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Preface 
Sensor networks are increasingly seen as a solution to the problem of performing wide-area monitoring 
and surveillance within environmental, security and military scenarios. Such networks consist of multiple 
sensors, deployed over a wide area, connected through a communication network (wired or otherwise).  
To ensure minimal human intervention the sensors within these networks should be able to self-organise, 
autonomously manage their own resources, and co-ordinate their behaviour to achieve system wide goals.    

The distributed nature of these networks, and the autonomous behaviour expected of them, naturally lend 
themselves to a multi-agent methodology, and many of the technical challenges posed by these systems 
(e.g. decentralised control, co-ordination, resource allocation) form the basis of main-stream research 
within the agent community. However, such systems pose many additional challenges, not least how to 
manage limited computation and energy resources, constrained communication, and unreliable or fault 
prone network components within a dynamic and uncertain environment. Furthermore, the increasing 
availability of sensor network data, and the need to make use of it in real-time for informed decision 
making, requires the development of intelligent agents that can autonomously acquire data from these 
networks, and perform information processing tasks such as fusion, inference and prediction.  

Against this background, the International Workshops on Agent-Technology for Sensor Networks have 
from 2007 to 2009 provided a forum where work and results in this area are discussed.  

 



The impact of localization errors on the performance of
the Ants exploration algorithm
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ABSTRACT
When an emergency occurs within a building, it is safer to
send autonomous mobile agents instead of human respon-
ders, to explore the area and identify hazards and victims.
Existing exploration algorithms [11, 4] allow mobile agents
to make distributed navigation decisions by communicat-
ing with nearby fixed sensors embedded in the environment.
These algorithms are very efficient in terms of exploration
time, but they have mainly been evaluated in simulation en-
vironments, where idealized assumptions were made regard-
ing the ability of mobile agents to detect and localize fixed
sensors in their vicinity. To address this problem, recent
work [3] has focused on practical mechanisms for detecting
and localizing sensors, implemented them in a real testbed,
and derived realistic models of localization errors.

The objective of this work is to investigate the impact
of these realistic errors [3] on the performance of the Ants
exploration algorithm [11]. In particular, we simulate the
performance of Ants with and without realistic errors, and
show that introducing small errors can have a significant
effect on the total exploration time.

Categories and Subject Descriptors
I.2.9 [Computing Methodologies]: Artificial Intelligence—
Autonomous vehicles

General Terms
Design, Measurement, Experimentation

Keywords
Sensors, Autonomous Agents, Robots

1. INTRODUCTION
When an emergency occurs within a building, the area

is typically off-limits for anyone not wearing garments to
protect themselves from exposure to hazards. In such ad-
verse conditions, it is safer to deploy a group of autonomous

robots, (mobile agents) to explore the area as fast as possi-
ble. Agents should overcome three important limitations: 1)
lack of location information in indoor environments; 2) lack
of direct connectivity between agents and 3) lack of map
information. In order to address these challenges, recent
work has proposed instrumenting the emergency area with
tiny fixed sensors [11, 4]. By using the instrumented envi-
ronment, mobile agents are able to explore the environment
without map or location information, and to communicate
with each other indirectly by using the sensors to leave and
retrieve messages.

For simplicity, consider an area instrumented with fixed
sensors lying in a grid topology. Wall cells, i.e. cells that
are occupied by some obstacle, are the only ones without
fixed sensors. We assume that a mobile agent is able to
communicate with the fixed sensor on the current cell, as
well as with at most eight fixed sensors in the surrounding
cells. We also assume that the mobile agent is able to detect
hazards and victims within the current cell. Exploration
algorithms that use the above model [11, 4] typically follow
four steps: 1) Sensor localisation: the mobile agent identifies
the fixed sensors lying in the current and eight surrounding
cells; 2) Sensor querying: the mobile agent queries the state
of the previously localized sensors; 3) Sensor updating: the
mobile agent updates the state of the fixed sensor in the
current cell; 4) Navigation: the mobile agent selects one
of the surrounding fixed sensors and navigates towards it.
Note that exploration decisions are made in a completely
distributed manner, by simply relying on the local state of
the instrumented environment.

The weakness of previous studies [11, 4] is that they have
only focused on the sensor tasking and marking steps, and
have largely ignored the practical issues pertaining to sensor
localization and navigation. They make unrealistic assump-
tions about the ability of an agent to accurately localize
sensors in its vicinity, and move towards a selected sensor
without odometry errors. In order to address these chal-
lenges, recent work [3] has proposed realistic localization
and odometry error models based on experiments in a real
testbed. The objective of this paper is to investigate the
effects of applying the proposed error models [3] to the Ants
exploration algorithm [11]. In particular, we integrate the
error models into an existing simulation environment, and
assess how the performance of Ants degrades as a result of
introducing realistic errors.

The paper is organized as follows: Section 2 provides an
overview of existing localization techniques, and summarizes
the error models derived from applying one of them in a
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real testbed. Section 3 briefly describes the Ants algorithm,
which is one of the most popular and simple approaches to
exploring a sensor-instrumented environment. Section 4 as-
sesses the performance of the Ants exploration algorithm in
a simulation environment with and without realistic errors.

2. BACKGROUND
In this section, we first give an overview of existing tech-

nologies for localizing sensor nodes. We then focus on a prac-
tical localization technique in which mobile agents equipped
with cameras detect fixed sensors lying in their vicinity and
localize them [3]. We provide a summary of detection and
localization errors reported in [3], which are based on ex-
periments run in a real testbed.

2.1 Localization technologies
Radio Signals: Radio signal strength is a not reliable

way of identifying the robot relative position with respect to
tags deployed in an environment. In fact, it heavily depends
on factors like the relative orientation of the deployed motes,
their height from the floor, the material of the floor, and the
obstacles in the environment. Batalin et al. [1] create an
algorithm called Adaptive Delta Percent, which takes into
account the signal strength of the messages received from
the various tags while the robot is moving in order to guide
it toward one of them. A strong limitation of this approach
is that the authors consider an experiment to be successful
if the robot is able to reach a tag in the environment within
a distance of 3m, an accuracy which is unreasonable for our
scenario.

Infrared Signals: Several systems have been created
to define mobile robot localisation in indoor environments.
Some of them use ultrasonic and infrared technologies si-
multaneously [5], others radio frequency (RF) and infrared
together [7], and some just infrared techniques [8]. However,
infrared signals are not completely suitable for our scenario
because they have a particularly limited transmission range
(i.e. ∼20-30cm), thus the robot risks not being able to iden-
tify the deployed tag if the dimension of the cell is bigger
than the allowed range. Moreover, interference from the IR
component of other light sources could compromise the lo-
calisation process [6].

Ultrasonic Signals: Ultrasonic sensors [9] alone could
be used to avoid obstacles, but not to identify specific tags
in the environment due to the poor resolution of their read-
ings. Therefore, we argue that IR or sonar are not suitable
technologies for localizing sensors around an agent (avoid-
ing localisation errors), or for guiding the agent to one of
the sensors odometry errors.

Cameras and image processing: Since the previous
approaches are not suitable for our scenario, we decided to
explore sensor localisation using camera technologies. Sev-
eral approaches investigated this area adopting feature clus-
ter recognition [2]. In particular, some of them use image
processing techniques to recognize landmarks in the envi-
ronment [10]. However, most of the approaches are very
sophisticated, and cannot run in resource-constrained mo-
bile agents. A simple approach to localizing sensor nodes
using cameras is proposed in [3]. In the next subsection,
we summarize the error model derived by applying this ap-
proach in a real testbed.

2.2 Localization errors
In previous work [3], we proposed practical techniques

that allow agents to use their on-board camera to localize
sensors lying in their vicinity. In this section, we summarize
the localization errors that were observed when we applied
these techniques in a real testbed. Our system consisted of
three different platforms: 1) mobile agent: Surveyor SRV-1
robot connected with a Tmote Sky mote; 2) fixed sensor:
Tmote Sky mote with external bright LED and 3) gateway:
laptop connected with a Tmote Sky mote (via its USB inter-
face) used primarily for visualisation of experimental results.
The sensors were deployed on the ground in a grid topology
as shown in Figure 1, and the agent was placed in the middle
of the central cell. The size of each cell was set to 48 cm.

The main results regarding detection and localization er-
rors, are reported in [3], and summarized below: The per-
centage of undetected sensors, due to adverse light condi-
tions, is not negligible and amounts to 5.56% of all sensors.
Sensors that are correctly detected are then localized rel-
ative to the position of the mobile agent. Figure 1 shows
estimated (circles) and real (squares) positions of sensors
surrounding a given agent. In this case one can notice how,
even if the sensors were not always correctly localised, the
errors are always small enough, so that a sensor can not be
thought to be in another cell from its own.

Figure 1: Localisation of sensors around a mobile
agent.

3. THE ANTS ALGORITHM
In this section, we briefly describe the Ants algorithm pro-

posed by Svennebring and Koenig in [11]. This is a dis-
tributed algorithm that simulates a colony of ants leaving
pheromone traces as they move in their environment. Ini-
tially, all cells are marked with value 0 to denote that they
are unexplored. At each step, an agent reads the values of
the four cells around it and chooses to step onto the least
traversed cell (the one with the minimum value). Before
moving there, it updates the value of the current cell, for
example by incrementing its value by one. The authors dis-
cuss a few other rules that could be used instead to mark a
cell and navigate to the next one, but they all exhibit similar
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performance in terms of exploration time. Hence, we select
the above variant of the Ants algorithm (move to the least
visited cell) as a basis for comparison. The authors provide a
proof that the agents will eventually cover the entire terrain
(provided that it is not disconnected by wall cells).

Figure 2: Impact of a small error.

The first advantage of the algorithm is its simplicity: agents
do not require memory or radio communication, but only
one-cell lookahead. Since they are easy to build, many of
them can be used to shorten the coverage process. Secondly,
there is no map stored inside the agents: if one of them is
relocated (accidentally or on purpose) it will not even realise
it and it will continue to do its work as if nothing happened.
This means that the whole system is flexible and fault tol-
erant, and the area can be covered even if some markings or
agents are lost. At the sensor of each cell, we only need to
store an integer counting the number of times that agents
have visited the cell. When the number of times exceeds a
threshold, the counter is reset to 0.

The main limitation of the Ants algorithm is that agents
do not know when the exploration is terminated, and they
continue the exploration phase until they run out of energy.
Thus, this approach is not suitable in an emergency scenario,
in which the primary consideration is to cover the overall
area as soon as possible, and be notified immediately after
the task is completed. A further drawback of the algorithm
is the limited collaboration among agents. For example,
in scenarios with many rooms most of the agents tend to
sweep the first few rooms repeatedly, while only a few of
them venture to explore new areas.

4. EVALUATION OF ANTS
In this section we illustrate how localization errors impact

the behavior of the Ants algorithm and evaluate the algo-
rithm’s performance, with and without errors, in a variety of
scenarios. In Section 2, we summarized two types of local-
ization errors reported in previous work [3]: 1) Agents tend
to introduce small errors in the locations of sensors they
identify in their vicinity; these errors are not big enough
to impact the behavior of Ants. The reason is that agents
see sensors in slightly different locations, but in the correct
cells where sensors are actually placed. 2) Agents sometimes
completely fail to identify some of the sensors in their vicin-
ity - this type of localization error is referred to as sensor
detection error. Although the percentage of missed sensors
is reported to be low (5.56%), it significantly affects the per-
formance of Ants. This is illustrated via an example, and
quantitatively measured with simulation experiments.

Figure 2 shows the impact of a sensor detection error. In
the absence of errors, the agent at the center of the area

Figure 3: Example of area used during the simula-
tions.

would choose to explore the cell immediately north of it,
by choosing path A. But if it wrongly believes that the cell
north of it is not occupied by a sensor and thus is an obstacle
or a wall, it will choose to explore first the cell on its left,
by choosing path B. This error will bring the agent away
from the main front of exploration, causing it to follow a
long path of already explored cells, before it can get back to
exploring new cells. Note that path B, which is the effect of
one detection error, is seven times longer than the regular
path A that would be followed in the absence of errors.

Our next step is to quantify the impact of sensor detection
errors on the performance of Ants in a variety of scenarios.
To this end, we simulated the Ants algorithm with and with-
out errors and ran a number of simulations varying the num-
ber of agents, the size of the area and the number of rooms.
The simulations were performed on automatically generated
environments representing office-like scenarios (see Figure 3
for an example) with a default area size of 30x30 cells and
4x4 rooms in them. The positions of doors and walls were
changed randomly during the experiments, while the default
number of agents was 20. For each experiment, we computed
the total time necessary to explore the whole area (every cell
was traversed at least once by one of the agents). Each point
of the graph is the average time of 100 different runs, and is
plotted with the corresponding standard deviation bar.

Figure 4 shows the performance of Ants with and without
localization errors as we increase the number of agents. Note
that with one agent, sensor detection errors actually double
the exploration time. Increasing the number of agents helps
in reducing the negative effect of these errors, but even with
the maximum number of agents the difference remains no-
ticeable. These findings show that simplifying assumptions
about the ability of agents to perfectly detect sensors in their
vicinity lead to results that are very different from reality.

Figure 5 shows the performance of Ants with and without
sensor detection errors as we increase the size of the area.
Observe that the negative impact of these errors becomes
more pronounced in larger areas. We believe that this is due
to the fact that in large areas, a sensor detection error can
lead agents to take much long detour paths before returning
to the exploration front.

Figure 6 shows the impact of sensor detection errors as
we increase the number of rooms, whilst keeping the size of
the area constant. Observe that the impact of these errors
decreases as we increase the number of rooms. This is due to
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Figure 4: Effect of changing the number of agents.

Figure 5: Effect of changing the size of the area.

the fact that with more rooms, accessible areas of the map
are narrower, agents are more constrained in their move-
ments, and have smaller chances of following long detour
paths as a result of a sensor detection error.

5. CONCLUSIONS
In this paper, we studied the impact of localization errors

on the performance of the Ants algorithm. We distinguished
two types of errors: i) inaccuracies in determining the exact
location of detected sensors wrt the agent’s current position,
and ii) complete failure to detect and localize sensons. We
showed that small errors in locating sensors are not criti-
cal, but completely failing to detect sensors can significantly
slow down the exploration process. The impact of failing
to detect sensors is more pronounced in scenarios where few
agents are used to explore large areas with few rooms.
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ABSTRACT
There is an intrinsic tension between sensor systems and multi-
agent systems that comes down to the trade-off between cost and
value:1 the agents want as much knowledge of their environment as
possible, while the sensors are rightly protective of their often very
limited resources that enable sensing and transmission. The archi-
tecture and implementation that we present here aims to provide
sufficient flexibility for the cohabitation of both classes—where
class is a relative term—of components through a policy-aware
framework that permits the construction of “sensors” at whatever
level of abstraction is regarded as appropriate by the designer. There
are many sensor architectures available, nevertheless we believe
there is some novelty in the approach we present here in terms of
systems engineering, deriving mainly from the principled design
of Agentscape upon which we are building, such that the notable
features are modularity—there is a high degree of separation of
concerns—extensibility—leading to relative ease of integration of
different sensor infrastructures—and scalability—as a result of the
distributed architecture that Agentscape provides. In addition, our
choice of RDF as the initial database format has positive practical
implications for the integration of supported sensor networks with
semantic processing mechanisms.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence—Mul-
tiagent systems

General Terms
Design, Management, Measurement

Keywords
multi-agent systems, sensor networks, middleware

1. INTRODUCTION
1Some readers may recall the criticism of Lisp programmers know-
ing the value of everything and the cost of nothing: the same might
be said of MAS.

Typical middleware systems for sensor networks assume that sen-
sors are homogeneous and have limited resources to consume. As
others have observed [2], this assumption seems more and more
misplaced. New types of sensors that use different technologies
appear all the time and combination and aggregation of data from
different sensors can be very useful.

Multi-Agent Systems (MAS) form one of the most promising con-
tributions to the sensor networks domain. The ability to reason
about their environment and use sensor data in a autonomous self-
aware manner makes the agents especially suitable for sensor based
applications. However, most of the current research in this area fo-
cuses either on agents embedded in sensors [1] or on more high-
level applications such as routing information between sensors or
sensor sensing strategies [5]—typically using some out-of-the-box
sensor middleware and building the agent-based application on top.

This paper proposes a new multi-layered semantics-ready sensor
architecture that addresses both issues. The main idea is to extend
a multi-agent platform, AgentScape, with generic services for ac-
cessing sensors and a generic database service for storing the sensor
data. Both services form part of the middleware and support multi-
ple sensors types and multiple database types, that are in turn freely
accessible to user agents. The architecture as a whole provides a
uniform agent-based sensor middleware to support a wide range of
sensor based research. In particular, it allows the programmer to fo-
cus on the detail programming of particular sensor types, but also
the high level programming of sensor based applications [8], in-
cluding the creation of virtual sensors, that synthesize signals from
arbitrary combinations of other (stored) sensor data. AgentScape’s
connection to web-services and thus grid computing forms an addi-
tional motivation for this work, enabling a single platform to span
the gamut of computing applications from sensor data-collection
through to the processing of large data-sets.

The remainder of this paper is organized as follows: the next sec-
tion introduces AgentScape, Section 3 describes the architecture
of the sensor support components and Section 4 outlines our ini-
tial demonstrator and application domains. The paper ends with a
discussion and conclusions.

2. AGENTSCAPE
The multi-agent platform AgentScape supports agents as autonomous
processes. A uniform middleware layer provides an agent run-time
that is available at numerous heterogeneous platforms.

Within AgentScape, agents are active entities that reside within
locations, and services are external software systems accessed by
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Figure 1: Conceptual model of AgentScape middleware

agents hosted by the AgentScape middleware (see Figure 1). Agents
in AgentScape can communicate with other agents and can access
services. Agents may migrate from one location to another.

All agent operations are modulo authorization and security precau-
tions. For example, an agent may have to have the appropriate
credentials (ownership, authorization, access to resources, and so
on) to access a specific service, possibly for a limited time period.

The guiding principle in the design of the AgentScape middle-
ware has been to develop a minimal but sufficient open agent plat-
form that can be extended to incorporate new functionality or adopt
(new) standards into the platform. This design principle has re-
sulted in a multi-layered architecture with (i) a small middleware
kernel, called the AgentScape Operating System (AOS) kernel, that
implements basic mechanisms, (ii) high-level middleware services
that implement agent platform specific functionality and policies
(see Figure 2) and (iii) external directory services. This approach
simplified the design of the kernel and has made it less vulnerable
to errors or improper functioning. The current set of middleware
services includes agent servers, host managers, location managers,
a look-up service and a web service gateway.

AgentScape’s middleware services implement the agent specific
functionality. The current set of middleware services include:

• Location Manager: Every location has a Location Manager,
which runs on one of the hosts within that location. This
process manages that location’s hosts. Locations typically
are formed by hosts that belong to one single administrative
domain.

• Host Manager: Every host (typically, one physical machine)
runs a Host Manager. This process is responsible for manag-
ing the middleware components running on that host. It also
regulates and guards access to its resources.

• Agent Server: An Agent-Server provides a run-time envi-
ronment for agents. Each host can run one or more Agent-
Servers to host agents supporting e.g. different programming
languages.

• Web Service Gateway: The Web Service Gateway enables
agents to communicate with web services using the SOAP/
XML protocol [6].

• Look-up Server: This external (to the middleware) service
keeps track of the current location of agents. Strictly speak-
ing, this service is not part of the AgentScape middleware as
it can be run as a stand-alone application. Two versions exist,
a centralized, unsecured version and a decentralized secured
one.

Agent servers provide agent access to the AgentScape middleware
(see Figure 2). AgentScape supports multiple (simultaneous) code
bases through the provision of multiple agent servers, at least one
per code base. From a security perspective, it is important to note
that agent servers ‘sandbox’ agents.

The location manager is the coordinating entity in an AgentScape
location (managing one or more hosts in its location). Note that for
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fault tolerance a location manager may be replicated. Agent cre-
ation, migration, and all policy related issues relevant in the con-
text of a location, are managed or coordinated by the location man-
ager. The host manager manages and coordinates activities on a
host. The host manager acts as the local representative of the loca-
tion manager, but is also responsible for local (at the host) resource
access and management. The policies and mechanisms of the loca-
tion and host manager infrastructure are based on negotiation and
service level agreements [4].

3. SENSOR ARCHITECTURE
Scalability is the fundamental contribution that the Agentscape mid-
dleware has the potential to bring to sensor architectures. This may
not sound entirely novel, so some justification is due. As Section 2
has described, Agentscape is a middleware and one which has been
designed for modularity and extensibility, so that the designer can
choose how sophisticated to make the agents: they can be ordinary
Java programs communicating through the Agentscape API or (for
example) BDI agents implemented via the Jason library [9]. Other
agent architectures may be interfaced in a similar way. More im-
portant, for the purpose of this article, is the capacity for adding
interfaces—in effect stretching the middleware both upwards, to-
wards grid resources (not covered further here) and downwards,
towards mobile platforms (not covered further here) and sensors.

Our goals in extending Agentscape to work with sensors are:

1. To provide a generic sensor interface for agents to access, for
example, bluetooth, ZigBee, RFID

2. To provide a generic database interface for agents to store
sensor data, fine-tuned by sensor policies that control how
much and what data is stored.

3. To allow agents to use the sensor data in a uniform manner
and publish it or use it in other ways, for example in combi-
nation with web-services.

3.1 Sensor and Database Services

6



AgentScape’s modular design enables the straightforward addition
of new services. To support the construction of with sensor net-
works two services have been added: (i) a generic sensor service
and (ii) a database service. Together, these services provide a uni-
form interface for agents.

The sensor service acts as a proxy and its purpose is to provide
access to multiple sensor infrastructures, so that subsequently dif-
ferent types of physical sensors can be registered with the sensor
service. The sensor service provides a minimal uniform interface
to agents with the possibility of additional functionality on a per
sensor type basis. This makes it relatively straightforward to re-use
agents with different sensor types.

Similarly, the database service provides a uniform interface that
can access different database back-ends. The database service also
enforces the policies that agents can define per sensor type or, if
necessary, per sensor. Policies are further detailed in Section 3.2
below. Figure 2 shows how the sensor architecture extensions are
integrated into AgentScape.

3.2 Sensor Agents
Agents can access individual sensors through the sensor service.
After the agent provides the service with a URI of the sensor, an in-
terface belonging to the specific sensor type, including the generic
sensor interface, is returned. Thus, sensors are individually ac-
cessed on a per URI basis.

The agent can at this point chose to use the sensor data directly, for
example by publishing it on a web-site, or it can store the sensor
data in a database (see the example data-flows in Figure 2. If the
data is stored in a database, using the database service, an addi-
tional sensor policy is required. This policy states how much data
of one sensor instance is stored and/or for what time period. Such
policies might be specified, for example, as the most recent 10MB
of a stream, the last 100 samples, or all data generated over a week
by one sensor. In addition it is possible to store all data generated
by a sensor indefinitely, though, depending on the sensor type, this
can be a large amount of data. The specification of this policy is the
responsibility of the physical or logical sensor agent (see Figure 2),
while the implementation of the policy is the responsibility of the
relevant database.

In other circumstances, it may be desirable to collect samples over a
period of time, in which case it is possible to set up a direct connec-
tion between the sensor service and database service. This speeds-
up the data storing process by circumventing the agent, once the
connection between both services is established. At some later
time the agent can send a ‘stop’ message to the sensor service to
halt data-collection for a specific sensor.

3.3 Scalable Data Collection and Usage
A key attraction for extending AgentScape with sensor-network
middleware is the scalability that is an intrinsic aspect of Agent-
Scape. The database service makes this point especially clear. This
service acts as a front-end to various databases and typically, one
database service is instantiated per AgentScape location. However,
one AgentScape location can also run multiple databases, both by
type and instance. Agents can also access the database services that
run at other locations. In particular, this means that one database
can be used for multiple sensor networks, deployed around the
world. Or, conversely, each location may use its own database ser-
vice, possibly interfacing with multiple databases. Additionally,

data may be aggregated with some delay at one location, combin-
ing data from numerous (physical) locations.

3.4 Technical details
At this stage, entirely because of device availability, we have imple-
mented only a bluetooth interface, although the two devices chosen
have different characteristics, in that one generates a stream of data,
while the other supplies data on request, thus exercising two of the
standard modes in which sensors typically supply data. The two
physical devices in question are a Wii-mote and a GPS.

Likewise, at this point in development, we had to make a choice
for sensor data storage and have adopted the JRDF package[3] that
provides an API to a triple store, deriving features from Jena and
Sesame, amongst others. The primary motivations for this choice
are (i) the flexibility afforded by the RDF triple structure and (ii) the
fact that a triple store naturally accommodates semantic annotation.
In this way we believe we are putting minimal constraints on down-
stream consumers (agents) of the data collected.

Of course, it is to be expected that the platform can support the con-
nection of more than one sensor of the same kind, so for this reason
we identify each data source by an unique URI. Consequently, the
data that is stored in the triple store takes the form of:

# Wii-mote triples
(uri:wiimote1, hasWiiData, uri:data1)
(uri:data1, hasDate, <date>)
(uri:data1, hasButtonPressed, buttonX)
# GPS triples
(uri:gpsSensor1, hasGpsData, uri:data1)
(uri:data1, hasLatitude,<degrees+minutes+seconds>)

As illustrated in Figure 2, one dataflow passes from the sensor to
the generic sensor interface, through the Agentscape kernel and the
agent server to be delivered to the user-level sensor agent that is re-
sponsible for the particular sensor. A standard behaviour is then for
the sensor agent to store that data, via the Agentscape kernel and
the generic database interface to the triple store. In this way, raw
sensor data is captured in the short term for subsequent processing.
Clearly in the case of a source like the Wii-mote, the data needs
cleaning in order to identify a smooth gestural path (for example).
Whether this kind of task is the responsibility of the sensor agent
itself or is delegated to a downstream “smoothing” agent is an issue
for the programmer to decide: the mechanisms are available either
to augment the sensor agent and only store smoothed data, or al-
ternatively another user agent—see the virtual sensor data path in
Figure 2—may subscribe to the Wii-mote feed and then publish a
smoothed feed to a database—perhaps the one from which it ob-
tained the data or another, as desired.

It is often impractical to keep data for an unlimited period in the
triple store. If long-term preservation is required, then alternative
measures must be taken, but in many circumstances, and almost
certainly in the case of the two devices with which we are currently
working, data need only be retained in the short-term. This raises
the question of where that decision is made and where that decision
is implemented. We regard data retention as a policy issue as far
as the sensor agent is concerned: it is responsible for specifying for
how long (time period), or how much of (sample size) the data shall
be retained. But policy implementation is a matter for the storage
mechanism and so it is the particular database interface that carries
out the necessary deletion operation.
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3.5 Data semantics
A relational database would have been an obvious choice for data
storage and has indeed been selected by several of the published
sensor architectures. However, we felt that although it would be
straightforward to develop (or replicate) a schema to fit the pur-
pose of sensor data collection and querying, it would almost cer-
tainly compromise consumers of the data, whose intentions we can-
not foresee. Clearly such consumers could create new schema for
their needs in the same database or extract data and store it another
database structured for their purpose. None of these scenarios is
ruled out, but the one-size-fits-all aspect of RDF means that con-
sumer agents need do nothing more than query using languages
that are seeing increasing up-take (in this case SPARQL) and assert
new triples, perhaps defining their own predicates and new object
datatypes. Furthermore, by choosing this representation, arbitrary
semantic annotations are facilitated, as well as enabling interaction
with external semantic web tools.

4. USING SENSOR DATA
Using AgentScape as a uniform means to collect sensor data pro-
vides some clear advantages, as we have outlined above. A further
advantage is that (other) agents can directly access the collected
data. Where the previous section focused mostly on the underlying
middleware infrastructure, this section explores the possibilities for
agent-based usage of sensor data.

Agents can access the database service to obtain sensor data. This
sensor data can then be used directly in an agent-based application,
published via a web service, combined with other web-services to
form a new web based application [10], or combined with other
sensor data to realize outputs from a new virtual sensor.

This is in particular relevant for the ALIVE project [7]. ALIVE
aims to apply organizational theory to the design and implemen-
tation of software systems. The main focus of the project is to
create complex systems based on the composition of (existing) ser-
vices, through the addition of levels of abstraction. The advantage
of added levels of abstraction to the design process of systems is
two-fold: (i) it is often more intuitive to think in organizational
structures and interactions when designing complex interactions for
services, and the addition of the layers of abstraction allows for a
gradual (fluid) transition from the system as foreseen to the actual
implementation; (ii) when changes happen in the environment (for
example, specific services become unavailable) the added levels of
abstraction act as an explicit representation of the conceptual steps
made at design, thus giving additional information on why certain
interactions are as they are, that enables the system to dynamically
cope with the changes. A sensor network enabled AgentScape can
be regarded as a (simplified) version of such a system. In this view
the low-level sensor framework can be seen as a first abstraction
layer, on top of which reside the sensor and database services. The
agents form the next level of abstraction and the actual, possibly
web service based, application forms the top level in this view.

5. DISCUSSION AND CONCLUSIONS
This paper describes a multi-layered semantics-ready sensor archi-
tecture based on the AgentScape middleware. The main benefits of
the proposed system are (i) a generic sensor interface for agents to
access, (ii) a generic database interface through which agents may
store sensor data, (iii) means for agents to access and add sensor
data in a uniform manner and (iv) a scalable framework for access-
ing large-scale sensor networks, over different physical locations.

The system is currently in the implementation stage. Basic support
for two bluetooth type sensors: a GPS and a Nintendo Wii-mote
(www.nintendo.com) and one database back-end, a RDF store,
has been completed. In the short term we will be developing a Zig-
Bee interface for the purpose of interacting with energy monitoring
sensors and an IEEE802.15.4 interface to work with high frequency
structural monitoring sensors. RFID is in our medium term plans,
which in conjunction with the J2ME Agentscape deployment cur-
rently under development, will enable us to collect data via a mo-
bile device and either store locally or propagate to other platforms
over networks, when/where connectivity permits. On the storage
side we will be adding a conventional relational database to the
database service agent.
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ABSTRACT
In this paper, we describe an information agent that can autonomously
acquire sensor readings from environmental sensor networks (de-
ciding when and which sensor to acquire readings from at any
time). Moreover, this agent can perform a range of information
processing tasks including modelling the accuracy of the sensor
readings, predicting the value of missing sensor readings, and pre-
dicting how the monitored environmental parameters will evolve
into the future. We describe how our agent uses an iterative formu-
lation of a multi-output Gaussian process to build a probabilistic
model of the environmental parameters being measured by local
sensors, and the correlations and delays that exist between them.
We validate our approach using data collected from a network of
weather sensors located on the south coast of England.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence—Dis-
tributed Artificial Intelligence

General Terms
Algorithms, Experimentation

Keywords
information agent, sensor networks, Gaussian processes

1. INTRODUCTION
Sensor networks have recently generated a great deal of research
interest within the computer and physical sciences. Their use for
the scientific monitoring of remote and hostile environments is in-
creasingly common-place, and recent research has addressed how
the information from such sensor networks can be made available
to multiple users directly through standard web interfaces (see [4]
for a review of such environmental sensor networks). Such sys-
tems pose a number of novel challenges, not least the need for self-
describing data formats, and standard protocols such that sensors
can advertise their existence and capabilities to potential users of
the network.

However, more significantly for us, many of the information pro-
cessing tasks that would previously have been performed by the
owner or single user of an environmental sensor network (such as
detecting faulty sensors, fusing noisy measurements from several
sensors, and deciding how frequently readings should be taken) are
now delegated to the multiple different users of the system, all of
whom may have different goals and may be using sensor readings

for very different tasks. Furthermore, the open nature of the net-
work (in which additional sensors may be deployed at any time, and
existing sensors may be removed, repositioned or updated) means
that these users may have only limited knowledge of the precise
location, capabilities, reliability, and accuracy of each sensor.

Thus, there is a clear need for information agents that are capable
of autonomously performing the acquisition and processing of in-
formation from such sensor networks. Given this, in this paper, we
describe our work developing just such an agent. This agent uses
a novel iterative formulation of a multi-output Gaussian process
(described in more detail in [6]) to build a probabilistic model of
the environmental parameters being measured by local sensors, and
then uses this model to perform a number of information process-
ing tasks including: modelling the accuracy of the sensor readings,
predicting the value of missing sensor readings, predicting how the
monitored environmental parameters will evolve in the near future,
and performing active sampling by deciding when and which sen-
sor to acquire readings from. We use a network of weather sensors
on the south coast of England to validate this approach, and we
illustrate its effectiveness by benchmarking against the more con-
ventional single-output Gaussian processes that models each sensor
independently.

2. INFORMATION PROCESSING
As discussed above, we require that our information agent be able
to autonomously perform data acquisition and information process-
ing despite having only limited specific knowledge of each sensor
(e.g. their precise location, reliability, and accuracy). To this end,
we require that it explicitly represent:

1. The noise in the sensor readings, and hence, the uncertainty
in the environmental parameter being measured; sensor read-
ings will always include measurement noise, and thus there
will always be uncertainty in the agent’s world picture.

2. The correlations or delays that exist between sensor readings;
sensors that are close to one another, or in similar environ-
ments, will tend to make similar readings, while many phys-
ical processes involving moving fields (such as the move-
ment of weather fronts) will induce delays and correlations
between sensors.

We then require that the information agent use this explicit repre-
sentation in order to perform:

1. Efficient active sampling by selecting when to take a reading,
and which sensor to read from, such that the minimum num-
ber of sensor readings are used to maintain an agent’s world
uncertainty below a specified threshold (or minimising un-
certainty given a constrained number of sensor readings).
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Figure 1: Prediction and regression of tide height data for (a) independent and (b) multi-output Gaussian processes.

2. Regression and prediction of sensor readings; interpolating
between sensor readings to predict the value of missing sen-
sors (i.e. sensors that have failed or are unavailable through
network outages), and performing short term prediction of
sensor readings in order to support decision making.

More precisely, we consider a multivariate regression problem in
which we have m = 1 . . . M environmental parameters of interest
(such as air temperature, wind speed or direction specified at dif-
ferent sensor locations) represented by the space Y = R

M . Given
a set of N sensor readings, D = {(t1, y1), . . . , (tN ,yN)}, where
yi may be fully or partially specified (corresponding to observation
of all, or some subset of the environmental parameters), we attempt
to infer the value of y = {y1, . . . , yM} ∈Y at any time t.

3. GAUSSIAN PROCESSES
Gaussian processes (GPs) present a principled approach to address-
ing multivariate regression problems of the form described above
[9]. When using a GP, we assign a multivariate Gaussian prior
distribution over the outputs of the regression problem and then
produce analytic posterior distributions for outputs of interest, con-
ditional on whatever sensor readings have been collected. Cru-
cially, the posterior distributions are also Gaussian, with a predic-
tive mean, and a variance that explicitly represents uncertainty.

GP regression has a long history of use within geophysics and
geospatial statistics (where the process is known as kriging [2]),
but has only recently been applied within sensor networks. Exam-
ples here include the use of GPs to represent spatial correlations
between sensors in order that they may be positioned to maximise
mutual information [5], and the use of multi-variate Gaussians to
represent correlations between different sensors and sensor types
for energy efficient querying of a sensor network [3].

Our work differs from this earlier work in that we use a novel
iterative formalism of a multi-output GP to represent both temporal
correlations in readings from a single sensor, and correlations and
delays between multiple sensors. Space precludes a full description
of this algorithm (see [6] for the full details), however we describe
the intuition behind this algorithm here.

3.1 Covariance Functions
The covariance matrix of the GP informs it of how different outputs
are related to one another. To generate this matrix, we use covari-
ance functions. Fortunately, there exist a wide variety of functions
that can serve in this purpose [1], all of which can then be combined
and modified in a multitude of ways. This gives us a great deal of
flexibility in our modelling of functions, and covariance functions
can be found to model periodicity, delay, noise and long-term drifts.

More specifically, here we represent the covariance matrix by the
Hadamard product of a covariance function over time alone, and
a covariance function over environmental parameter labels alone,
such that:

K([m, t], [m′, t′]) = C(m, m′)K(t − dm, t′ − dm′) (1)

where d represent delays between environmental parameters. As-
suming no prior knowledge of what the correlations over environ-
mental parameters are, we use the completely general spherical pa-
rameterisation, s, such that:

C(m,m′) = diag(l)sT
s diag(l) (2)

where l gives represents an intuitive length scale for each environ-
mental parameter, and sT s is the correlation matrix [7]. Similarly,
we can represent correlations over time with a wide variety of co-
variance functions, incorporating as much domain knowledge as
we have. However, in general, we find that the additive combina-
tion of a periodic term and a disturbance term performs well on a
wide range of data sets, and we represent both using the standard
Matérn class (with ν = 5/2), given by:

K(t, t′) = h2

(

1 +
√

5r +
5r2

3

)

exp
(

−
√

5r
)

(3)

where r =
∣

∣

∣

t−t
′

w

∣

∣

∣
e for non-periodic terms, and r = sin π

∣

∣

∣

t−t
′

w

∣

∣

∣

for periodic ones.

3.2 Marginalisation
In order to use the GP for regression or prediction, the correlation
hyperparameters (i.e. l, s and d), along with others such as the pe-
riods and amplitudes of each covariance term (i.e. h and w), must
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Figure 2: Comparison of active sampling of tide data using (a) independent and (b) multi-output Gaussian processes.

be marginalised from our model. To each we assign an independent
Gaussian or log Gaussian prior distribution (if the hyperparameter
is strictly positive). We then use Bayesian Monte Carlo to numer-
ically resolve the non-analytic marginalisation integrals [8]. This
essentially involves the assignation of another GP to the likelihood
of the data as a function of the covariance hyperparameters. We
evaluate predictions for a set of sample hyperparameters, and use
this second GP to infer what predictions for other possible hyper-
parameters, producing a posterior for our marginalised predictions.

