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Aims and Focus 

Mixed initiative represents collaboration between humans and agents to benefit 
from the strength of both parties. While the initiation and maintenance of 
bilateral interaction between humans and agents in mixed environments is 
highly favorable, the process is certainly not trivial.  

Many of the challenges associated with mixed initiative have been studied in 
recent years within specific targeted AI research communities such as 
interruption management and adjustable autonomy. The focused studies made 
great progress; however a unified system-wide approach, such in the case of 
intelligent user-interfaces is missing. For example, both interruption 
management and adjustable autonomy domains attempt to improve the 
process of initiating interaction with the user when both the agent and the user 



have a joint goal. Nevertheless, while for interruption management the analysis 
focuses mainly on reasoning about the user’s disturbance by the interruption, 
adjustable autonomy research mostly focuses in finding the best time from the 
system state of the problem to initiate interaction with the user. A combined 
approach in this case would attempt to find the best interaction timing, taking 
into consideration both aspects of the problem.  

The MIMS workshop focuses on multiagent systems that interact with humans. 
Such an interaction can be done explicitly, i.e., direct human-agent interaction, 
or implicitly, i.e., interaction through emergent behavior techniques. In both 
cases, agents and humans, as individuals or as groups, can take initiative and 
decide what to do next. In such environments, humans and agents may share 
goals or have conflicting goals, and they may collaborate or compete for 
resources. The primary goal of this workshop is to bring together multiagent 
researchers from diverse backgrounds that looked at key issues in multiagent 
mixed-initiative systems in order to search for a synergy of ideas. In particular, 
discussion is encouraged in the following topic areas:  

• Innovative approaches for initiating and managing interactions between 
agents and humans in collaborative environments. 

• Human vs. agent in a multiagent environment: strengths and 
weaknesses.  

• Evaluating the system-wide benefits of joint human and computer 
collaborations. 

• Learning user preferences for making decisions on her behalf in mixed 
environments. 

• Human and agent reactions to interruption and repeated interruptions.  
• Combining interruption management and adjustable autonomy to a 

unified framework. 
• State representation and visualization for enhanced agent-human 

interaction.  
• Applications and case studies. 
• Emergence, evolution and culture of mixed groups, teams and 

communities. 
• Control protocols and philosophy: who’s in charge?  
• Building trust between agent and human. Norms and commitments in a 

mixed initiative environment. 
• Verification and validation techniques and tools. 
• Mixed-initiative architecture in human-robot environments. 
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Algorithm Steering for Mixed-Initiative Robot Teams 
 

Dhruba Baishya and Michael Lewis 
School of Information Sciences 
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dhrubajbaishya@gmail.com,  ml@sis.pitt.edu 
 

Abstract. While much research has been devoted to human-robot interaction (HRI) with individually 
controlled robots or round-robin control for independently operating ones, the problems of controlling 
autonomously coordinating robot teams remain largely unexplored.  Although MAS researchers have 
devoted significant effort to understand human interaction with teamwork algorithms other significant 
classes of coordination algorithms have not received comparable attention.   In particular, human 
interaction with biologically inspired and optimizing control algorithms has been long neglected.  These 
algorithms which are ideal for tightly coordinated tasks such as formation flying or simultaneous 
rendezvous require highly coordinated mutual adjustments yet have goals that can be simply specified.  
The problem arises when the operator wants the system to do anything else.  Because there is little or 
no connection between the parameters available to the operator and the behavior that results we call 
such algorithms opaque.  We conjecture that in many cases this problem may be relatively easy to solve 
and propose a taxonomy-in-progress to help identify classes of algorithms to be considered.  

Keywords: multirobot systems, human-robot interaction, teamwork algorithms. 

 
Applications for multirobot systems (MrS) such as interplanetary construction or cooperating 

uninhabited aerial vehicles will require close coordination and control between human operator(s) and 
teams of robots in uncertain environments.  Human supervision will be needed because humans must 
supply the perhaps changing, goals that direct MrS activity. Robot autonomy will be needed because the 
aggregate demands of decision making and control of a MrS are likely to exceed the cognitive capabilities 
of a human operator.  Controlling robots that must act cooperatively, in particular, will likely be difficult 
because it is these activities [7] that theoretically impose the greatest decision making load.  Because some 
functions of a MrS such as identifying victims among rubble depend on human input, evaluating the 
operator’s span of control as the number of controlled entities scale is critical for designing feasible human-
automation control systems. 

Current estimates of human span of control limitations are severe.  Miller [11], for example, showed that 
under expected target densities, a controller who is required to authorize weapon release for a target 
identified by a UCAV could control no more than 13 UAVs even in the absence of other tasks. A similar 
breakpoint of 12 was found by [4] for retargeting Tomahawk missiles.  Smaller numbers (3-9) [3] have 
typically been found for ground robots which usually require more frequent attention. 

 
To extend operator span of control to larger teams we must consider how control difficulty for different 

control tasks grows with increases in team size.  Computational complexity theory [13] offers one possible 
approach. Borrowing concepts and notation from computational complexity, authorization for weapon 
release after operator verification of each UAV-detected target, can be considered O(n) because demand 
increases linearly with the number of UAVs to be serviced.  Anther form of control such as designation of 
an attack region by drawing a box on a GUI (Graphical User Interface), being independent of the number of 
UAVs, would be O(1).  Practical applications are likely to require some mixture of control regimes.  In our 
prior work  with wide area search munitions [9], for example, the operator specified search and jettison 
areas and ingress and egress routes , O(1), but was also required to authorize attacks and allowed to 
command UAVs directly, both tasks of O(n) complexity.   Examined from this perspective the most 
complex tasks faced in controlling large teams are likely to be those that involve choosing and coordinating 
subgroups of UVs.  Simply choosing a subteam to perform a particular task (the iterated role assignment 
problem), for example, has been shown to be O(mn) [7].  
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The flip side of reducing command complexity for the human is to increase the reliance on automation 
to accomplish the task.  The human’s O(1) search command, for example, requires path planning, 
coordination, resource management, etc. from the robot team.  The complexity of tightly coordinated tasks 
leads to a much shorter span of control than the O(n) tasks cited earlier.  For a tightly coupled task such as 
box pushing (2 UGVs moving a box), for example, the operator is completely occupied commanding 2 
robots [19] because every movement by one robot displaces the box requiring a corresponding movement 
by the other to catch up.   For this reason for all but the simplest tasks coordination will need to be 
automated for robots to remain amenable to human control. 

Relative to human control, multirobot coordination approaches can be divided into two general classes: 
teamwork algorithms that involve explicit assignment of roles and execution of plans and coordination 
schemes whose mechanisms are less cognitively accessible.  In teamwork approaches such as Playbook 
[12], MissionLab [1], or Machinetta [16] the coordinated activities are planned out in advance often with 
the aid of graphical tools.  Later during the mission these plans are executed by the robot team with human 
input limited to such things as calling plays (canned plans) or filling a role within a plan such as approving 
targets.  While the moment to moment behaviors of the robots may involve complex interactions needed to 
coordinate movement the existence of a cognitively accessible plan governing their overall pattern of 
behavior provides the needed context for an operator to monitor and intervene as needed.   

Many tightly coordinated tasks such as formation flying or simultaneous rendezvous require highly 
coordinated mutual adjustments yet have goals that can be simply specified.  These tasks are probably best 
performed by algorithms based on optimization or biologically inspired control laws that can handle the 
extensive computation required.  [10, 2], for example, have developed models for a human to assign tasks 
to a UAV cluster where the tasks are heavily constrained by the physical platform, such as the large turning 
radius of LOCAAS munitions, the sequence of activities that must occur for LOCAAS munitions, the 
timing constraints imposed by coordinated strike missions, and the physical relationships that must be 
enforced for certain types of search.  The UAVs autonomously generate a plan that represents their 
constraints, and then present this plan to an operator who may influence the plan by changing costs, 
priorities, and constraints.    

Because optimizing or biologically inspired control algorithms are very different from the cognitive 
processes a human might employ for the same problem, they can be difficult for human operators to 
comprehend or control.  [15], for example, reported difficulties operators experienced in controlling a 
system making optimal weapons to target assignments because they could not designate targets directly but 
instead needed to adjust weights through trial and error to find a plan containing a desired target.  This is a 
general problem of a class of algorithms we call opaque because their inner workings are not cognitively 
accessible to an operator.  The difficulty of interacting through such algorithms is that while the primary 
goal for which they were designed, such as the region to be searched or rendezvous point, is easily 
expressed most other aspects of their behavior cannot be controlled directly.  In both our examples control 
of other aspects of behavior required adjusting algorithm parameters in a way that could not be directly 
linked to the consequent behaviors.  

Robotics researchers studying multirobot control have frequently attempted to provide the operator with 
additional avenues of control usually through adjustments to parameters where a direct cognitive link could 
be found or imagined.  Ron Arkin [1], for example, allowed operators to change the value of wanderlust, 
the magnitude of random deviations from a planned path the robot was allowed.  Lynn Parker allowed the 
operator to adjust the twin tropisms impatience and acquiescence [14] to affect a robot’s willingness to 
persist or abandon a role.  One could imagine similar schemes involving biologically inspired local control 
laws such as broadcasting a change to a separation parameter in order to alter the dispersion of UAVs 
flying in formation.   In each of these cases, however, the change in behavioral parameters does not directly 
impact the task but rather the way the robots perform the task.  This opens the door for unanticipated 
consequences such as a wandering robot prevented by obstacles from returning to its path or a UAV 
formation that breaks apart due to sensing errors that grow at greater separations.  What is needed for more 
effective human control is something akin to inverse kinematics that allows the operator to communicate 
the desired effect directly. 

Because there are relatively few types of multirobot tasks that are both operationally relevant and admit 
optimizing or biologically inspired solutions (target assignment, parallel search, formation following, 
rendezvous, etc.) we believe these problems might be solved in a divide and conquer fashion.  Our 
conjecture is that for any one of these task types there will be a finite and hopefully small number of task 
relevant commands an operator might desire to employ.  In the weapon to target task, for example, task 
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relevant commands would include those referencing particular targets as well as global target types.  To 
accommodate such commands the algorithm would need provisions to allow the operator to raise/lower the 
weight associated with a particular target rather than only for a target class.   This adjustment would not 
require any significant change to the algorithm and could be presented transparently to the operator in 
terms of the domain as a command to either force inclusion or exclusion of targets.  This simple change 
could have eliminated the difficulties experienced by Roth’s subjects.  We hypothesize that simple 
solutions of this sort may be frequent rather than rare and that commonly reported difficulties controlling 
opaque algorithms arise only because they have been written with a single goal without considering other 
actions an operator might desire. 

MokSAF 
The MokSAF path planning system based on Dykstra’s algorithm, illustrates how an opaque algorithm 

can be effectively steered with minimal changes by paying attention to the task and task relevant 
commands. Human decision-makers, such as military commanders, face time pressures and an environment 
where changes may occur in the task, division of labor, and allocation of resources. Information such as 

terrain characteristics, location and capabilities of enemy forces, direct objectives and doctrinal constraints  

ToolBar 

Terrain: 

Figure 1.  MokSAF Interface 
 

are all part of the commander’s “infosphere.” Special purpose algorithms with access to this information 
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the human commanders can.  There is also, however, information that is not directly accessible to software.  
Such information includes intangible or multiple objectives involving morale, the political impact of 
actions (or inaction), intangible constraints, and the symbolic importance of different actions or objectives.  
When participating in a planning task, commanders must translate these intangible constraints into tangible 
ones to interact with planning algorithms. 

We developed a computer-based simulation called MokSAF to evaluate how humans can interact with 
planning algorithms within a team environment. MokSAF is a simplified version of a virtual battlefield 
simulation called ModSAF (modular semi-automated forces). MokSAF allows two or more commanders to 
interact with one another to plan routes in a particular terrain. Each commander is tasked with planning a 
route from a starting point to a rendezvous point by a certain time. The individual commanders must then 
evaluate their plans from a team perspective and iteratively modify these plans until an acceptable team 
solution is developed. 

The interface used within the enhanced MokSAF Environment is illustrated in Figure 1. The interface 
presents a terrain map, a toolbar, and details of the team plan. The terrains displayed on the map include 
soil (plain areas), roads (solid lines), freeways (thicker lines), buildings (black dots), rivers and forests. The 
rendezvous point is represented as a red circle and the start point as a yellow circle on the terrain map. As 
participants create routes with the help of a planner using Dykstra’s algorithm, the routes are shown in 
bright green. The second route shown is from another MokSAF commander who has agreed to share a 
route. The algorithm is steered by the partially transparent rectangles representing intangible constraints 
that the user has drawn on the terrain map.  These indicate which areas should be avoided when 
determining a route.   As reported in [18, 8] this mixed initiative approach led to superior performance. 

For this problem Dykstra’s algorithm works efficiently by treating soil types as weights (asphalt=1 and 
water=infinity) so paths follow roads if they can, avoid open water and forests, etc.  In terms of the single 
goal of shortest, lowest cost path it succeeds, however, there is no way to incorporate the intangible 
constraints known only to the commander.  Upon considering the commander’s task it is apparent that task 
relevant commands need to include excluding some areas from paths.  This is easily achieved within the 
algorithm by artificially changing the soil weight of designated areas and easily used by the operator who 
can express his intent directly in the problem domain by marking exclusion areas on the map.  In a close 
parallel to the weapons to targets example a simple but task informed modification to the algorithm 
overcame the problems of indirect control.    

While three examples do not prove a principle we hope that by making our approach to re-engineering 
opaque algorithms explicit we can extend it to a larger class and come to understand for which types of 
algorithms it is appropriate.   

As presently conceived the process consists of four steps: 
1) identify objects in the domain subject to control; weapons, UAVs, and paths in our examples 
2) examine the user’s task and identify potential goals other than the focal goal of the algorithm 
3) identify direct manipulation or other forms of command that might let the operator express these 

goals in a direct way in terms of domain objects 
4) identify ways these commands might be realized within the algorithm.  If none are available examine 

potential for transferring control over some assets to user. 
To begin our effort we are proposing a “strawman” taxonomy to help find representative cases to test. 

A Possible Taxonomy for Algorithm Steering  
We are proposing a user-based taxonomy for algorithm steering. This MrS Space is broadly classified 

into three categories –First, transparent space, where the operator can express goals explicitly in terms of 
domain objects.  Second, translucent space, where some cognitive links exist between operator controls and 
algorithm behavior. Third, opaque spaces, where inner workings of algorithms are not cognitively 
accessible to an operator, or operator controls are “abstract” with weak links to human cognitive 
processing. Within opaque spaces, MrS could attain different levels of opaqueness. So this space has been 
further classified into two categories – partially and fully opaque spaces. 

As discussed earlier, Ron Arkin [1], allowed operators to change the value of wanderlust, the magnitude 
of random deviations from a planned path the robot was allowed. Using wanderlust in place of “magnitude 
of random deviations…,” allows MrS controllers to associate behavior with a cognitively well-defined 
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operator. Similar cognitively well-defined operators are used by Lynn Parker [14]. She allowed the 
operator to adjust the twin tropisms impatience and acquiescence to affect a robot’s willingness to persist or 
abandon a role.  [8], by contrast, provided a steering mechanism that allowed the operator to directly 
manipulate the planned path. 
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In our taxonomy, [8] would be considered transparent while  [1, 14] are categorized as systems with 
translucent algorithm steering, or simply translucent space. 
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E. Roth [15], asked her operator controllers to adjust weights through trial and error to find a plan 
containing a desired target. In this case, the operator controls changes in algorithm behavior but they are 
cognitively ill-defined. “Adjust weights through trial and error…,” is an abstract control with weak link to 
human cognitive processing. [15, 17] are therefore categorized into partially opaque space. 

Considering the difficulties involved in achieving an autonomous MrS and the need for deployed 
systems to accept human input, a mixed-initiative approach is necessary. However, there exist large pools 
of MrS, where inner workings of algorithms are not cognitively accessible at all to an operator. Such 
cognitive inaccessibility results in high opacity and reduced performance. Chih-Han Yu [20] et al, for 
example, reported in their experiments using multirobot POMDPs that with increasing complexity of an 
office environment, controllers (i.e. humans) found it very difficult to observe or follow the optimal policy 
being executed by their robots. Similar full opacity can be seen in market-based optimization MrS. [6], for 
example, allotted leaders to subgroups to enhance market-based multirobot coordination. This introduction 
of leaders among subgroups resulted in improved performance but made it even more difficult for 
observers to follow.   [20, 5, 6] are qualified members of fully opaque space. 

Discussion 
Classifying algorithms by degree of opacity is one potentially fruitful way to proceed because it orders 
coordination algorithms in terms of human difficulty.  It is easy to imagine other classification schemes, 
however, that might be equally fruitful.  The distinction between centralized and distributed control is lost 
in our current scheme but almost certainly plays an important role in determining effective forms of re-
engineering.  The more general problems of controlling biologically inspired systems with emergent 
behavior or affecting behavior through complex adjustments to teamwork algorithm parameters as 
attempted in [9] are not yet addressed within our evolving framework.   
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Mixed-Initiative Negotiation: Facilitating Useful
Interaction Between Agent/Owner Pairs

Pauline M. Berry, Thierry Donneau-Golencer, Melinda Gervasio,
Bart Peintner, and Neil Yorke-Smith

Artificial Intelligence Center, SRI International, Menlo Park, CA 94025 USA
{berry,donneau,gervasio,peintner,nysmith}@ai.sri.com

Abstract. A mixed-initiative agent for personal time management in-
teracts not only with its human owner but also with other agents and
humans that share or depend on the same time commitments. The as-
sistive capabilities of such an agent include the ability to provide in-
formation and context for its owner, negotiate on behalf of its owner,
and understand when autonomous action is possible, preferred, or ex-
pedient. It must operate without losing the trust of its owner or ne-
gotiating partners. Since time management is intensely personal, each
such human-agent pair will evolve its own characteristics and working
practices. This position paper considers how an existing mixed-initiative
adaptive time management agent, PTIME, can be extended to the mul-
tiagent negotiation setting. We discuss opportunities for facilitating per-
sonalized mixed-initiative negotiation protocols and adjustable auton-
omy through demonstration, instruction, and advice. In addition, we
explore user interaction considerations including the provision of expla-
nation to build trust by enabling the owner to understand and correct
agent decisions and suggestions.

Key words: mixed-initiative, time management, negotiation, explana-
tion, suggestion, trust

1 Introduction

Scheduling meetings in an office environment commonly depends on email-based
negotiation. Typically, a series of messages between a meeting organizer and
potential participants broadcast the intent to have a meeting, possible time
windows for the meeting, restrictions on the windows, counter-proposals, and
eventually agreement on a time, duration, location, and participants. While this
method can produce the desired result, it comes at great cost to potential par-
ticipants: in addition to the time spent on the viewing their calendars and re-
sponding to email, productivity is lost through the context switch required for
each round of the negotiations. These costs motivate the need for automated
assistance in scheduling.

A number of fully or semi-automated scheduling systems have been devel-
oped [1–3] but they have largely aimed to bypass the human negotiation as-
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pects of meeting scheduling and to aim for full automation. The systems there-
fore do not fit within the organization’s socially accepted (though commonly
non-formalized) workflows regarding meeting scheduling, and so suffer from low
adoption rates.

We have seen this lack of adoption with our own semi-automated scheduling
agent, PTIME [4]. Each user has his own PTIME agent that assists in scheduling
his own calendar and coordinating his calendar with others. The PTIME agent
adapts to its user becoming personalized to his needs and preferences over time.
Our aim is for the agent to work within users’ typical scheduling workflows,
rather than trying to convince users to switch to a different paradigm of meeting
scheduling. In particular, we aim to automate aspects of an organization’s current
scheduling workflows and predict users’ responses to decisions or requests for
information in order to make suggestions to them or anticipate their responses.
Eventually, the user may gain enough trust in his agent to allow it to make some
decisions on his behalf. The larger goal is to reduce the time and number of
context switches needed to organize or become an attendee in a meeting.

This time management domain leads us to address several interesting issues
at the intersection of adjustable autonomy and multiagent negotiation. The com-
bination of these two problems is less well studied in the literature, and we believe
that addressing them together may produce synergistic opportunities and more
intuitive agent behavior. This position paper discusses our initial thoughts on
how a user and software agent can interact in the context of meeting scheduling
and multiagent negotiation, and emphasizes the key contribution of user-agent
dialogue to adjustable autonomy.

2 Mixed Initiative Negotiation and Personal Time
Management

Artificial intelligence techniques can solve the multi-participant, distributed or
centralized meeting scheduling problem, supposing sufficient information, How-
ever, existing fully or semi-automated scheduling systems fail to address the
personal nature of the domain [1, 2]. The process of negotiating meeting times,
the tools employed, and the preferences over events all exhibit considerable vari-
ation between individuals. For example, the best solution for an over-constrained
meeting request (i.e., where not all criteria can be fulfilled simultaneously) de-
pends on the individual: one person prefers to reschedule an existing meeting,
another prefers times outside the specified window, while still another prefers
to omit a participant. Hence, for a system that goes beyond standard calendar-
ing functionality and addresses the scheduling problem to be of value, it must
facilitate negotiation and embrace personalization.

