Reo connectors as coordination artifacts in 2APL systems. In Proceedings
of the 11th Pacific Rim International Conference on Multi-Agents (PRIMA 2008),
volume LNCS 5357, pages 42–53. Springer, 2009.

4. L. Astefanoaei, M. Dastani, J.-J. Ch. Meyer, and F. Boer. On the semantics and
verification of normative multi-agent systems. International Journal of Universal
Computer Science, 15(13):2629–2652, 2009.

5. F. Bacchus and F. Kabanza. Planning for temporally extended goals. Annals of
Mathematics and Artificial Intelligence, 22(1-2):5–27, 1998.

6. M. Baldoni, G. Boella, M. Dorni, R. Grenna, and A. Mugnaini. powerJADE:
Organizations and roles as primitives in the JADE framework. In In of WOA
2008: Dagli oggetti agli agenti, Evoluzione dell’agent development: metodologie,
tool, piattaforme e linguaggi, pages 84–92, 2008.

7. M. Baldoni, G. Boella, and L. Van Der Torre. Roles as a coordination construct: In-
troducing powerJava. In In Proceedings of 1st International Workshop on Methods
and Tools for Coordinating Concurrent, Distributed and Mobile Systems, volume
150 (1), pages 9–29. Electronic Notes in Theoretical Computer Science, 2005.

8. C. Baral and J. Zhao. Non-monotonic temporal logics for goal specification. In
International Joint Conference on Artificial Intelligence (IJCAI), pages 236–242,
2007.

9. F. Bellifemine, F. Bergenti, G. Caire, and A. Poggi. JADE - a java agent de-
velopment framework. In Multi-Agent Programming: Languages, Platforms and
Applications. Kluwer, 2005.

10. F. Bergenti, M.-P. Gleizes, and F. Zambonelli (eds.). Methodologies and Software
Engineering for Agent Systems, volume 11 of Multiagent Systems, Artificial Soci-
eties, and Simulated Organizations. Kluwer Academic Publisher, 2004.

11. G. Boella and L. van der Torre. Substantive and procedural norms in normative
multiagent systems. Journal of Applied Logic, 6:152–171, 2008.

12. R. Bordini, J. Hubner, and A. Ricci. JaCaMo: Jason, Cartago, Moise. http:

//jacamo.sourceforge.net/.

13. R. Bordini, M. Wooldridge, and J. Hübner. Programming Multi-Agent Systems in
AgentSpeak using Jason (Wiley Series in Agent Technology). John Wiley & Sons,
2007.

14. R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni (eds.). Multi-Agent
Programming: Languages, Platforms and Applications, volume 15 of Multiagent
Systems, Artificial Societies, and Simulated Organizations. Springer, Berlin, 2005.

47

15. R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni (eds.). Multi-Agent
Programming: Languages, Tools and Applications. Springer, 2009.

16. J.A. Bot́ıa, J.M. Hernansaez, and A.F. Gómez-Skarmeta. On the application of
clustering techniques to support debugging large-scale multi-agent systems. In
PROMAS, pages 217–227, 2006.

17. A. Bracciali, N. Demetriou, U. Endriss, A. Kakas, W. Lu, P. Mancarella F. Sadri,
K. Stathis, G. Terreni, and F. Toni. The KGP model of agency for global comput-
ing: Computational model and prototype implementation. In Global Computing,
volume 3267 of Lecture Notes in Computer Science, pages 340–367. Springer, 2004.

18. L. Braubach and A. Pokahr. Representing long-term and interest BDI goals. In
Programming Multi-Agent Systems (ProMAS), 2009.

19. L. Braubach, A. Pokahr, and W. Lamersdorf. Extending the Capability Concept
for Flexible BDI Agent Modularization. In Proc. of ProMAS ’05, pages 139–155,
2005.

20. P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini. TROPOS:
An agent-oriented software development methodology. Journal of Autonomous
Agents and Multi-Agent Systems, 8(3):203–236, 2003.

21. P. Busetta, N. Howden, R. Ronnquist, and A. Hodgson. Structuring BDI Agents in
Functional Clusters. In N. Jennings and Y. Lesperance, editors, Intelligent Agents
VI: Theories, Architectures and Languages, pages 277–289, 2000.

22. P.R. Cohen and H.J. Levesque. Intention is choice with commitment. Artificial
Intelligence, 42, 1990.

23. R. Collier. Debugging agents in agent factory. ProMAS 2006, pages 229–248, 2007.
24. K. S. Barber D. N. Lam. Debugging agent behavior in an implemented agent

system. ProMAS 2004, pages 104–125, 2005.
25. M. Dastani. 2apl: a practical agent programming language. International Journal

of Autonomous Agents and Multi-Agent Systems, 16(3):214–248, 2008.
26. M. Dastani, F. Arbab, and F.S. de Boer. Coordination and composition in multi-

agnet systems. In Proceedings of the Fourth International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS’05), pages 439–446. 2005.

27. M. Dastani, J. Brandsema, A. Dubel, and J.-J.Ch. Meyer. Debugging bdi-based
multi-agent programs. In International Workshop on Programming Multi-Agent
Systems (ProMAS), 2009.

28. M. Dastani and J. Gomez-Sanz. Programming multi-agent systems. The Knowl-
edge Engineering Review, 20(2):151–164, 2006.

29. M. Dastani and J.J. Gomez-Sanz. Agentlink iii technical forum group, program-
ming multiagent systems. http://people.cs.uu.nl/mehdi/al3promas.html.

30. M. Dastani, D. Grossi, J.-J. Ch. Meyer, and N. Tinnemeier. Normative multi-agent
programs and their logics. In Post proceedings of the international workshop on
Knowledge Representation for Agents and Multi-Agent Systems (KRAMAS 2008),
volume LNAI 5605, pages 16–31. Springer, 2009.

31. M. Dastani, K. Hindriks, and J.J.Ch. Meyer. Specification and Verification of
Multi-agent Systems. Springer, 2010.

32. M. Dastani and B. R. Steunebrink. Operational semantics for bdi modules in
multi-agent programming. In Proceedings of the 10th international conference on
Computational logic in multi-agent systems, CLIMA’09, pages 83–101, Berlin, Hei-
delberg, 2010. Springer-Verlag.

33. M. Dastani, B. van Riemsdijk, F. Dignum, and J.-J.Ch. Meyer. A programming
language for cognitive agents: Goal directed 3APL. In Proceedings of ProMAS03.
LNAI 3067, Springer, Berlin, 2004.

48

34. M. Dastani, B. van Riemsdijk, and Winikoff. Rich goal types in agent programming.
In Proceedings of the Tenth International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2011), 2011.

35. M. Dastani, M.B. van Riemsdijk, and J.-J. Ch. Meyer. Programming multi-agent
systems in 3apl. In Multi-Agent Programming: Languages, Platforms and Applica-
tions. Kluwer, 2005.

36. M. Dastani, M.B. van Riemsdijk, and J.-J.Ch. Meyer. Goal types in agent program-
ming. In Proceedings of the 17th European Conference on Artificial Intelligence
(ECAI’06), 2006.

37. V. Dignum. A Model for Organizational Interaction. PhD thesis, Utrecht Univer-
sity, SIKS, 2004.

38. J. Dix and Y. Zhang. IMPACT: A multi-agent framework with declarativeseman-
tics. In Multi-Agent Programming: Languages, Platforms and Applications, page
6994. Kluwer, 2005.

39. S. Duff, J. Harland, and J. Thangarajah. On proactivity and maintenance goals. In
Autonomous Agents and Multi-Agent Systems (AAMAS), pages 1033–1040, Hako-
date, 2006.

40. M. Esteva, D. de la Cruz, and C. Sierra. ISLANDER: an electronic institutions
editor. In Proceedings of the First International Joint Conference on Autonomous
Agents and MultiAgent Systems (AAMAS 2002), pages 1045–1052, Bologna, Italy,
2002.

41. M. Esteva, J.A. Rodŕıguez-Aguilar, B. Rosell, and J.L. Arcos. AMELI: An agent-
based middleware for electronic institutions. In Proceedings of the Third Interna-
tional Joint Conference on Autonomous Agents and MultiAgent Systems (AAMAS
2004), pages 236–243, New York, US, July 2004.

42. J. Ferber. Multi-Agent Systems: An Introduction to Distributed Artificial Intelli-
gence. Addison-Wesley Longman Publishing, 1999.

43. M. Fisher. METATEM: The story so far. In Proceedings of the Third Interna-
tional Workshop on Programming Multiagent Systems (ProMAS-03), volume 3862
of Lecture Notes in Artificial Intelligence, pages 3–22. Springer Verlag, 2005.

44. A. Garcia-Camino, P. Noriega, and J. A. Rodriguez-Aguilar. Implementing norms
in electronic institutions. In Proceedings of the Fourth International Joint Con-
ference on Autonomous Agents and MultiAgent Systems (AAMAS 2005), pages
667–673, New York, NY, USA, 2005.

45. G. De Giacomo, Y. Lesperance, and H.J. Levesque. Congolog, a concurrent pro-
gramming language based on the situation calculus. Artificial Intelligence, 121(1-
2):109–169, 2000.

46. J. Gomez-Sanz and J. Pavon. Agent oriented software engineering with ingenias.
In Lecture Notes in Computer Science, volume 2691, pages 394 – 403. Springer,
2003.

47. D. Grossi. Designing Invisible Handcuffs. PhD thesis, Utrecht University, SIKS,
2007.

48. K. Hindriks. Modules as policy-based intentions: Modular agent programming in
GOAL. In Proc. of ProMAS ’07, volume 4908. Springer, 2008.

49. K. Hindriks. Programming rational agents in GOAL. In Multi-Agent Programming:
Languages and Tools and Applications, page 119157. Springer, 2009.

50. K. Hindriks, F. De Boer, W. Van der Hoek, and J.-J.Ch. Meyer. Agent program-
ming in 3APL. Autonomous Agents and Multi-Agent Systems, 2(4):357–401, 1999.

51. K. Hindriks, W. van der Hoek, and M.B. van Riemsdijk. Agent programming
with temporally extended goals. In Autonomous Agents and Multi-Agent Systems
(AAMAS), pages 137–144. IFAAMAS, 2009.

49

52. K. Hindriks and M.B. van Riemsdijk. Satisfying maintenance goals. In Declarative
Agent Languages and Technologies (DALT’07), volume 4897 of LNAI, pages 86–
103. Springer, 2008.

53. J. Hübner, J.S. Sichman, and O. Boissier. S −MOISE+: A middleware for devel-
oping organised multi-agent systems. In Proceedings of the international workshop
on Coordination, Organizations, Institutions, and Norms in Multi-Agent Systems,
volume 3913 of LNCS, pages 64–78. Springer, 2006.

54. J. Hübner, J.S. Sichman, and O. Boissier. Developing organised multiagent systems
using theMOISE+ model: programming issues at the system and agent levels. In-
ternational Journal of Agent-Oriented Software Engineering, 1(3/4):370–395, 2007.

55. J.F. Hübner, O. Boissier, R. Kitio, and A. Ricci. Instrumenting multi-agent organ-
isations with organisational artifacts and agents: Giving the organisational power
back to the agents. International Journal of Autonomous Agents and Multi-Agent
Systems, 20:369–400, 2010.

56. A. J. I. Jones and M. Sergot. On the characterization of law and computer systems.
In J.-J. Ch. Meyer and R.J. Wieringa, editors, Deontic Logic in Computer Science:
Normative System Specification, pages 275–307. John Wiley & Sons, 1993.

57. A. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni. The KGP model of
agency. In The 16th European Conference on Artificial Intelligence, pages 33–37,
2004.

58. S.M. Khan and Y. Lespérance. A logical account of prioritized goals and their
dynamics. In G. Lakemeyer, L. Morgenstern, and M. A. Williams, editors, Proc.
of the 9th International Symposium on Logical Formalizations of Commonsense
Reasoning, pages 85–90, 2009.

59. R. Kitio, O. Boissier, J. Hübner, and A. Ricci. Organisational artifacts and agents
for open multi-agent organisations: ”giving the power back to the agents”. In
Proceedings of the 2007 international conference on Coordination, organizations,
institutions, and norms in agent systems III, COIN’07, pages 171–186, Berlin,
Heidelberg, 2008. Springer-Verlag.

60. J. Leite, J. Alferes, and L.M. Pereira. Minerva — A dynamic logic programming
agent architecture. In J.-J.Ch. Meyer and M. Tambe, editors, Pre-proceedings of the
Eighth International Workshop on Agent Theories, Architectures, and Languages
(ATAL-2001), pages 133–145, 2001.

61. N. Madden and B. Logan. Modularity and compositionality in jason. In
L. Braubach, J.-P. Briot, and J. Thangarajah, editors, Programming Multi-Agent
Systems: 7th International Workshop, ProMAS 2009, Budapest, Hungary, May 10-
15, 2009. Revised Selected Papers, number 5919 in LNAI, pages 237–253, Budapest,
2009. Springer.

62. J.-J.Ch. Meyer, W. van der Hoek, and B. van Linder. A logical approach to the
dynamics of commitments. Arificial Intelligence, 113:1–40, 1999.

63. J.P. Müller. The Design of Autonomous Agents A Layered Approach, volume 1177
of Lecture Notes in Artificial Intelligence. Springer-Verlag, 1996.

64. R. Nair and M. Tambe. Hybrid bdi-pomdp framework for multiagent teaming.
Journal of Artificial Intelligence Research, 23:367–420, 2005.

65. P. Novák and J. Dix. Modular bdi architecture. In Proceedings of the AAMAS’06,
2006.

66. A. Omicini. Formal respect in the a&a perspective. Electronic Notes Theoretical
Computer Science, 175(2):97–117, 2007.

67. L. Padgham and M. Winikoff. Prometheus: A methodology for developing intelli-
gent agents. In Lecture Notes in Artificial Intelligence, volume 2585, pages 174 –
185. Springer, 2003.

50

68. H. Van Dyke Parunak and D. Weyns. Guest editors’ introduction, special issue
on environments for multi-agent systems. Autonomous Agents and Multi-Agent
Systems, 14(1):1–4, 2007.

69. A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A BDI reasoning engine. In
Multi-Agent Programming: Languages, Platforms and Applications. Kluwer, 2005.

70. D. Poutakidis, L. Padgham, and M. Winikoff. Debugging multi-agent systems using
design artifacts: The case of interaction protocols. In In Proceedings of AAMAS-02,
pages 960–967, 2002.

71. D. Poutakidis, L. Padgham, and M. Winikoff. An exploration of bugs and de-
bugging in multi-agent systems. In In Proceedings of the 14th International Sym-
posium on Methodologies for Intelligent Systems (ISMIS), pages 628–632. ACM
Press, 2003.

72. H. Prakken and M. Sergot. Contrary-to-duty obligations. Studia Logica, 57:91–115,
1996.

73. A.S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language.
In Rudy van Hoe, editor, Proceedings of the Seventh European Workshop on Mod-
elling Autonomous Agents in a Multi-Agent World (MAAMAW’96), Eindhoven,
The Netherlands, 1996.

74. A.S. Rao and M.P. Georgeff. Modeling rational agents within a BDI-architecture.
In J. Allen, R. Fikes, and E. Sandewall, editors, Proceedings of the Second In-
ternational Conference on Principles of Knowledge Representation and Reasoning
(KR’91), pages 473–484. Morgan Kaufmann, 1991.

75. A.S. Rao and M.P. Georgeff. BDI agents: From theory to practice. In J. Allen,
R. Fikes, and E. Sandewall, editors, Proceedings of the First International Confer-
ence on Multi-Agent Systems (ICMAS’95), 1995.

76. G. Rens, A. Ferrein, and E. van der Poel. A bdi agent architecture for a pomdp
planner. In Nineth International Symposium on Logical Formalizations of Com-
monsense Reasoning, Toronto, Canada, 2009.

77. A. Ricci, M. Viroli, and A. Omicini. Cartago : A framework for prototyping artifact-
based environments in mas. In E4MAS, pages 67–86, 2006.

78. F. Sadri. Using the KGP model of agency to design applications. In CLIMA VI,
volume 3900, pages 165–185. Springer, 2005.

79. S. Sardina, G. De Giacomo, Y. Lespérance, and H.J. Levesque. On the semantics of
deliberation in indigolog from theory to implementation. Annals of Mathematics
and Artificial Intelligence, 41(2-4):259–299, 2004.

80. A. El Fallah Seghrouchni and A. Suna. CLAIM and SyMPA: A programming
environment for intelligent and mobile agents. In Multi-Agent Programming: Lan-
guages, Platforms and Applications, pages 95–122. Kluwer, 2005.

81. S. Shapiro and G. Brewka. Dynamic interactions between goals and beliefs. In
International Joint Conference on Artificial Intelligence (IJCAI), pages 2625–2630,
2007.

82. Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60:51–92, 1993.
83. V. Torres Silva. From the specification to the implementation of norms: an au-

tomatic approach to generate rules from norms to govern the behavior of agents.
JAAMAS, 17(1):113–155, 2008.

84. J. Sudeikat, L. Braubach, A. Pokahr, W. Lamersdorf, and W. Renz. Validation of
BDI agents. ProMAS 2006, pages 185–200, 2007.

85. K. Hindriks M. Dastani R. Bordini J. Hubner A. Pokahr T. Behrens, J. Dix and
L. Braubach. An interface for agent-environment interaction. In The Eighth Inter-
national Workshop on Programming Multi-agent Systems (ProMAS10). Springer,
2010.

51

86. M. Tasaki, Y. Yabu, Y. Iwanari, M. Yokoo, M. Tambe, J. Marecki, and P. Varakan-
tham. Introducing communication in dis-pomdps with locality of interaction.
Web Intelligence and Intelligent Agent Technology, IEEE/WIC/ACM Interna-
tional Conference on, 2:169–175, 2008.

87. N. Tinnemeier, M. Dastani, and J.-J. Ch. Meyer. Roles and norms for program-
ming agent organizations. In Decker, Sichman, Sierra, and Castelfranchi, editors,
Proceedings of the Eight International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2009), pages 121–128. IFAMAAS/ACM DL, 2009.

88. N. Tinnemeier, M. Dastani, and J.-J. Ch. Meyer. Programming norm change. In
van der Hoek, Kaminka, Lespérance, Luck, and Sen, editors, Proceedings of the
Ninth International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2010), pages 957–964. IFAMAAS/ACM DL, 2010.

89. N. Tinnemeier, M. Dastani, J.-J. Ch. Meyer, and L. van der Torre. Programming
normative artifacts with declarative obligations and prohibitions. In Proceedings
of IEEE/WIC/ACM International Joint Conference on Web Intelligence and In-
telligent Agent Technology, pages 145–152. IEEE Computer Society, 2009.

90. M. B. van Riemsdijk, M. Dastani, J.-J. Ch. Meyer, and F. S. de Boer. Goal-
Oriented Modularity in Agent Programming. In Proceedings of AAMAS’06, pages
1271–1278, 2006.

91. G. Vigueras and J. A. Bot́ıa. Tracking causality by visualization of multi-agent
interactions using causality graphs. ProMAS 2007, pages 190–204, 2008.

92. G. Weiss. Multiagent systems. A modern approach to distributed artificial intelli-
gence. The MIT Press, 1999.

93. D. Weyns, H. Van Dyke Parunak, F. Michel, T. Holvoet, and J. Ferber, editors.
Environments for Multiagent Systems State-of-the-Art and Research Challenges,
volume 3374 of Lecture Notes in Computer Science. Springer, 2004.

94. M. Winikoff. JACKTM intelligent agents: An industrial strength platform. In
Multi-Agent Programming: Languages, Platforms and Applications. Kluwer, 2005.

95. M. Winikoff. Assurance of agent systems: What role should formal verification
play? In Mehdi Dastani, Koen V. Hindriks, and John-Jules Meyer, editors, Specifi-
cation and Verification of Multi-agent Systems, pages 353–383. ACM Press, 2010.

96. M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah. Declarative and proce-
dural goals in intelligent agent systems. In Proceedings of the eighth international
conference on principles of knowledge respresentation and reasoning (KR2002),
Toulouse, 2002.

97. M. Wooldridge. An Introduction to MultiAgent Systems (second edition). Wiley,
2009.

98. F. Zambonelli, N.R. Jennings, and M. Wooldridge. Developing multiagent sys-
tems: The Gaia methodology. ACM Transactions on Software Engineering and
Methodology (TOSEM), 12(3):317–370, 2003.

52

On the Engineering of Multi Agent
Organizations

Virginia Dignum1, Huib Aldewereld2, and Frank Dignum2

1 Department of Technology, Policy and Management, Delft University of
Technology, The Netherlands

2 Department of Computer Science, Utrecht University, The Netherlands

Abstract. In this paper we discuss the different approaches in modelling
and implementing organizational concepts for Multi Agent Systems. We
argue that each approach has its own advantages and disadvantages. It
depends on characteristics of the domain which approach suits best. We
give a rough sketch of some heuristics of choosing an agent organization
approach based on the domain characteristics and also show implemen-
tation consequences of choosing a particular approach.

1 Introduction

The increasingly complex requirements of software systems are originating a
growing interest in organizational approaches to develop complex and distributed
software systems. The use of societal concepts, such as organizations and norms,
is commonly accepted as a suitable modeling approach in Multi Agent Systems
(MAS) such as described in [14].

Traditionally, MAS considers organisations from an agent perspective, where
the focus is on defining the organisational capabilities that agents should possess
in order to act within an organization. In this sense, the organisation is implicit
in the agents’ specification. The explicit definition of the organisational struc-
ture of the domain, as advocated by agent organization approaches (cf. section
2) provides abstractions to describe positions, relationships, and norms or rules,
independently from the agents’ design. Implicit organisations of agents can be
seen as a loosely-coupled network of problem-solvers [26], where each agent must
be equipped with the social knowledge necessary to behave in the system. In ex-
plicit organisations, the system is capable to coordinate agent activity even when
agents themselves are not aware of the social rules of the system. According to
the literature, organisational models can moreover be conceived along two main
points of view: agent centered (also called individual, internal or emergent per-
spective) and system centered (also called prescriptive, organisational, external
or institutional perspective) [24, 34, 35].

The organisational view mostly originates from work on organisational the-
ory, business process reengineering, and task analysis. This view is particularly
relevant to situations where it is needed to control or prescribe the behavior of a
society. In short, the organizational stance is meant to control and prescribe sys-
tems by describing desired behavior on a high level of abstraction. In most cases,

53

global processes (objectives, tasks, input / output) will be described explicitly
and distributes top-down to guide the collective behavior of individuals. In this
view, if individuals are described, they are likely to be individual abstractions
(e.g. roles, functions) specified to conform to the organizational objectives.

The individual view originates from social science and anthropology. This
view is mainly meant to provide understanding or to describe the behavior of a
society. This individual view makes collective behavior emerge bottom-up from
the individual’s behavior, and describes actual behavior on a high level of detail.
Global objectives will be implicit in the practices and activities of individuals.

In this paper, we argue that these two different approaches to organisations
are both valuable to develop systems and maintain that the choice for one or
another is determined by its fit to the characteristics of the application domain.
Taking organizational theory as a starting point we identify a number of domain
characteristics such as locus of control, existence of global goals, emergence,
dynamicity of the domain, etc. As such, this approach can be used as a starting
point in determining what type of MAS should be developed for which type of
situation (and thus can co-determine agent methodology, platform, etc.).

The paper is organised as follows. In section 2 we position different existing
organization-based approaches to MAS along these organization dimensions. In
section 3 we link domain characteristics and organizational approach and in
section 4 we discuss the implementation complexity of the different frameworks
and the required/assumed agent attitudes towards the framework. Finally, we
present our conclusions in section 5.

2 Related Work / Organization vs. Autonomy

Multi-agent organizations have been motivated as a proper way to deal with
(coordination) problems that can arise from agent autonomy, especially in open
MAS [21], where we do not know what kind of agents will enter into the system
[13, 23]. In this context, the organization can be seen as a set of behavioural
rules accepted and adopted by a group of agents to facilitate interaction and the
achievement of individual and global objectives. Many approaches to organizing
agent systems have been proposed in MAS research varying on explicitness of
the organizational representation and whether the organization is represented
internally or externally. See Figure 1 for an overview of some well-known frame-
works.

The horizontal implicit-explicit axis represents the amount of (explicit) rep-
resentation of the organizational model. Approaches on the far left have little
to no representation of the organization. The organization is emergent from the
behavior of the agents or is derivable from the concepts used in agents’ program-
ming. The approaches on the far right have the organizational model completely
represented, separate from the agents. The vertical internal-external axis depicts
the level of externality of the representation. Approaches on the bottom require
(parts of) the organizational model implemented within the agents, whereas the

54

!"#$%&'%(%)*+
%,*-.!+

/0123+

4536/+7+
"),%-$8%9"-'
%(%)*+%,*-.!+

:41;37+

"),%-$8%9"-'
")$*-.*<+

=)",)%>>$-,+

1;0/?@36+

:/;+

External

Internal

Implicit Explicit

Fig. 1. Classification of organizational frameworks

approaches on the top end have a (common) shared representation of the orga-
nization.

In the next section we look at how the position within this diagram influences
the implementation of a system in that framework and how this classification
can be used to select the best framework for solving a problem domain. First,
let us look in a bit more detail to the frameworks in Figure 1 to see why they
are in that position.

MAS. ‘Traditional’ multi-agent systems (e.g., GAIA [36], PROMETHEUS [27])
only use organizational concepts in the mind of the designer; that is, any
organizational elements used for the coordination of a traditional MAS are
translated by the designer into agent code. Intrinsically, organizational changes
or changes to organizational ‘structure’ (if it can be called as such) require re-
programming of all the agents in the system. It is, in that sense, the absolute
cornerstone of our diagram, because the organization is both fully internal
(represented in the agents’ code) and implicit (all organizational concepts
are translated into coordination methods/functions within the agent).

Organization-oriented programming. A recently proposed change in the
agent programming paradigm [29] allows for the use of organizational con-
cepts as programming constructs, similar to the idea of using agent con-
cepts as programming constructs (in contrast to object-oriented concepts,
for example). This work claims that these changes should make it easier to
program agents that are organizationally adapt, since the agents can be de-
veloped with programming elements on the same level of abstraction. This
makes the approach more explicit than the ‘traditional’ MAS approaches, yet
keeps the organizational definitions internal to the agents, thus still requiring
reprogramming the agents to accommodate organizational changes.

ISLANDER. The ISLANDER ‘family’ of organization specifications is more
explicit than the previous frameworks in that it has a single explicit rep-

55

resentation of the organization (the ISLANDER specification, [17]). It uses
roles and norm descriptions to structure the MAS. In [32] the specification
was used to generate a specific type of agents suitable to enact the speci-
fication, resulting in an internal representation. In the more recent version
called AMELI [18], the specification is used as a definition of a platform
where agents can, through governors, join and participate in the system. Al-
though the organizational specification is no longer required to be a part of
the agents, the governors need to be specifically engineered to accomodate
the organization (the specification is now a part of them). Due to the re-
striction that governors filter all actions performed by a participating agent
and only allows the performance of the correct action, the agents still need
a substantial amount of knowledge of the organization’s inner workings.

MOISE+. MOISE+ [23] uses a similar approach to AMELI in filtering the ac-
tions of the agents participating in the organization. AMELI called them gov-
ernors, MOISE+ calls them OrgBoxes, which facilitates the interactions be-
tween the agent and the organization (including interactions between agents
in the same organization). We consider MOISE+ to be slightly more explicit
than ISLANDER due to the more extensive normative element. ISLANDER
captures most organizational norms in its interaction definitions, which, in
principle, cannot be violated (due to the use of governors that keep the
agents ‘on the right track’). MOISE+, on the other hand, has a much more
prominent place for deontic norms, which has the benefit of giving the agents
more freedom in choosing possible actions (thus increasing the autonomy of
the participants).

ALIVE. The ALIVE framework [19] uses an OperA-based organizational model
[13, 1] that is used to define and generate the code of the enacting agents.
The difference between ALIVE and the approach used in [32] is that the
organizational model remains available to the system after the agents have
been generated, that is, the model is not just used to generate the code of the
agents, but the agents are also enabled to read and use the organizational
model at runtime (e.g., the agents used the organizational model at runtime
to validate their plans with respect to the organizational norms). Moreover,
due to the Model-Driven Architecture approach used in ALIVE, explicit
links are available between agent elements and organizational elements. In
this sense, the organizational model is more explicit than in the ISLANDER
approach. Concerning internal-external representation, the model is used in
both ways since it is used to generate the agents (internal representation) as
well as used as guideline during runtime (external representation).