3.3 Iterative Formulation
Gaussian processes have traditionally been used largely for regres-
sion, producing predictions for a fixed set of data. However, in our
setting both the environmental parameters of interest and the data
available are constantly updated. In order to manage this situation,
we employ a novel iterative formulation of a GP, which allows us
to efficiently update our predictions upon the receipt of new data.

Similarly, we allow the GP to discard old data once it judges it
sufficiently uninformative, hence reducing memory usage and com-
putational requirements. In this, it is guided by the uncertainty in
its predictions; the GP will retain only as much data as necessary
to achieve a pre-specified degree of accuracy (a principled form of
‘windowing’). These features give us an efficient on-line algorithm.

3.4 Active Data Selection
Our algorithm is also able to perform active data selection, whereby
the GP decides for itself which observations it should take. In this,
we use once again the uncertainty in our predictions as a measure
of utility. For a GP, this uncertainty increases monotonically in the
absence of new data – once it grows to our pre-specified thresh-
old, our algorithm takes a sample in order to reduce it once again.
The algorithm can also decide which observation to make at this

time, by determining which sensor will allow it the longest period
of grace until it would be forced to observe again. Hence we main-
tain our uncertainty below a specified threshold, while taking as
few observations as possible.

4. ILLUSTRATIVE EVALUATION
To illustrate the effectiveness of our GP formalism, we have used
a network of tide and weather sensors located on the south coast
of England (see www.bramblemet.co.uk). Such weather sen-
sors are attractive since they exhibit challenging correlations and
delays, and they are subject to network outages that generate real
instances of missing sensor readings on which we can evaluate our
information agent. We compare our multi-output GP formalism
against conventional independent GPs in which each environmen-
tal parameter is modeled separately (i.e. correlations between these
parameters are ignored). We present results using tide height mea-
surements since this data set demonstrates the ability of the GP
to learn and predict periodic behaviour, and more importantly, be-
cause this particular data set contains an interesting period in which
extreme weather conditions cause both an unexpectedly low tide
and a failure of the wireless connection between the sensor and the
shore that prevents our information agent acquiring sensor readings
(see [6] for more results using air temperature measurements).

4.1 Regression and Prediction
Figure 1 illustrates the efficacy of our GP formalism in this set-
ting. We plot the sensor readings acquired by the information agent
(shown as markers), the mean and standard deviation of the GP pre-
diction (shown as a solid line with the standard deviation shown as
shading), and the true fine-grained sensor readings (shown as bold)
that were downloaded directly from the sensor (rather than through
the web site) after the event. Note that we present just two sensors
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Figure 3: Live implementation of our information agent avail-
able at www.aladdinproject.org/situation/.

for reasons of space, but we use readings from all four sensors in
order to perform regression.

We consider the performance of our multi-output GP formalism
when the Bramblemet sensor drops out at t = 1.45 days. In this
case, note that the independent GP predictions quite reasonably
predicts that the tide will continue to do more or less what it has
seen before, and predicts the same periodicity it has observed in
the past. However, the GP can achieve better results if it is allowed
to benefit from the knowledge of the other sensor’s readings during
this interval of missing data. Thus, in the case of the multi-output
GP, by t = 1.45 days, the GP has successfully determined that the
sensors are all very strongly correlated. Hence, when it sees an un-
expected low tide in the Chimet sensor data (caused by the strong
Northerly wind), these correlations lead it to infer a similarly low
tide in the Bramblemet reading, and produces significantly more
accurate predictions. Exactly the same effect is seen in the later
predictions of the Chimet tide height, where the multi-output GP
predictions use observations from the other sensors to better pre-
dict the high tide height at t = 2.45 days.

4.2 Active Data Selection
We now demonstrate our active data selection algorithm. Using
the fine-grained data (downloaded directly from the sensors), we
can simulate how our GP would have chosen its observations had
it been in control. Results from the active selection of observations
from all the four tide sensors, are displayed in figure 2. Again, these
plots depict dynamic choices; at time t, the GP must decide when
next to observe, and from which sensor, given knowledge only of
the observations recorded prior to t, in an attempt to maintain the
uncertainty in tide height below 10cm.

Consider first the independent case shown in figure 2(a), in which
separate GPs are used to represent each sensor. Note that a large
number of observations are taken initially as the dynamics of the
sensor readings are learnt, and then later, a low but constant rate of
observation is chosen. In contrast, for the independent case shown
in figure 2(b), the GP is allowed to explicitly represent correlations
and delays between the sensors. This data set is notable for the
tide heights at the Chimet and Cambermet sensors, which due to
tidal flows in the area are slightly delayed relative to the Soton-
met and Bramblemet sensors. Note that after an initial learning
phase as the dynamics, correlations, and delays are inferred, the
GP chooses to sample predominantly from the undelayed Sotonmet
and Bramblemet sensors1. Despite no observations at all subse-
quently being made of the Chimet sensor, the resulting predictions
1The dynamics of the tide height at the Sotonmet sensor are more
complex than the other sensors due to the existence of a ‘young

remain remarkably accurate. Consequently only 66 observations
are required to keep the uncertainty below the specified tolerance,
whereas 127 observations were required in the independent case.

5. CONCLUSIONS
In this paper we have demonstrated the use of a novel iterative for-
malism of a multi-output Gaussian process to perform information
processing on sensor readings acquired from a sensor network, and
shown that with minimal domain knowledge we can perform ef-
fective prediction, regression, and active sampling. A live imple-
mentation of our information agent is currently available online at
www.aladdinproject.org/situation/. This agent uses
the Gaussian process to predict several measured environmental pa-
rameters and makes these predictions available through an interac-
tive Web-based map (see figure 3).
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ABSTRACT
In many military and civilian applications, Unmanned Aerial
Vehicles (UAVs) provide an indispensable platform for gath-
ering information about the situation on the ground. In
particular, they have the potential to revolutionize the way
in which information is collected, fused and disseminated.
These advantages are greatly enhanced if swarms of multi-
ple UAVs are used, since this enables the collection of data
from multiple vantage points using multiple sensors. How-
ever, enhancements to overall operational performance can
be realised only if the platforms have a high degree of au-
tonomy, which is achieved through machine intelligence.

With this in mind, we report on our recently launched project,
SUAAVE (Sensing, Unmanned, Autonomous, Aerial VEhi-
cles), which seeks to develop and evaluate a fully automated
sensing platform consisting of multiple UAVs. To achieve
this goal, we will take a multiply disciplinary approach, fo-
cusing on the complex dependencies that exist between tasks
such as data fusion, ad-hoc wireless networking, and multi-
agent co-ordination. In this position paper, we highlight the
related work in this area and outline our agenda for future
work.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics—Autonomous ve-
hicles

General Terms
Theory, Algorithms, Experimentation

Keywords
UAV, UAV swarms, sensor networks, decentralized control

1. INTRODUCTION
In many military and civilian applications, an aerial view
is invaluable to gain information about the situation on the
ground [13]. Such applications include search and rescue,
perimeter surveillance, crowd control and situation aware-
ness in natural disasters. In manned flight, such scenar-
ios place a heavy burden on pilots, requiring long hours of

monotonous flight at high-levels of concentration. Moreover,
in combat situations, there may be a significant risk to the
pilot if a mission must be carried out over hostile territory.

Increasingly, however, advances in airframe design and con-
trol technology mean that using Unmanned Aerial Vehicles
(UAVs) for such tasks is becoming a viable option. Small, in-
expensive aircraft are now commercially available, and using
GPS technology, exhibit a high degree of stability in the air
(see Section 6). Existing applications of these systems typ-
ically involve small numbers of UAVs working in isolation,
where each one is under the constant control of a single user
on the ground. Thus, operating current UAVs can still re-
quire a significant number of man hours, and there is limited
technological support to co-ordinate the actions of multiple
UAVs effectively.

For this reason, there are many potential benefits to be
gained by increased autonomy and co-ordination in the con-
trol of multiple UAVs. In particular, we identify the follow-
ing three as significant.

1. Fully autonomous UAVs require less human interven-
tion, and therefore can increase the number of UAVs
that can be operated by a single user.

2. By working together, autonomous UAVs can split up
to reduce redundancy when performing a search task,
and so can cover a large area efficiently with minimal
resources.

3. Multiple UAVs can increase accuracy in sensing tasks
by fusing information gathered from different view-
points.

Realizing this potential is the aim behind our recently launched
project, SUAAVE (Sensing, Unmanned, Autonomous, Aerial,
VEhicles). The SUAAVE consortium is an interdisciplinary
group in the fields of computer science and engineering. Its
focus is to investigate and elucidate the principles underly-
ing the control of clouds of networked resource-limited UAVs
acting as sensor platforms, that are targeted towards achiev-
ing a global objective in an efficient manner. We consider
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a number of application scenarios, for example, disaster re-
lief after an earthquake, flood prediction and monitoring,
homeland security and surveillance, and search and rescue.

Although extensive research relevant to this vision has been
done before (See [13] for a full review), published works suf-
fer from at least one of three limitations:

1. they focus on a small part of the sensing problem in
isolation, such as image processing [6] or communica-
tion [9];

2. they are developed and evaluated in simulated environ-
ments [10], which make simplifying assumptions that
may not hold in real-life applications; or

3. they are not directly applicable to UAV control, be-
cause they are aimed either at stationary or ground
based mobile sensor networks [8].

In SUAAVE, our intention is to address these limitations
by adopting a practical engineering approach, building fully
integrated hardware and software systems, which we shall
evaluate in a real environment. In this way, we not only
intend to make novel contributions to individual areas of
research, but shall investigate the complex interplay that
exists between tasks such as data fusion, wireless commu-
nication, and distributed search strategies. Moreover, by
evaluating our solutions as fully deployed systems, we aim
to establish results on performance characteristics that are
directly applicable to real world scenarios.

In the following sections, we shall outline in more detail the
key issues we wish to investigate with an emphasis on the
interplay between the problems and solutions they entail.
More specifically, in the remainder of this paper, we high-
light our proposed research in the areas of wireless ad-hoc
networking (Section 2), distributed data fusion (Section 3),
decentralized optimization (Section 4) and safety manage-
ment (Section 5). In Section 6, we discuss the hardware
platform that we shall use to conduct experiments. Finally,
we conclude in Section 7, by summarising the main research
issues that we aim to address in SUAAVE, and how we pro-
pose to do so.

2. COMMUNICATION
In most communication networks, routing and transmission
protocols are loosely coupled with the applications that they
support. This approach makes sense in networks, such as the
Internet, that must support a wide variety of applications,
and so should not be optimized to suit one purpose at the ex-
pense of another. However, in mobile sensor networks, there
is generally a case for tighter integration between routing
and application processes. There are two reasons for this:

1. Sensor networks are generally designed with a specific
set of tasks in mind. We therefore have more infor-
mation that can be used to optimize communication
algorithms to suit the application.

2. Radio Frequency (RF) characteristics can be greatly
affected by the current position of a UAV relative to

other UAVs and features on the ground. This can lead
to trade-offs between moving UAVs into a good loca-
tion for sensing, and moving into a good location for
communication.

Together, these two features mean that there is both the
need and opportunity to develop tightly coupled sensing
and communication protocols, which can optimize the over-
all performance of the sensor network by taking into account
the dependencies between communication and sensing tasks.

In SUAAVE, we plan to achieve this by following three lines
of investigation. First, using the hardware platform outlined
in Section 6, we shall collect data about how factors such as
atmospheric conditions, and UAV position relative to the
ground affect RF characteristics. Although some relevant
data about RF characteristics does exist [9, 4], the num-
ber of variables involved mean that results do not always
generalize well, and so there is no substitute for perform-
ing platform specific observations. Second, using this data,
we shall develop probability models of RF characteristics as
a function of space and time. These will be used inform
optimization algorithms when deciding how a UAV should
behave to maximise its overall performance. Third, we shall
develop both unicast and multicast routing protocols, which
will take into account the needs and behaviour of high-level
processes to optimize communication performance.

3. DISTRIBUTED DATA FUSION
Although UAVs provide several advantages for gathering in-
formation about various phenomena, the nature of this plat-
form poses unique challenges for data analysis and fusion.
In particular, although it is in the nature of all sensors to
generate noisy output, by mounting them on a moving ob-
ject whose position is difficult to determine with accuracy
introduces a extra level of uncertainty. For example, even
small changes to the pitch of the craft can make significant
changes to the angle that it makes with the horizon, thus
making it difficult to associate images with specific regions
on the ground.

Another important issue is the location where data fusion
takes place. The conventional approach is to use centralised
data fusion — information is sent to a central site to be
fused. However, such architectures require significant band-
width and are potentially fragile: a failure in the link with
the central site means that no fusion can take place. An al-
ternative approach is to use distributed data fusion (DDF)
[1], in which fusion occurs in nodes throughout the network.
Such networks can be inherently robust (failures lead to
gradual degradation), scalable (nodes need only know local
network topology) and modular (new nodes can be intro-
duced to enhance sensing capabilities). However, distributed
fusion introduces a number of challenges. One of the most
significant problems is double counting [5]: the system over-
estimates the amount of information available, leading to
implausibly accurate estimates.

In the SUAAVE project, we shall investigate DDF algo-
rithms that overcome these issues, and can also optimize
the location where data is fused and processed based on fac-
tors such as the available processing capacity of each node,
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and their proximity to the data. We will then implement
field versions of these algorithms that take into account po-
sitional information and RF characteristics, as discussed in
the previous section.

4. MULTI-OBJECTIVE DECENTRALIZED
OPTIMIZATION

For most non-trivial applications, a UAV’s actions must be
guided by multiple objectives and are subject to multiple
constraints. For example, in a search and rescue scenario,
the optimal action for a UAV is not necessarily to cover the
search area using the shortest possible path. Instead, it may
also need to avoid obstacles, return to base to refuel, or move
to a different position to acquire a reliable communication
link with a ground control unit or other UAVs.

The complexity of this issue is further increased when UAVs
act as part of a collective to achieve a common set of goals.
In this case, actions of multiple UAVs must be co-ordinated
to achieve the best results. For instance, by flying in a spe-
cific formation, UAVs may cover a search area more effi-
ciently, achieve more reliable communication links or min-
imise the chance of collision. More significantly, by taking
into account all of these aspects in parallel the collective
may be able to achieve the best trade-off between all three.

In such cases, it may be possible to achieve trade-offs in a
centralised way be sending all information to be processed
at a single location (for example, a control station on the
ground). However, as with data fusion, adopting a cen-
tralised approach can incur an unacceptable communication
overhead and leave the system vulnerable if the single point
of control fails or becomes unavailable. For this reason, we
plan to investigate the use of decentralized control and op-
timization algorithms for co-ordinating multiple UAVs.

To achieve this, we plan to exploit and build on existing
work on decentralized co-ordination in multi-agent systems.
In particular, agent co-ordination problems can often be
framed as Distributed Constraint Optimization Problems
(DCOPs) for which a number of optimal solutions exist [11]
[12]. However, existing optimal algorithms for DCOPs scale
poorly as the number of agents in a system increases and
are prone to failure if message between agents are lost or
the topology of the network chances. However, more robust
results have been shown using the max-sum algorithm [7].
Although this is not guaranteed to produce optimal solutions
in all cases, it has demonstrated near optimal performance
empirically in a wide variety of cases, scales well in large sys-
tems containing many agents, and is robust against message
loss and failure of individual agents.

Although these approaches are promising, one of their draw
backs is that they do not explicitly deal with cases in which
agents must co-ordinate their future actions in an uncertain
environment. For example, during search and surveillance,
UAVs may need to plan their future joint actions based on
current information, and then re-plan should an unexpected
obstacle turn up in their flight path. Problems such as these
are addressed by multi-agent reinforcement learning algo-
rithms. However, existing approaches can suffer from limi-
tations, such as lack of convergence guarantees. In our work,
we shall attempt to address these issues by looking at how

Figure 1: Ascending Technologies Hummingbird
UAV

DCOP algorithms can be used to share information between
UAVs to achieve more effective results.

5. SAFETY AND COLLISION AVOIDANCE
As discussed in previous sections, we aim to develop sophisti-
cated autonomous UAVs that can take into account multiple
objectives when deliberating over their actions. However, in-
creased autonomy and sophistication comes with increased
risk. This is particularly true if UAVs are to operate in
or near to populated areas where there is the potential for
collision resulting in personal injury of damage to property,
or legal issues regarding flight in prohibited areas. Thus,
to ensure public acceptance of such technology, it is essen-
tial that we have appropriate safety mechanisms in place
to minimise both the probability of a malfunction occurring
and the damage caused if one does occur.

For this reason, we shall develop a safety protocol and as-
sociated architecture that will fulfill three roles. First, it
will provide real time information and predictive models to
inform high-level decision processes about the current and
future state of critical resources. Most significantly, this will
include information about a UAV’s current energy supply
and how this will change in response to future actions. Sec-
ond, it will verify that each planned action does not move
the UAV into a position of adverse risk, such as into the
flight plan of other UAVs, or close to known obstacles or
no flight zones. Third, it will continually monitor the cur-
rent state of the UAV to detect malfunctions if and when
they occur. If a fault is detected the UAV will attempt a
set pre-programmed behaviours to recover from the failure
if possible (for example, by invoking collision avoidance al-
gorithms [2, 3]), or abort the mission in the safest possible
way.

6. IMPLEMENTATION AND EXPERIMENTS
Although software simulation can be a useful tool for ex-
ploring the properties of proposed algorithms, only so much
can be learnt without applying a system to its intended pur-
pose. This is particularly true for UAV applications, since
simplifying assumptions are often made during algorithm or
simulation development, which may give an inaccurate por-
trayal of how a system will perform in a real environment.

For this reason, we are adopting a practical approach on the
SUAAVE project, developing fully integrated systems de-
ployed on real UAVs. Initially, this will be based around As-
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cending Technologies1 Hummingbird platform, which con-
sists of a four rotor airframe with on-board battery, GPS
receiver, and wireless communication capabilities (see Fig-
ure 1).

At an approximate diameter of 53cm, this device is relatively
small and inexpensive and can carry a payload of up to 200
grams. Out-of-the-box, it is capable of maintaining its po-
sition using its GPS receiver; and accepting instructions by
remote control, or from on board software developed using
the vendor’s APIs. In each case, commands can either be
issued in terms of low level maneuver (for example, by vary-
ing thrust to alter the yaw, pitch or roll or the aircraft) or
as instructions to visit GPS way-points.

From a research perspective, these features give us two ad-
vantages. First, the available APIs and potential payload al-
low us to add our own devices, such as additional processors
and sensors, to interface with the main system to support
additional functionality. Second, since most low level control
issues are taken care of by the platform, we can concentrate
on adding high-level functionality, such as co-ordination and
data fusion algorithms.

In our initial trails, we plan to use four of these UAVs with
on board cameras, to gather realistic data for image process-
ing tasks and radio transmission characterization. This will
be used to carry out initial experiments and analysis in the
lab, which will inform the development of our communica-
tion protocols and high-level control algorithms. Finally, we
aim to evaluate a complete system consisting of up to ten
UAVs, including high-level co-ordination, safety and sensing
mechanisms.

7. CONCLUSIONS
In many applications, an aerial view is indispensable for im-
proving situation awareness about various phenomena on
the ground. Until recently, this could only be achieved by
manned flight, which is expensive and places a high burden
on the pilot, with long hours of potentially dangerous activ-
ity at high levels of concentration. UAVs have the potential
to elevate these problems, but their maximum benefit can
only be achieved through a high level of automation and
co-ordination between multiple UAVs.

In SUAAVE, we aim to achieve this vision by developing
fully integrated hardware and software systems. We shall in-
vestigate the complex dependencies that exist between tasks
such as ad-hoc wireless communication, data fusion and
multi-agent co-ordination; and so produce mechanisms that
optimize overall system performance.

Moreover, to establish performance results that are directly
applicable to the real world, we shall evaluate our solutions
using field trails of multiple UAVs operating together to
achieve a common set of goals.
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ABSTRACT
Buoyed by the recent successes in the area of distributed constraint
optimization problems (DCOPs), this paper addresses challenges
faced when applying DCOPs to real-world domains. This expedi-
tion reveals that three fundamental challenges must be addressed
for a large class of real-world domains, requiring design of novel
DCOP algorithms. First, in many domains, agents do not know
the initial payoff matrix and must explore the environment to deter-
mine rewards associated with different variable settings. Second,
the agents have a goal to maximize the total accumulated reward
rather than the instantaneous reward at the end of the run. Third,
limited task-time horizons disallow agents the luxury of full ex-
ploration of their environment and payoff matrices. We propose
and implement a set of novel algorithms and provide positive ex-
perimental results. At their core, these new algorithms interweave
decision-theoretic approaches to explore the environment within
the limited time horizon with the DCOP-mandated coordination.
In addition to simulation results, we implement these algorithms on
robots, deploying DCOPs on a distributed mobile sensor network –
illustrating the benefits of DCOPs in the real world.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence

General Terms
DCOPs, Unknown Reward Function, Balanced Exploration

Keywords
DCOP, Multiagent Exploration and Exploitation, Mobile Sensor
Networks

1. INTRODUCTION
Distributed constraint optimization problems (DCOPs) [10, 12, 20]
are a class of problems where cooperative agents must coordinate
to maximize some reward. Examples include multiagent plan coor-
dination [4], sensor networks [8, 20], meeting scheduling [16] and
RoboCup soccer [18]. A team of agents coordinate their individual

actions within a DCOP to achieve joint goals, but the utility of an
agent’s action depends on the action choices of a subset of the other
agents; DCOPs are thus ideally suited when agents must coordi-
nate via local interactions. Significant progress has been achieved
in design and analysis of globally optimal DCOPs algorithms (c.f.,
Adopt [12], DPOP [16], and OptAPO [10]). However, given that
DCOPs are NP-Hard [12], significant communication and compu-
tation overheads result in attempting to solve them optimally, which
motivates the need for locally optimal algorithms. Such locally op-
timal algorithms that have been shown to scale to much larger tasks
in practice [20, 15, 19].

Given their recent progress, DCOPs are now ideally poised to tackle
real-world applications. Motivated by this objective, we target a
large class of real-world distributed sensor network applications,
that include tasks such as AUVs (Autonomous Underwater Ve-
hicles) [21] used for surveying underwater structures, UAVs (un-
manned air vehicles) to measure environmental phenomena [2],
and small mobile robots that establish a communication network.
Our study reveals that three novel challenges must be addressed
in applying DCOP algorithms to these domains. First, agents in
these domains do not know the initial payoff matrix and must ex-
plore the environment to determine rewards associated with differ-
ent variable settings. All payoffs are dependent on agents’ joint
actions, requiring them to coordinate in their exploration. Second,
the agents must maximize the total accumulated reward rather than
the instantaneous reward at the end of the run. Third, agents face
a limited task-time horizon, requiring efficient exploration. These
challenges disallow direct application of current DCOP algorithms
which implicitly assume that all agents have knowledge of the full
payoff matrix. Furthermore, agents cannot fully explore their en-
vironment to learn the full payoff matrices and then run a globally
optimal algorithm. The time horizon is much too short for such a
sequential phase of exploration followed by optimization; indeed,
interleaving these phases may improve accumulated reward during
exploration.

To address these challenges, this paper proposes novel DCOP al-
gorithms based on two key ideas. First, as mentioned above, these
DCOP algorithms must seamlessly interleave distributed exploration
and distributed exploitation phases. Second, DCOP algorithms
may need a range of exploration strategies in their arsenal, each
potentially useful in a different setting. For example, in a one-step
strategy, an agent deciding to explore examines one unknown pay-
off matrix value at a time and triggers optimization, enabling fine-
grained interleaving of exploration and exploitation. In contrast,
a multi-step exploration strategy allows a single agent to scout out
multiple payoff matrix values and then select the best observed dur-
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ing the exploration phase. Here a decision-theoretic approach uses
knowledge of reward distribution to compute the optimal number
of unknown values to explore and the expected reward gain. How-
ever, this approach forces a coarser-grained integration where a sin-
gle agent in a neighborhood of agents explores for multiple steps
before triggering distributed optimization. We also introduce a hy-
brid approach which attempts to combine the strengths of the two
strategies. In particular, agents compute their expected gain as in
a multi-step exploration strategy, but trigger optimization at each
time step, enabling fine-grained interleaving of exploration and ex-
ploitation. Using these key ideas, we provide a family of five novel
DCOP algorithms.

Given this diverse family of algorithms, it is crucial to understand
if particular algorithms dominate others in key circumstances. Our
empirical tests are based on a novel, concrete, real-world domain
in which agents must maximize an accumulated signal strength in
a mobile sensor network within a set time limit. Our algorithms en-
able agents to reason about movement policies in order to improve
their signal strength over time and increase the reliability of the
network. To perform such optimization efficiently, we model this
problem as a DCOP with the novel extensions discussed above.

Our new DCOP algorithms are implemented not only on simu-
lated agents, but on physical robots as well. Apart from early
work on distributed constraint reasoning by Lesser et al. [8], this
is the first application of DCOPs on physical robots with a demon-
strated improvement in performance in a real world problem. Fur-
thermore, the simulations allow us to gather experimental results
quickly while changing parameters of the task (such as the number
of robots in the network and length of the experiments) to further
evaluate our algorithms.

Key results from our experiments include: (i) algorithms based on
the hybrid strategy dominate in most circumstances and (ii) one-
step strategies are sufficient when networks are fully connected or
even superior when few optimization movements are allowed. Fur-
thermore, we compare to an algorithm which is given the DCOP
reward matrix at the beginning of each experiment and find that
our algorithms are able to achieve signal improvements of up to
80% of this “omniscient” algorithm.

These results combine to show that DCOP algorithms can be mod-
ified to work in environments where: on-line reward is critical, re-
wards are initially unknown, the algorithms are fully distributed,
and using physical hardware. Combined, these results strongly sug-
gest that DCOPs are a powerful and appropriate solution technique
for complex multi-agent problems in the real world.

2. BACKGROUND
This section of the paper first defines the mobile sensor network
optimization task. Section 2.2 discusses the DCOP formulation and
why it is useful for this problem domain.

2.1 Problem Domain
This paper focuses on tasks in which agents do not know their ini-
tial rewards, there is a fixed time horizon, and agents are evalu-
ated during optimization (i.e., the on-line reward is critical). One
such problem with these characteristics is a wireless sensor net-
work (c.f., Akyildiz et al. [1]), where a common goal is to monitor
a region of the world and report when interesting objects or events
are perceived. Many multiagent problems share these characters;

problems in this class include aerial surveillance [2] and underwa-
ter agent coordination [21].

Sensors in this paper are assumed to have movement abilities. Rather
than framing the problem as an ad hoc mobile wireless network, we
take the topology of the network as fixed under the assumption that
humans have placed the robots in reasonable positions. We also as-
sume that each sensor knows its neighbors, the sensors with which
it can directly communicate. For example, during natural disasters,
rescue personnel may quickly place such mobile sensors around a
disaster site to relay information about endangered humans, fires,
etc. It will then be critical for the sensors to quickly optimize the
network’s signal strength to ensure reliable and effective commu-
nication.

Radio communication, commonly used in wireless sensor networks,
has a predictable signal strength based on the inverse square of
the distance between transmitter and receiver.1 However, in ur-
ban or indoor settings, obstacles often interrupt line of sight com-
munication, creating a multi-path setting. Scattering, reflection,
and diffraction of radio waves make it very difficult to predict the
optimal placement of sensors in a network. Constructive and de-
structive interference of the radio waves, known as the small scale
fading effect, results in significant signal strength differences over
small distances.

This paper concentrates on settings where the sensors are not line
of sight. Due to small scale fading, the signal strength between
two locations separated by a distance of at least 1

2 of a wavelength
is uncorrelated. Put another way, if a sensor moves 1

2 of a wave-
length, it will measure a new signal strength from each of its neigh-
bors, where each signal can be modeled as an independent random
number drawn from some distribution [7]. Our initial experiments
suggest a Normal distribution, but our algorithms are distribution-
independent and other distributions can easily be substituted.

We assume in this study that sensors have been placed in reason-
able locations so that no sensor is disconnected from the network.
Further, we assume that nodes do not fail, they are not malicious,
and communication between neighbors is reliable. Given a net-
work topology and length of the experiment (time T ), our goal
is to maximize the signal strength in the network over this time.
Using l as our index over network links, we want to maximize:P

0≤t≤T

P
l∈network SignalStrength(l, t) by allowing agents to

take small movements without changing the overall network topol-
ogy. We discretize the experiment and the agents’ decision making
into synchronized rounds. A round ends after all agents perform the
required computation, finish communication, and move to a new lo-
cation (if desired). The length of a round in our distributed setting
is dominated by the robot movement time, which is much longer
than either the computation of any algorithms in this paper or the
communication time.2

Experiments in this paper use results from a set of Create robots

1For an in-depth discussion of signal strength propagation, we refer
interested readers to more complete treatments elsewhere [13].
2If agents converge upon a final configuration before the test ends,
no robots will move within a round. However, the length of the
round does not vary, but remains the time necessary for a robot
to move, calculate, and communicate. The length of a round
determines how continuous time is discretized to measure signal
strength in experiments but is not critical for measuring the relative
performance of algorithms.
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Figure 1: This photo shows a team of iRobot Creates, the platform
used for physical tests of our algorithms. A more detailed view of the
robot is shown in the inset.

from iRobot and from a custom simulator built to mimic properties
of the Create. The Creates have 2 actuators which can be con-
trolled. They are capable of moving accurately in a straight line,
while rotation introduces significant error. Each of these Creates
have a wireless radio card provided by CenGen mounted on them.
A fully charged battery is capable of running the Creates for ap-
proximately 3 hours. Figure 1 shows a team of the Create robots.

As the real world is continuous3 and Create robots have limited
sensors, agents in our physical implementation are unable to deter-
mine their absolute location during experiments, but must instead
rely on odometry to estimate relative location. Due to the high vari-
ance in signal strength over small distances and accumulated errors
in odometry measurements, agents in some tasks may not be able to
return to a previously observed signal strength. Thus, in this paper,
we consider two distinct cases, as both may be valid, depending
on the particular implementation of agent movement and available
sensors. In the first case, each agent may either stay where it
is, or explore by moving to a new location. In the second case,
we assume that odometry errors can be ignored, which enables an
agent to additionally execute the action backtrack, returning it
to a previously explored location. In our physical implementation,
the robots are able to backtrack, but we also run experiments as-
suming they cannot. Note that in this work we assume that agents
are always able to explore a new state and never return to a previ-
ously visited state by selecting the explore action.

Mobile sensors must efficiently explore their surroundings to max-
imize the network signal strength as quickly as possible. If the
goal was to maximize final signal strength and the agents had a
small number of possible values, agents could explore the entire
state space to populate the reward matrix and then use a traditional
DCOP method to find an optimal setting of values (as discussed
in the following section). However, because the goal is to maxi-
mize signal strength accumulated during the entire episode, fully
exploring the state space would cause the agents to spend much of
their time in highly sub-optimal configurations. Furthermore, in
this work we assume that the number of states each robot can visit
is large, making it impossible for a robot to explore all possible lo-
cations within the time of a single experiment, let alone the cross
product of all possible locations.

3As discussed in Section 4.1, we discretize the continuous world
based on the wavelength of radio waves.
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Figure 2: This figure depicts a three agent DCOP. Agents 1–3 each se-
lect a value for their corresponding variable (x1 – x3) from the domain
{0, 1}. There are two sets of constraints which each define one of the
two reward matrices.

2.2 DCOP Background
A DCOP consists of a set V of n variables, {x1, x2, . . . , xn}, as-
signed to a set of agents, where each agent controls one variable’s
assignment. Variable xi can take on any value from the discrete
finite domain Di. The goal is to choose values for the variables
such that the sum over a set of binary constraints and associated
payoff or reward functions, fij : Di × Dj → N , is maximized.
More specifically, find an assignment, A, s.t. F(A) is maximized:
F (A) =

P
xi,xj∈V fij(di, dj), where di ∈ Di, dj ∈ Dj and

xi ← di, xj ← dj ∈ A. Take the constraint graph in Figure 2 as
an example. x1, x2, and x3 are variables, each with a domain of
{0,1} and the reward function as shown. If agents 2 and 3 choose
the value 1, the agent pair gets a reward of 9. If agent 1 now chooses
value 1 as well, the total solution quality of this complete assign-
ment is 12, which is locally optimal as no single agent can change
its value to improve its own reward (and that of the entire DCOP).
F ((x1 ← 0), (x2 ← 0), (x3 ← 0)) = 22 and is globally optimal.

We use the mobile sensor network domain introduced in Section 2.1
as an experimental domain for our algorithms. The different robots
in the network are the DCOP-aware agents. Communication links
between robots represent constraints between agents and the sig-
nal strength obtained measures the reward of an assignment. The
different physical positions of a robot constitute the domain of val-
ues possible for agents. An agent can accurately sense the signal
strength between its current location and the current location of
each of its neighbors only when it explores that particular location.

3. SOLUTION TECHNIQUES
This section describes novel extensions to DCOP methods to tackle
the class of problems outlined in the Introduction, using the mobile
sensor network problem as a concrete example of one such prob-
lem. The distributed and multiagent nature of the problem makes
DCOP an appropriate solution technique. The primary difference
between this domain and traditional DCOP domains are: (1) firstly,
the agents’ goal is to maximize the cumulative reward, (2) secondly,
the agents do not know the reward matrix R, and (3) thirdly, the
agents do not have time to explore all states. Thus, standard DCOP
solvers cannot be directly applied to the type of problem discussed
in this paper.

Given the inapplicability of globally optimal algorithms, we build
on an existing locally optimal DCOP algorithms. The Maximal
Gain Messaging (MGM) algorithm [15] and DSA [5] are natural
candidates, but DSA has an additional probability parameter that
must be set which has a significant impact on its performance [9].
While all the algorithms presented are in the framework of MGM,
the key ideas of the paper can be embedded in any locally optimal
DCOP framework. However, we keep the framework constant to
ensure a fair comparison of the algorithms.
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MGM-Omniscient: We first implement the Maximal Gain Mes-
saging (MGM) algorithm [15] and artificially provide agents with
all possible signal strengths. This represents an upper bound for
us to compare with as the agents do not need to explore. Given
such a matrix, any standard DCOP algorithm may quickly find a
locally optimal solution for all agents. MGM-Omniscient defines
a round as involving multiple broadcasts of messages. Every agent
will broadcast its current value to all its neighbors at the beginning
of the round. After the receipt of these messages, each agent broad-
casts a gain message to all its neighbors that represents the maxi-
mum change in its local utility if it is allowed to act under the cur-
rent context (i.e., values of neighboring agents). An agent is then
allowed to act if its gain message is larger than all the gain mes-
sages it receives from all its neighbors (ties can be broken through
variable ordering or another method) [19]. MGM-Omniscient be-
longs to the class of 1-optimal algorithms which have the property
that no one agent can deviate from the proposed assignment and
increase the net reward [15].

3.1 Static Estimation (SE) Algorithms
Our first set of solution techniques relies on selecting an action
based on the probability of improving the signal strength on the
next round. All are one-step approaches.

3.1.1 SE-Optimistic
In Static Estimation with Optimistic Exploration (SE-Optimistic),
each agent assumes that if it moves to a new location, the signal
strength between it and every neighbor will be maximized. On
every round, each agent bids its expected gain based on its current
sum of signal strengths (Rc): NumLinks×MaxSignalStrength−Rc.
In each neighborhood, the agent with the highest bid is allowed to
explore for the current round and other agents execute the stay
action. Agents which have the lowest signal strengths will have
the highest bid, similar to a 1-step greedy optimization algorithm.
Because it will be rare to achieve maximal signal strengths to all
neighbors, agents will typically continue to bid to explore on every
round until the test concludes.

3.1.2 SE-Mean
Static Estimation with Mean-Aware Exploration (SE-Mean) mod-
ifies the previous algorithm to assume that visiting an unexplored
state will result in the average signal strength to all neighbors (de-
noted µ) instead of the maximum. Agents therefore have an ex-
pected gain of: NumLinks× µ−Rc. This modification to the pre-
vious algorithm causes agents to continue to greedily explore, but
now agents will stop bidding to move once they achieve the aver-
age signal strength (averaged over all neighbors), allowing them to
balance exploration with exploitation. Note that MaximumReward
and µ can be defined initially as the reward distribution is known.

3.2 Balanced Exploration (BE) Algorithms
The objective of the Balanced Exploration (BE) approach, our sec-
ond set of algorithms, is to allow each agent to explicitly estimate
the value of exploration, which will depend on the following three
things: (1) the number of timesteps left in the trial, (2) the distri-
bution of the signal strengths (rather than just the maximum or the
mean), and (3) the current signal strength of the agent, or the best
explored signal strength if the agent can backtrack to a previously
explored state.

The primary motivation for this class of algorithms is to allow the
agents to more accurately estimate their gains. After agents cal-

culate their expected gain from exploring or exploiting, each will
decide whether to exploit its current signal strength or to bid to ex-
plore. As in MGM, the agent with the highest bid per neighborhood
wins the ability to move.

3.2.1 BE-Backtrack
When an agent can execute the backtrack action, it will keep
track of the location in which it has received the highest total signal
strength (Rbest). At any point, the agent may return to this location
if the agent’s neighbors have not moved. If one or more of the
agent’s neighbors have moved, return to this previous location will
likely give a different total signal strength. Note that Rbest will
always be well defined, as an agent may always set Rbest = Rc,
its current total signal strength. The state of the agent can thus be
defined as a 2-tuple of (Rbest, T ) consisting of the reward Rbest,
and the T time steps remaining in the current test.

The Balanced Exploration with Backtracking (BE-Backtrack) al-
gorithm takes a multi-step approach, where an agent calculates
V (Rbest, T ), the expected utility of the agent if the current best
backtrack location has a reward of Rbest and T time steps remain
in the current test.4 If the agent backtracked immediately to the lo-
cation with reward Rbest, again assuming that no neighbors move,
the agent would accrue the utility Rbest for the remainder of the
experiment. Therefore, the value of backtracking will be

Vback(Rbest, T ) = RbestT.