Mixed-initiative systems integrate human and automated reasoning to take
advantage of their complementary reasoning styles and computational strengths.
Taking a mixed-initiative methodology is a powerful paradigm for engaging hu-
mans in a software process. Previous work in this area explores mixed-initiative
interactions between the agent and the user in terms of a balance between agent
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autonomy and user control [5]. Strategies are developed for allowing the user to
personalize the default behavior of an agent, to subdivide tasks between the user
and the agent according to the criticality of decisions, and to allow the user to
inspect the agent’s behavior and correct it. More recent work has argued that
mixed-initiative systems must exhibit both adaptable strategies to allow the user
to personalize the agent behavior and adaptive strategies that use AI techniques
to personalize agent behavior automatically [6].

This development leads to an ongoing dialogue between the agent and its
owner. The agent, by using this dialogue to refine its knowledge, can over time
become a progressively more capable and trustworthy, scheduling agent [7]. Even-
tually this may lead to an agent with a self-adaptive ability. Myers and Yorke-
Smith [8] discusses theories of proactivity in single agent behaviors. Work on
Electric Elves [9] explores the problem of user-agent pairs in an organizational
setting. Human agents were assisted in a variety of organizational tasks including
meeting planning. Scerri et al. [10] explores practical progress toward adjustable
autonomy in multiagent environments composed of human/agent pairs.

2.1 The PTIME Agent

PTIME (Personalized Time Management) is an intelligent, personalized cal-
endar management agent that helps users handle email meeting requests, re-
serve venues, and schedule events. The agent is designed to unobtrusively learn
scheduling preferences, adapting to its user over time. The ability to learn is a
key aspect in the evolving interaction between human and agent. Details of the
PTIME scheduling process and preference learners can be found in [4].

The PTIME multiagent environment consists of agent/human pairs interact-
ing collaboratively to solve complex event scheduling problems. Figure 1 repre-
sents a set of PTIME/owner pairs within the context of a meeting negotiation
initiated by human owner A and assisted by his PTIME agent Ea. Participants
(B,C,D) and their PTIME agents (Eb, Ec, Ed) can share availability informa-
tion and solution preferences, and can rank options. Note that not all partic-
ipants need have a PTIME agent for the negotiation to progress. At present,
the PTIME user organizing the meeting decides which meeting option to select,
taking into consideration other participants’ generic scheduling preferences. The
selected meeting option is presented to invitees for inclusion or otherwise in their
calendars. In the simplest form of negotiation supported, the other participants
besides the organizer may simply accept the meeting request or not. PTIME is
being developed to support more elaborate forms of negotiation while keeping
the user in the loop. The question remains of why, when, and how such an agent
should interact with the user and how that interaction should evolve over time.

2.2 An Example Multiagent Negotiation Use Case

In the context of our time management domain, there are two main types of
interaction within a negotiation.
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Fig. 1. Mixed Initiative Negotiation Use Case.

– A request for information: together, one agent/human pair can compose the
request and the recieving agent/human pairs can answer. In each case the
agent/human pair must evaluate the request and understand the context.
The receiving agent/human pair can assess alternative responses and either
answer or not. This form of request takes part during the negotiation process.
An example use case is described in Figure 2.

– A request for a decision: in the case of meeting scheduling this typically takes
the form of a request to accept or decline a suggested meeting time. Again,
the agent/human pairs involved must evaluate the contents of the request,
understand its context, assess alternatives, and respond. In this case the
response may conclude the negotiation process or prolong it. A typical use
case is described in Figure 3.

In a fully autonomous system the agent itself would manage these responses,
but in a mixed initiative system it may require interaction between each agent
and its human owner.

3 Facilitating Mixed-Initiative Negotiation in Agent
Systems

We have argued that time management is a personal and sensitive aspect of peo-
ple’s day-to-day lives, and that an agent or assistant for this activity must be
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Fig. 2. Information-based Mixed Initiative Interaction in Negotiation Use Case.
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Fig. 3. Decision-based Mixed Initiative Interaction in Negotiation Use Case.

adaptable to its owner’s needs. We have further argued that the agent must en-
gage its owner in this process to both build trust and increase its ability to act for
its owner over time. The thrust of our discussion is to explore useful interaction
between the agent and its owner during the process of multiagent negotiation.
We will discuss how the owner might inform the agent about acceptable behavior
that is either desired by or helpful to the owner, and how in return the agent
can assist its owner in understanding the context of the negotiation and possible
actions available to, or autonomous actions taken by, the agent. The context is
meeting scheduling and the interaction takes place when an agent/owner pair
needs to share some information to satisfy the progression of negotiation, or
the agent/owner pair must make a decision regarding the scheduling of a meet-
ing. The mechanisms for interaction we will explore include observation, advice,
suggestion, action, and explanation. These concepts are familiar to the field of
intelligent user assistants [11, 12] and single agent-human adjustable autonomy
[13] but can be applied to the problem of human-agent interaction in multiagent
systems.

Interaction and the sharing of control between human/agent pairs are com-
plicated by the multiagent environment. For example, what should be done if a
participant in the negotiation fails to respond, or responds slowly? What options
are available to the agent? Should it involve its owner and if so when? What
happens when participants respond with unexpected or unhelpful answers?
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Observation When a user makes a decision about what information to share
or what action to take in a specific context, this is a demonstration to the agent
about how that agent should behave under those exact conditions. Learning
from these interactions is an unobtrusive form of learning that can impact an
agent’s behavior. It has some similarity to case-based reasoning, which has also
been applied to learn scheduling preferences [14]. In PTIME we apply learning
techniques to such interactions with the user to learn a model of user preferences,
including scheduling preferences, location preferences, the importance of a person
to a meeting or an event to a person. Each time a user makes a scheduling choice
the agent will update its learned model of user preferences. This model is used
to produce suggestions to the organizing user in the form of ranked options [4].
Similarly, it can be used to suggest a participant’s response to a request for
information or an accept/decline decision.

Our work in learning a model of user preferences has improved the ranking
of meeting alternatives [4]. However, it is a more difficult task to derive rules for
autonomous behavior from such models. Observations are noisy, the environment
complex, and choices are often context dependent. Many research challenges
remain in learning adjustable autonomy rules through observation. How can an
agent break down its observations into chunks that are meaningful for a learner
(for adjustable autonomy) and understandable to a user (for feedback). More
likely, the observation must be combined with another type of interaction to be
useful. For example,

– When an agent makes a mistake, the user can help it understand the problem
and correct the learned rule (e.g., I declined this meeting not because of its
time but because of its type).

– When an agent learns something, it can ask the user for confirmation that
it is learning the correct rule.

Advice An agent should be able to accept its owner’s advice and conform to
organizational policies. Advice is defined as an enforceable, well-specified con-
straint on the performance or application of an action in a given situation. There
can be hard advice, which can also be called instruction,and soft advice, which
can be ignored by the agent and may define a preferred application of a con-
straint or action. [15] defines two types of policy: authorization and obligation.
We extend this categorization to include preference:

– Authorization defines the actions that the agent is either permitted or for-
bidden to perform on a target.

– Obligation defines the actions that an agent must perform on a set of targets
when an event occurs. Obligation actions are always triggered by events,
since the agent must know when to perform the specified actions.

– Preference defines a ranking in the order, a rule of application, or a selection
of an action under certain conditions.

Advice may be conflicting, it can be long-lived, and its relevance may decay over
time. Advice can be used to influence the selection of procedures, negotiation
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protocols, or choices and also to influence adjustable autonomy. The application
of advice is central to both PTIME for influencing preference learning and in
the future for learning adjustable autonomy strategies. In the latter case, some
examples of advice in PTIME are to

– Always accept meeting requests from personname=“Bob Smith” or person-
role=MyManager.

– Respond automatically to a meeting time rating request when confidence in
ratings is “high”.

– Never schedule a meeting time after 4pm without my confirmation.

Several research challenges arise from the use of advice in adjustable auton-
omy. What language can be used for specifying advice? How should an agent
apply advice, especially soft advice? Should an agent ever override, or ignore,
advice? Finally, how should an agent handle conflicting advice?

Suggestions Suggestion or recommendation systems are often based on the
ability to rate or rank options. In the same way PTIME can rate options pre-
sented to it and rank them to display to the user or share with another hu-
man/agent pair. In addition, PTIME can suggest an alternative option that
might suit its owner better than those presented as part of an ongoing negoti-
ation process. An interesting addition to simply rating options according to a
static evaluation function is to use an evolving model of the owner’s preferences.
In PTIME this model is a reflection of previous interactions between the agent
and its owner. Some sample suggestions may include

– In response to a rate meeting times request: PTIME suggests
• 9am Tues (medium = 3 stars)
• 11am Tues (low = 2 stars)
• 3pm Tues (not suitable = 0 stars)
• An alternative option 10am Tues (high = 4 stars)

– In response to a schedule meeting request: PTIME suggests ACCEPT with
confidence level high

Particular challenges are created by the multiagent nature of the domain.
Human/agent pairs are not necessarily reliable communicators. One agent may
reply to a request immediately, having assumed responsibility for that action.
Another may defer to its human owner and wait some undetermined time for a
response. The initiating agent can use the mechanism of suggestions to present
the user with alternative strategies to handle these particular cases.

Actions In a multiagent environment the agent may have some base level of
autonomy and be capable of taking some actions, replying to another agent’s
request for information, updating a user’s calendar, and so on. In a mixed ini-
tiative environment the human should be aware of these actions and under-
stand their purpose and context. The research challenge is to enable the agent
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to move from a base level of autonomy to the ability to act autonomously in a
context-sensitive way. Even more challenging would be the ability to acquire this
capability through natural interaction with the user. For example, if an agent
repeatedly observes the user declining back-to-back meetings, the agent may be-
gin to suggest this response based on its learned model. If the user accepts the
suggestion repeatedly, the agent may in the future automatically decline such
meetings and notify the user.

Explanation Explanation provides an agent with mechanisms for justifying
suggestions or recommendations it may make, or actions it has taken, to a user
[16]. A human when deciding to accept or reject a suggestion made by another
human will consider the quality of previous recommendations from that person
and how that person’s interest aligns with his own. Where there is doubt, the
human will ask why. In the same way, a human user will, over time, learn to trust
(or not) the suggestions made by an agent and by extension the actions taken
by an agent. While the relationship is developing, the user will want the agent
to justify its suggestions and action. Thus, providing sensible and intelligible
explanations is beneficial and necessary.

An important subcategory of explanation is the presentation of context to
the user. This has several purposes: to help the user navigate the set of possible
options, examine an option at multiple levels of abstraction, and annotate an
option or change. Visual displays of options, options at a glance, are powerful
methods of conveying context [17]. For example, the known status of a negoti-
ation process can be displayed visually, or a set of options could be displayed
within the known calendar information. An example of context in PTIME is
shown in in Figure 4. Here options are displayed on a calendar also displaying
shared calendar and preference information relevant to the current context.

In addition to presenting the user with a visual display of context and simple
explanations of conflicts in terms of constraints violated, we would like to explore
more specific forms of explanation in PTIME. For example,

– PTIME suggests 1pm on Tuesday as an alternative meeting time since ev-
eryone is available and PTIME has learned that the user prefers afternoon
meetings

– PTIME suggests that the user decline this meeting request because it has
learned he does not like back-to-back meetings with this host.

Explanations of a suggestion or action are influenced by the agent’s reasoning
process, the problem context, and the agent’s knowledge of the user’s preferences.
In most scheduling systems it would be sufficient to explain a solution in terms
of constraints violated and evaluation function used. However, if the agent is
adaptive and concerned with learning how to be proactive then the challenge is
to also explain a suggestion in terms of the learned model, i.e., “why do you think
you are allowed to . . . ?” If an agent is going to reveal its learned preferences to
the user this has implications. The user may wish to “correct” the agent. Thus,
explanations must be dynamic to support user’s follow-up questions.
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Fig. 4. Context provided by options at a glance. The three options are presented in the
context of the participants’ schedules. Also, the system has information about two of
the participants’ preferences and the colors encode that information. The user can delve
deeper into the context to look at the meeting details and view preferences individually.

4 Conclusions and Ongoing Work

This position paper sets out a discussion of the role of the dialogue between agent
and human in the evolution of adjustable autonomy in the context of the time
management domain. The discussion is based on our work on PTIME, a time
management assistant that learns the user’s preferences, and interacts with its
owner to improve over time and earn the user’s trust to act autonomously when
authorized. As we expand the role of multiagent negotiation within PTIME we
can benefit from existing work in mixed-initiative methodologies and distributed
meeting negotiation to enhance the user’s experience with PTIME. Our work
can apply to any domain that has characteristics similar to our multiple hu-
man/agent pair environment and negotiation protocols.
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Abstract. The general trend in combating traffic congestion and reducing 
accidents has shifted from paving more roads to making better use of existing 
infrastructure, often via technological improvements. Focusing on information 
technology, this paper combines several techniques in an innovative way to 
help communicating vehicles traverse conflict zones, such as merges and 
intersections, in an orderly fashion and at cruising speeds. This is done without 
taking away driver control of the vehicle, a property that reduces the 
automaker's liability exposure. 
The first technique, known as tracking or Adaptive Cruise Control (ACC), can 
prevent a vehicle from getting too close to another vehicle. ACC is already 
available commercially for non-communicating vehicles. However, the 
reliability and benefit of tracking can be improved significantly once vehicles 
can communicate. The second technique introduced here, known as generalized 
tracking, allows communicating vehicles to track other vehicles not in their 
immediate vicinity, as long as those other vehicles are within communication 
range.  This technique improves the ability of vehicles to coordinate road 
sharing among themselves. The third technique, known as traversal ordering, 
allows vehicles approaching a conflict zone to agree upon the order in which 
they are to traverse it. Combining these three techniques, we show how 
communicating vehicles can arrange themselves and cross conflict zones as 
quickly and safely as they do when traveling through a regular, non-conflict 
zone.  
The fourth technique introduces acceleration into conflict zone traversal. From 
the perspective of flow, conflict zones can be viewed as a narrowing of the 
road, where the roads leading to it are capable of carrying more traffic than the 
conflict zone itself. This can, and often does, produce a backup that no amount 
of coordination can avoid. However, if vehicles are made to judiciously 
accelerate as they approach the conflict zone and decelerate once they have 
crossed it, flow through the conflict zone can be increased without affecting 
traffic outside of it. Safety is not jeopardized as the generalized tracking 
technique is applied as well. 
We demonstrate the feasibility of these four techniques when applied to the 
case of a blocked lane via simulations.  
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1   Introduction 
Vehicular traffic is one of the more prominent woes of the modern industrialized 
world: accidents, congestion, and pollution are all major sources of concern. These 
problems are also interrelated—motor accidents are often the cause for congestion, 
and congested traffic pollutes much more than moving traffic does. 
For many years, growth in traffic needs was addressed by increasing supply: wider 
roads, complex interchanges, etc. The return on such investments is declining, 
however, and newer solutions are being sought. Several recent solutions seek to 
control demand, such as designated roads or lanes (e.g., for public transportation) and 
prohibited zones (e.g., city centers), to name a few.  Despite these efforts, vehicular 
transportation problems seem to keep growing. Much research is being conducted to 
find novel, long-term solutions that would permit better utilization of the existing 
infrastructure.  

An alternative approach to alleviating the problem is to increase infrastructure 
utilization. Such an approach requires that the density of vehicles on the road be 
increased. Making the vehicles themselves smaller could help, but much more can be 
achieved by reducing the time and space margins vehicles usually keep between 
themselves for safety, since these margins take up much of the available road real 
estate. For example, a one-second distance between cars on the highway could 
account for 6 car lengths when moving at 100 km/hour; much time is wasted in 
deciding who goes next at merges and intersections and in other similar situations.  

To increase infrastructure utilization without compromising safety, information 
technology solutions are required. Indeed, several solutions are being studied and 
some are already available commercially (e.g., Adaptive Cruise Control �[2] ). Yet 
most of these solutions do not assume communication, let alone collaboration, 
between vehicles. The study presented in this paper aims at solutions based on 
communication and collaboration among semiautonomous vehicles. We introduce 
several innovative techniques, some rather counter-intuitive, and combine them into a 
collaborative driving mechanism (Section 3.5).  When applied to autonomous 
communicating vehicles, this mechanism and the underlying techniques solve well 
problems of the sort listed above.  

In particular, the collaborative driving we present aims to facilitate fast and smooth 
passage of vehicles through segments of road where the straight-forward advance of 
vehicles is frustrated by other vehicles vying for the same space. Examples of such 
shared road stretches are intersections, lanes used for bypassing, merge areas, and 
lanes where vehicles wish to move at different speeds – all common situations in 
everyday traffic. Such a shared road stretch will henceforth be referred to as a conflict 
zone (CZ). CZs are the cause for many, and perhaps most traffic delays; vehicles must 
slow and often stop completely when negotiating passage through a CZ. They are also 
the site of 25% - 40% of all accidents �[1] �[5] . 
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Collaborative driving of the sort studied in this research relies on vehicle-to-
vehicle and vehicle-to-infrastructure communications. Although this dependence 
raises issues of deployment, such systems may be practical even in the near future in 
controlled environments, where only communicating vehicles are permitted. 
Operational vehicles in a factory yard, or cabs for self-driving within an airport, are 
examples of such controlled environments.  

Focusing on automated collaboration, this paper introduces several innovative 
techniques that, when combined, allow communicating vehicles to traverse CZs in an 
orderly fashion and at cruising speeds. The proposed solution places an emphasis on 
safety, reducing the chance of accidents.  

Although the collaboration studied here is automated, its implementation is 
compatible with leaving a human driver ultimately in control of the vehicle. When 
driver actions interfere with the automated behavior, the system adjusts itself to deal 
with the new situation gracefully; the worst outcome would be some delay in traffic. 
We believe that this may make collaboration more acceptable both to drivers, who 
seek control, and manufacturers, who abhor the liability. 

Section 2 lays the conceptual foundations for our collaborative driving mechanism. 
Section 3 delves into implementation details while Section 4 describes two possible 
scenarios to serve as examples. Section 5 describes previous work in the field, and 
Section 6 concludes. 

2   Basic Concepts 
In this section we introduce the basic concepts of four inter-vehicle coordination 
techniques. Implementation details of these techniques are presented in Section 3, and 
their combination into one mechanism is presented in Section 3.5. 

2.1   Tracking 

Tracking is used to maintain a safe distance between consecutive vehicles moving in 
the same direction in the same lane. This is not a new concept; it is already available 
commercially, and is described here only for the sake of thoroughness. A tracking 
vehicle behaves normally (i.e., in the same manner as contemporary vehicles do) 
when no other vehicle is ahead. Upon approaching another vehicle from behind, the 
vehicle is automatically constrained to move no faster than the vehicle it is 
approaching. This is considered a driving aid, helping drivers on highways and heavy 
traffic situations. It should be noted that the tracking capabilities now available in 
some high-end car models is sensor-based, using radars, lasers, or cameras mounted 
on the tracking vehicle to determine its relative distance from nearby vehicles. The 
present study, however, is concerned only with tracking based on inter-vehicle 
communications. 

2.2   Generalized Tracking 

As mentioned above, tracking may be achieved without communications, using 
vehicle-mounted sensors. Inter-vehicle communication, however, permits a vehicle to 
keep a generalized distance from any vehicle it can communicate with, whether in 
front, nearby or elsewhere, if only such generalized distance is defined. For example, 
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the generalized distance between two vehicles approaching the same CZ could be 
defined as the difference between their distances to that CZ; this boils down to the 
normal notion of distance when the two vehicles happen to travel along the same lane, 
but is different if they are not. The vehicle doing the tracking in such a situation is 
said to be logically tracking the other. This is similar to virtual vehicle mapping in 
�[14] . From the driver's perspective, generalized tracking feels like ordinary tracking: 
the vehicle's acceleration is limited by the presence of some vehicle ahead. There 
could be cases, however, where the driver cannot see or is not aware of which of the 
other vehicles her own vehicle is tracking.  

Since any change in the state of a vehicle can quickly be made known to all 
vehicles that are (physically or logically) behind it, even an abrupt stop is broadcast 
early enough to give affected vehicles enough time to slow down and avoid collision. 
The safety of the system is therefore unrelated to the speed with which participating 
vehicles are moving; their responses are not different from what they would have 
been had all vehicles been physically tracking. Any vehicle beginning to brake 
notifies all those behind it, which begin braking concurrently as a result. Due to the 
communication links, the fact that the row is only logical makes no difference.  

