
7777

Monitoring and Explanation of Contract Execution: A Case
Study in the Aerospace Domain

Felipe Meneguzzi
Sanjay Modgil

Nir Oren
King’s College London

Dept of Computer Science
London, United Kingdom

felipe.meneguzzi@kcl.ac.uk

Simon Miles
Michael Luck

Nora Faci
King’s College London

Dept of Computer Science
London, United Kingdom

simon.miles@kcl.ac.uk

Camden Holt
Malcolm Smith

Lost Wax
72 Lower Mortlake Road
London, United Kingdom

camden.holt@lostwax.com

ABSTRACT

In the domain of aerospace aftermarkets, which often has long sup-
ply chains that feed into the maintenance of aircraft, contracts are
used to establish agreements between aircraft operators and main-
tenance suppliers. However, violations at the bottom of the supply
chain (part suppliers) can easily cascade to the top (aircraft oper-
ators), making it difficult to determine the source of the violation,
and seek to address it. In this context, we have developed a global
monitoring architecture that ensures the detection of norm viola-
tions and generates explanations for the origin of violations. In
this paper, we describe the implementation and deployment of a
global monitor in the aerospace domain of [8] and show how it
generates explanations for violations within the maintenance sup-
ply chain. We show how these explanations can be used not only to
detect violations at runtime, but also to uncover potential problems
in contracts before their deployment, thus improving them.

Categories and Subject Descriptors

D.2.10 [Software]: Software Engineering; I.2.11 [Artificial Intel-

ligence]: Distributed Artificial Intelligence—multi-agent systems

General Terms

Design, Experimentation

Keywords

Electronic contracting, norms, contracts, monitoring

1. INTRODUCTION
The aerospace aftermarket is a complex and interesting domain,

increasingly populated by customers buying a service rather than a
product. As described by Jakob et al.[8], aircraft engine manufac-
turers are responsible for providing a specified number of service-
able engines so that aircraft can be kept flying. Engine manufactur-
ers are paid in relation to engine availability, and may face penalties
if aircraft are on the ground waiting for serviceable engines. In this
model, servicing and maintenance become key drivers of long term
profitability for engine manufacturers, with aftercare contracts be-
ing worth millions of Euros and lasting for several years.
Cite as: Monitoring and Explanation of Contract Execution: A Case Study
in the Aerospace Domain, F. Meneguzzi, S Modgil, N. Oren, S. Miles, M.
Luck et al., Proc. of 8th Int. Conf. on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2009), Decker, Sichman, Sierra and Castel-
franchi (eds.), May, 10–15, 2009, Budapest, Hungary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

At the same time, in research terms, we have been witnessing a
growing interest in the use of norms to regulate and coordinate the
behaviours of autonomous agents interacting in open environments.
Such regulation is required to mitigate against self-interested be-
haviour, and thus ensure that the agents act to achieve the overall
objectives of the multi-agent systems in which they are deployed.
In order to motivate compliance with norms, enforcement measures
[5, 11, 14] are applied, such as sanctions threatening some loss of
utility for the agents responsible for violation of norms. Appro-
priate application of such measures requires that agents’ actions
are monitored; that is to say, agent actions must be observed and
recognised as complying with or violating norms.

It seems appropriate therefore to consider the application of such
normative systems to the kind of scenarios that arise in the aerospace
aftermarket. In particular, we have been working on a system in the
context of Aerogility, an agent-based decision support tool devel-
oped by Lost Wax to simulate aerospace aftercare. Here, we are
applying the contracting technology developed in the CONTRACT
project to a simulated environment analogous to that provided by
the Aerogility simulation system. Rather than automating opera-
tion in the application domain, we have been investigating collabo-
ration patterns emerging from contract-driven interaction between
parties. By using contract monitoring techniques, aircraft operators
and engine manufacturers can investigate the properties of contracts
they are involved in, and analyse their impact.

This paper builds on earlier work on requirements [8] and an
initial application framework [13] to focus on the development of
monitoring mechanisms for detecting and explaining violation and
fulfillment of normative specifications of agent behaviours encoded
in electronic contracts. Specifically, we describe their usage and
utility in an aerospace aftermarket application inspired by Aerogility
[12]. The application demonstrates monitoring of aerospace agents
deployed in the maintenance, repair and provision of aircraft en-
gines. The agents’ obliged, permitted and prohibited behaviours
are governed by normative clauses specified in electronic contracts
(e-contracts) to which the agents are signatories. These contracts
instantiate a framework for electronic contract specification, exe-
cution and management [14], and the monitoring mechanisms im-
plement a system for monitoring violation and fulfillment of norms
(that may or may not be specified in contracts) [4].

In this model, observers are explicitly entrusted by contract sig-
natories to accurately relay observations on the state of the world,
where these observations are used by monitor agents to determine
the violation or fulfillment state of norms. This use of trusted ob-
servers provides some measure of assurance that a norm is reported
as violated if and only if it has in actuality been violated, and that

Cite as: Monitoring and Explanation of Contract Execution: A Case
Study in the Aerospace Domain, Felipe Meneguzzi, Simon Miles,Camden
Holt, Sanjay Modgil, Michael Luck,Malcolm Smith, Nora Faci, Nir Oren,
Proc. of 8th Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2009), Decker, Sichman, Sierra and Castelfranchi (eds.), May,
10–15, 2009, Budapest, Hungary, pp. 77 – 84
Copyright © 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org), All rights reserved.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

78

sanctions will be applied only as and when appropriate. Monitors
process observations together with Augmented Transition Network
(ATN) [16] representations of individual normative clauses. The
ATNs are graphs whose arcs have labels specifying world states,
such that if a monitor receives observations indicating that these
states hold, then the ATN is transitioned across the arcs, to nodes
that represent activation, violation, and fulfilment states of the rep-
resented norm. The labels, together with additional information
such as logged messages, constitute explanations of violation (and
fulfilment) that are required to ensure correct assignment of respon-
sibility for violation, and also to identify how prospects for future
compliance, and thus realisation of system goals, can be enhanced
by modifying business processes and normative specifications

Our implementation of norm based governance and monitoring
of aerospace aftermarket agents builds on an earlier simulation mod-
el [13], as follows. First, it provides an implementation of the
above-mentioned monitoring framework, in which a monitoring
agent processes observations received from trusted observers to-
gether with ATN representations of norms in aftermarket contracts.
Second, it shows how rudimentary explanations of norm violation
are generated, and how more comprehensive explanations can be
generated based on monitoring of ATNs representing permitted be-
haviours that are not necessarily contractually specified.