If the agent explores, it receives a reward based on the best location
explored. Let the number of rounds for which the agent explores
be te. An exploration policy would be in the form “explore for te

rounds, backtrack to the best location found on round te + 1,
and then stay in that location for the remainder of the experiment
for ts rounds, where ts = T − (te + 1).

Vexplore(Rb, T ) can be calculated by summing three separate com-
ponents: the expected utility accrued while exploring for te steps,
the utility accrued after exploration multiplied by the probability of
finding a reward better than Rb, and finally the utility accrued after
exploration multiplied by the probability of failing to find a reward
better than Rb.

The first component will simply be te × µ(n), where µ(n) is the
average expected signal strength over n neighbors. The second
component will depend on the probability of finding locations with
a total signal strength higher than Rbest, multiplied by the number
of steps left in the trial. The expected best signal strength in this
case will be described by the probability distribution:

Z

x>Rbest

x× P (x, n, te)dx

where P (x, n, te) gives the probability of x being the maximum
sample among the te samples drawn when the agent has n neigh-
bors and is defined as:

P (x, n, te) = te × f(x, n)× F (x, n)te−1

4Note that throughout the discussion of the balanced exploration,
there is a notion of state, which is different from an agent’s lo-
cation. For instance, the value of taking the backtrack action
depends on the best reward seen (Rbest) and the number of steps
remaining in the episode, which describe the state. It does not de-
pend on the current location, or the current signal strength. Thus
Vback(state) = Vback(Rbest, T ).
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This nth order statistics calculates the probability that x will be the
maximum reward found in te values. n is the number of neighbors,
f(x, n) is the probability of drawing x as a sample, and F (x, n) is
the cumulative probability of drawing a sample less than or equal to
x, defined as

R
y≤x

f(y, n)dy. Informally, P (x, n, te) is calculated
by drawing a sample x from any of the te samples with a probabil-
ity f(x, n), and drawing the rest of the te − 1 samples, such that
their values are less than x, with a probability of F (x, n)te−1.

The third component will depend on how likely it is that we fail
to discover a location better than Rbest, multiplied by the number
of steps left in the trial. After the agent explores, it will backtrack
to the location that receives a total signal strength of Rbest and the
agent will receive this reward for the remaining ts rounds. Again,
the cumulative probability of drawing a sample less than or equal
to Rbest in te samples is defined as F (Rbest)

te , where F (x) is
defined as before.

Summing the three components, we find that Vexplore(Rbest, T ) =

max
0≤te≤T


teµ(n)+ ts

Z

x>Rb

xP (x, n, te)dx+ tsRbF (Rb, n)te

ff
(1)

The value of te that maximizes Vexplore gives the number of explo-
ration steps. The expected return of being in a location with T steps
left, having previously seen a location with a total signal strength

of Rbest, is: max


Vback(Rbest, T ), Vexplore(Rbest, T )

ff
. Hav-

ing calculated the expected utility of backtrack and explore,
the agent will select the action with the highest utility. Unless
the action selected is backtrack and the current signal strength
equals Rbest, the agent will bid its expected utility, and the agent
with the highest utility within each neighborhood will be allowed
to move for te rounds, after which it backtracks to the location with
the best found signal strength. BE-Backtrack dictates that the agent
will not move after backtracking in the (te +1)th round. However,
if the agent’s neighbors later move, the agent may choose to explore
rather than staying at its backtracked value.

Notice that when an agent’s neighbors explore and then backtrack,
they could not have reduced the overall DCOP reward. In partic-
ular, the signal strength of an agent that has backtracked after ex-
ploring cannot be lower than its signal strength at the time it started
exploring (although it may be lower during exploration). This is
because only this agent was allowed to move in its neighborhood,
and the agent could have backtracked to its initial location (and,
thus initial signal strength) if it were unable to find a better config-
uration.

3.2.2 BE-Rebid
The BE-Backtrack approach allows the agents to return to a previ-
ously explored state. The SE-Optimistic and SE-Mean approaches
allow agents to rebid after every round. Prior work in different de-
cision making contexts [14] has shown that such reevaluation at
each timestep can lead to better performance in practice. Balanced
Exploration with Backtrack and Rebidding (BE-Rebid) combines
both of the above algorithms, representing a type of hybrid ap-
proach. The agents calculate their gain using the same equations
as in BE-Backtrack, but all agents re-calculate and rebid their most
favorable action in each time step.

Equation 1 calculates the expected gain of exploring for te steps,
but if agents rebid on each round, the number of exploratory steps

an agent executes may be different from te, potentially invalidat-
ing the agent’s initial estimate. However, if an agent wins the bid
to move and then moves for fewer than te rounds, it will be due
to signal strengths received after moving: either the moving agent
has found itself in a favorable position and no more exploration is
needed, or the cumulative signal strength of one of its neighbors
has significantly decreased. As an example, consider three agents
connected in a chain, as in Figure 2. Suppose that agents 1 and 3
explore and the signal strength between 1–2 and 2–3 drops. It may
be more efficient for agent 2 to explore in order to improve both
of its signal strengths, but this on-the-fly reasoning is disallowed in
BE-Backtrack when te > 1.

Since the agent is allowed to backtrack, the reward enjoyed by
the agent after it backtracks depends on the maximum reward
that it encounters during the exploration phase. In the next section,
we consider a similar algorithm, but assume that the agent cannot
backtrack, removing the ability for an agent to retrace its steps
back to a previous location. The expected utility of moving to a
new location is given by the mean µ of the distribution, and the
immediate reward is known to the agent.

3.2.3 BE-Stay
The Balanced Exploration with Stay algorithm applies when agents
are unable to backtrack. Based on initial experiments which sug-
gested that BE-Rebid outperformed BE-Backtrack, BE-Stay was
designed as another one-step approach where agents make a deci-
sion during every round. The intuition behind this approach is that
at each round, every agent considers its current total signal strength,
Rc, and compares the expected value it would get by staying in
the same location (Vstay) with the expected value of exploring
(Vexplore). Because only one agent in a neighborhood can move at
a time, we again assume that no neighbors move when calculating
these expected values. The value of exploring can be formulated
recursively, where the reward will be zero at time T = 0, but the
agent can choose to either perform the stay or explore action
at time T > 0. The value of exploring is calculated as follows:

V (Rc, T )=

(
Vstay(Rc, 0) = Vexplore(Rc, 0) = 0 for T = 0

max(Vstay(Rc, T ), Vexplore(Rc, T )) for T > 0
(2)

The expected value from stay will be the current signal strength
multiplied by the time left in the trial:

Vstay(Rc, T ) = RcT.

The expected value of moving will depend on the probability of
achieving a given signal strength in the next state, the reward re-
ceived for that signal strength on one timestep, and the expected
value of the rest of the trial:

Vexplore(Rc, T ) =

Z ∞

−∞
P (x)(V (x, T − 1) + x)dx

where P (x) is the probability of receiving the total signal strength
x in an unexplored location.

In each round, agents calculate Vstay and Vexplore using Equa-
tion 2. If explore has the higher expected value, an agent will
bid to move for one round, and the agent with the highest bid in
each neighborhood will move. Note that BE-Stay differs from BE-
Rebid even when the backtrack state is the current state: BE-Rebid
assumes the agent may backtrack to this state in the future, which
BE-Stay does not.
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4. EXPERIMENTAL RESULTS
This section of the paper discusses the empirical validation of the
five novel DCOP algorithms in both simulated and physical agents.

4.1 Experimental Setup
Experiments in this section compare the performance of our DCOP
algorithms in multiple settings by measuring the cumulative sig-
nal strength achieved. Signal strength values were all non-negative
integers (which conforms to the CenGen interface of the physi-
cal robots), which allowed our implementations to use summations
rather than integrations.

In simulation, every experiment is run for 30 independent trials
with each of the five algorithms (and one additional time for MGM-
Omniscient). Each of 30 trials begin with the same initial config-
uration to reduce the impact of randomness. In each experiment,
lower and upper bounds are determined by disallowing all sensor
movement and using MGM-Omniscient, respectively. Results are
reported as a scaled gain, scaled uniformly between 0 and 1. Any
gain greater than zero represents an improvement directly due to
the controlling DCOP algorithm. Such a metric helps isolate the
improvement due to sensor movement and scales across tasks with
different numbers of links, agents, and horizons. Signal strengths
are drawn from a normal distribution with a mean of 100 and a
standard deviation of 16.5

When experimenting with the physical robots, we do not compare
with MGM-Omniscient because the reward matrix is unknown in
the real world and instead report the absolute gain. Experiments are
conducted with three Create robots running the DCOP algorithm
and a fixed radio controller, forming the set of agents in the DCOP.
Due to the wavelength used by our robots (5 GHz corresponding
to wireless 802.11a specifications), we discretize the state space so
that agents move by 2.5cm at a time, ( 1

2λ).

On each round, robots wait one second for signals to stabilize and
then calculate their signal strengths by querying the CenGen inter-
face. 10 samples, collected 1

4 second apart, are averaged to define
the agent’s current signal strength. Robots were placed at a distance
of 5–10 meters apart in a non-line of sight configuration. Since the
objective of the agents was to maximize the cumulative reward in
the given time horizon, we did not analyze the runtime of the ex-
periments either in simulation or on physical robots.

Results in simulation (Section 4.2) show that the performance of
the hybrid BE-Rebid approach is statistically the same, or better
than, all the other algorithms (except for very short experiments).
Results on hardware (Section 4.3) show that these algorithms are
able to provide significantly improvements over no optimization.
Additionally experiments show that the balanced exploration tech-
niques work better than SE-Mean and SE-Optimistic for the major-
ity of settings.

4.2 Simulation Results
This section presents three sets of results, each of which varies a
different component of the problem domain: the number of agents,
the time horizon, or the network topology. First, however, con-
sider the learning curve in Figure 3, which shows the total reward
per timestep of our five algorithms, along with MGM-Omniscient
5The range µ − 6σ to µ + 6σ covers 99.999% of the samples for
a normal distribution. We therefore considered signals within the
range [0,200].
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Figure 3: A representative learning curve for 20 agents in a chain
topology where T = 100.

(topmost) and NoMovement (bottom most). This learning curve
depicts the algorithms’ rewards over time. For each algorithm, the
total cumulative signal strength will be the area under the curve,
and the gain will be the area between the curve and the NoMove-
ment line. The y-axis shows the total signal strength and the x-axis
shows the time horizon. SE-Mean converges quickly to a compara-
tively low value while SE-Optimistic continually explores, attempt-
ing to achieve the maximal signal strength. BE-Stay can not back-
track and thus must be more cautious; it converges the fastest of all
three BE methods. BE-Backtrack attains the highest final reward,
but it takes much longer to converge than BE-Rebid and does not
achieve the highest cumulative signal strength (BE-Rebid explored
for only 36 rounds and received a final reward of 13,198, whereas
BE-Backtrack explored for 76 rounds and received a final reward
of 13,347; the cumulative rewards for BE-Rebid and BE-Backtrack
were 666,062 and 659,925 respectively).

Having examined a single trial, consider the first set of results in
Figure 4(a) which examine how the algorithms’ relative perfor-
mance changes as the number of rounds is increased. The y-axis
measures the scaled gain, where y = 0 is equivalent to no sensor
movement and y = 1 on the y-axis is the cumulative reward from
MGM-Omniscient. The x-axis shows the five values of T , the total
number of rounds in a trial, used in the experiment. All trials used
random sparse graphs with 15–20 links and 10 agents. Each result
is averaged over 30 independent trials and the error bars show the
standard error. The difference between scaled gain for each pair
of algorithms are statistically significant within a single value of T
(paired Student’s t-tests calculate p < 0.05), except for T = 5.
When the time horizon is very small, SE-Mean and the BE algo-
rithms all performed roughly the same because all four algorithms
performed very little exploration. As the number of rounds per ex-
periment increases, BE algorithms outperform SE algorithms, and
BE-Rebid consistently achieves the highest scaled gain.

The second set of experiments, summarized in Figure 4(b), varies
the number of agents. The y-axis again depicts the normalized gain.
The x axis shows the number of agents, varied from 5 to 50. Paired
Student’s t-tests determine that the results are statistically signif-
icantly different (p < 0.05) within all sets of tests of the same
number of agents. The performance of BE-Rebid was significantly
better than the performance of other algorithms in all cases.

The third set of results shown in Figure 4(c) compares the perfor-
mance on different graph topologies: a chain structure, random
structures (with 1

3 or 2
3 of all possible links enabled), and a fully
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Figure 4: The performance of different algorithms is shown where the y-axis is the scaled gain (0 represents No-Movement and 1 represents the
gain of MGM-Omniscient), the x-axis describes the setting, and the error bars show standard error.

connected topology. Each test uses 20 agents and 100 rounds.
All results within a single topology are again statistically different
(p < 0.05). The y-axis again measures scaled gain and error bars
show standard error. Results are again averaged over 30 trials, all
with random payoff matrices. All results within a single topology
are statistically different (p < 0.05).

Three trends in Figure 4(c) are worth noting. First, BE-Rebid statis-
tically significantly (p < 0.05) outperforms all other algorithms in
all topologies tested, except in the fully connected graph (where it
is roughly equivalent to SE-Optimistic as only one agent can move
per round). Fully connected graphs are thus one setting where the
relatively simple static estimation algorithms can perform just as
well as the more complex BE algorithms.

Second, as the link density of the graph is increased, the relative
performance of BE-Backtrack decreases, with statistical signifi-
cance (p < 0.05), due to the aggressive nature of the algorithm. A
BE-Backtrack agent will explore for te steps, preventing all neigh-
bors from moving during this time. Thus, as the link density in-
creases, higher number of agents are not allowed to move until after
te steps.

Third, SE-Mean outperforms SE-Optimistic in randomly gener-
ated graphs, but not in chain and fully connected graphs. Unlike
in chain and fully connected graphs, agents in random graphs can
have a high variance in their degrees of network connectivity. We
analyze the number of agents that were able to optimize their re-
wards. While 40% of the robots moved when running SE-Mean,
only 18.5% robots could do so when running SE-Optimistic in ran-
dom graphs with density 1

3 . SE-Optimistic agents with a high de-
gree of connectivity monopolize movement opportunities because
they bid unrealistically high rewards. Their bid is relatively large
when compared to the bids of agents with lower degrees. There ex-
ists a large correlation (Pearson’s coefficient of ρ > 0.5) between
the degree of the agent and the number of moves made by the agent
in SE-Optimistic. In contrast, SE-Mean agents allow others to win
bids once the reward of an agent reaches the average over all neigh-
bors. There exists only a weak correlation with ρ < 0.05 between
the degree of the agent and the number of moves made by the agent
for SE-Mean, explaining this difference in performance.

The results also show that BE-Stay is statistically significantly dom-
inated by BE-Rebid, demonstrating that the ability to backtrack can
lead to significantly better performance.

4.3 Physical Robots Results

Figure 5: This graph shows the performance of SE-Mean and BE-
Rebid for different topologies, as described in Section 4.3, averaged
over Each experiment summarizes results from 5 independent trials,
the y-axis shows the absolute gain in signal strength over the initial
configuration, and in all cases our DCOP methods significantly improve
over the initial configuration. Error bars show the standard error.

The previous section showed that our novel DCOP algorithms were
able to significantly improve the accumulated signal strength in a
simulated environment. This section takes the evaluation one step
further by demonstrating that two of our algorithms significantly
improve performance on physical hardware, using measured signal
strength data as the reward.

Three topologies were tested: chain, fully connected, and random
graphs. In the random topology tests, the robots were randomly
placed and the CenGen API automatically defined the neighbors,
whereas in the chain and fully connected tests the agents had a
fixed set of neighbors over all trials. All tests were conducted with
a time horizon of 20 time steps and used four agents (three robots
and one fixed radio controller). SE-Mean was chosen because it
performed best with a small number of agents in simulation and
BE-Rebid was chosen because it almost always outperformed all
other algorithms.

Figure 5 shows the results of running BE-Rebid and SE-Mean on
the robots. The y-axis shows the gain of the algorithms. Note that
the y-axis hasn’t been normalized in this figure as MGM-Omniscient
could not be run on the real robots (the actual signal strength cannot
be determined a-priori). The values are signal strengths in decibels
(dB). Each value is averaged over five independent trials. For ex-
ample, when the topology is chain, the average gain of BE-Rebid is
691 units where as the average gain of SE-Mean is 561. BE-Rebid
performed better than SE-Mean in the chain and random graphs,
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but SE-Mean performed better in the fully connected graph. While
too few trials were conducted for statistical significance, it is impor-
tant to note that in all the cases, there is a significant improvement
over the initial configuration in the robots. Additionally, because
decibels are a log-scale metric, the gains are even more significant
than one may think on first glance.

Taken as a whole, experiments in this paper show that our DCOP al-
gorithms are able to significantly improve mobile sensor networks
in both simulation and hardware. They also demonstrate the su-
periority of the hybrid approach of BE-Rebid in most situations,
except for fully connected graphs or when very few movements
are allowed. In such cases, BE-Rebid doesn’t have any additional
advantage over simpler approaches like SE-Optimistic.

5. RELATED WORK AND CONCLUSIONS
Related work in DCOPs has been discussed in earlier sections.
Specifically, previous work in distributed constraint reasoning in
sensor networks [8, 20] does not use a DCOP formulation or han-
dle unknown reward matrices. A number of other works on mo-
bile sensor networks for communications (c.f., Cheng. et al [3] and
Marden et al. [11]) are based on other techniques (e.g., swarm intel-
ligence, potential games, or other robotic approaches). Instead, we
extended DCOPs as they can scale to large tasks using local inter-
actions. Reinforcement learning [17], a popular approach in mul-
tiagent learning, does not directly apply in this domain as agents
must quickly discover good variable settings, not a control policy.
Optimal Stopping Problems (c.f., the Secretary Problem [6]) opti-
mize the final rank of the selected instance, not on-line metrics, and
are exclusively single agent.

This paper focuses on a class of problems that DCOPs could not ad-
dress before. Apart from early work on distributed constraint rea-
soning by Lesser et al. [8], this is the first application of DCOPs on
physical robots with a demonstrated improvement in performance
in a real world problem. We show that such real world domains
raise new challenges: (1) agents do not know the initial payoff
matrices, (2) the goal is to maximize the total reward instead of
the final reward, and (3) agents have insufficient time to fully ex-
plore the environment. These challenges open up a new area for
DCOP research, as current DCOP algorithms cannot be directly
applied. We present and empirically compare five novel DCOP al-
gorithms addressing these challenges. We also present results from
two algorithms implemented on physical robots. Our results show
significant improvement in the reward in mobile sensor networks.
Our experiments demonstrate the superiority of decision theoretic
approaches, but static estimation strategies perform well on fully
connected graphs or when task time horizon is small. In the future,
we anticipate scaling up our evaluation to include additional robots,
verifying our algorithms in other domains, and examining alternate
reward metrics, such as minimizing battery drain.
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Multi-Agents Supporting Reflection in a Middleware for 
Mission-Driven Heterogeneous Sensor Networks 

ABSTRACT 
The emerging applications using sensor networks technologies 
constitute a new trend requiring several different devices to work 
together and this partly autonomously. However, the integration 
and coordination of heterogeneous sensors in these emerging 
systems is still a challenge, especially when the target application 
scenario is susceptible to constant changes. Such systems must 
adapt themselves in order to fulfill requirements that can also 
change during the system runtime. Due to the dynamicity of this 
context, system adaptations must take place very quickly, 
requiring system autonomous decisions to perform them without 
any human operator intervention, besides the first directions to 
the system. Thus a reflective behavior must be provided. This 
paper presents a reflective middleware that supports reflective 
behaviors to address adaptation needs of heterogeneous sensor 
networks deployed in dynamic scenarios. This middleware 
presents specific handling of users’ requirements by representing 
them as missions that the network must accomplish with. These 
missions are then translated to network parameters and 
distributed over the network by means of the reasoning about 
network nodes capabilities and environment conditions. A multi-
agent approach is proposed to perform this initial reasoning as 
well as the adaptations needed during the system runtime. 

Categories and Subject Descriptors 
D.2.11 [Software Engineering]: Software Architectures – 
Domain-specific architectures and Patterns.  
I.2.9 [Artificial Intelligence]: Robotics – Autonomous vehicles, 
Sensors. 
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence 
– Multiagent systems. 

General Terms 
Management, Performance, Design. 

Keywords 
Sensor Networks, Heterogeneous Sensors, Dynamic Scenarios, 
Self-adaptation, Reflective Middleware, Multi-agents Reasoning. 

1. INTRODUCTION 
Sensor network applications are becoming more complex due to 
the use of different kinds of mobile and sophisticated sensors, 
which provide advanced functionalities [1] and also are deployed 
in dynamic scenarios where context-awareness is needed [2]. To 
support those emerging applications, an adaptable underlying 
infrastructure is necessary. Current proposals suggest the use of a 
middleware, for example TinyDB [3]. However, this kind of state-
of-the-art middleware have important non-negligible drawbacks 
that make them useless in the context of such new emerging 
applications, because: (i) the assumption that the network is 
composed only by a homogeneous set of basic or very constrained 
low-end sensors; (ii) the lack of intelligence in such network 
compromises the adaptability required to deal with changing 
operation conditions, e.g. lack of QoS management and control. 

Adaptability is a major concern that must be addressed in sensor 
networks due to two main factors: (a) long usage life time; and (b) 
deployment in highly dynamic environments. The first reason 
increases the probability of changes in user requirements through 
systems life time, which requires flexibility in order to comply 
with the changing demands. The second reason implies that 
applications have to be flexible enough in order to cope with 
drastic changes in the operation scenarios. In such environments, 
services are required in different places at different times; 
resources must be reallocated in order to fulfill specific 
requirements and also assure compliance with different 
constraints; and nodes that satisfy specific constraints during a 
certain period of time can become unable to continue working 
properly after changes. In addition, there are real-time 
requirements that are especially hard to be met. Thus, QoS 
management must be flexible, allowing renegotiation of required/ 
provided QoS among nodes during the system runtime [4]. 

This paper presents a reflective middleware aimed to support 
sophisticated sensor network applications that need to adapt its 
behavior according to changes in the environment and in the 
application demands. The idea is that the users specify missions to 
be accomplished by the network using a high-level Mission 
Description Language (MDL) in which they describe the desired 
data and constraints related to the gathering of them, for example 
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space and time limits, representing mission goals. In order to 
promote the missions accomplishment, the concept of multi-
agents is used to provide the reasoning about the network and, 
among other things, to decide about service, resource allocation, 
time-related requirements and QoS control. The reasoning by the 
agents, i.e. the self-reflection of middleware agents, decides about 
what adaptations that must take place based on the mission goals. 
These adaptations are tuned through the use of aspects, which 
weave the desired behaviors into the middleware (e.g. jitter 
monitoring), and also through the movement of mobile-agents that 
change their location in the network in order to provide different 
services in different places as required in a context specific 
moment. In this paper, the focus is to present the mission-driven 
approach and the multi-agent reasoning based on this approach. 

The remaining text is organized as follows: Section 2 presents the 
ideas of nodes’ heterogeneity and dynamicity of operation 
conditions that motivate the present work. Section 3 provides an 
overview of the middleware structure, while Section 4 gives a 
summary description of the Mission Description Language. 
Section 5 presents the mission parameters representation. Section 
6 presents the planning-agent intern model, while the multi-agents 
reasoning is described in Section 7. In Section 8 some related 
work are shortly presented, and Section 9 concludes the paper 
with some final remarks and directions of future work. 

2. HETEROGENEOUS AND DYNAMIC  
The intention of this work is to develop a flexible middleware that 
can be used to support applications in heterogeneous sensor 
networks deployed in dynamic environments. In the context of 
this work, heterogeneity means that nodes in the network may 
have different sensing capabilities, computation power, and 
communication abilities, running on different hardware and 
operating system platforms.  

Low-end sensors are those with constrained capabilities, such as 
piezoelectric resistive tilt sensors, with limited processing support 
and communication resource capabilities. Rich sensors 
comprehend powerful devices like radar, visible light cameras or 
infrared sensors that are supported by moderate to high computing 
and communication resources. Thus, in order to deal with these 
very distinct capabilities, the proposed middleware must be 
lightweight, while being scalable and customizable. The mobility 
characteristic is also related to the heterogeneity addressed by the 
middleware. Sensor nodes can be static placed on the ground or 
can move themselves on the ground or fly at some height over the 
target area in which observed phenomenon is occurring. Figure 1 
illustrates the heterogeneity dimensions considered in this work.  

The proposed middleware is aimed to support applications that 
deal with dynamic and changing scenarios. Consequently, the set 
of sensors chosen in the beginning of a mission may not be the 
most adequate one during the whole mission. For example, an 
area surveillance system receives the mission to survey an area 
that may not allow traffic of certain kinds of vehicles. Ground 
sensors are set to trigger and send an alarm in the presence of 
unauthorized vehicles. Then Unmanned Aerial Vehicles (UAVs) 
equipped with visible-light cameras are set to fly over the area 
where the ground sensor has issued an alarm to verify the 
occurrence. However, a sudden change in the weather, e.g. the 
area becomes foggy or cloudy, turns visible-light cameras useless. 
However the detection mission must still be accomplished. This 
type of change in the operational conditions during a mission must 

be handled by the middleware. It must be able to choose the best 
alternative of employable sensors among the set of available 
options. In the described situation it may choose, for instance, an 
infrared camera instead of the visible-light one. 

 
Figure 1. Heterogeneity Dimensions 

According to the taxonomy presented in [5], the sensor network 
described above can be classified as: a mix of static and dynamic 
configurable sensors with full self-awareness; a heterogeneous 
dynamic ad-hoc network with a large number of nodes; deployed 
in a high dynamic environment partially observable; and which 
achieve its goals by collectively coordinated actions with a non-
local environment dependency. A sensor network with this 
classification requires a great flexibility in its behavior and at the 
same time “in-network intelligence”, which is represented by the 
spread of intelligent capabilities over its nodes. These two 
features, flexibility and in-network intelligence, enables reflection 
about network status and environment conditions in order to adapt 
the network for the mission and to new demands from end-users.    

3. MIDDLEWARE STRUCTURE 
The main goal is that the proposed middleware fits both resource 
constrained and rich sensors. In order to achieve this goal, aspect- 
and component-oriented techniques are used in a way similar to 
the approaches discussed in [6], and [7] and the mobile and multi-
agents approach presented in [8]. 

The proposed middleware is divided in three parts or layers, see 
also Figure 2: 

 Infrastructure Layer. It is responsible for the interaction with the 
underlying operating system and for the management of the 
sensor node resources, such as available communication and 
sensing capabilities, remaining energy, etc. This layer also helps 
to coordinate resource sharing according to application needs 
passed through the upper layers. Additionally, services provided 
by upper layers may also need some resource sharing support.  

Common Services Layer. It provides services that are common to 
different kinds of applications, such as QoS negotiation and 
control, quality of data assurance, data compression, and the 
handling of real-time requirements. Other concerns such as 
deadline expiration alarms, timeouts for data transmissions, 
number of retries and delivery failure announcements, resource 
reservation negotiation among applications (based on priorities 
established by missions and operation conditions), bindings, 
synchronous and asynchronous concurrent requests are also 
handled within this layer. Readers specially interested in those 
concerns are referred to [9] for more details about the mechanism 
used in the middleware to provide these features. 
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Figure 2. Overview of the Middleware Layers 

Domain-Services Layer. It supports domain specific needs, such 
as data fusion and specific data semantic support, in order to allow 
the production of application-related information from raw data 
processing. Fuzzy classifiers, special kinds of mathematical filters 
(e.g. Kalman Filter) and functions that can be reused among 
different applications in the same domain are found in this layer.  

Multiple applications performing different missions can run 
concurrently in the network. As stated before, the middleware 
handles resource and data sharing among applications, which need 
the same type of data, allowing a better energy management in 
resource constrained nodes. In powerful nodes, with more energy 
available, the middleware can provide more complex services 
aiming at the handling of rich data, such as those related to image 
processing, and pattern matching. This also means that such nodes 
can take some of the burden from low-end nodes. 

“Smile faces” in the Figure 2 represent agents that can provide 
specific services in a certain node at a certain moment of system 
runtime. A special region (called agents-space) links agents 
throughout layers, allowing information exchange. The Domain-
Services Layer hosts a special agent (bigger smiling face), which 
is responsible receiving the mission directions from the 
application layer, and based on that, plan and reason about the 
activities related to the sensing missions. This agent is called 
planning-agent, and details about it will be presented later in the 
following sections. The other agents (small smiling faces) are 
used to provide specific services that support applications. 

Non-functional concerns that affect elements in more than one 
layer of the middleware, such as security, are represented as cross-
layer features, which are addressed, at least partly, with the 
aspect-oriented approach presented in [6].  

4. MISSION DESCRIPTION LANGUAGE  
The Mission Description Language (MDL) provides means to 
describe the information requested or to be monitored about 
certain detectable phenomena in a given time-space domains 
interesting to the end-users. For instance, the user may want to 
know about the different kinds of vehicles that pass through a 
given area during a certain time, or the environmental conditions 
during the occurrence of a pre-defined event. By using the MDL 
to setup a mission to the network the user “tests” the environment 
in order to achieve the desired information about a phenomenon 
or an event of interest. The idea of “test” the environment is based 
on the C/ATLAS test language [10], in which high-level test 
commands are specified in order to retrieve information about 
devices in a system. In a similar way, the MDL provides high-
level commands to retrieve specific information about matters or 
changes that occur in the environment. Based on this idea, the 
MDL uses patterns and definitions to test the environment in order 

to gather information that matches with those patterns and 
definitions that describe the user’s need for information. However, 
it is important to highlight that in this proposal the MDL uses just 
this conceptual idea behind C/ATLAS, it does not use the 
terminology presented by the test language, neither the same 
taxonomy.  
By using the MDL, the user defines high-level statements, which 
define and describe the events of his/her interest, as well as the 
constraints that are linked with that specific sensing mission. For 
instance, the maximum tolerated delay to receive an alert or the 
maximum amount of energy that can be used for that mission, 
among others. Another important concept in the MDL is the 
mission priority ordination, which allows several missions to run 
at the same time in the network, but prioritizing those which are 
more important, according to the user’s definitions. Linked with 
the former idea and the constraints enforcement is the usage of 
policies to govern the performance of missions. The user can 
order the mission accomplishment according to their priorities, 
selecting some constraints and also link a policy that will dictate 
how persistent the nodes in the network will be in order to gather 
the requested information. For instance, in an aggressive policy, 
nodes can deplete their batteries in order to assure that the 
requested data will be delivered to the end user (i.e., by 
performing several retransmissions until the end-user receives the 
information or the battery is depleted). On the other hand, in a less 
aggressive policy, nodes may preserve their batteries in spite of 
that they cannot assure the data delivery. The user can also use a 
policy and “tune” it by means of specifying specific constraints 
that override the general policy for those specific parameters.  
The mission described as a set of MDL statements is then 
translated to parameters that will configure the system as to 
retrieve the information desired by the user. The definition of 
these parameters is done by the interpretation of the MDL 
statements, together with the analyses of the characteristics of the 
deployed network and the chosen policy, if any, and the priority 
level. A configuration console (Mission Specification Console) 
enables the user to enter this information, which will be translated 
in a tuple of parameters (the content of this tuple will be explained 
in Section 5) representing the mission that will be injected into the 
network. Figure 3 illustrates the configuration console and its 
components. 
 

 
Figure 3. Mission Specification Console 

The MDL statements are the essential elements used to define the 
overall mission (Global Mission) of the network. The Global 
Mission will be divided into node-missions (sub-missions), which 
will be executed by specific nodes or a group of nodes in the 
network. The subdivision of a mission in node-missions is an 
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important part of the Global Mission translation in system 
parameters. It is done by a component called Mission Interpreter, 
which takes the MDL statements as input, consult a domain-
specific database (for information about a particular domain), and 
translate these statements into node-missions, see Figure 4. 

 
Figure 4. MDL Interpretation and Node-missions generation  

The MDL is divided in two parts: (1) the kernel of the language, 
which defines events of interest, space and time parameters, as 
well as the priority of the sensing mission; and (2) the extensions, 
which define advanced parameters, such as accuracy, precision 
and constraints. It is composed by: imperative commands (i.e. 
SCAN and DETECT); keywords (i.e. pattern and object), which 
are the parameters of the commands; connectors to link 
commands and keywords (i.e. IF and WITH); and pre-defined 
patterns, which are in fact a kind of keyword that are stored in a 
domain library (i.e. FOG and LINEAR_MOVEMENT). As an 
example, the following represents a conditional MDL statement: 

IF DETECT <DECREASE_OF <temperature>> 
WITH GRANULARITY<3> MONITOR <FOG> 
WITH ACQUISITION <period = yy> 

This example statement means: if a 3ºC decrease in temperature is 
detected, then provide monitoring of the pre-defined pattern 
“FOG” with data acquisition by the sensors each “yy” time units. 

5. MISSION PARAMETERIZATION   
The input to the sensor network system, coordinated by the 
proposed middleware, is seen as a “mission” that the whole 
network must to accomplish in cooperation. By using a language 
such as MDL the user can specify necessary “data” for such a 
mission at a high level of abstraction. The user thus specifies the 
goals and priorities for the missions’ directions in an MDL file, 
which after translation will drive the mission implementation 
based on reflection about the network, in order to accomplish with 
the users’ requirements. The reflection consists of analysis and 
reasoning performed inside autonomous network nodes in order to 
allow the adaption required to face the changes in dynamic 
scenarios and users’ requirements. Node-mission responsible 
agents, called planning-agents, reason about the network 
adaptations based on the mission directions and the network 
actual state. The former gives the requirements for data from 
users’ point of view, while the latter is mainly characterized by 
nodes availability and environmental conditions. Their reasoning 
is made by a construction of believes about the network and its 
environment, which will help to achieve their goals and like this, 
comply with the network global mission. 
The representation of the mission is provided by a set of goals that 
each planning-agent desires to achieve, supported by a set of 
“known facts” that they have about the network and the 
environment. Based on these facts and their goals, the planning-
agents establish activity plans to achieve their goals, negotiating 
the best distribution of the work that must be done in order to 
accomplish with the global mission.  

The network global mission is divided in sub-missions, called 
node-missions, which are assigned to planning-agents present in 
each individual node. Each node has just one planning-agent 
(placed in the Domain Services Layer of the middleware), thus for 
comprehension of the remaining text, a node-mission is assigned 
to a node or to the planning-agent installed on it. The 
accomplishment of each node-mission will corroborate for the 
success of the global-mission. In order to complete their node-
missions, planning-agents break the node-mission into minor tasks 
that are related to the individual devices inside the node. A 
hierarchy among these concepts can be drawn: at the top is the 
global mission, followed by the node-missions, which is divided 
in several tasks in the node abstraction level. In the following, a 
formalization of these concepts is presented. 
A Global Mission is represented by a tuple composed by the sets 
called SM and SN, and also the functions MM and QF. SM is a 
sub-set of all possible node-missions that could be assigned to a 
node; SN is a sub-set of all the nodes in the network; the mapping 
function MM maps elements of SM into elements of SN; while 
the quality function QF evaluates the mapping provided by MM. 
It is represented by: 

QFMMSNSMGM ,,,=  

M is the set of all possible node-missions; 

SM is a set of node-missions (sub-set of M) that can be assigned 
to the nodes members of the set SN: 

{ }MmmSM ii ∈= | , { }Ii ,...,1∈ , 

where I is the total number of all possible missions, i.e. the 
number of elements of set M or SM⊂M; Each node-mission mi is 
represented by a tuple composed by a set of measurements that 
must be provided (SME), a set of conditions to the measurements 
(SMC), and a relation C that maps the set of conditions in the set 
of measurements: 

CSMCSMEmi ,,= , 

where SME is sub-set all possible measurements (ME); and SMC 
is the sub-set of all possible measurement conditions (MC),such 
as those related to periodicity, accuracy, time interval, range, 
among other. Such that SME ⊂ ME, and SMC ⊂ MC. C is the 
relation that maps conditions into measurements, where one 
measurement can be linked to none or several conditions. The 
opposite is also valid, i.e. one condition can be linked with none 
or several measurements: 

( ){ }SMEmeSMCmcmemcrC jkjk ∈∈== ,| , 

{ } { }JjKk ,...,1,,...,1 =∈ , 

where K is the total number of possible measurements conditions 
in the network (number of elements of the set MC); and J is the 
total number of measurements in the network (number of 
elements of the set ME). 

N is a set of all nodes that compose the network. 

SN is a sub-set of nodes in the network (a sub-set of N): 

{ } { }VvNnnSN vv ,...,1,| ∈∈= , 

where V is the total number of nodes in the network (the number 
of elements of the set N) or SN ⊂ N. 
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MM is the mission-mapping function that maps each node-
mission to a certain node. A node in SN can perform one or more 
node-missions, but each node-mission is atomic (from the entire 
network point of view), i.e. it can be assigned to only one node: 

( ){ }
{ } { }VvIi

SNnSMmnmfMM vivi

,...,1,,...,1
,,|

∈∈

∈∈==
. 

QF is a function that evaluates the mapping provided by MM, 
given a grade between 0 and 10 for each par (mi, ni): 

= ixQF  

where ( ) [ ]10,0,,|, ∈∈∈= iviivi xSNnSMmxnmg . 

In order to achieve the goals of an assigned node-mission, a node 
must perform several different smaller tasks, called node-tasks. 
To read a value from the sensor device, or to turn a sensor device 
on/off are examples of node-tasks. At the node abstraction level, 
a specific node-mission is a sub-set of all node-tasks that a given 
node can perform, represented formally by: 

{ } { }WwTttnm ww ,...,1,| ∈∈=  

where W is the total number of possible node-tasks that any node 
can perform (the number of elements of the set T) or nm ⊂ T 
where T is the set of all node-tasks that can be performed by any 
node. 