Organization-aware agents. Recently an approach has been proposed [30,
31] where the agents are enabled to read and understand organizational
models.In this sense, the organization is defined separate from the agents,
and makes no assumptions about which agents enact what roles, making
it extremely explicit. It is also more external than the other approaches as
the organization only exists as a (shared) specification between the agents.
The agents need the capabilities to understand the organization specification
(e.g. in [30] the OperA model is used), but do not need to be programmed

56

with parts of the organization model a priori. Moreover, the agents need
to be extended with capabilities for role enactment, that is, to determine
whether they are capable and/or interested to play a particular role in the
organization.

Social-aware agents. The social-aware agents shown in the top-left corner of
Figure 1 corresponds to the (philosophical) idea of agents that can determine
social context and work in environments of social emergence (for instance,
see [9, 10, 12]). The agents of such a system derive their intended role in the
‘organization’ from their social context, meaning that the organization is
more or less emergent and thus not a part of the agents themselves. The
organization is also not represented in any form, but emerges from agent
interactions (or is derived from the behaviors of the agents). No current
implementation of such systems is known (at this time).

3 Deciding on Organization Design

In this section, we discuss the approaches to organization in MAS presented in
section 2, their characteristics and aims and their suitability to different problem
domains as identified in [15].

An important issue that must be taken into account in order for agent tech-
nology to be taken up by the main computer industry is the means to perform
domain analysis that informs the decision of using a specific type of agent system
and a design methodology fitting with that type of agents.
Several attempts have been made already to give a comprehensive classification
of agent types (see e.g. [20]) and of intrinsic characteristics of agent systems,
such as autonomy [6] or interaction [28]. However, these classifications are made
with the purpose to classify the agent systems based on technical features. E.g.
mobile agents versus static agents. Instead of using technical aspects as starting
point to distinguish agent types and methodologies we use organizational and
human social phenomena [8, 16, 2], because the design of MAS resembles that
of human organizations in many respects. In both cases we want to coordinate
a number of distributed, autonomous entities in such a way that the system
as a whole will optimally function in its environment. In human organizations,
design mostly adopts a multi-contingency view [5], which says that an organi-
zation’s design should be chosen based on the multi-dimensional characteristics
of a particular context. These characteristics include structural (goals, strategy
and structure) and human (work processes, people, coordination and control)
components.

The characteristics of a domain should therefore lead the decision process
towards the choice of a system architecture. As such, we posit that the devel-
opment and analysis of system design should follow similar dimensions to those
used in organizational theory (OT). Based on OT research, we group domain
characteristics into different design dimensions described in the remainder of this
section. Each dimension should be interpreted as a sliding scale where the cur-
rent (or the desired) situation of an application domain can be plotted between
the two extreme values.

57

In [15], we apply this classification to the analysis of concrete applications
developed in practice, identified through a survey and literature research. In the
following, we briefly describe the main characteristics of domains that influence
the choice of organization approach.

Complexity of a domain refers to the number of factors and their interdepen-
dencies that must be considered for operation in a domain. In domains with
low complexity, only a few factors need to be considered, and they have few
interdependencies. In highly complex domains, even minor isolated changes can
provoke major changes in the total system.
Uncertainty refers to the level of understanding of the environment behavior.
Uncertain contexts are characterized by a lack of information, limited capabili-
ties, ambiguity and unpredictability. Uncertainty means that forecasting is less
accurate and the future is unclear. Predictable domains are easier to forecast and
the effects of particular courses of action are likely to be understood beforehand.
Environment is the space in which the system exists. Open environments pose
no restriction on the agents joining the system. On the other extreme, in closed
environments, only agents whose behavior is fully known can join the system.
Agents in closed systems are often explicitly designed to cooperate towards a
common goal and are often implemented in combination with the whole system
[37].
Emergence is the arising of patterns, structures, or properties that cannot be
explained by the system’s components and their interactions. Emergent systems
can be seen as conglomerations of single entities with hardly any fixed interaction
or explicit social structure. There is no notion of common goals or plans, and
entities are free to enter or not in interaction with others. In designed systems
structure is determined by organizational design, which is independent of the
entities themselves. Such structures implement the idea that interactions occur
not just by accident but aim at achieving some desired global goals [16].
Goal Autonomy. Autonomy is often taken as a defining property of agents.
However, in many cases, people, groups, and departments are not really com-
pletely autonomous, in the sense that they are not free to determine their ob-
jectives but only their plans on how to reach those objectives. Castelfranchi has
separated autonomy from agenthood [7]. Goal autonomy means that individual
entities are able to reason about which goals to adopt and fulfill, and are thus
able to determine whether or not to accept a certain position in an organization,
by reasoning about the goals associated with that position.
Control activities involve decisions on when to invoke and the amount of effort
to put into scheduling and coordinating domain activities. In centralized con-
trol, control decisions are specific for one or more roles in the organization. It
determines different levels of autonomy for agents. Distributed or decentralized
control means that (all) roles are collectively responsible for decisions which are
achieved by collaboration or consensus [3].

Table 1 gives an overview of the domain characteristics associated with dif-
ferent approaches to agent organizations. In this table, we summarize the char-
acteristics of the application domain that require different agent system types.

58

This approach is initial and will require further evaluation and refinement in
order to provide fully methodological guidance for system choice. Note that this
only describes ‘ideal’ situations, when all values of a given domain will fall into
the same column in table 1 and the domain is thus a perfect fit to that type of
agent system. In reality, most situations will fall into different types. A guideline
to the evaluation of misfits is to consider the relative ‘importance’ of the char-
acteristic for the determination of the system type. Some domain characteristics
can be seen as stronger indicators of an agent system type than others.

Emergent Implicit Explicit
Domain Features Organization Organization Organization

Complexity Low Medium High

Uncertainty High Low High

Openness - Closed Open

Social Configuration Emergent Designed Variable

Goal Autonomy - (agents have no
self reflection)

No (agent goals
include organiza-
tional goals)

Yes (negotiate con-
ditions)

Locus of Control Local Local Global

Example frameworks ADELFE [4] Prometheus [27] OperA [1]
MASS [25] Gaia [36] MOISE+ [23]

AMELI [18]
Table 1. Agent system choice guidelines.

4 Engineering Organizations

In the previous sections we have compared different frameworks with respect to
the externality and explicitness of the organization model. We showed that this
has an effect on the sort of domains where the framework works best. In this
section we look at the implementation complexity of the different frameworks
and the required/assumed agent attitudes towards the framework.

4.1 Programming Agents

The traditional (‘pre-2000’) method of implementing complex MAS with orga-
nizational aspects was through enriching the agents’ code with the coordination
aspects needed to have organization(-like) behavior. A limitation of these ap-
proaches (as argumented by, e.g., [33]) is the fact that these traditional methods
are typically assuming systems to be closed; that is to say, all the agents in the
system are to be designed and implemented either 1) by the same developer,
or 2) according to and within fixed specifications that enable the organizational
aspects. For that fact, all agents are required to be homogeneous with respect
to coordination aspects.

59

All aspects of the organization (which role the agent plays, how the roles are
to interact, what to expect from other roles, etc.) have to be implemented in the
agents. Because traditional agent programming paradigms do not include orga-
nizational concepts in the programming language itself, all of these mentioned
organizational aspects have to be translated to existing language constructs (e.g.,
beliefs, goals, planning rules).

Since the agents that will enact the organization have to be programmed
anyway (regardless of the framework chosen), one can consider the implemen-
tational burden of organizational MAS to be rather low. During the “normal”
design phase of the agents, the organizational aspects are envisioned and in-
corporated into the agents’ code. The major disadvantage of these approaches
becomes apparent when looking at changing the organization at a later stage.
All of the organizational aspects are deep-rooted within the agents’ code. More-
over, many of the organizational aspects can be hard to locate since they had to
be translated to beliefs, goals, etc. Finding and revising the organization in the
MAS thus comes close to a major code rewrite of the MAS itself.

4.2 Organization through Interface

In pursuit of more open agent systems the coordination aspects (organization)
of MAS was moved outside the agents. Several frameworks propose a interface
component, or interface agent, to regulate the activity of agents within the orga-
nizations they belong to. Such approaches support external explicit specification
of organizations but limit the activities of the agents within the organization
to those described and allowed by the organization. When an agent desires to
(1) adopt a role, (2) send a message to another agent in the organization, or (3)
otherwise interact with the organization, it has to ask this service form the inter-
face. This is the case of the OrgBox in S-Moise+, Teamcore proxy in KARMA,
and governor in AMELI.

This interface is used to mediate the participation of an external agent within
the institution. This enables operation in open environments where heteroge-
neous agents can join the organization. Organizations are then composed of
interface agents and internal agents. Interface agents can communicate with ex-
ternal agents while the rest of roles in the organization are not accessible to
external agents. In order for agents to communicate with their interface, they
are solely required to be capable of opening a communication channel. Interface
agents control the activity of external agents in the organization allowing or
blocking agent requests as they meet or not organizational aims. As such agents
are not free to decide on the violation of organizational norms. The interface
agent can also respond to information requests, monitor agents’ obligations and
inform about the events the agent must be aware of within the organization.

While each of these tries to move the organization outside of the agents, they
each still require that the agent has large amounts of knowledge about the inner-
organizational workings to function within the organization at all [11]. Typically,
incorrect behavior and erroneous interactions are ignored by the middleware.
This ranges from interactions outside the scope of the organization to behavior

60

that leads to the violation of norms and even interactions that could be correct
but are not expected by the specification at that time.

In that respect the implementation requires the agents to have sufficient
knowledge about the organizational working. The agents need to know exactly
what is expected of them, and at which time, to (successfully) participate in the
organization. While this is to be expected to an extend, the implementations
typically are too restrictive and provide outside agents with too little information
to function correctly. While the control over the agents in the organization has
shifted to the middleware, the organization itself (the objectives, the roles, the
role interactions) are still very much a part of the agents.

The change to organizations in the middleware has benefits over the tra-
ditional approaches since changes to the organization are easier to make. The
organization is represented more externally in the middleware and usually in or-
ganizational concepts. This makes finding the right components to change easier.
However, since the organization is also embedded in the agents, these have to be
changed as well! The organizational middleware thus gained us a more explicit
representation (useful to see design choices at a later stage), but also increased
the implementational burden (one now has to design and maintain both the
agents and the middleware).

4.3 From Explicit Organization to Agents

In figure 1 we discussed two approaches with an explicit modeling of the organi-
zation; ALIVE [19] and organization-aware agents [30]. In the following we take
the OperA framework as example of explicit modelling of organization. OperA
assumes a clear separation between the agents in the system and the roles in the
organization. In this way, the organization abstracts from the actual participants
and only describes the aims and concerns of the organization with respect to the
social system. The two approaches mentioned earlier differ on the externality of
the organization; we look at each in more detail below.

Generating Agents. The ALIVE approach [19] builds on principles from
Model Driven Engineering (MDE) by using meta-models and model transforma-
tions to generate agent-code based on organizational specifications. The defining
characteristic of MDE is the use of models to represent the important aspects of
the system, be it requirements, use cases, or implementation-level artifacts such
as code. The Model Driven Development promotes the automatic transforma-
tion of abstracted models into specific implementation technologies, by a series
of predefined model transformations.

Following the MDE approach, depicted in the left of Figure 2 a transfor-
mation is defined between the organizational meta-model (the meta-model of
OperA in the ALIVE approach) and the meta-model of a specific MAS archi-
tecture. Using this transformation and a domain specific organizational model,
a MAS can be generated that complies to the particular MAS meta-model and
implements the organizational model defined in the OperA model.

61

OperA
Meta Model

OperA
Model

MAS
Meta Model

MAS
Model

Domain
Independent

Domain
Specific

transforms

instantiates

generates

conforms

OperA
Meta Model

OperA
Model

MAS
Meta Model

MAS
Model

instantiates

uses/compliesunderstands

Domain
Independent

Domain
Specific

Fig. 2. MDE to generate agents (left) and for use by organization-aware agents (right).

A limitation of this approach stems from the high-level of abstraction of the
OperA model used. OperA only describes the aspects of the system relevant
to the organization, often leaving out details about concrete interactions (pro-
tocols, plans) and domain specific elements (actions, capabilities). In order to
have a complete implementation, these details have to be added (to the MAS,
or to an intermediate model). In a sense, one is modeling both the organiza-
tion (in OperA) and the MAS separately, thus increasing the implementational
complexity and burden.

Moreover, since the OperA model is transformed into a MAS, changes to the
organization require a rewrite of the MAS (like in the traditional approaches, all
details will be deep-rooted in the agents’ code). However, due to the use of MDE,
the organization and all the links between the organization and the MAS have
been explicitly modeled, making the rewrite quite simple; after making changes
to the organization, a re-transformation of the organizational model to the MAS
should make most of the revisions required.

Organization-Aware Agents. The other approach is by using organization-
aware agents [30, 31]. This approach requires agents that are able to understand
the OperA meta-model such that they can enact roles in an organization defined
by a domain-specific model (cf. Figure 2 (right)). Agents who want to enter
and play roles in an organization are expected to comprehend and reason about
the organizational specification, if they are to operate effectively and flexibly in
the organization. This implies that the agents should have reflective capabilities
with respect to their own goals, beliefs, perceptions and action potential. In [30]
it is investigated how GOAL [22] agents can determine whether they have the
necessary capabilities to play roles in an (OperA) organization.

Since no implementation currently exists, it is hard to name all the advan-
tages and disadvantages of this approach compared to those previously men-
tioned. A major concern could be that the development of agents that are
organization-aware takes a lot of effort, but on the other hand it can be raised
that these agents should be extremely flexible and should be able to be reused
in various different organizations after very few changes.

62

5 Conclusions and future work

In this paper, we have explored how the concept of organization can be used
to engineer MAS. An advantage of considering organizations as a first order
concept, is that we can study the global aspects of system independently from
the particulars of the individuals involved, i.e. without having to give formal
accounts of the specific way an individual is designed and motivated.

We have also indicated the different approaches to representing organizations
for MAS. Rather than advocating a particular approach as being the most desir-
able, we have shown that different kind of domains call for different approaches
of organization based MAS. Each approach has its own advantages and disad-
vantages. It depends on the domain which of these weigh more heavily.

Finally, we have discussed some consequences for the implementation of
organization-based MAS. Also here we see that each approach requires a large
implementation effort. However, the effort is located in different aspects. Thus
it depends which aspects are most likely to change or can be reused whether the
implementation effort of a certain approach is cost effective. If an organization is
not expected to change maybe it is best to implement the organization implicit
in the agents. However, if agents enter and leave many (interrelated) agent or-
ganizations one might opt for organization aware agents that require little effort
to be adapted for each organization (but have a large start up implementation
cost).
The ideas presented in this paper show several directions for further research.
Most important is to come up with a well founded methodology to determine
which type of organization approach is best suited for which type of domain. A
first step has been presented, but rigorous experiments should be performed in
practice to verify the assumptions.
The idea of organization aware agents has also recently been presented but no
implementation has been given. This is necessary to evaluate the overhead of
building such agents and whether this might not proof too much for the average
application.

References

1. Huib Aldewereld and Virginia Dignum. OperettA: Organization-oriented de-
velopment environment. In Proceedings of the 3rd International workshop
on Languages, Methodologies and Development Tools for Multi-agent Systems
(LADS2010@Mallow), 2011.

2. A. Artikis and J. Pitt. A formal model of open agent societies. In Proc. Autonomous
Agents, pages 192–193. ACM Press, 2001.

3. K. S. Barber and C. E. Martin. Dynamic reorganization of decision-making groups.
In Proceedings of the 5th Autonomous Agents, 2001.

4. C. Bernon, V. Camps, M. Gleizes, and G. Picard. Engineering adaptive multi-
agent systems: The adelfe methodology. In Agent-Oriented Methodologies, pages
172–202. Idea Group, 2005.

5. R. Burton, G. DeSanctis, and B. Obel. Organizational Design: A step by step
approach. Cambridge University Press, 2006.

63

6. C. Carabelea, O. Boissier, and A. Florea. Autonomy in multi-agent systems: A clas-
sification attempt. In M. Nickles, M. Rovatsoso, and G. Weiss, editors, Autonomy-
2003, volume 2969 of LNAI, pages 103–113. Springer, 2004.

7. C. Castelfranchi. Guarantees for autonomy in cognitive agent architecture. In
ATAL’94, volume 980 of LNAI. Springer, 1995.

8. C. Castelfranchi. Engineering social order. In A. Omicini, R. Tolksdorf, and
F. Zambonelli, editors, Enginering Societies in the Agents World, LNAI 1972, pages
1–19. Springer, 2001.

9. Cristiano Castelfranchi. Formalising the informal? dynamic social order, bottom-
up social control, and spontaneous normative relations. Journal of Applied Logic,
1:47–92, 2003.

10. R. Conte and F. Dignum. From social monitoring to normative influence. Journal
of Artificial Societies and Social Simulation, 4(2), 2001.

11. F. Dignum, V. Dignum, J. Thangarajah, L. Padgham, and M. Winikoff. Open
agent systems??? In L. Padgham and M. Luck, editors, Agent-Oriented Software
Engineering (AOSE’07), volume 4951 of LNAI, pages 75–89. Springer, 2007.

12. F. Dignum, D. Morley, E. Sonenberg, and L. Cavedon. Towards socially sophisti-
cated BDI agents. International Conference on Multi-Agent Systems, page 0111,
2000.

13. V. Dignum. A Model for Organizational Interaction: based on Agents, founded in
Logic. SIKS Dissertation Series 2004-1. Utrecht University, 2004.

14. V. Dignum, editor. Handbook of Research on Multi-Agent Systems: Semantics and
Dynamics of Organizational Models. Information Science Reference, 2009.

15. V. Dignum and F. Dignum. Designing agent systems: State of the practice. Inter-
national Journal on Agent-Oriented Software Engineering, 4(3), 2010.

16. V. Dignum, F. Dignum, and J.J. Meyer. An agent-mediated approach to the
support of knowledge sharing in organizations. Knowledge Engineering Review,
19(2):147–174, 2004.

17. M. Esteva, D. Cruz, and C. Sierra. Islander: an electronic institution editor. In Pro-
ceedings of the International Joint Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS 2002), 2002.

18. M. Esteva, B. Rosell, J. A. Rodr̀ıguez-Aguilar, and J. Ll. Arcos. AMELI: An agent-
based middleware for electronic institutions. In AAMAS’04, pages 236–243. ACM
Press, 2004.

19. European Commission FP7-215890. ALIVE, 2009. http://www.ist-alive.eu/.

20. S. Franklin and L. Gasser. Is it an agent, or just a program?: A taxonomy for
autonomous agents. In J. Müller et al., editor, Intelligent Agents III, pages 21–35.
Springer-Verlag, 1997.

21. C. Hewitt. Open information systems semantics for distributed artificial intelli-
gence. Artificial Intelligence, 47:79–106, 1991.

22. Koen V. Hindriks. Programming rational agents in GOAL. In Rafael H. Bordini,
Mehdi Dastani, Jürgen Dix, and Amal El Fallah Seghrouchni, editors, Multi-Agent
Programming: Languages, Tools and Applications. Springer, Berlin, 2009.

23. J. Hübner, J. Sichman, and O. Boissier. S-Moise+: A middleware for developing
organised multi-agent systems. In O. Boissier et al., editor, COIN I, volume 3913
of LNAI, pages 64–78. Springer, 2006.

24. J. Hübner, J. Sichman, and O. Boissier. Developing organised multi-agent systems
using the moise+ model: Programming issues at the system and agent levels. Inter-
national Journal on Agent-Oriented Software Engineering, 1(3/4):370–395, 2007.

64

25. M. Ivanyi, L. Gulyas, R. Bocsi, V. Kozma, and R. Legendi. The multi-agent
simulation suite. In Emergent Agents and Socialities: Social and Organizational
Aspects of Intelligence (AAAI Fall Symposium Series 2007). AAAI, 2007.

26. G. O’Hare and N. Jennings. Foundations of Distributed Artificial Intelligence.
Wiley, 1996.

27. Lin Padgham and Michael Winikoff. Prometheus: a practical agent oriented
methodology. In B. Sellers and P. Giorgini, editors, Agent Oriented Methodolo-
gies, pages 107–135. Idea Group, 2005.

28. V. Parunak, S. Bruekner, M. Fleitscher, and J. Odell. A design taxonomy of
multi-agent interactions. In P. Giorgini, J. Muller, and J. Odell, editors, AOSE
III, volume 2935 of LNAI. Springer, 2003.

29. Nick Tinnemeijer. Organizing Agent Organizations. SIKS Dissertation Series 2011-
02. Utrecht University, 2011.

30. Birna van Riemsdijk, Virginia Dignum, Catholijn Jonker, and Huib Aldewereld.
Programming role enactment through reflection. In Proceedings of the Joint Inter-
national Conference on Autonomous Agents and Multi-Agent Systems (AAMAS-
2011). 2011.

31. M. Birna van Riemsdijk, Koen V. Hindriks, and Catholijn M. Jonker. Programming
organization-aware agents: A research agenda. In Proceedings of the Tenth Inter-
national Workshop on Engineering Societies in the Agents’ World (ESAW’09),
volume 5881 of LNAI, pages 98–112. Springer, 2009.

32. W. Vasconcelos, J. Sabater, C. Sierra, and J. Querol. Skeleton-based agent develop-
ment for electronic institutions. In Proceedings of AAMAS02, First International
Conference on Autonomous Agents and Multi-Agent Systems, pages 696–703. ACM
Press, July 2003.

33. J. Vázquez-Salceda. The Role of Norms and Electronic Institutions in Multi-Agent
Systems. The HARMONIA framework. Whitestein Series in Software Agent Tech-
nology. Birkhäuser Verlag, 2004.

34. J. Vzquez-Salceda, H. Aldewereld, and F. Dignum. Norms in multiagent systems:
Some implementation guidelines. In EUMAS, 2004.

35. G. Weiss, M. Nickles, M. Rovatsos, and F. Fischer. Specifying the intertwining
of cooperation and autonomy in agent-based systems. International Journal of
Network and Computer Applications, 29, 2006.

36. M. Wooldridge, N. Jennings, and D. Kinny. The Gaia methodology for agent-
oriented analysis and design. Journal of Autonomous Agents and Multi-Agent
Systems, 3(3):285–312, 2000.

37. F. Zambonelli, N. Jennings, and M. Wooldridge. Organizational abstractions
for the analysis and design of multi agent systems. LNAI 1957, pages 235–251.
Springer, 2001.

65

66

Institutions as a Basis for Service Engagements

Munindar P. Singh

Department of Computer Science
North Carolina State University
Raleigh, NC 27695-8206, USA

singh@ncsu.edu

Despite many advances, IT today fails to adequately address some of the most
basic needs of business. The expansion of the web and the ready availability
of information have raised expectations that today’s approaches are ill-suited
to address. Specifically, businesses need to initiate and participate in service
engagements for virtually any business function.

For example, consider an enterprise that needs to create and launch a new
product in the marketplace. Realizing this basic business function involves a
slew of services ranging from market analysis to requirements to design to man-
ufacturing to delivery to customer relationship management. In today’s business
environment, typically, most if not all of these services would be provided to
the enterprise by external parties. In turn, such parties might initiate additional
service engagements. The mutual business relationships are complex and dynam-
ically changing. The net effect is that a complex business ecosystem comes into
being.

We consider the problem of effectively modeling and enacting service engage-
ments involving two or more autonomous, heterogeneous entities. These entities
are best thought of as offering business services, in contrast with the technical
web or grid services, which have garnered most research attention from computer
scientists. Such service engagements arise commonly in today’s information en-
vironments, yet conventional techniques are not adequate for handling them.

We propose a new interaction-oriented approach that addresses how to ad-
minister business service engagements. Our approach is based on the idea of
institutions, inspired by the study of human organizations and institutions, and
formalized in terms of the relationships among the participants in such settings.
Doing so enables us to provide a clear and natural (to stakeholders) way to spec-
ify service engagements, highlighting the interactions among the participants. We
consider practical use cases demonstrating the flexibility of our approach.

67

68

Engineering Coordination: Selection of
Coordination Mechanisms

René Schumann

National Institute of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

schumann@nii.ac.jp

Abstract. Reuse of code and concepts is a driving force of agent-oriented
software engineering (AOSE). In the field of AOSE the probably most
recognized types of reuse are agent frameworks and the FIPA standards.
To support developers of multiagent systems it is also necessary to fos-
ter reuse of mechanisms like coordination. In particular we address in
this article the selection of effective and efficient mechanisms for the co-
ordination of plans among autonomous agents. We will detail research
done in the field of AOSE concerning the reuse of concepts and focus
on the selection of suitable mechanisms. The selection for coordination
mechanisms is, up to now, not covered in AOSE sufficiently. Therefore,
we present the ECo-CoPS approach that defines a structured process for
the selection of coordination mechanisms for autonomous planning sys-
tems, where the local autonomy, as well as, the existing planning systems
can be preserved. A case study is presented to detail how the ECo-CoPS
approach can foster the selection process.

1 Motivation

Reuse of code and concepts is a driving force in software engineering in general
and in AOSE in particular. In the field of AOSE the probably most recognized
types of reuse are agent frameworks and the FIPA standards [7]. In this article
we address the reuse of concepts on a higher level. In particular we are focusing
on the reuse of coordination mechanisms for plans among autonomous agents.
Each agent is representing a particular sub-plan, that needs to be coordinated
with the other sub-plans. Within each plan the future actions of an agent, or
the activities of the entity the agent represents, are fixed. Typically the genera-
tion of each of these sub-plans is characterized by its computational complexity
and the need for information concerning goals and resources of the particular
agent. The reuse of coordination mechanisms has been supported by mediat-
ing agent infrastructures like TuSCoN [16]. In these infrastructures coordination
mechanisms are embedded into the environment as coordination artifacts that
can be used by the agents. This is a valuable approach for reusing coordination
mechanism, but some prerequisites have to be fulfilled to use these artifacts. In
fact, it is necessary for the agent to reveal all planning relevant information to
the infrastructure, to allow for an externalized coordination, and ensure that the

69

global, as well as, the local plans are feasible. This can be a serious limitation for
the application of coordination artifacts. It limits the autonomy of the agents,
because a significant aspect of an autonomous agent is its ability to determine
its future actions, and so its local plan. Thus coordination artifacts cannot be
applied to scenarios where autonomous planning agents have to coordinate their
local plans to archive a joint global goal, as they have to maintain their local
autonomy and they are responsible to maintain their local goals.

The field of coordination mechanisms among autonomous agents and their
plans has attracted numerous researchers. Therefore, a variety of different coordi-
nation mechanisms have been proposed. Unfortunately, if a particular situation
is given for which we have to select an appropriate coordination mechanism,
AOSE cannot provide any guidance and therefore the decision mainly relies on
the background of the developer. We have surveyed the proceedings of the pre-
vious AOSE workshops and other AOSE related literature. Moreover, we have
surveyed specific reuse centered research in the field of software engineering, like
the proceedings of the International Conference of Software Reuse1. The reuse
specific research in software engineering has addressed specifically the selection
of commercial off-the-shelf software. The field of AOSE has not been recoginized
by those reseacher, up to now. In the field of AOSE ifself, the work published
addressing the selection of existing concepts for reuse is considerable small.

In the following we will discuss work we have identified as relevant. Then we
will present the ECo-CoPS approach (Section 3), which has been developed to
select an effective and efficient coordination mechanism for autonomous agents,
that have to coordinate their plans. The ECo-CoPS approach support developers
by providing a structured decision making process and offers tooling supporting
the process. In Section 4 we present an example how the process can be used.
Finally we summarize our findings and outline future research.

2 Reuse of concepts in AOSE: An overview

An established way to reuse concepts in software engineering is to define and use
patterns, e.g., the well-known design patterns by Gamma et al. [8]. For the field
of AOSE Lind [15] suggested a format for agents oriented patterns and presents
an architectural and an interaction protocol as examples. Architectural patterns,
like Broker, Moderator, and Wrapper, have also been presented by Heyden et
al. [10]. Interaction patterns, like patterns for Subscription or Call for proposals
have been discussed by Kolp et al. [14], as well. Those authors termed these
patterns social patterns. The authors present a framework for describing those
patterns in a unified way, that has been specialized for agent-based develop-
ment. Those architectural and interaction patterns have been standardized by
the FIPA [7]. A wider scope of patterns in AOSE has been proposed by Sauvage
[17]. Sauvage distincts between MetaPatterns, that describe abstract constructs
for the design of agent-based systems. He introduces organizational schemes,
1 For an overview of the proceedings see http://www.isase.us/pastconferences.
htm, Accessed: 02/04/2011.

70

like organizations and roles, and protocols as two meta-patterns. The second
group of patterns are so-called metaphoric patterns. Sauvage mentioned marks,
like pheromones, and influences as two metaphoric patterns. The third class of
patterns are architectural patterns, addressing the architecture of agents.