2.3   Traversal Order 

Currently, the standard way to allow vehicles through CZs is by time-division: 
vehicles take turns and cross the CZ one at a time. This sequencing could be imposed 
by rules of traffic (such as right of way) or by an external timing device (such as a 
street light). In any event, the essential aspect of these various solutions is the 
imposition of a sequence, or traversal order (henceforth TO) by which vehicles pass 
the CZ one after the other. This traversal order is currently figured out on-the-fly by 
the drivers, through watching the traffic and the relevant road signs. This procedure 
suffers from several flaws: 

1. All drivers must decide on the same traversal order, or they might run into each 
other.  

2. Calculating the traversal order takes time, and drivers slow down in the vicinity 
of CZs to give themselves enough time to figure out the correct traversal order.  
3. When an external timing device is used, time is wasted when the right of way is 
given to a direction from which no traffic is coming. Moreover, timing devices 
often allow for some idle time when switching directions (a green light is given in 
one direction only some time after the red was turned on for all conflicting 
directions), adding to the delay they incur.  
4. Time and energy are wasted when vehicles slow down at a stop sign or a street 
light, just to accelerate back to their original speed when given the right of way. 
The approach we adopt here is to figure out the traversal order in advance. Once 

the order is decided and is disseminated to the vehicles involved, both the risk of 
misunderstanding could be eliminated and the time wasted on the slowdown and 
decision making could be saved. Note that this is different from scheduling, since 
only the order of the vehicles is determined, not their arrival times; there is no 
"missing one's slot" in this scheme. 
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2.4   Speed-up 

The last observation has to do with the math of traffic flow. Let the following 
definitions hold: 

� Flow (f): the number of vehicles crossing a given point in a unit of time, 
e.g., one hour (h)  

� Density (d): the number of vehicles per unit length, e.g., one kilometer 
(km) 

� Speed (s): the distance vehicles traverse per unit of time, e.g., kilometers 
per hour (km/h) 

� Inter-vehicle gap (g): the space between two consecutive vehicles 
traveling in the same direction in the same lane 

Using the definitions above, the following two mathematical relations hold (see 
�[11] for example):  

1. Flow is proportional to both density and speed. In particular, on average: 
  sdf ��  

2. Density and inter-vehicle gap are inversely proportional. In mathematical terms, 
if the average vehicle length is l, then 

  l
d

g ��
1

 

From item 1, we see that for a given flow, there is a tradeoff between density and 
speed; in particular, density may be reduced if speed is increased without changing 
the flow. From item 2, we see that reducing density increases inter-vehicle gap. Taken 
together, this means that by increasing travel speed, inter-vehicle gap may be 
increased without affecting the overall flow of vehicles.  

Raising the overall speed of traffic is both difficult and risky. However, here the 
change is localized to a small area. If each vehicle in that area accelerates and then 
decelerates back to its original speed, the rates at which traffic enters and leaves the 
area remain the same as when no speed-up is employed, and yet the gaps between 
vehicles at the center of that area are widened, and can be used to accommodate 
interleaving vehicle flows.  

3   Implementation 

3.1   Implementing Generalized Tracking 

Generalized tracking is realized similarly to ordinary tracking, with three main 
differences:  

1. Information regarding the position of the tracked vehicle is most likely obtained 
through vehicle-to-vehicle communication (V2V).  
2. The identity of the tracked vehicle is not self-evident and must be supplied. 
3. The method by which distance to the tracked vehicle is measured must also be 

defined.  
This information is sufficient for logic aboard the tracking vehicle to calculate the 

generalized distance at any time, based on its knowledge of the positions of itself and 
the tracked vehicle. We describe below two scenarios in detail, including their 
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respective rules for measuring generalized distances (see Sections 4.1 and 4.2). In 
both cases, generalized tracking is employed only in the vicinity of CZs, where an 
area controller (see Section 3.4) is available to coordinate traffic and can provide this 
needed information.   

3.2   Implementing Traversal Order 

Traversal order lists (TOs) are maintained for each CZ and list all the vehicles in the 
vicinity that wish to cross it in the order decided (see Section 2.3). Note that the list 
does not determine any absolute arrival or departure times, only the relative sequence. 

Every vehicle in a TO, other than the first, follows a specific vehicle in the list. 
Tracking that vehicle guarantees the following vehicle will get to the CZ after that 
lead vehicle and all the other vehicles ahead of it have crossed the CZ. The TO may 
therefore be stored in a distributed fashion as a single piece of information each 
vehicle needs to carry, namely, the identity of the vehicle it immediately succeeds in 
the TO. This reduces the problem to a generalized tracking issue (see Section 2.2). 
Indeed, the vehicle being followed need not be the one physically ahead of the 
tracking vehicle; it could be approaching the CZ in a different lane or from a different 
direction altogether.  

In reality, a vehicle may need to cross several CZs to reach its desired destination. 
In a four-way intersection, for example, a west-bound vehicle may be required to pass 
two lanes, one north-bound and another south-bound, before clearing the intersection. 
This amounts to two CZs, along with two TOs, and hence two vehicles to track, one 
from each TO. Since one of them would be nearer (in the generalized distance sense) 
than the other, keeping a safe distance from the nearest of the two will guarantee a 
proper relation with the other one as well. This argument extends to any number of 
CZs. Although the relation between vehicles in different TOs may change over time, 
requiring that the tracking vehicle keep monitoring all TOs it is in, such changes are 
relatively infrequent since they involve only the relative speeds of vehicles moving 
logically in the same direction.  

3.3   Implementing Speed-up 

As described above (Section 2.4), speed-up is done locally. Each vehicle is expected 
to accelerate until it reaches some maximum speed, cruise at that speed past the CZ 
and then decelerate back to its previous speed. The difference between the actual 
vehicle speed and the speed it would have had without speed-up is the speed 
increment. The speed increment follows the shape depicted in Figure 1. Note that the 
increment is dependent only on the position relative to the CZ.  

A vehicle enters a speed-up condition when it is notified of the speed-up scheme, 
which is the relationship between speed increment and vehicle position relative to the 
CZ. Parameters of the speed-up scheme include the following: 

1. The road position where acceleration begins 
2. Dynamic shape of acceleration (may be variable) 
3. The maximum speed to be attained 
4. The road position where deceleration begins 
5. Deceleration rate 
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Again, since speed-up is affected only in the vicinity of CZs, an area controller is 
available to provide this information. Under speed-up conditions, each vehicle 
calculates the speed increment continuously and applies it to its current speed; the 
increment is added to the speed the vehicle would have under the same conditions 
without the increment. Actual vehicle behavior is modulated by tracking, so its actual 
speed will never exceed that of the tracked vehicle. However, as we shall see, if all 
vehicles follow the same speed-up scheme, the tracked vehicle speeds up by the same 
amount and slightly before the tracking one, so tracking does not get in the way. 
Moreover, this delay is responsible for widening the gap between the two vehicles, 
which is the point of speed-up. 

 
Figure 1: Speed-up scheme 

3.4   The Collaborative Driving System 

The system described pertains to an area containing a CZ, or possibly several related 
and closely-situated CZs. Such an area is equipped with a control center (CC), a 
server capable of coordinating traffic through the controlled area. Vehicles passing 
through the area need special capabilities to utilize the services of the CC and to 
streamline their passage. The properties of the vehicles and a CC are described below.  

In this system, vehicles normally manage their advance based on the manipulation 
of their controls by their human operator, combined with information they glean via 
communications with other vehicles nearby. Vehicles inside the bounds of a 
controlled area of road also resort to the services of the relevant CC. Note that the CC 
does not violate vehicles’ autonomy. It merely provides CZ-relevant information and 
coordination advice, yet vehicles communicate with one another in a peer-to-peer 
manner to gather the information needed and to collaborate accordingly.  

Vehicle. A vehicle here refers to the common meaning of the term, augmented with 
hardware and software needed to perform the following tasks: 

1. Communicate with other vehicles (V2V) 
2. Communicate with CCs (V2I) 
3. Generalized tracking  
4. Speed-up 
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Control Center. The CC is a hardware device, stationary in most cases, which has 
jurisdiction over a specific stretch of road. It also has the hardware and software 
wherewithal required to perform its task, as described below. It is important to note 
that a controlled area may contain several CZs. The CC has the following 
responsibilities: 

1. Set up the boundaries of the controlled area and notify vehicles that they have 
entered it. 
2. Maintain a total order of all vehicles in the controlled area; maintain TOs for all 
CZs within the controlled area and notify vehicles of their placement in all TOs 
they participate in. 
3. Determine the need for speed-up and dissemination of the speed-up scheme 
when it is in effect. 
In the case of permanent CZs, such as those associated with an intersection, the CC 

could be installed where the street light is housed today, in addition or instead of the 
latter. A roadwork group would bring a CC along and install it in the vicinity of their 
work area for the duration of their work. An unexpected blockage, such as one due to 
a broken-down vehicle, could be controlled by equipment on an attendant emergency 
vehicle or even by the on-board intelligence of the broken-down vehicle itself.  

3.5 The Mechanism 

The mechanism presented below describes the behavior of a vehicle and a CC 
separately. 

Vehicle Behaviors. Vehicles behave differently in non-controlled areas and 
controlled areas (i.e., areas under the jurisdiction of a CC). Furthermore, vehicle 
behavior in controlled areas requiring speed-up is different from that in controlled 
areas that do not.   

Non-controlled area: In non-controlled areas, vehicles move in tracking mode (see 
Section 2.1).   

Controlled area with no speed-up: Upon entering a controlled area, a vehicle 
switches to generalized tracking mode (see Section 2.2). The vehicle is informed that 
it has entered a controlled area, as well as of the identity of the vehicle it should track, 
through messages broadcast by the CC.  

The new vehicle entering a controlled area need not be behind the vehicle it should 
be tracking now, but it may need to slow down to establish the proper tracking gap 
between itself and the tracked vehicle. 

Controlled area with speed-up: In a control area employing speed-up, the CC 
conveys to an entering vehicle the parameters of the speed-up scheme (Section 3.3), 
in addition to the control information described in Section 3.2. The vehicle uses the 
scheme and its own position information to continuously calculate the momentary 
speed increment. It then does its best to implement the speed increment, subject to 
tracking constraints and the capabilities of its power train. 

Control Center. The CC is responsible for maintaining the traversal order and to 
employ speed-up if the traffic rate warrants it. 

Controlled area boundaries: The boundaries of the controlled area are set by the 
CC. The way they are determined could impact the efficiency of the system. The CC 
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could fix the boundaries at a certain distance from the CZ. This distance should be big 
enough to accommodate the ease of generalized tracking and consequent speed-up, if 
employed. CCs could also set the boundaries dynamically, starting out with narrow 
bounds, and expanding and shrinking the space taken up by the controlled area as 
momentary traffic rates change. 

If the boundaries are set too narrowly, there might not be enough time for tracking 
and speed-up to relax. Boundaries that are set too widely, on the other hand, increase 
the chance of a slow-moving vehicle entering the controlled area and holding up 
faster-moving vehicles that have entered later but are now constrained to track it. It is 
therefore desirable to set the boundaries at their lowest practical distance. In that 
regard, dynamic boundary placement has an advantage.  

One way to realize a dynamic boundary is through the placement of a priority line 
(PL) across all lanes leading to a common CZ at the same distance from the CZ. 
(Such lanes may or may not be adjacent; see detailed scenarios.) Initially, the PL is set 
at some minimal distance, dmin, but as vehicles pass the line, it is dynamically 
relocated to expand the controlled area in increments of �, the average space taken up 
by a vehicle (its physical length plus the inter-vehicle gap at the speed it is moving). 
As vehicles cross the CZ and leave the area, the PL is moved backwards in 
decrements of �, shrinking the area size. The PL is never set further than dmax. Thus, 
if there are n vehicles between the PL and the CZ, the PL would be at min(dmin + n � 
�, dmax). See Figure 2 for a schematic description.  

Traversal order maintenance: 
Vehicles crossing the PL are assigned monotonically decreasing priority values 

according to the order of their arrival. Note that a vehicle may cross the priority line 
due to its own motion, or due to the expansion relocation of the PL past the vehicle's 
current position. In either case, priorities are assigned according to the order in which 
vehicles and the PL meet.  When two vehicles register within a short enough time 
period as to be indistinguishable, one of them is chosen to be first at random.  

As an outcome, the CC can order all vehicles in the order of their arrival, which is 
assumed to reasonably correlate to the order at which they would have arrived at the 
CZ (to prevent the scheme from being unduly unfair). Emergency vehicles could 
enjoy preferential treatment.  

 

Figure 2: Placement of the PL where two lanes lead to a CZ. (PL is at dmin+ 2� since two 
vehicles are between it and the CZ.) 
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This order is maintained within a TO. The CC notifies each vehicle, as it is placed 
in a TO, which TO it is in and which vehicle precedes it in the order; that is the 
vehicle it should track using the generalized tracking approach. 

Speed-up management: As described earlier in this section, the position of the PL 
represents the number of vehicles contained between it and the CZ. The speed with 
which the PL itself moves represents the difference between the vehicles' arrival rate 
and the rate at which they pass the CZ. In the discrete case, the time between priority 
line repositioning is inversely proportional to the difference between the incoming 
and outgoing rates: the shorter the time, the faster vehicles ought to clear the 
controlled area.  

Practically, speedup is triggered when the priority line reaches the distance of 
(dmin +  dmax) / 2. The time at which that distance is reached is recorded as, say, t0. 
If the priority line is moved upstream at a later time, say t1, the speed of all vehicles 
that have crossed the priority line is increased by up to �/(t1 – t0). Speed increment 
may be raised if PL movements accelerate, but is never reduced: it is reset back to 0 if 
and when the space between the PL and the CZ is cleared of vehicles.   

 
Figure 3: Vehicles approaching a blocked vehicle in a multi-lane highway. 

4   Detailed Scenarios 

4.1 A Blocked Lane in a Multi-Lane Highway 

The system above may be applied to a multi-lane highway where a lane is blocked, 
due perhaps to a broken-down vehicle or road work. The associated CZ is the space in 
the unblocked lane next to the blockage, through which traffic arriving on the blocked 
lane will eventually have to travel. (If there are more than one unblocked lanes, each 
one may have a CZ.) The controlled area extends from the blockage to the PL, which 
may be dynamically set as described in Section 3.4 (see Figure 3). 

Vehicles that have crossed the PL are within the controlled area and are assigned 
priorities. The metrics for the generalized tracking in this case is simply the distance 
to the blockage. Prioritized vehicles begin following all vehicles with a higher priority 
than their own, regardless of their respective lane position. (Recall that priorities are 
assigned in decreasing order.) This causes vehicles to arrange themselves in a single 
file even if they are different lanes (see Figure 4).  
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Figure 4: Tracking and merging by priority; the numbers indicate relative priority. Top - initial 

state; middle - after tracking was applied; bottom - traffic merged into one lane. 

Once that state has been reached, any vehicle in the blocked lane (the bottom one 
in Figure 4) may move to the unblocked lane with confidence, knowing that all 
vehicles in the target lane with lower priority are already tracking its position, and as 
a result maintain a gap for it. (That is, the gap between vehicles 2 and 4 in the middle 
part of Figure 4 is maintained regardless of which lane vehicle 3 is in.) Lane 
switching is the responsibility of the driver – tracking modulates only vehicle speed, 
not steering – and must be completed after the vehicle crosses the line and before it 
reaches the obstacle. Vehicles which fail to move to the open lane in time get blocked, 
and have to wait, as all vehicles currently must, until traffic in the other lane has 
subsided.  

Sufficiently sparse traffic could merge into the single open lane without any 
slowdown. At higher rates, however, a slowdown would result: while the first vehicle 
in a platoon maintains its previous speed, vehicles behind it must slow in order to 
generate the required inter-vehicle gaps. (E.g., in Figure 4, in the period between the 
situation depicted at the top and that in the middle, vehicle 6 has moved a longer 
distance than vehicle 1. Consequently, vehicle 1 must have moved more slowly than 
vehicle 6, which would not have necessarily been the case without tracking.)  

To avoid such slowdowns, vehicles that have passed the priority line are made to 
accelerate, increasing lane capacity to the level necessary to accommodate the traffic 
at hand. The speed-up is controlled by the system, and the driver has only limited 
control over it. Although not necessarily implemented that way, one may think of the 
added speed as imparted by movement of the pavement itself, as in a conveyor belt, 
adding a constant speed to all vehicles that are (virtually) on it. The speed of the 
conveyor belt is determined by the amount of traffic that it needs to accommodate. At 
most, its speed could reach the average traffic speed, effectively doubling the capacity 
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of the single lane, and thus matching the throughput of both lanes together (at the 
given average traffic speed).  

Once a vehicle has passed the obstacle, it decelerates back to its original speed, 
since both lanes are now available to carry the traffic and no speedup is needed any 
more. The effect of the speedup is therefore limited to a small area in the vicinity of 
the blockage and has no systemic effect on traffic as a whole.  

The performance of this mechanism in this scenario was tested using a simulator 
built using the AnyLogic �[3] agent-based simulation platform. The program is a 
straight-forward implementation of the mechanism described above over a stretch of a 
two-lane highway. Each vehicle is represented by an agent having one of three states:  

1. Free-flow, in which the vehicle travels without any regard to vehicles around it. 
2. Tracking, in which the vehicle follows behind another vehicle at that vehicle's 

speed 
3. Obstacle, in which the vehicle is stationary 
Each vehicle has properties of position and speed, as well as the identity of the 

vehicle it follows when tracking. Property values are chosen at random from a 
realistic range for highway traffic. Vehicles in tracking mode can switch lanes, if 
there is room in the adjacent lane. On-screen controls allow switching the obstacle on 
or off, the setting of the arrival rate, and selection of the algorithm to use: none, 
generalized tracking, and generalized tracking with speed up (see Figure 5). 

 
Figure 5: Snapshot from the collaborative driving simulator 

At traffic rates of over 1500 vehicles/hour/lane, a traffic jam quickly forms when 
an obstacle blocks one lane, but it dissipates if generalized tracking is turned on. 
Tracking can handle traffic rates up to about 2200 vehicles/hour/lane. If speed-up is 
also employed, traffic rates of even up to 3000 vehicles/hour/lane do not form a jam.  

A flow vs. density diagram for the simulated traffic, which the simulator maintains, 
exhibits the characteristic fundamental diagram behavior. An applet simulating this 
scheme under various traffic conditions is available at �[4] .  
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4.2 Intersection Where No Turns Are Allowed 

Another example is that of an intersection where no turns are allowed; all vehicles are 
constrained to cross the intersection going straight only. There could be any number 
of lanes in each direction, however.  

To simplify the exposition, an intersection consisting of two one-way intersecting 
lanes, as in Figure 6, is described first; the solution is then expanded to any number of 
lanes. The two lanes form exactly one CZ: the area common to the two lanes. The 
bounds of the controlled area are set by a PL, which is placed, possibly dynamically, 
on both incoming lanes at equal distance from the CZ. 

 
Figure 6: An intersection with a single CZ, defining the metrics for generalized tracking. 

For the purpose of generalized tracking, the metrics are defined as follows:  
1. The distance between two vehicles traveling in the same lane is measured in the 

normal way—the distance one vehicle must travel to touch the end of the other. 
2. The distance between two vehicles approaching the intersection from different 

roads is defined as the difference between their respective distances to the part of the 
CZ that is closest to each.  

For example, in Figure 6, the distance between vehicles 3 and vehicle 1, which is 
physically ahead of vehicle 3, is given by 

���� 1331 ddd  
where � is the average length of a vehicle. The distance between vehicle 2 and 

vehicle 1, which are approaching the CZ from different directions, is given by 
wddd ���� �1221  

where w is the average width of a vehicle. The added padding is needed because 
the distance a vehicle travels from the point it enters the CZ to the point it clears is the 
sum of the vehicle’s length and the width of the CZ, which is about the width of a 
vehicle. If all vehicles are moving at the same speed, that should also be the gap 
between vehicles moving perpendicular to that vehicle (see Figure 7). 

A likely TO for the situation depicted in Figure 6 is (1, 2, 3). 
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The same idea applies to intersections in general. The area common to any 
intersecting lanes is considered a CZ, and a TO is maintained for each (see Figure 8). 
Each vehicle computes which CZs its path must cross, and which vehicle is just ahead 
of itself in each of the associated TOs. Every such TO contributes a vehicle it must 
follow, and each of these vehicles imposes some distance from the intersection it must 
keep at any moment. The maximum of these distances satisfies the tracking 
requirements of all of them, and that is the distance the vehicle should maintain.  

 
Figure 7: A vehicle crossing an intersecting traffic stream needs a gap as wide as its length plus 
its width. The distance vehicle 1 travels since entering the intersection (A) until it clears it (B) 
is � + w; assuming 2 and 3 move at the same speed, their inter-vehicle gap must be just as large. 

For example, vehicle 2 in Figure 8 must cross CZs B1 and B2 to get to the other 
side of the intersection. The TO for CZ B1 contains vehicle 4, and that of CZ B2 
contains vehicles 1 and 3. Vehicles 1 and 4 should pass the intersection before 2, so 2 
must follow them both. Although the speeds in Figure 8 are not known, it stands to 
reason that vehicle 2 follows vehicle 4, and that will take care of vehicle 1 as well, 
since vehicle 1 is so much closer to its CZ than vehicle 4 is. 
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Figure 8: An intersection with several CZs. 

5   Related Work 
Collaborative driving is seen as a promising solution to mounting traffic problems. A 
collaborative scheme for traversing intersections with a setup similar to the one used 
in this paper is described in �[8] �[9] ,�[10] �[12] Dresner and Stone, as well as Kolodko 
and Vlacic, describe the intersection as being divided into vehicle-size slots in time 
and space, and each approaching vehicle can request and obtain a rendezvous with 
such a slot. If all such rendezvous are kept, safe passage is guaranteed without the 
need to slow down, but a vehicle that misses its turn must stop, delaying itself and the 
vehicles behind it. Our solution avoids such delays. On the other hand, the other 
scheme supports turns, whereas ours, at this stage, does not. The other scheme can be 
integrated with a standard street signal to accommodate some non-communicating 
vehicles, although performance suffers if there are too many of such vehicles.  That 
scheme further requires that vehicles’ behavior in the vicinity of the intersection be 
governed completely by the CC. Our scheme does not impose such a restriction, and 
therefore can be more gracefully adopted. 