6. PLANNING-AGENT MODEL  
The proposed approach uses different kinds of agents; both 
cognitive and reactive ones, in order to perform different activities 
in the middleware, from the provisioning of simple services to 
complex reasoning about the network setup. To keep attention on 
the focus of this paper, only the model of the planning-agent, 
which is a cognitive agent, will be presented. 
The model used in the present approach for the cognitive agents is 
based on the model of mental attitudes, known as BDI model 
(Believes-Desires-Intentions) presented in [11]. The BDI 
approach appears to suite well to the problem addressed by the 
current work, as some decisions that must be taken by the agents 
in the proposed approach require cognitive skills to “wonder” if 
certain actions are adequate to achieve a desired result, based on 
knowledge about conditions that may interfere on the performance 
of those actions. In the current problem formulation, what is 
desired is to obtain information by means of sensing activities, 
which are the goals of a sensing mission. Such knowledge is the 
“believe” that the node has about the relevant conditions and the 
intentions are translated into the actions need to retrieve the 
desired information. It thus seams that this model fits well to the 
goals of the proposed approach.  
However, it is important to highlight that the approach used in this 
work is slightly different from the traditional BDI frameworks, 
such as [12] and [13], or more complex teamwork models, such as 
those presented in [14]. The major difference is that the model 
presented in this paper is focused on sensor networks activities, in 
which the network nodes do not perform any action that changes 
the world around them, what simplifies the model by eliminating 
the assumptions about this aspect. Besides, the proposal herein is 
simpler than those presented in the works mentioned above, as 
one can see in the remaining text. 

The planning-agent has a complex “mental” activity, being 
responsible for different kinds of reasoning related to the mission 
accomplishment. It communicates with all other kinds of agents in 
the system. Besides, it negotiates with other planning-agents 
installed in the other nodes about the distribution of the node-
missions. During these negotiations, it gathers information about 
the other nodes in order to achieve necessary knowledge about the 
network. It also has to maintain and update information about its 
own state, in order to inform other planning-agents and be capable 
to take right decisions. Environment conditions are also important 
in some of the deliberations taken by this agent. So this kind of 
information also constitutes its mental state, more precisely, as a 
part of its beliefs. In the following, a description about the beliefs, 
desires and intentions of the planning-agent, as well as a 
description of its plan and actions is provided. 
Beliefs: Basically consisting of four groups of information: 1) 
background information, such as maps of the region; 2) the 
planning-agent’s own conditions, translated in terms of the actions 
that it can perform and the node status (energy level, devices 
status, location, installed services, agents hosted in the node, etc); 
3) other nodes status; 4) environment conditions. 
Desires: The planning-agent has two types of desires: 1) General-
Desires: which correspond to “built-in” goals, such as: distribute 
the node-missions in order to achieve the best overall result 
efficiently, and cooperate with other nodes; and 2) Specific Goals: 
which are related to the assumed node-missions and that come to 
its desires’ set when it assumes the responsibility of a given node-
mission (mi). These goals are ranked according to the related 
node-mission priority. It will be used to drive the construction of 
the plans that governs the execution of the agent’s actions. 
Intentions: Following the same idea of the desires, the planning-
agent has two types of intentions: 1) General Intentions: which are 
directly related to the built-in goals, such as: to have an agreement 
about which that node will take the responsibility of a given node-
mission after a negotiation with other nodes; to have provided the 
required resources to a requesting node; to have provided the 
correct information to other agents about data of interest; and 2) 
Specific Intentions: which specify intentions related to actions 
needed to accomplish a given node-mission, such as: to have sent 
the samplings with the correct accuracy within the timing 
constraints, which comes to the agent via the sets SME and SMC 
to the corresponding mi that it assumes to accomplish. 
Actions: Operating System or direct device drivers calls to 
perform commands on the underlying software and hardware 
platform; send and receive messages to and from other agents 
(request, inform, reply, notify, subscribe, publish, propose, reject, 
accept). Particularly in the negotiations occurring during the 
reasoning, the types of messages used are: inform, propose, accept 
or reject.  
Plan: A plan is described in terms of a sequence of actions that an 
agent perform in order to achieve a sub-goal, decided by its 
deliberation and related to its intentions, and ultimately to achieve 
a motivational goal related to its desires. In order to accomplish 
with a given node-mission, the agent choose specific tasks (tw) 
such as they form a set that fulfill that node-mission. A plan will 
be a list of tasks that have to be done in order to accomplish with 
the node-missions allocated for that node. If a new node-mission 
is assumed and some of the tasks that are required to accomplish it 
are already in the plan, there is no need to insert them again in the 
plan, as their results are reused for this new node-mission. The 
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planning-agent needs to construct a new plan, which can be totally 
new or at least a reviewed version of the current one, each time at 
least one of the following events occurs: it assumes a new node-
mission; the conditions of the environment changes; a change in 
the network or in the user requirements occurs. This reflects the 
flexibility of the network to adapt itself according to the 
dynamicity of the network operation.  

6.1 Architectural Structure 
After the presentation of the cognitive planning-agents’ internal 
model, its architectural structure can be described, based on the 
BDI architecture presented in [15], and is shown in Figure 5. 

 
Figure 5. Planning-agent Internal Architectural Structure  

In Figure 5 is shown that the agent takes the perceptual inputs 
(changes in the network or in the environment, data from its 
sensors, etc) and its current beliefs, and performs an update of 
their beliefs by means of the Belief Renew Function. After 
analysis of the updated beliefs and current intentions, the Option 
Generator function selects a sub-set of the desires representing 
the next possible goals to perform. Its beliefs, desires and 
intentions are then used as inputs to a Filter function that 
represents the deliberation of the agent and will provide the 
update of its intentions. The planning-agent constructs its own 
plans by reasoning about its current intentions and its beliefs. 
Ultimately the generated plans will fulfill with goals defined in its 
desire base, as the current intentions were decided based on the 
analysis of the set of the possible goals, by the use of the Option 
Generator. The result of the Planning is the selection of actions 
that are needed to perform the current intentions. It considers the 
current plan and beliefs, in order to select and order the execution 
of the actions. The current plan is used to reuse some previous 
decisions, and the current beliefs to evaluate which actions are 
more adequate to take in relation to the current conditions. 

7. MULTI-AGENT REASONING  
As stated above, the planning-agents construct believes that will 
guide their decisions based on the mission needs (the goals in 
their desires), which are characterized by node-missions. As the 
network receives a global-mission, the nodes will try to find a best 
fit to accomplish this mission, which characterizes the mission 
setup reasoning. Their decisions will influence the mission 
mapping function (MM), which may change in case of adaptation 
during the system runtime, due the adaptation reasoning. The 
mechanisms for the network setup and adaptation are described in 
the following. 

7.1 Mission Setup  
When a mission is received, the reasoning required to perform the 
network setup is divided in four steps, which are explained more 
in detail in the following. 

Step One: each node performs an analysis of the elements of the 
set SM, as well as its capabilities and the surrounding 
environment. If a node can provide the measurements of the set 
SME for a certain node-mission mi, satisfying the respective 
relation C, it “declares” itself as “candidate” to perform mi. At 
this time, each node constructs a partial belief in relation to mi, 
only based on its own knowledge about the network, which is 
composed by the mission needs and its own capabilities.  

Step Two: if a node considers itself as “candidate” to accomplish 
mi, it informs its “candidacy” to the other nodes, using an “inform 
message”. However if the node does not consider itself as 
“candidate”, it will just listen for the “candidacy” of other nodes. 

Step Three: after a pre-established time-out, if no one considers 
itself as “candidate”, no message will be exchanged. Thus, all 
nodes that can provide the data required by the measurements 
described in the set SME, but that cannot satisfy the relation C, 
communicate with the other nodes informing about the conditions 
that it can satisfy. The node, which provides the assurance closest 
to the desired one (specified by C), takes the node-mission. This 
characterizes a best-effort way to solve the problem. 

Step Four: nodes analyze their own conditions as well as 
conditions of the others, deciding which one must take mi. Such 
analysis uses the quality function QF and the node-tasks needed 
to perform mi. By maximizing g(mi,nv), nodes know which one 
(nv) will be in charge of the node-mission mi. If two nodes are 
capable to accomplish the node-mission, the one that has best 
conditions, e.g. remaining energy and/or other influencing 
parameters, takes the responsibility for that node-mission. In other 
words, the function g has a higher value for that node in 
comparison with the others. With this information, the nodes 
construct a common belief. If two nodes have the same value for 
the function g for the same node-mission, one of them is then 
randomly chosen. 

Communication in wireless sensor networks can face problems 
that compromise message delivery. In case, any message of the 
coordination protocol is not received by any node in any of these 
steps, the node acts according to its belief from the last received 
message, if any. If it does not receive any message, it will act 
according to its initial partial belief. When the communication is 
reestablished, nodes will “listen” to the passing messages related 
to the same node-mission (mi) measurements, and then they will 
redo the above steps in order to achieve a new global-belief. 

If compared with a centralized task distribution, the advantage in 
performing this reasoning in a distributed way is to avoid 
communication to and from the base station, which would 
consume more energy if compared with the local computation of 
the task allocation. As presented in [22], communication is the 
main source of energy consumption in sensor nodes, so 
communicating requires more energy than computation. In order 
to achieve a centralized task distribution that has the same quality 
as a distributed one can achieve; data about the current status of 
the nodes have to be sent often to the base station, which would 
increase the energy consumption. On the other hand, by the use of 
the distributed approach as presented, the nodes decide locally 
how to divide the new job, according to their status, without the 
need to send information through the network to the base station. 
This same argument holds to support the distributed way in which 
the adaptation is done, which is presented in the next sub section. 
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7.2 Mission Adaptation  
During the system runtime, mission requirements and/or 
operational conditions can change. Nodes can perceive these 
changes, which induces node believes to be updated. If a change 
makes a node unable to proceed in the mission accomplishment, 
the network must adapt itself to solve the problem. The reasoning 
performed by the planning-agents will try to find another node 
that can perform node-mission mi in the place of the previous 
node. This reasoning is similar to the one presented above, but 
there are two different circumstances that also must be taken into 
account: (1) the node simply fails; (2) the node continues to work, 
but is aware that it cannot continue performing the mission. 

Considering the first case, faulty nodes are perceived by other 
healthy nodes, which have participated with the faulty one in the 
initial mission establishment reasoning. As nodes can perceive 
that the node responsible by the node-mission mi is not 
responding during an established time-out period, they redo the 
reasoning to decide which one must perform mi. Information 
about the failure is added to the belief of these healthy nodes. 

In the second case, the node that becomes unable to accomplish 
mi informs this situation to the nodes that participated in the 
mission establishment reasoning. Further they decide which one 
will take the node-mission previously assigned to that node. 

Another situation that requires adaptation is when changes make 
other nodes (more) capable to accomplish a certain node-mission 
mi. An adaptation can be triggered if the node-mission was 
previously assigned in a best effort way, as explained in the step 
three in section 3.2. The need for a best service can also trigger 
the adaptation, foreseeing a possible increase in the users’ 
requirements priority. The mechanism of these changes is 
implemented by an exchange of “proposal” and “accept” or 
“reject” messages.  

Adaptations decisions are also based on the quality function QF. 
It is done during the establishment of the best mapping of node-
missions to nodes as explained in the section 3.2. The target is 
always to maximize the value of QF, what can be achieved by 
maximizing the function g(mi,nv) for each node-mission mi: i.e. 
max(g(mi,nv)). 

As result of the procedure explained above, all nodes know which 
node nv has taken the responsibility for the node-mission mi, 
(similarly to the establishment of the node-missions mapping). 
Therefore, nodes’ beliefs are updated with this knowledge. In the 
same way as explained before, if two nodes have an equal value 
of function g for a given node-mission, one of them is chosen 
randomly. 

7.3 Considerations about Complexity  
As the middleware is intended to run in a variety of nodes, from 
resource constrained nodes to resource rich ones, the mechanisms 
presented above have to be customized for each type of node.  

Considering resource rich nodes, function g used to evaluate the 
quality of a given mapping may be an elaborated and computing 
intensive algorithm. However, when it comes to the low-end 
nodes, simpler functions may take place in order to perform the 
evaluation of the part of the mission related to them. The same 
way that there is a tradeoff between energy consumption and 
communication resource usage, there is also a tradeoff in the 
amount of resources that should be used and the quality of a 

solution provided by the used algorithm. It is possible that an 
optimal solution is not achieved by a simpler algorithm, but 
considering the resource constraints, a sub-optimal can be better 
than an optimal one that depletes the available resources. 

The same kind of variation is present in the internal components 
of the planning-agent that inhabit different types of sensor nodes. 
The above explained Option Generator Function, Filter Function 
provides for that the Planning can be much richer, considering 
much more parameters and having more complex algorithms in 
the resource rich nodes, if compared with the same functions in 
the low-end nodes. However, it is important to highlight that 
every node of a given kind use the same set of functions, so the 
coherence is maintained.    

8. RELATED WORKS 
Agilla [16] is one of the precursors in the use of mobile agents in 
middleware for WSN. Its approach is to use agents that can move 
from one node to another in the network. It also allows multiple 
agents to run in the same node. These characteristics provide the 
desired features of energy saving, as the agents can run near to the 
data avoiding unnecessary communication. In comparison with 
the proposed approach, the use of agents is not restricted to 
moving and using services around the network but also to help in 
the network reflection and decision for adaptability using multi-
agents.  

In [17] a proposal to use a distributed mechanism to control 
adaptive sampling to support energy-constrained network 
operations is presented. In the proposal, each sensor is considered 
an autonomous agent, enabling decentralized control of the 
sampling rate of sensor nodes in the application domain of flood 
monitoring. Besides the contribution in the increase the efficiency 
of the energy consumption, the goal of this approach is also to 
maximize the information value of the data collected to the base-
station. The major differences between our work and the one 
mentioned above are respectively: the consideration of a 
heterogeneous sensor network instead of a homogenous one; the 
domain independent instead of a domain-specific approach; and 
the direct cooperation among the agents instead of just the 
decentralization of the problem. 

AWARE [18] is a project that proposes a middleware whose goal 
is to provide integration of the information gathered by different 
type of sensors, including WSN and mobile robots. Our proposal 
aims also at addressing heterogeneous sensors, but also concerns 
like QoS, as presented in [9], and runtime reflection to address 
changes in the environment and in the network. Moreover, our 
approach provides the capability of autonomy to the network 
nodes, by using an agent-orient approach. In the referred 
middleware, the nodes do not have the same capability.  

In [19] an approach that uses Artificial Intelligence to configure 
an underlying middleware is presented. This approach uses the 
concepts of missions and goals to plan the allocation of tasks in a 
network of homogeneous nodes. The handling of heterogeneous 
nodes is one of the differences between the referred work and the 
one presented in this paper. Additionally, in that work, the 
intelligence is outside the middleware by means of just sending 
“commands” or adjusting its parameters. In our presented 
approach, agents make part of the middleware, spreading 
intelligence over the network.  
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In [20] an information processing paradigm for intelligent sensor 
networks is presented. Nodes in sensor networks have different 
levels of autonomy in terms of the signal processing, information 
fusion and situation assessment in order to contribute with the 
overall system decision making. This approach is based on the use 
of a genetic algorithm to provide learning features to the sensor 
nodes, and fuzzy cognitive maps to perform situation assessment. 
The sensor networks aimed by this work are those composed only 
by rich nodes, as the architecture and the techniques used are quite 
heavy to fit in low-end nodes. On the other hand, the proposal of 
the present paper is to address heterogeneous sensor networks that 
are composed by both low-end and rich nodes, allowing them 
cooperate in order to achieve the overall mission goals.    

9. CONCLUSION AND FUTURE WORK 
This paper presented the concepts of a middleware needed to 
address mission-driven heterogeneous sensor networks deployed 
in highly dynamic scenarios. These scenarios require middleware 
reflection to support adaptations to face constant changing 
conditions during runtime. Multi-agents reasoning is used in order 
to setup, configure and reconfigure the network. Besides, a formal 
definition of the mission statements and conditions (described in 
MDL) was presented, as well as its mapping to elements of a BDI 
approach that supports the proposed network wide reasoning.  

The direction of the ongoing and future work includes enrichment 
of the Mission Description Language specification, adding 
abstractions that can help the user specify missions. Another 
ongoing work is the implementation of the simulation to provide 
results that validate the presented ideas. In order to do that, the 
adaptation of a simulator for wireless networks called Shox [21] is 
being done. This adaptation consists of the inclusion of the agents 
concepts in the simulator framework, and an interface with the 
Mission Specification Console.    

10. ACKNOWLEDGMENTS 
E. P. Freitas thanks the Brazilian Army for the given grant 

to follow the PhD program in Embedded Real-time Systems in 
Halmstad University in cooperation with UFRGS in Brazil. 

11. REFERENCES 
[1] Culler, D., Estrin, D. and Srivastava, M. Overview of sensor 

networks. IEEE Computer, vol. 37, no. 8, pp. 41–49, 2004. 
[2] Henricksen K. and Indulska, J. A software engineering 

framework for context-aware pervasive computing. In 
Proceedings of PerCom, pages 77–86. IEEE Computer 
Society, March 2004. 

[3] Madden, S., Franklin, M. J., Hellerstein, J. M. and Hong, W.  
TinyDB: An acquisitional query processing system for 
sensor networks. ACM Transactions on Database Systems, 
30(1):122–173, 2005. 

[4] Liberatore, V. Implementation challenges in real-time 
middleware for distributed autonomous systems. In 
Proceedings of Second IEEE SMC-IT, 2006. 

[5] Vinyals, M., Rodríguez-Aguilar, J.A. and Cerquides, J. A 
Survey on Sensor Networks from a Multi-Agent perspective. 
In Proceedings of 2nd International Workshop on Agent 
Technology for Sensor Networks (ATSN-08), 2008. 

[6] Freitas, E. P., Wehrmeister, M. A., Pereira, C. E., Wagner, F. 
R., Silva Jr., E. T., Carvalho, F. C. DERAF: A High-Level 
Aspects Framework for Distributed Embedded Real-Time 
Systems Design. In Proceedings of 10th International 
Workshop on Early Aspects, Springer, 2007, pp. 55-74. 

[7] Tesanovic, A. et al, Aspects and Components in Real-Time 
System Development: Towards Reconfigurable and Reusable 
Software. Journal of Embedded Computing, IOS Press, v.1, 
n.1, 2005. 

[8] Freitas, E. P., Wehrmeister, M. A., Pereira, C. E. and 
Larsson, T. Reflective middleware for heterogeneous sensor 
networks. In Proceedings of 7th Workshop on Adaptive and 
Reflective Middleware (ARM'08), ACM. 2008. pp. 49-50. 

[9] Freitas, E. P., Wehrmeister, M. A., Pereira, C. E. and 
Larsson, T. Real-time support in adaptable middleware for 
heterogeneous sensor networks. In Proceedings of 
International Workshop on Real Time Software (RTS'08), 
IEEE. 2008. pp. 593-600. 

[10] IEEE Std 716-1995, 1995. IEEE standard test language for 
all systems-Common/Abbreviated Test Language for All 
Systems (C/ATLAS), IEEE, Inc. 

[11] Bratman, M. E. Intention, Plans, and Practical Reason. 
Cambridge, MA, 1987. 

[12] Cohen, P. R. and Levesque, H. J. Teamwork. Nous, 
25(4):487–512, 1991. 

[13] Grosz, B. and Kraus, S. Collaborative plans for complex 
group actions. AIJ, 86:269–358, 1996. 

[14] Pynadath, D. V. and Tambe, M. Multiagent teamwork: 
analyzing the optimality and complexity of key theories and 
models. Proceedings of 1st International Joint Conference 
on Autonomous Agents and Multiagent Systems (AAMAS-
02). ACM. 2002. pp. 873-880. 

[15] Weiss, G. Multiagent Systems: A Modern Approach to 
Distributed Artificial Intelligence. The MIT Press, 1999. 

[16] Fok, C.-L., Roman, G.-C. and Lu, C. Rapid development and 
flexible deployment of adaptive wireless sensor network 
applications. Proceedings of the 24th ICDCS’05, 2005. 

[17] Kho, J., Rogers, A. and Jennings, N. R. Decentralised 
Adaptive Sampling of Wireless Sensor Networks. 
Proceedings of 1st International Workshop on Agent 
Technology for Sensor Networks (ATSN-07), 2007. 

[18] Gil P. et al. Data centric middleware for the integration of 
wireless sensor networks and mobile robots. In Proceedings 
of 7th ROBOTICA’07. 2007. 

[19] Schmidt D. C. et al. A Decision-Theoretic Planner with 
Dynamic Component Reconfiguration for Distributed Real-
Time Applications. Proceedings of 8th ISADS'07. 2007. 
pp.461-472. 

[20] Leung, H., Chandana, S. and Wei, S. Distributed sensing 
based on intelligent sensor networks. IEEE Circuits and 
Systems Magazine, 8(2). pp. 38-52, 2008.     

[21] Lessmann, J., Heimfarth T. and Janacik, P. ShoX: An Easy to 
Use Simulation Platform for Wireless Networks. In 
Proceedings of Tenth International Conference on Computer 
Modeling and Simulation, 2008. pp. 410-415. 

[22] Akyildiz, I. F., Weilian S.,    Sankarasubramaniam, Y.,    
Cayirci, E.   A survey on sensor networks. IEEE 
Communications Magazine, 40(8). pp. 102-114, 2002.

 

32



Agent-based Sensor-Mission Assignment for Tasks
Sharing Assets∗

Thao Le
Department of Computing

Science
University of Aberdeen

AB24 3UE, UK
thao.le@abdn.ac.uk

Timothy J. Norman
Department of Computing

Science
University of Aberdeen

AB24 3UE, UK
t.j.norman@abdn.ac.uk

Wamberto Vasconcelos
Department of Computing

Science
University of Aberdeen

AB24 3UE, UK
wvasconcelos@acm.org

ABSTRACT
A sensor network may be required to support multiple mis-
sion to be accomplished simultaneously. Furthermore, the
environment may change at any time; i.e. a new mission
may arrive at any time. In solving this many-mission, many-
sensor problem in dynamic environments, conflicts between
missions may occur for the use of sensor resources. A mecha-
nism to match sensor resources to mission demands thus be-
comes necessary. In this paper, motivated by the conserva-
tion of resources, we consider the problem of sensor-mission
assignment, in which sensors may be shared and reassigned
between tasks. To achieve this, sensors are represented by
agents, which coordinate to establish virtual organizations
to meet mission requirements. The agent coordinating the
achievement of a mission utilises a novel multi-round, Knap-
sack based algorithm, GAP-E, to allocate sensor agents to
tasks based on bids received. Through simulations, we em-
pirically demonstrate that this model provides a significant
improvement in the number of completed missions as well
as execution time.

Categories and Subject Descriptors
I.2.9 [Computing Methodologies]: Artificial Intelligence—
Sensors

General Terms
Design, Measurement, Experimentation

Keywords
Sensors, Dynamic allocation, Resources sharing

1. INTRODUCTION
When a sensor network is deployed it is typically required to
support multiple simultaneous missions. A given sensor may
be beneficial to some missions, providing varying amounts

∗The first author is a PhD student

of information to each one. Missions, on the other hand, can
appear at any time and may place varying demands on sen-
sors. In such multiple sensors and multiple missions prob-
lems in dynamic environments, conflicts between missions
may occur for the use of the same sensor resources. Thus,
we need efficient mechanisms to assign individual sensors to
appropriate missions on the basis of information need.

An additional pragmatic problem arises in this domain. Due
to the energy limitation and also to prolong the lifetime of
the sensor network, conservation of energy consumed is an
important consideration in managing wireless micro-sensor
networks. However, to the best of our knowledge, in exist-
ing sensor-mission assignment approaches, each asset may
be assigned to only one mission at any one time. The fact
that assets may not be shared can waste energy since there
might be more than one mission that requires the same kind
of information which can be provided by a single sensor.
Making decisions on how best to utilize limited sensor re-
sources in order to satisfy mission demands without conflict
and without wasting resources due to redundant assignment
is, therefore, the key issue in sensor-mission assignment

Motivated by such necessity, we find that allowing sensors to
be shared and to be reassigned between multiple tasks may
provide substantial savings in sensor battery, often leading
to improvements to the network’s ability to meet its global
objectives. In order to realize the idea, we need to decom-
pose each mission to a set of specific tasks so that we can
identify which tasks can share assets and which assets should
or could be reassigned as circumstances change.

Within the model presented here, sensors are represented
in the system by agents. These “sensor-agents” decide au-
tonomously whether to offer to become involved in a mission
depending on both their available resources and, in a broader
sense, the environment that they are situated within. They
communicate with each other, passing and sharing informa-
tion when needed. In our context, they operate in a coopera-
tive manner in which their resources are contributed toward
achieving the global objective: the successful allocation of
the most appropriate sensors to a mission according to its
information requirements.

For each task, the sensor-agent located closest to its centre
will act as the coordinator for that task; each task represents
an information need within a geographical area at a certain
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time. The coordinator agent initiates interaction with other
sensor agents within the scope of the task using a variant
of the well-known contract net protocol [13]. The coordi-
nator issues a call for bids for the delivery of information
pertaining to the needs of the task. Each sensor agent re-
ceiving this call will analyze the information requirements
of the task and make a bid only if it decides that it can sat-
isfy the request based on its type and current workload. On
the basis of the bids received, the coordinator agent utilises
a novel multi-round, Knapsack-based algorithm, GAP-E, to
allocate sensor agents to that task.

In this paper we make the following contributions to the
state of the art. First, our solution allows the sensors to be
shared between tasks, significantly improving the percentage
of successfully allocated missions. Second, the search space
of the problem and, consequently, the time consumed to find
a solution, are greatly reduced. This increase the reliability
of the system in practical situations.

The remainder of this paper is structured as follows: Section
2 details our approach including the novel GAP-E algorithm
and how it is employed to provide our solution to the sensor-
mission assignment problem in dynamic environments. In
Section 3 we present a rigorous evaluation of our approach
with varying sensor asset availability and varying mission
arrival rates against existing solutions and an estimate of
the optimal solution. Section 4 introduces the assignment
problem within the broader context of the identification of
information needs, sensor asset management, deployment
and information delivery. We relate our model to existing
research in this area, discuss the shortcomings of our model
and point towards avenues for future research in Section 5,
and, finally, we present our conclusions in Section 6.

2. PROPOSED APPROACH
Our proposed approach provides a solution for allocating
a collection of intelligence, surveillance and reconnaissance
(ISR) assets to a number of missions in order to satisfy the
information requirements of that mission. These ISR assets
are composed of various sensors, each with its own location
and sensing range, and each sensor is able to provide differ-
ent utilities to different tasks. We equate these sensors with
agents, as each sensor is wrapped by an autonomous com-
putational entity, that is, a software agent, which communi-
cates with others by means of message-passing. A mission
consists of a number of tasks, each task having a specific
type, which, in turn, requires a number of sensor types and
each task has a specified own location and operational range
and has its own sensing demand. A task can only be satis-
fied if its demand is met (within a threshold) and all of its
sensor types are present in its allocation. If a task is not
satisfied, the mission requiring that task is not successful.

More formally, a sensor si is defined as the tuple 〈γi, li, ri, ui〉
where γi ∈ Γ specifies si’s type, li and ri are the location
and sensing range of si, ui is the maximum utility si can
provide in a single time unit, Γ is the set of all sensor types.
A mission M is defined as a tuple 〈T, lm, rm, timem〉 where
T is a set of required tasks, lm and rm are M ’s location
and operational range, timem is the time when M is active.
Each task tj ∈ T is defined as the tuple 〈δj , lj , rj , dj〉 where
δj ∈ ∆, δj = {γk|γk ∈ Γ′ ⊆ Γ} denotes tj ’s type, ∆ is the set
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Figure 1: Our proposed approach as a flowchart.

of all task types, lj and rj specifies tj ’s operational range (lj
is located inside (lm, rm)) and dj is the sensing demand that
tj requires. The active time for tj is the same as timem We
denote uij as the utility that si can provide to tj , which is
defined as a percentage of ui calculated by the ratio between
the overlap of the ranges of si and tj and the range of si. If
the operational areas of si and tj do not intersect, the value
of uij will be 0.

Here we assume that the sensors cooperate with each other
and they know both their locations as well as the location of
other sensors. Moreover, we also allow a sensor to provide its
service to multiple same-type tasks (for example, an audio
sensor can provide the same information to all the detecting
tasks that require its service). The sensor agents communi-
cate with each other based on the message exchange protocol
detailed in [7]. A mission can arrive at any time and there
may be more than one mission active at any given time.

When a mission M arrives with its tasks, our approach will
attempt to allocate all the sensors to the tasks as follows
(see Figure 1):

1. The execution order of the tasks is established. Two
tasks ti and tj belong to the same execution set (i.e.
they can be executed at the same time) if their op-
erational ranges do not intersect or their sensor type
requirements do not overlap. If, however, two tasks
have the same type, both will be in the same execu-
tion set. Initially, the execution set containing t0 will
be processed first followed by the set containing the
next unprocessed task until all the tasks have been
handled.

It can be observed that the outcome of this algorithm
depends on the order in which the tasks are executed.
Obviously, it is impossible to determine in advance the
execution order of the tasks in order to obtain the op-
timal outcome. However, to compliment the lack of
available sensors for the tasks that are executed in sub-
sequent orders, we allow the sensors to be shared and
reassigned between these tasks. By having this feature,
the tasks which are executed later can grab previously
assigned sensors which, otherwise, will be unavailable.
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2. For each task tj :

(a) Identify the available sensors within tj ’s opera-
tion range and add to its sensor list. This is
done by querying each sensor agent with a mes-
sage containing the task information (task type,
location) and waiting for an answer from that sen-
sor1. Each sensor will analyze the task and de-
cide to bid for the task, providing the amount of
utility it can provide. Moreover, if a sensor has
already been allocated to one or more tasks of
the type δj , it can also provide a service to tj .
This will enable more tasks to be successfully al-
located without reducing the practicability of the
approach or putting more constraints on the sen-
sors. After all the sensors within the operation
range have been queried, if the available sensors
do not cover the sensor requirements of tj (i.e.
a required sensor type cannot be found), then tj

cannot be allocated and the mission M fails.

(b) If all required sensor types are available for the
mission, the agent coordinating the tasks uses our
multi-round GAP-E algorithm to find a potential
allocation of sensors for tj . The details of the
GAP-E algorithm are presented in Section 2.1

(c) After all the rounds are completed and all task
requirements are satisfied, there is a final post
processing step to release all the superfluous sen-
sors (the one that can be released without vio-
lating tj ’s requirements - both in terms of utility
and sensor type). If there is more than one sen-
sor which can be released, select the one with the
smallest utility. This is to ensure that tj will never
be allocated more sensor agents than needed.

(d) When the GAP-E finishes, if the final allocation
does not satisfy tj ’s requirements, M is failed.
However, if tj is successfully processed, the next
step will attempt to reassign these allocated sen-
sor to other tasks (not necessary from M) that
are active.

3. When tasks in T have been processed, mission M is
completed successfully.

2.1 The GAP-E Algorithm
In this section, we detail our algorithm, GAP-E, to allocate
sensors to a particular task tj . In order to realize the idea
of stricter governing of selected sensors round-by-round, we
introduce two additional matrices. Pj is the priority matrix
that indicates the importance relationship amongst sensor
types with regarding to tj . Cj is the cost matrix that spec-
ifies the cost that will need to be met if tj requires the ser-
vice of a certain sensor. In addition, a budget bj acts as a
constraint that governs the number of sensors that can be
allocated to tj .

Figure 2 summarizes the steps that GAP-E takes to find an
allocation to tj , the details of which as follows:
1We do not consider failure cases in which, for example,
sensor agents do not respond to such requests. There are,
however, well known mechanisms for handling such situa-
tions such as “setting a deadline for receipt of responses” or
simply add “with a deadline”.
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Figure 2: GAP-E algorithm as a flow chart.

1. Initially, we assume that tj requires nj sensor types
(|δj | = nj), the priority matrix Pj = {pi|i = 1...nj}
where pi is the sensor type that has the ith importance
with respect to tj . This information is provided by the
mission M. For example if tj has the set of required
sensor types δj = {1, 2, 3} and Pj = {3, 2, 1} meaning
that 3 is the most important sensor type and 1 is the
least important one. Nonetheless, all these types must
be presented in the final allocation otherwise the task
will fail.

2. The utility matrix of the candidate sensors to tj is
updated. Based on the value of Pj , GAP-E introduces
the concept of the cost matrix Cj = {cij} for all si that
has uij > 0. (cij is the cost of tj using si’s service as
given in the bid received from si) and bj as the overall
budget of task tj . Here, Cj has a similar objective as
Pj ; it is used to specify the relation between the sensor
types and a particular task. The budget, bj , is used to
control the number of sensors allocated to tj .

3. Next, there will be nj rounds, with each round r =
1..nj composed of the following steps:

(a) Reconstruct the matrix Cj so that if k = pi, l = pj

with pi, pj ∈ P, i < j then ck′j < cl′j ∀sk′ , sl′ :
γk′ = k,γ l′ = l. If sensor type k is more impor-
tant than type l then all the sensors of type k will
have a lower cost than those of type l.

(b) Run the FPTAS (Fully Polynomial Time Approx-
imation Scheme) algorithm [14] with the input of
Cj , U = {uij} and budget b = bj ∗r/nj−cost(A′)
with A′ being the allocation from the last round.
The obtained solution is then merged with A′ to
form the temporary allocation A.

(c) If A does not contain at least one sensor of type
p1, we need to replace a sensor in A with a sensor
of type p1. Providing there exists some available
sensors of type p1 for tj , the one with a minimum
cost is selected as the target sensor. If, however,
there are some sensors of type p1 within tj ’s range
but they are all allocated to other tasks, GAP-E
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will try to reassign sensors for one of such task
in order to obtain a sensor of type p1. In more
details, if GAP-E can identify a task tk that is
currently holding sensor sk of type p1 and tk can
find a replacement sensor sl without violating tk’s
allocation requirements, GAP-E will reassign sl

to tk and sk is selected as the target sensor. If
no target sensor can be found then tj fails and
consequently, M fails.

If adding this target sensor to A causes the allo-
cation to go over-budget then we need to remove
other sensors from A to accommodate this new
sensor. This is done by repeatedly removing a
sensor, which is (1) a sensor of type k that has
more than two members within A or (2) a sensor
of type l that has never been the first member
of P in this or previous rounds. If more than
one removable sensors can be identified, the one
which provides the lowest utility is removed first.
If the budget constraint is still violated but no re-
movable sensor can be identified then tj fails and
consequently, M fails.

(d) Reassess Pj so that p1 is now the sensor type that
has the highest importance and does not appear
in A. The order of pi|i = 2..nj is kept as the
initial version of Pj . If all the required sensor
types are presented in A, Pj will revert back to
the initial constructed version.

4. After nj rounds has been completed, the GAP-E algo-
rithm terminates.

In the following section, we present an example to illustrate
the operations of this algorithm.

2.2 GAP-E Example
The following example demonstrates the workings of our
approach. Let us assume that t1 = {δ1, l1, r1, d1} where
δ1 = {1, 2, 3, 4} (sensor types 1, 2, 3 and 4 are required for
task t1) and d1 = 1.5 (the task has a demand of 1.5). Ad-
ditionally, there are the following candidate sensors within
t1’s operational range: S′ = {s11, s12, s21, s22, s31, s41, s42}
with sij denoting sensor type i and index j. Here we have
U = [u111, u121, u211, u221, u311, u411, u421] = [0.5, 0.25, 0.4,
0.7, 0.5, 0.15, 0.75] where uij1 is the utility that sij can pro-
vide for t1.

Initially, the budget for the task is set to b1 = 2, and the
initial priority matrix is P1 = [1, 2, 3, 4] (i.e sensor type 1 is
most important, followed by type 2, etc.). The initial cost
matrix is generated from the bids received from the can-
didate sensors as C = [[c11, c12], [c21, c22], [c31], [c41, c42]] =
[[0.1, 0.15], [0.03, 0.17], [0.2], [0.05, 0.16]]. There will be 4 rounds
as follows:

• Round 1:

– The matrix C1 is recalculated based on C as C1 =
[[c11, c12], [c21, c22], [c31], [c41, c42]] = [[0.1, 0.15],
[0.28, 0.42], [0.7], [0.8, 0.91]]2

2Since we have 4 sensor types and P1 = [1, 2, 3, 4], c11 and

– b = 0.5 (the total budget is initially split equally
between the four sensor types required for this
task), FPTAS returns A = {s11, s12}

– Now we have all sensors of type 1, the priori-
ties among tasks are now revised such that P1 =
[2, 1, 3, 4]. The allocation is within budget and so
we do not consider sensors to be removed from
the allocation. cost(A) = 0.25, U(A) = 0.75

• Round 2:

– The matrix C1 is recalculated as C1 = [[c21, c22],
[c31], [c41, c42]] = [[0.03, 0.17], [0.7], [0.8, 0.91]]

– b = 1.0 − 0.25 = 0.75, FPTAS returns A = {s21,
s22}, combined with A′ (the allocation from the
previous round), we have A = {s11, s12, s21, s22}

– Now we have sensors of type 1 and 2, thus P1 =
[3, 1, 2, 4]. The removal of sensors from the allo-
cation need not be considered. cost(A) = 0.45,
U(A) = 1.85

• Round 3:

– The matrix C1 is recalculated as C1 = [[c31], [c41,
c42]] = [[0.2], [0.8, 0.91]]

– b = 1.5− 0.45 = 1.05, FPTAS returns A = {s42},
combined with A′ we have A = {s11, s12, s21, s22,
s42}

– Now we have sensors of type 1, 2 and 4 but since
p1 = 3 and there is no type 3 in A, we will need
to add a sensor of type 3 to A. Since there is
only one sensor of such type, s31 needs to be
added. However, adding s31 will cause the bud-
get to be exceeded and we, therefore, will need to
remove sensors from the allocation. Any of the
sensors in A can be removed and thus, s12 is re-
moved first since it has the lowest utility (u121).
By doing so, the cost of the solution falls be-
low the budget and we have a valid allocation
A = {s11, s21, s22, s31, s42} with cost(A) = 1.41
and U(A) = 2.85. Additionally, we have all the
required sensor types, P1 = [1, 2, 3, 4]

• Round 4:

– The matrix C1 is recalculated as C1 = [[c12], [c41]]
= [[0.15], [0.8]]

– b = 2.0− 1.41 = 0.59, FPTAS returns A = {s12},
combined with A′ we have A = {s11, s12, s21, s22,
s31, s42}

– As we have all the required sensor types, P1 =
[1, 2, 3, 4] cost(A) = 1.56, U(A) = 3.1

Thus, GAP-E returns a valid allocation of A = {s11, s12,
s21, s22, s31, s42}. However, since U(A) = 3.1 is greater
than d1 = 1.5, we will need to release superfluous sensors.
Of the sensors in A, we can release any sensor in the set
{s11|s12, s21|s22}. Thus, s12 will be released first because

c12 remains the same, c21 and c22 are increased by 1
4 , c31 is

increased by 1
2 , c41 and c42 are increased by 3

4 .
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u211 is smallest of all (0.25). This brings the U(A) down
to 1.6. After removing s12, U(A) = 2.85 and still greater
than d1. This time we can only release either s21 or s22 oth-
erwise the sensor type requirements of t1 will be violated.
Thus, s21 will be released since u211 < u221. As a result,
A = {s11, s22, s31, s42} is the final allocation to t1.