Design patterns for self-organizing systems have been summarized by Gardelli
et al. [9]. The patterns are collected from the design of nature-inspired self-
organizing systems. For instance, patterns addressing the evaporation, aggrega-
tion, and diffusion of pheromones are presented. The identification of particular
design patterns for the coordination in self-organizing systems is addressed in
the article by de Wolf and Holvoet [20]. The authors present two design patterns
for coordination. These techniques are gradient fields and market-based control.

An idea for reusing proofs within the validation of multiagent systems based
on the idea of the component-based verification has been proposed by Brazier
et al. [2]. Thus, only the proofs for components that have changed have to be
updated. If it is possible to proof that these subsystems stay within their previ-
ously defined specification, the proof of the overall systems specification remains
valid. Hilarie et al. [11] argue that to facilitate reuse of agents or components of
agents, it is necessary to formally specify these components and then proof the
compliance of components to their specification. This can foster reuse, as those
components can become the building blocks for future systems. For that reason
the authors present a formal notation combined out of Objective-Z and state-
charts. The focus of the authors is on the design of the formal notation and on
the prove of compliance. A quite similar approach for the reuse of organizations
has been proposed by Jonker et al. [12]. In their paper the authors present a for-
malism to describe organizational structures and they assign properties to these
organizations. They propose to build a library of organizational structures. An
organizational designer then should be able to place queries to the library and
retrieve possible organizational structures that might suit his requirements. The
authors propose different aspects for indexing, e.g., by group functionality, envi-
ronment assumptions or realization constraints [12]. The retrieved organization
descriptions might be adapted to the given situation at hand.

Bartolini et al. [1] argue that the current representation of interaction pro-
tocols is not sufficient, as only the sequence of messages are fixed. But typically
more information is required, e.g., to generate a valid bid in an English auction.
This kind of information has to be implicitly encoded by the agent designer. Thus
the authors present a framework for specifying negotiations, based on rules for
encoding the negotiation protocol. Agent should be able to reason about those
protocols and apply them autonomously. The reuse is thereby on emphasizing a
more precise and complete form of specification for negotiations.

2.1 Reuse of coordination mechanisms

An idea, already mentioned, for the reuse of coordination mechanisms are coor-
dination artifacts [16]. Within a coordination artifact a coordination mechanism
is embedded that can be used by the agents. These artifacts can be reused. As

71

already discussed a significant drawback of these artifacts for autonomous plan-
ning agents is that the agents must reveal planning relevant information and
loose partly their autonomy about their future activities.

The need for an easier retrieval for reusing interaction protocols has been
identified by Bussmann et al. [4]. Therefore they focus on the selection process
of interaction protocols. To be applicable an interaction protocol has to respect
the existing dependencies of the current situation. Therefore, the authors suggest
to classify interaction protocols according to a number of criteria. These charac-
teristics are: the number of agents involved, the computability of constraints and
preferences, the number of agent roles, the role assignment, the number of joint
commitments, and the size of joint commitment as criteria. An agent designer
should specify its requirements according to these criteria and then identify an
interaction protocol that might be suitable for the given situation.

As one can see in the work addressing reuse of concepts by Bussmann et al.
[4] and Jonker et al. [12] the idea of building repositories that can be browsed
for content with specific characteristics can be an useful approach, that has been
adopted for identifiying possible suitable coordination mechanisms.

3 The ECo-CoPS approach

The main idea of the ECo-CoPS approach is, that existing planning (sub)systems
should not be replaced or changed, to enable the coordination among the agents.
Each agent can be the representative of a planning entity, like a company for
instance. The agents can manipulate the input of the local planning system and
gather information from the output of the planning system.

The goal of the ECo-CoPS approach is to guide the selection process to
find a coordination mechanism for inherently distributed autonomous planning
systems. This selection is guided by the ECo (Engineering Coordination) pro-
cess that is detailed in the following. An important step of the ECo process
is the prototypical implementation of possible candidate solutions. The imple-
mentation step of the ECo process is supported by the CoPS (Coordination of
Planning Systems) process and framework. Both guide and ease the implemen-
tation of a coordination mechanism and will briefly described in the following.
Even though the CoPS process and the CoPS framework have been designed
to support the ECo process, they are optional for the ECo process. A detailed
description of the ECo-CoPS approach can be found in [18].

3.1 The ECo process

The ECo process comprises of five steps that can be executed in an iterative
manner. These steps are: model the coordination problem, elicit coordination
requirements, select appropriate coordination mechanisms, implement selected
approaches, and evaluate candidate mechanisms to identify the best one. The
process is outlined in Figure 1.

72

Fig. 1: The ECo process model

In the modeling phase the coordination problem and each planning problem
is modeled with a specific level of detail to describe the necessary criteria that
the local plans are feasible and aspects that should be optimized in the particular
planning process. Moreover, the global perspective, defined by the dependencies
between the planning problems, has to be modeled, as well.

In the elicitation step requirements are identified that have to be fulfilled by
a coordination mechanism to be applicable for the given coordination problem.
These requirements can, for instance, characterize under which conditions the
planning systems are coordinated. These requirements can be formally described,
using the terms and concepts introduced in the modeling step.

The third step is the selection phase. Coordination mechanisms have to be
identified that can satisfy the coordination requirements. This steps results in a
set of candidate mechanism that can effectively coordinate the planning systems.
If this set is empty a suitable mechanism has to be designed.

To evaluate the effectiveness of these candidates they have to be implemented.
Implementation is supported by the CoPS process and the CoPS framework,
both discussed in the following.

If prototypical implementations exist, the candidate solutions can be evalu-
ated with real-world like data, to find the most efficient coordination mechanism.

3.2 The CoPS process

The CoPS process is a sub-process of the ECo process. It structures the decision
making during the implementation of a coordination mechanism. The CoPS
process addresses decisions on the global level, i.e. among all entities, and on
the local level, for each entity individually. The CoPS process is shown in Figure
2. The global process step is the definition of commonly accepted conversation
protocols. It is global in the sense that all agents have to agree on the same
conversation protocols to allow for an effective coordination. All other steps of
the CoPS process have to be done by each entity by itself; therefore they are
referred here as local. First each entity has to define its conversation policy. A
conversation policy is a ”restrictions on communication based on the content of
the communicative act" [13]. Within a conversation strategy a planning entity
has to encode which concessions it is willing to make to whom, for instance.

73

Fig. 2: Overview of the CoPS process

A conversation strategy is implemented in the conversation behaviors. A con-
versation behavior is executed in a particular state of the conversation, i.e. a state
in the conversation automaton of one of the participants of the conversation.

The access to the local planning system can either be done directly, if the
planning system is part of the agent, or by using integration techniques, like
web-services, for instance.

It might be useful to add local planning-relevant knowledge to the agent, so
that the agent can modify the input data of the planning system in a meaningful
way. This could lead to reduced interaction times between the planning system
and the agent, as the agent can modify the input data in a way that allows the
planner to operate more efficiently.

3.3 The CoPS framework

The CoPS framework supports the implementation phase of the ECo process.
The CoPS framework aims to facilitate the implementation. Within the CoPS
framework the abstract implementation of a planning authority agents, the agent
that represents a planning authority, and a coordination agent is provided. A
coordination agent represents a network of agents, that needs to coordinate
their activities and performs some management and bookkeeping actions for
the entire network. The agents of the framework have to be instantiated and
concrete strategies for conversations have to be implemented, as well as, the
access to the planning system and additional knowledge how the planner should
be used. In particular the definition and reuse of conversation protocols and their
localization for each planning entity are supported by the CoPS framework.

4 Applying the ECo-CoPS approach: A case study

The ECo-CoPS approach has been applied to different case studies from the
fields of logistics [18] and ambient intelligence [19]. Here we present a case study
from the field of logistics. We use a simple setting within a manufacturing pro-
cess of a company. First goods have to be produced, then they have to be packed
and finally shipped to the customer. The work flow is detailed in Figure 3. A

74

Fig. 3: Work flow of a the production and distribution example

number of orders have to be satisfied. Each orders specifies a type of product,
a destination for the shipment and a due date. In the beginning all orders are
released and a plan to satisfy all orders has to be computed. During the produc-
tion process a scheduling problem has to be solved, which has been taken from
the literature [3, 5]. To compute a packing plan a 3-D bin packing problem has
to be solved. Finally, to plan the shipment a vehicle routing problem has to be
solved. Each of these problems is known to be a computational hard problem.
We have developed three independent planning systems, each responsible for
computing a valid sub-plan. An order is completed if all products are shipped to
the customers. If the delivery date is later than the specified due date a penalty
per time unit of lateness is imposed. We present here a compressed version of
the case study, the complete case study can be found in [18].

The overall modeling of this problem is done using a set-constraint based ap-
proach, which is omitted here. During the modeling phase all relevant concepts
are defined, which are necessary for the definition of the coordination require-
ments and to define measurements for the overall performance of the company.
The coordination requirements that are of particular interest in this case study
are that for each sub-problem a feasible plan exists and the overall global plan
is feasible. This requires that the planning sequence is correct for all items, and
that all items are produced, packed and shipped requested in the orders. As
an global objective function we use the overall costs, compromising the costs of
packaging, the costs for transportation, and eventually penalties for lateness.

The selection step contains two stages. A first identification step to shrink
down the number of candidates and a qualitative evaluation as a second step to
analyze if the candidate mechanisms satisfy the coordination requirements. In
the identification step we take advantage of the idea of building repositories of
mechanism description, which are annotated with relevant characteristics. There-
fore we have build up a repository of different types of coordination mechanisms
and classified them according to coordination specific characteristics. In brack-
ets we point out the characteristic the scenario requires. The characteristics are
presented in form of binary questions and are the following: Does an allocation
problem exists? (No); Are the local objective functions comparable? (No); Are
the planning systems homogeneous or heterogeneous? (heterogeneous); Does a
common objective function exists? (Yes); Is information hiding necessary? (No);
Do cyclic dependencies exist? (No). More details of the classification can be
found in [18]. By browsing the repository of different classes of coordination
mechanisms, according to the needs of the current scenario, we can restrict the
number of coordination mechanisms that have to be investigated in depth for
the applicability for the given scenario. As a result of the first step we identify

75

the following coordination approaches as possible candidates: plan merging, de-
centralized planning for a centralized plan, result sharing, and negotiation. Note
that for this simple case the approach of decentralized planning for a centralized
plan [6] is equivalent to result sharing. Different planners compute partial solu-
tion and pass them to the next planner which is then generating his part of the
overall plan. This, in fact, is result sharing. The sequence of the planning sys-
tems computing their partial plan is given by the work flow presented in Figure
3. The plan merging approach requires an additional entity that collect all local
plans and is capable of integrating them and, if necessary, propose plan mod-
ifications to ensure consistency. This requires planning knowledge to compute
plan modifications that ensure a feasible global plan, as well as, feasibility of the
local plans. Therefore this solution is similar to a complete centralized planner,
which is not in the scope of this research.

The class of negotiations as coordination means cover a wide field. In this
case study a key problem is that most costs are fixed in the last planning step,
where the least flexibility of planning decision exists. Ideally a backward oriented
planning would be more appropriate. But this approach makes it more complex
to ensure feasibility of the overall plan, as the execution sequence of the planning
systems would be directly inverse to the sequence imposed by the dependencies
among the planning problems. A solution to this problem can be a mechanism
that facilitates the exchange of requirements towards the local plans, and plan
suggestions that tries to satisfy the requirements and still ensuring feasible local
plans. Such a coordination approach would result in a sequence of exchanges
of requirements to, and suggestions of plans. This corresponds to a negotiation,
trying to minimizing the total costs. By starting with the parts of the planning
process where most of the costs are fixed requirements can be identified that
lead to an overall solutions with lower costs. Previous planning stages have to
identify what requirements are possible to fulfill and offer those to the subsequent
planning entity.

In the implementation step the remaining two major concepts, result sharing
and negotiations, are implemented. Note that we have only to derive the agents
from the CoPS framework, implementing the particular coordination mechanism,
and enable them to use the existing planning systems. Therefore, the efforts
for implementing these coordination systems are considerable low. The result
sharing approach is referred here as sequential planning, as the planning steps
are done sequentially, following the dependencies among the planning problems.
The agents access their planning systems using web services. In the evaluation
phase we compare both approaches using randomly generated problem instances
of different size. First, we analyze how both approaches scale with the problem
size. Second, we perform a detailed analysis for specific problem sizes. For the
first analysis we consider scenarios from 1 up to 30 orders. The resulting costs
for both approaches are shown in Figure 4. Note that the scales of the sub-
figures are not identical. We do so, to allow the reader to see the differences also
between scenarios with few orders. For one order both methods are equivalent
and generate the same plan. In all other scenarios the improved, negotiation-

76

2 4 6 8 10

0
50

0
15

00
25

00
35

00
45

00
55

00

 Costs Sequential vs. Improved

Number of orders

co
st

s

Costs of sequential solution
Costs of improved solution

10 12 14 16 18 20

0
50

00
0

10
00

00
15

00
00

20
00

00
25

00
00

 Costs Sequential vs. Improved

Number of orders

co
st

s

Costs of sequential solution
Costs of improved solution

20 22 24 26 28 30

1e
+

05
2e

+
05

3e
+

05
4e

+
05

5e
+

05
6e

+
05

7e
+

05

 Costs Sequential vs. Improved

Number of orders

co
st

s

Costs of sequential solution
Costs of improved solution

Fig. 4: Scaling of both coordination approaches with different problem sizes (1–30
orders)

Fig. 5: Box plots for instance 2 comparing costs of the sequential and improved
coordination approach

based, approach performs better than the sequential planning. Even though this
data does not allow to draw a conclusion, as the number of instances is too small,
it shows a clear indication. Moreover, we can see that about 7 orders the costs
increase drastically. With about seven orders the first penalties have to be paid as
not all orders can be performed in time. The second drastic increase can be seen
at approx 15 orders. Then the system goes in an overload situation, where nearly
all orders cannot be performed in time, and the penalties rise dramatically.

Based on these results we investigate particular problem sizes in more detail.
In total we created 10 different scenarios consisting of the same number of orders
and compute 1000 replications for each scenario. Here we present the results
obtained with a scenario with five different orders. If we compare the results
between both approaches we can summaries, for this scenario that the improved,
negotiation based, coordination approaches, leads to a better overall performance
and a more stable result, as the spread of the results is lower, than the result
sharing approach. We present in Figure 5 the box plots comparing the mean costs
and the spread obtained in different runs. As typically for planning systems
the spread results from the fact that a few different solutions are computed
over and over again. The resulting histograms for both approaches are shown in

77

(a) sequential (b) improved

Fig. 6: Histogram for the sequential and improved approach for instance 2

Figure 6. Summarizing this evaluation we can now select an effective and efficient
coordination mechanism, as a result of applying the ECo process. For the given
situation at hand the negotiation based approach has to be selected.

5 Summary and Outlook

In this paper we argued that it is necessary to provide methods for identifying ef-
fective and efficient concepts during the design of multiagent systems to support
developers. We have exemplified this, addressing the selection process of coor-
dination mechanisms for autonomous planning agents. Up to now, this problem
mainly occur in logistic scenarios. With the ongoing trend towards ubiquitous
intelligent system the task to coordinate intelligent planning systems is going
to spread into various domains. Therefore, we have discussed the application of
the ECo-CoPS approach also in the field of ambient intelligent systems [19]. We
have detailed that research in the field of AOSE has covered this field not suffi-
ciently. For that reason we have presented the ECo-CoPS approach that defines a
structured process for the selection of coordination mechanisms for autonomous
planning systems, where the local autonomy of the agents, as well as, the existing
planning systems can be preserved. A case study has been presented to detail
how the ECo-CoPS approach can support the selection process. Moreover, we
think that the ECo process can be used as a blueprint for the selection of other
concepts in multiagent systems, as well.

As the ECo-CoPS approach presents a process for handling specific prob-
lems its assessment becomes more sound by multiple iterations of the process.
This allows for analyzing if additional tailoring of the process or the definition
of additional supporting sub-processes might be useful. Therefore we strive to
apply the process in more case studies from different domains. It turned out that
the modeling step of the ECo process can become time intensive. Therefore we
want to investigated the usage of different modeling techniques for the coordina-
tion problems. To take more advantage of the efforts in the modeling phase we

78

want to generate more synergies between the modeling and the implementation
step. Therefore we are considering to use specific UML profiles and the object
constraint language (OCL) for modeling, as this way of model might offer addi-
tional value during the implementation phase. Therefore the CoPS process and
in particular the CoPS framework might have to be adapted.

Acknowledgment

This work was been supported by a fellowship within the Postdoc-Programme
of the German Academic Exchange Service (DAAD).

References

1. Claudio Bartolini, Chris Preist, and Nick R. Jennings. Architecting for reuse:
A software framework for automated negotiation. In John Mylopoulos, Michael
Winikoff, and Nick R. Jennings, editors, Agent-Oriented Software Engineering III
Proc. of the Third International Workshop, AOSE 2002, volume 2585, pages 88 –
100, Bologna, Italy, 2003. Springer.

2. Frances M. T. Brazier, Frank Cornelissen, Rune Gustavsson, Catholijn M. Jonker,
Olle Lindeberg, Bianca Polak, and Jan Treur. Compositional design and verifica-
tion of a multi-agent system for one-to-many negotiation. In Proceedings of the
Third International Conference on Multi-Agent Systems, ICMAS’98, pages 49 –
56. IEEE Computer Society Press, 1998.

3. Robert W. Brennan and William O. A simulation test-bed to evaluate multi-
agent control of manufacturing systems. In WSC ’00: Proceedings of the 32nd
conference on Winter simulation, pages 1747–1756, Orlando, Florida, 2000. Society
for Computer Simulation International.

4. Stefan Bussmann, Nick R. Jennings, and Michael Wooldridge. Re-use of interac-
tion protocols for agent-based control applications. In Fausto Giunchiglia, James
Odell, and Gerhard Weiß, editors, Agent-Oriented Software Engineering III Proc.
of the Third International Workshop, AOSE 2002, volume 2585 of Lecture Notes
in Computer Science, pages 73 – 87, Bologna, Italy, 2003. Springer.

5. Sergio Cavalieri, Luc Bongaerts, Marco Macchi, Marco Taisch, and Jo Weyns. A
benchmark framework for manufacturing control. In 2. International Workshop on
Intelligent Manufacturing Systems, pages 225 – 236, Leuven, Belgium, 1999.

6. Edmund H. Durfee. Distributed problem solving and planning. In Gerhard Weiß,
editor, Multiagent Systems: a modern approach to distributed artificial intelligence,
pages 121 – 164. MIT Press, 1999.

7. Foundations for Intelligent Physical Agents FIPA. Fipa standard specifica-
tions, 2002. http://www.fipa.org/repository/standardspecs.html, Accessed:
02/04/11.

8. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of reusable object-oriented software. Addison-Wesley Professional
Computing Series. Addision Wesley Longman Inc., Reading„ 1994.

9. Luca Gardelli, Mirko Viroli, and Andrea Omicini. Design patterns for self-
organising systems. In Hans-Dieter Burkhard, Gabriela Lindemann, Rineke Ver-
brugge, and László Z. Varga, editors, Proc. of the 5th International Central and
Eastern European Conference on Multi-Agent Systems, CEEMAS 2007, Lecture
Notes in Artificial Intelligence, pages 123 – 132, Leipzig, 2007. Springer.

79

10. Sandra C. Hayden, Christina Carrick, and Qiang Yang. Architectural design pat-
terns for multiagent coordination. In Proceedings of the 3rd International Confer-
ence on Autonomous Agents, AGENTS’99, 1999.

11. Vincent Hilaire, Olivier Simonin, Abder Koukam, and Jacques Ferber. A formal
approach to design and reuse agent and multiagent models. In Michael Luck and
James Odell, editors, Agent-Oriented Software Engineering V; Proc. of the 5th
International Workshop, AOSE 2004, volume 3382, pages 142 – 157, New York,
NY, USA„ 2005. Springer.

12. Catholijn M. Jonker, Jan Treur, and Pinar Yolum. A formal reuse-based approach
for interactively designing organizations. In Michael Luck and James Odell, editors,
Agent-Oriented Software Engineering V; Proc. of the 5th International Workshop,
AOSE 2004, volume 3382, pages 221 – 237, New York, NY, USA„ 2005. Springer.

13. Lalana Kagal and Tim Finin. Modeling conversation policies using permissions and
obligations. In Rogier M. van Eijk, Marc-P. Huget, and Frank Dignum, editors,
AAMAS 2004 Workshop on Agent Communication (AC2004), New York, 2004.

14. Manuel Kolp, T. Tung Do, and Stéphane Faulkner. Introspecting agent-oriented
design patterns. In S. K. Chang, editor, Handbook of Software Engineering and
Knowledge Engineering,, volume Vol. 3: Recent Advances, pages 151–176. World
Scientific Publishing Co, 2005.

15. Jürgen Lind. Patterns in agent-oriented software engineering. In Fausto
Giunchiglia, James Odell, and Gerhard Weiß, editors, Agent-Oriented Software
Engineering III, 3. International Workshop, AOSE 2002, volume 2585 of Lecture
Notes in Computer Science, pages 47 – 58, Bologna, Italy, 2003. Springer.

16. Andrea Omicini, Alessandro Ricci, Mirko Viroli, Cristiano Castelfranchi, and Luca
Tummolini. Coordination artifacts: Environment-based coordination for intelligent
agents. In AAMAS ’04: Proceedings of the Third International Joint Conference
on Autonomous Agents and Multiagent Systems, volume Volume 1, pages 286–293,
New York, New York, 2004. IEEE Computer Society.

17. Sylvain Sauvage. Design patterns for multiagent systems design. In Proceedings
of the 3rd International Conference on Artificial Intelligence, MICAI‘04, volume
2972 of Lecture Notes in Artificial Intelligence (LNAI). Springer, 2004.

18. R. Schumann. Engineering Coordination : A Methodology for the Coordination
of Planning Systems. PhD thesis, Institute of Informatics, Goethe University,
2010. http://publikationen.ub.uni-frankfurt.de//frontdoor.php?source_
opus=8143, Accessed: 02/04/2011.

19. René Schumann. Engineering coordination in future living environments. In Ralf
Dörner and Detlef Krömker, editors, Proceedings of the ITG / GI Workshop on
Self-Integrating Systems for Better Living Environments 2010: SENSYBLE 2010.
Shaker Verlag, 2011. accepted for Postproceedings.

20. Tom De Wolf and Tom Holvoet. Design patterns for decentralised coordination in
self-organising emergent systems. In Sven A. Brueckner, Salima Hassas, M·rk Jela-
sity, and Daniel Yamins, editors, Engineering Self-Organising Systems: Proceedings
of the 4th InternationalWorkshop, ESOA 2006, volume 4335 of Lecture Notes in
Artificial Intelligence, pages 28 – 49, Hakodate, Japan, 2006. Springer.

80

Understanding Agent Oriented Software
Engineering Methodologies

Jorge J. Gomez-Sanz, Ruben Fuentes-Fernández, Juan Pavón

GRASIA Research Group,
Universidad Complutense de Madrid,

Avda. Complutense, 28040 Madrid, Spain
{jjgomez,ruben,jpavon}@fdi.ucm.es

Abstract. This paper introduces software engineering concepts to ob-
tain a new perspective on the work done in agent oriented methodologies.
Software engineering relies on a body of knowledge that is not available
in the agent research community, yet. A transfer of knowledge from this
body can clarify what a methodology is for and what it is necessary to
define one. The paper concludes that current agent oriented methodolo-
gies are still to evolve. This evolution will be possible due to the general
adoption of meta-modeling techniques; the interest in covering more de-
velopment phases; and the growing number of development examples
available to the community.

1 Introduction

There has been little discussion of what an agent oriented methodology is. This
surprises when considering there is no standard definition. This may have caused
an abuse of the term leading to an increasing number of research works claiming
to be a methodology. Researchers working in evaluation frameworks [SS03] have
raised this issue in the past, though this has not conducted to a self-criticism
of the agent oriented software engineering community. As a result, some pa-
pers claim to have a methodology just by introducing a modeling language or
enumerating a few development activities.

We will start with a simple hypothesis: agent oriented methodologies are the
result of a transfer of knowledge from software engineering. As agent researchers,
we are the experts to tell if a methodology X does capture the essential of
the agent concept. Nevertheless, to assess the capability of a methodology for
effectively assisting developers, the experts to ask should be software engineers.
Trying to look for answers in this direction, this paper proposes to revisit software
engineering basics and draw some conclusions on the current state and directions
of agent oriented methodologies.

To do so, the paper first introduces basic concepts of software engineering
in section 2. Then, section 3 reformulates the software engineering definitions
including, when necessary, the agent orientation. With this definition in mind,
some aspects of current methodologies are regarded and their current status as-
sessed. Continuing with the ideas extracted from the software engineering review,
some perspectives about the future of methodologies are declared in section 4.

81

2 Software Engineering and Methodologies

Software engineering is defined by the IEEE glossary [IEE90] as follows:

(1) The application of a systematic, disciplined, quantifiable approach
to the development, operation, and maintenance of software; that is, the
application of engineering to software. (2) The study of approaches as in
(1).

The term software engineering appears in 1968 and was the name of a con-
ference [NR68] sponsored by the North Atlantic Treaty Organization (NATO),
where scientists and professionals acknowledged several problems affecting the
software industry. These problems crystallized into the software crisis, i.e., the
inability to conclude development projects before the deadlines, within the initial
budget, and satisfying the client demands. Reasons like the complexity of the
software were expected to be handled by advances in programming languages and
good programming practices, a position defended by Dijkstra [Dij72], but there
were other issues that were clearly human like the coordination of working teams
and the organization of the development activities, a position illustrated in the
known book from Brooks [Bro95]. Both were right, and as a result, the training
of a software engineer today is a multidisciplinary one. This is illustrated in the
curricula recommendations for Software Engineering promoted by the ACM and
IEEE that can be found for undergraduate http://sites.computer.org/ccse
and master level http://www.gswe2009.org courses.

Knowing software engineering today, means, at least, being familiar with
the Software Engineering Book of Knowledge (SWEBOK) [ABD+04]. This is an
initiative promoted, among others, by the IEEE computer society and part of
the software industry. It pursues collecting relevant works, even ISO/IEEE stan-
dards, addressing all the issues a developer may find while developing software.
SWEBOK introduces eleven Knowledge Areas, each one focusing in a concrete
subject like software design, software testing, or software quality.

In what respect to the topic of this paper, agent oriented methodologies,
SWEBOK has a Knowledge Area named Software Engineering Tools and Meth-
ods. Tools and methods appear together because they are highly coupled. Quot-
ing the SWEBOK:

Tools are often designed to support particular software engineering
methods, reducing any administrative load associated with applying the
method manually. Like software engineering methods, they are intended
to make software engineering more systematic, and they vary in scope
from supporting individual tasks to encompassing the complete life cycle.

This does not mean that a method is unfeasible without tools, but, it makes the
engineering tasks more challenging and inefficient. About the methods, SWE-
BOK says:

Software engineering methods impose structure on the software en-
gineering activity with the goal of making the activity systematic and

82

ultimately more likely to be successful. Methods usually provide a no-
tation and vocabulary, procedures for performing identifiable tasks, and
guidelines for checking both the process and the product. They vary
widely in scope, from a single life cycle phase to the complete life cycle.
The emphasis in this Knowledge Area is on software engineering meth-
ods encompassing multiple life cycle phases, since phase-specific methods
are covered by other Knowledge Areas.

A method, according to the SWEBOK, can be either heuristic, formal, or pro-
totyping. Heuristic methods can be either structured (e.g. a top-down approach
where functions are successively refined), data oriented (e.g. being guided by the
data structures the problem needs), or object oriented (the system is viewed as
a collection of objects instead of data structures or functions). Formal methods
are based on mathematics and focus mainly to specification languages (model-
oriented, property-oriented, or behavior-oriented), specification refinement (how
to bring it closer to the implementation), and verification of properties. Proto-
typing methods distinguish between the prototyping style (e.g. if the prototype
is going to be thrown away or if it will evolve towards the final system), pro-
totyping target (e.g. if it is going to prototype the user interface or the system
architecture), and the prototyping evaluation techniques (referring to the way
the results of the prototyping activity are going to be used).