A scheme that requires no control center is described in �[13] There, a scheme 
similar to the generalized tracking is used to serialize vehicle pairs that can occupy 
the intersection simultaneously without interference (for instance, if they are moving 
in opposite directions and both intend to turn right). Their trajectory is then 
automatically controlled to realize the best traversal plan.  In that scheme, too, the 
driver has no control of the vehicle while it crosses the intersection, while in our 
solution the driver retains control.  

We are not aware of other collaborative driving schemes that specifically address 
intersection and general CZ crossing. However, several multi-agent and distributed AI 
theories could help solve this problem. For instance, the generalized partial global 
planning framework (GPGP) �[6] , a general scheme for distributed coordinated 
planning, can be used. Indeed, GPGP has been applied to the distributed vehicle 
monitoring testbed (DVMT) �[7] That application exhibits similarities to the 
generalized tracking presented here; however, it does not refer to the specific problem 
of CZ crossing. It further assumes full autonomy of vehicles, whereas we allow driver 
intervention. 

6   Conclusion 
In this study, we have introduced an innovative inter-vehicle collaboration 
mechanism. When implemented, it allows (semi-) autonomous vehicles to increase 
road infrastructure utilization with virtually no effect on safety. As we show, our 
mechanism lets vehicles traverse road conflict zones such as blocked lanes and 
intersections with significant time and energy savings, avoiding decelerating and 
accelerating which would otherwise be required. In a counter-intuitive manner, we 
advocate that vehicles should accelerate into a busy road intersection. This is shown 
to be advantageous and introduces no additional risk when complementary techniques 
are implemented.  
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As shown in simulations, the suggested techniques are promising.  Future work 
calls for extensions to support turns, simulations of additional scenarios, and 
eventually field studies. With such studies, we are confident that techniques of the 
sort presented here should become part of future driving reality. 
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using visualization, security policy dialogue between humans and agents, shared initiative in solving 
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1 Background 

Computer infrastructures consist of multiple interdependent organizations that share computational 
resources in a formal or ad hoc arrangement.  In critical infrastructures such as electrical power grids, 
organizations may be so interdependent that failure of some part of a single company could produce 
cascading failures with consequences on the local, national or international scale.  Regardless of the degree 
of their interdependence, infrastructure members remain economically independent organizations. They 
have separately managed systems, few shared policies, differing business drivers, and proprietary 
information that cannot be shared without special legal instruments.   

To manage the complexity, we factor these multi-organization cyber infrastructures into enclaves, a set of 
computer and network hardware and software that is owned by a single organization and administered 
under a unified policy by a single (possibly separate) organization.  An enclave may be very small, 
consisting of one or two machines, or it may be very large, comprising numerous networks.  Enclaves are 
the building blocks of infrastructures and are the largest unit over which a mixed-initiative system [1] can 
be fielded without crossing proprietary boundaries between organizations.  

Accomplishing concerted cyber defensive action that spans organizational boundaries is difficult.  
Infrastructures have unique cyber security needs that cannot be adequately addressed by individual 
enterprise solutions, and the complicated relationships in infrastructures make it possible for defensive 
actions by one organization to affect the others adversely [2].  Both legal [3, 4] and practical issues require 
that the consequences of change be managed through coordination across organizations in a near-real-time 
manner.  

Cyber adversaries, on the other hand, are not hindered by central coordination; they can rapidly and 
concertedly disrupt multi-organizational computer infrastructures.  Therefore, enclave defenders need 
intelligent defenses with the autonomy to adapt in real-time to both internal and external threats.  The real-
time nature of threats on the Internet requires that humans not become a bottleneck, and the seriousness of 
proprietary boundaries requires that automated defenses strictly observe the policies of the cooperating 
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organizations.  A mixed-initiative approach solves these problems by allowing not only shared control 
between humans and software agents but also shared initiative among human stakeholders across the 
infrastructure.   

Current cyber defense systems involve humans at multiple levels, but people are often far down in the 
control structure, requiring them to make too many time-critical decisions. Information flow between 
humans is slow and frequently asynchronous. In a crisis, humans may be unable to cooperate because of 
culture, language, legal, proprietary, availability, or other obstacles. Such systems cannot adapt to the 
Internet speeds of cyber threats.  Consequently, effective cyber defense requires a framework that 
simultaneously capitalizes on the adaptability of humans and the speed of machines.  In other words, 
humans must be put in the right loop to maximize their effectiveness while preserving their legal 
responsibility for the actions of their autonomic systems [4]. 

2 Introduction 

This paper presents a new mixed-initiative hierarchical framework of humans and agents that is well suited 
to protecting computational infrastructures. The framework, Cooperative Infrastructure Defense (CID), is 
designed to rapidly adapt to new cyber attacks via swarming software agents while enabling humans to 
supervise the system at an appropriate level. We interpose a hierarchy of rational software agents between 
the swarm and the human supervisors to provide a channel for system guidance and feedback. Using 
various kinds of rationality actually turns false positives into beneficial forms of positive feedback and 
improves system performance. 

CID represents a revolutionary new way of looking at system control for cyber security.  Traditionally, 
humans control the entire system assisted by automated tools and subsystems.  In CID, agents share the 
decision-making power, handling most of the real-time portion autonomously but enabling human 
involvement at all levels. The human supervisor does not directly control the system rather humans exert 
supervisory influence sharing the initiative for action with their software agents. CID is designed to be a 
scalable, dynamic, and robust framework for securing increasingly complex computational infrastructures.  
CID makes humans an intrinsic part of the solution, engaging them without requiring them to directly 
control and enables diverse organizations within an infrastructure to cooperate in an adaptive cyber 
defense.  

In our research, we have created simulations of the entire framework, prototypes of the user interface, and 
prototypes of the mobile sensor agents.  Our initial prototype, built in an agent simulation framework, was 
demonstrated at the VizSec 2008 conference. We are currently implementing the framework in Java using 
the JADE agent framework (http://jade.tilab.com/) on a network of virtual machines.   

The remainder of this paper is structured as follows. CID is described at a high level in Section 3. Section 4 
describes examples of human-agent and agent-agent interaction in the CID framework. Section 5 discusses 
related work. The conclusion outlines possible directions for future research, summarizes the CID 
framework, and reviews the expected benefits. 

3 System Overview 

In CID humans and various types of software agents share the responsibilities of securing an infrastructure 
comprised of enclaves that belong to member organizations. Figure 1 shows how one human can supervise 
a multi-enclave system with a few enclave-level agents, a host-level agent at each machine or group of 
similar machines, and a large swarm of simple mobile agents. Our terminology is as follows: 

• Humans function as Supervisors. They provide guidance to and receive feedback from one or 
more enclaves. They must to take action only when the lower-level agents encounter a problem 
that requires human involvement.  Supervisors may take initiative as desired inspecting and 
guiding any element of the system. However, direct human control of the system is discouraged 
because such involvement would destroy its natural adaptive abilities. 
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• Enclave-level agents called Sergeants, which are each responsible for the security state of an 
entire enclave. Sergeants may make service agreements with Sergeants of other enclaves. 
Sergeants dialogue with humans to gain guidance for running the system according to business 
drivers and human security policies.  Sergeants create and enforce executable policies for the 
entire enclave. 

• Host-level agents called Sentinels, which are responsible for protecting and configuring a single 
host or a collection of similarly configured hosts such as a cluster or storage network. Sentinels 
interact with human supervisors only when they need clarification about how to classify 
ambiguous evidence from the swarm. 

• Swarming agents, called Sensors, roam from machine to machine within their enclaves searching 
for problems and reporting to the appropriate Sentinel. Sensors are diverse; their classifiers are 
each uniquely derived from the set of known problem indicators. Sensors use stigmergic messages 
called digital pheromone [5] to communicate. 

 
 

Figure 1: CID is a hierarchical framework of human supervisors, enclave-level rational agents, and swarming 
agents. A single human may supervise multiple enclaves via the agent hierarchy. 

The concept of supervisors and agents of the CID framework operating within a hierarchical structure is 
supported by the research of Parunak [6], Smieja [7], and Selfridge [8], who each suggested hierarchical 
arrangements of heterogeneous agents. Interposing logic-based rational agents between the humans and the 
swarm provides a basis for communication, interaction, and shared initiative. The hierarchical arrangement 
gives humans a single point of influence that allows multiple points of effect. The following sections 
describe the roles of each actor in the CID and the relationships between actors are depicted in Figure 2. 
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Figure 2: Cooperation among humans and agents in CID. 

3.1 Supervisors 

At the top layer of Figure 1 and Figure 2 are human supervisors who may direct one or more enclaves. 
Supervisors may belong to one or more interdependent organizations within the infrastructure, while the 
cyber assets in every enclave all belong to a single organization by definition. A Supervisor might also be a 
member of a regulatory organization or law enforcement agency and only monitor the equipment in the 
enclaves.  Human supervisors translate business policy into guidance via natural-language and graphical 
controls for top-level agents called Sergeants.   

3.2 Sergeants 

Each enclave has a top-level agent called a Sergeant.  In autonomic computing [9] terms, the Sergeant 
corresponds to the orchestrating autonomic manager.  Sergeants provide situational awareness to their 
Supervisor, via an information visualization interface. Sergeants translate the guidance from the human 
Supervisor into actionable policy across all the machines within an enclave. We believe this will involve a 
natural-language dialogue that accepts human guidance and feeds back what the translation will be in terms 
of policy similar to IBM’s SPARCLE (Server Privacy ARrchitecture and CapabiLity Enablement) policy 
workbench [10].  Sergeants will employ supervised learning algorithms so that interactions with them 
become more efficient over time. Sergeants are “heavy-weight” rational agents that make decisions based 
on logic. One possible implementation we have considered for Sergeants is Belief-Desire-Intention (BDI) 
logic [11]. The Sergeant presents the activities of lower-level agents to the human Supervisor and functions 
as an interface to influence system operation.  Supervisors use Sergeants to enact environmental settings 
and policies that govern the general operation of the lower-level agents without controlling the lower-level 
agents directly. Sergeants provide a “geography” for the enclave that enables the swarm to operate 
properly. 

Another major function of Sergeants is to broker agreements between CID enclaves on behalf of the 
Supervisors. To ensure that their actions are properly attributable, Sergeants must have a separate digital 
identification from the Supervisor they report to. Since they negotiate on behalf of humans, they may incur 
liability for their owning organization. Thus, there must be a mechanism to describe the types and degrees 
of authority the Supervisor has delegated to the Sergeant. Often, this authorization can be quantified in 
terms of maximum dollars that can be spent or types of service contracts that can be negotiated. An 
example interaction using this mechanism is described in Section 4.65. 
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3.3 Sentinel 

Sentinels are mid-level rational software agents that, together with its managed host(s), correspond to the 
notion of autonomic elements. In autonomics parlance [9], the Sentinel is the Autonomic Manager and the 
host is the Managed Element. Each Sentinel is responsible for a single machine or group of machines that 
are similarly configured. For example, a Sentinel might be responsible for a single server, a router, a 
storage area network, a group of load-balanced web servers, or even a set of managed user workstations. 
Sentinels implement the policy they receive from the Sergeant and apply it to the configurations of the 
machine(s) they manage.  

Sentinels also interface with the lowest-level agents: the swarming Sensor agents that gather information on 
potential problems found on the hosts. Sentinels provide the local geography to Sensors and provide 
mobility by negotiating with their destination.  Sentinels also provide rewards and spawning capabilities to 
visiting Sensors. The Sentinels combine evidence from the Sensors with their own experience, shared 
knowledge from other Sentinels, guidance from Sergeants and Supervisors (interpreted by the Sergeant), 
and contextual host information to determine whether a problem exists and to devise potential solutions.  
Mechanisms similar to this are used in survivability architecture Willow [12].  

Sentinels give feedback on the utility of Sensor findings in the form of “rewards” to the Sensors that visit 
their nodes.  The analogy of foraging ants is used to describe the effect this feedback has on the system. By 
rewarding visiting Sensors, the Sentinel will attract more of them.  A variety of visiting Sensors will 
provide more information on the potential problems experienced by the Sentinel and enable it to make 
more informed decisions about how to fix the problems.  

3.4 Sensor 

Sensors are lightweight, swarming, mobile software agents that roam and detect problems. They are 
modeled after behaviors of social insects and they employ a form of ant-colony algorithms and swarm 
intelligence [13].  The Sensors' logic is as simple as possible; their power is in their numbers and their 
diversity. Sensors wander across the geography superimposed on the enclave by randomly adjusting their 
current heading similar to the movement of real ants. Each Sensor uses a learning classifier [14] to match a 
particular set of conditions in the hosts they visit. There are two broad categories of Sensors: Markovian 
(memoryless) and differential. Markovian Sensors look for static conditions that may either define 
signatures of known problems or well-known anomalous conditions. Differential Sensors look for 
differences in conditions between hosts in recent memory and their current host. For example, there may be 
an unusual rate of network connections, a large number of open files, strange file names in system 
directories, or unusually high processor utilization. 

Sensors communicate with each other stigmergically via trails of digital pheromone [5] messages. 
Decentralized, pheromone-based systems have been demonstrated to simply and effectively solve highly 
constrained problems where logic-based, optimizing approaches prove intractable [15]. Pheromone-based 
techniques have been shown to be robust and therefore appropriate for dynamic applications, such as 
network routing [15, 16].  

Sergeants and Sentinels select successful Sensors (those that are consistently rewarded for useful findings) 
as templates for spawning new Sensors.  This may be done by perturbing the parameters of a single 
Sensor’s classifier or by combining the classifiers of two or more Sensors.  

4 Interaction Examples 

CID is a mixed-initiative system that operates in a fundamentally different way from systems where 
initiative is solely human or solely automated.  Initiative for actions, handling of interruptions, and 
responsibility for various activities are all shared.  The purpose of CID’s design is to enable humans to 
function in the role they believe most appropriate at a given time.  Thus, CID’s automation is decentralized 
and flexible, accommodating many types of interactions.  In this section, we will highlight several of the 
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characteristic interactions designed into CID.  These imply many more, but we have selected the following 
to highlight responsibilities within the system and to underscore the flexibility of human intervention they 
enable. 

4.1 Supervisor-Sensor Interaction 

The Supervisor can adjust global target parameters to make the Sensor swarm more or less responsive to 
intrusion evidence and control Sensor population.  Two of these parameters are particularly important: 
activation and crowding tolerance.  Sensors are programmed to try to achieve their target levels of these 
two quantities.  The Supervisor may use these two parameters to regulate the size of the Sensor swarm and 
adjust its responsiveness to attackers.  Activation level measures how successful a Sensor has been in 
collecting evidence useful to Sentinels.  High activation yields larger Sensor populations and diverse 
classifiers.  Crowding measures how often a Sensor encounters other Sensors while foraging. If a foraging 
Sensor senses crowding in excess of its target level, it is more likely to terminate itself reducing the 
population by removing Sensors that are no longer effective.  Highly activated Sensors and Sensors 
following pheromone trails do not check their crowding metric because high concentrations of Sensors are 
desirable where problems are being detected. Thus the swarm adapts to new problems and maintains an 
appropriate size. 

4.2 Sensor-Sentinel Interaction 

Sentinels and Sensors cooperate to reduce the interruption false positives cause for human defenders.  It is 
important to understand that even very low false positive rates can yield a tremendous amount of 
interruption that humans are not well equipped to handle [18].  Each false alarm that reaches a human 
implies an investigation may be necessary. Interactions between the Sensor swarm and the Sentinels weed 
out most of those false positives before they become alarms that interrupt the human.  However, humans 
still need visibility into the system (Section 4.5), and the system may need human guidance to classify new 
types of input (Section 4.3).  

Sentinels reward Sensors that find useful evidence by adding to their activation level.  At activation levels 
below their target, Sensors remain in foraging mode, actively following pheromone trails and seeking 
evidence that will earn them a reward from Sentinels. When a Sensor’s activation level exceeds the target, 
it stops foraging and begins dropping pheromone messages that point to the Sentinel where it was most 
greatly rewarded. As it drops pheromone, it loses activation until it enters foraging mode again.  
Consistently high activation levels indicate that a Sensor is successful and a Sentinel should select it for 
spawning.   

As the Sentinel collects more and more information from various Sensors that visit (along with information 
from other sources, Section 4.3) it will develop either a diagnosis of the problem and a means to fix it or an 
understanding that this situation is actually an acceptable variation. The Sentinel will use this knowledge to 
decide how to feed future Sensors that visit. When the Sentinel has “enough information” (the reports from 
the Sensors fit a model) on the problem, it will make a report to its Sergeant. The report to the Sergeant will 
contain the classifiers used by the Sensors that helped diagnose the problem and any other evidence it has 
that may be useful in new classifiers. 

False positives from the Sensors are not a problem; the Sentinel should feed them unless what the Sensor 
reports is known not to be a problem.  This strategy will attract more Sensors until a clearer picture can be 
constructed.  CID uses false positives to generate useful positive feedback and increase its problem-solving 
ability. 
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4.3 Sentinel-Supervisor Interactions 

Sentinels use a semi-supervised, reinforcement-learning algorithm to classify evidence received from 
visiting Sensors. They dialogue with the Supervisor (mediated through the enclave Sergeant) to train 
themselves on problems that are too difficult to decide without human guidance. The untrained Sentinel 
classifies most kinds of evidence as unknown, asking for feedback from the human Supervisor on its 
decision. Asynchronous feedback from the human supervisor provides rewards and punishments to the 
Sentinel’s reinforcement-learning algorithm. Sentinels may classify Sensor findings on a continuous scale 
(see Figure 3) from normal with high confidence (-1) to suspicious with high confidence (+1). Near zero, 
the Sentinel’s classification is more uncertain. Low confidence metric values (close to zero) between the 
suspicious and normal certainty threshold values trigger the Sentinel to ask for clarifying feedback from the 
human. When the confidence metric is outside the certainty thresholds, Sentinels will share their 
classification information with neighboring Sentinels whose machines have similar architectures. In this 
way the system avoids having humans manually diagnose the same problem again and again. 

 
Figure 3: Sentinel classification of and actions based on Sensor data. 

 

Trained Sentinels no longer require direct human feedback. Instead they use information gathered from the 
Sensors, from the Sergeant, and from other Sentinels to diagnose and repair the problem indicated. First, 
the Sentinel checks its local database of problems and solutions derived from its own experience and that of 
its neighbors for a near match. If no match exists, it requests matches from the enclave-level Sergeant 
agent. If no matching problems exist, the Sergeant will then alert the human Supervisor who can repair the 
problem manually or dismiss it as a non-problem. A special command shell or interface provided by the 
Sentinel is instrumented with learning classifiers and can learn how to repair similar problems by 
monitoring the human’s repair activities. When a new known problem and solution are discovered, the 
Sentinel stores this information in its database and passes the solution up the hierarchy to the enclave-level 
agent, the Sergeant. The report will contain the classifiers used by the Sensors that helped diagnose the 
problem and any other evidence it has that may be useful in new classifiers. 
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4.4 Sergeant-Sentinel Interactions 

Sergeants and Sentinels take charge of several areas to reduce human workload in managing large enclaves. 
Sergeants provide to the Sentinels the enclave security policy and a geographic representation of the 
enclave that defines the neighbors of each Sentinel.  Sentinels provide reports to the Sergeant on problems 
that have been solved and on Sensor types that have been particularly effective.  These interactions allow 
the human Supervisor to retain situational awareness and supervisory power but do not require the 
Supervisor to exert direct control to secure the system. 

The two-dimensional geography the Sensors move around on is maintained by the Sergeant.  The Sergeant 
builds its geography by periodically conducting a breadth-first search of the enclave and ordering the 
enclave members along a Peano-Hilbert space-filling curve.  This curve preserves network distances as 
spatial distances on the grid and minimizes the number of hops a Sensor travels on its way to a neighboring 
Sentinel.  As hosts join and leave the network, the Sergeant automatically adjusts and broadcasts the 
geography to keep it valid. 

Sentinels report to their Sergeant about Sensors that have been especially useful for detecting problems on 
their hosts.  The Sergeant uses this list of the most successful Sensors to create anticipatory classifiers 
based on combinations of highly successful classifiers.  Sergeants may also share information from this list 
of Sensors with the Sergeants of allied enclaves. 
 

4.5 Sergeant-Supervisor Interactions 

The Supervisor interacts with the Sergeant through an information visualization and graphical user 
interface that gives the Supervisor situational awareness of state of the enclave.  Utilizing the Netlogo agent 
simulation toolkit, we have simulated variations of this interface and plan to conduct user studies on which 
is most effective.  Using slider bars, the user can adjust the parameters of the environment to influence the 
behavior of the agents involved.  As mentioned earlier, the Supervisor uses this interface to adjust the 
activation and crowding tolerance target levels.   

In the simulated interface (Figure 4), the Sergeant gives a color indication of the condition of the hosts.  
Each square in the visualization represents the status of a Sentinel that reports to the Sergeant.  The color of 
the squares could indicate activity levels, security conditions, or any encoding the Supervisor prefers.  In 
the simulation we use the red, green, and blue components of the color to represent file system, memory, 
and CPU activity levels.  Systems performing similar tasks typically have similar colors.  In the figure, 
workstations appear reddish, web servers are shades of blue, and file servers appear gray.  A color change 
would indicate a change in behavior and function and could indicate a problem.   
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Figure 4: Prototype of Sergeant UI 

Alternatively the coloring scheme could show the relative state of each host.  A host running in a nominal 
state would be black.  When a Sentinel reports a potential problem that needs human intervention, the 
Sergeant could color increase the red color in the square.  The color could fade as the Sentinel resolved it, 
but an increasing intensity might indicate that the need for guidance is becoming more urgent.  The 
Sergeant might then enact other means to interrupt the Supervisor and get attention to the troubled machine.  
It also might contact other neighboring enclaves to ask their Sergeants if similar problems are occurring 
there. 