Having defined our model, next section will details the re-
sults of our experiments.

3. EVALUATION
This section evaluates our approach in a range of different
environments and assesses its performance in terms of the
number of successfully completed missions and the amount
of processing time required. There are a number of internal
variables which control the behavior of our model as well as
external variables which define the environment in which our
model is being used. The system developed in Java allows
us to manipulate these variables, conduct experiments and
analyze the results.

3.1 Simulation Setup
Our approach is evaluated using randomly generated prob-
lems. A set of data is generated for each run. We com-
pare the performance of our model (Multiple-Sensor-Mode
or MSM) with the following alternatives:

1. Exclusive sensor mode (ESM): here each sensor can
only be assigned to one task at a time. For each task,
we test all combinations of sensors within the avail-
able candidates with the restriction that each sensor
type only has one member3. The combination provid-
ing the highest utility value will be checked against
the demand of the task, and, if acceptable, it will be
selected as the final allocation for that task.

2. Shared sensor mode (SSM): this control operates in a
similar way to ESM. The difference being that it al-
lows sensors to be shared between two same-type tasks,
which is exactly the feature that our approach also pos-
sesses. Again, the combination providing the highest
utility will be selected as the final allocation if it sat-
isfies the demand of the task in question. This is our
implementation for the work presented in [9] (see sec-
tion 5.

3. Shared sensor mode but without demand checking (SSM-
NC): this control operates in a similar fashion to SSM.
However, there is no evaluation against the task’s de-
mand. Instead, the combination providing the highest
utility will be selected as the final allocation for that
task. This will give us an idea of what the optimal
success rate of the whole mission might be4

3Since the assignment problem is NP-Hard it is time- and
memory-consuming to go through all possible combinations.
Thus one single sensor per type is chosen to reduce the run-
ning time of this case.
4This cannot be considered to be the optimal result since
it does not involve checking all the combinations of all the
potential allocations for each individual task and then mea-
suring their requirements. There are cases where optimal
allocation involves non-local maxima allocation. Given the
set of experiments need to be carried out, however, it is

We recall from Section 2 that a mission is composed of a
set of individual tasks and can it only be satisfied if all of
its tasks can be allocated. Here, the mission arrival rates
are controlled by the rate per hour parameter, which ranges
from 2 to 8, and number of days parameter, which is kept
at 2 days. Each mission can last for an arbitrary amount of
time, ranging from 5 minutes to 4 hours.

There are total sensor types different sensor types, which
will vary between 4 and 8 and, for each sensor type, there
will be total sensors per types sensors. For each mission,
the number of tasks will be varied between 3 and 8. There
will be total task types different task types, which will vary
between 4 and 8. Each task type will require a number of
different sensor types, which is varied between tasks and has
the figure randomized between 1 and 4. These individual
sensor type requirements are generated randomly and have
the value between 1 and total sensor types.

The battlefield has the size of 400m x 400m. This is where
the sensors and missions are deployed in uniformly random
locations. Each sensor range (ri) is randomized between
20m and 40m and their maximum utility is calculated as
(ri/40)2, which ensure the values between 0.25 and 1. The
operation range of the tasks are set to be randomized be-
tween 40 and 80m. We now turn to the specific results.

3.2 Results
Hypothesis 1. MSM performs well in comparison to the

estimated optimum.
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Figure 3: Mission success rate with 4 sensor types and 4
missions arriving per hour.

Evaluation. Figure 3 shows the mission success rate of the
four mechanisms with total sensor types = 4, rate per hour
= 4 and total sensors per types between 25 and 250. Figure
4 shows the mission success rate with total sensor types =
8, rate per hour = 8 and total sensors per types also be-
tween 25 and 250. As the overall objective is to increase the
number of successful missions, this control variable strongly
indicate the performance of each mechanism.

As can be seen from both Figures 3 and 4, SSM provides
better results than ESM. This is because in SSM, multiple
same-type tasks can share a single sensor and, thus, a task
in SSM has a greater chance of being successfully allocated.

impractical to do a complete exhaustive search to find the
optimal solution.
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Figure 4: Mission success rate with 8 sensor types and 8
missions arriving per hour.

However, in both SSM and ESM, only one sensor per sensor
type can be presented in the allocation and in many cases
this is not sufficient to satisfy the sensing demand of a task.
This explains why MSM has a significantly better mission
success rate than SSM and ESM. With SSM-NC, since the
demand requirement is not checked, the number of success-
ful missions is the largest. However, this does not reflect
the optimum allocation since there are situations in which
the sensor type requirements of a task can be met but the
sensing demand cannot be achieved. Nonetheless, the as-
signment problem being identified in this paper is NP-hard
and it is impractical to do an exhaustive search of all com-
binations to find the optimal solution. Thus, the SSM-NC
control is introduced here to give an idea of where the opti-
mal solution might lie.

Hypothesis 2. The computational complexity (running
time) of MSM is much less than that of other mechanisms.
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Figure 5: Running time (ms) with 4 sensor types and 4
missions arriving per hour.

Evaluation. Similar to hypothesis 1, figure 5 shows the
running time of the four mechanisms with total sensor types
= 4, rate per hour = 4 and total sensors per types between
25 and 250. Figure 6 shows the running time with to-
tal sensor types = 8, rate per hour = 8 and total sensors
per types also between 25 and 250. Of course, the running

time of each mechanism depends largely on the machine that
the experiments are run on. However, putting them all to-
gether can give a picture of their overall complexity.

As can be seen from both figures, MSM running time is
always the smallest. Both SSM and SSM-NC has to ex-
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Figure 6: Running time (ms) with 8 sensor types and 8
missions arriving per hour.

haustively search through all the potential combinations of
sensors to find the best allocation, their complexity will in-
crease exponentially when the number of sensors increased.
Thus, their running time are always highest and in many
cases can be 2.5 times larger than that of our MSM. On the
other hand, MSM employs the FPTAS algorithm (see sec-
tion 2.1) which has the polynomial complexity and therefore,
its running time only increases steadily when the number of
sensors increases.

Hypothesis 3. The computational complexity of MSM is
increased in a steadily fashion with the number of missions
(or tasks).
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Figure 7: Running time (ms) with 4 sensor types and 25
sensors per type.

Evaluation. To evaluate this hypothesis, we measure the
running time of the mechanisms with total sensor types =
4, total sensors per types = 25 and varies rate per hour be-
tween 1 and 10. The result is displayed in figure 7. It is
clearly that as the number of mission increases from 48 to
480, the running time of MSM also increases steadily from
100 to just over 700ms. As our GAP-E algorithm has a
polynomial complexity depending on the number of sensors
and missions, once we keep the former variable unchanged,
therefore, MSM running time increases inline with the num-
ber of missions.

4. SENSOR ASSIGNMENT IN CONTEXT
This section discusses the allocation problem addressed in
this paper in a specialized environment setting. In particu-
lar, the problem of sensor-mission assignment is defined as
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that of allocating a collection of intelligence, surveillance and
reconnaissance (ISR) assets (both sensors and platforms) to
one or more missions. Missions are composed of various
tasks focused on satisfying their information requirements
(IRs). These IRs will be identified as part of the process
of mission planning. IRs are derived from questions such
as “is there suspicious activity on the main supply road?”
(see Figure 8). Each IR is then broken down to a set of
scenario-specific informal requirements (SSIRs) such as “are
there suspicious vehicles on the road?” or “is there suspi-
cious pedestrian activity along the road side?”. Before be-
ing able to match these to sensing types, decision-makers
identify the interpretation tasks (ITs) which indicate what
kinds of things need to detected, identified, distinguished,
etc. The results of this further breakdown resemble a set
of database queries like “detect vehicles where vehicle type
or behaviours is suspicious”, “detect people where person
type or behaviours is suspicious”. Furthermore, information
is typically available that details the ISR assets (platforms
and sensors), characterised in terms of their types, locations,
readiness status, etc., that can be deployed to meet the in-
formation requirements.

Once having identified the ITs, given the informal of ISR as-
sets available in the theatre, semantic matchmaking mech-
anism (such as those used by SAM [5]) may be employed
to identify appropriate types of assets for the interpretation
tasks specified. These approaches provide decision-makers
with an at-a-glance view of feasible solutions.

It is this kind of information regarding information needs
that we assume is available for the mission-sensor assign-
ment problem. We are, therefore, concerned with the prob-
lem of moving from a “type level” fitting to an “instance
level” allocation. When a mission needs to be accomplished,
we consider a set of real assets available in the field that
are compatible with the corresponding sets of sensor types
required for each mission that arrives.

Allocated assets will then be configured for deployment in
the operating environment. As the sensor network operates,
information will be disseminated and delivered to users and
the operational status of the assets will be monitored, thus
closing the loop between the specification of information re-
quirements and sensor information delivery. Both the on-
going monitors and the appearance of new tasks and ISR
requirements can cause the decision-makers to reassess the
sensor-mission assignment solution.

5. DISCUSSION & RELATED WORK
Sensor-task assignment problems in wireless sensor networks
have been studied mainly using simplified models in which
only a single sensor type is introduced and the exclusive of
resources is required. For example, in [4, 8] the authors pro-
pose distributed approaches to solve the assignment prob-
lem assuming that the same type of sensors are deployed
in the battlefield and that there is no competition for the
sensing resources between tasks. On the other hand, the de-
centralised approaches considered in [12, 1, 7] introduce the
competition between sensing tasks of same type. However,
this approach set constraints which prevent more than one
sensor from being assigned to any one task.

Figure 8: The sensor-mission assignment problem in con-
text.

Our proposed E-GAP algorithm presented in Section 2 is
an adaptation of the MRGAP algorithm proposed in [7].
The MRGAP algorithm aims to solve the static assignment
problem, which is a common generalisation of the problems
presented in [3, 1, 11], incorporating both budgets and a
profit thresholds. The idea of that algorithm is to consider
missions as knapsacks that together form an instance of the
Generalized Assignment Problem (GAP). The author of [3]
give an approximation algorithm for GAP which takes a
knapsack algorithm as a parameter. There, the standard
knapsack algorithm FPTAS [14] offers an approximation
guarantee of 2 + ε. MRGAP, however, still lacks the abil-
ity to consider multiple sensor types. Moreover, it does not
take into account the trade-off between communication cost
and utilities gained. Nonetheless, the battery life-time of
individual sensor is typically limited by the power required
to transmit their data. As a result, power conservation is-
sues in wireless sensor networks are essential and attract the
interest of many researchers. In [10], for example, the au-
thors selected a sensor acting as a mediator to relay data for
other sensors. It saves the battery life of other sensors to
the detriment of its own battery. To choose such mediator,
the authors proposed a payment scheme in which the power
p to reliably transmit over a distance d (p is proportional
to the square of d) is considered as the decision value.

A number of protocols to locally make decisions for a sensor
in a wireless sensor network have begun to tackle the chal-
lenge of coordinating between the network’s interconnected
nodes given the absence of a central coordinator. Protocols
in [10, 6] allow sensors to request other sensors to forward
data, which provides sensors with a broader range of infor-
mation, often leading to an improvement in the network’s
ability to meet its global objectives. However, it requires
extra communication that imposes an energy cost on the
network. Therefore, the authors of [2] observed that the
proper level of coordination (the degree of hops a sensor

39



broadcast message to) leads to a significant increase in the
performance of the network.

Protocols have also been developed in [12, 9] where each
task leader runs a local protocol to match sensors within
two hops to the requirement of the task. Additionally, these
works are the most important related to ours. They consider
the many-sensor type, many-task type assignment problem.
They also use the results of matching sensor type to mission
to reduce the search space in order to find the allocation.
However, they need to generate and check all the instances of
feasible solutions of the matching sensor type problem. This
is not good in dense sensor network. The main difference
with our work is that the authors do not allow assets to be
shared between tasks.

There are several shortcomings of our model that may re-
strict its applicability. First, we do not take into account
the fact that some of the sensors can be mounted on mobile
platforms. This is typical in many situations; for example,
an image sensor can be mounted on an unmanned aircraft.
Thus, such sensor will have a greater operational area com-
pared to a static one. We plan to address this problem by
incorporating new utility prediction model that will include
the cost of relocating sensors within the battlefield.

Second, the tasks comprising a mission are independent of
each other. In practice, there are situations in which there
exist inter-dependencies between themselves. For example,
there might be tasks that can only be allocated based on the
results of some other tasks, which mean they can only be
processed afterward. Furthermore, in such cases, the time-
line for these tasks will be different from each other (rather
than derived from the mission time-line). Future work will
need to include a suitable planning model in order to be able
to handle such scenarios.

Finally, only static sensors are considered in this model. Our
next target research will consider mobile sensors that can
be mounted on a platform. In order to achieve this goal,
we need to incorporate a joint utility model instead of the
current additive one and consequently, complete the resource
sharing feature. Specifically, we aim to be able to handle
situations in which a task only needs a percentage of the
capacity of a sensor, the rest will be still available for other
tasks.

6. CONCLUSION
In this paper we have introduced an agent-based (and hence
decentralised) approach to solving the sensor-mission as-
signment problem for tasks sharing assets. We transformed
the global sensor-mission assignment problem into a collec-
tion of sub-problems of sensor-task assignment. These sub-
problems are then solved by task coordinator agents employ-
ing our GAP-E algorithm, which utilizes the multi-round
knapsack algorithm to provide concrete solution consisting
of the required sensor types together with the specific sensors
belonging to these types. Our approach has been evaluated
in a number of different scenarios, and we have demonstrated
empirically that good results can be achieved in a consider-
ably less time compared to the traditional exhaustive search
counterpart.
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ABSTRACT 
Wireless Sensor Networks (WSNs) are emerging as powerful 
platforms for distributed embedded computing supporting a 
variety of high-impact applications. However programming WSN 
applications is a complex task which requires suitable paradigms 
and technologies capable of supporting the specific characteristics 
of such networks which uniquely integrate distributed sensing, 
computation and communication. Mobile agents are a distributed 
computing paradigm based on code mobility that has already 
demonstrated high effectiveness and efficiency in IP-based highly 
dynamic distributed environments. Due to their intrinsic 
characteristics, mobile agents may provide more benefits in the 
context of WSNs than in conventional distributed environments. 
In this paper we present the design, implementation and 
experimentation of MAPS (Mobile Agent Platform for Sun 
SPOTs), an innovative Java-based framework for wireless sensor 
networks based on Sun SPOT technology which enables agent-
oriented programming of WSN applications. The MAPS 
architecture is based on components which interact through 
events. Each component offers a minimal set of services to mobile 
agents which are modeled as multi-plane state machines driven by 
ECA rules. In particular, the offered services include message 
transmission, agent creation, agent cloning, agent migration, timer 
handling, and easy access to the sensor node resources. Agent 
programming with MAPS is presented through a simple example 
related to agent-based monitoring of a sensor node. Finally a 
performance evaluation of MAPS carried out by computing 
micro-benchmarks, related to agent communication, creation and 
migration, is presented. 

Categories and Subject Descriptors 
D.2.11 [Software Architectures]. I.2.11 [Artificial Intelligence]: 
Distributed Artificial Intelligence – Multiagent systems. 

General Terms 
Design, Measurement, Experimentation. 

Keywords 
Mobile agent systems, event- and state-based programming, 
wireless sensor networks. 

1. INTRODUCTION 
Due to recent advances in electronics and communication 

technologies, Wireless Sensor Networks (WSNs) have been 
introduced and are currently emerging as one of the most 
disruptive technologies enabling and supporting next generation 
ubiquitous and pervasive computing scenarios. WSNs have a high 
potential to support a variety of high-impact applications such as 
disaster/crime prevention and military applications, 
environmental applications, health care applications, and smart 
spaces. However programming WSNs is a complex task due to 
the limited capabilities (processing, memory and transmission 
range) and energy resources of each sensor node as well as the 
lack of reliability of the radio channel. Moreover, WSN 
programming is usually application-specific (or more generally 
domain-specific) and requires tradeoffs in terms of task 
complexity, resource usage, and communication patterns. 
Therefore the developed software which usually integrates routing 
mechanisms, time synchronization, node localization and data 
aggregation is tightly dependent on the specific application and 
scarcely reusable. Thus to support rapid development and 
deployment of WSN applications flexible, WSN-aware 
programming paradigms are needed which directly provide 
proactive and on-demand code deployment at run-time as well as 
ease software programming at application, middleware and 
network layer. 

Among the programming paradigms proposed for the 
development of WSN applications [20, 3], the mobile agent-based 
paradigm [14], which has already demonstrated its effectiveness 
in conventional distributed systems as well as in highly dynamic 
distributed environments, can effectively deal with the 
programming issues that WSNs have posed. In particular, a 
mobile agent is a software entity encapsulating dynamic behavior 
and able to migrate from one computing node to another to fulfill 
distributed tasks. We believe that mobile agents can provide more 
benefits in the context of WSNs than in conventional distributed 
environments. In particular, mobile agents can support the 
programming of WSNs at application, middleware and network 
levels. At application level, mobile agents can be used as design 
and programming abstractions through which WSN applications 
can be effectively designed and implemented. At middleware 
level, mobile agents can be used for implementing WSN core 
services such as data aggregation/fusion/dissemination and query-
based information retrieval, and for dynamically deploying new 
services through efficient code dissemination. At network level, 
mobile agents can be used as the mobile capsules in Active 
Networks for smart multi-hop routing and other network services. 
Few trials have been to date devoted to the development of 
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mobile agent systems for wireless sensor networks (Agilla [7], 
actorNet [11], SensorWare [2]); however none of them has been 
developed for the Sun SPOT sensor platform [18] which is 
completely programmable in Java, supported by the SquawkVM 
[15] and compatible with JavaME. 

In this paper, we propose MAPS (Mobile Agent Platform for 
Sun SPOTs), an innovative Java-based framework for wireless 
sensor networks based on Sun SPOT technology which enables 
agent-oriented programming of WSN applications. The 
architecture of MAPS is component-based and offers a minimal 
set of services to mobile agents, including message transmission, 
agent creation, agent cloning, agent migration, timer handling, 
and easy access to the sensor node resources. The dynamic 
behavior of mobile agents is modeled as multi-plane ECA-based 
state machines. MAPS therefore enables an effective application 
programming through an integration of three of the most 
important paradigms for WSN programming: agent-oriented, 
event-based and state-based programming. 

The rest of the paper is organized as follows. Section 2 
discusses related work and, in particular, currently available 
mobile agent systems for WSNs. Section 3 presents the 
requirements, architecture and the agent programming model of 
MAPS. Section 4 describes the implementation of MAPS based 
on the Java Sun SPOT library. In section 5, a simple example is 
provided for exemplifying the agent-based application 
programming with MAPS. Section 6 shows the performance 
evaluation of MAPS carried out through micro-benchmarks. 
Finally, conclusions are drawn and future work delineated. 

2. RELATED WORK 
Mobile agents are supported by mobile agent systems 

(MASs) which basically provide an agent server, an API for 
mobile agent programming, and, sometimes, supporting 
programming and administration tools. In particular, the agent 
server is able to execute agents by providing them with basic 
services such as migration, communication, and resource access. 
In the last decade, a significant number of MASs for IP-based 
distributed computing systems have been developed [14]. The 
majority of them are Java-based (e.g. Aglets, Voyager, Ajanta, 
etc) and few others rely on other languages (D’Agents, ARA, etc). 

In the context of WSNs it is challenging to develop MASs 
for supporting mobile agent-based programming [1]. Due to the 
currently available resource-constrained sensor nodes and related 
operating systems, building flexible and efficient MASs is a very 
complex task. Very few MASs for WSNs have been to date 
proposed and actually implemented. The most significant ones 
are: Agilla [7], SensorWare [2] and actorNet [11]. A general 
mobile-agent-oriented sensor node architecture to which such 
MASs adhere is shown in Figure 1. The MAS relies on the 
services offered by the OS and the mobile agents are executed 
within the MAS, which supports their inter-node migrations, 
sensing capabilities and resource access, and inter-agent 
communications. 

Agilla [7] is an agent-based middleware where each node 
supports multiple agents and maintains a tuple space and neighbor 
list. The tuple space is local and shared by the agents residing on 
the node. Special instructions allow agents to remotely access 
another node’s tuple space. The neighbor list contains the address 

of all one-hop nodes. Agents can migrate carrying their code and 
state, but do not carry their own tuple spaces. Agilla is currently 
implemented on MICA2, MICAZ and TelosB motes. 
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Figure 1. A general mobile-agent-oriented sensor node 

architecture 

SensorWare [2] is a general middleware framework based on 
agent technology, where the mobile agent concept is exploited. 
Mobile control scripts in Tcl model network participants’ 
functionalities and behaviors, and routing mechanisms to 
destination areas. Agents migrate to destination areas performing 
data aggregation reliably. The script can be very complex and 
diffusion gets slower when it reaches destination areas. The 
replication and migration of such scripts in several sensor nodes 
allows the dynamic deployment of distributed algorithms into the 
network. SensorWare, defines, creates, dynamically deploys, and 
supports such scripts. SensorWare is designed for iPAQ devices 
with megabytes of RAM. The verbose program representation and 
on-node Tcl interpreter can be acceptable overheads, however 
they are not yet on a sensor node. While both Agilla and 
SensorWare rely on mobile agents they employ a different 
communication model: Agilla’s agent interaction is based on local 
tuple spaces whereas SensorWare’s agent interaction is based on 
direct communication based on network messages. In [17] another 
mobile agent framework is proposed. The framework is 
implemented on Crossbow MICA2DOT motes. In particular, it 
provides agent migration and agent interaction based both on 
local shared memory and network messages. In [5] a specification 
language centered on Statecharts-based agents for programming 
WSN applications is proposed and exemplified. Moreover, a high-
level run-time architecture supporting agent execution is defined. 
However, an implementation of this proposal on sensor nodes is 
not yet available. In [16] the authors propose an extension of 
Agilla to support direct communication based on messages. In 
particular, to establish direct communications, agents are 
mediated by a middle component (named landmark) that interact 
with agents through zone-based registration and discovery 
protocols. In [11] actorNet, a mobile agent platform for WSNs 
based on the Actor model is proposed. In particular, it provides 
services such as virtual memory, context switching and multi-
tasking to support a highly-expressive yet efficient agent 
functional language. Currently, the sensor node actorNet platform 
is specifically designed for TinyOS on Mica2 sensors. Finally, in 
[13] the Agent Factory Micro Edition (AFME), a lightweight 
version of the Agent Factory framework purposely designed for 
wireless pervasive systems and implemented in J2ME, is used for 
exemplifying communication and migration in WSNs. However, 
AFME was not specifically designed for WSNs and, particularly, 
for Java Sun SPOTs. 
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3. MAPS ARCHITECTURE AND 
PROGRAMMING MODEL 

3.1 Requirements 
The MAPS framework has been appositely defined for 

resource-constrained sensor nodes; in particular its requirements 
are the following: 
- Lightweight agent server architecture. The agent server 

architecture must be lightweight which implies the avoidance 
of heavy concurrency models and, therefore, the exploitation 
of cooperative concurrency to run agents. 

- Lightweight agent architecture. The agent architecture must 
be also lightweight so that agents can be efficiently executed 
and migrated. 

- Minimal core services. The main core services must be: 
agent migration, sensing capability access, agent naming, 
agent communication, and timing. The agent migration 
service allows an agent to be moved from one sensor node to 
another by retaining code, data and execution state. The 
sensing capability access service allows agents to access to 
the sensing capabilities of the sensor node, and, more 
generally, to its resources (actuators, input signalers, flash 
memory). The agent naming service provides a region-based 
namespace for agent identifiers and agent locations. The 
agent communication service which allows local and remote 
one-hop message-based communications among agents. The 
timing service allows agents to set timers for timing their 
actions. 

- Plug-in-based architecture extensions. Any other service 
must be defined in terms of one or more dynamically 
installable components (or plug-ins) implemented as single 
mobile agent or cooperating mobile agents. 

- Layer-oriented mobile agents. Mobile agents may be 
natively characterized on the basis of the layer to which they 
belong: application, middleware and network layer. They 
should be also able to locally interact to enable cross-
layering. 

3.2 Agent server architecture 
The designed sensor node architecture is shown in Figure 2. The 
architecture is based on components that interact through events. 
The choice to design the architecture according to a component- 
and event-based approach is motivated by the effectiveness that 
such a kind of architecture has demonstrated for sensor node 
programming. In fact, the TinyOS operating system [8], the de 
facto standard for motes, relies on this kind of architecture. In 
particular, the main components are: 
- Mobile Agent (MA). The MAs are computing components 

which are differentiated on the basis of the layer 
(application, middleware and network) at which they 
perform tasks. Application layer MAs (or MAAPP) 
incorporate application-level logic performing sensor 
monitoring, actuator control, data filtering/aggregation, high-
level event detection, application-level protocols, etc. 
Middleware layer MAs (or MAMW) perform middleware-
level tasks such as distributed data fusion, discovery 
protocols for agents, data and sensors, scope management, 
etc. Network layer MAs (or MANET) mainly implement 
transport (e.g. data dissemination) and network (e.g. multi-

hop routing) protocols. MAAPP, MAMW, and MANET can 
locally interact to implement cross-layering.  

- Mobile agent execution engine (MAEE). The MAEE is the 
component which supports the execution of agents by means 
of an event-based scheduler enabling cooperative 
concurrency. The MAEE handles each event emitted by or to 
be delivered at MAs through decoupling event queues. The 
MAEE interacts with the other core components to fulfill 
service requests (message transmission, sensor reading, timer 
setting, etc) issued by the MAs. 

- Mobile agent migration manager (MAMM). The MAMM 
component supports the migration of agents from one sensor 
node to another. In particular, the MAMM is able to: (i) 
serialize an MA into a message and send it to the target 
sensor node; (ii) receive a message containing a serialized 
MA, deserialize and activate it. The agent serialization 
format includes code, data and execution state.  

- Mobile agent communication channel (MACC). The MACC 
component enables inter-agent communications based on 
asynchronous messages. Messages can be unicast, multicast 
or broadcast. 

- Mobile agent naming (MAN). The MAN component provides 
agent naming based on proxies and regions [19] to support 
the MAMM and MACC components in their operations. The 
MAN also manages the (dynamic) list of the neighbor sensor 
nodes. 

- Timer manager (TM). The TM component provides the timer 
service which allows for the management of timers to be 
used for timing MA operations. 

- Resource manager (RM). The RM component provides 
access to the sensor node resources: sensors/actuators, 
battery, and flash memory. 
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MA - Mobile Agent (APP - Application Layer, MW - Middleware Layer, NET - Network Layer)
MAEE - Mobile Agent Execution Engine
MAMM - Mobile Agent Migration Manager
MACC - Mobile Agent Communication Channel
MAN - Mobile Agent Naming
RM - Resource Manager
TM - Timer Manager

 
Figure 2. The sensor node architecture. 

3.3 Agent programming model 
The architecture of an MA is modeled as a multi-plane state 
machine communicating through events (see Figure 3). This 
architecture allows exploiting the benefits deriving from three 
paradigms for WSN programming: event-driven programming 
[8], state-based programming [10] and agent-based programming 
[7]. Moreover it enables role-based programming, an important 
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paradigm for agents, as agents behave differently according to the 
role they can assume during their lifecycle [21]. 
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Figure 3. The mobile agent architecture. 

In particular the architecture consists of: 
- Global variables (GV). The GV component represents the 

data of the MA including the MA identity. 
- Global functions (GF). The GF component consists of a set 

of supporting functions which can access GV but cannot 
invoke neither core primitives nor other functions. 

- Multi-plane State Machine (MPSM). The MPSM component 
consists of a set of planes. Each plane may represent the 
behavior of the MA in a specific role. In particular a plane is 
composed of: 
o Local variables (LV). The LV component represents the 
local data of a plane. 
o Local functions (LF). The LF component consists of a 
set of local plane supporting functions which can access LV 
but cannot invoke neither core primitives nor other 
functions. 
o ECA-based Automata (ECAA). The ECAA component 
which represents the dynamic behavior of the MA in that 
plane and is composed of states and mutually exclusive 
transitions among states. Transitions are labeled by ECA 
rules: E[C]/A, where E is the event name, [C] is a boolean 
expression based on the GV and LV variables, and A is the 
atomic action. A transition t is triggered if t originates from 
the current state (i.e. the state in which the ECAA is), the 
event with the event name E occurs and [C] holds. When 
the transition fires, A is first executed and, then, the state 
transition takes place. In particular, the atomic action can 
use GV, GF, LV, and LF for performing computations, and, 
particularly, invoking the core primitives (see Figure 4) to 
asynchronously emit one or more events. The delivery of an 
event is asynchronous and can occur only when the ECAA 
is idle, i.e. the handling of the last delivered event (ED) is 
completed. 

- Event dispatcher (ED). The ED component dispatches the 
event delivered by the MAEE to one or more planes 
according to the events the planes are able to handle. In 
particular, if an event must be dispatched to more than one 
plane, the event dispatching is appositely serialized. 

 

send(SourceMA, TargetMA, EventName, Params, Local)
SourceMA  = id of the invoking MA 
TargetMA  = id of the MA target |  
            id of the Group target | 
            ALL for event broadcast to neighbors 
EventName = name of the event to be sent 
Params    = set of event parameters encoded 
            as pairs <attribute, value> 
Local     = local (true) or remote (false) scoped event 
 
create(SourceMA, MAId, MAType, Params, NodeLoc) 
MAId    = id of the MA to be created 
MAType  = type of the MA to be created 
Params  = agent creation parameters 
NodeLoc = node location of the created agent 
 
clone(SourceMA, MAId, NodeLoc) 
MAId    = id of the cloned MA 
NodeLoc = node location of the cloned agent 
 
migrate(SourceMA, NodeLoc) 
NodeLoc = target location of the MA | ALL neighbors 
 
sense(SourceMA, IdSensor, Params, BackEvent) 
IdSensor  = id of the sensor 
Params    = parameters for sensor readings 
BackEvent = notifying event containing the readings 
 
actuate(SourceMA, IdActuator, Params) 
IdActuator = id of the actuator 
Params     = parameters for actuator writings 
 
input(SourceMA, BackEvent) 
BackEvent  = event notifying the input captured from the 
switch 
 
flash(SourceMA, Params, BackEvent) 
Params     = flash memory access parameters 
BackEvent  = event notifying the completion of the flash 
memory operation (if it is a read operation, it contains 
the read data) 
 
setTimer(SourceMA, Params, BackEvent) 
Params     = timer parameters 
BackEvent  = event notifying the timer firing 
 
resetTimer(SourceMA, IdTimer) 
IdTimer    = id of the timer to reset 

Figure 4. The prototypal core primitives. 

4. THE MAPS FRAMEWORK 
The implementation of MAPS is a real challenge due to the 
constrained resources of the current sensor nodes. Nevertheless, 
due to recent advances in operating systems and virtual machines 
as well as sensor technologies, an actual implementation could be 
done in nesC/TinyOS on TelosB motes or in Java on Sun SPOT 
nodes [18]. Although the implementations of the currently 
available mobile agent frameworks for WSN (see section 2) have 
been to date carried out in nesC/TinyOS, by also using the Maté 
virtual machine, we believe that the object-oriented features 
offered by the Sun SPOT technology could provide more 
flexibility and extendibility as well as easiness of development for 
an efficient implementation of the proposed framework. The Sun 
SPOT sensor nodes are based on the Squawk VM [15] which is 
fully Java compliant and CLDC 1.1-compatible. In particular, the 
offered features are the following: 

- Java programming language. Sensor node software is 
programmed in the Java language by using Java standard 
libraries and specific Sun SPOT libraries such as main Sun 
SPOT board classes, sensor board transducer classes, and 
Squawk operating environment classes. 
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- NetBeans IDE for software development. The IDE fully 
supports code editing, compilation, deployment and 
execution for Sun SPOTs. This enables a more rapid 
software prototyping. 

- Single-hop/multi-hop and reliable/unreliable 
communications. The current version of the Sun SPOT SDK 
uses the GCF (Generic Connection Framework) to provide 
radio communication between SPOTs, routed via multiple 
hops if necessary. Two protocols are available: the 
radiostream protocol and the radiogram protocol. The 
radiostream protocol provides reliable, buffered, stream-
based communication between two devices. The radiogram 
protocol provides datagram-based communication between 
two devices and broadcast communications. This protocol 
provides no guarantees about delivery or ordering. 
Datagrams sent over more than one hop could be silently 
lost, be delivered more than once, and be delivered out of 
sequence. Datagrams sent over a single hop will not be 
silently lost or delivered out of sequence, but they could be 
delivered more than once. The protocols are implemented on 
top of the MAC layer of the 802.15.4 implementation. 

- Easy access to the sensor node devices (sensors, flash 
memory, timer, power). The Sun SPOT device libraries 
contains drivers to easily access and use: the on-board LED, 
the PIO, AIC, USART and Timer-Counter devices in the 
AT91 package, the CC2420 radio chip (in the form of an 
IEEE 802.15.4 Physical interface), an IEEE 802.15.4 MAC 
layer, an SPI interface (used for communication with the 
CC2420 and off-board SPI devices), an interface to the flash 
memory. 

- Code migration support. An Isolate is a mechanism by 
which an application is represented as an object. In Squawk, 
one or more applications can run in the single JVM. 
Conceptually, each application is completely isolated from 
all other applications. The Squawk implementation has the 
interesting feature of Isolate migration, i.e. an Isolate running 
on one Squawk VM instance can be paused, serialized to a 
file or over a network connection and restarted in another 
Squawk VM instance. 

MAPS is implemented on the basis of the aforementioned Java 
Sun Spots features which provide fully support to the 
implementation of each component introduced in section 3.2. In 
the following subsections the main MAPS classes (see Figure 5) 
and related functionalities are described (more details can be 
found in [12]). 

The sensor node components are threads which can be 
instantiated through a Factory class based on the Singleton 
pattern. Such components are actually created at the node 
bootstrap when the MobileAgentServer is instantiated by the main 
application MIDlet. The MobileAgentServer creates the 
MobileAgentExecutionEngine which, in turn, creates all the other 
components. As soon as the MobileAgentExecutionEngine starts, 
it activates an InterIsolateServer to communicate with mobile 
agent components and broadcasts a discovery publish event to 
announce itself to the neighbor agent-based sensor nodes. After 
the creation of the MobileAgentServer, mobile agent components 
can be added to it by the addAgent method. 

AppMIDLet IMobile AgentServe r<<uses>>

Mobi leAgentServerIMobileAgentExecutionEngine <<us es>>

MobileAgentExecutionEngine

<<int e rfa c e >>

<<inte rfa c e >>

Agent
*

1

1

Plane

E ve ntQ ueue

1..*

1

Isola teIDispatch er

Dispatcher

<<inte rf a c e >>
1

R e que stSe nde r
<<from Sun Spot lib>>

InterIsolateServe r

IMACCSender

MACCSender

<<int e rfa c e >>
I MACCReceiver

MA CCReceiver

<< int e rfa c e >>

1

1

1
IMANaming

MAN aming

<<int e rfa c e >>

IMAMigrationMan

MA MigrationMan

< <int e rfa c e >>

ITimerManager

Ti merManager

<<i nt e rfa c e >>

ISen sorBoardMan

SensorManag er

<<i nt e rfa c e >>

IOMan ager

1

Event

*

*

1

Timer*

1

1 1

ISe nsor B oar dC ompone nt

1..*

A c ce le rator Se nsor

T e mpe r ature Se nso r

LightSe nsor

FlashM anager

Sw itc h Input

LedOut

1

A cc e ler ator Lis te ne r

Te mpe rature Liste ner

Li ghtListene r

*

*

*

ISe nsor B o ardC ompone ntList e ner

Sw itc hListen e r*

1

1

1

1

 
Figure 5. A simplified class diagram of the MAPS framework. 

The MobileAgentExecutionEngine is the core component which 
exposes the interface for supporting all the primitives defined in 
section 3.3. The communication among agents, between agents 
and system components, and, sometimes, among components are 
based on Event objects. An Event object is composed of: 
- sourceID, which is the agent/component identifier of the 

event source; 
- targetID, which is the agent/component identifier of the 

event target; 
- typeName, which represents the name of the event types 

which are grouped according to their specific function; 
- params, which include the event data organized as a chain of 

pairs <key, value>; 
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- durationType, which specifies the event duration. It can 
assume the following three values: 
o NOW, for instantaneous events; 
o FIRST_OCCURRENCE, for events which wait for a 

specific value to occur; 
o PERMANENT. In this case, the event is sent every time 

that values set in the event parameter are reached. 
A mobile agent lives in an Isolate which is instantiated at agent 
creation time. It is composed of an event queue which contains 
the Event objects delivered to the agent by the Dispatcher but not 
yet processed, and the multi-plane state machine containing the 
dynamic agent behavior. Interaction between mobile agents and 
the MobileAgentExecutionEngine is made possible by the 
InterIsolate server and enabled by its RequestSender component. 