A method concerns as well the software life cycle and the software life cycle
processes. The software life cycle is the period of time that begins when a soft-
ware product is conceived and ends when the software is no longer available for
use [IEE90]. The second refers to the process by which user needs are translated
into a software product [IEE90], though the SWEBOK tries to adopt a wider
approach. It admits there could be several processes involved in a software life
cycle, or a single one, from the perspective of a whole organization performing
the development. In any case, the SWEBOK assumes a process usually follows a
software life cycle model, which provides a high-level definition of the phases that
occur during the development, e.g. a spiral model or waterfall. A process can be
defined, implemented, measured, and assessed. A software life cycle processes or
a software life cycle model definition can be constructed using different notations
(natural language, state-charts, petri nets, and others), though there are stan-
dards available as well, like the Software & Systems Process Engineering Meta-
model Specification (SPEM) [Obj08] or the Software Engineering Metamodel for
Development Methodologies (SEMDM) ISO/IEC 24744 [HSGP08]. It should be
noted that SEMDM intends to capture the notion of methodology, conceiving
it as the specification of the process to follow as well as the work products to be
generated, plus consideration of the people and tools involved, during a software
development effort [GPHS05]. This is slightly different from the definitions given
in the IEEE Glossary and the SWEBOK, as introduced here, though it should
be still possible to use SEMDM to define a process.

This is just a rough approach to the problem of engineering software systems,
but gives an idea of how challenging is to define a development method.

83

3 Agent Oriented Methodologies from a Software
Engineering perspective

Using as starting point the review of work in software engineering from section 2,
some conclusions can be drawn to AOSE. From the categorization of methods
in section 2, an agent oriented method could be labeled as an heuristic method
where the system is viewed as a collection of agents. This would make sense
in most cases, though the integration with formal methods and/or prototyping
techniques, may complicate the issue. In any case, this method should aim for
making the activity systematic and ultimately more likely to be successful. The
method will provide with notation and vocabulary, procedures for performing
identifiable tasks, and guidelines for checking both the process and the product.
The scope of the method will be from a single life cycle phase to the complete
life cycle. This scope allows to talk about agent oriented analysis, which would
focus on how to determine which agents are necessary to provide the system
functionality; or agent oriented implementation, which would address the way
a system specification, regardless of its agent orientation, can be implemented
using agent oriented solutions, e.g. an agent oriented programming language or
an agent oriented framework. The concrete phase or process is defined separately,
and can be an ad-hoc process or be derived from some software life cycle model.
Clearly, the process or the affected phase will be biased by the use of agent related
concepts, since the expected products of the engineering activities necessarily
need to refer to those concepts. Finally, there should be support tools that assist
in the execution of the different activities addressed by the method.

The value of these conclusions is that they are derived from what an actual
software development demands, according to the software engineering practices.
For the researcher, it serves as a guideline of the elements to be included in
a methodology and helps to focus the contribution in specific phases of the
development. For the developer, knowing in advance what is covered by the
methodology will permit to be more efficient and applying the methodology in
the context it was intended to.

It should not be deduced that what has been published as agent oriented
methodologies is wrong. Revisiting the survey from Iglesias et al. [IGCG98], it
can be read that a methodology is something whose role is to assist in all the
phases of the life cycle of an agent-based application, including its management
and that extends some known existing development solutions for X. Extension
was not trivial and required altering existing solutions in different ways, trying
to be coherent with whatever was made with X. These extensions, or recycled
methodologies as referred in Müller [M9̈7], had to be validated in some way.
These extensions were focused in adapting the different existing products, and,
in some cases, the involved activities. Assuming that the original methodologies
included the above-mentioned elements, which is true in most cases, and that
their agent oriented extension were coherent with the inclusion of new elements,
it should be assumed that the resulting methodology did provide the requested
elements.

84

It is harder to ensure this when the candidate for agent oriented methodology
is built from the scratch. Two big groups of proposals can be found. In one, there
is a methodology that first tries to build a notation and vocabulary to address
some specific development phases. In the other, notation and vocabulary are
embedded in a tool that permits to move from the analysis and design to the
implementation.

In the first group, there are works that were introduced as methodologies
at that time, but they should be more accurately introduced as phase specific
methods. This is the case, in our opinion, of GAIA [WJK00, ZJW03], highly
referenced and widely regarded as an agent oriented methodology. It provides a
notation and vocabulary, but it is focused on the analysis and design activities.
Also, GAIA is not making the MAS construction systematic and disciplined,
since it only addresses a part of the life cycle. Hence, it makes more sense to talk
about the GAIA agent oriented analysis method and the GAIA agent oriented
design method, since those are the software life cycle phases which are being
structured. Similarly, MESSAGE/UML [CCG+02] was introduced as an agent
oriented software engineering methodology covering analysis and design. Again,
it should have been more accurate to regard this as agent oriented oriented
design and analysis method.

In the second group, works are built around a powerful tool support cover-
ing an important part of the life cycle. This was the case of ZEUS [NNLC99]
methodology and MaSE [WD00]. It has been objected that ZEUS methodology
was not such, since it was about the use of a tool, but, from the perspective of
this paper, it is rather the opposite. ZEUS was a great tool that allowed a de-
veloper go from requirements gathering to system deployment rather efficiently,
though it presented some bugs. MaSE and its agentool allowed the execution
of similar tasks but with a better documentation of the process to follow, and
enabling formal verification of some properties of the defined protocols. Both
works have evolved little to the extent ZEUS was discontinued and MaSE had
to build new tools to deal with new concepts, the agenttool III which is a plugin
for the Eclipse platform.

Time has passed and these two groups have merged. Today, it is expected
from candidate methodologies to have tool support similar to the one provided
by ZEUS or agenttool, and regard more of the software life cycle than the ances-
tors. As a result, the number of methodological proposals addressing more parts
of the software life cycle has increased. AOSE methodologies such as INGENIAS,
PASSI, ADELFE, or Prometheus, have grown up including more standard devel-
opment phases, concretely, requirements gathering, implementation, and testing.
As more phases are incorporated, the closer to a competitive industrial grade
methodology it is.

Therefore studying software life cycle processes is relevant to understand the
scope of the method and apply it correctly. Nevertheless, this part is usually
lightly acknowledged in the AOSE community with some exceptions [SCG08].
Frequently, activities tend to be too simplified, to the extent that they are intro-
duced as some items in a short numbered list. The connection with the process

85

itself is missing or non-relevant in the context of the research contribution. In
the other extreme, there are methodologies that either propose new software life
cycle processes, such as PASSI, ADELFE, or Prometheus, or stick to an exist-
ing software life cycle model, like INGENIAS. Understanding the importance of
processes is something the IEEE FIPA Design Process Documentation and Frag-
mentation Working Group (DPDF WG) http://www.fipa.org/subgroups/

DPDF-WG.html is contributing enormously. There are complete specifications of
processes for PASSI, SODA, GORMAS, and INGENIAS http://www.pa.icar.

cnr.it/cossentino/fipa-dpdf-wg/docs.htm. For more information about the
role of processes in AOSE, it is recommended to read the survey from Massimo
et al. [CGMO11].

There has been an important progress in what refers to how AOSE method-
ologies address the notation and vocabulary. Formal specifications are reviewed
in the survey written by El Fallah-Seghrouchni et al. [EFSGSS11]. The formal
representation methods addressed in the survey can be labeled either as first-
order logic, temporal logics, process algebras, or automata based. Solutions found
in these categories are all tool supported, with a special focus in the verification of
properties. Despite the interest in formal notations, AOSE seems to be more fond
of semi-formal approaches such as visual modeling languages specified through
meta-models. It could be said it all started with the work of Ferber [FG98] on
the use of UML to specify a meta-model for MAS based in the concept of orga-
nization and role. This contribution had no specific tool support, so it trusted
developers used existing UML vendor tools in the way the notation demanded.
MESSAGE/UML [CCG+02] was the next step. It was the first to actually apply
the meta-modeling approach as we know it today, using Graph-Object-Property-
Relationship-Role (GOPRR) to express the syntax of the modeling language
and a meta-modeling tool, MetaEdit+, to provide custom editors. This path
has been followed by most methodologies today, as Argente et al. [ABFF+11]
show in a survey on current agent modeling languages, though using different
meta-modeling languages. One meta-modeling approach attracting most of the
attention is the Eclipse Modeling Framework (EMF). As a consequence, known
methodologies like Tropos, MaSE (which now is o-MaSE) and Prometheus, are
migrating towards this platform, with TAO4ME [BDM+06], in the case of Tro-
pos, Agentool III [SCDS09], in the case of o-MaSE, PDT [STP10], in the case of
Prometheus. INGENIAS has used this pure meta-modeling approach since the
beginning [PGS03], publishing its meta-model as an XML file in its sourceforge
distribution site http://ingenias.svn.sourceforge.net/viewvc/ingenias/

trunk/metamodel/. As a contribution to the community, INGENIAS team re-
cently released to the public the meta-editor framework that was used internally
to maintain INGENIAS. Its name is INGENME, which can be downloaded from
http://ingenme.sf.net, and provides similar functionality to the Eclipse Mod-
eling Framework, but more user friendly.

Progress in the construction of modeling languages have been encompassed
with advances in techniques for implementing specifications. A review of them
can be found in Nunes et al. [NCdL+11]. From the review it is outstanding

86

the growing number of automatic translations of specifications into code. Most
of them reuse facilities from the Eclipse platform, like the already mentioned
TAO4ME, Agentool III or PDT. This approach is the dominant now, with some
exceptions where implementation has to be done manually. There are precedents
in this kind of manual transition from specification to code. It can be done in
a disciplined way, as suggested by Kendall [Ken99], where developers have the
assistance of guidelines like design patterns.

4 Perspectives for Agent Oriented Methodologies

None of the existing methodologies can be considered perfect. They need to be
used again and again; and this will surely make current methodologies evolve.
This evolution will be probably directed towards addressing new development
activities and increment the scope of the methodology; a general improvement
in the tool support; and an increase of the number of developments that avail
the possibilities of each methodology.

A methodology aims to increase the chances of building successfully the sys-
tem. Consequently, a methodology needs to be applied and assessed. If a software
company is contracted to develop a system, the client should be sure that the
company is capable of building the correct system before the agreed deadline
and without exceeding the budget. A way to rate the capability for success is
the Capability and Maturity Model (CMM) [PCCW93] and its evolution the
Capability Maturity Model Integration (CMMI) [CMM02]. These models iden-
tify a number of key areas that need to be studied, like the technical skills of
developers, the degree of adoption of software processes, the existence of eval-
uation procedures to assess the work done, or the training of personnel within
the company, to mention some. Our methodologies are not there, yet. Only a
piece of these elements are covered actually by existing methodologies. Never-
theless, knowing more about how methodologies are expected to be applied in
the real world serves to advance the future needs. Most likely, management ac-
tivities will be the next to be considered, after testing is more deeply studied.
One of the basic management activities consists in foreseeing how much effort a
MAS development will take [GSPG05] so that a realistic development plan can
be devised.

Tool support will be improved in all the activities the methodology is in-
volved. A basic improvement will be being capable to enrich a methodology using
past experiences. Notations like UML have changed along the years because the
application experience of UML told there were things that could be made better.
Similarly, the processes applied in the development and the notation proposed
by our methodologies should be able to improve. This requires having customiz-
able tools, capable of adapting to the new processes or notations. Thanks to
the adoption of meta-modeling techniques by the current methodologies, this
kind of tools will be possible with a reduced effort. Changes in the meta-models
describing the modeling language or the process will be automatically processed
to produce a new tool set adapted to the new meta-models.

87

Finally, there will be a higher demand of evidences proving the methodol-
ogy works. These evidences will be complete developments availing the capa-
bility of the methodology. There has been intents to develop the same system
with Prometheus, O-MaSE, Tropos, and the Multi-Agent Systems Unified Pro-
cess [LP08]. This can be useful to show the pros and cons of each approach and
demonstrate the benefits. Also, some methodologies maintain a list of devel-
opments that can be used for testing the methodology and learn what it can
do. Tropos maintains a list of papers introducing empirical application of the
methodology in http://www.troposproject.org/node/304. INGENIAS does
the same but provides the code instead in http://ingenias.svn.sourceforge.

net/viewvc/ingenias/trunk/IDK/iaf/tests/. These developments are actu-
ally used as regression tests to verify that code generation capabilities of INGE-
NIAS are not altered, i.e., that the same specification can be transformed in the
final system as initially devised.

5 Conclusions

This paper has tried to clarify a pending issue in the AOSE community, which
it is the definition of an agent oriented methodology. It was studied using a
software engineering perspective based on standards and reference material in
the software engineering community. This has permitted to enumerate elements
that a methodology should incorporate, and aspects it should address. The work
is not finished yet, since other issues in the provided definitions have not been
completely explored. For instance, the way a method is expected to describe a
procedure and guidelines, and which ones could be meaningful.

Acknowledgements

This paper has been funded by the the project Agent-based Modelling and Simu-
lation of Complex Social Systems (SiCoSSys), supported by Spanish Council for
Science and Innovation, with grant TIN2008-06464-C03-01, by the Programa de
Creación y Consolidación de Grupos de Investigación UCM-Banco Santander for
the group number 921354 (GRASIA group), and by the Project for Innovation
and Improvement of Teaching (Proyectos de Innovacion y Mejora de la Calidad
Docente) number 127 from the UCM.

References

[ABD+04] Alain Abran, Pierre Bourque, Robert Dupuis, James W. Moore, and
Leonard L. Tripp. Guide to the Software Engineering Body of Knowledge
- SWEBOK. IEEE Press, Piscataway, NJ, USA, 2004 version edition,
2004.

[ABFF+11] Estefańıa Argente, Ghassan Beydoun, Rubén Fuentes-Fernández, Brian
Henderson-Sellers, and Graham Low. Modelling with agents. In Marie-
Pierre Gleizes and Jorge Gomez-Sanz, editors, Agent-Oriented Software

88

Engineering X, volume 6038 of Lecture Notes in Computer Science, pages
157–168. Springer Berlin / Heidelberg, 2011.

[BDM+06] Davide Bertolini, Loris Delpero, John Mylopoulos, Aliaksei Novikau,
Alessandro Orler, Loris Penserini, Anna Perini, Angelo Susi, and Bar-
bara Tomasi. A tropos model-driven development environment. In Nacer
Boudjlida, Dong Cheng, and Nicolas Guelfi, editors, CAiSE Forum, vol-
ume 231 of CEUR Workshop Proceedings. CEUR-WS.org, 2006.

[Bro95] Frederick P. Brooks. The Mythical Man-Month: Essays on Software En-
gineering, Anniversary Edition (2nd Edition). Addison-Wesley Profes-
sional, anniversary edition, August 1995.

[CCG+02] Giovanni Caire, Wim Coulier, Francisco J. Garijo, Jorge Gomez, Juan
Pavón, Francisco Leal, Paulo Chainho, Paul E. Kearney, Jamie Stark,
Richard Evans, and Philippe Massonet. Agent oriented analysis using
message/uml. In Revised Papers and Invited Contributions from the Sec-
ond International Workshop on Agent-Oriented Software Engineering II,
AOSE ’01, pages 119–135, London, UK, UK, 2002. Springer-Verlag.

[CGMO11] Massimo Cossentino, Marie-Pierre Gleizes, Ambra Molesini, and Andrea
Omicini. Processes engineering and aose. In Marie-Pierre Gleizes and
Jorge Gomez-Sanz, editors, Agent-Oriented Software Engineering X, vol-
ume 6038 of Lecture Notes in Computer Science, pages 191–212. Springer
Berlin / Heidelberg, 2011.

[CMM02] CMMI Product Team. Capability maturity model integration (cmmism),
version 1.1. Technical report, Carnegie Mellon, Software Engineering In-
stitute, 2002.

[Dij72] Edsger W. Dijkstra. The humble programmer. Commun. ACM,
15(10):859–866, 1972.

[EFSGSS11] Amal El Fallah-Seghrouchni, Jorge Gomez-Sanz, and Munindar Singh.
Formal methods in agent-oriented software engineering. In Marie-Pierre
Gleizes and Jorge Gomez-Sanz, editors, Agent-Oriented Software Engi-
neering X, volume 6038 of Lecture Notes in Computer Science, pages
213–228. Springer Berlin / Heidelberg, 2011.

[FG98] Jacques Ferber and Olivier Gutknecht. A meta-model for the analysis
and design of organizations in multi-agent systems. In Yves Demazeau,
editor, ICMAS, pages 128–135. IEEE Computer Society, 1998.

[GPHS05] Cesar Gonzalez-Perez and Brian Henderson-Sellers. Templates and re-
sources in software development methodologies. Journal of Object Tech-
nology, 4(4):173–190, May 2005.

[GSPG05] Jorge J. Gómez-Sanz, Juan Pavón, and Francisco J. Garijo. Estimating
costs for agent oriented software. In Jörg P. Müller and Franco Zam-
bonelli, editors, AOSE, volume 3950 of Lecture Notes in Computer Sci-
ence, pages 218–230. Springer, 2005.

[HSGP08] Brian Henderson-Sellers and Cesar Gonzalez-Perez. Standardizing
methodology metamodelling and notation: An iso exemplar. In Roland
Kaschek, Christian Kop, Claudia Steinberger, and Günther Fliedl, editors,
UNISCON, volume 5 of Lecture Notes in Business Information Process-
ing, pages 1–12. Springer, 2008.

[IEE90] IEEE standard glossary of software engineering terminology. IEEE Std
610.12-1990, 1990.

[IGCG98] Carlos Angel Iglesias, Mercedes Garijo, and José Centeno-González. A
survey of agent-oriented methodologies. In Jörg P. Müller, Munindar P.

89

Singh, and Anand S. Rao, editors, ATAL, volume 1555 of Lecture Notes
in Computer Science, pages 317–330. Springer, 1998.

[Ken99] Elizabeth A. Kendall. Role modeling for agent system analysis, design,
and implementation. In ASA/MA, pages 204–218. IEEE Computer Soci-
ety, 1999.

[LP08] Michael Luck and Lin Padgham, editors. Agent-Oriented Software En-
gineering VIII, 8th International Workshop, AOSE 2007, Honolulu, HI,
USA, May 14, 2007, Revised Selected Papers, volume 4951 of Lecture
Notes in Computer Science. Springer, 2008.

[M9̈7] H. Jürgen Müller. Towards agent systems engineering. Data Knowl. Eng.,
23:217–245, September 1997.

[NCdL+11] Ingrid Nunes, Elder Cirilo, Carlos de Lucena, Jan Sudeikat, Christian
Hahn, and Jorge Gomez-Sanz. A survey on the implementation of agent
oriented specifications. In Marie-Pierre Gleizes and Jorge Gomez-Sanz,
editors, Agent-Oriented Software Engineering X, volume 6038 of Lecture
Notes in Computer Science, pages 169–179. Springer Berlin / Heidelberg,
2011.

[NNLC99] Hyacinth S. Nwana, Divine T. Ndumu, Lyndon C. Lee, and Jaron C. Col-
lis. Zeus: A toolkit for building distributed multiagent systems. Applied
Artificial Intelligence, 13(1-2):129–185, 1999.

[NR68] Peter Naur and Brian Randell, editors. Software Engineering, report on
a conference sponsored by the NATO SCience Committee. NATO, Science
Affairs Division from NATO, 1968.

[Obj08] Object Management Group. Software and systems process engineering
metamodel specification (spem), 2008.

[PCCW93] M.C. Paulk, B. Curtis, M.B. Chrissis, and C.V. Weber. Capability matu-
rity model, version 1.1. Software, IEEE, 10(4):18 –27, July 1993.

[PGS03] Juan Pavón and Jorge J. Gómez-Sanz. Agent oriented software engineer-
ing with ingenias. In Vladimı́r Maŕık, Jörg P. Müller, and Michal Pe-
choucek, editors, CEEMAS, volume 2691 of Lecture Notes in Computer
Science, pages 394–403. Springer, 2003.

[SCDS09] Carles Sierra, Cristiano Castelfranchi, Keith S. Decker, and Jaime Simão
Sichman, editors. 8th International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2009), Budapest, Hungary, May
10-15, 2009, Volume 2. IFAAMAS, 2009.

[SCG08] Valeria Seidita, Massimo Cossentino, and Salvatore Gaglio. Using and
extending the spem specifications to represent agent oriented methodolo-
gies. In Michael Luck and Jorge J. Gómez-Sanz, editors, AOSE, volume
5386 of Lecture Notes in Computer Science, pages 46–59. Springer, 2008.

[SS03] Arnon Sturm and Onn Shehory. A framework for evaluating agent-
oriented methodologies. In Paolo Giorgini, Brian Henderson-Sellers, and
Michael Winikoff, editors, AOIS, volume 3030 of Lecture Notes in Com-
puter Science, pages 94–109. Springer, 2003.

[STP10] Hongyuan Sun, John Thangarajah, and Lin Padgham. Eclipse-based
prometheus design tool. In Wiebe van der Hoek, Gal A. Kaminka, Yves
Lespérance, Michael Luck, and Sandip Sen, editors, AAMAS, pages 1769–
1770. IFAAMAS, 2010.

[WD00] Mark F. Wood and Scott A. DeLoach. An overview of the multia-
gent systems engineering methodology. In Paolo Ciancarini and Michael

90

Wooldridge, editors, AOSE, volume 1957 of Lecture Notes in Computer
Science, pages 207–222. Springer, 2000.

[WJK00] Michael Wooldridge, Nicholas R. Jennings, and David Kinny. The gaia
methodology for agent-oriented analysis and design. Autonomous Agents
and Multi-Agent Systems, 3(3):285–312, 2000.

[ZJW03] Franco Zambonelli, Nicholas R. Jennings, and Michael Wooldridge. De-
veloping multiagent systems: The gaia methodology. ACM Trans. Softw.
Eng. Methodol., 12(3):317–370, 2003.

This article was processed using the LATEX macro package with LLNCS style

91

92

Assessing Agent Applications — r&D vs. R&d

Benjamin Hirsch1, Tina Balke2, and Marco Lützenberger1

firstname.lastname@{dai-labor|uni-bayreuth}.de

1 DAI-Labor, Technische Universität Berlin
Faculty of Electrical Engineering and Computer Science

2 Chair of Information Systems Management, Universität Bayreuth
Faculty of Law, Business Administration and Economics

Abstract. This paper discusses the discrepancy between the stated
aims of agent research with regard to agent applications, and the re-
ality as found in many (general) agent conferences. After analysing this
discrepancy by looking at the distribution of application papers at past
AAMAS conferences, we analyse relevant stakeholders for agent applica-
tion papers and provide suggestions for them.
The aim of this paper is twofold. First, we want to provide a basis for
discussing the state and status of agent applications in research oriented
conferences. Secondly, we provide initial guidelines for authors and re-
viewers which might further the acceptance of application oriented work
in the agent community.

1 The Case

It is generally agreed that agent technology is a topic mainly confined to the
realm of research. From key note speeches to the AgentLink roadmap [8, Chap-
ter 5], applying agent technology, as well as developing tools and frameworks and
applying agent oriented methodologies to real world problems is one of the key
drivers of advancing agent technology. Thus, looking at the IFAAMAS charter [6]
for example, the following mission statements can be found:

Point 1 Promote high quality scientific research and technological practice world-
wide in Autonomous Agents and Multiagent Systems, in accordance with
standards of excellence and best international scientific practice, giving equal
prominence to foundational, theoretical, experimental, and applied research.

Point 5 Foster links between the AAMAS community and the international
business community, and national / international governments / government
organisations, where such links will further the goals listed above.

Point 6 Act as an authoritative and responsible international voice for the
AAMAS community, informing public opinion and raising public awareness
of this research and technology.

As these mission statements indicate, the diffusion of agent technology —that
could for example be achieved through industry adoption— as well as the in-
crease of business as well as public awareness for agents, are major aims of the

93

community. In order to achieve these aims, the AgentLink Roadmap [8, p. 50]
points out “applications & implementation” as one driving force required, as
they attract potentials adopters of agent technology by indicating the benefits
of the agent technology to them in a form that they can easily understand. Thus,
research and development, or as often abbreviated R&D, should work hand in
hand.

Yet, although the interplay of R&D sounds like a natural match, when it
comes to conferences, R&D seem to have different perceptions and views and
the balance between the two seems difficult, especially when understanding the
needs of the other domain. Experience shows that papers that either focus on
a particular application that uses agent technology, or deal with issues that are
close to implementation issues in the context of agents —for example network
problems, authorisation, or deployment— are frequently not accepted.

Thus, having a look at the past AAMAS conferences, despite the IFAAMAS
mission statements, the number of application & implementation papers is very
low low.

To emphasise the problem, we examined the main track proceedings [4, 5,
10, 14–16] of recent AAMAS conferences and analysed papers with a focus on
applications. We respectively identified between eight and 13 papers in AAMAS
editions from 2006 and 2011. Table 1 illustrates the result of our survey. It shows
that during the last five years the number of full papers at AAMAS stayed more
or less the same, while the number of application oriented papers dropped from
about 10% to little over 6%.

Table 1. Submissions, accepted, and application papers at AAMAS conferences.

Application Papers

AAMAS Submissions Acceptances # Accepted Acceptance (%)

2006 550 127 13 10.2
2007 531 121 10 8.3
2008 721 141 10 7.1
2009 651 132 8 6.1
2010 685 163 10 6.1
2011 575 127 8 6.3

Figure 1 shows the trend line over the percentage which clearly isin decline.
The reasons for this decline are not clear, but it is our opinion that applications
are as relevant today as they were five years ago.

Of course, one can argue that applications are adequately represented by
means of industry tracks in theoretical applications, as well as workshops and
conferences focusing on the application side of agent technology. However, indus-
try tracks are often only visited by like-minded researchers or industry players.

94

Fig. 1. Amount of accepted full papers and application papers in AAMAS maintrack
proceedings between 2006 and 2011.

We argue that application papers (in form of r&D) are indeed relevant to the
agent community at large, and should be presented for the following reasons:

– Engineering problems are often ignored in theoretical papers, but those are
actually show stoppers for actually using the theories. Thus, for industry
to consider adopting a new technology, it must not only learn about it in
the first place, but in addition learn on how it could help and support the
industrial problems.

– Applications present real issues and challenges that in turn (should) point
to possible directions for future theoretical research.

– Many national and transnational project calls explicitly ask for industry in-
volvement. Thus, in the general documents of the Community Research and
Development Information Service of the European Commission for example,
the “Rules for submission of proposals, and the related evaluation, selection
and award procedures” emphasises “An appropriate balance between aca-
demic and industrial expertise and users” with regard to FP7 projects [3, p.
11].

– In order to learn about industry needs and thinking and get in touch with
industry partners application papers are a significant step.

That is why this paper tries to address this disconnect with regard to R&D,
by focusing both on the agent community’s as well industry’s point of views. It

95

thus tries to answer how to move from the mission statements to reality in terms
of conference representation.

Therefore, the paper is structured as follows: starting from a short identifica-
tion of the main stakeholders of agent applications and implementation works, we
focus on the interests of the different stakeholders with regard to agent applica-
tions and implementations in Section 2. Starting from these stakeholder interests
we will then focus on suggesting derived thereof guidelines for both authors and
reviewers of agent application and implementation papers and contrast these to
the existing AAMAS review criteria in Section 3.

With this paper we intend to stimulate a discussion within the agent commu-
nity about its wants and needs of the community and possible ways of achieving
them in general, and with regard to conference papers in particular.

2 The Stakeholders

Having presented the discrepancy between the IFAAMAS mission statement
and the realization of these statements with regard to the representation of
application papers in the respective conference, in this section we would like to
focus on the stakeholders of agent application & implementation papers. The
stakeholders are the addressees of a paper, i.e. the interests groups that a paper
is written for.

Looking at agent application & implementation papers submitted to a con-
ference one can identify 3 groups of potential stakeholder. These are:

– industry, i.e. firms that adopt a scientific idea expressed in a paper and
implement/apply it on large scale, or help to perform certain research in the
first place,

– academia, consisting of both: the researchers trying to publish their work as
well as other researchers that may pick up on an idea expressed in the paper
and get to know the work of the author better, and

– reviewers that are supposed to judge the scientific quality of a paper, give
feedback to the authors and help the programme committee of a conference
to decide which papers to accept and which ones not.

Looking at these stakeholders, how can application & implementation papers
become more successful in terms of the IFAAMAS statements? The answer is
very straight forward and simple: they need to address the wants and needs of
these stakeholders. But what views of the stakeholders should be in a paper?
This question shall be looked at in the next sections.

2.1 The Industry view: The Technology Adoption Life-Cycle

To start with, the first interest group’s view that will be analysed is the industry.
As stated earlier, with regard to scientific papers, the industries main focus is
to find new ideas and technologies that can be adopted and incorporated in the
business context with the goal of process optimisation and revenue increases.

96

However, when does industry adopt new technologies and new ideas from
papers? One very popular business concept that tries to explain the processes
behind industry adoption of technological ideas is the technology adoption life-
cycle.

The technology adoption life-cycle is a sociological model that was devel-
oped by Joe M. Bohlen, George M. Beal and Everett M. Rogers [1, 2], building
on earlier research conducted there by Neal C. Gross and Bryce Ryan [12]. Their
original works focused on the adoption (in form of a purchase pattern) of hybrid
seed corn by farmers in Iowa and were later generalised to fit the adoption of
new ideas and technologies in general [11]. The general life-cycle describes the
adoption or acceptance of a new product or innovation, according to the charac-
teristics of defined adopter groups. The model is very believed in by marketers,
as it is closely related to the idea that all products and services are subject to a
life-cycle, that can be portrait in the innovation context.