Another major Sergeant-Supervisor interaction is the establishment of policy for the enclave.  We envision 
this to be a natural language and graphical interaction process where Sergeants and human Supervisors 
iteratively dialogue to arrive at policies that will enact the business and security objectives desired by the 
owners of the enclave systems. We anticipate a natural-language dialogue similar to that used by IBM’s 
SPARCLE (Server Privacy ARrchitecture and CapabiLity Enablement) policy workbench [10] which 
translates natural language requirements into a standard machine readable form.  Once the dialogue 
converges to an acceptable set of policies, the Sergeant will compile the Supervisor’s guidance into 
executable policies that direct the Sentinels in their machine configurations. 

Another important Supervisor-Sergeant interaction type involves the Supervisor delegating authority to the 
Sergeant up to specified authorization limits.  Sergeants broker agreements between organizational units on 
behalf of the Supervisors, so they must have a separate digital identification from the Supervisor they report 
to. Because they negotiate on behalf of humans they may incur liability for their owning organization. 
Thus, there must be a mechanism to describe the degree of trust the Supervisor has placed in them. The 
trust mechanism may be implemented via authorization certificates such as the Simple Public Key 
Infrastructure (SPKI) certificate (RFC 2692, http://www.ietf.org/rfc/rfc2692.txt) which supports 
authorization and delegation up to specified limits. For instance, if a Sergeant wishes to negotiate a change 
in the Service Level Agreement (SLA) its unit has from an Internet Service Provider (ISP) the cost of the 
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change would be evaluated. The ISP could ask the Sergeant whether it had sufficient trust to negotiate the 
change autonomously. The Sergeant would present authorization credentials, signed by its Supervisor 
showing the dollar amount (or whatever unit) it is entrusted with to make decisions of this sort. If the 
authorization level was sufficient, the ISP would go ahead with the change. If the Sergeant lacked sufficient 
authorization, the ISP could require the human Supervisor’s signature on the change. The Supervisor would 
probably start out trusting the Sergeant very little, but as the Sergeant gained experience and demonstrated 
reliability, the Supervisor might increase its delegated authorization limits.  

4.6 Sergeant-Sergeant Interactions 

Sergeants are the only software agents that communicate with entities external to the enclave such as 
outside resources and other Sergeants.  Outside resources such as virus definitions and attack profiles 
would assist the Sergeant in formulating guidance for the Sentinels.  An updated attack profile would be 
sent to all Sentinels in the system so they can begin watching for them based on Sensor reports.  Likewise, 
if a new attack is identified and resolved on the system, the Sergeant would pass this information along to 
allied Sergeants in neighboring enclaves (those it trusts based on the mechanisms in 4.5).  The information 
passed might be a simple description or it might contain parameters and classifiers actually used by the 
Sensors that helped the system identify the novel attack (or effectively deal with known attacks).  Sergeants 
in charge of other enclaves could then instantiate these Sensors in their own enclaves.  A benefit of this 
approach is that the Sensor definition can be shared without sharing the data from any machine within the 
enclave and avoiding data exfiltration or violation of proprietary information.   
 

4.7 Sensor Agent Management 

Decentralized, pheromone-based systems have been demonstrated to simply and effectively solve highly 
constrained problems where logic-based, optimizing approaches prove intractable. Figure 4 shows the 
simulation model of a pheromone based system we built to investigate tradeoffs among pheromone 
implementations. Central to any system that relies on swarming sensors is the ability to communicate 
information and influence action. The CID framework uses a pheromone-based system for inter-Sensor 
communications that has been demonstrated to be simple and efficient [15]. This decentralized 
communication approach allows Sensors to not only achieve the local goal of finding food, but also 
collectively achieve the global objective of discovering inflected computers in a dynamic environment. 

Pheromone-based techniques have been shown to be robust and therefore appropriate for dynamic 
applications, such as network routing [15][16]. This is an important feature for CID since the number of 
computers and their security status (e.g. infected or clean) will change over time. As previously discussed, 
a Sensor that discovers pheromone has a probability of following it that is related to the pheromone 
strength.  The rate of pheromone decay and how pheromone is potentially overwritten will impact the 
system adaptiveness, as discussed in [15][16]. 

5 Related Work 

The mixed-initiative approach is not common in cyber security applications.  CID blends the initiative of 
humans and a hierarchy of agents to avoid the extremes of either marginalizing the human in favor of 
black-box machine intelligence or including the human in the wrong loop, too close to the problem so that 
the system speed is bounded by human reaction time. 

In earlier research [20] interviews with operators of computer systems we interviewed agreed that a “five 
nines” (99.999%) reduction of information was necessary for them to retain situational awareness.  System 
administrators and security officers we interviewed indicated that their preference was to see changes in the 
visualization only when something that required human attention occurred.  Feedback from other clients 
revealed that operators find even a hundred alerts per day too taxing.  Clearly, operational staff need to 
reduce the amount of workload required by the available data, and teaming with autonomous agents is an 
excellent potential solution. 
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The hierarchical arrangement of humans and various types of agents has been proposed in a variety of 
forms. Ibrahim [17] proposes a network management system that utilizes a hierarchy of mobile agents to 
manage a distributed system while reducing bandwidth consumption.  Parunak [6] proposes a 
heterogeneous hierarchy to solve highly constrained military movement problems. However, the human 
mostly serves as an observer in these systems and has very limited interaction with the agents. 

The network management system proposed by Ray [19] proposes a similar arrangement of agents as well 
as keeping the human as a high level policy maker.  Our system is further decentralized with no concept of 
a “home base” for our mobile (and non-cognitive) Sensors.  

6 Conclusions and Future Research 

Thus far we have focused our research mainly on the Sentinel and Sensor behavior in our simulated 
environment thoroughly mapping out the behavior of the Sensors and their interactions with the Sentinels.  
We have created a demonstration system of the Sensor-Sentinel levels in JADE and have created vertical 
prototypes of interactions at the Supervisor, Sergeant, and Sentinel levels.  However, we have several areas 
of future research we intend to pursue such as: 

• Defining the dialogue between Supervisor and Sergeant that translates human guidance into 
unambiguous policy for the Sentinels 

• Experimenting with our practical Sensor-Sentinel demonstration on a computer cluster  

• Conducting usability studies on the prototype Sergeant user interface 

• Learning to generalize knowledge gained from solutions to problems that share similarities 

• Testing the framework against real-world attacks on the systems being monitored 

The CID framework keeps the human in the right loop via a hierarchy of software agents that implements 
high-level policy and handles low-level events.  The framework resolves issues in a decentralized manner 
at the lowest possible level to minimize alerts that interrupt the human user. This builds user trust in the 
system and improves system efficiency. The efficiency realized by CID’s mixed-initiative approach is 
highly scalable and difficult to disrupt.  We believe that by sharing system control with a hierarchy of 
agents and utilizing the truly adaptive capabilities of swarm intelligence we can greatly enhance the 
security of our computational infrastructures and the societies that depend on them. 
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Abstract. Working collaboratively in a team and formulating a plan of
action to achieve a particular goal is often a complex task for humans, es-
pecially when the decision-making process is performed in time-stressed
situations, in which response teams are assembled in an ad-hoc fashion
and operate in dynamic and uncertain environments. We are conducting
research towards the development of software agents that will track the
activities of human teams and monitor the plan execution in order to
offer advice that would enable the humans to avoid problems, resolve
them or recognise unexpected options, and in general maintain the syn-
chronization among the different plan components.

Key words: Agent Support, Human Team, Plan Synchronisation, Un-
certain Environments

1 Introduction

Working together in a team and formulating a plan of action to achieve a par-
ticular goal is often a complex task for humans. This is mainly because making
decisions, taking responsibilities and performing joint actions all involve a num-
ber of interdependent activities that need to be coordinated together. These
issues are emphasised when the decision-making process is performed in time-
stressed situations, in which response teams are assembled in an ad-hoc fashion
and might be asked to perform non-standard tasks in dynamic and uncertain
environments. In such a context, humans may be overwhelmed by the amount
of information they need to process to perform decision-making and coordina-
tion of tasks; thus, humans may fail because they do not recognise that initial
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the U.K. Ministry of Defence or the U.K. Government. The U.S. and U.K. Govern-
ments are authorized to reproduce and distribute reprints for Government purposes
not withstanding any copyright notation hereon.
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assumptions are no longer valid and the actual course of action needs to be
revised.

It is accepted that, at the moment, humans are much better than any intel-
ligent software in analogical, spatial and heuristic reasoning, yet they are on the
other hand limited in their cognitive ability to process large amounts of informa-
tion [5]. Thus, when under stress, humans would make better and faster decisions
if the right information was delivered to the relevant recipient at the right time,
rather than having to process and share large amounts of information on their
own. Software agents can support the information-driven decision-making pro-
cess by constructing and maintaining a model of the plan and the context the
team is operating within [8]. The model can be exploited to understand hu-
mans’ intent and activities, recognise problems in advance and potentially offer
advice that would enable the team to avoid problems, resolve them or recognize
unexpected options, in this way relieving the team’s cognitive burden.

The remainder of this paper is organised as follows: in Section 2 we outline our
ideas to design software agents which can provide the type of support mentioned
above. In Sections 3 and 4 we describe what kind of knowledge software agents
need to acquire in order to monitor the plan execution and how that knowledge
can be represented into the agents. In Sections 5 and 6 we present our approach
to the agent design, starting with efficient ways to recognise team activities, and
map them to the actual team’s intent, of course considering plan constraints and
the uncertainty of the environment. We finally conclude with some related work
and future directions in Sections 7 and 8.

2 Research focus

Recognising human teams’ intent and activities in a realistic simulation is the
first step towards the design of software agents that are aware of the team sit-
uation and can monitor the plan execution, providing the kind of up-to-date,
timely advice required to enhance team collaboration and human-agent interac-
tions. Figure 1 presents our approach to tackle this problem. We assume that
a number of human teams are collaborating together on a plan to achieve an
overall goal (left-hand side of the figure). The main goal is divided into multiple
subgoals, each tipically assigned to a specific team. An assigned subgoal Subgoali
is in turn achieved by executing in a number of hierarchical tasks Taski, each of
those can be recursively subdivided in simpler subtasks STaski, in a Hierarchical
Task Network (HTN) [9] representation. The bottom level of a task decomposi-
tion consists of a set of group behaviours Bi (i.e. manoeuvres in formation, see
Section 3.2) the team is assumed to execute as part of the expected course of
action (Expected COA in Figure 1).

The achievement of the (sub)goals can be affected by dependencies among
the tasks (see Section 4.1) that have to be satisfied during the execution. For
example, in Figure 1, Team1 and Team2 are collaborating in parallel, however
their subtasks (STaski) need to follow a sequence (arrows between boxes). In
a dynamic and uncertain environment, the synchronisation among the different
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plan components might be difficult to maintain, or changes in the course of
action may become necessary, hence planners usually employ checkpoints CPi
(see Figure 1) to monitor the execution and identify problematic situations (see
Section 3.3). Checkpoints can also be used to pinpoint conditions that could
positively impact the plan, as shortcuts and new opportunities. Because the
teams interacting within the environment (right-hand side on the figure) might
not follow the expected course of action, it would therefore be appropriate to
reconcile their behaviours with a component of the plan, if possible. For example,
because of terrain constraints, Team1 and Team2 might have to swap their roles
during the execution of the plan without jeopardising the plan outcome as long
as both Subgoal1 and Subgoal2 are achieved. This requires that both teams are
aware of the change to avoid losing synchronisation, but this might be prevented
because, say, there are visual obstacles or radio communication problems.

We aim to maintain and improve the collaboration between teams by at-
taching to each of them a software agent performing those monitoring processes
that would usually be carried out by humans, but may result problematic in the
circumstances mentioned above. By analysing on-line spatio-temporal traces of
the teammates’ positions in the environment, the software agent can recognise
group behaviours and match them with the expected course of action, checking
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at the same time whether checkpoints are being satisfied1. When the enactment
is not following the expected track, we envisage software agents to try and rec-
oncile the evidence with the plan, possibly exchanging status updates among
them, or eventually warning the team leader that his group is off-sync and a
decision needs to be taken. The same intervention mechanism could be used
to offer advice about new opportunities, e.g. estimating whether a goal can be
achieved faster because a set of preconditions has become the case.

3 Information requirements for software agents

Today, one of the challenges of assisting humans in their activities does not lie
in the capabilities or power of the computer or device to be used, but rather in
having the humans communicating their intents to a software agent and being
confident enough to trust the agent’s reply [15]. The risk is indeed that an in-
appropriate agent’s intervention could be dismissed as irrelevant or annoying,
defeating the efforts of supporting humans. Nonetheless, in order to understand
what is happening in the environment, software agents need to gather informa-
tion about the plan being pursued and its development. In the following dis-
cussion, we examine how much knowledge we can collect both during the plan
design and execution.

3.1 Plan design phase

When teams operate in an uncertain environment, it might be difficult, if not
impossible, to formulate a plan that foresees every possible contingency (e.g.
in a military domain the classic assumption “no plan survives contact with the
enemy intact” is often cited). This is worsened by the lack of time that can arise
even during the design phase and because of non-standard tasks that need to be
carried out. As a consequence, the plan structure may not cover in detail some
of the tasks and several contingencies may be missed, under the hypothesis that
an experienced team will be able to cope with these issues as the enactment
proceeds. This usually works when human teams are well trained and have been
working together before, but may fail for ad-hoc instances, which are formed
rapidly and without much time for co-training.

Nevertheless, planners do lay out an expected course of action (see Expected
COA in Figure 1), which can be represented as the agent initial knowledge and
exploited for the monitoring purposes. Other opportunities to gather information
arise, even in time-critical situations, when humans are given the chance of
incrementally define/modify their plans [1] during the enactment phase, and
if agent asked for more input only when such input would be relevant to the
decision-making process [15], so we will investigate techniques which will enable
us to incrementally modify a designed plan.

1 For simplicity, we will initially assume the agents know the whole plan with all its
dependencies
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3.2 Plan execution phase

In circumstances in which time is limited and the team is actively involved in
the dynamics of the plan execution, speech is probably the most effective and
immediate means of communication. Unfortunately, performing speech-to-text
analysis of communications in a hasty execution environment, with overlapping
voices and noise, is still a big challenge, so we shall not employ any text-to-speech
technology for our agents.

On the other hand, there are basic group behaviours that human teams
employ to react to the surrounding environment, both in planned and unex-
pected circumstances (e.g. formations in group sports or military manoeuvres,
see Figure 1, right-hand side). These behaviours have distinctive spatio-temporal
structures, in terms of the relative position of the team members to each other
and to external landmarks, and in terms of the temporal sequence within which
the spatial configuration is maintained. These patterns can be exploited to de-
sign algorithms that recognize such behaviours [13] (see Section 5). Basic team
behaviours also represent what the team is assumed to have learned through
previous training or agreements, and can be considered the building blocks for
a more complex plan, composed in a hierarchical fashion.

3.3 Plan execution monitoring

Once the plan has been designed and its enactment starts, monitoring and assess-
ing this enables humans to react to changes, unexpected failures or new oppor-
tunities. In general, checkpoints are put in place to focus the monitoring process
and detect whether critical decisions need to be made. They are established in
the plan design process (but we could foresee them being added during the exe-
cution phase as well), to help performing timely and relevant decisions. A timely
decision allows overcoming problems of the environment physics, giving enough
time to the team to position itself in relation to the environmental constraints
(e.g. terrain) and other teams to achieve the desired task. A relevant decision
allows gaining and maintaining the ability to achive the plan goals. Checkpoints
are usually employed to decide whether to employ time sensitive/critical assets
in the context of the current plan, deviate from the original plan (alternative
courses of action or branches) or initiate the transition to the next plan task.

A way to define a checkpoint consists in a set of conditions that, when they
hold, triggers the decision-making process. The preconditions can be specified
as conjunctions of observations, based on the information coming from the envi-
ronment or from the plan execution status. A checkpoint also defines a deadline
by which the information required to evaluate the conditions needs to be ob-
tained, in order to perform a timely decision. After that, the decision would no
longer be relevant. Note that a checkpoint may not define the precise details of
the course of action to be taken (they could be specified when that particular
situation occurs), nonetheless it identifies a point of contact between what the
team leader would like to know about the plan while it is being executed and
what a software agent can provide to try and satisfy these requirements.
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Example. In military planning, checkpoints go under the name of Decision Points.

The Commander sets a number of Decision Points during the planning process and

for each he specifies the Commander’s Critical Information Requirements (CCIR), the

requirements which “allow the commander to track potential decisions, recognize that

the time is right and that the decision is relevant to overall success”2. A Latest Time

Information Is Of Value (LTIOV), referred above as the deadline, is also attached to

a Decision Point.

4 A minimal model of context

As introduced in Section 1, software agents can support the decision-making
process by constructing and maintaining a model of the plan and the context
the team is operating within. We will now describe a minimal model of context
that would allow us to design such agents.

4.1 Plan representation

n our research we will initially represent a plan in a hierarchical way using
the concepts and control construct provided by the OWL-S3 ontology. There
is a straightforward link between Hierarchical Task Network -style plans [9] and
the OWL-S process model, such that most of OWL-S concepts can be directly
mapped to HTN constructs [16, 12] which an HTN planner can process. The
plan hierarchy will include both the recursive plan decomposition into atomic
tasks and the temporal relationships between the decomposed tasks (ordering,
synchronization, etc.) made possible by the following OWL-S control structures4:

– Sequence: defines a list of tasks that need to be executed in order.
– Any-Order: defines a list of operations that can be done in any order.
– Split: defines a set of tasks that should be executed concurrently.
– Split+Join: defines a set of concurrent tasks that will terminate only when

all the components have completed.

Each atomic task generated by the hierarchical plan decomposition process
(Bi in Figure 1), should be defined in terms of:

– What: the group behaviour expected from the team (the atomic task itself).
– Who: the team who is scheduled to perform the What. This parameter may

be optional, as sometimes the decision about who will do what is made
during the actual execution.

– Where: the location in which the What is to be performed.

2 See http://www.armchairgeneral.com/tactics-101-014-decision-making-and-

the-power-of-commanders-critical-information-requirements.htm
3 See http://www.w3.org/Submission/OWL-S
4 OWL-S also specifies the Iterate, Repeat-While and Repeat-Until control con-

structs but at the moment we will only consider non-iterative structures.
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– When: an expected time (interval or point in time) by which the What
should be completed5. This parameter is not required, but it is probably the
most important in time-stressed situations.

– Which: the resource used to performed the What (e.g. a particular vehicle
or asset the team will employ). This may be optional as well.

– Why: the reason why the What needs to be carried out. The justification
for a task definitely helps in providing better advice to the team during the
execution, especially when the course of action changes.

It is not necessary to specify all of the above parameters at the lowest level
of the hierarchy, for each atomic task. Instead, some of them may be specified
at the topmost or intermediate levels within the hierarchy, and then inherited
by the levels underneath (e.g. Who could be specified for a complex task – say,
a Sequence – so that all its subtasks would be performed by the same team, if
no more specific information are given for the subtasks).

OWL-S also defines the concept of Choice6, a set of tasks from which one
should be chosen and executed. OWL-S Choices can be seen as checkpoints in
our plan representation (see Section 3.3), where different choices may represent
different courses of actions. The preconditions of a choice can be listed as:

– What behaviour is being performed in order to consider the checkpoint.
– Who, Where and Which as defined above.
– When, that is an expected time (interval or point in time) by which the

What is expected to happen. This parameter can be optional and is not
necessarily related to the deadline, however it must not conflict with it7.

4.2 Information collection during execution

In order to infer the team’s intent, a software agent needs also to collect informa-
tion while the plan is being carried out. Because in some environments it might
be difficult to employ extensive instrumentation (e.g. cameras, sensors, radios)
to monitor the plan execution, we will initially rely only on spatio-temporal
observations of the team members’ positions collected at regular intervals over
time, with an option to integrate more data sources in the future. Retrieving the
position of a moving person or vehicle in a simulated environment is quite easy,
but it should be feasible in real-life exercises as well, by simply using a GPS
device (which nowadays can be found in many high-end mobile phones).

Similarly to the above discussion, the execution information can be seen as:

– Where: the position of a team, can be calculated as the centroid of the team
members’ positions.

5 This should of course be consistent with the plan structure as specified by the com-
bination of OWL-S control structures. For example, the second task in a Sequence
cannot have an expected time set before the first task’s one.

6 We will consider the OWL-S If-Then-Else construct as a special case of Choice.
7 For example, if the When is defined as an interval [a, b], then b < deadline must

hold, whereas if it is an expected time t then t < deadline must hold.
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– When: the instant in time in which the position is sampled.
– What and Who: because team behaviours show distinctive spatio-temporal

patterns, the When and Where will be exploited to recognise what task the
team is performing (see also Section 5).

– Which: the asset in use by the team. This could be tricky to identify, but
we can again assume that it can be fitted with an identification tag.

In conclusion, using a minimal context model consisting of What, Who,
Where, When and Which (5W) it should be possible to characterise the plan
tasks, checkpoints and observations from the environment. This model, however,
does not capture the whole context in which the plan is being enacted (hence
the name “minimal”). For example it does not account for any communication
among the team members or how the weather can affect the execution, but it
should be simple enough to keep the computational cost low.