Remote inter-agent communication is enabled by MACCSender 
and MACCReceiver component which respectively allows to 
transmit and receive network messages according to the 
radiogram protocol. The MANaming component allows managing 
the list of neighbor sensor nodes and agents by means of a 
lightweight beaconing-based announcement protocol based on 
broadcast messages supported by the radiogram protocol. 
Moreover, agent proxy components are used to route network 
messages to migrated mobile agents. 

The MAMigrationMan component manages the migration process 
of a mobile agent from one sensor node to another. To this 
purpose, it uses the methods provided by the SquawkVM to 
hibernate/dehibernate and serialize/deserialize an isolate. 
However, as dynamic class loading is not yet supported by the 
current version of the SUNSpot libraries (v4.0 blue), the agent 
code should reside at the destination node. In particular, the 
migration process, which is one-hop and reliable, is implemented 
as follows: (i) the agent destination node is contacted through a 
specific message which causes the opening of a socket waiting for 
an incoming request based on the Radiostream protocol; (ii) the 
agent destination node sends back an ack to the agent source 
node; (iii) the source node therefore establishes a radiostream 
connection with the destination node; (iv) the mobile agent is 
paused, hibernated, serialized into a byte array and sent over the 
connection to the destination; (v) at the destination node, the 
mobile agent is received, deserialized, dehibernated and 
reactivated. 

The TimeManager component handles Timer objects which can 
be requested by mobile agents to time their operations. Timers 
can be one-shot or periodic. 

Finally the SensorManager component manages available sensors 
(accelerometer, light and temperature) and actuators (e.g. leds) 
whereas the IOManager component manages input from switches 
and the flash memory. 

5. A PROGRAMMING EXAMPLE 
The developed example application is structured in three agents: 
- DataCollector, which collects data sensed from the 

temperature, light and accelerometer sensors of the 
SunSPOT node; 

- DataMessenger, which carries collected sensed data from the 
sensing node to the base station; 

- DataViewer, which displays the received collected data. 
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A0: byte [] fls = new byte[]{12,13,14,15,16}; 
    Event l = new Event(agent.getId(), agent.getId(),   
                        Event.FLS_ADD, Event.NOW); 
    agent.flash(l, fls); 
A1: Event timer =new Event(agent.getId(), agent.getId(),  
                           Event.TMR_EXPIRED, Event.NOW ); 
    timerID = agent.setTimer(true, 3000, timer); 
    Event blink = new Event(agent.getId(), agent.getId(),   
                            Event.LED_BLINK, Event.NOW); 
    blink.setParam(ParamsLabel.LED_INDEX, "0"); 
    blink.setParam(ParamsLabel.LED_COLOR, "blue"); 
    agent.actuate(blink); 
    Event swtPressed = new Event(agent.getId(),agent.getId(),  
                  Event.SWT_PRESSED_RELEASED,Event.PERMANENT); 
    swtPressed.setParam(ParamsLabel.SWT_PRESSED, "false"); 
    swtPressed.setParam(ParamsLabel.SWT_RELEASED, "true"); 
    swtPressed.setParam(ParamsLabel.SWT_INDEX, "2"); 
    agent.input(swtPressed); 
A2: Event temp = new Event(agent.getId(), agent.getId(),  
                           Event.TMP_CURRENT, Event.NOW); 
    temp.setParam(ParamsLabel.TMP_CELSIUS, "true"); 
    agent.sense(temp); 
    Event accel = new Event(agent.getId(), agent.getId(),  
                            Event.ACC_TILT, Event.NOW); 
    agent.sense(accel); 
    Event light = new Event(agent.getId(), agent.getId(),  
                            Event.LGH_CURRENT, Event.NOW); 
    agent.sense(light); 
A3: agent.create("test.Messenger", null,  
                   agent.getMyIEEEAddress().asDottedHex()); 
A4: this.terminateAgent(); 
A5: data+=event.getParam(ParamsLabel.TMP_TEMPERATURE_VALUE)+"-";   
    dataColl++ 
A6: data+=event.getParam(ParamsLabel.ACC_TILT_X_VALUE) + "-"; 
    dataColl ++ 
A7: data+=event.getParam(ParamsLabel.LGH_LIGHT_VALUE); 
    dataColl++ 
A8: data+="|"; 
    Event blink = new Event(agent.getId(), agent.getId(),  
                            Event.LED_BLINK, Event.NOW); 
    blink.setParam(ParamsLabel.LED_INDEX, "0"); 
    blink.setParam(ParamsLabel.LED_COLOR, "blue"); 
    agent.actuate(blink); 
    dataColl = 0; 
A9: Event msg = new Event(agent.getId(), messengerAgentID,  
                          Event.MSG, Event.NOW); 
    msg.setParam("collectedData", data);     
    agent.send(agent.getId(), messengerAgentID, msg, true); 
    data = ""; 

Figure 6. The DataCollector plane. 

After application deployment and execution, the DataViewer 
sends a message to the DataCollector to start its activity as soon 
as the user pushes a switch on the SunSPOT on which the 
DataViewer is running. The DataCollector therefore begins its 
collecting activity and as soon as the user pushes a switch on the 
SunSPOT on which the DataCollector is running, it creates the 
DataMessenger with the collected data that migrates to the 
DataViewer node for data visualization. Finally, the monitoring 
activity terminates when the user presses again a switch of the 
SunSPOT on which the DataViewer is running. This simple yet 
effective application, deployed on just two sensor nodes, allows 
for testing all the most important mechanisms provided by MAPS. 
The state machine of the DataCollector plane along with the 
action code, which uses the MAPS library, is shown in Figure 6 
and briefly explained in the following. The AGN_Start event 
causes the transition from the creation state to the StartTime state 
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and the execution of an example operation on the flash memory 
(action A0), i.e. adding some data to the flash space of the agent. 
In the StartTimer state, when the network message sent by the 
DataViewer arrives and the guard [go==true] holds, a timer 
timing the sensing operations is set up to fire after 3s, some 
actuation on the leds is requested and some input from the 
switches is ready to be read (action A1). When the timer fires (see 
TMR_Expired event), the sensing operations are requested (action 
A2). When such operations are completed (see actions A5, A6, 
A7), guard [dataColl==numData] holds so that data are collected. 
When the switch is pressed, a DataMessenger agent is created 
(action A3) and the collected data are passed to it (action A9) 
when the AGN_Id event, containing the agent id of the created 
agent, is received. When the event MSG is received and the guard 
[go==false] holds, the agent is terminated (action A4). 

6. PERFORMANCE EVALUATION 
The used testbed for testing and evaluation consists of a 

SunSPOT kit (two sensor nodes and one base station) with the 
SDK 3.0 version (purple). The MAPS framework has a memory 
occupation (without any running agent) of about 70 Kbyte in 
central memory, keeping free a space of 378 Kbyte. Such space 
can be exploited for agent execution. The agent developed for the 
agent migration benchmarking (see below) needs 22 Kbyte of 
central memory. The space occupied by the jar of MAPS on the 
flash memory is 92 Kbyte out of the 4 MB available. To evaluate 
the performance of MAPS three micro-kernel benchmarks have 
been defined according to [6, 4] for the following mechanisms: 
- Agent communication. The agent communication time is 

computed for two agents running onto different nodes and 
communicating in a client/server fashion (request/reply). 
Two different request/reply schemes are used: (i) Data B&F, 
in which both request and reply contain the same amount of 
data; (ii) Data B, in which only the reply contains data. 
Results are shown in Figure 7. By increasing the amount of 
data, communication times linearly increase. 

- Agent creation. The agent creation time is computed for 
agents having different number of planes ranging from 1 to 
51. Figure 8 reports the results which show that the creation 
time is linear with respect to the number of planes. 

- Agent migration. The agent migration time is calculated for 
an agent ping-pong among two one-hop-distant sensor nodes. 
It has been computed in two cases: (i) with MAPS, which 
uses the complete functionality of MAPS; (ii) without MAPS, 
which does not uses the MAPS engine and migration 
manager but just the Java SunSPOT library. This allows 
highlighting the overhead introduced by the framework for 
having complete migration reliability. Migration times are 
computed by varying the data cargo of the ping-pong agent. 
Although migration performances without MAPS are better, 
complete reliability of agent migration is not guaranteed. The 
obtained migration times are high due to the slowness of the 
SquawkVM operations supporting the migration process. In 
particular, serialization is a very costly operation: 
serialization of the ping-pong agent averagely takes 4.5s. 
Moreover, radiostream connections are very slow to 
guarantee reliability. 
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Figure 7. Agent communication: request/reply time. 
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Figure 8. Agent creation time. 
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Figure 9. Agent migration: ping-pong time. 

7. CONCLUSIONS 
Programming WSN applications is a complex task which requires 
suitable programming paradigms and frameworks coping with the 
WSN specific characteristics. Several kinds of micro and 
macroprogramming techniques have been to date proposed. 
Among them mobile agent-based programming, which has been 
formerly introduced for conventional distributed systems, can be 
more effectively exploited in the context of WSNs. In this paper 
we have therefore proposed mobile agents as an effective 
paradigm to program WSN applications and, in particular, 
presented MAPS, a Java-based framework for the development of 
agent-based applications for SunSPOT sensor platforms. By using 
MAPS, a WSN application can be structured as a set of stationary 
and mobile agents distributed on sensor nodes supported by a 
component-based agent execution engine which provides basic 
services such as message transmission, agent creation, agent 
cloning, agent migration, timer handling, and easy access to the 
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sensor node resources. MAPS programming has been exemplified 
through a simple yet effective example which shows how to 
program the dynamic behavior of agents in terms of state 
machines on the basis of the MAPS library. Finally we have 
presented an evaluation of MAPS according to micro-kernel 
benchmarks (agent communication, migration and creation) 
usually employed for mobile agent systems. Evaluation shows 
some performance penalty mainly due to very time-consuming 
operations (serialization and radiostream-based communications) 
offered by the SunSPOT libraries and SquawkVM. On going 
research efforts are being devoted to: (i) optimizing the 
communication and migration mechanisms of MAPS; (ii) 
developing real applications through MAPS in the context of 
human activity monitoring for e-health [9]. 
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ABSTRACT
Sensor networks as well as RFID systems are among the
hyped technologies nowadays. A lot of research efforts have
been spent to develop standards, middlewares and applica-
tions. The industry already made large investments to fos-
ter the adoption of these technologies, consequently push-
ing the development, and already deployed the resulting
technologies in different domains. However, the addressed
technologies are still very young, best practices as well as
standards are expected to frequently change, as new de-
mands arise when using the technologies in our everyday
life. Because of this, middleware systems are expected to
undergo frequent redesigns as well, requiring well suited de-
sign paradigms to avoid a software engineering nightmare.
We therefore propose an agent-based middleware for sensor
networks and RFID systems. This middleware will meet the
challenges for having a robust, adaptable and flexible mid-
dleware, which is moreover easily extensible to cope with
expected re-engineerings and changes while maintaining a
clear and elaborate design.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design; D.2.11 [Software
Engineering]: Architectures; H.4.0 [Information Sys-
tems Applications]: General

General Terms
Sensor Networks, RFID, Middleware

Keywords
Sensor Networks, RFID, Software Agents, Middleware

1. INTRODUCTION
One of the most important milestones towards reaching Mark
Weiser’s vision of Ubiquitous Computing is the ability for
computing systems to be aware of their environment. For
this purpose, computing systems are being augmented with

lots of different kinds of sensors to monitor certain states
of affairs in their environment. Wireless Sensor Networks
(WSN) and Radio Frequency Identification (RFID) are among
the most promising research areas as WSN allow monitoring
the physical environment and RFID technology enables the
tracking of physical objects therein.

Although a lot of research efforts have been made to pro-
mote these technologies, the industry as well as the con-
sumer sector are still in an early stage of adoption. High
investments, few standards, and missing killer applications
are some of the reasons for dilatory deployment. But the
hardware evolves, costs of sensors, tags, readers, etc. rapidly
decrease and several alliances and organizations are continu-
ously publishing new standards so that strategic investments
as proposed by Gartner [15] may finally become profitable.

Regardless the initial difficulties, several pioneering projects
in the area of WSN and RFID systems have already been
realized. But until now, most current projects are developed
for a specific purpose. They do not interoperate and are nei-
ther generically designed to fit other purposes nor do they
adhere to existing standards. But once WSN and RFID be-
come widespread (and possibly converge in the future [25])
more experiences with the technologies are gained and the
need for well designed infrastructure components will be-
come evident as standards are expected to be frequently
revisioned and new standards will arise.

These circumstances are very challenging from a software en-
gineering point of view and we address this issue by propos-
ing a unified middleware infrastructure for WSN and RFID
based on software agents. Software agents are autonomous
entities often employed for the development of complex and
distributed systems [4]. They are capable of sensing their
environment, may reactively or proactively act therein and
thus adapt to changes and they are able to communicate and
cooperate. The paradigm of agent-oriented software engi-
neering therefore allows to build interoperable and reusable
software components enabling a robust, flexible and extensi-
ble infrastructure [4, 16]. Regarding the unpredictable evo-
lution of WSN and RFID systems, this paradigm is thus
ideally suited to cope with the aforementioned challenges.

In the next section we will briefly introduce the basic tech-
nologies and highlight their progress in standardization. Af-
terwards, Section 3 discusses the challenges for engineering
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future sensor network middlewares in the scope of expected
changes and identifies some non-functional design goals to
meet these challenges. In Section 4 our proposal for an
agent-based middleware obeying these design goals is pre-
sented and subsequently discussed in Section 5. Finally, we
present some related work in Section 6 and conclude with
our prospects of future work in Section 7.

2. FUNDAMENTALS
In this section WSN, RFID, agent and middleware basics
are introduced to gain a common understanding of the chal-
lenges and concepts described in further sections.

2.1 Wireless Sensor Networks
Wireless Sensor Networks (WSN) are a means for monitor-
ing certain attributes of the physical world (used e.g. in
environmental, health and home applications) [2, 24]. Such
networks consist of a multitude of autonomous nodes, each
equipped with sensors, a processing unit and communication
capabilities. Once the nodes are deployed in a certain region
they start to sense their environment and build up a kind
of ad-hoc network with their neighboring nodes. In most
WSN one or more base stations can be found, to which the
percepts of each node are transmitted using multi-hop rout-
ing. For this purpose the nodes cooperate with each other
by forwarding percepts of other nodes. Due to the limited
resources of the nodes by means of energy as well as process-
ing and communication capabilities, research in the area of
WSN mostly concentrates on how to efficiently manage and
distribute the information [25].

2.2 RFID
Although RFID systems also aim at monitoring the physical
world, their primary use is the identification and tracking of
real-world objects [22]. For this purpose objects, e.g. as-
sets, are required to have a unique digital identity. This is
provided by tags, which are comparable to a barcode, but
may be read by specialized readers without a line of sight
and in bulk over a distance ranging from several centimeters
to a hundred meter (depending on the tag). The identity
stored on a tag is often referred to as an Electronic Prod-
uct Code (EPC) and can be used to link the identity with
further information about the object stored somewhere in a
network. Several application domains already make use of
RFID technology, e.g. manufacturing control, asset track-
ing, warehouse and fleet management [24, 21] and concepts
for several other domains are already being developed.

RFID systems are similar to WSN in the sense that data is
read by specialized sensors (i.e. RFID reader) and can also
be written back to tags in some cases. Hence, we also have
streams of raw data which need to be processed and trans-
formed to higher level events. And indeed, it is expected
that RFID and WSN technologies will further converge in
the future [25].

2.3 Software Agents
There is no definition of software agents in literature that is
generally agreed upon. A basic definition states that soft-
ware agents are able to perceive their environment through
sensors and act upon it through effectors. As this defini-
tion is applicable to a multitude of software components one

would not necessarily call an agent, other definitions specify
certain characteristics an agent must have. Regarding these,
an agent must be autonomous meaning the ability to pro-
cess a task with as few guidance by its principal as possible.
Moreover, an agent should be able to react to changes in its
environment, but also to proactively follow its design goals.
Additionally, agents must have the capability to cooperate
by means of exchanging messages and must be able to adapt
their behavior according to changes in the environment [16].

These definitions and characteristics lead to a very abstract
view of what an agent actually is. From a software engineer-
ing perspective, agents are similar to objects, but a little bit
more abstract. They can be seen as software components,
developed to exhibit the above mentioned characteristics.
And these agents are normally executed on a special mid-
dleware, called agent platform, which manages the lifecycle
of agents and offers additional infrastructure services like a
message transport system and a directory service. We will
further enhance this brief introduction in the subsequent sec-
tions, once the context allows an explanation by example.

2.4 Middleware
Middleware in general shall shield the application layer from
the details of lower layers in a way that applications can
transparently use different shapes of services without the
need to know any implementation details. Any changes in
the lower layers hence do not affect the applications, but only
the middleware. In most cases a middleware also provides
a set of additional commonly used services for a specific
purpose, so that applications do not need to implement the
necessary functionality themselves.

Different middleware architectures have already been pro-
posed for WSN as well as for RFID systems and even some
for a combination of both technologies [5, 10, 14, 17, 22,
25, 26]. Regarding WSN, the term middleware often refers
to a software layer residing between the application layer
and the lower level hardware-oriented layers of sensors. It’s
main purpose is to support the development, maintenance,
deployment and execution of sensing-based applications [24,
21], particularly focusing on power and topology manage-
ment, data aggregation, transmission protocols, etc. inside
a sensor network [1]. But a holistic view on WSN and tra-
ditional networks is often not provided, i.e. the connection
to infrastructure networks is hardly considered by the mid-
dleware [21, 25, 29]. It is important to point out that our
proposal coexists with current WSN middlewares as we are
focusing on the post-processing of sensor data beyond the
sensor network border.

In contrast to WSN, RFID middleware concentrates on ef-
ficiently processing and constructing meaningful events. In
this case, the term ’meaningful’ plays an important role, as
the focus of an RFID middleware is not only on distributing
data to a specific base station (as in WSN), but on process-
ing and enriching data with contextual information on its
way up the processing hierarchy. RFID tags themselves are
mostly not capable of processing the data stored on the tag.
Instead they are given just enough resources to communi-
cate with a reader [22]. As a consequence, readers are the
bottom-most layer of common RFID middleware and sim-
ply push data the RFID stack upwards, where the data is
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filtered, aggregated, translated, enriched, etc. before mean-
ingful Application Level Events (ALE) can finally be sent to
applications for further processing [22].

2.5 Standards
Standardization issues play a major role in the adoption of
technologies. Software and hardware developers want to be
sure that their work gains acceptance by customers and will
not be outdated within the near future. Also the customers
need to feel confident that their investments in a technol-
ogy are future-proof and are globally used in order to fa-
cilitate the cross-enterprise exchange of information. And
finally, standards are the basis for competitive marketplaces
where different system components may be traded, and con-
sequently interoperability needs to be assured [8].

WSN is not widely deployed yet and one does not know
whether the reasons are a lack of interest by the industry or
a lack of standards. There are few standardization efforts
for WSN and these are mostly concentrating on processing
and communication mechanisms inside the network [1, 25,
29] (e.g. IEEE 1451, ZigBee). Existing standards often rely
on standards borrowed from other areas and just add minor
changes to adopt them to the special WSN characteristics.
But to the best of our knowledge there are no standards for
the interface between the data acquisition network (the sen-
sor network itself) and the data distribution network (the
backend responsible for post-processing the data), which is
in our context the most interesting part. As a result, merg-
ing the data of different sensor networks in higher hierarchy
levels of processing often relies on proprietary solutions [25].

Regarding RFID technology standardization has made a good
progress. Driven by large interest and large investments
multiple standards arose during the last years. Besides the
International Organization for Standardization (ISO) also
EPCglobal, a consortium of several companies and univer-
sities, is engaged in the process. EPCglobal published sev-
eral standards for data representation and interfaces, among
which the Architecture Framework [8] is in our context the
most important one as it specifies a set of interfaces and
roles within an RFID middleware. The main goal of these
tasks is to gather, filter, enrich and transform raw sensor
data in a way that application level events (ALE) can be
forwarded to interested parties. But as this abstract archi-
tecture framework does not specify a real system architec-
ture, several concrete architectures taking the infrastructure
roles into account have been proposed [5, 10, 22, 26].

Implementing a concrete architecture, for WSN as well as
for RFID systems, can be quite challenging, because both
technologies are quite young and in some aspects still in an
early stage of development. And it gets even more challeng-
ing when considering a unified middleware for both WSN
and RFID [25]. In the following section we will therefore
outline some of the difficulties in realizing such a middle-
ware and list some requirements for future engineering of
middlewares for sensor networks in general.

3. ENGINEERING CHALLENGES
Regardless the unpredictable future of RFID and sensor net-
works, universities as well as several companies are develop-
ing infrastructures and applications taking the already ex-

isting standards of the according technologies into account
and using proprietary solutions if necessary.

Although a lot of standards have already been published
for such infrastructures, there are still problems adhering
to them. Reasons for this are threefold: First, there ex-
ist different standards for different infrastructures. This
seems conclusive, but sensor networks in general (includ-
ing RFID systems) have a least common denominator (e.g.
post-processing of percept data) [25], which is not accounted
for by the standards. Second, standards for specific aspects
of an infrastructure are missing due to the lack of appro-
priate use cases [8]. As most technologies in these areas
are quite young and rarely used, there are few experiences
and hence new standards are not proposed until the require-
ments are fixed. Third, WSN and RFID technologies may
further converge in the future [25] and standards will have
to be redeveloped or merged in order not to get lost in stan-
dardization.

For these reasons, we expect the standards to be subject of
frequent changes within the next years. Hence, the devel-
opment of an infrastructure adhering to the standards (and
possibly being compatible to the ’old’ ones) may become a
software engineering nightmare, because the process of soft-
ware development needs to be iterated over and over again
as new demands and standards arise. These development cy-
cles require a flexible and extensible software architecture,
otherwise substantial redesigns will become inevitable. In
the following we will thus discuss a set of non-functional de-
sign goals for future sensor network middlewares, which take
the above mentioned challenges into account.

3.1 Design Goals
One has to distinguish between functional and non-functional
design goals. While functional goals define ’what’ a system
shall do, non-functional goals specify ’how’ a system is sup-
posed to be (i.e. quality goals). In order to be prepared
for future sensor network developments, we identified some
non-functional design goals, specifying evolution qualities,
that are of special importance for new generation system
architectures (an overview of functional goals can be found
e.g. in [1, 10, 22, 23, 26]). Most of these should be obvious
and sensor middleware should naturally adhere to them, but
in practice this is often not the case.

Robustness and Adaptivity A middleware for sensor net-
works will need to be robust not in the sense that only
the data acquisition network but also the backend, the
data distribution network, needs to be tolerant towards
failures. This requirement is accompanied with the
need to be able to adapt to changing conditions, es-
pecially if different participators account for specific
services in a network. Therefore a loose coupling of
components and the possibility to dynamically choose
an appropriate service at runtime is necessary.

Flexibility Someday, handling sensor data will not only be
a matter of companies with global-scale processing net-
works, but will also be managed by individuals within
local networks. A middleware must thus be flexible in
a way that it must be deployable in different scales,
i.e. certain functions an individual does not necessar-
ily needs may be omitted for the sake of simplicity and
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more sophisticated functions as required by enterprises
must be easy to integrate. From a software engineer-
ing perspective, the functions must also be easily ex-
changeable as requirements and standards change.

Scalability More and more assets will be equipped with
RFID tags, more sensor networks be deployed and
eventually the data from all of these be joined in global-
scale networks. Therefore, a middleware needs to be
able to process single percepts as well as thousands or
millions percepts.

Extensibility If sensor networks and RFID systems be-
come widely deployed, new use cases accompanied by
new requirements will arise. A middleware architec-
ture must thus be extensible and the extensions should
not necessarily require the applications built upon that
middleware to change, but instead new applications
should be able to directly use the extensions.

Having the above mentioned goals in mind, we propose an
agent-based system architecture for WSN and RFID sys-
tems. In the following we will present the architecture and
afterwards discuss our approach with respect to these goals.

4. AGENT-BASED MIDDLEWARE
To face the above mentioned challenges a flexible and adapt-
able architecture with loosely coupled components is re-
quired. Therefore, we propose a middleware infrastructure
based on software agents for processing event streams orig-
inating from different kinds of sources (e.g. WSN, RFID
reader or any other source). To ease understanding we will
first present a motivating example and refer to that example
in the subsequent sections.

4.1 Motivating Example
A trading company expects to receive a pallet with TV
devices. The pallet is shipped within a smart container,
equipped with several sensors measuring and logging accel-
eration, humidity and temperature throughout the whole
transport. Once the container is received by the local ware-
house, the pallet shall be unpacked and the devices be loaded
directly onto a truck to deliver them to the customers, but
only in case the sensor values logged during the transport
do not exceed a specific limit. In this case, the trading com-
pany needs to send a mechanic into the warehouse to check
if the devices are damaged.

To be informed about the state of delivery, the trading com-
pany registers several event triggers with the warehouses
sensor network middleware. States of interest are: a) The
pallet does not arrive in time b) the pallet arrived, but sen-
sor values imply a possible damage and c) the pallet arrived
in time and devices are going to be loaded onto the truck.

4.2 Overview
Inspired by common event driven architectures [7] and ex-
isting RFID systems [5, 10, 22, 26] we also follow a three-
layered system architecture comprising the Application Layer,
an intermediate Network Layer and finally the Network Edge.
The latter connects to the event sources (e.g. WSN base sta-
tion, RFID reader, etc.) and is responsible for infrastructure
management as well as low-level event filtering. The Net-
work Layer’s primary role is the higher-level processing of

events and the creation of Application Level Events (ALE)
as required by the Application Layer. In our architecture the
Application Layer requires no mandatory base components,
hence even resource-constraint devices may make use of the
subordinated Network Layer’s functionality. Moreover, as
our middleware shall be independent of specific kinds of
event sources, the sources are not part of the architecture,
but one can imagine the sources to reside in an additional
layer below the Network Edge (as found in [5, 22, 28]). A
detailed introduction of each layer is given in the following.

4.3 Application Layer
The Application Layer (also referred to as the Network Core,
cp. [22]) represents the highest layer in the middleware
stack. This layer only offers additional services for moni-
toring and debugging functionalities. It hence contains no
mandatory components as to even allow applications run-
ning on resource-constrained devices (e.g. mobile phones)
to be part of the infrastructure. This layer can be seen as a
logical entity as it is not a core in physical means, but may be
distributed over several physical locations. It is even possi-
ble to have multiple cores, e.g. each organization has its own
core, but all of them are operating on the same middleware
layers below. In fact, the relationship between Application
Layer and Network Layer is an n:m relationship, as it is
also possible to have one Application Layer, operating on
multiple Network Layers.

Fig. 1 depicts the components residing in this layer as well
as the actions a developer has to accomplish in order to con-
nect the Application Layer respectively an application with
the Network Layer. The overall goal is to receive mean-
ingful Application Level Events (ALE) from the Network
Layer once one or more specific low-level events occur. For
this purpose a developer first has to create an event filter
for filtering out events of interest. As the event filter is
processed by a complex event processing engine (e.g. Esper
[9]) in the Network Layer, also complex patterns (allowing
content-based filtering in contrast to current standards [25])
as well as causal and temporal relationships may be detected
in a stream of events [18].

Different
Enterprises
and Actors

Network Edge Network Layer Application Layer

create event filter
orchestrate service agents
deploy filter and workflow
generate simulation data
observe results

ApplicationApplicationApplication

Monitoring 
& Reporting

Event
Generator

to / from 
Network Layer

Figure 1: Application Layer

In a second step, the developer may choose how an event
passing the filter shall be processed by the lower layers.
In RFID systems for example, events may be aggregated,
grouped, translated and enriched with additional context
information. For this purpose, the Network Layer offers a
yellow page service which may be queried by the developer
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to find and orchestrate the service agents she needs in or-
der to create a tailored ALE. Such an orchestration is sim-
ilar to a business process orchestration, in which activities,
their processing endpoints and additional parameters may
be specified. For example, one may create such a workflow
by specifying that events shall be first translated from rep-
resentation A into representation B and then be enriched by
querying a certain context service (e.g. an EPC information
service). In case the service agents registered with the yel-
low page service do not match the needs, a developer may
also choose to provide its own service agent for a dedicated
task, for example to translate an event into the company’s
proprietary representation.

After creating the workflow (representing the service agent
orchestration) and the corresponding event filter, these need
to be registered at the High-Level Event Filter (cf. next sec-
tion) of the Network Layer. As the Network Layer may
already be a productive system, testing and debugging the
filter as well as the workflow without interfering others may
be a problem. For this reason, developers may use the Event
Generator as well as the Monitoring & Reporting compo-
nents, to create suitable simulation data and monitor the
service agents executing their tasks.

In our example scenario the trading company wants to be in-
formed once one of three possible delivery states is achieved.
Therefore, three different event filters need to be created.
Additionally, at least one workflow description has to be
specified, instructing the middleware how the events shall
be processed. This way, the trading company may provide
e.g. its own aggregation function to be executed on sensor
data, specify to call specific external services (e.g. call a
mechanic to check the devices) to be executed depending on
the aggregated values and enrich an event with additional
context data helping the mechanic to bring the right tools.
Once event filters and the workflow have been deployed, the
company may simulate different scenarios to assure the right
operations are performed by using the Event Generator and
monitoring the processing of generated events.

4.4 Network Layer
The Network Layer is responsible for mapping low-level events
received from the Network Edge to Application Level Events
(ALE) that are finally forwarded to the Application Layer.
Several tasks may be performed at this stage (cf. [22]):

• Events may be aggregated (e.g. just counted), grouped
(e.g. build event sets with respect to a specified at-
tribute) or translated (e.g. change content encoding).

• Additional information based on the event source or a
specific event attribute (e.g. EPC) may be retrieved
from external sources, e.g. an Object Naming Service
(ONS) and an EPC Information Service (EPCIS) [8].
This task may involve multiple service invocations (e.g.
ID resolution, context retrieval, ontology lookup, etc.).

• Every event source may allow to propagate data com-
ing from applications towards a specific sensor. This
way applications are able e.g. to write into the memory
of an RFID tag or to send instructions to a WSN.

• An application may also specify that an external agent
has to be called once a specific condition occurs. This

way the processing chain may be easily extended to
include arbitrary services.

As already mentioned in Section 3, these tasks may be ex-
tended in future middleware generations. Additionally, the
interfaces, as standardized by e.g. EPCglobal, may be changed
according to further demands [8]. To deal with these circum-
stances, we propose to encapsulate every task in a dedicated
agent type (see Fig. 2). Once an interface changes or new
roles are introduced, the corresponding agent types simply
need to be refactored or newly created. For backwards com-
patibility one may decide to additionally keep the ’old’ agent
working. In order to execute the activities of a workflow (se-
quentially or in parallel) agents coordinate among each other
by exchanging messages in a standardized communication
manner.
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aggregate

group
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asynchr.
execution

notify

PA Lifecycle Manager
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register filter & workflow

 Application Level Event 
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Figure 2: Network Layer

For an application to be informed about specific events, it
has to subscribe at the High-Level Event Filter (HLEF)
providing a (possibly complex) event pattern as well as a
workflow description, containing orchestration instructions
for the above mentioned service agents (cf. Section 4.3).
Events coming from the Network Edge (cf. Section 4.5)
are processed by a complex event processing engine in the
HLEF and filtered with respect to the registered high-level
filters. Once a low-level event passes the filter (meaning
an application subscribed for that event) a so called Per-
ceptAgent (PA) is instantiated and further on responsible
for coordinating the processing of the workflow correspond-
ing to that event. Note, that for a single low-level event,
multiple PAs may be instantiated (one for each registered
high-level filter). Processing the workflow means sending a
message containing event information to a service agent as
specified in the workflow and wait for an answer. Process-
ing is finished once either all involved service agents notified
the PA of completion or if the event is subject for being ag-
gregated or grouped. In this case, superordinated dedicated
Aggregation- and GroupAgents (not depicted) take over the
responsibility for the event.

If a service agent specified in the workflow does not accept
a task or does not respond within a specified time interval,
the PA may decide to ask the yellow page service (called
Directory Facilitator) in order to find another agent instance
capable of execution. This way dynamic binding and hence
adaptation to network failures may be achieved. Once a
workflow is completed, an ALE is created and finally sent to
the Application Layer for further processing.
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Data may not only be read from lower layers, WSN as well as
RFID systems also allow to write data. For example, an ap-
plication may want to send processing instructions, queries,
or a new power management configuration to a node inside
a WSN or data, e.g. values coming from a sensor network,
shall be stored into the memory of an RFID tag. In the case
of writing data, two problems arise: 1) how to address a sin-
gle sensor or tag from an application and 2) what happens
if a sensor or tag is currently not in range so that writing
temporarily fails? Regarding the first problem, an applica-
tion shall never address entities in the lowest layer directly,
as details of the concrete addressing scheme must be known
by the application. Therefore, the middleware needs to ab-
stract from low-level addressing details and must provide a
mapping between an abstract and a concrete addressing. In
our architecture this is achieved by the PAs and the PA Life-
cycleManager (PALM). An application may send messages
to the PALM addressing a PA using a standardized scheme.
The PALM in turn creates a new PA instance, which caches
the data as long as the corresponding sensor or tag is sensed
again, implying that it is also in writing distance and then
dispatches the writing request to an appropriate Connector
(cf. Section 4.5) in the Network Edge, responsible for writ-
ing to a tag or sensor. This way, also the second problem
stated above may be solved. Similar approaches also exist
in other projects, but the involved component roles as well
as the naming are slightly different (cf. virtual counterpart
[20], virtual sensor [1], virtual tag [10]).

Coming back to our example scenario: as already described,
the trading company needs to register event filters and a
workflow description with the HLEF. Once the container is
being unloaded, the sensor log-files are read and correspond-
ing low-level events from the Network Edge are forwarded
to the HLEF. The complex event processing engine, when
trying to match a registered filter against a stream of events,
caches the relevant sensor data by itself, so that addition-
ally storing the data in the warehouse is not necessary (al-
though reasonable). After reading the sensor logs, an RFID
reader scans all tags that are attached to the TV devices and
subsequently generates appropriate events, which are again
forwarded to the HLEF. Depending on the sensor data ei-
ther the trading companies event filter for possibly damaged
devices or the event filter indicating that everything is fine
matches (the third event filter triggers after a specific time
interval only if no corresponding TV devices are sensed).
As a consequence, the PALM is informed, looking into its
repository if corresponding PAs (with pending write instruc-
tions) exist, and finally instantiates a (new) PA. The PAs
are provided with the trading company’s workflow and coor-
dinate the execution of activities by sending messages to the
corresponding service agents. After being notified that all
agents completed their work, data necessary for construct-
ing an ALE is gathered and the ALE is finally forwarded to
the trading company’s application.

4.5 Network Edge
The Network Edge (depicted in Fig. 3), as the name in-
dicates, separates the non-IP from the IP segment of the
system. Event sources transmit event streams or batches to
protocol-specific Connectors and further on to a Low Level
Event Filter (LLEF) before they are finally forwarded to the
Network Layer’s HLEF.

Handheld

RFID-Chips

WSN

Network Edge Network Layer Application Layer
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Figure 3: Network Edge

The Connectors are responsible for bridging the protocol
gap, as the middleware components communicate over stan-
dard Internet protocols, but this must not necessarily hold
for sensor networks, RFID readers or other event sources.
In the case of RFID for example, low-level protocols for the
communication between tags and readers have been specified
by EPCglobal, but for the communication between readers
and the Network Edge only data formats are standardized.
Hence in practice readers communicate using a multitude of
interfaces, e.g. Bluetooth, (W)LAN, IrDA or serial RS-232.
As a consequence, one or more Connectors (depending on
the provided data format) for each technology are required.

Once a Connector receives an event from an event source,
contents are extracted and passed further on to the LLEF.
This filter corresponds to an event filter as found e.g. in
RFID systems and is used to filter out duplicates and in-
complete, malformed or unknown events (but it has to be
pointed out that the LLEF is no substitute for the filter inte-
grated into RFID reading devices, as these work on an even
lower layer). Events passing this stage are handed over to
the HLEF residing in the Network Layer (cf. Section 4.4).
An Infrastructure Management component is used to con-
figure sensors as well as the event filter. At this layer we
do not necessarily employ agents as the components effec-
tively processing events in this stage are already in use by
several other projects (e.g. Fosstrack [3]) and may simply
be reused. Although it is possible to additionally wrap the
functionality by agents to achieve a coherent addressing.

In our example scenario, the data from the container’s sen-
sor logs are read by a specific base station and passed on
to a Connector. This Connector in turn forwards the data
to the LLEF. Depending on the configuration of the filter,
some sensor information may be discarded as it is of no in-
terest. The remaining data is further transmitted to the
HLEF. Once the container is unpacked, the TV devices are
read by an RFID reader and the information is again passed
on to the Connector and further up the stack to be finally
processed by the HLEF.

5. DISCUSSION
In Section 3 we discussed challenges for future middleware
systems and identified some non-functional design goals. In
this section we now want to highlight how our proposed sys-
tem architecture meets these design goals and where possible
problems may arise.
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We followed the paradigm of agent-oriented software engi-
neering, which is well suited and approved for developing
complex software systems in distributed and dynamic envi-
ronments [4]. Among the reasons are that agents are au-
tonomous, which means they are able to decide for them-
selves what they want to achieve, and they are capable of
sensing their environment and hence able to adapt their be-
havior to changing conditions [16]. If for example an agent
called an external service, but does not get any answer, it
may decide for itself to follow different behavioral strategies,
e.g. wait, call service once again or look for another ser-
vice. In our architecture, robustness is achieved by using a
yellow-page service for finding required service agents hence
the failure of one agent can be compensated by requesting
another instance at runtime and moreover by service agents
being stateless (a new instance for every event-subscription
pair is created) failures do not necessarily affect subsequent
processings. Adaptation to network and load changes may
be achieved by dynamically choosing processing nodes on
which appropriate service agents reside or by migrating mo-
bile service agents onto these nodes.