P
en

et
ra

ti
on

gr

ow
th

ra
te

Technology
Adoption

Stage / Time

Innovators
(2,5 %)

Early
Adopters
(13,5 %)

Early Majority
(34 %)

Late Majority
(34 %)

Laggards
(16 %)

Bleeping
Edge

Leading Edge State of the Art Dated

new alternatives
take hold

Conservatives see
writing on the wall

Pragmatists see
value

Visionaries
spot winners

„Techies“
try it

Toy

Fig. 2. The Technology Adoption Life Cycle

Figure 2 shows the technology adoption life-cycle. The process of adoption
over time is typically illustrated as a classical normal distribution or “bell curve”.
This is because companies respond to new products in different ways. Thus, dif-
fusion of innovations theory, pioneered by Everett Rogers, posits that companies
have different levels of readiness for adopting new innovations and that the char-
acteristics of a product affect overall adoption. The model indicates that the first
adoption of a new technology begins with a small group of “innovators” that ac-
cording to Rogers occupy 2.5% of the total group. These are followed by “early
adopters” (13.5%). The adoption reaches its growth peak when the “early and
late majority” group (34% each) start adopting, and then starts to decline again
when only “laggards” (16%) jump on the respective technology bandwagon [11,
7].

97

Along the lines of these adopter groups in marketing business theory, six
technology life-cycle stages have been identified, that are sketched in figure 2 as
well. These stages are:

Toy At the very beginning the technology is said to be in a Toy stage, meaning
that it is only known to a very limited number of people, that are highly
interested in new technologies, have followed the new innovation from the
first day and have the disposable income to indulge their interest. In this early
stage the potential of the new technology cannot necessarily be identified and
economic risks associated with the adoption of the technology are very high.

Bleeding edge Technology changes from toy to bleeding edge stages, ones the
high potential can be identified, but the technology has not been able to
demonstrate its value or any kind of consensus about the potential impact of
the technology has been agreed on. As a result, the success of the technology
is still insecure and adaption is risky (success-wise as well as financially) –
early adopters may win big, or may be stuck with a white elephant. That’s
why normally early adopters tend to be technologically sophisticated, well-
informed as well as willing and able to take financial risks.

Leading edge The Leading Edge Phase is reached once an increasing number of
industrial companies learn about the technology and perceived its value with
regard to the companies (potentially diverse) needs. However, the technology
is still new enough that it may be difficult to find knowledgeable personnel
to implement or support it.

State of the art When everyone agrees that a particular technology is the
right solution and knowledgeable personnel for the technology is available,
the technology has reached the State of the Art stage. At the beginning
of this stage the growth rate of the technology penetration is highest and
slowly decreases with as the majority of companies have adopted by that
time and consequently the number of additional company that could adopt
the technology decreases.

Dated In the Dated Stage, only laggards are left. The technology is generally
perceived as still useful and is still sometimes implemented, but a replace-
ment leading edge technology is readily available.

Obsolete In the Obsolete phase, the technology has been superseded by a new
state-of-the-art technology. It is maintained but no longer implemented.

Keeping this theory of the adoption life-cycle in mind, it is useful to con-
sider the position of agent technologies in the curve. Agent technology has not
yet entered the two majority stages but can be classified in between the first
two stages. Thus, unlike with object-oriented technologies for example only a
relatively small number of deployed commercial and industrial applications of
agent technology are visible. One reason for this is the relative young age of
agent research compared to established technologies (object-oriented concepts
had been studied for more than 20 years, before being taken up in program-
ming languages). Others argue that (maybe as a consequence) agent technology
is not yet visible to many industry players [9]. But what stimulates industry

98

to become aware of a new technology? In their presentation of the technology
adoption life-cycle Bohlen et al. identify two major driving forces for adoption,
importance-wise ranking in the order presented here:

1. Usefulness and ease of use needs to be recognised by industry.
2. The perceived risk by companies plays a huge role. So the higher the per-

ceived risk, the lower the likelihood of adoption.

“Usefullness and ease of use” calls for agent technology example applica-
tions for industrial problems but at the same time an awareness for the major
specifications of agents that differentiate agents from other technologies. When
is comes to perceived risk, the question is how to reduce this risk? The an-
swer given in literature here is the usage of proven methodologies, tools, and
complementary products and services. Whereas the latter of the two does not
necessarily point to application related publications and work, especially with
regard to usefulness they are of an extremely high importance, as in particu-
lar example applications in which the respective usefulness of agents has been
shown, can motivate industry to invest in agents.

2.2 The Research view:

When looking at researchers, i.e. academia, the first thing to note is that academia
and industry do not necessarily share congruent goals. Whereas the industry view
is very revenue oriented, academia’s goals are somewhat different. Thus – putting
it simple – the main focus of researchers often is to solve problems that are rel-
evant and/or scientifically interesting. Publishing the work is a way to present
the achieved results/findings and make them visible to people interested in the
field/domain, such as other researchers or industry. Publications are important
to start discussions and attract potential future cooperation partner – both from
industry and academia – as well as increase scientific recognition and possibly
acquire funds for future research. The prerequisite for all the latter, however is
the visibility of the research, i.e. the publication in the first place. Due to this
importance of publications a high rivalry for them exists. One way of solving
this rivalry is by evaluating the quality of the research work with the help of
impartial judges. These “impartial judges” are being referred to as reviewers.

2.3 The Reviewers view:

According to Smith [13], the task of a reviewer is to evaluate the written work by
other researcher that has been submitted for publication in a specific journal or
to a conference. One the one hand this involves determining if the work presented
is correct and of sufficient quality and on the other hand if the problem studied
and the results obtained are new and significant. Based on his knowledge a
reviewer is furthermore supposed to make suggestions (if applicable) on how to
improve the paper, i.e. give ideas which changes to the paper (and possibly the
research behind the paper) might improve the work. Reviewers do this work for

99

free, i.e. without any direct financial repayment in their own time. The benefits
they have from the task reach from the contribution they make to the research
community, to the fact that they might get idea for own research or pointers
to new references for their work, as well as the possibility to shape the future
direction of research in the domain by either accepting or rejecting a paper and
thus by deciding on what is being published and presented and what not.

In order to perform the review task, reviewers normally are given some guide-
lines and/or review forms by the journal or conference, they are reviewing for.
These are supposed to help the reviewer to fulfill his task in a structured manner
and make reviews comparable. The review guidelines given for the past AAMAS
conferences are shown in the next section. One particular problem with regard
to the r&D work is that due to its practical implementation, it is hard to check
for reviewers, especially given the limited time frame of a review period. This
combined with the fact that research is often demanded to have a general and
not only case specific validity results in problems when evaluating r&D work.
As pointed on beforehand one of the main industry drivers for adopting a new
technology is “usefulness and ease of use”. The problem at hand is that this
driver doesn’t necessarily go along with the review process. We identify this dis-
crepancy as one reason for the issues raised in Sec. 1. In order to be able to
make specific suggestions and start a discussion on how this discrepancy can be
reduced, in the next section we have a closer look at AAMAS review criteria and
based on these criteria make suggestions for improvement.

3 Guidelines

In the preceding sections we have established that application oriented papers
are a tiny minority. The question that needs to be answered is how this imbalance
can be changed. We approach this from two sides, the view of the author and
the view of the reviewer.

3.1 For Authors

As opposed to purely theoretical papers, applications of agent technology can
often not build on prior work (or previous implementations), nor can they be re-
produced easily. The costs of implementing demonstrators or prototypes also pre-
cludes the parallel implementation of different versions, for example to provide
the basis for comparing different approaches, agent-based or otherwise. There-
fore, authors need to ensure that reviewers understand these limitations. From
this follows that authors need to make clear that the paper is an application
paper, so that the reader adapts his or her expectations accordingly.

When writing application papers, it is easy to end up doing a pure system
description. While this can and should be an important part of the paper, it
should not be the sole content. This is because the ultimate goal of publications
in general is not only to report on work that has been done, but to provide
novel insight. A implemented system might give such an insight, but as often

100

as not it does not. As it is usually impractical or even impossible for others to
re-implement the system to reproduce the outcome, it is important to discuss
design decisions in order to allow the reader to appreciate the made choices.

Following up on the previous point, the paper should allow the reader to
learn something (other than that there exists a certain system implementation).
Usually, implementations make use not only of agent frameworks but also of
theoretical works and approaches. These theoretical aspects should be made
clear, discussed, and reflected upon. It is for example our experience that a
sizable number of theories that purport to be “practical” are in fact not, be it
due to some “hand waving” over implementation aspects that turn out to be
not so simple, be it due to scalability issues, or due to extreme simplifications or
unrealistic assumptions made. If application papers clearly state the issues and
limitations of certain approaches, this feedback can again be used to improve
upon the original work. Finally, the authors should try and extrapolate from
their implementation.

Below, we give a number of questions that an application oriented paper (and
probably others too) should answer:

What do you want to say? The paper should clearly state that an applica-
tion is described. Application papers should nevertheless also state the initial
motivation for the application. What problem was addressed / focused on
by the paper?

Who Should Read the Paper, and Why? Related to the previous point,
the paper should explicitly state to whom the paper is addressed, e.g. indus-
try, practitioners, domain experts. However, there are no commonly accepted
categories.

How did you go about? It might be advantageous to focus partly on the
methodology used to develop the application. This might focus the work
on areas of the methodology that need refinement. Design decisions need to
be discussed properly and in detail.

What new did you learn? The paper should clearly state in how far the work
has created new knowledge about implementation, theory, or applications
thereof. How does the work impact theories that were used?

Why does it matter? What is it that can be taken away from the paper,
in terms of relevance to the field? Is a generalisation from the specific ap-
plication to a general field possible? What are potential limitations of the
generalisation?

3.2 For Reviewers

AAMAS reviewer guidelines alert reviewers to look for different aspects when
reading an application paper. For example, they state for technical quality that

If the paper describes an application, is there:
– a clear and compelling motivation for why a multi-agent approach is

important?

101

– a careful description of the design and implementation of the system?
– a thorough evaluation of the system with respect to a clearly-stated

set of functional and quality requirements?

For other relevant aspects of the review, such as originality, relevance, or signif-
icance there are no review hints specifically for application descriptions.

The author’s guidelines in a way also guide the reviewer, in that the reviewer
needs to asses in how far the posed questions are answered by the paper. De-
pending on the background of the reviewer, he should try and asses the impact
that the paper can have on his community, but also on the other. This means
that someone with a theoretical background should focus not only on the theo-
retical aspects but also try and assess in how far the paper makes valid points
for practitioners.

Additionally, the relevance of the work to the intended audience needs to be
taken into account. In the case of AAMAS, it is our belief that practical papers
are indeed relevant to the community at large.

We realise that reviewing is very much dependent on one’s background, and
even papers reviewed by colleagues working in similar fields can differ wildly. It
has to be said here that AAMAS gives fairly extensive guidelines to reviewers
to try and ensure consistent reviews.

4 Conclusion

It is our belief that application descriptions are an important part of the work
being done in the agent community, and that it should therefore play a lager
role in the community at large than it does at the moment. While there are a
number of venues specifically for practical issues and implementations of agent-
based systems, it is to our mind important to bridge the R and the D, and get
the different communities to interact.

We do not assume to have all the answers, but in pointing out the trend of a
decreasing number of application oriented papers we hope to start a discussion
on the need for more practical papers. The reasons and possible means to rectify
this situation are more complex than what we offer here, but nonetheless we
hope that the issue will be taken up by the community.

References

1. G. M. Beal, E. M. Rogers, and J. M. Bohlen. Validity of the concept of stages in
the adoption process. Rural Sociology, 22(2):166–168, 1957.

2. J. M. Bohlen and G. M. Beal. The diffusion process. Special Report 18, Iowa State
College, May 1957.

3. CORDIS. Rules for submission of proposals, and the related evaluation, selection
and award procedures, August 2008.

4. K. S. Decker, J. S. Sichman, C. Sierra, and C. Castelfranci, editors. Proceedings
of the 8th International Conference on Autonomous Agents and Multiagent Sys-
tems, Budapest, Hungary. International Foundation for Autonomous Agents and
Multiagent Systems, May 2009.

102

5. E. Durfee, M. Yokoo, M. Huhns, and O. Shehory, editors. Proceedings of the 6th

International Joint Conference on Autonomous Agents and Multiagent Systems,
Honululu, HI, USA. Association for Computing Machinery, May 2007.

6. IFAAMAS. Charter for the international foundation for autonomous agents and
multiagent systems.

7. T. Levitt. Exploit the product life cycle. Harvard Business Review, 43(6):81–94,
1965.

8. M. Luck, P. McBurney, O. Shehory, and S. Willmott. Agent Technology: Computing
as Interaction – A Roadmap for Agent Based Computing. AgentLink, 2005.

9. V. Marik and D. McFarlane. Industrial adoption of agent-based technologies. IEEE
Intelligent Systems, 20(1):27–35, 2005. IEEE Educational Activities Department.

10. L. Padgham, D. C. Parkes, J. Müller, and S. Parsons, editors. Proceedings of the
7th International Conference on Autonomous Agents and Multiagent Systems, Es-
toril, Portugal. International Foundation for Autonomous Agents and Multiagent
Systems, May 2008.

11. E. M. Rogers. Diffusion of Innovations. Free Press, 1962.
12. B. Ryan and N. C. Gross. The diffusion of hybrid seed corn in two iowa commu-

nities. Rural Sociology, 8:15–24, 1943.
13. A. J. Smith. The task of the referee. Computer, 23(4):65–71, April 1990. IEEE

Computer Society Press.
14. P. Stone and G. Weiß, editors. Proceedings of the 5th International Joint Conference

on Autonomous Agents and Multiagent Systems, Hakodate, Japan. Association for
Computing Machinery, May 2006.

15. W. van der Hoek, G. A. Kaminka, Y. Lespérance, M. Luck, and S. Sen, editors.
Proceedings of the 9th International Conference on Autonomous Agents and Multia-
gent Systems, Toronto, Canada. International Foundation for Autonomous Agents
and Multiagent Systems, May 2010.

16. P. Yolum, K. Tumer, P. Stone, and L. Sonenberg, editors. Proceedings of the
10th International Conference on Autonomous Agents and Multiagent Systems,
Taipei, Taiwan. International Foundation for Autonomous Agents and Multiagent
Systems, May 2011. To appear.

103

104

Dynamically Adapting BDI Agent Architectures based
on High-level User Specifications

Ingrid Nunes1,2, Simone Barbosa1, Michael Luck2, and Carlos Lucena1

1 PUC-Rio, Computer Science Department, LES - Rio de Janeiro, Brazil
{ionunes,simone,lucena}@inf.puc-rio.br

2 King’s College London, Strand, London, WC2R 2LS, United Kingdom
michael.luck@kcl.ac.uk

Abstract. Users are facing an increasing challenge of managing information and
being available anytime anywhere, as the web exponentially grows. As a conse-
quence, assisting them in their routine tasks has become a relevant issue to be
addressed. In this paper, we introduce a software framework that supports the de-
velopment of Personal Assistance Software (PAS). It relies on the idea of expos-
ing a high-level user model in order to increase user trust in the task delegation
process as well as empowering them to manage it. The framework provides a
synchronization mechanism that is responsible for dynamically adapting an un-
derlying BDI agent-based running implementation in order to keep this high-level
view of user customizations consistent with it.

Keywords: Personal Assistance Software, Framework, User Agents, User Mod-
eling, Adaptation, Software Architecture.

1 Introduction

Personal Assistance Software (PAS) is a family of systems whose goal is to assist users
in their routine tasks. The popularity of these systems, e.g. task managers and trip plan-
ners, is increasing as the web grows, because people are increasingly facing the chal-
lenge of dealing with huge amounts of information and being constantly accessible
through mobile devices. In this context, the development of PAS is strongly related to
personalization and recommender systems but brings several challenges. In particular,
individual user characteristics must be captured to provide personalized content and
recommendations for users; i.e. there is a need to elicit, represent and reason about
user preferences. In addition, as the typical scenario used in research on preferences is
online stores, two key concerns are that users are generally unwilling to provide infor-
mation and they cannot be expected simply to blindly trust recommendations. Research
on implicit learning [4] (learning without users providing explicit information) and ex-
planation interfaces [12] has been addressing these issues, respectively.

Most current research is concentrated on identifying user preferences with elicita-
tion and learning processes, in order to personalize systems solely in terms of data. In
our work, we examine a different scenario: we aim to support the development of PAS
able to automate routine tasks, in a way that enables configuration directly by users,
by choosing from the services it provides and customizing them. Such systems must

105

thus be able to have their architecture adapted dynamically, which is the main issue
addressed in this paper. These adaptations must also take into account preferences in
order for agents to be able to act appropriately on behalf of users. Furthermore, the
ability to understand what the system knows about users and providing them with a
means for controlling the system are key issues in automation. Since users directly ben-
efit from interacting with their personal application, they can tolerate spending more
time in providing it with information, in comparison to web applications, in which im-
plicit learning is essential, since these are not personal user systems.

In response, in this paper, we introduce a software framework that provides a reusable
infrastructure for the development of PAS. The main characteristic of the framework is
the adoption of a high-level user model exposed to users (transparency), and which they
can manage (power of control). Here, user customizations are realized by lower level
software components, thus we propose a synchronization mechanism that is responsible
for dynamically adapting an underlying BDI agent-based running implementation and
keeping this high-level view of user customizations consistent with it.

The remainder of this paper is organized as follows. Section 2 describes our PAS
framework and our dynamic adaptation mechanism. Section 3 makes a qualitative anal-
ysis of our proposal by discussing relevant aspects from it. Section 4 presents related
work followed by Section 5, which concludes this paper.

2 A Two-level Framework for Developing PAS

In this section we provide an overview of our framework and detail its two main com-
ponents: the PAS Domain-specific Model (DSM), which models user customizations
in a high-level way, and the synchronization mechanism for dynamic adaptation in
belief-desire-intention (BDI) architectures. This architecture provides abstractions and
a reasoning mechanism, which are adequate and widely adopted to develop cognitive
agents, in particular agents able to automate user tasks. Moreover, this architecture is
composed of loosely coupled components and makes an explicit separation between
what to do (goals) and how to do it (plans). These two characteristics of the architecture
make it very flexible, which facilitates the adaptation process by evolving and changing
components with a lower impact in the running system.

2.1 Framework Overview

Our framework is a reusable software infrastructure for developing a family of sys-
tems whose goal is to assist users in their routine tasks in a customized way. The main
characteristic of our approach is the adoption of two levels of abstractions that capture
user customizations: the (end-)user and implementation levels. The first makes user
customizations explicit and modularized, as well as understandable by users, so that
the current state of the PAS is transparent to users, and empowers them to manage
customizations. As users evolve and personalize their PAS over time, and there is an
underlying implementation that must be consistent with the user high-level specifica-
tions, there is a need to keep both levels synchronized. So changes at the user level
drive dynamic adaptations in the underlying implementation, in order for the latter to

106

(a) The Client-server Architecture. (b) Macro and Micro-level Views.

Fig. 1: PAS architecture.

reach a state consistent with the user-level representation. User customizations at the
user level are represented in a high-level language, and can be: (i) configurations: direct
and determinant interventions that users perform in a system, such as adding or re-
moving services and enabling optional features. These configurations can be related to
environment restrictions (e.g. a device configuration, or functionalities provided by the
system); or (ii) preferences: information about user values that influences their decision
making, and thus can be used as resources in agent reasoning processes. Preferences
typically indicate how a user rates certain options better than others in certain contexts.

The implementation of the PAS can be seen not only as a unique software system
but as a set of software assets that can be integrated to form different customized appli-
cations for diverse users. Therefore, all optional parts of the PAS must be modularized
in the code, so they can be added and removed from the running application instance.
Each set of assets that realizes a variable part of the PAS is the implementation-level
representation of user customizations.

Our framework supports the implementation of PAS using a client-server model.
User data is stored in a centralized database in the server. The server is structured with
a Business layer that provides services for PAS clients, and a Data layer composed
of Data Access Objects (DAOs) [1] that access the database. Both can be extended to
incorporate application-specific services. PAS clients, in turn, have: (i) a Configuration
layer, which enables users to manage the model that represents customizations at a
high-level; (ii) a User Agents layer, which implements application-specific services and
functionalities for users; (iii) a Synchronizer layer, which executes adaptation rules to
keep (i) and (ii) consistent; and (iv) a Support layer, which provides core PAS services,
such as login. The client-server model is illustrated in Figure 1a, highlighting the layers
in which the framework is structured. The Domain Model is a layer common to both the
client and the server sides of the PAS, and is thus shown between them in Figure 1a.

From a macro-level viewpoint, PAS clients can be seen as autonomous and proac-
tive agents that represent users in a multi-agent system. PAS clients communicate to
the PAS server to access stored information and other business services, and can com-
municate with each other. They also communicate with services available on the web.
For instance, if our framework is instantiated for the trip planning domain, services are
agents representing hotel and airline companies. A PAS client at the macro-level can be
seen as a single agent representing a user, but at the micro-level it is decomposed into

107

autonomous components (also agents), each of which has different responsibilities. Fig-
ure 1b shows both macro and micro-level views of an instance of our framework.

2.2 PAS Domain-specific Model

The PAS DSM has a key role in our approach. It is a meta-model that defines abstrac-
tions to model domain-specific concepts of PAS, such as features and preferences. The
goal is to use abstractions close to the vocabulary of users. The PAS DSM was previ-
ously defined in [10], however we introduce the parts that are relevant for this paper
(see [10] for further details), and highlight improvements over the previous version.
The PAS DSM consists of two parts: definition models and the user model. Defini-
tion models define abstractions of a PAS that characterize a particular PAS application,
e.g. domain entities and provided features. They also serve as a basis for instantiating
user models. Abstractions of definition models provide both domain entities (e.g. fea-
tures and ontology concepts) to be referred to in users models, and restrictions used
for defining valid user model instances. In addition, a user model can evolve over time.
Definition and user models are instantiated in a stepwise fashion. The first is built by
developers during the instantiation of a PAS application, i.e. it consists of design deci-
sions. The latter is instantiated at runtime by users (possibly on learning from users), so
it corresponds to user decisions.
Definition Models. There are three definition models, which are detailed as follows.
Ontology Model. The ontology model defines the set of concepts within the application
domain and the relationships between those concepts. It is commonly used for knowl-
edge representation, so its detailed description is out of the scope of this paper. We
mention elements of the ontology model while describing our models, which we refer
to as: (a) Classes: concepts of the ontology; (b) Properties: slots of concepts. They can
store primitive values or references to other concept instances; (c) Enumeration: a set
of named values (EnumerationValue); and (d) ValueDomain: a particular kind of Enu-
meration, being composed of Values. Value [8] is a first-class abstraction that we use to
model high-level user preferences. It describes preferences not over characteristics of
the object but the value it brings.
Feature Model. This model defines the set of features available for users to configure
their PAS application. A feature is any characteristic relevant to the user that, depending
on the user configuration, can be part of the application. For instance, it might be a func-
tionality or a setting (e.g. the interface language). Our feature model is an extended and
adapted version of feature models used in Software Product Lines (SPLs) [5], which
is a new software reuse approach that aims at systematically deriving families of ap-
plications based on a reusable infrastructure with the intention of achieving reduced
costs and time-to-market. A PAS application can be seen as an SPL whose products are
applications customized for a particular user. However, a main characteristic of PAS
is providing users with functionalities that automate their tasks, and feature models do
not explicit capture it. Therefore, we have enriched feature models by distinguishing
a particular kind of feature: the autonomous features, which provide a functionality of
acting on behalf of users for performing a user task.

Each autonomous feature has a set of autonomy degrees associated with it, which
means the different degrees of autonomy that the feature makes available to the user.

108

Possible autonomy degrees are initiate, suggest, decide and execute, which
were defined based on the taxonomy presented in [9]. The availability of these auton-
omy degrees does not imply that this automation will be performed; this is determined
in the configuration of the user model. An example is a Flight Planner feature that may
be able to suggest and execute the process of buying a flight ticket for a user, but
not to initiate and decide about it.
Preferences Definition Model (PDM). Because it is desirable that users are able to ex-
press preferences in different ways, it is necessary to have a system that can deal with
them. For instance, if an application can deal only with quantitative preferences, prefer-
ences expressed in a qualitative way will have no effect on the system behavior if there
is no mechanism to translate them to quantitative statements. The PDM specifies re-
strictions over preferences users can express, i.e. the purpose of this model is to specify
how users can express preferences and about which elements of the ontology model.

Users can provide different kinds of preferences statements in the user model, which
were chosen using preference statements collected from different individuals and from
existing models to reason about preferences. The aim was to consider the different
kinds of preference statements in order to maximize the expressiveness of users. There
are five different kinds of statements: order (an order relation between two elements),
rating (users attribute a rate to a target), minimization or maximization (user preference
is to minimize or maximize an element), reference value (users indicate one or more
preferred values for an element) and don’t care (a set of elements the user does not care
about, they are equally (un)important to the user). A preference target can be associated
with a subset of these kinds of preference statements, so that it is possible to express
those kinds of preference about the target. There is an exception for rating preferences,
whose definition is based on rating domains: rating preferences related to a target can
be expressed if that target is associated with a rating domain, and the rating must belong
to the defined domain. This domain can be numeric (either continuous or discrete), with
specified upper and lower bounds; or an enumeration. Targets can be one of four types,
which are those described in the ontology model.
User Model. The user model specifies user customizations for each individual user, and
is built on abstractions from the feature model and the PDM of an application. These
models are used to constrain the user model instance. As stated before, user customiza-
tions can be either configurations or preferences, so the user model is composed of two
parts: a configuration and a set of preferences. As the user model is managed by users,
the Configuration layer of the framework provides a graphical interface to manipulate
it. The configuration comprises a set of features that are selected from the feature model,
and a set of feature autonomy configurations. The set of selected features must be valid
according to the feature model. A feature autonomy configuration stores the autonomy
degree that a user defines for an autonomous feature, i.e. a feature whose autonomy
degree set is not empty. Therefore, the feature autonomy configuration associated with
each autonomous feature is a subset of autonomy degrees that it provides.

2.3 Dynamically Adapting PAS Clients

Our approach requires synchronization between the user and implementation levels,
because the former represents user customizations at a high-level and the latter must re-

109

flect these customizations. This is achieved by an adaptation process, which is triggered
by changes performed in the user model. Figure 2a shows how the previously presented
models are related, and how user models are based on them. The feature model provides
the features available for users, and autonomy degrees of autonomous features, and the
ontology model provides users with a vocabulary to make preference statements. Based
on these two models, users create or evolve a user model, and it is then validated accord-
ing to the feature model, which also contains constraints over selected features, and the
PDM. A preference statement is valid if the target has the associated allowed preference
(or a rating domain, in case of rating preferences) defined in the PDM, or if there is not
definition in the PDM, since the default is that all preference types are allowed.

When the user model changes, the synchronization mechanism causes the implemen-
tation-level of the PAS client to be consistent with it. The mechanism consists of knowl-
edge that captures how the implementation level must be adapted according to changes
in the user model and a process that uses this knowledge to adapt the implementation
level as the user model evolves. This knowledge is composed of four main concepts:
Events correspond to changes that occur in the user model, for instance adding or re-
moving the autonomy degree of a feature.
Event Categories group a set of related events. For example, the events above belong
to the autonomy degree category.
Actions are the changes to be performed over software components at the implementa-
tion level, e.g. adding or removing agents, beliefs or goals. Here, a software component
is any software asset that is part of the implemented system, and there are two types
of coarse-grained software components: components and agents. The former provides
a reactive behavior, while the latter provides autonomy and pro-activity, has its own
thread of execution, and is able to communicate through messages with other agents.
As a result, agents are composed of finer-grained software components, namely capa-
bilities, beliefs, goals and plans, required parts of the BDI architecture [13], which we
adopt to design and implement agents – this design decision is discussed later.
Rules establish connections between events and actions, and are applied when an event
in some category associated with the rule occurs. In this situation, the rule generates
the appropriate set of actions to be executed, according to the event(s) that occurred.
It is important to highlight that rules are not functions, in the sense that the same
set of events does not always generate the same (and unique) set of actions, because
generated actions may depend on the previous state of the user model. For instance,
let R1 be a rule stating that agent A1 must be part of the running system if features
F1 and F2 are selected. Then, if the event Feature(F1, Add) occurs, R1 generates
the action Agent(A1, Add) only if feature F2 was previously selected or the event
Feature(F2, Add) also occurres.