5 Proposed approach

The problem of monitoring a plan execution and matching recognised team
behaviours to steps in the plan can be divided into three steps (see the boxes
inside the Agent entities in Figure 1):

1. Acquiring regular “5W snapshots” of the environment using the 5W model.
2. Classify the current snapshot (or the sequence so far) to retrieve the team

behaviour over time.
3. Using the results from step 2 as evidence, match it to the current plan

execution status and identifying satisfied checkpoints.

Each of these steps is detailed in the following discussion.

5.1 Acquiring environment snapshots

We have chosen Battlefield 28 as our environment, a first-person shooter game
with strategy elements in which players act in a virtual battle space. Players are
organized in two teams and can play different military roles, use different types
of weapons and particular classes of vehicles, depending on the selected role. We
instrumented the game to capture many types of events, such as participants
joining the game, interacting with vehicles and other players or entering in pre-
defined areas identified by sensors [6]. The instrumentation allows us to collect
Who is participating in the game, the participants’ positions (Where) over time
(When, the sampling interval can be changed), which assets (vehicles) they are
using (Which), so that only the What needs to be inferred from the collected
data.

8 See http://www.ea.com/official/battlefield/battlefield2/us
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5.2 Behaviour Classification

An interesting approach in recognising team behaviours (What) is presented
in [13]: that work exploits the team members’ positions to perform group be-
haviour recognition using traces collected from simulations. Specifically, an effi-
cient algorithm called Simultaneous Team Assignment and Behaviour Recogni-
tion (STABR) is introduced. This algorithm analyses the traces in three stages:

– First the static positions of all the subjects in the environment are used to
recognise possible formations, identifying in such a way also hypothetical
teams.

– Each hypothetical team formation is then retained only it shows sufficient
temporal support, that is, when such formation is following a known move-
ment pattern over time (this also enables to identify the behaviour).

– Finally, the surviving hypotheses are used to partition the subjects into the
actual teams over the time sequence, according to a cost function that gives
higher scores to solutions with fewer changes in composition and behaviour
of the teams.

STABR has proven to outperform agglomerative clustering, which is usually
employed to group subjects into teams, even with noisy observations. One of
the limitations in that work, however, is that the algorithm has been evaluated
only with fully available (i.e. offline) traces, although real traces, rather than
on-line observations that would be continuously gathered in our scenario. We
are investigating means to adapt and extend STABR in an on-line setting to
continuously classify the team’s actions.

5.3 Plan status monitoring

In dynamic, time-stressed environments, it is inevitable to come across uncer-
tainty, hence this aspect needs to be factored into the design of monitoring
software agents which will be operating in those circumstances. Two main types
of uncertainty are identified in [10]:

– Aleatory, that is uncertainty generated by a system behaving in random ways
(also called objective uncertainty).

– Epistemic, that is uncertainty generated by the lack of knowledge about the
system under analysis (also called subjective uncertainty).

The usual approach to handle aleatory uncertainty is the probabilistic (i.e.
Bayesian) model, whereas for epistemic uncertainty the The Dempster-Shafer
Theory (DST) [11] is often considered. The probabilistic model has been applied
to epistemic uncertainty as well, however it has the following disadvantages:

– the a-priori probability of every event (e.g. performing a specific behaviour)
is required. When such information is not available, a uniform probability is
usually assigned to all events. This means deliberately assigning a probability
to events whose characteristics/models are actually not known.
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– The sum of all probabilities must add up to 1 and, as a consequence, knowing
the probability P (A) of an event A occurring entails knowing the probability
P (¬A) of that event not occurring. This leaves out the concept of ignorance,
that is, the fact that one may not know P (¬A).

The DST, instead, seems more suitable to handle epistemic uncertainty, par-
ticularly in situations where:

– It is not straightforward to assign probabilities to single events due to am-
biguous, conflicting or lack of information (e.g. sensor readings).

– It is appropriate to consider subjective degrees of belief on sets of events,
rather than on objective probabilities about single events.

– Knowing the likelihood of a set of events to happen does not necessarily
entails knowing the likelihood of that not happening.

In our case, we can consider S = (Ev, P l, Tm) to be the system composed by
the uncertain environment Ev, the plan Pl and a human team Tm executing Pl
in Ev, where Ev accounts for other teams operating in the same area. Although
Ev also consists of random components (e.g. the weather), they are very difficult
to model in terms of probability. It is even harder to model how Tm would react
to changes in Ev in terms of conditional probabilities. Moreover, Pl is not a
random component of the system as it has been laid out beforehand, albeit in
an abstract form, and teammates will not behave randomly, rather they will act
deliberately both when collaborating with others and facing unexpected events.
Therefore, we are of the opinion that it is appropriate to employ the DST in our
domain. This translates as the fact that, when performing behaviour recognition,
we do not need the probabilities for each possible behaviour, rather we can assign
a degree of belief only to a subset of likely behaviours.

6 Behaviour matching using the DST

To perform the matching between behaviours detected in the environment and
the expected course of action, we will follow closely the method introduced in
[2], although we will use a different rule of combination. Given a finite set of hy-
potheses Θ whose power set is 2Θ, the DST defines a basic probability assignment
(bpa) as a function m : 2Θ 7→ [0, 1] where:

m(∅) = 0 and
∑
X⊆Θ

m(X) = 1 (1)

Hypothesis sets X for which m(X) > 0 holds are called focal elements of the
bpa; m(X) represents the amount of belief committed in exactly the hypothesis
subset X, and not to more specific subsets of X. Thus, the total belief committed
to X and its subsets is given by:

Bel(X) =
∑
Y⊆X

m(Y ) where X ⊆ Θ (2)
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In our approach, each hypothesis in Θ will represent one of the atomic be-
haviours generated by the hierarchical decomposition, whereas a set of hypothe-
ses will represent a branch of the plan (e.g. the expected course of action). For ex-
ample, according to Figure 1, Θ = {B1, B2, ..., Bi, Bj} and STask1 = {B1, B2}.
Given a plan branch X, Bel(X) will represent the amount of belief that the team
is actually performing one of the atomic tasks in X. For example, according to
Figure 1, Bel(Task1) = Bel({B1, B2, ..., Bi, Bj}) will evaluate whether the team
is performing one of the expected behaviours in the actual course of action.

The DST also states how multiple, independent sources of evidence (degrees
of belief on sets of events) should be combined to obtain an aggregate event
likelihood, based on Dempster’s rule of combination [11]. Given two bpas m1

and m2, their combination is calculated as:

m12(X) =
∑
Y ∩Z=X m1(Y ) ·m2(Z)

1− c
where c =

∑
Y ∩Z=∅

m1(Y ) ·m2(Z) (3)

In Formula 3, c quantifies the conflict between two evidential sets and it is
used to normalise the resulting bpa m12 so that both constraints in Formula
1 hold. This normalisation, however, has been disputed by several people ([10]
reviews their work) because it completely removes the conflict and can yield
counterintuitive results. Several alternative rules have been proposed, but there
seems still to be no general agreement on any particular rule; rather, there are
different lines of thought about how to combine new evidence according to the
application domain. Given a bpa mC describing the current assessment of the
plan execution status and an environment snapshot (evidence E), we have iden-
tified three cases that can arise when the agent tries and detect a behaviour9.
With reference to Team1 in Figure 1, Agent1 may:

1. Recognise a behaviour Bi which can be mapped to Team1’s subplan (e.g.
B1, B2). In this case the agent will produce a bpa mE , based on the evidence
E, where mE(Bi) = k, mE(Θ) = 1− k.

2. Recognise a behaviour Bp which cannot be mapped to Team1’s subplan (e.g.
B3, B4, assuming Team1 and Team2 have swapped their assignments). The
agent will produce a bpa mE where mE(Bp) = k, mE(Θ) = 1− k.

3. Not recognise any behaviour at all. In this case the agent will produce a bpa
mE where mE(∅) = k, m(Θ) = 1− k.

After the recognition, mC will be combined with mE to obtain a new assess-
ment mCE . There are a few considerations to make about the above situations:

– The parameter k, 0 ≤ k ≤ 1, accounts for the accuracy of the STABR algo-
rithm. STABR needs to perform several iterations to recognise a behaviour

9 The issue of how to initialise mC when no evidence has been collected yet needs
to be considered as well. Although the approach in [2] suggests using the vacuous
hypothesis mC(Θ) = 1 when no evidence is available, we are investigating other
initialisation methods. These will assign initial values to mC(Bi) according to how
atomic behaviours are structured and linked in the expected course of action.
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with a given accuracy (e.g. 99%, k = 0.99), but a lower number might be
required in order to increase the recognition speed in a real-time simulation.

– In all three cases, assignign a degree of belief of 1−k to the set Θ accounts for
our ignorance about what behavior is being (or not) performed, according
to the selected accuracy for STABR. Moreover, associating degrees of belief
either to a singleton set or the set Θ of all hypotheses, reduces the computa-
tional complexity of combination rules from exponential time to polynomial
time in the number of focal elements in the bpas to be combined (see the
Singleton DST introduced in [3]).

– In case 3, we want the resulting BelCE(X) function calculated over mCE

to show a value below 1 for every X ⊆ Θ, including the case X = Θ. This
would be indeed a strong signal that something is going wrong during the
execution. To achieve this, however, we need to relax the definition of bpa
(see Formula 1) by allowing m(∅) ≥ 0, such that Bel(Θ) will not account for
some of the total belief mass, as it has be assigned to the empty set.

Among the several combination rules for the DST reported in [10], none
seems to satisfy all the above requirements. For example, Yager’s rule requires
Formula 1 to hold and assigns the amount of conflict c to the set Θ (effectively
transforming conflict in ignorance), so we cannot deal with situations covered by
case 3. On the other hand Smets’ rule always assigns conflict to the empty set,
as a consequence if Team1 starts performing B1 but then switches to B2 for any
reason, the belief mass intially assigned to B1 will be transferred to the empty
set, resulting in BelCE(Θ) evaluating to less than 1 even if in fact Team1 is still
operating within the expected course of action. For these reason, we will employ
the Combination by Compromise (CBC) rule [17]. Given two bpas m1 and m2,
this rule, based on Equation 3 with c set to 0, assigns a part of m1(Y ) ·m2(Z) to
C = Y ∩Z, and distributes the remaining part to YZ = Y ∩¬Z and ZY = ¬Y ∩Z,
depending on the values of m1(Y ) and m2(Z), respectively. The combined bpa
m12 is calculated as:

m12(X) = r1(X) + r2(X) + r3(X) (4)

where

r1(X = C) =
X

C=Y ∩Z

»
n1(C) · n2(C) +

n1(YZ) · n2(C)2

n1(YZ) + n2(C)
+
n1(C)2 · n2(ZY )

n1(C) + n2(ZY )

–
r2(X = YZ) =

X
YZ=Y ∩¬Z

»
n1(YZ)2 · n2(C)

n1(YZ) + n2(C)
+
n1(YZ)2 · n2(ZY )

n1(YZ) + n2(ZY )

–

r3(X = ZY ) =
X

ZY =¬Y ∩Z

»
n1(C) · n2(ZY )2

n1(C) + n2(ZY )
+
n1(YZ) · n2(ZY )2

n1(YZ) + n2(ZY )

– (5)

and
n1(C) = α1 ·m1(Y ) and n1(YZ) = (1 − α1) ·m1(Y )

n2(C) = α2 ·m2(Z) and n2(ZY ) = (1 − α2) ·m2(Z)
(6)

In Formula 6, n1 and n2 perform an even distribution of the belief mass between
C and YZ , and C and ZY ; if C = ∅ then α1 = α2 = 0, if YZ = ∅ or ZY = ∅ then
α1 = 1 or α2 = 1 respectively, otherwise α1 = α2 = 1

2 .
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7 Related work

Much research has been done in how software agents can be designed to effec-
tively support humans teams (e.g. [1, 15, 4] to name a few), but most of this work
involves human participants interacting with software agents through interfaces
that represented a simplified operational environment (e.g. 2D maps, switches
and buttons on the screen), and where every single parameter governing the
simulation could be monitored and controlled by the experimenters (no uncer-
tainty). In general participants interacted with the interface in a point-and-click
fashion or using vocal commands, but there was no physical action simulation.

On the other hand, in a number of domains such as military operations or
emergency response, human teams are physically involved in the plan execution
while a number of decisions needs to be made, for example, because of unex-
pected situations coming along or because a contingency course of action needs to
be initiated. As a consequence, being already cognitively committed to perform
an activity, they are less willing to spend time in processing new information, es-
pecially if it contradicts their actual beliefs about the plan development (known
also as confirmation bias [7]). We are thus following an approach similar to that
reported in [14, 6], where a first-person computer game is employed (and possibly
adapted) in order for human teams to act in more realistic setting that reflects
better the scenarios in which both humans and software agents will eventually
operate together. This approach may present some shortcomings, because, as
there are no real-life consequences from their actions, participants might not
behave exactly how they would in a real-world exercise, sometimes becoming
bored or reckless [6], but it is in our opinion more realistic than point-and-click
interfaces.

8 Conclusions

This paper presents research in progress concerning monitoring and synchro-
nising human teams during the enactment of a plan of action in an uncertain
environment, by supporting them through software agents. The design of such
agents is not an easy task, because it requires them to be aware of what is hap-
pening in the environment in a way similar to what humans do, however we
believe that by combining behavior recognition techniques and evidentail rea-
soning, this can be achieved. We have proposed a way in which a plan can be
encoded into the agent design and the minimal amount of knowledge the agent
needs to gather both during the design and the execution phases in order to ef-
fectively monitor the enactment. Finally we have outlined a three-step approach
to our design. We are now working towards an implementation and we expect
to test our implementation using a first-person game as a realistic simulation
environment.
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Abstract. In teamwork when a user and an agent are working together
on a joint task it may be important to share information in order to
determine the appropriate course of action. However, communication be-
tween agents and users can constitute costly user interruptions. One of
the most important issue concerning the initiation of information shar-
ing in teamwork is the ability to accurately estimate the cost and benefit
arising from those interruptions. While cost estimation of interruptions
has been investigated in prior works, all of those works assumed either a
large amount of information existed about each user, or only a small num-
ber of states needed consideration. This paper presents a novel synthesis
between Collaborative Filtering methods together with classification al-
gorithms tools in order to create a fast learning algorithm. This algorithm
exploits the similarities between users in order to learn from known users
to new but similar users and therefore demands less information on each
user. Experimental results indicate the algorithm significantly improves
system performance even with a small amount of data on each user.

Key words: Cost Estimation, Collaborative Filtering, Classification Al-
gorithm

1 Introduction

An important aspect of teamwork is efficient inner-team communication [1].
When working together on a joint task it is important to share information
in order to coordinate consequent actions. In addition, different agents on a
team often possess information required by others. The need for efficient com-
munication arises in mixed human-computer teams as well as in homogeneous
computer-agent environments [10]. However, it is important to appropriately
time the communication, since poorly timed interruptions can lead to averse
effects on task performance and on a human agent’s emotional state [1].

Cost estimation of interruptions has been investigated in prior works (see
Section 2.1). However, these methods require many repetitive interactions or a
very strict domain with a small number of states. In the domain we studied,
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as well as in many other domains, we assume that these repetitive iterations
incur a very high cost. In addition, some applications, such as on–line bidding
agents have a limited number of iterations with each user making this approach
impractical.

We focus on developing novel algorithms that can quickly and accurately
model user preferences. Our research was specifically motivated by DARPA’s
Coordinators program3. The basic goal of this program is to create automated
decision support units that better focus a user’s attention in dynamic environ-
ments. We consider a teamwork framework where agents and human operators
work together on a joint task and have unique capabilities. Human operators are
assumed to have access to more complete domain knowledge or expert knowl-
edge external to their agents. However, people’s time is valuable, and thus the
team incurs a cost every time the agent interrupts the person to obtain the
information she may have. The profile of the specific user receiving the query
can quickly change as the user’s availability to provide information is subject to
dynamics based on the person’s ability to be interrupted, her current activity or
the current state of the environment. The agent must decide if it should initiate a
query to a human operator based on evaluating whether the cost of interrupting
the user is outweighed by the value gained from her knowledge.

The basis of our solution is the assumption that users can be clustered such
that the behavior of one user will be similar to the other users in her cluster.
Thus, once we have knowledge about some users we can generally estimate the
value and cost associated with an agent–human interaction of new, but similar
users as well. Specifically, we propose the use of a new user modeling approach
with elements of Collaborative Filtering (CF ) algorithms. Traditional CF al-
gorithms are typically applied to recommend a given product (book, movie,
game, etc.) to a user based on information gleaned about general users’ buy-
ing behavior. Collaborate Filtering analyzes the relationships between users and
interdependencies among products, in order to identify new user–item associa-
tions. In addition, to avoid the need for extensive data collection about items or
users, Collaborative Filtering requires no domain knowledge [3].

We propose a new approach of combining components of Collaborate Fil-
tering algorithms with basic classification algorithms such as the C4.5 Decision
Tree algorithm [15] or the k-nearest neighbor (k − NN) algorithm [5]. The
advantage of this synthesis over traditional learning methods is its significant
reduction in the learning time needed to model a given user. This allows us to
quickly decide about the efficiency of an interruption with only limited data
and can avoid pitfalls such as protracted learning periods and elicitation of pri-
vate user data. Our approach is also significantly distinguished from traditional
Collaborate Filtering algorithms and Machine learning algorithms. Three ma-
jor differences exist between our approach and Collaborate Filtering algorithms.
First, in Collaborative Filtering algorithms the similarity between users is de-
cided by shared habits, and the similarity between items is decided by shared
history. In our domain such shared information does not exist and other, machine

3 http://www.darpa.mil/ipto/programs/coor/coor.asp
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learning, tools are used. Second, several traditional Collaborate Filtering algo-
rithms work by identifying the precise value of a current parameter state (e.g.
the genre of a movie) and use this information to decide whether to recommend
an item [7]. In our approach, we allow a range of possible parameter values. The
result is an algorithm that can effectively make decisions without precise state
information. Third, our approach has no need for personal information (demo-
graphic information, economic and marital status, age, etc.) typically used in
Collaborate Filtering algorithms [7]. Many users are reluctant to divulge private
information, leading to many people refraining from these systems. In contrast,
our model focuses exclusively on the user’s interaction with the agent, and thus
does not require sharing any personal information. In addition, our approach
significantly distinguished from machine learning algorithms. In contract two
machine learning algorithms, our approach uses two different phases to decide
about the situations’ similarity level and each phase uses different type of data
regarding the situation.

2 Related Work

We propose a new method for cost estimation with is motivated by Collaborative
Filtering methods.

2.1 Cost Estimation of Interruptions

One of the most important issues concerning the initiation of teamwork inter-
ruptions is the ability to accurately estimate the cost and benefit arising from
the interruption. Accurate estimation will enable interruption only when it will
have a positive ipmact on the team’s performance.

Previous works have investigated how to estimate the cost of interruptions
[8, 18]. Fleming and Cohen [6] were the first to build a user-specific model which
generally takes the user’s specific factors into account. They used cost estima-
tion to create a decision making mechanism in order to decide when to initiate
communication. Horvitz and Apacible [8] studied the user’s benefit from receiv-
ing information from the computer agent, while our study focus on the opposite
situation — the agent wishes to receive information from the user. Tambe et al.
[18] focused on when to turn control to the user, instead of information transfer.
Sarne and Grosz [16] offered an efficient model to manage the agent’s information
and to decide when to interrupt the user. Kamar et al. [10] used pomdp and mdp
models to evaluate the cost of interruption while taking into account the possible
mismatch between the computer’s calculation of utility and the person’s percep-
tion of it. The key difference in our research is we study cost-estimations that can
work in dynamic domains in which the environment’s conditions rapidly change,
actions occur quickly, user’s abilities change over time and decisions must be
made within tightly constrained time frames. For example, Nonetheless, work
by Sarne and Grosz [16] needs a large amount of information on each user before
it can begin to operate at an efficient level. Work by Kamar et al. [10] considers a
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limited domain with a small number of states and is computationally–infeasible
for domains with many dynamic states.

2.2 Collaborative Filtering

Collaborative Filtering (CF ) is a method of making automatic predictions (fil-
tering) about the preferences of a user by collecting data on the preferences
of many users (collaborating). There are hundreds of examples of recommen-
dation systems via Collaborative Filtering. Surveys of recommendation systems
and collaborative systems are presented in [20, 4, 7]. User profiling and match-
ing mechanisms are illustrated, especially on Collaborative Filtering techniques.
In addition, a number of Collaborative Filtering algorithms are compared for
accuracy of available test data.

Collaborate Filtering models can be built based on users or items. User Based
collaborative filtering systems find other users that have displayed similar tastes
to the active user and recommend the items similar users have preferred [2, 12,
14]. Item Based models recommend items that are most similar to the set of
items the active user has rated [9, 17, 13].

Karypis [11] was the first to recommend an approach that combines the best
of the Item Based and the User Based (classic Collaborate Filtering) algorithms,
by first identifying a reasonably large neighborhood of similar users and then
using this subset to derive the Item Based recommendation model. Vozalis et al.
[19] have developed a hybrid method consisting of a number of steps. In the first
step, the algorithm creates a neighborhood of users most similar to the selected
active user; it first calculates the similarity level between the users and the active
user and then chooses the k-nearest neighbor who rated a large number of items.
In the second step, the rating of the k users is used to calculate item-similarity
between these users. In the final step, the algorithm recommends the active user
items similar to the items chosen (based on the first two steps).