Moreover, agents are able to communicate and cooperate,
which allows to divide a complex task into multiple simple
tasks being executed by individual agents (cf. our service
agents in the Network Layer). Communication is done by ex-
changing messages, which may be processed asynchronously,
therefore tasks may easily be executed in parallel. Standard-
ized infrastructure components for agent platforms, e.g. a
yellow page service, may be used to achieve loose coupling as
an agent may decide at runtime with whom to communicate
based on its current senses. This also fosters the possibility
to easily extend our middleware by simply introducing new
agents, replacing or cooperating with existing ones. Addi-
tionally, agent-oriented programming is even more abstract
than e.g. the object-orientation, allowing developers to fo-
cus on functionality instead of dealing with low-level details
like communication and threading issues for example. All
these arguments argue for agent-oriented software engineer-
ing achieving the Flexibility & Extensibility design goals.

Of course performance issues have to be discussed when
processing thousands or millions of events [5]. And by us-
ing agents and message-based communication an additional
overhead has to be considered. But in general agent-based
software scales very well as the agents may be easily dis-
tributed among several hosts and by using yellow page ser-
vices loose coupling and hence a dynamic binding can be
achieved. Our middleware is currently implemented using
the Jadex V2 agent system [19] which ships with a high-
performance agent platform and is capable of executing very
lightweight micro agents. Additionally, Jadex also allows
BDI (Belief-Desire-Intention) agents to be executed, which
may be of interest for designing more complex agents with
reasoning capabilities for special tasks (e.g. intelligent adap-
tive routing). For these reasons we argue that agent-based
applications naturally scale very well thus achieving the Scal-
ability design goal.

6. RELATED WORK
In the past, different middleware platforms have been pro-
posed for RFID systems, sensor networks and combinations
of both. The EPCglobal consortium has published sev-

eral standards for the processing of RFID data, including
the EPCglobal Architecture Framework [8]. As this frame-
work only proposes abstract standards, several projects aim
at building concrete system architectures adhering to these
standards, among these are for example [10, 20, 22, 26].

But the examples lack a flexible design making an adoption
of the overall architecture to new demands and standards
quite laborious. Moreover, they concentrate on RFID data
only and in most cases do not allow multiple applications
and organizations to take part in the event processing. To
the best of our knowledge, few projects use agent technology
as part of the system architecture. For example [27] are
using software agents for a manufacturing control system.
They embed the functionality of an RFID middleware to a
large extent into a single monolithic agent, which is directly
interfaced by applications. Another middleware approach
using agent technology is [6], which focuses on mobile agents
for gaining load balancing in RFID systems.

Although standardization of WSN technology has not made
substantial progress, several works propose middleware ar-
chitectures or guidelines and design issues for the develop-
ment of such architectures [14, 17, 21, 29, 30]. Some works
even make use of software agents [11, 13]. But all approaches
mostly concentrate on the ongoings within the sensor net-
work (e.g. data aggregation, routing, etc.) and do not ac-
count for the post-processing of sensor data in the backend,
which we are focusing on. Sung et al. predict a convergence
of RFID and WSN technologies in the future as RFID tags
will become more powerful and hence gain the ability of au-
tonomous communication and processing [25]. Additionally,
isolated systems may be interconnected in the course of time
realizing the vision of the Real World Web [15]. Therefore,
some research efforts have already been spent in developing
an integrated middleware for both WSN and RFID systems
[12, 17, 25, 28] as well as for global scale systems (e.g. [1]).
As a consequence, a middleware needs to be flexible and
generic to abstract from incoming concrete events and out-
going sensor instructions on the one hand, and also should
be extensible to easily allow incorporation of new function-
ality in the future as new demands arise. In our opinion and
to the best of our knowledge, none of the systems satisfies
these requirements.

All architectural proposals in common lack a future-proof
design, rely on centralized infrastructures and/or make use
of monolithic building blocks. They mostly concentrate on
the state-of-the-art in standardization and apply proprietary
solutions if necessary. But as new standards will arise and
existing ones be changed, system architectures are confronted
with frequent and substantial redesigns and refactorings,
putting the architectures to the test.

7. CONCLUSION AND FUTURE WORK
In this paper we argued that the design of future middle-
ware architectures for sensor networks and RFID systems is
challenging due to the underlying standards being subject
to frequent changes. As a consequence we identified a set
of non-functional design goals, which should be considered
when developing such middlewares.
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By using software agents for engineering the middleware we
expect to be able to deal with frequent architectural changes
as agents are a means for designing complex software in dy-
namic and distributed environments. Additionally, agents
are from a software engineering perspective the natural an-
swer to scalability, reliability, extensibility and adaptability
issues - key concerns for the distributed processing of event
streams.

We proposed a three-layered, event-driven architecture fol-
lowing the state of the art middleware designs, in which
agents are the main actors responsible for processing the
events. From an application’s point of view, the processing
of events is in this case simply an orchestration of service
agents, which collaborate in order to create tailored Appli-
cation Level Events for the application.

Our prospects for future work are basically finishing the im-
plementation of our proposed architecture to prove its feasi-
bility. Within that scope we will develop exemplary applica-
tions of different scale addressing certain aspects of the mid-
dleware. Looking further into the future, standardization
progresses as well as the evolution of existing middlewares
will be closely followed in order to adapt our architecture to
changing conditions and demands.
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ABSTRACT
In this paper, we introduce an on-line, decentralised coordination
algorithm for monitoring and predicting the state of spatial phe-
nomena by a team of mobile sensors. These sensors have their ap-
plication domain in disaster response, where strict time constraints
prohibit path planning in advance. The algorithm enables sensors
to coordinate their movements with their direct neighbours to max-
imise the collective information gain, while predicting measure-
ments at unobserved locations using a Gaussian process. It builds
upon the max-sum message passing algorithm for decentralised co-
ordination, for which we present two new generic pruning tech-
niques that result in speed-up of up to 92% for 5 sensors. We empir-
ically evaluate our algorithm against several on-line adaptive coor-
dination mechanisms, and report a reduction in root mean squared
error up to 50% compared to a greedy strategy.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence—Mul-
tiagent systems

General Terms
Algorithms, Theory, Experimentation

Keywords
Mobile Sensors, Coordination, Gaussian process, Spatial Field Mon-
itoring

1. INTRODUCTION
In disaster response, and many other applications besides, the avail-
ability of timely and accurate information is of vital importance.
Thus, the use of multiple mobile sensors for information gather-
ing in crisis situations has generated considerable interest.1 These
mobile sensors could be autonomous ground robots or unmanned
1For example, one of the missions of both the Aladdin project
(http://www.aladdinproject.org) and the Centre for
Robot Assisted Search & Rescue (http://crasar.csee.
usf.edu) is to use autonomous robots for information gathering
in disaster response scenarios.

aerial vehicles. In either case, while patrolling through the disaster
area, these sensors need to keep track of the continuously changing
state of spatial phenomena, such as temperature or the concentra-
tion of potentially toxic chemicals. The key challenges in so doing
are twofold. First, the sensors cannot cover the entire environment
at all times, so the spatial and temporal dynamics of the monitored
phenomena need to be identified in order to predict environmental
conditions in parts of the environment that can not be sensed di-
rectly. Second, the sensors need to coordinate their movements to
collect the most informative measurements needed to predict these
environmental conditions as accurately as possible.

Recent work has addressed similar challenges by modelling the
spatial and temporal dynamics of the phenomena using Gaussian
processes (GPs) [12]. GPs are a powerful Bayesian approach for
inference about functions, and have been shown to be an effective
tool for capturing the dynamics of spatial phenomena [3]. This
principled approach to modelling the environment has been used to
compute informative deployments of fixed sensors [7], and infor-
mative paths for single [9] and multiple mobile sensors [13].

However, the algorithms used to compute these informative de-
ployments and paths are not suitable in our domain, since they are
geared towards solving a one-shot optimisation problem in an off-
line phase. Moreover, these algorithms are centralised. In hos-
tile environments, this is undesirable, because it creates a single
point of failure, thereby increasing the vulnerability of the informa-
tion stream. Other work has employed on-line decentralised path
planning using artificial potential fields to keep sensors in specific
favourable formations [5], or through multi-agent negotiation tech-
niques to partition the environment and allocate the sensors to these
partitions [1]. However, in general, this work has used representa-
tions of the environment, that are less sophisticated than Gaussian
processes, and are thus, less applicable for modelling complex spa-
tial and temporal correlations.

To address this shortcoming, Low et al. [8] combine these ap-
proaches and use Gaussian processes to represent the environment,
and use Markov decision processes to compute non-myopic paths
for multiple mobile sensors in an on-line fashion. Whilst such a
non-myopic approach avoids the problem of local minima, it in-
curs significant computational cost (it is only empirically evaluated
for systems containing just two sensors), and is again a centralised
solution.

Thus, against this background, in this paper, we present a new on-
line, decentralised coordination algorithm for teams of mobile sen-
sors. This algorithm computes coordinated paths with an adjustable
look-ahead, thus allowing the trade off between computation and
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solution quality, and uses GPs to represent generic temporal and
spatial correlations of the phenomena. To this end, we represent
each sensor as an autonomous agent. These agents are capable of
taking measurements, coordinating their actions with their immedi-
ate neighbours, and predicting the state of the spatial phenomenon
at unobserved locations. We then use the max-sum algorithm for
decentralised coordination [4] such that the agents can negotiate
a joint plan by exchanging messages with their immediate neigh-
bours. By applying max-sum in this manner, every agent controls
its own movements using information it possesses locally, and the
coordination mechanism is decentralised. We choose max-sum be-
cause it has been shown to generate good solutions to decentralised
coordination problems, while limiting computation and communi-
cation. However, a standard application of max-sum is still too
computationally costly within our particular domain. Thus, we in-
troduce two novel and generic pruning techniques that speed up the
max-sum algorithm, and hence, make decentralised coordination
tractable in our application.

In more detail, in this paper we contribute to the state of the art in
the following ways:

• We cast the multi-sensor monitoring problem as a decen-
tralised constraint optimisation problem (DCOP), and present
a new decentralised on-line coordination mechanism based
on the max-sum algorithm to solve it.

• We present two novel, generic pruning techniques specifi-
cally geared towards reducing the number of function eval-
uations that is performed by max-sum. Thus alleviating a
major bottleneck of this algorithm.

• We empirically show that a specific instantiation of our ap-
proach prunes 92% of joint moves for 5 sensors, and out-
performs a greedy single step look-ahead algorithm by up to
50% in terms of root mean squared error.

The remainder of this paper is structured as follows. In section 2 we
give a formal problem description. Section 3 describes how spatial
phenomena are modelled. In section 4, we present our distributed
algorithm, which we empirically evaluate in section 5, before con-
cluding in section 6.

2. PROBLEM DESCRIPTION
The problem formulation described in this section was inspired by
[9], and has been extended to deal with multiple sensors and lim-
ited local knowledge. Consider an environment in which M sen-
sors monitor spatial phenomena that are modeled by a scalar field
F : R3 → R, defined on one temporal and two spatial dimen-
sions, at a finite set of locations V = {v1, v2 . . . } ⊂ R2, and an
indeterminate2 number of of discrete time steps T = {t1, t2, ...}.
To the measurement at location v ∈ V , and time t we associate a
continuous random variable, Xv,t. The set of all random variables
is denoted by X . The layout of the physical environment is given
by a graph G = (V, E), where E encodes the possible movements
between locations V . The locations accessible from v are denoted
by adjG(v). Since it is generally not possible to visit all locations
V during a single time step, each sensor selects an adjacent loca-
tion at which to take a measurement at time step t + 1. Values at
2In uncertain and dynamic scenarios, the mission time is often not
known beforehand.

locations V are subsequently predicted with a statistical model us-
ing all measurements that the sensors have gathered so far. In order
to do this, we model the scalar field F with a GP (see next section)
that encodes both its spatial and temporal correlations.

Now, in order to select their movements, sensors need to be able to
predict the informativeness of the samples that are collected along
their paths with respect to the missing ones. Here, the informa-
tiveness of a set of samples O is quantified by a function f(O),
that, depending on the context, can take on different forms [9]. Our
choice for this function f will be derived in the next section.

Given this formalisation, we define the multi-sensor monitoring
problem as follows. For every time step t, maximise f(Ot), where
Ot = ∪M

i=1O
i
t is the set of samples collected by all M sensors up

to time step t at which the prediction is made. Moreover, while
doing so, sensors can only communicate with and be aware of their
immediate neighbours, such that no single point of control exists.

This problem is very challenging even for a single sensor. We there-
fore propose a distributed algorithm that computes paths with an
adjustable look-ahead in Section 4, but first we discuss the way in
which the spatial phenomena are modelled and derive function f .

3. MODELING THE SPATIAL PHENOMENA
In order to predict measurements at unobserved locations, we model
the scalar field F with a GP. Using a GP, F can be estimated at any
location and at any point in time based on a set of samples collected
by the sensors [12]. In more detail, a single sample o of the scalar
field F is a tuple 〈x, y〉, where x = (v, t) denotes the location
and time at which the sample was taken, and y the measured value.
Now, if we collect the training inputs x in a matrix X, and the out-
puts y in a vector y, the predictive distribution of the measurement
at spatio-temporal coordinates x∗, conditioned on previously col-
lected samples Ot = 〈X,y〉 is Gaussian with mean µ and variance
σ2 given by:

µ = K(x∗,X)K(X,X)−1y (1)

σ2 = K(x∗,x∗)−K(x∗,X)K(X,X)−1K(X,x∗) (2)

where K(X,X′) denotes the matrix of covariances for all pairs of
rows in X and X′. These covariances are obtained by evaluating
a function k(x,x′), called a covariance function, which encodes
the spatial and temporal correlations of the pair (x,x′). Generally,
covariance is a non-increasing function of the distance in space and
time. For example, a prototypical choice is the squared exponen-
tial function where the covariance decreases exponentially with this
distance:

k(x,x′) = σ2
f exp

`
− 1

2 |x− x′|2/l2
´

(3)

where σf and l are called hyperparameters that model the signal
variance and the length-scale of the phenomenon respectively. The
latter determines how quickly the phenomenon varies over time and
space3. If these hyperparameters are unknown before deployment
of the sensors, they can be efficiently learnt on-line from collected
samples using Bayesian Monte Carlo [10].

One of the features of the GP is that the posterior variance in Equa-
tion 2 is independent of actual measurements y. This allows the
3A slightly modified version of Equation 3 allows for different
length-scales for the spatial and temporal dimensions of the pro-
cess.
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Sensor 1

Sensor 2

Sensor 3

Figure 1: Joint plan of length 5 for sensors on a lattice graph.

sensors to determine the variance reduction that results from col-
lecting samples along a certain path without the need of actually
collecting them. Using this feature, we define the value f(O) to
be the reduction in entropy that results at the coordinates of O af-
ter taking these samples4. This function exhibits the property of
locality [7], that is exploited by our algorithm. This means that
the correlation between two samples decreases rapidly (exponen-
tially in the case of Equation 3) with increasing distance, such that
samples that are far apart can be considered uncorrelated, and thus,
mobile sensors that are far apart need not explicitly coordinate.

4. DECENTRALISED COORDINATION
In this Section, we present an algorithm for solving the problem
described in Section 2 that computes joint moves with an finite,
adjustable look-ahead. An example of such a joint move for three
sensors, consisting of a path of length 5 for each of them, is shown
in Figure 1. The sensors run the algorithm every n time steps5

to plan joint paths of length l ≥ n. The algorithm is flexible, in
that it allows paths of various lengths, and additional constraints,
to be considered. For instance, the sensors can coordinate over
all possible paths of length l, or only those moves that keep them
within their own partition of the environment.

Given any particular potential joint move, our algorithm must cal-
culate the reduction in entropy, f(∪M

i=1O
i
t), that will result. In or-

der to do so, we approximate f(∪M
i=1O

i
t) by

PM
i=1 f(Oi

t) using the
chain-rule of entropies6. This modified problem can then be cast
as a decentralised constraint optimisation problem (DCOP), which
lends itself to an agent-based solution paradigm. In this paradigm,
sensors are modelled as agents that jointly plan their paths in order
to maximise the value of the collected samples.

More formally, we denote the decision variable of agent i as pi,
which takes values in the set Ai = {a1

i , . . . , a
qi
i }, representing

all qi moves that agent i is currently considering. In Figure 1, for
example, this set contains all paths of length 5 from the agent’s cur-
rent position. Now, the incremental value of adding the samples Õi

collected by agent i along a considered path pi ∈ Ai to the set of
samples Ot+1 \ Õi that are collected by the other sensors is equal
to f(Ot+1) − f(Ot+1 \ Õi). This quantity is the contribution of
agent i to the total value of the samples, given the movements of the
other agents. In what follows, we will refer to this quantity as the
agent’s utility, which is denoted by Ui(pi), where pi is the vec-
tor of decision variables on which agent i’s utility depends (thus,
4Note that Guestrin et al. [2005] show that mutual information can
also be used to define this value. However, the gain in doing so is
small, and it is much more computationally expensive to evaluate.
5For simplicity, and w.l.o.g. we assume that the speed of the sen-
sors is 1 unit per time step.
6This rule states that H(Xo1 . . .Xon) = H(Xo1 |Xo2 , . . .Xon) +
H(Xo2 |Xo3 , . . .Xon) + · · · + H(Xon).

U1

p1

Agent 1

U2

Agent 2 Agent 3

U3

p2 p3

Figure 2: Factor graph with three agents.

pi ∈ pi will always hold). By the property of locality of f , this de-
pendency relation is usually limited to a small set of observations,
and thererfore, to a small set of nearby agents. Now, the agents will
collectively attempt to find joint move p∗ = [p∗1, . . . , p

∗
M ], such

that:

p∗ = arg max
p

MX

i=1

Ui(pi) (4)

or, in other words, the joint move that maximises the total value
obtained by the agents.

4.1 The Max-Sum Message-Passing Algorithm
The coordination problem encoded by Equation 4 is a DCOP, which
can be solved by a wide range of algorithms. Unfortunately, many
of these algorithms either compute the optimal solution at expo-
nential cost, either in terms of the number or size of messages that
are exchanged between agents (e.g. DPOP [11]), or require little
local computation and communication, but produce approximate
solutions (e.g. the Distributed Stochastic Algorithm [6]). How-
ever, there exists a class of algorithms usually referred to under
the framework of the Generalised Distributive Law [2], that can be
used to obtain good approximate solutions. The max-sum message
passing algorithm is one member of this class that is of particu-
lar interest here. This algorithm has been shown to compute better
quality solutions than the approximate class with acceptable com-
putation compared to representative complete algorithms [4].

In more detail, the max-sum algorithm operates on a factor graph:
an undirected bipartite graph in which vertices represent variables
pi and functions Uj . In such factor graphs, an edge exists between
a variable pi and a function Uj iff pi ∈ pj , (i.e., pi is a parameter
of Uj). Using the max-sum algorithm we exploit the fact that an
agent’s utility depends only on a subset of other agents’ decision
variables (locality), and that the global utility function is a sum of
each agent’s utility. Figure 2 shows an example factor graph that
that encodes Equation 4 for the coordination problem of Figure 1.
In this example, the utility of agent 1 depends on its own action, and
that of agent 2, so p1 = {p1, p2}. Similarly, p2 = {p1, p2, p3},
and p3 = {p2, p3}.

In yet more detail, using max-sum, each agent computes:

Ũi(pi) = max
p−i

MX

i=1

Ui(pi) (5)

in a distributed way (i.e. based on local information and communi-
cation with direct neighbours). Agent i’s optimal move p∗i is then
obtained as follows:

p∗i = arg max
pi

Ũi(pi) (6)

In order to do this, messages are passed between the functions Ui,
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Algorithm 1 Algorithm for computing pruning message from func-
tion Um to variable pn

1: compute Um(pn) ≤ min
p−n

Um(pn,p−n)

2: compute Um(pn) ≥ max
p−n

Um(pn,p−n)

3: send 〈Um(pn), Um(pn)〉 to pn

and the variables in pi as described below7:

• From variable to function:

Qpn→Um (pn) = αnm +
X

Um′∈adj(pn)
Um′ &=Um

RUm′→pn (pn) (7)

where αnm is a normalising constant that is chosen such thatP
pn

Qn→m(pn) = 0, to prevent the messages from grow-
ing arbitrarily large.

• From function to variable:

RUm→pn (pn) =

max
p−n

"
Um(pm) +

X

pn′∈adj(Um)
pn′ &=pn

Qpn′→Um (pn′ )

#
(8)

Finally, Ũi(pi) is obtained by summing the most recent messages
RUm′→pi(pi) received by pi. This computation is guaranteed to
be exact when the factor graph is acyclic. However, since depen-
dencies are usually mutual (i.e. agent i’s action influences agent
j’s utility and vice versa), the factor graph will normally contain
cycles. In this case, max-sum computes approximate solutions (i.e
Ũi(pi) ≈ maxp−i

PM
i=1 Ui(pi)). Despite this, however, there ex-

ists strong empirical evidence that max-sum produces good results
even in cyclic factor graphs [4].

4.2 Speeding up Message Computation
The straightforward application of max-sum to solve Equation 4 is
not practical, because the computation of the messages from func-
tion to variable (Equation 8) is a major bottleneck. A naïve way
of computing these messages for a given variable pn is to enumer-
ate all joint moves (i.e. the domain of pm), and evaluate Um for
each of these moves. Since the size of this joint action space grows
exponentially with both the number of agents, and the number of
available moves for each agent, the amount of computation quickly
becomes prohibitive. This is especially true when evaluating Um

is costly, as is the case in the mobile sensors domain8. Therefore,
we introduce two pruning algorithms to reduce the size of the joint
action space that needs to be considered. These algorithms are then
applied to our mobile sensor domain, but they can just as easily be
applied within other settings.

4.2.1 The Action Pruning Algorithm
The first algorithm attempts to reduce the number of moves each
agent needs to consider before running the max-sum algorithm.
7In what follows, we use adj(Um) to denote adjacent vertices of
function Um in the factor graph, i.e., the set of variables in the
domain pm of Um. Similarly, adj(pn) denotes the set of functions
in which pn occurs in the domain.
8Specifically, determining the value of a sample involves the in-
version of a potentially very large matrix K(X,X) (see Equation
2).

Algorithm 2 Algorithm for computing pruning messages from
variable pn to all functions Um ∈ adj(pn)

1: if a new message has been received from all Um ∈ adj(pn) then
2: compute ⊥(pn) =

P
Um∈adj(pn) Um(pn)

3: compute '(pn) =
P

Um∈adj(pn) Um(pn)

4: while ∃a ∈ An : '(a) < max⊥(pn) do
5: An ← An \ {a}
6: end while
7: send updated domain An to each Um ∈ adj(pn)
8: end if

This algorithm prunes the dominated states that can never max-
imise Equation 4, regardless of the actions of other agents. More
formally, a move a′ ∈ An is dominated if there exists a move a∗

such that:

∀a−n

X

Um∈adj(pn)

Um(a′,a−n) ≤
X

Um∈adj(pn)

Um(a∗,a−n) (9)

Just as with the max-sum algorithm itself, this algorithm is im-
plemented by message passing, and operates directly on the vari-
able and function nodes of the factor graph, making it fully decen-
tralised:

• From function to variable: Function Um sends a message
to pn, containing the minimum and maximum values of Um

with respect to pn = an, for all an ∈ An. (see Algorithm
1).

• From variable to function: Variable pn sums the minimum
and maximum values from each of its adjacent functions, and
prunes dominated states. It then informs neighbouring func-
tions of its updated domain (see Algorithm 2).

Using this distributed algorithm, functions continually refine the
bounds on the utility for a given state of a variable, which poten-
tially causes more states to be pruned. Therefore, it is possible that
action pruning starts with a single move, and subsequently propa-
gates through the entire factor graph.

Now, given the highly non-linear relations expressed in Equation 2,
on which the agents’ utility functions Um are based, it is very diffi-
cult to calculate these bounds exactly, without exhaustively search-
ing the domain of xm for utility function Um. Needless to say,
this would defeat the purpose of this pruning technique. Nonethe-
less, experimentation showed that by computing these bounds in a
greedy fashion, a very good approximation is obtained. Thus, the
lower bound Um(an) on a move an is obtained by selecting the
neighbouring agents one at a time, and finding the move that re-
duces the utility of agent m’s move the most. In a similar vein, the
upper bound Um(an) is obtained selecting those moves of other
sensors that reduce the utility the least.

4.2.2 The Joint Action Pruning Algorithm
Whereas the first algorithm runs as a preprocessing phase to max-
sum, the second algorithm is geared towards speeding up the com-
putation of the messages from function to variable (Equation 8),
while max-sum is running. A naïve way of computing this mes-
sage to a single variable pi is to determine the maximum utility for
each of agent i’s actions by exhaustively enumerating the joint do-
main of the variables in pm\{pi} (i.e. the Cartesian product of the
domains of these variables), and evaluating the expression between
brackets in Equation 8, which we denote by R̃Um→pn(pm). This

60



[2, 4]

〈∅, ∅, a1
3〉

〈a3
1, ∅, a1

3〉〈a1
1, ∅, a1

3〉 〈a2
1, ∅, a1

3〉
[5, 6][5, 9]

〈a2
1, a

2
2, a

1
3〉〈a2

1, a
1
2, a

1
3〉

[7, 7] [9, 9]

Figure 3: Search-tree for computing RUm→x3(a
1
3) showing lower

and upper bounds on the maximum value in the subtree.

expression is the sum of the utility function Um and the sum of
messages Q.

However, instead of just considering joint moves, we now allow
some actions to be undetermined, and thus, consider partial joint
moves, denoted by â. By doing so, we can create a search tree on
which we can employ branch and bound to significantly reduce the
size of the domain that needs to be searched. In more detail, to
compute RUm→pn(ai

n) (a single element of the message from Um

to variable pn) for a single state ai
n ∈ Ai in the domain of pn, we

create a search tree T (ai
n) as follows:

• The root of T (ai
n) is a partial joint move âr = 〈∅, . . . , ∅,

ai
n, ∅, . . . , ∅〉, which indicates that ai

n is assigned to pn, and
the remaining variables are unassigned (denoted by ∅).

• The children of a vertex
˙
a(1)
1 , . . . , a(k)

k , ∅, . . . ∅, ai
n, ∅, . . . , ∅

¸

are obtained by setting the first unassigned variable pk+1 to
each of its |Ak+1| moves.

• The leafs of the tree represent a (fully determined) joint move
am (i.e. ∀i : pi += ∅). In the tree, only leafs are assigned a
value, which is equal to R̃Um→pn(am).

The maximum value found in T (ai
n) is the desired value. Now, in

order to use branch and bound to find this value, we need to put
bounds on the maximum value found in a subtree of T (ai

n). These
bounds depend on Um and the received messages Q. Now, in many
cases we can put bounds on the maximum of the former, that is ob-
tained by further completing a partial joint move â′ in a subtree of
T (ai

n). The bounds on Um, combined with the minimum and max-
imum values of Q for â′ (again, by further completing the partial
joint move), gives us the desired bounds.

Figure 3 shows an example of a partially expanded search tree for
computing a single element RUm→x3(a

1
3) of a message from func-

tion Um to variable p3. Given the lower and upper bounds on the
maximum, subtree

˙
a1
1, ∅, a1

3

¸
can be pruned immediately after

expanding the root. Similarly, subtree
˙
a3
1, ∅, a1

3

¸
is pruned af-

ter expanding leaf
˙
a2
1, a

2
2, a

1
3

¸
, which has the desired maximum

value.

To compute these bounds on the maximum of Ui(â) in the mobile
sensor domain, note that partial joint move â represents a situation
in which only a subset of the agents have determined their move.
Using this interpretation, we can obtain bounds as follows. The
upper bound on this value is obtained by disregarding the agents
that have not determined their action (i.e. agents i for which pi =
∅). Since the act of collecting a sample always reduces the value

of other samples, disregarding the samples of these ‘undecided’
agents will give an upper bound on the maximum. To obtain a
lower bound on the maximum, we use the locality property of f ,
which tells us that the interdependency between values of samples
weakens as their distance increases. So, in order to calculate the
lower bound, we move the undecided agents away from agent i’s
destination.

4.3 Ensuring Network Connectivity
In many situations, it is also important that the sensors maintain
network connectivity in order to transmit their measurements to a
base station. More importantly in the context of our algorithm,
agents need to be able to communicate in order to negotiate over
their actions. Not surprisingly, we can use the algorithm to accom-
plish this, by penalising disconnection from the network in the util-
ity function Ui. To this end, we assume that every agent maintains
a routing table that specifies which agents can be reached through
each immediate neighbour. Thus, a move is only allowed if all
agents will still be reachable through the remaining links. Other-
wise, the agent risks disconnection from the network, in which case
a large penalty is added to its utility function Ui.

5. EMPIRICAL EVALUATION
To empirically evaluate our approach, we simulated five sensors on
a lattice graph measuring 26 by 26 vertices. The data was generated
by a GP with a squared exponential covariance function (see Equa-
tion 3) with a spatial length-scale of 10 and a temporal length-scale
of 150. This means that the spatial phenomenon has a strong corre-
lation along the temporal dimension, and therefore changes slowly
over time. At every m time steps, the sensors plan their motion for
the next l time steps (l ≥ m). In what follows, this strategy is re-
ferred to as MSm-l. Now, instead of considering all possible paths
of length l from an agent’s current position, which would result in
a very high computational overhead, the action space is limited to
the locations in G that can be reached in l time steps in 8 different
directions, corresponding to the major directions on the compass
rose. In the first experiment, we benchmarked MS1-1 and MS1-5
against four strategies:

• Random: Randomly moving sensors.

• Greedy: Sensors that greedily maximise the value of the
sample collected in the next move without coordination.

• J(umping) Greedy: The same as Greedy, except that these
sensors can instantaneously jump to any location.

• Fixed: Fixed sensors that are placed using the algorithm
proposed in [7].

The averaged root mean squared error (RMSE) for 100 time steps
is plotted in Figure 4(a). From this figure, it is clear that both
MS strategies outperform the Greedy, Random, and Fixed strate-
gies. Furthermore, the prediction accuracy of MS1-5 is compara-
ble to that of JGreedy, whose movement is not restricted by graph
G. Moreover, it shows that increasing the length of the considered
paths from 1 to 5, reduces the RMSE by approximately 30%.

In the second set of experiments, we analysed the speed-up achieved
by applying the two pruning techniques described in Section 4.2.
Figure 4(b) shows the percentage of joint actions pruned plotted
against the number of neighbouring agents. With 5 neighbours, the
two pruning techniques combined prune around 92% of the joint
moves. With such a number of neighbouring agents, the agents
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Figure 4: The Experimental Results. Errorbars indicate the standard error in the mean.

are strongly clustered, which occurs rarely in a large environment.
However, should this happen, the utility function needs to be evalu-
ated for only 8% of roughly 85 joint actions, thus greatly improving
the algorithm’s efficiency.

In the third experiment, we performed a cost/benefit analysis of var-
ious MSm-l strategies. More specifically, we examined the effect
of varying m and l on both the number of utility function eval-
uations, and the resulting RMSE. Figure 4(c) shows the results.
The results of MS1-1, MS2-2, MS4-4, MS5-5, and MS8-8 show
an interesting pattern. Up to and including m = l = 4, both the
number of function evaluations and the average RMSE decrease.
This is due to the fact that planning longer paths is more expen-
sive, but results in lower RMSE. However, for m, l > 4, the action
space becomes too coarse (since only 8 directions are considered)
to maintain a low RMSE. At the same time, the number of times the
agents coordinate reduces significantly, resulting in a lower num-
ber of function evaluations. Finally, MS1-5 and MS4-8 provide a
compromise; they compute longer paths, but coordinate more fre-
quently. This leads to more computation compared to MS5-5 and
MS8-8, but results in significantly lower RMSE, because agents are
able to ‘reconsider’ their paths.

A video demonstrating the mobile sensors with the techniques from
Section 4 can be found at www.youtube.com/ijcai09.

6. CONCLUSIONS
In this paper, we presented an on-line decentralised coordination al-
gorithms for multiple sensors. We showed how the max-sum mes-
sage passing algorithm can be applied to this domain in order to
coordinate the motion paths of the sensors along which the most
informative samples are gathered. We also presented two general
pruning to speed up the max-sum algorithm. The first attempts to
prune actions of the sensors that are not part of the optimal joint
move. The second uses branch and bound to reduce the fraction of
the joint action space that needs to be searched in order to compute
the messages from functions to variables, which is the main bottle-
neck of the max-sum algorithm. We empirically showed that for
5 sensors, these techniques prune 92% of joint moves, thus signif-
icantly reducing the number of utility function evaluations, which
are particularly expensive in the mobile sensor domain. Moreover,
we showed that root mean squared error with which the spatial
phenomenon is predicted by the MS1-5 strategy is approximately
50% lower compared to a greedy single step look-ahead algorithm.
Our future work in this area is to extend the proposed approach by
adopting techniques from sequential decision making to do non-
myopic path planning, while keeping computational costs in check.
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ABSTRACT
The efficient management of the limited energy resources of a wire-
less visual sensor network is central to its successful operation.
Within this context, this paper focuses on the adaptive sampling,
forwarding, and routing actions of each node in order to maximise
the information value of the data collected. These actions are inter-
related in this setting because each node’s energy consumption must
be optimally allocated between sampling and transmitting its own
data, receiving and forwarding the data of other nodes, and routing
any data. Thus, we develop two optimal decentralised algorithms to
solve this distributed constraint optimization problem. The first as-
sumes that the route by which data is forwarded to the base station
is fixed, and then calculates the optimal sampling, transmitting, and
forwarding actions that each node should perform. The second as-
sumes flexible routing, and makes optimal decisions regarding both
the integration of actions that each node should choose, and also
the route by which the data should be forwarded to the base station.
The two algorithms represent a trade-off in optimality, communi-
cation cost, and processing time. In an empirical evaluation on sen-
sor networks (whose underlying communication networks exhibit
loops), we show that the algorithm with flexible routing is able to
deliver approximately twice the quantity of information to the base
station compared to the algorithm using fixed routing (where an
arbitrary choice of route is made). However, this gain comes at
a considerable communication and computational cost (increasing
both by a factor of 100 times). Thus, while the algorithm with
flexible routing is suitable for networks with a small numbers of
nodes, it scales poorly, and as the size of the network increases, the
algorithm with fixed routing is favoured.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Intelligent agents, Multiagent systems

General Terms
Algorithms, Experimentation, Management, Performance

Keywords
Decentralised mechanism, distributed constraint optimization, in-

formation metric, inter-related adaptive sampling and routing

1. INTRODUCTION
Due to their flexibility and ease of deployment, wireless sensor net-
works, composed of battery powered sensor nodes that wirelessly
communicate and route information sampled from the environment
through the network to a base station, are becoming increasingly
prevalent in a wide variety of applications, including environmen-
tal monitoring [8], area surveillance [1, 10], and object tracking
in battlefields [4]. In particular, the rapidly increasing computa-
tional power of the nodes deployed within such networks has al-
lowed them to perform ever more sophisticated tasks, and recently,
wireless visual sensor networks (WVSN), whose nodes consist of
spatially distributed smart camera devices, which are capable of
performing basic capturing and processing of visual data, before
forwarding it to the base station to be fused and analysed, have
received increasing attention within the research community [13].

Such networks are intended for distributed image acquisition over
large, and possibly hostile environments, and as such, are required
to operate for extended periods of time with minimal human inter-
vention. However, the increased computational power of the nodes
within a WVSN (compared to those typically deployed within a
conventional wireless sensor network), the large amounts of visual
information that they collect, and the high energy cost of wirelessly
communicating this information through the network, mean that ef-
ficient energy management is a key challenge in these networks.

To date, this challenge has been addressed through two comple-
mentary approaches: namely (i) hardware and (ii) software solu-
tions. Within the former, advances in chip manufacture have suc-
cessfully reduced the power consumption of nodes, helping to im-
prove their longevity, and, in turn, the network’s lifetime [3]. From
the latter perspective, work has addressed the two main actions that
such sensor nodes can vary in order to make their energy manage-
ment more efficient: (i) their sampling rate (i.e. how much visual
data they acquire) and (ii) their communication of data capabilities
(those include selecting the most energy efficient path between the
node and the base station given that the nodes may have different
energy constraints and communication costs).

In particular, recent work has explored decentralised coordina-
tion algorithms that enable the nodes to autonomously adapt and
adjust their sampling and communication behaviours. This coordi-
nation is computationally expensive since the sampling and com-
munication decisions are inter-dependent. This is because each
node’s energy consumption must be optimally allocated between
sampling and transmitting its own data, receiving and forwarding
the data of other nodes, and routing any data. In such a setting, the
choices of one node can potentially affect all other nodes in the net-
work. However, much of this work has specifically addressed nodes
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that are assumed to be extremely low power, computationally con-
strained devices. As such, it considers simple heuristic algorithms
that allow the nodes to make local decisions to improve the overall
performance of the network (see Sect. 5 for more details).

While such approaches have proved valuable in the context in
which they were developed, when applied to WVSN they do not
fully exploit the computational power available to the nodes. Fur-
thermore, the large amounts of visual data that the nodes within
the WVSN collect and communicate means that the communica-
tion resources available to the decentralised coordination mecha-
nism are much greater than those of many conventional wireless
sensor networks. When taken together, the move to WVSN means
that there is now the possibility of deploying algorithms that can op-
timally maximise the overall effectiveness of the network through
distributed computation, rather than local heuristics. It is this chal-
lenge that we address in this paper, and to this end, we adopt an
agent-based approach in which each node is represented as an au-
tonomous agent (with private information regarding its own state),
and the complex, inter-connected, and rapidly changing network,
as a multi-agent system. The individual agents must then coopera-
tively coordinate their activities to achieve system-wide goals.