These concepts are used in our adaptation process, shown in Figure 2b, implemented
as part of the Synchronizer agent (Figure 1b). The process uses as input a previ-
ous and an updated version of a user model, and a set of adaptation rules. A new user
model (initial state) is a configuration with the core features selected and no preference
statements. First, the set of all events that caused the user model to be updated is gener-
ated. Then, the set of rules that are triggered by at least one of the categories from those
events is selected. Next, a set of actions to be executed is constructed from the union

110

(a) Relationships among models. (b) Adaptation Process.

Fig. 2: Evolving a PAS architecture.

(a) Interfaces of our Mechanism. (b) Autonomy Degree Adaptation Rule.

Fig. 3: Framework interfaces and adaptation rule.

of each set of actions generated by each selected rule. Finally, each action is executed.
The complexity and performance of the algorithm that implements this process is not
discussed because it depends of how application-specific rules generate actions.

It can be seen that the process is simple in that it does not specify any concrete event,
event category, rule or action. It is developed in this way to address any instance of any
one of these concepts. They are built in the framework as interfaces (Figure 3a), there-
fore one can create concrete classes by implementing such interfaces. Therefore, we
have a generic structure to make adaptations. The goal of providing a generic structure
is to make it extensible. However, we also provide a set of predefined events, event cat-
egories, rules and actions as part of our framework, presented in Table 1. Actions allow
manipulation on software components of the BDI architecture. Due to space restrictions
we do not describe each of the elements of this set, but give an overview by explaining
one of the rules – the FeatureExpression rule. This rule receives as parameter a logic
formula expression, in which literals are features. The rule is associated with a set of
event categories composed of Feature(F) for each literal F of the formula. Then, the
generated set of actions will be the following: if the formula is evaluated to a false
value in the previous version of the user model and a true value in its updated version,
the set of actions will be the ONA set with action operators set to add together with
the OFFA set with the action operators set to remove. If the formula was evaluated to

111

Events Rules
AutonomyDegree(F, AD, ET) AutonomyDegree(ADC, ONA, OFFA)
Feature(F, ET) FeatureExpression(LF, ONA, OFFA)
Preference(P, ET) OptionalFeature(F, ONA, OFFA)

Preference(PEC) – Abstract
Event Categories Actions
AutonomyDegree(F, AD) Agent(A, AO)
ClassPreference(Class) Belief(C, B, AO)
EntityPreference(Class) BeliefSetValue(C, B, O, AO)
EnumPreference(Enum) BeliefValue(C,B,O)
EnumValuePreference(EnumValue) Capability(A, C, AO)
Feature(F) Component(Female, Male, AO)
Preference – Abstract ComponentValue(Female, Male)
PropertyPreference(Property) Goal(A, G, AO)
ValueDomainPreference(VD) Plan(C, P, AO)
ValuePreference(V)
Legend: ET: Event Type (Add, Remove); F: Feature; AD: Autonomy Degree, P: Preference; ADC: Autonomy Degree
Category; VD: Value Domain; V: Value; ONA: On Action Set; OFFA: Off Action Set; LF: Logic Formula; PEC:
Preference Event Category; AO: ActionOperator (Add, Remove, Set); A: Agent; C: Capability; G: Goal, B: Belief; P:
Plan; O: Object.

Table 1: Predefined Set of Events, Event Categories, Rules and Actions.

true and false respectively, the action operators would be inverted. Figure 3b shows
the information that is defined in a rule, which is applied when the autonomy degree
DECIDE of the AccommodationPlannerFeature changes.

2.4 Implementation Details

Several agent platforms implement the BDI architecture, e.g. Jason, Jadex, 3APL and
Jack. Most of these are based on Java, as in our framework, but agents are implemented
in these platforms using a particular language that is later compiled or interpreted by the
platform. This prevents us from taking advantage of the Java language features, such
as reflection and annotations, that can help with the implementation of our adaptation
mechanism, and complicate integration with other frameworks. Due to this limitation
of existing BDI agent platforms, we have developed BDI4JADE [11], a BDI layer on
top of JADE3 (Java-based agent platform that provides a robust infrastructure to imple-
ment agents, including behavior scheduling, communication and yellow pages service).
We have leveraged these features, provided the BDI abstractions, and built a BDI rea-
soning mechanism for JADE agents. Agents developed with our JADE extension are
implemented only in Java, and not by using additional files in XML, for example, as
used in Jadex. As BDI4JADE components are extension of Java classes, they can be
instantiated by other frameworks and plugged into the running application, as opposed
to other agent platforms that instantiate and manage their components.

This was needed for supporting the implementation of our adaption mechanism,
which is extensively based on the use of the Spring framework,4 a Java platform that
provides comprehensive infrastructure support for developing Java applications. It is
designed to be non-intrusive, so the domain logic code generally has no dependen-
cies on the framework itself. Mostly, we took advantage of the Dependency Injection

3 http://jade.tilab.com/
4 http://www.springsource.org/

112

and Inversion of Control module, which allows declaration of the application software
components (beans, in the Spring terminology) and dependencies among them. Thus,
actions in our synchronization mechanism receive strings (bean identifiers) as param-
eters, referring to software components of the running PAS to be adapted. These bean
declarations can correspond to either a singleton or a prototype instance of the bean. In
addition, rules and actions are also declared in the Spring configuration file.

3 Discussion: a Qualitative Analysis of our Approach

As an initial step for the evaluation of our framework, we provide a qualitative evalua-
tion of key aspects of our framework regarding decisions made about architecture and
software quality attributes. The framework was instantiated in a simple application in
the trip domain, in order to test the infrastructure. As our long term research aims to
increase user trust in PAS by exposing user models at a high level, part of our future
work will involve a user study to validate this aspect of our approach.

3.1 Advantages of a Two-level Architecture

Our previous work has shown that user preferences and configurations can be seen as a
concern that is spread all over PAS [10]. This is an intrinsic characteristic of preferences
because they play different roles in reasoning and action [6]. Systems that adapt their
behavior according to an evolving specification, in our case the user model, must have
an architecture that supports variability and its management. This issue is less evident
in systems that are concerned only with content customization, as a single and static
architecture is sufficient for providing personalized data, yet the scope of our family of
systems is wider than that.

The key advantages of our high-level user model are twofold: (i) it provides a
complementary representation that is a global view of user customizations, thus allow-
ing variability management and traceability (captured by rules); and (ii) it provides a
means for users to understand their model (transparency) and manage it (power of con-
trol). Moreover, our two-level abstraction architecture brings additional benefits: (i) user
customizations have an implementation-independent representation; (ii) the vocabulary
used in the user model becomes a common language for users to specify configurations
and preferences; (iii) the user model modularizes customizations, allowing modular rea-
soning about them; (iv) the user model can be used in mixed-initiative approaches, in
which learning techniques can be used to create initial and updated versions of user
models, and users have a chance to change them; and (v) by dynamically adapting PAS,
we eliminate unnecessary reasoning (which can be time-consuming) if customizations
are represented as control variables that regulate the control flow of the system.

3.2 Benefits of Providing a BDI Agent-based Implementation

Our framework uses software agents at the implementation level of PAS, following
the BDI architecture. We made this design decision due to the benefits of adopting an
agent-based approach. The most important reason is that the BDI architecture is very

113

flexible. In this architecture, components are loosely coupled and there is an explicit
separation between what to do (goals) and how to do it (plans). Thus, evolving and
changing an agent architecture is easier in comparison with objects. The BDI architec-
ture thus facilitates the implementation of user customizations in a modularized way so
that components can be added and removed as the user model changes. The adaptation
rule presented in Figure 3b helps to illustrate this situation: for making an accommo-
dation reservation (top level goal), the agent has to achieve three subgoals – search and
suggest, decide and execute. There are two ways of deciding for an accommodation:
(i) asking the user to decide; or (ii) deciding on behalf of the user. Simply by changing
the plan that is part of the agent plan library, the agent behavior is changed without
impacting the course of actions or other actions to be executed.

In addition, the BDI architecture and other agent approaches are composed of human-
inspired components, thus reducing the gap between the user model (problem space)
and the solution space. Furthermore, plenty of agent-based artificial intelligence tech-
niques have been proposed to reason about user preferences, and can be leveraged to
build personalized user agents.

3.3 Software Quality Attributes

By providing a software framework for developing PAS, we also provide a reusable
infrastructure to build a family of systems. In addition to following the two-level ap-
proach we are proposing, in order to build a high quality architecture, we made design
decisions that take into account software quality attributes, as follows.

Reuse. The primary advantage of a framework is reuse, together with its benefits,
e.g. higher quality and reliability in a relatively short development time. Using our
framework speeds up the process of building PAS systems due to the infrastructure
that is ready-to-use and ready to extend, including models that are common in our
target application domain. In addition, as we considered good software engineering
practices to develop our framework, such as design patterns, this will be inherited by
the framework instances.

Maintainability. User customizations are a cross-cutting concern, because they are
spread over different points of the application. In our approach, individual customiza-
tions are localized in each part of the system that they are related to: if a behavior of
an agent (plans, goals) depends on preferences about X, this variability will be encap-
sulated in that part of the system. At the same time, the high-level user model and rules
provide the information needed to trace and manage user customizations as a whole.
This modularization of user customizations thus facilitates the maintenance of PAS be-
cause software components of the system have high cohesion and are loosely coupled.
For the same reason, this structure reduces the impact of evolving the system, such as
adding a new user agent with new services for users.

Scalability. PAS typically involves complex algorithms, which require much pro-
cessing, such as reasoning about preferences. Running this kind of system with a large
number of users at the same time, on a single server, thus is not scalable. As a conse-
quence, we adopted a client-server model to distribute this processing of users across
different clients, by still allowing users to access the application configuration in differ-
ent clients, making it possible to build different client versions.

114

3.4 Limitations

Both our framework and its underlying approach for developing PAS have some limita-
tions. Our synchronization algorithm generates a set of actions that are performed at the
implementation level of PAS. Nevertheless, we do not consider order in such actions.
This is important mainly when we have dependencies among features. Up to now, our
studies have not required consideration of action order, but investigating scenarios in
which order matters is part of our future work.

In addition, we have not considered the consistency analysis of the adaptation pro-
cess and user preferences. The correctness of the adaption process is related to the
correct definition of rules and actions. It is responsibility of developers to ensure that
they are specified in the right way. In addition, users have different forms of expressing
preferences, which might be inconsistent. We do not provide mechanisms for detecting
such situations.

There are aspects of PAS that are not covered by our approach: learning; security
and privacy; and user explanations. Our goal is to extend our framework architecture to
accommodate such modules, using this as a reference architecture for PAS. A complete
approach for the first two aspects is out of the scope of our research, but we have al-
ready taken steps to integrate user explanations into our framework. Even though users
can control their user models, there are decisions that agents make on their behalf. Ex-
plaining to users the rationale behind decisions is another important factor to increase
user trust in PAS.

4 Related Work

Much research has been carried out in the context of PAS. For example, a multi-
agent infrastructure for developing personalized web-based systems, Seta2000 [2], pro-
vides a reusable recommendation engine that can be customized to different applica-
tion domains. Huang et al. [7] describe a personalized recommendation system based
on multiple-agents, providing an implicit user preference learning approach, and dis-
tributing responsibilities of the recommendation process among different agents, such
as learning, selection & recommendation and information collection agent. The Cogni-
tive Assistant that Learns and Organizes (CALO) project [3] has also explored different
aspects to support a user in dealing with the problems of information and task overload.

However, in such work, personalization in the system is in the form of data, so that
architecture adaptations are not investigated, which is the main issue addressed in this
paper. None of them address an evolving system, and consequently systems are not
tailored to users’ needs in the sense of features that the system provides. In particular,
[2] and [7] provide a reusable infrastructure for building web-based recommender sys-
tems, but they do not provide new solutions in the context of personalized systems: they
leverage existing recommendation techniques and provide implemented agent-based
solutions.

115

5 Conclusion

In this paper we have presented a software framework and a dynamic adaptation mecha-
nism, which provide a reusable infrastructure for developing Personal Assistance Soft-
ware (PAS). The main idea underlying our framework is to provide a two-level view
of user customizations: an end-user high-level model and the realization of customiza-
tions at the implementation level. The end-user view aims to give power of control
over task automation to users. The framework aggregates a dynamic adaptation mech-
anism that is responsible for keeping these two levels consistent, and comprises: a PAS
Domain-specific Model, a synchronization mechanism, graphical interface components
to manipulate models, support components that provide core functionalities, models
persistence, a BDI layer over JADE, and patterns for implementing agents. We have
evaluated our approach with a qualitative analysis, identifying its main benefits and
software quality attributes.

Our short term future work includes addressing some current limitations of our ap-
proach, which are dealing with the order of actions and user explanations. In addition,
recently, we performed a user study in which we collected about 200 preferences spec-
ifications that will be used to refine our preferences model.

References

1. Alur, D., Malks, D., Crupi, J.: Core J2EE Patterns: Best Practices and Design Strategies.
Prentice Hall PTR, Upper Saddle River, NJ, USA (2001)

2. Ardissono, L., Goy, A., Petrone, G., Segnan, M.: A multi-agent infrastructure for developing
personalized web-based systems. ACM Trans. Internet Technol. 5(1), 47–69 (2005)

3. Berry, P.M., Donneau-Golencer, T., Duong, K., Gervasio, M., Peintner, B., Yorke-Smith, N.:
Evaluating user-adaptive systems: Lessons from experiences with a personalized meeting
scheduling assistant. In: IAAI’09. pp. 40–46 (2009)

4. Claypool, M., Le, P., Wased, M., Brown, D.: Implicit interest indicators. In: Proceedings
of the 6th international conference on Intelligent user interfaces. pp. 33–40. IUI ’01, ACM,
New York, NY, USA (2001)

5. Czarnecki, K., Eisenecker, U.W.: Generative programming: methods, tools, and applications.
ACM Press/Addison-Wesley Publishing Co., USA (2000)

6. Doyle, J.: Prospects for preferences. Computational Intelligence 20, 111–136 (2004)
7. Huang, L., Dai, L., Wei, Y., Huang, M.: A personalized recommendation system based on

multi-agent. In: WGEC ’08. pp. 223–226. IEEE (2008)
8. Keeney, R.L.: Value-focused thinking – A Path to Creative Decisionmaking. Havard Univer-

sity Press (1944)
9. Malinowski, U., Kühme, T., Dieterich, H., Schneider-Hufschmidt, M.: A taxonomy of adap-

tive user interfaces. In: HCI’92. pp. 391–414. USA (1993)
10. Nunes, I., Barbosa, S., Lucena, C.: An end-user domain-specific model to drive dynamic user

agents adaptations. In: SEKE’10. pp. 509–514. USA (2010)
11. Nunes, I., Lucena, C., Luck, M.: BDI4JADE: a BDI layer on top of JADE. In: 9th Inter-

national Workshop on Programming Multi-Agent Systems (ProMAS 2011). Taipei, Taiwan
(2011), to appear.

12. Pu, P., Chen, L.: Trust-inspiring explanation interfaces for recommender systems. Know.-
Based Syst. 20, 542–556 (August 2007)

13. Rao, A., Georgeff, M.: BDI-agents: from theory to practice. In: ICMAS’95 (1995)

116

Socially-aware lightweight coordination
infrastructures

Marc Esteva, Juan A. Rodriguez-Aguilar, Josep Lluís Arcos, and Carles Sierra

Artificial Intelligence Research Institute (IIIA-CSIC)
Spanish National Research Council

08193 Bellaterra, Spain
{marc,jar,arcos,sierra}@iiia.csic.es

Abstract. Coordination infrastructures have played a central role in the
engineering of multi-agent systems (MAS). Although MAS research has
produced a number of notable coordination infrastructures of varying
features, these have been mainly conceived to host software agents and
to facilitate multi-agent programming. Thus, human agents have been
mostly kept out of the picture, hence hindering the use of agent-oriented
infrastructures for the coordination of hybrid multi-agent systems. More-
over, current MAS tools supporting coordination heavily rely on a ded-
icated infrastructure. In this work we touch upon these two issues. On
the one hand, we analyse the kind of coordination support required by
humans in a hybrid multi-agent system. On the other hand, we propose
how to achieve coordination with little, lightweight infrastructure.

1 Introduction

Multiagent systems (MAS) are composed by a group of agents that interact
within an environment to achieve their common or individual goals. Typically,
the achievement of such goals require the effective coordination of participant
behaviours. From an engineering point of view, building a MAS entails the prob-
lems of designing a distributed concurrent system plus additional difficulties due
to the autonomy of their entities. Therefore, the development of infrastructures
that provide support to agent coordination play a central role in the engineering
of MAS. While, initially, each MAS was designed ad hoc and developed its own
infrastructure from scratch [1], as the area has evolved, certain tasks have been
abstracted and gradually provided by MAS infrastructure as domain indepen-
dent functionalities or services. The services offered by infrastructures vary from
providing communication and yellow pages services, as for instance in FIPA com-
pliant platforms [2], to give support to the execution of agent organisations or
institutions [3, 4]. In this later case, the infrastructure supports the execution of
the system following the coordination model defined by the regulations imposed
by the organisation or institution. Furthermore, having a explicit representa-
tion of the coordination model, which is the case in most of these approaches,
facilitates its run-time adaptation to continue being effective under changing
circumstances.

117

The purpose of this paper is two-fold: (i) to review the state of the art in
coordination infrastructures for MAS, and (ii) to present what we identify as the
main challenges to face for the next generation of coordination infrastructures.
Regarding the later, we advocate supporting human participation as one of the
main challenges. In other words, to support the execution of hybrid systems
where participants may be human and software agents. Notice that this systems
can be regarded as a kind of open systems, and thus, they can be engineered
following a MAS approach. However, developed infrastructures mainly support
the participation of software agents, and the human role is limited to acting be-
hind the scenes by customising provided agent templates that participate in the
system on humans’ behalf. We regard this as a limitation to the spread of agent
technologies, since in many applications users are reluctant to delegate their par-
ticipation in the system to an agent. For instance, in e-commerce applications
where the participation in the system may imply spending the user money. We
advocate, that supporting the execution of this kind of hybrid systems would
increase the use of MAS technologies. In order to support human participation
appropriate tools and interfaces have to be developed.

Normally, human organisations offer services that help users to participate
in the system and achieve their goals. For instance, these services may provide
users with information about the organisation regulations, or the steps to follow
to achieve a certain goal. We regard the definition and incorporation of this kind
of services, that we call assistance services, into coordination infrastructures as
another challenge for the area. Notice that this services can provide assistance
to both human and software agents.

Regulated environments for multiagent systems usually rely on a heavy in-
frastructure that has to be up and running before the agents can actually inter-
act. As the central aspect of this kind of approaches is the idea that participants
must accept the norms, defined at design time, that regulate it. This must hap-
pen before any action is performed by an agent. Otherwise, the consequences of
the actions might be unknown by agents, and therefore any subsequent sanction
would be unfair. We argue that a peer to peer (P2P) approach can provide a
more light-weight infrastructure for agent coordination. The essence of P2P com-
puting is that peers when active can be called on duty to give to the other peers
knowledge declared as available and to execute services or agents that are also
made available to the rest. This view permits community creation, facilitates the
sharing of resources, and when created appropriately (i.e. by giving incentives to
their usage) permits an explosion in usage. A key component of this approach is
a repository of declarative specification of coordination patterns. Hence, agents
can reason about them and instantiate the ones needed to coordinate and to
achieve their goals. We illustrate this approach by applying it to electronic insti-
tutions. The result is a lightweight infrastructure and a click-away from usage.

The rest of the paper is structured as follows. Next, in section 2 we review
the state of the art in coordination infrastructures. Thereafter, in section 3 we
focus on supporting human participation (3.1), and assistance services (3.2). In

118

section 4 we present a proposal of a lightweight infrastructure based on a P2P
approach, while in section 5 we conclude.

2 State of the art

As above mentioned as MAS research has evolved different coordination in-
frastructures providing more domain independent services have been developed.
Hence, they can be reused in the the deployment of different applications reduc-
ing the development time and cost. We regard the FIPA specification for agent
platforms as the first important improvement in order to provide coordination
infrastructures for MAS [2]. In particular, FIPA proposed that any agent plat-
form has to provide the following services: (i) an agent management service that
manages agents executions and permits to find other agents (i.e. white pages
service); (ii) and a directory service to register and discover agent services; and
(iii) a reliable transport service among agents. Hence, FIPA compliant infras-
tructures, such as JADE [5], must provide these services to participating agents
facilitating agent coordination by offering mechanisms to discover other agents
and the services they offer, and a transport service transparent to agent physical
locations

Organisational approaches provide a higher level abstraction to define the
coordination model among agents. In general all of them include a social struc-
ture defining the roles agents may play, and a set of regulations or conven-
tions that structure participants behaviours. Some organizational approaches
use FIPA compliant platforms to support their execution, but they provide lim-
ited support to organisational concepts. However, specific infrastructures have
been developed to support organisational models, as for instance AMELI [4] and
S-Moise+ [3], In particular, AMELI supports the execution of any electronic
institutions specified using the ISLANDER editor. An institution specification
defines the social structure, the dialogical interactions (scenes), agents can en-
gage on, and the norms that establish the consequences of their. In order to
support the institution execution AMELI implements the necessary mechanisms
to enforce the correct execution of the institution according to its specification.
One of its main features is that it accepts the participation of agents in any
language and internal architecture, S-Moise+ is an infrastructure to run organ-
isations defined following the Moise model, which as an electronic institution
it defines a social structure and the interactions agents may have. Moreover,
it incorporates a functional specification that takes system tasks (derived from
the organisational goals) and divides them into sub-tasks to be carried out by
agents.

While previous infrastructures provide support to an execution of a spe-
cific organisational model, CArtAgO [6] is a framework to build infrastructures
based on the Agents & Artifacts meta-model(A&A) [7]. This model proposes
that apart of agents the environment is populated by a set of objects, called
artifacts. Among other features artifacts can be used to coordinate agent activ-
ities. For instance, when an interaction protocol is instantiated an artifact can

119

be created to coordinate the protocol execution. Rather than proposing an or-
ganisational model, CArtAgO can be used to build an infrastructure to support
it. For instance, in OR4MAS [8] it is used to provide an infrastructure for the
Moise model. That is, the system organisation is defined using the Moise model,
and CArtAgO is used to build the system infrastructure.

Related to web services, the ALIVE framework was proposed to support
the engineering of service-oriented systems [9]. ALIVE proposes three design
and execution levels that incorporate coordination and organisation mechanisms
as a way of facilitating dynamic capabilities to web services. Specifically, the
organisational level is used to dynamically select, compose, and invoke services.
Notice that the dynamic selection provides an adaptation of the coordination
model depending on current situations.

This later issue, the adaptation of the coordination model to varying situa-
tions, is an important topic due to the dynamicity of MAS. Although we regard
this as an open research issue for coordination infrastructures, there are some
works that have addressed it. In particular, in S-Moise+ there is a special role
Reorg in charge of reorganising how the task are assigned to agents, while in [10]
authors propose an extension to AMELI to endow it with self-adaptation capa-
bilities. Moreover, there are other proposals to endow organisations with self-
adaptation capabilities that can be incorporated into MAS infrastructures [11,
12].

3 Coordination support

3.1 Human computer interaction

We advocate that human incorporation is one of the main challenges for coor-
dination infrastructures. In order to do so appropriate tools and interfaces have
to be developed to address human requirements, which are different of software
agent ones. Hence, they require different ways of participating. For instance,
interacting in the system by exchanging messages in an agent communication
language is appropriate for software agents but not for human users. Another
key aspect is how to represent the relevant information to successfully partici-
pate in the system. This is information about the regulations of the coordination
model, the system state and the actions performed by other participants. Notice
that all this information determine the the valid actions a participant can do,
and normally is used in its decision process.

Obviously, web pages or 2D interfaces can be used to facilitate human partic-
ipation, but we advocate that more immersive environments as 3D virtual worlds
can do a better job in supporting human participation. 3D virtual worlds is a
technology that has emerged in nowadays computing with enormous strength.
Humans are social and therefore the concept of virtual worlds is very appeal-
ing as they permit a much more immersive environment for their interactions.
These are computational immersive environments that emulate real world using
3-dimensional visualisation. Humans participate in those environments repre-
sented as graphical embodied characters (avatars) and operate by using simple

120

Fig. 1. Snapshot of a Virtual Institution execution.

and intuitive control facilities. The immersive environment provides many pos-
sibilities for representing the system state, and the regulations defined in the
coordination model. For instance, other participants are represented as avatars,
and they appearance can be used to display the role they are playing. We ar-
gue that 3D Virtual Worlds technology can be successfully used for ÒopeningÓ
Multiagent societies to humans

This idea was explored by Bogdanovich [13] who proposed the concept of vir-
tual institution as a combination of electronic institutions and 3D virtual worlds.
In this context, electronic institutions are used to define the regulations that
structure participants interactions, while users participate in the system by con-
trolling an avatar in an automatically generated representation of the institution
in the virtual world. Ongoing activities (interaction protocols) are represented
as 3D room in the generated virtual world. To support the execution of this kind
of systems, he proposed a run time infrastructure where a middleware causally
connects AMELI and the 3D virtual world. This causal connection is performed
by transforming user actions in the virtual world to messages understood by
AMELI and updating the visualisation whenever the electronic institution state
changes. Hence, the run-time infrastructure maintains consistent the institution
state and its representation in the virtual world. The idea was further explored
in the context of the itchy feet project where a prototype for the tourism do-
main was developed [14]. Recently, Trescak et al [15] proposed an extension of
the infrastructure that among other features supports the connection of several

121

virtual worlds to the very same institution. Hence, the system allows users to
participate from different virtual worlds. The result is an hybrid system which
allows the participation of human and software agents.

Figure 1 displays a snapshot of an auction room of a virtual institution exe-
cution. We can regard that the room recreates auction rooms in real live, where
buyers participants have to sit in one of the room chairs. Avatars representing
software agents buyers are represented with blue skin, while the ones with green
skin represent software agents controlling the auction execution. In particular,
the one on the left is in charge of auctioning goods, while the one on the right
is in charge of validating and announcing auction results. The appearance of
avatars controlled by human users are decided by each participant. The panel
on the wall is used to represent the information of the current auction round.
Notice that the created representation permits the user to easily perceive who
are the other participants in the auction room, the role they are playing along
with information of the current state.

3.2 Assistance services

Participating in a MAS can be difficult due to the complexity of the system. On
the one hand, agents must be aware of the coordination model that structure
their interactions. Notice, that over time more complex coordination models are
proposed, Furthermore, this coordination model can be adapted and change at
run-time. On the other hand, the system state, the environment where agents
are situated, and participants may dynamically change over time. Notice that
both issues have to be taken into account by agents to achieve their goals, and
in the decision making process. Hence, we propose that infrastructures should
incorporate some services to help participants to successfully participate in the
system and to achieve their goals. In other words, this services focus on assisting
coordination. Notice that in general human organisations provide services and
devote some resources to assist their users. Failing to provide adequate assistance
to users may lead to the failure of the organisation. We regard assistance even
more important for computational organisations. Notice that assistance services
are useful for both software and human agents.

This services can vary from providing agents with the necessary information
about the coordination model and system state, to proposing plans to achieve a
provided goal. In particular in [16] authors identified the following services: (1)
providing agents with information to participate in the MAS, (2) justifying ac-
tion result, (3) giving advice to agents, and (4) estimating action consequences.
The basic one is the information service that provides information about both
the current coordination model and system state. Currently, there are some
MAS approaches that already provide some of this information. For example, in
S-Moise+, the special agent in charge of the organisation (OrgManager) informs
participants when they acquire new obligations, Besides, in an Electronic Insti-
tution , the special agent in charge of an interaction activity (Scene Manager),
informs participants when an agent joins/leaves an interaction protocol. The sec-
ond one, the justification service, gives agents an explanation about the result

122

of an action. For instance, it can explain why an action has not been allowed to
an agent, or why he has acquired a new obligation. The advice services provides
agents with a set of alternate plans (action sequences), to achieve their goals. FI-
nally, the estimation service provides agents information about the consequences
that executing an action would have. For instance, about the obligations that an
agent would acquire, The service is called estimation because the action is not
really performed, so its consequences if later on the agent decides to execute it
may be different.

Among these services we regard the advice service as the more complex and
interesting one. Notice that the infrastructure may have more information about
the system state than an agent, so, it may provide better plans. Furthermore, it
simplifies an agent development and reasoning process, as the agent can reason
about provided plans to achieve its goals, and do not need to compute them
itself. Information can be provided pro-actively by the infrastructure, as for
instance, when the coordination model is adapted, or after a request by the
agent. Furthermore, for some services participants can decide if they want to
have the service active or not. In the case of human users the 3D immersive
environment can be used to represent the information provided by each service.