In our research we leverage these approaches to quickly learn about new users
from known users. We present a novel variation of traditional learning algorithms
that applies the tools and principles defined in the hybrid User and Item Based
Collaborative Filtering method in order to incorporate them into our learning
algorithm. In the next section, we present specifics of the Coordinators Domain
we studied, as well as specifics of our algorithms.

3 A Synthesis between CF and Machine Learning

We generally model the Coordinator’s joint agent-human teamwork domain
problem as follows: Assume a user has to complete a task within a limited time.
The task consists of many sub-tasks. Each successful completion of a sub-task
entitles the team to a certain gain, referred to as “taskGain”, different types of
task have different gain value. In addition, successfully transferring desired user
information to the agent entitles the team to a certain different gain, referred to
as “comGain”, this value changes according to the information accuracy.
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1. Accept a new non labeled situation s = (i, u).
2. Use u to create a user profile p for s.
3. Use the profile p to build a neighborhood NGB of users that were found to be

similar to u.
4. Items = ∅
5. ∀s′ = (i′, u′) s.t. u′ ∈ NGB Items = Items

⋃{i′}
6. Build a classification model CM between i and Items using a classification algo-

rithm.
7. Label the new situation s according to the classification decision of CM .

Fig. 1. Algorithm for deciding whether the timing is good or bad.

Our proposed algorithm (Figure 1) is motivated by the Collaborative Fil-
tering hybrid approach. Just like in the Collaborative Filtering algorithms our
method has two phases: a “user” phase, and a “item” phase. The first phase
uses user specific data in order to identify similar users in the database and
construct an environment of similar users. The second phase of the algorithm
uses state specific data in order to decide about the state. However, the second
phase only takes its information from states that belong to users in the “similar
environment” built in the first phase (defined herein).

Each data point in our database (situation) is constructed from two distinct
data types: user latest history and interruption profile. User latest history is a
collection of vectors with information gathered within a short period of time (20
seconds in our experiments) before the agent considers if it should interrupt the
user. This historical information shows how the user behaves and enables the
algorithm to construct a profile of the user’s behavior. The second data type -
the interruption profile is a vector that describes the user’s state immediately
prior to the time of the proposed interruption. Each of these vectors (from the
user’s profile and interruption profile) contains numerical and/or other discrete
values for different attributes. The users’ history and interruption profiles vec-
tors’ attributes, include for example information regarding the user’s location,
percentage of the task accomplished, time from the beginning of the task, loca-
tion of the nearest disturbing elements, etc. All values in all vectors’ attributes
are normalized to the same scale.

While the algorithm’s structure is motivated by Collaborative Filtering meth-
ods, the tools actually used to decide the user’s neighborhood (similar users) and
if an interruption should take place are machine learning tools. Collaborative Fil-
tering methods cannot feasibly be implemented on the given data. In teamwork
domains, unlike in Collaborative Filtering, users cannot be compared according
to shared habits and items (states) cannot be compared according to shared his-
tory. Consequently, different methods must be found to model new users’s and
items’s similarities. Since our data is labeled, our solution is to use traditional
machine learning classification algorithms. The classification algorithms are used
to quickly compare the users (in the first phase) and items (in the second phase)
without resorting to a shared habits or shared history.
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In the first phase (“user” phase) the algorithm builds a “user’s” similarity
model between the new given situation and the given labeled situations in the
database (Lines 2 and 3 in the algorithm). This phase uses only the first data
type in the situation (user’s latest history). The users’ similarity model is built
according to the similarity between the “user latest history” data type in the
situations. Specifically, the user’s latest history is a set of x vectors that rep-
resents the user’s behavior in the short period sampled before the interruption
(20 seconds in our experiments). For each user, the algorithm calculates the
changes in the user’s attributes value throughout the latest history measuring
time. Then, for each attribute it is calculating the average change in the user’s
attributes values (Line 2 in the algorithm). The user’s profile is the vector of av-
erages changes. Namely, the algorithm uses the user’s latest history in order to
calculate the average change in the user behavior (values) in this time sequence.
Then, the similarity between two users is measured as the distance between the
two calculated profiles (Line 3 in the algorithm). The assumption behind this
approach is that users with similar profiles (same average change in values) un-
dergo the same process and therefore most probably act in similar ways. This
model represents the user’s similarity level between the new situation and the
given labeled situations. Once the similarity model is complete, the algorithm
takes the l situations of the most similar users in the database as the new situ-
ation’s neighborhood, and uses this neighborhood in the algorithm’s next stage.
Notice, that this phase is using tools taken from the k-nearest neighbor (k−NN)
algorithm [5] in order to locate the new situation’s neighborhood.

The next stage of the algorithm (Lines 4 to 7 in the algorithm) uses only the
second date type in the situation (interruption profile). Once the user’s profile
and neighborhood are constructed, the next stage of the algorithm is to build
an “item’s” (interruption profiles) similarity model between the situations that
belong in the neighborhood. Once the above algorithm identifies the user’s neigh-
borhood in the first phase it uses a machine learning classification algorithm on
the items that belongs to the neighborhood’s users and returns the calculated
classification. The net result is that once a new situation arrives, the need only
a very short time to gather enough data in order to decide how to treat it. This
allows for a faster and more accurate classification than the base machine learn-
ing algorithms alone could provide. While our approach is meant to work with
any machine learning algorithms, we specifically considered two classification
algorithms: the C4.5 Decision Tree algorithm [15] and the k-nearest neighbor
(k −NN) algorithm [5].

4 Experimental Results

In order to study our new algorithm and its ability we conducted a number of ex-
periments. This section contains the experiments we did and the rational behind
them, as well as the description of the environment used for our experiments.
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4.1 Experimental Environment

We are currently conducting experiments with a game setting called “Final Fron-
tier Trader”4. The goal of the game is to destroy all enemy ships and asteroids.
For every asteroid or ship destroyed the team earns a certain gain. We refer to
the constant score obtained from destroying an asteroid as astGain, and the
constant gain from destroying a ship as shipGain. The game has a time limit
(ten minutes) and the human operator (user) must destroy all enemy ships and
asteroids before the end of the game. A user who dies during the game (e.g. shot
by enemy ships) or the time limit passed loses a large number of points. On the
other hand, the faster the user accomplishes her main goal the larger the gain
she earns from successful task completion. Additionally, the user can increase the
team’s gain by answering questions from the agent (comGain). We assume that
while the agent asks a question, the user cannot simultaneously perform her
previous subtask. Thus, while the user is prompted for information the game
continues, the user’s ship continues moving, and enemy ships can potentially
shoot at and even destroy the user’s ship. Control is returned to the user only
after she correctly answers the question. Moreover, for each wrong answer the
user provides, the value of comGain rewarded to the team is reduced. While the
algorithm was designed for an agent–user collaborative system (mixed–initiative
system), the environment used to test it was not mix–initiative environment.
This is due to the fact that in this stage of the research we simply want to make
sure the algorithm is effective. Therefore, the agent’s questions are simple math-
ematical questions which are presented as multiple choice (SAT) questions. We
assume that these questions may hurt the human’s performance. Our goal is for
the agent to ask a given question only when the cost to the user for answering
the question will be lower than the gain from answering the question.

The agent collects information regarding the user’s state in regular intervals
(life status, location, percentage of the task accomplished, time from the begin-
ning of the task, location of nearest enemies, etc.). This information is necessary
to construct the user’s state model used by our algorithms.

In our research protocol each subject played three games:

1. A simple scenario with simple questions – users’ game learning session.
2. A complex scenario without questions – experiments without question.
3. The complex scenario with questions – the experiment session.

All subjects played scenario 1 first, as a training session about the game’s con-
trols. The order in which they played scenarios 2 and 3 varied. 50% of the
users played the experimental scenario without questions before playing it with
questions, and 50% played it with questions before playing it without questions.
This was done to negate any impact on results from the order these scenarios
were played in.

The information gathered from scenario 1 was omitted from the analysis of
the results, since these games were only used to teach the users about the en-
vironment. The information gathered from scenario 2 was compared with the
4 http://fftrader.sourceforge.net
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information from scenario 3 in order to isolate the effect the questions had on
the user performances and make sure that they interrupted the users. This in-
formation was used while labeling the questions in the database. Scenario 3 was
the experimental scenario used to evaluate our algorithm.

Each subject performed the entire experimental protocol as described above.
The subject’s state and status were sampled every 5 seconds (user’s latest his-
tory) and also before (interruption profile) and after each interruption in the
scenarios with questions. At the end of the research protocol each question (in-
terruption) was labeled as either “good” or “bad” according to the effects it had
on the score and according to the amount of interruption it caused the user (the
amount of life lost, if the user was set out off course, etc.). The labels were deter-
mined based on an analysis of the difference between the “before” and “after”
information as well as the final score the user achieved in the game.

We ran a 10–fold cross–validation test on the data collected from the third
scenario. In each of these 10 iterations a subset of the data (90%) was randomly
chosen, and used in order to build the model. The rest of the data was used to
test the model. The situations from the test data were inserted into the model
as new situations that must be analyzed. The model decisions were compared to
the situations’ labels. Four decision models were examined:

– A naive k −NN classification model.
– A naive C4.5 decision tree classification model.
– A “User Based” + k −NN model (UB + KNN).
– A “User Based” + C4.5 decision tree model (UB + C4.5).

4.2 Testing the Algorithms

We posit that our algorithm can learn from similar subjects to new subjects and
correctly decide whether it is currently a good or a bad time to interrupt the
subject. To test this hypothesis, we ran the above research protocol on a group
of 56 people who varied in age, occupation and level of computer knowledge.
Each person had between 4 to 25 interruptions in his game (average value of 20
interruptions per game). Therefore, we had approximately 1120 situations (user’s
latest history + interruption’s profile) in our database. For each situation we
had a short history from the user’s activity in the previous 20 seconds (about 4
- 5 vectors) which was used to identify users’ similarities, and an interruption’s
profiles used to identify items’ (states’) similarity. The scenarios used have a
large number of enemies and their aggressive level varied from low to high.
Therefore, the number of possible states the users could encounter was enormous.
We deliberately studied a large variety of different users and states so we can
examine the true influence of the “User Based” approach.

The results, as presented in Figure 2, support our claims. They show that
in a heterogeneous environments users using the “User Based” approach signifi-
cantly improves the system performances. We can see that there is a significant
change (p < 0.01) between the naive algorithms and the enhanced “User Based”
algorithms. In addition, it is seem that there is no significant difference (p > 0.05)
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Fig. 2. The algorithm accuracy percentage as a function of the different algorithms.

between the naive C4.5 decision tree algorithm and the naive k-nearest neighbor
(k−NN) classification algorithm. It is interesting that the both naive algorithms
(C4.5 and k −NN algorithms) were improved by a very similar factor with no
significant difference (p > 0.05) between “User Based” enhance k − NN and
the “User Based” enhance C4.5 algorithms. It shows that both algorithms can
significantly benefit from using the “User Based” approach in heterogeneous
environments.

4.3 The Effect of Adding Users to the System

All the algorithms discussed in this paper assume that there is an initial labeled
database that can be used in the classification algorithms. However, questions
arise as to how much initial training is needed before the system can begin to
be used. Therefore, we studied how the size of the initial database effects each
of the algorithms, and attempted to reveal the minimal amount of training data
needed for each algorithm. During this experiment it was important to make
sure that while enlarging the number of users, we are not changing the level of
heterogeneity among the users. This was done by using the procedure described
in section 4.4.

In order to simulate a larger database we enlarge the number of subjects
used in the experiments. On average, each subject added 20 new situations to
the database. Namely, when we have 30 subjects in the experiment we have 600
situations in the database.

Several interesting phenomenon appear in Figure 3. First, as stated in Section
4.2, using “User Based” aspects from Collaborative Filtering improves both naive
machine learning algorithms by the same factor. This significant improvement
is found even in a small database that contain 20 subjects (∼ 400 situations).
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Fig. 3. The algorithms accurate percentage as a function of the number of subjects.

Second, it seems that while the number of users was smaller than 30 (around
600 situations in the database) the algorithms were not stable. However, when
the number of users exceeds 30 (more than 600 situations) all algorithms be-
came stable, including the our algorithms that use less data in order to build
their model (l = |database| ∗ 0.1 ≈ 60 situations). Apparently, the similarity
between users is strong enough to achieve a significant improvement over the
naive algorithm even with a small amount of data.

4.4 The Effect of Changing the Heterogeneity Level of the Subjects

One of our hypothesis is that as the users’ level of heterogeneity increases the
larger the gain we have from using the “User Based” approach. This is because
the Collaborative Filtering “User Based” approach learns based on user differ-
ences.

To understand differences between users, we divided them into the following
four groups: the “gamer” group; the “skilled” group; the “fair” group; and the
“hopeless” group. We asked user’s to self-describe which group they believed they
would fall in. Subjects that their self definition did not match their performances
were removed from all our experiments, leaving us with 56 subjects.

The number of situations were kept constant during this experiment, and
the “subjects’ level of heterogeneous” was modified by controlling the ratio of
subjects that came from each group.

The results in Figure 4 show that the “User Based” approach performs better
in heterogeneous environments. We define that heterogeneous level means the
ratio between the groups in the general population. Namely, heterogeneity of
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Fig. 4. The algorithms accurate percentage as a function of the heterogeneity’s level.

0% means that all situations in the database are from the same group; hetero-
geneity of 100% means that each group has an equal number of situations in the
database. Notice, that while the “User Based” algorithms are negligibly effected
by the reduction in the user’s heterogeneity level, the naive algorithms perform
much better. Therefore, as the heterogeneity level decreases the “User Based”
approach shows less improvement compared to the naive algorithms.

This result is not surprising. As the heterogeneity level in the database in-
creases, the learning task becomes harder as more problem instances are increas-
ingly less similar. Therefore, it is obvious that naive classification algorithm will
produce less suitable results.

5 Conclusions and Future Work

This paper introduces a novel approach to combine Collaborative Filtering meth-
ods with classification algorithms tools in order to create a new fast user char-
acteristic algorithm for mix agent–user system. This approach significantly im-
proves system performances even in the absence of sufficient information for
learning or user modeling. We found that after a small initial database was cre-
ated with as little as sparse data from 30 subjects, our algorithms were able to
accurately model the subject’s interruption preferences with nearly 75% success
in less than 20 seconds!

We conclude that the algorithms we present can provide a good solution
for semi–tailored applications that have a large number of users but only a
short dialog with each user. These applications cannot realistically gather enough
information on a single user in order to grant her the personalized service she
requires. However, an application can use the offered approach in order to learn
from past users and quickly profile new users.
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There are many directions we would like to pursue in our future work. First
and foremost, we would like to preform “on-line” experiments. The experiments
preformed in this paper used an “off-line” experimental procedural. Namely, the
subjects were given questions in fixed time intervals, and the analysis on the
data using our new algorithm was done off-line. We would like to conduct ex-
periments where the decision whether to ask a question in a given time will
be decided on-line using our proposed algorithm. Another direction for future
research is to investigate other domains and problems, especially mix–initiative
problems. For example, we hope to study situations where providing informa-
tion to agents does not directly increase the team’s value, but rather provides
the team with additional abilities that would enable it to perform new tasks,
or improve their performance in existing tasks. Similarly, we currently studied
user-agent interruption manager only as modeled through answering mathemat-
ical questions. We would like to examine different types of interruptions, i.e.,
in a mix–initiative environment where the user and agent share the same goal
and the interruptions are questions regarding common actions. In addition, we
would like to investigate the influence causes by the measuring time duration of
the user’s latest history. We would like to find out if longer measuring time will
enable better representation of the user’s profile. Finally, interesting questions
may address what is the sufficient level of model accuracy needed to improve
performance. Is the 75% level of accuracy our model achieved in 20 seconds suffi-
cient, or should the aim be for a more accurate model, but with a longer training
period? We are confident that the novel synthesis of Collaborative Filtering and
traditional learning methods presented in this paper will stimulate interesting
innovations in the future.
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Abstract. Within negotiation environments, cooperative behavior may
emerge from different factors. In this paper, we focus on human-agent
interaction and in particular on the question of how the cooperativeness
of a software agent affects the cooperativeness of a human player. We
implemented three different kinds of agent behavior to determine how
they influence helpful human behavior. Our data shows that humans
behave more cooperatively towards agents that negotiate with them in
a cooperative way and that humans tend to punish egoistic and unfair
play by behaving non-cooperatively themselves.

Keywords: human-agent interaction, negotiation, cooperation,
Ultimatum Game

1 Introduction

Social relations between software agents and humans is becoming an essential
part of our life. Both in everyday life and science humans use, control and co-
operate with agents [1]. Many forms of human-machine interaction involve par-
ticipants that pursue different, sometimes even contradictory, interests. In these
scenarios, humans and agents are autonomous entities which interact and coop-
erate with each other while keeping in mind their own objectives and goals. In
this work, we use the word ‘agents’ to refer solely to software agents and ‘actors’
to refer to both agents and humans. The interactions between these actors take
place in many domains such as games [2], where humans play against agents with
contradictory goals, and online auctions [3], where humans and agents compete
over the same product. To achieve successful human-machine interaction, we
must understand the factors involved in this interaction.

The area of human-agent interaction has long been neglected, ignoring the
issue of how the interaction affects the behavior and strategies of the involved
actors. Most work concerned with human-agent interaction focuses mainly on
how an agent should be designed to model its opponent or on how to design
most efficient agent strategies. Still only a very limited number of studies shed
light on the social phenomena that occur between humans and agents and on
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the influence of this interaction on human behavior [4–6].
This work presents an experimental study of the social phenomena that play

a role in human-agent interactions with contradictory interests. In this project
we combine and extend existing work to understand the effect of agent behavior
on the cooperativeness of people towards their opponents. More specifically, we
explore to what extent social principles like reciprocity and fairness influence
human bidding behavior in these interactions. This paper is a more elaborate
description of the work we presented in [7]. The central question we address is:
how does the cooperativeness of an agent affect the cooperativeness of a human
player? The study of human bidding behavior in relation to agents with com-
peting goals may provide new insights into how bidding decisions are made and
how agents’ behaviors are perceived. This knowledge helps to establish successful
human-agent interaction.

Since our work concentrates on the interaction between humans and agents,
our research method combines methods and results from both behavioral and
computer sciences. On the one hand we study human behavior by means of
experimental research. We build upon earlier research showing that human rea-
soning and negotiation strategies are affected by social factors, such as altruism,
fairness and reciprocity [4, 8]. On the other hand, we use observations from game
theory of cooperation between agents and succesful reciprocal agent strategies.
A mixture of punishing defection and rewarding cooperation seems to encour-
age cooperation [9]. It has also been shown that a significant difference between
the reaction of people to agent and to human opponents exists [5, 10]. We com-
bined these observations to test two main hypotheses. First, humans will behave
cooperatively towards an altruistic opponent. Second, they will punish egoistic
behavior. These hypotheses are discussed in more detail in Section 3.3. Both
hypotheses assume similar behavior towards the human and agent opponents
and therefore that social tendencies predominate over any prejudices about the
nature of the opponent.

To analyze differences in behavior between various kinds of human-agent in-
teractions we use Colored Trails (CT) [11], which is a negotiation environment for
designing and evaluating decision-making behavior and dynamics between play-
ers. CT is a conceptually simple but strategically complex game that has been
developed for testing strategies for automated agents that operate in groups. In
our experiment, mixed groups of humans and agents play the game. We imple-
ment different agent strategies that vary in their degree of cooperativeness.

We create a CT setup that enables multiple humans to play the game si-
multaneously against alternate opponents. In some conditions of the experiment
subjects were not aware of the identity of their opponent, i.e. they did not know
whether they were playing against a human or an agent. This enables us to an-
alyze the relation between the cooperativeness of agents and that of humans.

Our results support our hypotheses and show three main findings. First, hu-
mans tend to be more cooperative towards a cooperative opponent and do not
fully exploit altruistic behavior. Second, humans play less cooperatively towards
egoistic opponents. Third, an egoistic opponent is often perceived as a human.
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The paper is organized as follows. First, we discuss related work and show
how our work differs from it. The conceptual approach to our experiment is
presented in Section 3. This section is mainly concerned with introducing the
Colored Trails game framework and demonstrating how we use it in this project.
In Section 4 the experimental setting will be addressed. We will discuss the re-
sults of the experiments in Section 5, followed by a brief conclusion and outline
for future work in Section 6.

2 Related Work

This paper may be placed at the intersection of studies on human negotia-
tion behavior and studies on agent negotiation behavior. It therefore builds on
three streams of research: human-human interaction, agent-agent interaction and
human-agent interaction. These fields are briefly discussed in the following three
subsections.

2.1 Human-Human Interaction

The Ultimatum Game [12] is a commonly used game setting to simulate and
analyze negotiation behavior that was originally developed by experimental
economists. In the classic ultimatum game, two people are given the task to
divide a sum of money. One player proposes how to divide the money between
them and the other player can accept or reject this proposal. If the second player
rejects, neither player receives anything. In the original game, the players inter-
act only once. As it turns out, people usually offer ‘fair’ (i.e., 50:50) splits, and
most offers of less than 20% are rejected. This latter phenomenon is referred to
as inequity aversion.