Against this background, in this paper, we develop a novel opti-
mal decentralised algorithm that varies each node’s sampling, trans-
mitting, and forwarding rates to ensure all nodes in a network fo-
cus their limited resources on maximising the information content
of the data collected at the base station. This algorithm assumes
that the route by which data is forwarded to the base station is fixed
(either because the underlying communication network is a tree, or
because an arbitrary choice of route has been made), and uses a
distributed dynamic programming approach to extensively truncate
the search space of potential allocation decisions. We then extend
this approach to deal with flexible routing, in which each node not
only makes optimal decisions regarding the sampling, transmitting,
and forwarding actions, but also determines the optimal route by
which this data should be forwarded. To ground and evaluate these
algorithms, we empirically evaluate them and show that they repre-
sent a trade-off in optimality, communication cost, and processing
time. In more detail, we show that when deployed on sensor net-
works with loopy topology (i.e. where data can follow multiple
paths to the base station), the algorithm with flexible routing is able
to deliver approximately twice the quantity of information to the
base station compared to that of the algorithm using fixed routing.
However, this gain comes at considerable communication and com-
putational cost (increasing both by a factor of 100 times).

The remainder of this paper is organized as follows. In Sect. 2
we state the formal model of our distributed constraint optimiza-
tion problem. In Sect. 3 we detail our two novel algorithms and
show how we find the optimal local allocation decisions. Our ex-
perimental results are presented in Sect. 4. We present previous
work in this area in Sect. 5 and we conclude in Sect. 6.

2. PROBLEM DESCRIPTION
Here, we formalise the generic adaptive sampling, transmitting,
forwarding, and routing problem that we face. To this end, let n
be the number of nodes within a WVSN system and the set of all
nodes (or agents) be I = {1, . . . , n}. Each node i ∈ I can sam-
ple at si different rates over a period of time. Its set of possible
sampling (or frame) rates is denoted by Ci = {c1

i , . . . , c
si
i }. Each

element of this set, cj
i , is a positive integer that describes the num-

ber of samples that the node takes during any specific time interval.
Each node has private information regarding the information con-

tent of the samples that it acquires, and this is represented by an ar-

ray of 2-tuples Fi =

»
(0, 0) ,

“
c1

i , v
c1i
i

”
, . . . ,

„
csi

i , v
c

si
i

i

«–
, where

the first value of each tuple is the number of samples that the node

may take and v
cj

i
i is the corresponding information content for those

cj
i samples. Given the fact that more samples will generally gener-

ate visual data with a higher information content, we define v
c
j
i

i =

αi ·cj
i , where αi is a weighting factor (with support [0, 1]) that mod-

els the typical situation that the sensors within the network are het-
erogeneous, having different capabilities (i.e. the resolution of their
cameras, the quality of their optics, or the sophistication of their
image processing algorithms) and fields of view, and thus, samples
from some sensors will contribute more to the total amount of in-
formation collected at the base station than others [11]. However,
we note that our algorithms are not restricted to this linear infor-
mation valuation function and, in some domains, it may be more
valid to model the information as a strictly concave function where
continuing to increase the sampling rate generates decreasing gains
in information content [2]. We assume that should the node choose
to acquire no samples, it will yield zero information value. Further-
more, we assume that the visual data captured by a node needs to
be processed at the base station with that of other nodes, and there-
fore the information content of the data will only be accounted for
if it arrives successfully at the base station.

We further assume that each node has an energy budget, Bi (also
a private value initially known only to the node), such that its to-
tal energy consumption can not exceed this budget. We consider
three specific kinds of energy consumption for each node in the
network; namely the energy required to (i) acquire, es

i , (ii) trans-
mit, eTx

i , and (iii) receive, eRx
i , a single sample. We disregard the

energy required for other types of processing since it is negligible
in comparison. Now, since the node has to transmit its own data to-
wards the base station, the total energy required for this activity is
thus ES

i = es
i + eTx

i per sample (we will later on refer to the com-
bination of these processes as sensing). Similarly, the node could
potentially spend a portion of its energy to help its neighbourhood
nodes to forward their own samples (and/or data that this node is
forwarding for another node). This incoming data forwarding pro-
cess requires a total energy of EF

i = eRx
i + eTx

i per sample.
Each node initially stores its collected samples into its local mem-

ory buffer in order to be transmitted at a later stage. The transmis-
sion period and interval are predetermined. During each transmis-
sion phase, the transmitter module of each node is turned on for
the purpose of transmitting data or message packets to the base sta-
tion in a multi-hop fashion. Battery-powered visual sensor nodes
typically offer reasonably small on-board memory and, hence, at
the end of the transmission phase, each node’s memory buffer is
flushed, reinitialized, and ready to store new sampled data [6].

We describe the route through which the samples, cj
i , will be

transmitted to the base station by the vector R(cj
i ) = (r1

i , . . . , rb
i ),

where rl
i ∈ I . The first element of this vector is the origin node that

actually takes the samples. Each subsequent element of this vector
is unique and rl

i will forward the data to rl+1
i . Thus, for the data

value of cj
i samples to be taken into account, its routing set must

contain the base station node as its last node.
Given the formal description of the problem above, we now wish

to maximise the value of the collected data that arrives at the base
station. That is, we wish to solve:

D∗
i = arg max

{Di,Fi}

nX

i=1

X

cj
i∈Ci

d R(cj
i )

i v
cj

i
i (1)

In this expression, d R(cj
i )

i ∈ Di ∈ {0, 1} is a decision variable
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where “1” represents a state where the node carries out the cor-
responding cj

i sampling action and the samples follow the R(cj
i )

route to arrive at the base station, and “0” represents the state where
the node does not carry out the corresponding cj

i sampling action.
This objective function is maximised subject to the energy budget
constraint on each node i ∈ I , such that:

Bi ≥ cj
iE

S
i + fiE

F
i (2)

where fi represents the total incoming data (or forwarded samples
from its set of neighbourhood nodes Di) and is given by:

fi =
X

d∈Di

cj
d + fd (3)

where i ∈ R(cj
d). Note that the total outgoing number of samples

from node i is thus cj
i + fi. We must also constrain the node to

chose one and only one sampling rate, such that:
X

cj
i∈Ci

d R(cj
i )

i = 1 (4)

for all different possible routes in the network.
The problem, as formulated above, is similar to multiple-choice

knapsack problems1 (i.e. NP-complete resource allocation or dis-
tributed constraint optimization problems) [12], that exhibit the op-
timal substructure property2. Given this insight, we propose algo-
rithms based on the sort of computationally efficient dynamic pro-
gramming technique that are often used on such knapsack problems
for solving multi-agent distributed coordination problems.

3. THE ALGORITHMS
We now focus on the algorithms used by the nodes to make optimal
use of their energy resources in order to cooperatively sense, for-
ward, and route data to the base station. Our approach places higher
priority on those samples that have a higher information content,
and this is achieved by exchanging coordination messages between
connected nodes. To this end, we distinguish three types of mes-
sages being exchanged by the nodes; namely (i) actual data mes-
sages containing visual data sampled by the nodes, and two types
of coordination messages composed of (ii) meta-data messages de-
scribing the information content of the visual data together with

the number of samples taken to produce that data (i.e. v
cj

i
i and cj

i

respectively), and (iii) control messages containing the allocation
decisions. In WVSNs, the size of the actual data messages over-
whelms that of the coordinations messages and, hence, exchanging
these before sending the actual data can significantly increase the
information collected at the base station by making more efficient
use of each node’s constrained energy.

The goal of the algorithms that we derive is to calculate the opti-
mal sampling and routing actions of each node. This is given by:

CmaxI ={(i, cj
i , R(cj

i ))|d
R(cj

i )
i = 1,

∀i ∈ I, ∀cj
i ∈ Ci, ∀d R(cj

i )
i ∈ D∗

i } (5)

1There are m items and the set of all items T = {1, . . . , m}. Each
item t ∈ T has a value vt and a weight wt. The items are sub-
divided into o categories and exactly one item must be taken from
each category. The maximum weight that can be carried in a bag is
G. Given these, we need to determine which items to include in the
bag such that the total weight does not exceed its given limit, while
the total value is maximised.
2This property means that the optimal solution can be constructed
efficiently from optimal solutions to its subproblems.
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Figure 1: The flow of the algorithm in a connected and undi-
rected tree-structured WVSN. We assume that communication
is bi-directional and multiple nodes within range can thus es-
tablish a connection. Dotted node i could represent any sub-
trees in the network.

and represents a set of 3-tuples indicating for each node in the net-
work, the sensing and forwarding rates that it should adopt, and the
route that it should use to transmit its own and its forwarded data to
the base station, in order to maximise the objective function in (1),
subject to the constraints in (2) and (4). We now present our two
novel adaptive sensing, forwarding, and routing algorithms. Both
of them are efficient as they satisfy the data flow conservation of
the network where no energy is wasted by transmitting data that
later will not be forwarded to the final destination.

3.1 Algorithm With Fixed Routing
In this case, each node i ∈ I can only forward its data to ex-
actly one other node (which will later be referred as its parent).
This may be because the underlying communication network of
the WVSN is tree structured, or because it actually exhibits loops
but an arbitrary choice of route has been made (effectively turn-
ing the loopy communication network into a tree). An example of
a WVSN whose underlying network structure is a tree structure is
shown in Fig. 1. Note that in such tree-structured networks, there is
only one unique route between each node and the base station (e.g.
R(cj

4) = (4, 2,base station) and R(cj
3) = (3, 1,base station)).

In general, the nodes within a network will deplete their energy
resources at different rates since they will have different sampling
rates, and will be transmitting different quantities of visual data.
Each node i ∈ I thus needs to compute the highest information
value it can transmit by using at most bk

i ≤ Bi of its energy. As
described earlier, the energy consumption of node i only includes
ES

i and EF
i (i.e. the energy to sense and forward a sample respec-

tively). It is therefore sufficient that bk
i satisfies:

bk
i = cj

iE
S
i + fiE

F
i where cj

i , fi ≥ 0
bk
i ≤ Bi

(6)

where cj
i is its own number of samples and fi is the number of

forwarded incoming samples.
Now, let Oi =

h`
b1
i , V max1

i , Cmax1
i

´
, . . . ,

“
bKi
i , V maxKi

i ,
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Algorithm 1 Optimal adaptive sensing and forwarding with fixed
routing.
1: loop
2: if sT ime = NOW then " Time to sample.

3: readings ← PERFORMSAMPLING(sT ime) " Sampling action, c
j
i .

4: SETSTIME(sT ime + sRate)
5: end if
6: if tT ime = NOW then " Time to transmit, transmission module is turned on.

7: [Bpi , EF
pi

] ← WAITMETADATA(pi) " Receives Bpi and EF
pi

from its

unique parent node, pi .

8: for each jm
i ∈ Ji do " Iterates each child node in Ji =


j1i , . . . , j

Mi
i

ff
.

9: SENDMETADATA(jm
i , [Bi, EF

i ]) " Sends Bi and EF
i to child node jm

i .

10: end for
11: CALCFIRSTROWTABLES(readings) " Calculates the 1st rows of Ti and Ui

using (7) and (10) respectively.

12: if ¬leafNode then
13: for each jm

i ∈ J do
14: Ojm

i
← WAITMETADATA(jm

i ) " Receives Ojm
i

from child node

jm
i .

15: CALCTHERESTTABLES(Ojm
i

) " Calculates the other rows of Ti and Ui
using (8) and (11) respectively.

16: end for
17: end if
18: Oi ← CALCMETADATAARRAY() " Determines Oi which is basically the last

row of Ui .

19: SENDMETADATA(pi, Oi) " Sends Oi to unique parent node, pi .

20: CmaxI ← WAITCONTROLMESSAGE(pi) " Receives control message from

unique parent node, pi .

21: PROPAGATECONTROLMESSAGE(jm
i , CmaxI) " Sends control message to

each child node, jm
i ∈ Ji .

22: PERFORMTRANSMIT(readings, CmaxI )
23: SETNODEOPTIMALBEHAVIOUR(CmaxI ) " Sets node’s optimal sensing and

forwarding actions.

24: SETTTIME(tT ime + tRate) " Node sets its next transmitting time.

25: readings ←{}
26: end if
27: end loop

CmaxKi
i

”i
denote an array of 3-tuples sorted incrementally by bk

i

where k = 1, . . . , Ki, and bk
i is the energy limit that satisfies (6)

and will later on be referred to as the labels of Oi. V maxk
i is the

maximum information value that node i can transmit to its parent
by using at most bk

i , and Cmaxk
i is the set of sensing and forward-

ing actions that will produce data with the value of V maxk
i .

The algorithm installed on each node runs in three phases (see
Fig. 1 and Algorithm 1). In the first, meta-data message propaga-
tion is initiated by the base station. To this end, messages contain-
ing the value of each node’s energy budget, Bi, and energy con-
sumption for forwarding, EF

i , are propagated down the tree (i.e. as
soon as any node receives this information from its unique parent
node, pi (see state 1 or line 7), it sends its own information to its
set of children, Ji =

n
j1
i , . . . , jMi

i

o
(line 9)). Having sent this

information each node i then enters an idle mode in which it waits
for the O meta-data arrays from its child nodes.

In the second phase, after all the O meta-data arrays have arrived
from its children (denoted by Oj1i

, . . . , O
j

Mi
i

, see state 2 or lines
14-15), node i then calculates its own Oi (line 18). To do so, it
constructs a table, Ti, which has Mi + 1 rows numbered from 0 to
Mi, and Ki columns, where Ki is the number of all the bk

i values
that satisfy (6). See Table 1 in which each column k has label bk

i .
Let Ti [x, y] denote the element of the table that is in the xth row
and the column with label by

i . As every node could choose not to
sample (yielding zero value), then Ojm

i
[0] = Ti [m, 0] = 0 for

all 0 ≤ m ≤ Mi, where Ojm
i

[x] is the xth element of Ojm
i

.
Moreover, we can assume that the set of labels in each Ojm

i
that

node i has received is the same as the set of labels in its table Ti.
We will show how we can guarantee this later on. Hence, Ti’s other

elements are filled as follows:

Ti [0, k] = max{vcj
i

i } (7)

Ti [m, k] = max
0≤r≤k

n
Ti [m− 1, r] + V maxk−r

jm
i

o
(8)

for all 1 ≤ k ≤ Ki and 1 ≤ m ≤ Mi, where (cj
i , v

cj
i

i ) ∈ Fi, and
Fi is the array of 2-tuples defined in the previous section.

According to (7), we can see that Ti [0, k] stores the maximum
information value of data that can be delivered to node i’s parent by
sensing only (with the energy consumption not exceeding the en-
ergy limit bk

i ). Due to the fact that each of the sets of labels in Ojm
i

is equivalent to the set of labels of table Ti, (8) gives the maximum
value of data that node i can deliver to its parent (noting that this
data does not only include its own sensed data but also its children’s
data that will potentially be forwarded through it). Hence, Ti [1, k]
is the maximum value that can be sent by taking into account the
sensed data and the data from j1

i , with respect to the bk
i energy

limit. Ti [2, k] stores the maximum value when the data from child
node j2

i is also included. In general, Ti [m, k] is the maximum in-
formation value that node i can transmit to its parent, given the bk

i

energy limit. The data considered is the potential forwarded data
from child nodes j1

i ,. . . ,jm
i and node i’s own sensed data.

Note that while it is necessary to construct the entire table, as
in conventional dynamic programming solutions to the multiple-
choice knapsack problem, it is only the last row that provides useful
meta-data regarding the maximum information values of data that
can be transmitted given different feasible values of bk

i . Indeed,
it is only the last element of this row that represents the maximal
information value that node i can transmit to the parent node.

To illustrate how the elements of the table are calculated in a
clearer way, consider Tables 1 and 2 in which the information val-
ues of node i’s sensed data and the V maxk

jm
i

values of Ojm
i

ar-
riving from its child nodes jm

i respectively are chosen arbitrarily
for illustrative purposes. The rows of Table 1 represent the set of
nodes whose data has been taken into account. For instance where
row = i, if node i has b0

i , b1
i , b2

i , b3
i , or b4

i amount of energy limit,
in return it will be able to sense it own data with the maximum
value of 0, 12.34, 14.56, 28.25, or 50.98 correspondingly. These
values are calculated using (7). Oj1i

then arrives (see Table 2 where
row = Oj1i

) from its child node j1
i containing the maximum val-

ues that this node could potentially forward to node i.
The elements of Ti’s second row (i.e. row = {i ∪ j1

i }) can thus
be calculated using (8). These elements represent the maximum
information that node i could send by taking into account not only
its own sensed data, but also the data that could be potentially for-
warded from its child node j1

i . For instance where column = b1
i ,

node i could allocate all its b1
i energy resources to either sense and

transmit its own data or to forward data from its child node j1
i . In

this case, the node chooses to sense and transmit its own data since
it has a higher value. Where column = b2

i , however, the node
again allocate all its b2

i energy resources to either sense its own data
or to forward its child node j1

i ’s data. Alternatively it could as well
divide its b2

i energy resources by allocating a portion of b1
i energy

resources to its own and another b1
i to its child node. In this case,

it turns out that the latter alternative yields the highest information
value of 19.32. Ti’s other elements are calculated in a similar way.

Now, the next step of the algorithm is to calculate Oi. To do
so, let Ui denote a table similar to Ti. However, its labels bl

i, now,
satisfy the following:

bl
i = (cj

i + fi)E
F
pi

where cj
i , fi ≥ 0

bl
i ≤ Bpi

(9)
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Table 1: The Ti table of node i. Its Oi meta-data array is rep-
resented by the dotted rectangle.

0 12.34

0 12.24

14.56 28.95

19.32

28.78

45.89

45.89

58.23

58.23

Ti

{  }i

0 12.34{  U }I U ... Uj ji i

1 Mi

bi

0
bi

1 bi

2
bi

3
bi

4
bi

k

50.98

}{  Ui ji

1

Table 2: Ojm
i

meta-data arrays that have arrived from each
child nodes j1

i , . . . , jMi
i .

bi

0 bi

2
bi

3
bi

4
bi

k

0 6.98 15.67 45.89

51.8835.89

48.99

0 6.79 28.78

bi

1

where Bpi is the energy budget of i’s unique parent node, pi, and
EF

pi
is the value of energy consumption of the parent for forward-

ing a sample. Recall that these values were delivered to node i in
the first stage. Let Li denote the number of all bl

i that satisfy (9).
Similarly, we can calculate table Ui’s elements in a similar fashion
to those of Ti as described earlier, but with the new labels:

Ui [0, l] = min

„
max{vcj

i
i }, Ti [0, Ki]

«
(10)

Ui [m, l] = min

„
max

0≤r≤l

n
Ui [m− 1, r] + V maxl−r

jm
i

o
, Ti [m, Ki]

«

(11)

for all 1 ≤ l ≤ Li and 1 ≤ m ≤ Mi, where (cj
i , v

cj
i

i ) ∈ Fi.
We can now construct the meta-data array of node i such that

Oi =
h`

b1i , Ui [Mi, 1] , Cmax1
i

´
, . . . ,

“
bLi
i , Ui [Mi, Li] , CmaxLi

i

”i
,

where Ui [Mi, l] is the maximum information value that node i can
transmit to its parent node (by using at most bk

i energy) which can
subsequently forward the received i’s data by using at most bl

i en-
ergy. Cmaxl

i is the set of sensing actions that will produce data
with the value of Ui [Mi, l]. Hence, once Oi is sent to the parent
node, its labels will be the same as those in table Tpi of the parent
node. This second phase meta-data message containing Oi propa-
gates up the network arriving back at the base station (line 19).

In the third phase of the algorithm, each parent node will have
received meta-data arrays from all of its children. The base station
will be able to calculate the highest information value it can poten-
tially receive from all the nodes beneath it in the network. Based on
the structure of Oi, each node i can easily determine what amount
of data it should receive from each child node and, hence, how
many samples it should acquire and transmit itself. A control mes-
sage containing this set is then propagated down the network (see
state 3 or lines 20-21), and this control message informs each node
of its optimal decisions (lines 22-23). In this way, there is a guar-
antee that all of the data transmitted by each node will reach the
base station. The control message eventually reaches the leaf nodes
which then start to acquire and transmit visual data as planned.

3.2 Algorithm with Flexible Routing
Next, we consider the algorithm which assumes flexible routing,
and makes optimal decisions regarding both the sensing and for-
warding actions that each node should perform, and also the route
by which data should be forwarded to the base station (see Fig. 2
for an illustration of this case). In order to make the routing de-
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Figure 2: The flow of the algorithm that assumes flexible rout-
ing and makes optimal decisions regarding both sensing, for-
warding, and next-hop (or routing) decisions. The phases in-
volved in this algorithm are similar to those in the algorithm
for fixed routing.

cision tractable, we place one minor restriction on the routes that
our algorithm can consider. Specifically, we assume that the nodes
always forward their data toward the base station; that is, they will
not forward data to a node that is further from the base station (in
terms of hop count) than themselves. We believe this is a reason-
able assumption. There may be cases where several nodes are bet-
ter off taking longer paths. However, in general such paths will
deplete the energy resources of a greater number of nodes, and are
thus unlikely to be optimal solutions. Furthermore, we assume that
the data samples of a node can only be sent as a bundle (i.e. they
are indivisible). The data readings of different nodes can, however,
be sent through different routes to the base station.

With these assumptions, we now need to organize the nodes into
different levels. The first consists of all the nodes that have a 1-hop
shortest path to the base station (nodes 1 and 2 in Fig. 2). Nodes
that belong to the second level have a 2-hop shortest path to the
base station (nodes i, 3, and 4). Nodes 5 and 6 have a 3-hop shortest
path. Now, according to this hierarchy, each node can only forward
its data to higher level nodes within its transmission range. In Fig.
2, for example, node i has two potential shortest routes to choose
from; namely (i) node 1 which results in route R(cj

i ) = (i, 1,base
station) and (ii) node 2 which results in route R(cj

i ) = (i, 2,base
station). Node i does not consider routing through node 6 since 6
is a greater hop count away from the base station than it is. Fur-
thermore, as we can see from the figure, node i has potentially two
bundles of data to consider (its own and data that it is forwarding
for node 6). In addition, it has two possible shortest paths to choose
between (either through node 1 or 2 for each of the bundled data).
Thus, a number of routing options exist for this node. It could
send both bundles of data through node 1, such that both R(cj

i )
and R(cj

6) contain (i, 1, . . . ), or it could send them through node
2. Other alternatives are to send each of them separately through
each possible route, such that R(cj

i ) contains (i, 1, . . . ) and R(cj
6)

contains (i, 2, . . . ), or the other way around.
Now, let Pi denote the set of parent nodes (which are nodes with

a one hop shorter shortest path to the base station) of node i and Ci

denote the set of its descendants. Thus, at each node i ∈ I , there
are at most |Pi||Ci|+1 possibilities to forward the bundled data,
where |Pi| and |Ci| are the sizes of Pi and Ci respectively. This
is because each node has to forward |Ci| + 1 bundles through |Pi|
different shortest paths. Next, let Li denote the set of these possibil-
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Algorithm 2 Optimal adaptive sensing and forwarding with flexi-
ble routing.
1: loop
2: if sT ime = NOW then " Time to sample.

3: readings ← PERFORMSAMPLING(sT ime) " Sampling action, c
j
i .

4: SETSTIME(sT ime + sRate)
5: end if
6: if tT ime = NOW then " Time to transmit, transmission module is turned on.

7: for each pn
i ∈ Pi do " Iterates each parent node, pn

i ∈ Pi .

8: [Bpn
i

, EF
pn

i
] ← WAITMETADATA(pn

i ) " Receives Bpn
i

and EF
pn

i
from

parent node pn
i .

9: end for
10: for each jm

i ∈ Ji do " Iterates each child node in Ji = {j1i , . . . , j
Mi
i }.

11: SENDMETADATA(jm
i , [Bi, EF

i ]) " Sends Bi and EF
i to child node jm

i .

12: end for
13: CALCFIRSTROWTABLES(readings) " Calculates the 1st rows of Ti and

U
pn

i
i (for each parent node, pn

i in Pi) using (7) and (10) respectively.

14: Ci ← {i} " Adds this node to the set of descendants Ci .

15: if ¬leafNode then
16: for each jm

i ∈ Ji do
17: Oi

jm
i
← WAITMETADATA(jm

i ) " Receives Oi
jm
i

from child node

jm
i .

18: CALCTABLESWITHIDENTIFIER(Oi
jm
i

) " Calculates the other rows of

Ti using (8) by identifying the same forwarding partition with the same unique identifier.

19: Ci ← Ci ∪ jm
i " Adds child node jm

i to the set of descendants Ci .

20: end for
21: end if
22: for each pn

i ∈ Pi do
23: Li ← PARTITIONPOSSIBLEFORWARDING(Ci) " Partitions

the possible forwardings using a mapping function that decides the direction of each bundle, u
j
i , from one of its

descendants in Ci .

24: O
pn

i
i ← CALCMETADATAARRAY(Li) " Calculates the other rows of

U
pn

i
i using (11) to forms its own O

pn
i

i meta-data for parent node pn
i .

25: SENDMETADATA(pn
i , O

pn
i

i ) " Sends O
pn

i
i to parent node pn

i .

26: end for
27: CmaxI ← WAITCONTROLMESSAGE(pn

i ) " Receives control message from

parent node pn
i in Pi .

28: PROPAGATECONTROLMESSAGE(jm
i , CmaxI) " Sends control message to

each child node, jm
i ∈ Ji .

29: PERFORMTRANSMITINCROUTING(readings, CmaxI )
30: SETNODEOPTIMALBEHAVIOURINCROUTING(CmaxI ) " Sets node’s

optimal sensing, forwarding, and next-hop decisions.

31: SETTTIME(tT ime + tRate) " Node sets its next transmitting time.

32: readings ←{}
33: end if
34: end loop

ities (with |Li| = |Pi||Ci|+1) and each lti ∈ Li, a possible partition
of forwarding at node i. That is, lti =

h
F

`
u1

i

´
, . . . , F

“
u|Ci|+1

i

”i

where uj
i is the jth bundle that might arrive at node i from one of

its descendants, F
`
uj

i

´
is a mapping function that decides the for-

warding direction (or path) for this particular bundle, and u|Ci|+1
i

is node i’s own bundle of samples.
Given this, our algorithm with flexible routing is similar to that

with fixed routing, and as before, it runs in three phases (see Algo-
rithm 2). The first, in which the parent nodes send their information
regarding Bpn

i
and EF

pn
i

to their child nodes (where pn
i ∈ Pi), is

identical (see lines 7-13). There are, however, slight modifications
in the next phase. These modifications are needed to keep track of
all the possible partitions of forwarding for nodes which have more
than one shortest path routes to the base station. In more detail,
in the second phase, instead of sending one Oi to a unique par-
ent (as in the case of tree-structured networks), here, each node i

has to calculate all the O
pn

i
i

`
lti

´
meta-data arrays for each lti ∈ Li

partition of forwarding for each pn
i ∈ Pi (see lines 23-25). Specif-

ically, this is achieved by first calculating the Ti table as we did for
the first algorithm (line 17). In this case, however, we join each of

i

Base Station

(a)

i

Base Station

(b)

Figure 3: (a) A randomly created and connected WVSN (of
60 nodes) whose underlying communication network exhibits
loops. (b) The resulting tree-structured network formed when
each node makes an arbitrary choice of the route that its data
will take toward the base station. The dotted circle in each
graph represents the wireless range of node i. In both these
networks, all nodes are set with the same transmission range.

the arriving Oi
jm
i

“
ltjm

i

”
from its children j1

i , . . . , jMi
i with those

that belong to the same forwarding partition with the same unique
identifier (line 18). The unique identifier is formed and attached
to a particular partition of forwarding when there are more than
one possible routes to forward to (line 23). As in Fig. 2, a feasible
unique identifier could be the index of ltjm

i
. Next, we calculate U

pn
i

i

tables for each pn
i ∈ Pi as in the first algorithm (line 24). The rest

of the second phase and third phase remain the same as that of the
algorithm with fixed routing described previously (see lines 27-30).

4. EMPIRICAL EVALUATION
We now seek to evaluate their performance and effectiveness when
applied to typical WVSN whose communication networks exhibit
loops. Our goal in this empirical evaluation is to quantify the per-
formance of the algorithms in terms of the quantity of information
that they deliver to the base station, and the communication and
computational costs of the coordination. We expect the algorithm
with flexible routing to deliver more information, but make greater
demands of computation and communication resources (because of
the large number of alternative routes for the data that it must eval-
uate). However, given that the algorithm with fixed routing can
always be applied in this setting by ignoring the fact that there exist
alternative routing options, and just making an arbitrary choice, we
are interested in the trade-off between the loss in information and
the saving in resources that results. We first describe the experi-
mental setup and then go onto the actual evaluation.

In our experiments, we create instances of a WVSN by randomly
deploying the nodes within a unit square, and connecting them ac-
cording to a randomly determined radio transmission range (ex-
tending this range as necessary to ensure that there are no uncon-
nected nodes). Each resulting WVSN exhibits a loopy communica-
tion network such that for each node there are multiple alternative
routes to the base station. We consider twenty different sampling
actions for each node such that the possible sampling rates, Ci, of
each node are initialized to Ci = {1, . . . , 20}. The correspond-

ing information content v
cj

i
i for each cj

i ∈ Ci sample is generated
using the generic information metric (defined in Sect. 2), with the
factor, αi, randomly drawn from a uniform distribution with sup-
port [0, 1]. The energy budget of each node is randomly generated
with a predetermined maximum value that ensures the network as
a whole is energy constrained. We scale this predetermined max-
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Figure 4: Simulation results showing the performance of the algorithms with flexible, fixed (with maximum and minimum perfor-
mance), and uniform non-adaptive routing against (a) total information collected at the base station, (b) total communication cost
for coordination, and (c) average computation time at each node.

imum value with the number of nodes in the network since larger
networks require sensors to forward data for a larger number of
nodes. We assume that each real valued number inside a coordi-
nation message (e.g. the value of Bi or cj

i ) occupies 4 bytes of
communication cost, and the energy consumption for sensing and
forwarding a sample is fixed throughout the entire experiment3.

We apply our algorithm with flexible routing just once, directly
on the loopy communication network of the WVSN (see Fig. 3(a)
for an exemplar scenario), such that it determines both the opti-
mal sensing and forwarding actions, as well as the routes. Prior
to applying our algorithm with fixed routing, we allow each node
to make an arbitrary choice of the route that its data (and any data
that it forwards for other nodes) will take toward the base station.
This effectively turns the loopy communication network into a tree-
structured one, with each node effectively selecting their parent in
the tree (see Fig. 3(b)). We then apply our algorithm with fixed
routing to calculate the optimal sensing and forwarding decisions
of each node. For each instance of the WVSN, we repeat this pro-
cess 100 times, averaging over the unique instances of trees that
result. We perform repeated experiments by creating 100 instances
of the WVSN with 6, 9, . . . , 60 nodes for the algorithm with fixed
routing, and only up to 21 nodes for the algorithm with flexible
routing (due to its increased computational cost).

We also benchmark our two algorithms against a uniform non-
adaptive algorithm with fixed routing. This algorithm dictates that
each sensor i ∈ I in the network should simply choose to allo-
cate its energy budget, Bi, equally to itself and each of its descen-
dants such that it will naïvely sample and transmit the minimum of„

Bi
|Ci|·ES

i
,

Bpi

|Cpi |·ES
pi

«
times regardless of whether the samples will

eventually be forwarded towards the base station. |Ci| and |Cpi |
are the numbers of descendants of node i and node i’s parent, pi,
respectively, and Bpi is the energy budget of node pi. ES

i and ES
pi

are the energy required by node i and pi correspondingly in order
to sense a sample.

We present the results of the simulation process described above
in Fig. 4. The error bars shown represent the standard error in
the mean, and we note that in some cases, the error bars are smaller
that the plotted symbol size. Considering first Fig. 4(a), we observe

3Note that we do not consider the failure, addition, or removal of
nodes. Also, we do not consider the dropping or corruption of
meta-data or control message packets, and hence assume that mes-
sage packets are always transferred successfully to the destination.

that the algorithm with flexible routing delivers close to twice the
quantity of information to the base station as does the fixed rout-
ing algorithm. This is as expected since in loopy communication
networks, there are typically many alternative routes available for
routing data, and the flexible algorithm is able to exploit them4. The
uniform non-adaptive algorithm, however, performs poorly as it has
no intelligence of adapting the nodes’ actions. In the same figure,
we also show the mean maximum and minimum performance of the
algorithm with fixed routing (averaged over different trees for the
same loopy network). Note that by making an appropriate choice
of parent, we can derive performance close to that of the algorithm
with flexible routing (without incurring any additional computation
or communication cost as will be explained shortly).

However, the increased information delivered by the algorithm
with flexible routing comes at considerable communication and
computational cost. Figures 4(b) and 4(c) show the total size of co-
ordination messages exchanged by the nodes and the average com-
putation time of each node (both are presented on a logarithmic
scale). Specifically, Fig. 4(b) shows that typically only a few tens
of kilobytes of coordination message packets are required by the
algorithm with fixed routing, while the algorithm with flexible rout-
ing exhibits approximately two orders of magnitude more; with a
few megabytes of coordination message packets being exchanged.
Likewise, Fig. 4(c) shows that the average computation time of a
node required by the algorithm with fixed routing is typically less
than 1 millisecond, while that of the algorithm with flexible routing
approaches 100 milliseconds (a two orders of magnitude increase)5.
The increase in terms of computation time is due to the additional
time which the flexible routing algorithm requires in order to enu-
merate each possible partitions of forwarding.

More generally, these results indicate that the algorithm with
flexible routing is able to deliver significantly more information
to the base station, but incurs considerable additional computation
and communication costs in doing so. The choice of algorithm
thus depends on the application domain. If the network is small,
and the size of the actual data messages is large, then the algorithm

4We remark that the quantity of information delivered does not in-
crease monotonically. This is an artifact of the experimental setup
since the scaling of the nodes’ energy budget does not fully account
for the necessary increase in sample forwarding.
5Measurements were performed on a 3GHz desktop PC. Typically,
the nodes within a WVSN will use much lower powered processors
and, thus, while we would expect the ratio between the algorithms
to be the same, the overall computation time is likely to be longer.
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with flexible routing is most appropriate. However, this algorithm
scales poorly as the size or connectivity of the network increases
(due to the exponential growth in the number of possible combi-
nations of routing options that it must evaluate). In such cases,
the size of the coordination messages may rapidly approach that of
the actual data messages and, hence, coordination may not actually
yield any energy saving. To address this, the algorithm with fixed
routing may be run on the original loopy network by having each
node make an arbitrary choice of route. While the quantity of infor-
mation delivered to the base station will be reduced (by up to 50%
in our experiments), this solution will scale well and use minimal
communication and computational resources.

5. RELATED WORK
The work that is most closely related to ours is that of Padhy et al.
who developed a decentralised adaptive sampling and routing pro-
tocol named Utility-based Sensing and Communication Protocol
[8]. Within this mechanism, each node adjusts its sampling rate de-
pending on a valuation function that assigns a value to newly sam-
pled data. This protocol is intended for low power, computationally
constrained devices, and as such, relies on a heuristic approach to
estimate the opportunity energy cost used by each sensor for sam-
pling, forwarding, and routing data. The protocol is not efficient
and the integration of the node’s actions is very limited since there
is no guarantee that the transmitted data will actually be forwarded
to the base station. For instance, there might be cases where nodes
with data of a high value are unable to send their data to the base
station because intermediate nodes have depleted their energy. The
protocol could thus result in no data collection.

In a somewhat similar setting, Mainland et al. present a market-
based approach for determining efficient node resource allocations
[5]. Rather than manually tuning node resource usage, or providing
specific algorithms as we do here, their approach defines a virtual
market in which nodes sell goods (e.g. data sampling, listening, or
forwarding) in response to global price information that is estab-
lished by the end user. However, this approach involves an external
coordinator to set prices in order to induce any particular global be-
haviour, and it is not clear how this price determination should be
performed in order to elicit desirable system-wide properties.

Within the multi-agent systems literature, another useful tech-
nique that has emerged for solving distributed coordination prob-
lems is that of distributed constraint optimization (DCOP). A num-
ber of algorithms in the area of DCOP have been developed; in-
cluding asynchronous distributed optimization (ADOPT) [7] and
distributed pseudotree optimization procedure (DPOP) [9]. Both
are guaranteed to converge to the optimal solution while using only
localized communication and computation. However, they are not
specifically tailored to the specific problem that we address here,
and since these algorithms are complete, they require an exponen-
tial increase in the total message size being exchanged (unlike the
case of our algorithm with fixed routing). This is unrealistic for
WVSNs in which the nodes are typically installed with limited
computational, storage, and memory resources.

6. CONCLUSIONS
In this paper, we have considered the problem of adaptive sampling,
forwarding, and routing within WVSNs in order to manage the lim-
ited energy resources of nodes in an effective and efficient way. We
have developed two novel optimal decentralised algorithms: one
which assumes fixed routing and calculates the optimal sensing and
forwarding actions that each node should perform, and one which
assumes flexible routing, and makes optimal decisions regarding

both the integration of actions that each node should choose, and
also the route by which this data should be forwarded to the base
station. In an empirical evaluation, we showed that the algorithm
with flexible routing delivered approximately twice the quantity of
information to the base station, but at considerably higher commu-
nication and computational cost. Thus, while the algorithm with
flexible routing is suitable for networks with a small numbers of
nodes, it scales poorly, and as the size of the network increases, the
algorithm with fixed routing is favoured.

Our ongoing work in this area includes relaxing the restriction
that the nodes may only forward data to nodes that are closer to the
base station (in terms of hop count) than themselves and, in par-
ticular, we would like to characterise the circumstances in which
this may yield some benefit. More significantly, we would also like
to develop a principled algorithm for making the choice of route
when applying the algorithm with fixed routing to loopy WVSNs
(rather than having the nodes make an arbitrary choice of parent in
order to convert the loopy network into a tree-structured network
as we have done here). Our empirical results indicate that the per-
formance of the algorithm with fixed routing is very close to that of
the algorithm with flexible routing if the appropriate fixed route is
selected (see Fig. 4)6, and thus, there is great potential in doing so.
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