4 Lightweight coordination

The essence of peer-to-peer (P2P) computing is that peers when active can be
called on duty to give to the other peers knowledge declared as available and
to execute services, or agents, that are also made available to the rest. This
view permits community creation, facilitates the sharing of resources, and when
created appropriately (i.e. by giving incentives to their usage) permits an ex-
plosion in usage. The purpose of this section is to introduce a P2P model for
electronic institutions (EIs). As a result, we shall obtain a coordination infras-
tructure that is light and click-away from usage. Moreover, further interesting
features (inherent to P2P systems) are inherited: high degree of decentralization,
self-organisation, low barrier to deployment (compared to client-server systems),
organic growth, resilience to faults and attacks, and abundance and diversity of
resources [17]. Notice that although we focus our discussion on electronic insti-
tutions, these have been taken as a case study. Further research should aim at
analysing the generality of our proposal.

4.1 A peer-to-peer model

The idea behind the architecture is already present in the concept of governor in
electronic institutions. The interactions of each agent within an EI are mediated
by a governor, which only accepts as valid the agent’s actions that abide by the
rules of the institution. This simple idea seems that can now become the base of
a kernel for a P2P node in a network. The proposal is based on a P2P node that
should be a downloadable component helping in: (i) knowledge management :
sharing EI related materials; (ii) search: searching for components; and (iii)

123

distributed execution: supporting the enactment of EI executions transparently
to a human/agent user.

More concretely, the two sides of the node could be based on the following
design principles:

– Repository of EI specification components. Each node may publish EI com-
ponents: ontologies, scenes, norms, etc. The node could either publicise their
own components or may make available components found elsewhere in the
network. These components could be written in the current XML language
used in ISLANDER with some extra annotations to help on provenance or in
certificates. The node should incorporate a tool to permit the combination
of specifications to constitute EIs. An institution can be seen then as a dis-
tributed performative structure where some sub-performative and/or scenes
are located in different nodes. This opens the possibility of versioning, or lo-
cal modifications that are immediately incorporated into those institutions
that combine a particular bit being modified. For instance we could imagine
that many institutions contain a sub-performative structure developed and
maintained by Verisign in order to check for certificates. What institutions
are made visible to the community must be a decision of the node manager.

– Repository of institutional agents. Agents playing the basic roles of ’Gov-
ernor’, ’Boss’, ’Scene manager’, and ’Transition manager’ should be made
available in many/most/all nodes in the network. These agents must be cer-
tified by their creators as they might be provide by different manufacturers
with different levels of privacy guarantees, or different efficiency implementa-
tions. Creators of EIs might possible propose or give guidelines with respect
to what are the preferred institutional agents to use.

– Repository of agents. Agents that can incarnate roles in EIs are also made
available and shared through the node. Given a concrete EI agent creators
will make publicly available agents that can play certain roles. These agents
can be copied in different nodes according to users interest. Nodes should
permit users to ’activate’ agents by telling the node what agents playing
what roles in which EI specification are allowed.

– Searching for components. One of the basic functionalities of the node should
be about searching for different types of components: all those mentioned in
the previous points plus trust information, ontology mappings, and running
institutions.

– Execution support for a P2P infrastructure. A node might decide to enact
an EI (e.g. I want to create an auction house following certain rules to sell
second hand books). In order to do so, the P2P network should give the user
the functionality to: (i) search for a node that incarnates the role of boss of a
given specification, (ii) pass the control to the boss, and (iii) wait for the EI
to get enacted and interact with it. To have this, the infrastructure (the boss)
will need to recruit other institutional agents (scene managers and the like)
through the network, publicise the execution to potential external agents
(in our example, buyers) and monitor the execution of it. The state of the
execution will therefore be distributed in the (hierarchical) organisation of

124

Fig. 2. Peer architecture and components

institutional agents that supports the execution. The failure of a node in the
hierarchy would permit the P2P network to try and recover by appointing
another agent to cover the role of the ’dead’ agent. In some cases part of the
state can perhaps be recovered if we keep backward paths in the organization,
or if we allow for a more graph oriented organisation to increase robustness.
The network should deal with the necessary routing to pass the messages
among agents enacting the institution in a transparent way. Furthermore, it
should be possible to put requirements for the execution of an EI (e.g. I only
permit the participation of IPs that I know and trust).

4.2 A P2P architecture for electronic institutions

A P2P EI will be composed of peer nodes and a non-peer element, the Discovery
Service.

P2P Electronic Institution Peer Figure 4.2 shows the architecture and com-
ponents of a peer in a P2P EI, that we explain next. The communication between
peers and the Discovery Service, will be through the Communication Layer com-
ponent. This layer will abstract the communication process. For instance, we can
think of using JMS (http://java.sun.com/products/jms/) through its ActiveMQ
implementation (http://activemq.apache.org/). EI specifications are stored as
XML files in the EI specification Repository.

Each peer also contain an agents repository storing implementations of Insti-
tutional and non-institutional agents. For each agent there must be a description
about them: what EI is this agent coded for, the authors, a certificate, the agent
version, etc. The agent implementation and this description can be bundled into
a kind of zip file or jar file.

125

The Repository manager is the module in charge to publish into the Discovery
Service: (i) the shared EI specifications available for download: (ii) the shared
agent implementations available for download; (iii) the EI elements that the peer
agrees to run for each EI specification: agents, governors, EI managers, scene
managers, transition managers; and (iv) If the peer agrees to act as coordinator
for an EI. Using the Repository manager the user can also search for resources
published by other peers and select them to download. The needed search engine
is provided by another peer component.

All instances of EI components that are currently participating at any EI
are stored in the Instance repository. Inside the Instance repository we can find:
agents, governors, EI managers, scene managers and transition managers. When
an element at the Instance repository want to communicate with other elements,
this communication is made through the P2P EI Infrastructure Builder. It knows
whether the target is a local element located at the Instance repository and the
message can be delivered locally, or is located at other peer and need to be sent
through the communication layer.

Discovery Service (DHT) The Discovery Service provides a lookup service.
It can be implemented by a DHT (Distributed hash table). This service is used
by peers to inform about the resources that they share nd about the services
that they can offer

4.3 A P2P Electronic Institution at work

Launching a P2P EI When a user wants to start a new EI, the XML EI
specification and a set of restrictions are passed as parameters to the P2P EI
Infrastructure Builder. This restrictions can include which peers are allowed
to participate, what institutional elements are allowed to be instantiated by
each peer, what agents implementations are allowed to participate, etc. Then,
the user is asked if the P2P EI must be coordinated by his peer or if another
coordinator is preferred. If another peer is preferred, a search process is launched.
The Search engine is asked for available coordinators, and the returned list of
available coordinators are asked if they agree to coordinate the P2P EI with that
set of restrictions. If someone agrees, that peer will continue with the process of
launching the P2P EI.

The peer playing as coordinator will publish itself at the Discovery Service as
the P2P EI manager. Thereafter, by using the search engine, the coordinator asks
to the Discovery Service about the available peers that agree to run each one of
the needed elements. As a result, the search engine returns a list of the available
peers, that is filtered by the coordinator to satisfy the restrictions. With the list
of available peers, the recruiting process can be started. The recruiting process
can be done in two ways: by hand (using the user interface) or automatically.
Moreover, the coordinator can contain a reputation system to help to chose the
more reliable peers. The recruiting consists in asking to the selected peers if they
agree to participate into the P2P EI with the selected role (agent, governor, EI

126

manager, scene manager or transition manager) and informing about the peer
that is coordinating the P2P EI. If enough peers to start the execution of the EI
accept, the process continues and the EI is launched. Otherwise, the process is
aborted.

The first element to be instantiated is the EI manager. So the coordinator
sends a message to the corresponding peer to create the EI manager and wait for
confirmation. Each time that the EI manager needs to create an institutional
agent, scene manager or transition manager, it will ask to the coordinator to
create it, and will wait for confirmation.

Joining a running P2P EI A user can decide to join with an agent a currently
running P2P EI. To perform this task, he asks the Search Engine about the
currently running P2P EIs executing the desired EI. The Search Engine returns
a list of coordinators that manage running instances of the desired EI. The
next step is to ask the coordinator if it’s possible to participate. If the peer
can participate, the coordinator returns the address of the peer running the
EI Manager, so the user can request that agent to enter the EI playing the
desired role. If accepted the EI Manager replays with the address of theGovernor
assigned to the agent. Thereafter, all the interaction with the EI will be done
through that Governor.

5 Conclusions

Coordination infrastructures play a central role for the engineering of multiagent
systems. Over years researchers have developed infrastructures providing more
domain independent services and capable of enacting more complex coordination
models. In the first part of the paper we have revised the state of the art in this
field.

Later on, we have shift our attention to the next challenges to be faced
by the next generation of infrastructures. The first one is to support human
participation. In other words, infrastructures should incorporate the necessary
tools and interfaces to ”open” MAS to humans and therefore, be socially-aware.
We regard 3D Virtual Worlds as an appropriate technology for this task. Another
important issue is the development of assistance services to help participants to
achieve their goals.

In the final part we have presented a lightweight infrastructure for agent
coordination. This infrastructure is based on a P2P approach and then, inherits
some of the advantages of these systems as a high degree of decentralization,
self-organisation, low barrier to deployment (compared to client-server systems),
organic growth, resilience to faults and attacks, and abundance and diversity of
resources. We have exemplified this idea by presenting a P2P model for electronic
institutions.

Acknowledgments
Work funded by projects EVE(TIN2009-14702-C02-01), AT (CSD2007-0022),

127

and the Generalitat of Catalunya grant 2009-SGR-1434. Marc Eseva enjoys a
Ramon y Cajal contract from the Spanish Government.

References
1. N. R. Jennings, K. Sycara, M. Wooldridge, A roadmap of agent research and

development, Autonomous Agents and Multi-agent Systems 1 (1998) 275–306.
2. Foundation for Intelligent Physical Agents, FIPA Abstract Architecture Specifica-

tion, http://www.fipa.org/specs/fipa00001/ (2002).
3. J. F. Hübner, J. S. Sichman, O. Boissier, S-MOISE+: A middleware for developing

organised multi-agent systems, in: Coordination, Organizations, Institutions, and
Norms in Multi-Agent Systems, Vol. 3913 of LNCS, Springer, 2005, pp. 64–78.

4. M. Esteva, B. Rosell, J. A. Rodriguez-Aguilar, J. L. Arcos, Ameli: An agent-
based middleware for electronic institutions, International Joint Conference on
Autonomous Agents and Multiagent Systems 1 (2004) 236–243.

5. F. Bellifemine, A. Poggi, G. Rimassa, Developing multi-agent systems with JADE,
Intelligent Agents VII Agent Theories Architectures and Languages LNCS 1986
(2001) 42–47.

6. A. Ricci, M. Viroli, A. Omicini, CArtAgO:A framework for prototyping artifact-
based environments in MAS, in: Environments for Multi-Agent Systems III, Vol.
4389 of LNCS, 2006, pp. 67–86.

7. A. Omicini, A. Ricci, M. Viroli, Artifacts in the A&A meta-model for multi-agent
systems, Autonomous Agents and Multi-Agent Systems 17 (3) (2008) 432–456.

8. R. Kitio, O. Boissier, J. F. Hübner, A. Ricci, Organisational artifacts and agents
for open MAS organisations, in: Proceedings of COIN at AAMAS’08, Vol. 4870,
2008, pp. 171–186.

9. J. Vazquez-Salceda, W. W. Vasconcelos, J. Padget, F. Dignum, S. Clarke, M. Palau
Roig, Alive: An agent-based framework for dynamic and robust service-oriented
applications, in: Proc. of 9th Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS 2010), 2010, pp. 1637–1638.

10. J. A. R.-A. Josep Ll. Arcos, B. Rosell, Engineering Autonomic Electronic Institu-
tions, Engineering Environment-Mediated Multi-Agent Systems (2008) 76–87.

11. C. Zhang, S. Abdallah, V. Lesser, Integrating Organizational Control into Multi-
Agent Learning, in: Proceedings of The 8th International Conference on Au-
tonomous Agents and Multiagent Systems, 2009, pp. 757–764.

12. J. Campos, M. Esteva, M. Lopez-Sanchez, J. Morales, M. Salamo, Organisational
adaptation of multi-agent systems in a peer-to-peer scenario, Computing 91 (2011)
169–215.

13. A. Bogdanovych, Virtual institutions, Ph.D. thesis, University of Technology, Syd-
ney, Australia (2007).

14. I. Seidel, Engineering 3d virtual world applications design, realization and evalu-
ation of a 3d e-tourism environment, Ph.D. thesis, Technischen Universitat Wien
Fakultat fur Informatik (2010).

15. T. Trescak, M. Esteva, I. Rodriguez, Vixee an innovative communication infrastruc-
ture for virtual institutions, in: Proceedings of The 10th International Conference
on Autonomous Agents and Multiagent Systems, 2011, p. to appear.

16. J. Campos, M. Lopez-Sanchez, M. Esteva, Coordination support in mas, in: 8th
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 09), Budapest, Hungary, 2009, pp. 1301–1302.

17. R. Rodrigues, P. Druschel, Peer-to-peer systems, Communications of the ACM
53 (10) (2010) 72–82.

128

Augmenting Android with Agents for increased
Reuse of Functionality in Mobile Applications

Christopher Frantz, Mariusz Nowostawski, Martin Purvis

Department of Information Science, University of Otago, New Zealand

Abstract. The increasingly adopted mobile application platform An-
droid has introduced a new application development approach, based on
loosely coupled application components. This allows for a flexible compo-
sition of applications as well as invocation from third-party applications.
The rather coarse-grained application components themselves prohibit
more fine-grained decomposition.
To enable this and also foster the reuse of more elementary fine-grained
functionality, we suggest the extension of Android application compo-
nents with the concept of micro-agents.The organisational aspects of the
micro-agent model further introduces means to structure functionality
in a systematic manner.
In this work we provide a brief overview of Android and its functional-
ity principles. Then we introduce ’Micro-agents on Android’ (MOA), a
lightweight Android-based agent-oriented software engineering approach.
We demonstrate its potential for direct integration with Android and
discuss details of how MOA provides a multi-agent extension to the ser-
vices offered natively by Android. We use a short example to demon-
strate the functionality reuse across applications and describe further
features which characterize it as a lightweight event-based middleware
for Android applications as well as desktop systems. We also provide a
performance evaluation to demonstrate that micro-agents interact in a
more efficient manner than Android services, making them more suit-
able for fine-grained decomposition. We finally contrast this approach to
existing work on building agent-based systems with Android.
Our approach is an example showing how existing technology can benefit
from utilizing the modelling advantages of agent-based technology.

Keywords: multi-agent systems, mobile applications, agent organisa-
tion, functionality reuse, micro-agents, android

1 Introduction

With the advent of smartphones, the continuous trend towards ubiquitous com-
puting has reached the mainstream of users. Smartphones combine the abun-
dance of available sensors (e.g. GPS, accelerometer, gyroscope) with the Internet.
The perceived ’smartness’ of those devices and their applications rather derives
from the combination of those different information sources than particularly in-
telligent features. Operating systems for smartphones cater for these application

129

characteristics and support notions of loose coupling as well as aspects such as
intentionality. One system of this kind is Android [1], whose infrastructure has
a fair degree of similarity with multi-agent systems.

Still, beyond well-specified mechanisms on how to compose applications from
application components, Android does not provide distinct mechanisms to or-
ganise lower functionality levels. As a result, particular components combine a
wide range of functionality in an application-dependent manner which limits the
reusability of functionality subsets. Independent from this Android’s architec-
ture itself prohibits the use of functionality beyond the application component
level across different applications.

To lever the potential for better application reuse and organisation, while
respecting the processing constraints of mobile systems, we suggest the inte-
gration of the computationally cheap notion of micro-agents with Android. We
first introduce the Android application development principles, followed by the
description of our micro-agent concept and its implementation.

The concept of ’Micro-agents on Android’ shows how those two technologies
can be interlinked, and Android applications seamlessly be backed by a fine-
grained cross-application micro-agent organisation.

2 Android and the concept of Micro-agents

2.1 Android architecture and application components

Android [4], developed by Google and released as an open source software plat-
form, is increasingly adopted by smartphone manufacturers. Beyond a Linux-
based kernel and the device-specific hardware drivers, it offers a comprehensive
software stack of libraries and the Dalvik Virtual Machine, which operates similar
to the well-known Java Virtual Machine (JVM). Related library functionality is
controlled via so-called managers (e.g. LocationManager for all location-related
functionality) where useful. Atop of this applications access both the various
managers and library functionality using Java syntax.

The interesting aspect from an architectural point of view is the way applica-
tions are composed. Android caters for a concurrent and loosely coupled layout
of applications by providing following application components:

Activities are designed for rather short-running functionality with direct user
interaction. Multiple activities can be combined to provide more comprehensive
functionality such as wizards.

Services in contrast are designed to be long-running in the background.
Broadcast Receivers are instantiated upon registered (system or application)

events and execute a particular behaviour and are destroyed upon execution.
Content Providers serve as an abstraction layer for system-wide access to

particular persistent storage locations.
All those components (with the exception of content providers) are connected

via so-called intents which represent abstract request specifications, have a uni-
fied structure, and allow asynchronous messaging between the aforementioned

130

application components. Intents either allow explicit addressing of target compo-
nents (by class name) or implicit addressing by matching intent characteristics
(such as action (e.g. VIEW to open a viewer application), handled data type,
or further component-related attributes (categories) (e.g. PREFERENCE indi-
cating component is a ’Preferences’ panel)) against application characteristics
which are registered by individual application components (as so-called intent
filters). Further content of intents can be arbitrarily defined by the application
developer and is attached as ’extras’ in a hash-map data structure.

The composition of the particular application components and their intent-
based interaction are the building blocks for any Android-based application.
This also includes core applications such as the caller application, thus giving
the application developer the power to access a wide range of system-level func-
tionality. Further information on those architectural principles of Android can
be found under [4].

2.2 The micro-agent concept

To provide a context for the suggested augmentation of Android with agent-
based technology, we introduce our understanding of the notion of micro-agents
and describe their surrounding principles. We define micro-agents as goal-directed
autonomously acting entities without assuming a specific internal architecture
type (e.g. BDI). Their external architecture supports multiple levels of abstrac-
tion for organisational modeling – motivating a strong degree of decomposition
which demands for fast message-passing mechanisms. Those aspects can, in a
similar sense, be found in many agent systems. However, micro-agents repre-
sent an approach to allow a consistent ’modeling in agents’ while avoiding the
switch to other programming paradigms (such as object-orientation) for more
fine-grained functionality as far as possible/useful.

The interpretation of micro-agents given here has not so far clarified the
organisational aspects surrounding their use. The metamodel for a micro-agent
organisation of our desktop platform µ2 [3] is based on the KEA model [8] and
displayed in Figure 1.

Fig. 1. Core relationships in µ2

This metamodel recognizes agents and roles as the first-order entities. Each
agent plays one or more roles which are specializations of the three first-level
specializations identified in the metamodel: Social Roles, Passive Roles, Group

131

Leaders. Social Roles represent the most expressive role type, making use of
asynchronous message passing and an explicit message container. Passive roles
only support blocking communication, which makes them useful for very fine-
grained functionality, as the interaction hardly involves any performance penalty
compared to a direct method call while still retaining the advantages of loose
coupling between individual agents.

The particular strength of the lightweight micro-agents is their organisation
in groups. By playing the ’group leader role’ agents can themselves start a group
that further agents can be registered with. The group leader has two functions: It
controls its group’s members, or respectively dispatches control commands from
its group leader, but can also compose its functionality by combining more fine-
grained functionality from its group members. The latter agents can lead groups
themselves in order to compose their functionality from further sub-agents. As
a result of this cascading structure, a multi-level agent organisation emerges
(as schematically shown in Figure 2). However, group leaders do not necessar-
ily compose their functionality from sub-agents but can also simply organize
sub-agents to structure the agent organisation by functionality aspects. The hi-
erarchy, however, does not restrict the communication of sub-agents; sub-agents
can communicate with agents outside their group, allowing the use of their func-
tionality across the whole agent organisation. For consistency purposes agents
which are not assigned to a particular group are members of the SystemOwner
group to enforce a consistent control structure.

Mechanisms to allow the automated binding of functionality – the key to the
composition of comprehensive applications – are Intents. Roles which can satisfy
requested intents (e.g. sending SMS) register those as applicable intents. Any
agent can then raise a request which is automatically delivered to the satisfying
role (intent-based dynamic binding).

Intents, derived from the mental concept of intentions, are in fact abstract
execution requests and are implemented as Java objects with a freely defined
property/operation set. Both requester and requestee need to ’know’ the seman-
tics of the intent; for other agents this is not relevant. However, as part of the
control mechanism, group leaders can restrict/prohibit the adoption of applica-
ble intents by group members at runtime, if those intents are incompatible with
the functionality managed in the according group.

The final element of the metamodel mentioned here are Events. Each role
implementation can subscribe to particular events (such as a notification of the
initialization of a new agent or a connected platform). Their implementation
is realized by extending an abstract class (which enforces the specification of
an event source) with arbitrary class structure – similar to the specification of
intents.

The combination of those features in our micro-agent concept enables a fairly
direct and clear interpretation of the key characteristics of Agent-Oriented Soft-
ware Engineering (AOSE) [7]: Decomposition describes means of breaking up
coarse-grained functionality into more fine-grained elements, Abstraction refers
to the necessity to limit the scope of a developer at a given time in order

132

to limit the overall complexity for a given task. Organisation, finally, is the
structural specification of an agent society resulting from the application of the
aforementioned characteristics. The notion of levels and groups as means to
specify them allows an effective decomposition while providing an arbitrarily
fine-grained structure of functionality elements, both in a horizontal manner –
structured by functionality groups – and vertical manner – breaking it up to an
atomic level. Abstraction is realized by focusing the developer’s view on a single
level or multiple adjacent levels of this agent organisation at a given time. The
application of those principles with this metamodel are visualized in Figure 2.

Fig. 2. Representation of AOSE characteristics Decomposition, Abstraction and Or-
ganisation in µ2

Agent models without an organisational perspective limit the possibility to
destructure functionality in an explicit vertical manner, but rather concentrate
on the decomposition in functionality groups. Further, this organisational model
allows the distinct application of abstraction levels by simply suppressing lower
or higher levels of the agent organisation where appropriate.

Assigning the according applicable intents to micro-agents (respectively roles)
in this hierarchy allows the definition of an explicit structured functionality
repository that allows the flexible use by any other agent on the platform.

Reviewing the strictly agent-based modelling principles of this metamodel
and the potentially strong degree of decomposition – enabled by a large num-
ber of interactions – , it should be reemphasized that high performance of the
messaging mechanisms for micro-agents is imperative.

Beyond the mentioned conceptual elements the implementation of the micro-
agent platform is distributed, allowing the use of intent-based dynamic binding
and raising of events across connected platform instances.

2.3 Limitations of Android application components

Looking at the characteristics of both Android and the introduced micro-agent
concept, loose coupling and concurrent communication are core principles of

133

both. Services in Android loosely reflect the notion of agents, as they are rather
long-running and operate in the background. Activities in contrast mediate in-
teraction between service and user and represent visible actions of a service,
i.e. agent operations. In our micro-agent concept agent operations are not ex-
plicitly modelled. Broadcast receivers represent an equivalent to an event sub-
scription mechanism which, similar to multi-agent systems, integrates agents
with events in their surrounding. However, the similarities mentioned here re-
side on the infrastructural level; services exhibit no motivational autonomy but
are purely reactive and additionally do not support long-running conversations
in a meaningful manner.

The mentioned application components are a powerful means to structure
applications by frontend and backend functionality, in the shape of different
runtime containers. However, Android does not provide further mechanisms to
allow a structured decomposition of functionality maintained in rather long-
running services which – especially in the case of more complex applications –
are holding the application’s core functionality. Although one possible approach
to achieve this is the use of numerous services, the performance of intent-based
interaction (which is elaborated at a later point) is prohibitive for fine-grained
functionality. Moreover, the decomposition into further services cannot be mod-
elled explicitly in an organisational structure, which limits the reusability of
fine-grained functionality across different applications.

To support the principal idea of composing Android applications from multi-
ple loosely coupled entities, we suggest the integration of an organisation-centric
micro-agent layer. This will allow effective modeling of agent-based applications
on Android systems, provide organisational modeling facilities to legacy Android
applications, and foster the reuse of functionality across different applications.

3 Micro-agents on Android

3.1 Design aspects

The similarities between Android and micro-agents suggest an integrated ap-
proach which facilitates the support of Android applications with agents to
encourage reuse of functionality, offering a lightweight explicit organisational
scheme, and enabling the modeling of agent-based applications. Micro-agents
themselves can react to external events and access Android functionality which
allows them to act in a real environment.

The integration of Micro-agents with Android, constituting ’Micro-agents on
Android’, is established by linking a particular micro-agent with a dedicated An-
droid service. This makes the interaction virtually seamless for either side; agents
make use of the functionality offered by the interfacing agent, while Android ap-
plication components interact with the interfacing service in the same manner
as with other components. Figure 3 shows this linked agent/service entity which
represents the core of MOA that will be explained in the following.

In order to link interactions, the different intent concepts of Android and the
micro-agent concept are dynamically converted. This approach has limitations,

134

Fig. 3. Architectural schema of MOA

as not all Android capabilities can be directly accessed via intents but demand
for additional code, especially when dealing with the ’managers’ in the Android
concept (e.g. TelephonyManager). Depending on this, Android functionality can
thus either be directly invoked (e.g. requesting the user to pick one of the existing
contacts) or needs to be mediated with additional functionality.

The dynamic conversion mechanism further needs to handle the particular
differences between micro-agent intents and Android intents. Android intents
have a fixed implementation (class structure) for dynamically typed content;
micro-agent intent implementations are structurally flexible (i.e. their structure
is entirely defined by the application developer) and merely need to implement
the Intent interface. As a consequence, a micro-agent intent rebuilding the An-
droid intent structure (AndroidExecutionIntent) is attached to the interfacing
micro-agent (AndroidInterfaceAgent). This way micro-agents can directly invoke
intents in Android. However, as Android demands for the specification of the tar-
get component type to be invoked (i.e. Activity or Service), micro-agents need
to supply this information as part of the remodelled Android intent.

As Android intents additionally do not allow the specifications of a sender in
the case of direct invocations, the use of a mediating IntentExecuterActivity is
necessary to cache the sending agent, track the execution result of a particular
intent, and return eventual responses to the original requester.

In cases where Android functionality cannot be invoked in a direct manner,
the conversion mechanism is additionally augmented with Utility application
components on the Android side and Functionality Mapper agents on the micro-
agent side. Those then encapsulate the necessary pre-/post-processing of custom
intents and manage the actual functionality. Examples include the subscription
to Location proximities which cannot be directly registered via intents but are
mediated by the LocationUtility service.

For the point taken here – the use of agent-based technology as an enabler to
structure applications and to reuse functionality – the access of agents by appli-

135

cation components should be emphasized. Application components can address
the interfacing service using all available Android mechanisms, thus by means of
either explicit intents (using its class name) or particular intent filters, specified
by the application developer. Thus the use of MOA does not have any impact
on the access by Android application components.

3.2 Application development with MOA
With the use of MOA, application developers can capitalize on implementation
effort and offer it – in the shape of micro-agent intents – to other applications
running on the same Android device. Following the MOA concept, applications
consist of a micro-agent society residing in the backend, and a frontend which
is developed using legacy Android application components, such as activities
which demands developers to consider both Android and micro-agent concepts
but offers unique direct interaction mechanisms between both worlds. A simple
example (shown in Figure 4) illustrates the potential of using MOA for appli-
cation development. In this case two applications make use of the MOA func-

Fig. 4. MOA with multiple applications

tionality set. The ’Phone Profile Switch’ application maintains locations with
according distinct phone settings. The actual functionality is realized with the
ProfileSwitchAgent, which receives Proximity events for maintained locations
and adjusts the device settings accordingly (e.g. disables sound and shows no-
tification on device display). Parallel to this another running application can

136

be the ’Driver’s responder’ application which automatically replies to incoming
text messages if the speed of the phone exceeds a certain threshold. In this case
the current speed is delivered as an event and the SpeedResponderAgent reacts
on this by switching the phone profile (using the SwitchProfileIntent) and, if
driving, automatically responds to incoming messages and eventually shows or
suppresses a notification on the display.

Independent from the application those simplistic examples show the reusabil-
ity potential enabled by micro-agents across different applications.1 Given the
risk of creating interdependencies between applications, the use of agents (in
contrast to other modeling paradigms) is useful as they are supposed to handle
failed binding requests and find alternatives (here this would be the case if the
PhoneProfileApplication is missing). However, the same would be the case of
inter-depending legacy Android applications. In order to extend applications by
introducing new agents, developers only need to know the internals of relevant
intents (e.g. SwitchProfileIntent) in order to use the functionality; the executing
agent is automatically resolved upon sending of this intent.