Many experiments have been conducted that confirm these properties of hu-
man behavior. Social factors, such as altruism, fairness and reciprocity are shown
to have an influence on negotiation behavior [8, 13]. When playing against other
humans, humans tend to be cooperative towards their opponents but punish
them severely in case of unfairness. As soon as human actors are involved, peo-
ple seem to develop expectations of how other people should behave. People not
only care about the outcome of actions; they are also concerned with how they
come about [14]. These results show that humans do not always pursue their
ultimate utility. Apparently, humans are not completely rational actors as as-
sumed in standard economic game theory [15]. In our study, we use these results
to formulate the hypothesis that human expectations of an opponent are also
applicable to agents.

2.2 Agent-Agent Interaction

Negotiation between intelligent agents has been widely studied over the past
years. Mostly, a Multi-Agent System (MAS) is assumed to consist solely of com-
puter agents. Interacting agents are faced with the challenge of modeling other
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agents and their behavior in order to adapt to their environment [16]. Much re-
search has been done on social reasoning models for agents. These models, as op-
posed to the models which are fully based on game theory, may enable the agent
to be more adaptive to the environment and to perform better in more realistic
negotiation scenarios [17]. Axelrod [9] has demonstrated that in some MAS’s,
it can be beneficial for agents to use a cooperative strategy. In these situations
cooperative agents do as well as or outperform competitive agents. Moreover,
reciprocal behavior allows cooperators to do better than self-interested rational
agents [18]. Models that take social principles such as fairness and helpfulness
into account were shown to explore new negotiation opportunities [19] and find
solutions that correspond to solutions found by humans [17].

2.3 Human-Agent Interaction

Our study is based on two seemingly contradictory findings from empirical re-
search. On the one hand, people seem to display the same social behavior to-
wards agents as they do to humans. The negotiation experiments presented in
[4] seem to imply that human responders still care about equality of outcomes
while negotiating with agents. On the other hand, experiments indicate that
a significant difference exists between the behavior of humans towards agent
and human opponents. Humans seem to perceive other humans differently from
agents. For example, experiments by Sanfey et al. [5] and Blount [10] show that
humans are more likely to accept a proposal from agents than from other hu-
mans. More seems to be tolerated in terms of behavior and actions from agent
actors than from human actors. Humans and agents seem to have a different set
of ‘acceptable behavior’. This leaves us with the question how humans actively
treat agents in a negotiation setting: Are social factors like fairness and altruism
less applicable to agents since humans do not ascribe the same expectations to
them?

None of these prior works have investigated the effects of different computa-
tional strategies on human behavior in a repeated interaction scenario. Setting
up repeated interaction is the key to observing a variety of interesting behavior,
since the players are able to react to strategies of their opponent. The work of
Gal et al. on reciprocity [20] does evaluate computer models of human behavior
in repeated interaction but does not position computer players against people.

3 Experimental Approach

Cooperative behavior is a broadly discussed and controversial subject, since there
are many theories about the causes and ultimate motives of (non-)cooperative
behavior [21]. We do not aim to give any final explanation of underlying motives
for cooperation. Instead, we are concerned with the effect of agent behavior
on human behavior. In our work, we use the word cooperative for interacting
together willingly for a common purpose or benefit. This behavior is said to be
altruistic if it involves a fitness cost to the proposer and confers a fitness benefit
on the responder. It is said to be egoistic if the proposer acts only to benefit
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himself by increasing his fitness. We use the notion of helpful behavior to refer
to cooperation that does not necessarily imply a fitness cost for the proposer,
but in any case yields a fitness benefit for the responder. Reciprocal behavior is
conduct that corresponds to the behavior of others. In this study, we created a
setting that encourages and instigates these different kinds of cooperation.

3.1 Colored Trails

Colored Trails (CT) is a game developed by Grosz et al. [11] which provides
a testbed for investigating interactions between players whose task is to reach
a goal by exchanging resources. Computational strategies and human decision
making can be studied by comparing interactions in both homogeneous and
heterogeneous groups of people and computer systems. CT is played on an N×M
board of colored squares in which one or more squares can be designated as a
goal. Each player has to reach a, possibly different, goal by exchanging chips.
In order to move a player piece to an adjacent position, the player has to hand
in a chip that has the same color as the square he wants to move to. It is not
possible for to do diagonal moves.

3.2 Conceptual Design

Our experiment consists of two main components to examine human coopera-
tiveness: a game and a questionnaire. In this subsection we will elaborate on
the conceptual design of the game. We use the CT framework to implement an
environment that is similar to an iterated Ultimatum Game (UG). In the stable
outcome of an UG, each player has chosen a strategy and no player will benefit
by changing his strategy under the assumption that the other players keep their
strategy unchanged. This is called the Nash equilibrium. A Nash equilibrium
would occur when the proposer offers the smallest possible amount of money (in
our case: chips) to the responder and the responder accepts. It would be rational
for the responder to always accept if the proposal leaves him with more than
0. However, experimental evidence shows that the proposer offers a relatively
large share to his opponent and that the responder often rejects smaller positive
amounts [12]. This can be interpreted as human willingness to play fair and to
punish ‘unfair’ splits. The results of Gal et al. in [4] seem to be consistent with
this scenario.

We use the UG to test whether humans show similar helpful or punishing
behavior when they interact with an agent. A game consists of several rounds
in which two players have alternating roles: proposer or responder. During each
round, both players try to obtain all the chips they need in order to reach the
goal. The proposer creates a proposal to exchange chips with his opponent. The
opponent can either accept or reject this proposal. The proposer can also decide
not to exchange any chips. In case of rejection, both players receive nothing. This
is defined as one-shot negotiation. The variety of proposals that can be created
show that our scenario is more complex than an UG, where the decision process
in narrowed down to a pre-defined list of choices.
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The CT environment enables us to create the following protocol:

1. Orientation phase. The player is able to get accustomed to the board and
its new chips. During this phase, communication is not possible.

2. Communication phase. Both players try to obtain all the chips they need
to reach the goal. The proposer can offer one proposal and the responder
can react to it.

3. Redistribution phase. Agreements are enforced by the game controller
(which is implemented in CT): after the proposal is accepted or rejected,
the game controller will redistribute the chips (if necessary) according to the
proposal.

4. Movement phase. If the player has the necessary chips to reach the goal,
the program will execute the player’s movement by moving its piece to the
goal via the shortest possible path. If on the other hand the player does not
have the required chips, his piece will not move at all. Again, we use an
all-or-none approach to stimulate cooperation.

The scoring function is defined as follows: s = goal + board size - taken steps,
where goal represents the rewarded points for reaching the goal (100), board size
represents the size of the board (20) and taken steps is the number of steps of
the taken path (variable per round). The scoring function in this experiment
does not stipulate a reward dependence, but only a task dependence. Players
did not receive penalties for the amount of chips they had left at the end of a
round and their score was not dependent on the opponent’s score in any way.
Since the player scores in our scenario are independent, any act that is beneficial
for the opponent does not increase the player’s own fitness and can thus be
considered as helpful behavior. Cooperation is stimulated by playing an iterated
game. Participants have the prospect of encountering their opponent again in
the game and are therefore more inclined to cooperate [22].

We use four CT variables to give an indication of the degree of altruistic or
egoistic behavior of the players and their willingness to play fair:

– The offered chips. A higher amount and usefulness for the responder are
considered more helpful.

– The requested chips. A lesser amount and usefulness for the responder are
considered more helpful.

– The response. Accepting is considered more helpful. Rejecting might indicate
an ’unfair’ or non-beneficial proposal.

– The pursued path. Chips requested or accepted in order to take a suboptimal
path to the goal are considered more helpful.

3.3 Agent Models

We developed three agents with different strategies: the altruistic agent (ALT),
the egoistic agent (EGO), and the reciprocal agent (REC). The behavior by
these agents is extreme and prototypical. Note that it is not our intention to
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Egoistic Agent (EGO)
proposer

offers
randomly:
a) no chips
c) b) chips that are not beneficial for opponent

requests
a) chips that it needs to reach the goal
b) chips that enable shorter path

responder
accepts deals with better score than it can obtain with current chipset
rejects all other deals

Altruistic Agent (ALT)

proposer
offers chips unrequired to reach goal that are useful for opponent

requests chips it needs for a path to goal with least costs for responder

responder
accepts

a) deals in favor of itself
b) deals in favor of opponent if it can reach its own goal

rejects deals that make it unable to reach the goal

Reciprocal Agent (REC)
proposer

a) behaves as egoistic proposer if favor balance =<0
b) behaves as altruistic proposer if favor balance >0

responder
a) behaves as egoistic responder if favor balance =<0
b) behaves as altruistic responder if favor balance >0

Table 1. The different agents and their strategies

develop agents that resemble accurate human behavior or decision making. Our
objective is to observe differences in human behavior that are caused by agent
behavior. For that purpose, we implemented agents with different and extreme
utility functions. ALT is satisfied with a suboptimal path to reach its goal and
will accept almost all requests, thereby creating a good reputation for itself.
EGO has a very selfish strategy: it will not grant the opponent any favors and
always aims for the shortest path. REC has a mildly adaptive strategy that
is a combination of the strategies of EGO and ALT. It uses a favor balance
that keeps track of how cooperative its opponent has been in the game so far.
The favor balance is calculated in the following way: fb = 1 + pos encounters
- neg encounters. The default action of REC is to act altruistically, which is
ensured by adding 1 to the favor balance. In case a proposal or response is
judged as non-cooperative, the number of neg encounters is increased, in case it is
considered positive, it will increase pos encounters. A response of the opponent is
considered negative if it is a rejection and is judged positive if it is an acceptance.
A proposal of the opponent is considered negative if it would leave the agent
with a less advantageous chipset than it had beforehand, and is judged positive
otherwise. Table 1 gives an overview of the three agent strategies.

We implemented these strategies to explore two hypotheses. Both hypotheses
are motivated by the idea that although humans perceive agents differently from
other humans, the human tendency to play fair and to encourage others to do
the same will dominate.

Hypothesis 1 Cooperative behavior of the agent encourages cooperative be-
havior of the human opponent.
More specifically, both the altruistic and reciprocal agent, even though the
altruistic agent is vulnerable to exploitation, will receive helpful behavior
from their opponent.

Hypothesis 2 Egoistic (and therefore non-cooperative behavior) instigates ‘punishment-
behavior’ of humans. We expect human players to offer the egoistic agent as
little as possible and to prevent the agent from reaching its goal.
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Fig. 1. The configuration of the CT game showing the board, the phases of a round
and the players’ chipsets

4 Experimental Design

4.1 CT Configuration

CT makes use of a wide variety of parameters that allow for increasing complexity
of the game along different dimensions. The games were played with full board
visibility and full chip visibility : both players had complete knowledge of the
colors of the squares, both their positions on the board and the chip distribution.
The full board and chip visibility allowed players to make deliberate decisions
about helping their opponent or not. The PathFinder is an additional tool for
players that shows the chips needed to take the shortest path to the goal. In this
experiment, players were only allowed to see their own chips in the PathFinder
and were not shown any paths longer than the shortest one.

Figure 1 shows our basic CT configuration. The game is played on a 4×5
board with one square designated as a goal. The scoring function, board config-
uration and positions of the players and the goal on the board remain the same
throughout the game. The player to start and the role he1 performs (proposer
or responder) are determined randomly. In each round, the game manager ran-
domly allocates one of ten different sets of chips to the players. The chipsets
1 Both male and female subjects as well as gender-neutral agents were involved in our

experiment. For purposes of convenience and clarity we will refer here to all subjects
as male. This is however completely arbitrary.
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are composed to stimulate ‘interesting’ negotiation behavior. There are always
enough chips in the game for both players to reach the goal, but the players
never both start with a chipset that allows reaching the goal via the shortest
path. The strategies of the agents are reflected in the chips they are willing to
transfer. For example, it is considered altruistic to propose a chip distribution
that allows the responder to reach the goal but leaves the proposer with a longer
path to the goal. ‘Helpful behavior’ entails a broader range of conduct in which a
proposer can perform actions that increase the fitness of the responder without
necessarily decreasing the proposer’s own fitness. In this scenario, a proposer
displays helpful behavior if he transfers chips to a responder to help him reach
the goal while the proposer can still reach the goal via the shortest path.

4.2 Experimental Setup

A total of 30 subjects participated in the experiment. All participants were
graduate and undergraduate students between 20-30 years of age. 80% of them
studied Artificial Intelligence, 20% were enrolled in other studies. Almost 50%
of the participants were female. Each subject participated in 4 games, adding
up to a total of 120 games played. Participants were instructed to perform a
non-competitive task: they were to try to maximize their own scores, not to
minimize other players’ scores. This is also reflected in the scoring function,
since the majority of the points can be received by reaching the goal, not by
choosing the shortest path. It follows that there is no strictly competitive or
zero-sum iteration. A small financial bonus payment would be awarded to the
player who obtained the highest score. Players were aware of this, but since
the bonus would be awarded to all player with the highest score, we expect the
bonus did not stimulate players to minimize their opponent’s score, but only to
maximize their own score.

Given that our main goal was to examine the differences in human behavior
when confronted with (non-)cooperative behavior of an agent, we had to com-
pare this behavior in some way to the behavior of humans towards a human
opponent. For this reason, participants played three games against agent oppo-
nents and one game against another human participant. The group that played
against human opponents was used as a control group to demonstrate the degree
of cooperativeness of the players. We expected that telling the participants they
would be playing against computer agents could alter their behavior. In order to
investigate the effect of knowledge and beliefs of their opponent on the accep-
tance level of ‘unfair’ or non-cooperative behavior, we deliberately manipulated
their knowledge and beliefs.

Hence the general setup included four independent variables:

1. Nature of the player: human or agent.
2. Strategy of the agent: altruist, egoist or reciprocal.
3. Knowledge of the nature of opponent: True Belief (TB), False Belief (FB),

No Belief (NB).
4. Order of played opponents: egoist, altruist, reciprocal, human.

82



We created three groups of ten participants each and combined them with
different belief conditions. The belief condition provided the participants only
with information about the nature of the opponent; the strategy of the agents
was never disclosed. The game controller randomly determined the order of the
opponents for each of the three groups. Each game consisted of ten rounds. In the
TB-condition we told the participants the truth about whether they were playing
against an agent or against another human. In the FB-condition we misled them
by announcing their opponent would be a human when in fact it was an agent,
and the other way around. Unlike in the other conditions, we did not give the
players any information at all about their opponent in the NB-condition.

4.3 Evaluation

At the end of each game, participants were asked to fill out a questionnaire. This
questionnaire provided us with insights of how different aspects of cooperation
come about. They answered questions about the nature and strategy of their
opponent and about their own strategy and cooperativeness. We used this infor-
mation to find out how the participants perceived their opponents and how this
influenced their cooperative behavior.

The logs of each CT game contained all the vital information of the game,
such as score, the proposals and responses made, whether both players reached
their goal and if so, how many steps it took. These logs provided us with infor-
mation of how often players made fair trades or helped their opponents.

5 Results

We hypothesized humans to behave more cooperatively towards opponents that
behave cooperatively or altruistically themselves (H1). We also expected that
egoistic behavior would be punished (H2). Our results support both hypotheses.
However, more extensive research with a larger number of participants has to be
done to significantly demonstrate these results.

The questionnaire shows that our agents’ strategies correctly represent the
different types of behavior. 100% of the participants found ALT moderately
to very cooperative: 83% found it very cooperative and 17% found it partially
cooperative. Interestingly, REC was also considered very cooperative: 97% of
the subjects perceived it as cooperative. This can be explained by the fact that
the first action REC takes is an altruistic one; that is, it only adopts an egoistic
strategy when the opponent treats it in an egoistic way. The majority of the
players found EGO to be not cooperative at all but surprisingly a considerable
number of subjects believed the agent to be partially (30%), or occasionally
even fully (7%), cooperative. In comparison, 53% of the subjects considered their
human opponents moderately to very cooperative. As it turned out, participants
judged the egoistic agent as being cooperative because it sometimes offered chips
when it did not need anything in return. It did not seem to matter that these
chips were of no use to the responder.
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Fig. 2. Results of how cooperative humans perceived themselves and their opponents
to be. Scale 0-1: 0 = non cooperative, 0.5 = partially cooperative, 1 = very cooperative

Fig. 3. Average score per round

The data from our survey shows that human participants regard themselves
more cooperative towards opponents who they perceive to be cooperative. These
results can be found in Fig. 2. The collaboration of human players increases as
their opponent shows more cooperative or altruistic behavior. This is most clear
when we compare the degree of cooperativeness towards altruistic and egoistic
agents, respectively 0.49 and 0.39 on our scale from 0 to 1. Furthermore, players
consistently identified themselves as more cooperative than their human and
egoistic opponents.

Figure 3 shows the average score of subjects per round, playing against differ-
ent opponents. The categories on the horizontal axis represent the experimental
condition, i.e., the category ’ALT’ refers to the experimental condition of the
participants playing against an altruistic opponent. The categories show the av-
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Table 2. Average score of the hu-
man players and their opponents
in the different belief conditions

Player Score
Opponent Score

HUM EGO ALT REC

TB 90.9 76.1 74.7 85.4 84.5
FB 95.3 84.4 79.8 88.7 84.3
NB 97.7 92.0 85.4 83.6 89.8

Table 3. The percentage of human
players that correctly identified the
nature of their opponent.

Nature % players that identified
opponent opponent’s nature

HUMAN 63 %
EGO 50 %
ALT 83 %
REC 83 %

erage of all belief conditions (True Belief, False Belief and No Belief). The two
main results are the following:

1. The score of the agent increases if it has a more cooperative strategy.
2. Human cooperation with the egoistic agent does pay off, because the average

score of both the human player and the agent exceed the minimum score
average of 70.

Chipsets were thus distributed that in some rounds, one of the players was able
to reach the goal with the initial distribution. Without any cooperation, players
were able to obtain an average of 70 points per round. In our experiment, the
altruistic and reciprocal agent have average scores of 85,9 and 86,2 respectively.
The egoistic agent stays behind with an average score of 80. This also demon-
strates that the perceived increase in human cooperativeness is actually reflected
in the game.

Interestingly, humans do not fully exploit altruistic players. The average score
per round of both ALT and REC are higher than the ones of EGO and the
human opponent in the human-human condition. Altruistic agents reach their
goal slightly more often (75% of the time) than both human (73% of the time)
and egoistic players (69% of the time). The questionnaires reveal that players
were prepared to give the altruist chips that would help it reach its goal. The
logs confirm this: players transferred on average 4.0 chips per game to EGO and
5.6 chips to ALT.

In the different game conditions players received no, false or true information
about the nature of their opponents. Table 2 shows the average score of the
players in these conditions. The ‘Player Score’ denotes the average score of the
human players on all rounds. The ‘Opponent Score’ column shows the average
scores of the different types of opponents. Note that the HUM and EGO scores
increase as the amount of (true) information about the nature of their opponent
decreases. Since human opponents were perceived as rather uncooperative (cf.
Fig. 2), this might indicate that egoistic strategies perform better as they have
to deal with more uncertainty.

At the end of the game, players were asked to identify their opponent as
human or agent. The results can be found in Table 3. Remarkably, EGO was
correctly identified only at chance level, i.e., in 50% of the cases the egoistic
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agent was mistaken for human. A possible explanation might be that people
expect other people to behave selfishly and egoistically in negotiations and as
a consequence this behavior is perceived as more human-like [23]. The results
of the questionnaire clearly show that the behavior of the altruistic agent is
seen as ‘stupid’, ‘dumb’ and ‘too cooperative to be human’. This corresponds to
findings of Kraus and Grosz in [11], who suggest that system designers should
build cooperative agents because people expect agents to be cooperative.

6 Discussion

Our experiment provides preliminary insights in negotiation behavior between
humans and agents with contradictory interests. Our results suggest that coop-
erative agents stimulate cooperative human behavior and that humans have cer-
tain expectations of the behavior of human and agent opponents. These insights
can be applied in more complex and realistic domains, such as e-commerce and
auctions. However, the applicability of these finding is limited and is restricted
to negotiation settings within a controlled environment. Less regulated interac-
tions, e.g., in social networks, may rely on alternative expectations that require
more dynamic, adaptive and complex behavior. We intend to take a step in this
direction in future work and use small social networks (teams) to examine coop-
erative behavior between team players with partly contradictory goals. We also
plan to extend our agent strategies to more complex and adaptive ones so as to
make them more realistic.

Taking all this into account, our results provide insights into social aspects
of human-agent negotiation in specific domains, which can be used to further
explore social relations between humans and agents.

7 Conclusion

In this paper we have explored the question of how the behavior of a software
agent affects the cooperativeness of its human opponent in a negotiation set-
ting. Initial results show that humans behave more cooperatively towards agents
that negotiate with them in a cooperative way. We also find that humans tend
to punish egoistic and unfair play by behaving non-cooperatively themselves.
Furthermore, egoistic agents are more likely to be identified as humans than
altruistic agents.

Our results are not surprising in the wider context of recent work on human
behavior analysis and game theory [10, 12]. They confirm the expected results
that it is beneficial to act cooperatively in order to induce cooperativeness. How-
ever, they are important since previous work has yielded contradictory results
which makes it difficult to make assumptions about social conducts between hu-
mans and agents. Although our experiment is small in scale, our results provide
a foundation for further research in this area.

In order to achieve statistical significance of the results, in the future, we will
extend our experiment to a larger number of participants. We plan to extend
the agents’ behaviors to more complex and adaptive ones.
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