The potential of MOA goes further when considering its distributed opera-
tion mode – which allows the integration of agent functionality in a location-
independent manner. Micro-agent functionality can be delivered by other mobile
devices or devices running the compatible desktop version. This allows extended
reuse of functionality, specifically the use of functionality which cannot be pro-
vided on the local device (e.g. printing mediated via desktop pc). In turnaround
this enables desktop pc’s to use functionality of the mobile device (e.g. sending
SMS messages).

Development can thus be realized in a consistently agent-based manner in-
volving the provision and implementation of intent functionality as well as events
without concern where it is executed. The platforms handle the ad hoc nature
of network connections autonomously.

3.3 Performance evaluation

To quantify some benefits of the use of micro-agents on Android, we developed
a benchmark measuring the interaction performance for both Android-based
services and a version realizing this functionality with micro-agents. It simulates
a simple context-aware application, automatically responding to incoming SMS
text messages and is shown in Figure 5.

An incoming text message is forwarded to a responding entity (ResponseMan-
ager) which coordinates the resolution of the sender’s name (via NameResolver),
the identification of the priority (PriorityResolver) of the sender, and finally re-
sponds to this message (Responder). The functionality is standardized, and in
each case a response message is generated to measure the pure interaction per-
formance for both benchmark implementation variants. This scenario has been
executed for increasing numbers of rounds to show the scalability of MOA. Each
1 Please note that the figure does not show the entire agent organisation but a subset

relevant for this context.

137

Fig. 5. Benchmark scenario for performance comparison

configuration has been executed ten times, with an initial warm-up run of 5
rounds. Table 1 shows the average durations along with standard deviation and
relative performance factor of Android services in comparison to micro-agents.2

Rounds MOA (ms) σ native Android (ms) σ Factora

5 231 67.62 639 43.57 2.77
10 390 88.93 950 61.07 2.44
25 850 65.12 1875 30.57 2.21

100 3027 68.95 6789 106.77 2.24
250 7387 117.64 16948 735.71 2.29

1000 28404 219.85 70088 379.47 2.47
2500 77451 984.75 201685 1493.96 2.60

a Relative performance of Android intents to micro-agents.
Table 1. Selected benchmark results per scenario rounds

Despite the additional two Android intents necessary to realize the MOA
variant of the scenario, it still significantly outperforms the purely Android-
based interaction. The performance difference is surprising, but we attribute it to
the fact that Android’s application components are more featureful (potentially
allowing IPC, providing a more comprehensive life cycle) and thus demand for
a heavier implementation (and processing) than the micro-agents. Micro-agents
are directly built on the provided libraries but themselves do not use any of
the Android application components for their internals; their purpose is to allow
efficient communication between numerous less-featureful entities.

Beyond the qualitative argument for modeling benefits from an explicit agent
organisation, this gives a clear indication that a strong decomposition into micro-
agents is likely to be feasible without performance loss, and perhaps even results
in faster applications.
2 The benchmark has been run on a HTC Magic smartphone running Android 2.2.1.

In both scenarios all entities run in the same process, avoiding computationally
expensive Inter-Process Communication (IPC).

138

4 Related work
This work is not the first targeting the comparatively young Android platform
but takes a different approach than existing efforts to run agent-based systems
on this platform.

The mobile version of the popular agent platform JADE [5], JADE-LEAP, is
available in an Android version, JADE ANDROID [2]. It enables the integration
of an Android-based software agent into the comprehensive and mature JADE
infrastructure. For distributed use JADE ANDROID relies on a main container
(provided by the full JADE version). The number of agents running in one JADE
ANDROID instance is currently restricted to one.

Another approach is presented by Agüero et al. [6], who use Android as a ba-
sis to implement their Agent Platform Independent Model (APIM), which is de-
rived from the analysis of commonalities in various AOSE methodologies. Their
implementation is directly based on the full Android infrastructure (e.g. exten-
sion of Services as Agents) and puts a focus on agent internals. Organisational
modeling is not of primary concern.

JaCa-Android [9] implements the Agents and Artifacts model on Android.
The Agents and Artifact model suggests the use of agents and artifacts as mod-
eling entities to describe application functionality. For agent implementations
JaCa-Android relies on the Jason AgentSpeak interpreter and models workspaces
via the CArtAgO framework, which allows to build distributed agent applica-
tions. Android capabilities (such as SMS message or GPS coordinates) are mod-
elled as artifacts which expose specific attributes and operations and can be
handled by agents across different workspaces.

In contrast to existing efforts, the micro-agent approach advocated in this
paper offers an agent-based organisational extension to Android’s infrastructure
which both allows modelling in an agent-based manner while increasing the reuse
of application functionality across different applications and platforms. The goal
of our implementation is not only to run agents on Android but also to provide
an interface for the seamless interoperation of agents with legacy application
components on Android devices. Given that the specific application landscape
on Android device instances can vary significantly, the potential of micro-agents
to formulate Android intents in a proactive manner allows them to treat Android
itself as an open system.

5 Conclusion

Android, the mobile application development platform, offers capabilities for a
wide range of smart applications and an infrastructure that shows characteris-
tics related to multi-agent systems. Its applications are composed using loosely
coupled asynchronously communicating application components.

The degree of loose coupling in Android shows limitations and does not offer
an organisational scheme for more fine-grained functionality patterns. We sug-
gest the integration of efficiency-oriented micro-agents with Android services.
This enables the comprehensive maintenance of developed functionality and

139

makes it available for reuse across different applications at an abstraction level
convenient for the developer. This offers a low threshold approach to compose
required functionality in a consistently agent-oriented manner across a dynami-
cally changing device landscape.

Applications backed with micro-agents are meant to coexist with legacy ap-
plications; developers need to consider both Android and micro-agent concepts
when modelling applications. Beyond this MOA’s unique direct interaction with
Android components using Android intents supports the operation of agents in
the context of open systems.

Future research will include the extension of the current system towards a
more comprehensive agent-based ad hoc middleware, integrating a wider system
landscape and features (e.g. web services). Part of this work is also to address the
potentially harmful bottleneck of MOA when interacting with numerous legacy
application components. The development of applications using this blended
approach further needs to be harmonized with existing AOSE methodologies.
Micro-agents are mediators for access to low-level functionality on one side and
intelligent agent notions on the other side which demands for a clear definition
of this position.

Overall the unique approach to interface agent-based modeling principles
with legacy technology described here is an example of how agent-oriented soft-
ware engineering principles can facilitate application development in a cross-
paradigmatic manner.

References
1. Android. http://www.android.com/. Accessed on: 25th January 2011.
2. JADE Android Add-on Guide. http://jade.tilab.com/doc/tutorials/JADE

ANDROID Guide.pdf. Accessed on: 25th January 2011.
3. Micro-agent platform µ2. http://www.micro-agents.net. Accessed on: 5th March

2011.
4. What is Android? http://developer.android.com/guide/basics/what-is-

android.html. Accessed on: 25th January 2011.
5. JADE - Java Agent DEvelopment Framework. http://jade.tilab.com, October 2011.

Accessed on: 25th January 2011.
6. J. Agüero, M. Rebollo, C. Carrascosa, and V. Julián. Does Android Dream with

Intelligent Agents? In J. Corchado, S. Rodríguez, J. Llinas, and J. Molina, editors,
International Symposium on Distributed Computing and Artificial Intelligence 2008
(DCAI 2008), volume 50 of Advances in Soft Computing, pages 194–204. Springer
Berlin / Heidelberg, 2009.

7. N. R. Jennings and M. Wooldridge. Agent-Oriented Software Engineering. Artificial
Intelligence, 117:277–296, 2000.

8. M. Nowostawski, M. Purvis, and S. Cranefield. KEA - Multi-Level Agent Architec-
ture. In Proceedings of the Second International Workshop of Central and Eastern
Europe on Multi-Agent Systems (CEEMAS 2001), pages 355–362. Department of
Computer Science, University of Mining and Metallurgy, Krakow, Poland, 2001.

9. A. Santi, G. Marco, and A. Ricci. JaCa-Android: An Agent-based Platform for
Building Smart Mobile Applications. In In Proceedings of LAnguages, methodologies
and Development tools for multi-agent systemS (LADS-2010), 2010.

140

AgentStore — A Pragmatic Approach to Agent
Reuse

Axel Hessler, Benjamin Hirsch, Tobias Küster, Sahin Albayrak

DAI-Labor, TU Berlin, Germany

Abstract. In this paper we describe the AgentStore, a mechanism and
tool to support reuse by enabling users and developers to share, search
and deploy agents. Web- and API-based interactions allow the integra-
tion in the common workflow of developers of multi-agent systems. In
this work, we set a high value on socialising the agent developer, not the
agents.

1 Introduction

In an ideal agent world, the agent is surrounded by many other agents that
provide services that can be deliberately selected and used, or considered in
plans in a more complex decision and execution process. In the real world, new
projects will have an agent-based system as the core of the solution, but there
are no agents and no services outside the specified system, or the agents cannot
access other systems or services. Inspired by the perplexing simplicity of the
installation process of applications to Apple’s consumer electronic devices iPod,
iPhone and iPad, but also to a huge number of other devices based on the
Android platform, we believe that Apple’s App Store and Android’s Market can
be a good pattern to promote reutilisation of agents and agent-based solutions
in agent-oriented software engineering. An Apple or Android device is usually
delivered bare bone, with only basic applications pre-installed. The user can
then go to the App Store or Market and download applications that enhance
the basic capabilities with whatever is needed by the user. This can be as simple
as a puzzle or as complex as a location-based social network or an augmented
reality app.

Taking App Store and Market as prototype, the AgentStore creates a place
where developers can upload their agents and other developers can find and reuse
them off-the-shelf. There are certain implications to the multi-agent infrastruc-
ture, development environments and process models, and also the willingness on
the part of the developer and project managers to support the pattern, because
re-use is most often out-of-scope in a single project.

The multi-agent infrastructure requires a number of services that allow to
deploy and update agents remotely and request information concerning available
runtime, installed libraries and user management. Development tools and build
systems must be enabled to provide agents as well as reuse existing agents.
Developers and project managers must form the habit of looking up existing

141

agents and in turn provide the results of their work, so that they will profit from
it in the medium term.

For example: At DAI-Labor we have an agent that is capable of sending e-
mails to people and provides this capability to other agents as an agent service.
While this agent has seen many upgrades of programming language, framework
and APIs, the core implementation remained stable with marginal adjustments.
Furthermore, this agent has been complemented with other agents with capa-
bilities to post messages to different channels, such as SMS, SIP or Twitter,
and extended with abilities to deliberately select the communication channel
depending on which contact information is known, what the preferred channel
is and what the most likely channel is to reach the addressee.

Now, having finished many projects with focus on multi-agent systems that
require this functionality we discovered that we wasted time and effort just
implementing this functionality time and again. If there had been a place to
store the agent, a process that keeps it up-to-date and the awareness in the
head of developers and project managers, this time could have been saved. In
the following, we describe the concept of AgentStore in more detail, propose
a number of processes around it and inspire the community to “get social”.
For each aspect of the AgentStore we give the abstract term and then map
it to the JIAC agent framework family [3, 7],which is our preferred technology
of implementation. But concepts and processes used in this paper are easily
adaptable and extendable with other frameworks.

2 Concept

The AgentStore is a set of tools that allows easy access to ready-to-run agents
and scripts. Similar to Apple App Store and Android Market for smart de-
vices, functionality can be incorporated in ones own multi-agent systems. After
installing and starting a new agent, it registers its services with the service di-
rectory (or directory facilitator). The services are immediately available and can
be used by other agents. In addition to agents, we have scripts that represent
plans or plan elements, which can be deployed to agents that are capable of
interpreting these scripts. Once deployed the script is registered as a service as
well.

AgentStore targets developers of multi-agent systems. Developers can take
one or more of three main roles:

– User – select agents and scripts and deploy them to runtime
– Developer – develop agents and scripts and upload them to the AgentStore
– Evaluator – review, rank and comment on agent and scripts

In Figure 2 we give an overview about the AgentStore design. In brackets
you find the technologies we have used to implement the concepts.

As its core, AgentStore is a developer portal with storage space. A web-based
user interface allows to access the content and functionality provided by the
AgentStore. In particular, the AgentStore offers functions to search and deploy

142

Fig. 1. AgentStore concept overview

agents to agent runtime environments, as well as to upload and modify them
(see Section 3).

Additionally, AgentStore provides APIs for requesting AgentStore items via
software clients such as build system, IDE or runtime management tools (see
Section 4).

AgentStore can access the multi-agent environment. It can find agent nodes
that are candidates for deployment of agents. In JIAC V, agent nodes are inter-
connected Java virtual machines that provide infrastructure services and control
the agent life cycle, and together form the agent platform. The services are made
available using the Java Management Extension (JMX) and allow the AgentStore
to deploy agents remotely.

For deploying scripts, AgentStore is capable of finding agents that can inter-
pret scripts. The script deployment process is partially language-dependent. The
JIAC V agent description language (JADL++) [2] requires an agent capable of
interpreting JADL scripts.

143

2.1 Metamodel

The metamodel is an instance of the project object model (POM) of the Apache
Maven Project1. Deployable agents are unambiguously identified by groupId, ar-
tifactId and versionNumber. A human readable name and description is given.
Especially the dependency management is used to also collect transitive depen-
dencies. The obtained list of dependencies is matched during deployment with
resources that are available on the target node. Any build system can be used
here to build executables and package agents, as long as it provides needed agent
parts and required metadata.

The only extensions we have made to this model are identifiers for the target
agent framework and version. This allow us to filter agents based on the available
platform nodes, and to use appropriate deployment tools.

Developers upload packaged agents. They also provide a semantic descrip-
tion of the agent’s functionality and configurable parameters (filled with rea-
sonable defaults). Agents can be labelled using pre-defined categories describing
the intended application area. Additionally, agents can be tagged by users using
custom key words. Icons can be provided to brand your agents and make them
easily identifiable in the AgentStore.

3 Processes and Policies

Upload Developers can upload agents and scripts. The actual code is packaged
(as a JAR file in our case). A description of the agent as well as a default
configuration have to be provided. Then, the uploader’s permissions are checked
and, if authorised, the AgentStore will persistently store the given meta data
and files. Interested users can subscribe to new uploads and will be informed
using their preferred notification channel.

Update Once an agent or script is uploaded, the author can make updates. Each
update gets its own version number, and backward compatibility needs to be
declared. This is important to ensure that updates do not break systems that
rely on specific functions or service calls. Users that have already used earlier
versions of this agent are informed about the change and can decide whether to
update their agent instance or not.

Search AgentStore provides a number of means to search for agents and scripts.
Besides browsing AgentStore entries, agents and scripts can be found by cate-
gories or user generated tags.

Deployment Once an agent is selected, the user can adapt the (default) parame-
ters. Then the user can choose where to install the agent from a list of available
agent nodes. This list comprises of nodes known to the agent store. Additionally,
the user can also provide the URL of a running node — or download a node

1 http://maven.apache.org

144

from the agent store which then can be executed locally. If nodes provide a load
balancing functionality (see [8]), the task of selecting a node to deploy the agent
is then delegated to the load balancing agent.

Delete Finally, developers can delete their agents and scripts. Users are notified
of the deletion.

In principle, scripts and agents are treated the same. However, if the user
downloads a script, an agent with the ability to interpret the script is needed on
the selected node. If no such agent is found (or if the user so desires) an agent
capable of running the script will be deployed at the same time.

3.1 Evaluator

The evaluator role has been introduced to allow the evaluation of agent and
scripts.

Comment We provide room for user reviews of every item in the AgentStore.
Users are encouraged to give feedback on the according agent as well as to make
feature requests. In a future release of AgentStore it is planned to synchronise
comments and issue tracking tools in order to enable handling of user feedback
in project management.

Ranking User may rate the agent according to its usefulness in a 5-star ranking.
We show a Top-25 list of highest ranked agents at the portal page.

Statistics We also provide usage statistics for users and developers. We count
page views and deployments and provide usage and update statistics to support
the decision process when looking for useful agents.

3.2 Social networking

When agent developers talk about “social”, they think about social capabilities
and behaviour of their agents in a multi-agent system, such as speechacts, pro-
tocols, joint goals and intentions, or coalition formation strategies. Our aim is
to socialise the developer itself by linking AgentStore to social networks.

The AgentStore provides a number of extended functions that deal with the
social aspect of developing multi-agent systems. This includes the ability to tag
agents, define profiles for automatic search and recommendation, analysis of user
behaviour, as well as the ability for users to rank agents and give feedback to the
developer. Developers can suggest other agents that are related to the uploaded
one or should also be promoted by this developer.

RSS/Atom feeds AgentStore generates a public news feed from events in the
store: agents that have been uploaded or updated, latest statistics such as top
downloads, and agent ranking.

145

Promotion Developers can feature their agents in a number of ways. We offer
post-to-Twitter and Facebook functionality for both users and developers. For
developers this feature can be used to promote the latest agent uploads and
updates. For users, this is a fine feature to suggest useful or cool agents to other
users. This functionality has potential that has not been explored in depth yet.
Twitter posts are automatically inserted into the feeds of people or topics using
the “@” and “#” operators to reach certain developers or users. URLs that
direct to the AgentStore items are added to the post using an URL shortener,
providing additional information about usage statistics in the background. Of
course, there is a Twitter agent in the AgentStore, too.

4 Tool Connections

The AgentStore provides an application programming interface (API) for up-
loading, searching and downloading agents and scripts. In the following, we will
introduce a number of development tools for the JIAC multi-agent framework
that already make use of this API.

4.1 Agent World Editor (AWE)

The AWE [6] allows to design multi-agent systems (MAS) visually using the
concepts of agents, roles and components. The structure of a MAS is designed
by drawing agent roles consisting of components (agents beans and scripts),
aggregating them to agents and instantiating them on agent nodes. The AWE
is capable of looking up agents and scripts in the AgentStore and adding them
in the current design scenario. Newly designed agents can be preconfigured and
described and then uploaded in order to provide them for reuse.

4.2 Visual Service Design Tool (VSDT)

The VSDT [4] allows analysis and design of workflows using the Business Pro-
cess Modeling Notation (BPMN). It consists of a full featured BPMN editor, a
workflow simulator and a powerful transformation framework that can produce
programs from the workflows in a number of programming languages, including
JIAC [5]. The VSDT is able to browse agent scripts in the AgentStore and offer
them for use as service calls in a workflow. New workflows can be transformed
to agent scripts and uploaded to the AgentStore for later reuse.

4.3 JADLEditor

The JADLEditor [1] is a tool for creating and revising agent scripts written in
the JADL [2] agent programming language. Besides usual editor functionality
such as syntax highlighting and code completion it allows using the AgentStore
by browsing agent scripts for service calls and uploading newly written JADL
scripts.

146

4.4 Agent Monitor (ASGARD)

The ASGARD monitor [9] allows monitoring and control of distributed MAS.
Agents can be introspected and their lifecycle state can be changed. One can also
monitor inter-agent communication and interaction. ASGARD can browse the
AgentStore entries. An authorised person can select agents from the AgentStore
and deploy them on agent nodes using drag-and-drop.

4.5 Maven build system support

Apache Maven is a powerful software management and comprehension tool. It is
based on the concept of what a project is consisting of (the project object model –
POM), and manages the whole software project life cycle. It can publish project
information and artifacts in many different ways, and allows sharing project
artifacts across many projects. The project model can be extended easily by
providing plug-ins that allow to define a custom set of project information and
to integrate additional tasks in the process model.

We have built a plug-in that extends the POM with the notion of AgentStore
in order to allow uploading and updating agents and scripts during automated
builds. The upload/update by Maven is triggered when changes are made in the
source codes of agents and scripts and committed/pushed to the version control
system.

4.6 Local repository

When working in projects with government and industry partners, we are often
faced with the problem that we are not allowed online access to software and
services. Also, internet access is not always available, especially during travel.
Therefore, all tools share a common local repository where agents and scripts
are stored for design and deployment. The local repository follows the same
conventions as the AgentStore does, which is an application of the default Maven
repository layout.

5 Example

AgentStore is being developed as a senior thesis by Fabian Linges2 together with
members of the DAI-Labor of TU Berlin. All main aspects are up and running
and the following example is already possible:

Developer A programs a Twitter agent that is capable of posting status up-
dates to his own account on the known service, just for fun. He uploads the
agent to the AgentStore. Developer B works in a traffic telematics project and
creates a GPS agent that wraps a GPS tracking device and provides agent ser-
vices for reading position, speed and distance data (see Figure 5). He uploads

2 Member of Team Brainbug in the Multi-Agent Programming Contest 2010 (see http:
//www.multiagentcontest.org/2010)

147

Fig. 2. AgentStore item view - GPS agent

the agent to the AgentStore. Developer C is browsing AgentStore entries and
has the brilliant idea to twitter his actual position. No sooner said than done,
he first deploys the Twitter agent, configured with his own account credentials.
He borrows the GPS tracking device and deploys the GPS agent on his laptop.
Then he writes a script that routes the position information to the twittering
agent (without coping the details of the GPS or Twitter APIs) and deploys the
script in an interpreter agent. And is done. His Twitter feed is now posting the
position of his laptop. He uploads the script to the agent store and comments
on his success story. Developer D reads the story in her RSS feed and can repeat
the success in her own project.

Developer E also wants to use the solution. But he has problems with the
GPS agent. He informs B that there is something wrong. B fixes the bug and
updates the GPS agent in the AgentStore. All users are informed about the
update. Now C and D can decide whether to update their own running agent
or not. Now developer A deletes his Twitter agent in the AgentStore because
too many tweets are spamming his inbox with acknowledgements. This does not

148

bother C, D and E because they have copy of the Twitter agent in their local
repository. Developer F read about the deletion of the Twitter agent in his RSS
reader and compensates the AgentStore entry with his social media agent.

6 Related Work

The AgentStore combines the concepts of an online store with agent oriented
programming, and draws inspiration from both of those areas.

While today, most people think of Apple and Apple devices when confronted
with a “something” store, the concept has been around much longer than iPhones
and friends. However, the App Store and similar Android Market are the most
famous instances.

The Apple App Store3 is a program that runs on mobile devices such as the
iPhone and iPad and provides access to the iTunes Store, which offers music,
videos, and software. The App store focuses on software, and presents the avail-
able programs ordered by categories. User can search, browse, buy, and install
and give feedback. The user interface is simple and intuitive. The Android Mar-
ket4 is an analogous program for Android devices, connecting to an application
store provided by Google. As opposed to Apple, Android devices can make use
of different stores apart from the Android Market. As a final example of mobile
stores we want to mention the Opera Mobile Store5 that provides a platform
independent web based access to programs for mobile devices running Android,
Symbian, and Blackberry devices. Common to these stores is the simplicity with
which users can search for and install new functionality for their mobile de-
vices. Often, programs are tightly integrated with the operating system, thereby
allowing for genuine extensions of the system.

Somewhat related are web based stores for Perl and LaTeX, called CPan6

and CTan7 respectively. Like the AgentStore, they offer functional extensions
that can be browsed by category or searched. However, the software needs to be
downloaded and installed manually. CPAN also refers to a command line tool
that automatically installs not only the chosen module but also resolves any
dependencies, downloading required additional packages without user interven-
tion. Linux Package Managers are also quite similar to the Agentstore in that
they generally offer some streamlined interface to searching for programs, and
support one-click download and installation.

Agentcities [11] was a large deployment of at its height over 100 FIPA compli-
ant platforms, where agents could provide and look for services. Several national
and EU-funded projects pushed the deployment of these platforms. Unfortu-
nately, despite its large developer base and industrial backing, agentcities is

3 http://store.apple.com/
4 http://market.android.com/
5 http://mobilestore.opera.com
6 http://www.cpan.org/
7 http://www.ctan.org/

149

defunct now. However, its core idea is related to the AgentStore, with the dis-
tinction that the AgentStore does not provide services but allows for the quick
and easy installation of agents on ones own platform. Were agentcities alive it
could serve as a target for agent deployments from the AgentStore.

7 Conclusion

In this paper we have described the AgentStore, a mechanism to support reuse
by enabling users and developers to quickly and easily share, search and deploy
agents and agent scripts. The main focus lies on the usability of the system.
Web- as well as API-based interactions allow the integration in the common
workflow of developers, thereby fostering reuse without requiring large changes
to the normal flow of work. The store is set up such that also other artifacts,
such as ontologies, can be stored and retrieved easily [10].

Rather than forcing developers that want to provide functionality via agents
to run them on their own hardware, as cloud-based services or agentcities re-
quire, the agentstore merely stores the necessary artifacts, and allows users to
configure the agent and deploy it on any platform he chooses, cloud-based or
local. Thus, the AgentStore is a middle way between static programmer’s li-
braries, requiring lots of manual work to download and reuse components, and
directories of running services, which provide easy reuse of services but require
permanent availability and potentially vast computing capabilities.

Apple’s App Store and Android’s Market also incorporate a simple but pow-
erful business model. It is conceivable that this model can be applied to the
AgentStore. We want to extend the AgentStore with self-healing mechanisms
of our runtime environment, by enabling agent nodes to download agents with
required functionality from the AgentStore in order to support additional redun-
dant strategies and to provide substitute services.

References

1. Burkhardt, M., Lützenberger, M., Masuch, N.: Towards Toolipse 2. Tool Sup-
port for the Next Generation Agent Framework. Computing and Information Sys-
tems Journal 13(3), 21–28 (October 2009), http://cis.paisley.ac.uk/research/
journal/vol13.htm

2. Hirsch, B., Konnerth, T., Burkhardt, M., Albayrak, S.: Programming service ori-
ented agents. In: Calisti, M., Dignum, F.P., Kowalczyk, R., Leymann, F., Unland,
R. (eds.) Service-Oriented Architecture and (Multi-)Agent Systems Technology.
No. 10021 in Dagstuhl Seminar Proceedings, Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, Germany, Dagstuhl, Germany (2010), http://drops.dagstuhl.
de/opus/volltexte/2010/2815

3. Hirsch, B., Konnerth, T., Heßler, A.: Merging Agents and Services — the JIAC
Agent Platform. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A.
(eds.) Multi-Agent Programming: Languages, Tools and Applications, pp. 159–185.
Springer (2009)

150

4. Küster, T., Heßler, A.: Towards transformations from BPMN to heterogeneous
systems. In: Mecella, M., Yang, J. (eds.) BPM2008 Workshop Proceedings (2008)

5. Küster, T., Lützenberger, M., Heßler, A., Hirsch, B.: Integrating process modelling
into multi-agent system engineering. In: Huhns, M., Kowalczyk, R., Maamar, Z.,
Unland, R., Vo, B. (eds.) Proceedings of the 5th Workshop of Service-Oriented
Computing: Agents, Semantics, and Engineering (SOCASE) 2010 (2010), to appear

6. Lützenberger, M., Küster, T., Heßler, A., Hirsch, B.: Unifying JIAC agent develop-
ment with AWE. In: Proceedings of the Seventh German Conference on Multiagent
System Technologies, Hamburg, Germany. Springer (2009)

7. Patzlaff, M., Tuguldur, E.O.: MicroJIAC 2.0 - The Agent Framework for Con-
strained Devices and Beyond. Tech. Rep. TUB-DAI 07/09-01, DAI-Labor, Technis-
che Universität Berlin (Jul 2009), http://www.dai-labor.de/fileadmin/files/
publications/microjiac_20_2009_07_02.pdf

8. Thiele, A., Konnerth, T., Kaiser, S., Keiser, J., Hirsch, B.: Applying JIAC V to
real world problems — the MAMS case. In: Proceedings of the German conference
on Multi-Agent System Technologies. pp. 268 – 277. Springer (2009)

9. Tonn, J., Kaiser, S.: ASGARD - a graphical monitoring tool for distributed agent
infrastructures. In: Proceedings of 8th International Conference on Practical Ap-
plications of Agents and Multi-Agent Systems (PAAMS 2010). Salamanca, Spain
(2010)

10. Tudorache, T., Noy, N.F., Nyulas, C., Musen, M.A.: Use cases for the interoperation
between an ontology repository and an ontology editor. In: Proceedings of the
Workshop on Semantic Repositories for the Web (2010)

11. Wilmott, S., Dale, J., Burg, B., Charlton, P., O’Brien, P.: Agentcities: A Worldwide
Open Agent Network. AgentLink News Issue 8 (November 2001)

151

	0-Preface
	AOSE-papers-all
	1_I4_PARUNAK
	2_I2_DASTANI_MASprog
	3_I1_DIGNUM
	4_I6_SINGH
	5_2_SCHUMANN
	6_I3_SANZ
	7_9_HIRSCH
	8_7_NUNES
	9_I5_ESTEVA
	10_5_FRANTZ
	11_HESSLER
	1.Halbjahr_2011_Wiss.Weiterbildung_Fuehren_Virtueller_Teams_Seminare