In seeking to demonstrate the applicability of this work, we pro-
vide two scenarios illustrating deployment of a monitor to detect
and explain violations of norms by implemented AgentSpeak(L)
[15] aerospace agents that are signatories to contracts. A key fea-
ture is the interdependency of contracts between agents at different
points in the supply chain, from the supply of parts for engine main-
tenance to the supply of the repaired engines for aircraft. Thus, the
scenarios illustrate how normative violations in one contract may
imply normative violations in another contract, and how the expla-
nations account for such interdependencies. In addition, we pro-
vide the ability to run simulations in which explanations of norma-
tive violations can inform subsequent revisions to contracts. Such
revised contractual specifications can then be tested to determine
whether they better ensure that norms are not violated (so ensuring
that system-wide goals are met).

The paper is organised as follows. Section 2 gives an overview of
the aerospace aftermarket domain and the contractual governance
of agent behaviours in that domain. In Section 3 we briefly review
prior work on e-contract specification of norms and monitoring of
norms. The main contributions of the paper are then described in
Sections 4 and 5. In Section 4 we describe the generation of ex-
planations of violations, and in Section 5 we illustrate the use of
monitoring and explanations in scenarios of the aerospace domain.
Section 6 concludes and discusses future work.

2. THE AEROSPACE AFTERMARKET
The deployment of our contract-based monitoring architecture is

situated in the context of aerospace aftercare contracts. In partic-
ular, we adopt an application scenario first introduced by Jakob et
al.[8], and further developed by Meneguzzi et al.[13]. This sce-
nario, in turn, was inspired by Lost Wax’s Aerogility software [12],
and simplified to better illustrate the use of the monitor. Aerogility
is a decision support system, based on a simulation of aircraft en-
gine aftercare contracts, aimed at identifying possible problems,
such as supply bottlenecks and the effects of restrictions in a con-
tract. In the simulation performed by Aerogilty, an engine com-
prises a number of modules on which wear and tear is simulated
in order to foresee the need to perform maintenance in the engine,
on an individual module basis. Aircraft engine manufacturers are
contracted by airlines not only to supply working engines for their

Service
Site

Part
Manufacturer

Engine
Manufacturer

Logistics

Observer

Perform
Maintenance

Monitor

<uses>

Order
Part

Ship
Part

<uses>

<uses>

<uses>

<uses>

Figure 1: Use cases and interactions (in UML).

aircraft, but also to care for these engines throughout their lifetime
following any number of conditions imposed by the airline. Among
these conditions, aircraft operators may require that engines have a
restricted provenance, (e.g. for used engines not to have been pre-
viously mounted by a competing airline), that replacement parts
may only be supplied by certain approved part suppliers, and that
engines must be serviced within a particular time frame. In this
paper, we simplify the application domain to focus on a particular
set of norms, and how these norms are monitored and explanations
for the violation of these norms generated. As a consequence, we
do not model the composition of an engine in modules, and as-
sume that maintenance consists simply of replacing certain parts
that need to be sourced from particular part suppliers. This sim-
plification allows us to focus on simpler norms that, nevertheless,
capture the general constraints that are simulated by Aerogility.

Thus, our application domain comprises, at the top level, aircraft
operators signing aftercare contracts with engine manufacturers,
including conditions of delivery deadlines and restrictions on the
part suppliers allowed to supply replacement parts. Engine manu-
facturers, in turn, subcontract service sites at various airport hubs
to service engines as they require maintenance. Service sites are
obliged to deliver repaired engines within a maximum of 5 days,
and thus need to make sure that all pre-requisites of the repair are
performed well before this deadline, including the delivery of any
required parts. During maintenance at service sites, parts may need
to be ordered from part suppliers and shipped through logistics
agents. When a service site needs to order parts, it sends requests
for bids to all its known part suppliers, each of which then sends
their bids to supply parts. In general, a service site will accept the
bid with the lowest price and earliest delivery date estimate, and
will turn down bids from part suppliers whose delivery estimate
would render its own deadline commitments inviable, as well as
bids from part suppliers forbidden in the contract terms. After a
bid is selected and the parts order is placed, part suppliers ship the
new parts to the service site. Once the parts arrive, the service site
resumes repairing the engine, and readies it in the designated air-
craft, notifying the engine manufacturer that the repair is complete.
A summary of the use cases involved in our simulation is shown in
the use case diagram of Figure 1, including monitoring (explained
in Section 3.2).

Given the complexity of modern aircraft engines, their produc-
tion and maintenance involves complex supply chains, with parts
sometimes coming from a very limited range of suppliers. As a

Felipe Meneguzzi, Simon Miles,Camden Holt, Sanjay Modgil, Michael Luck,Malcolm Smith, Nora Faci, Nir Oren • Monitoring and Explanation of Contract Execution: A Case Study in the Aerospace Domain

79

consequence, problems at the bottom of the supply chain (part sup-
pliers) may easily cascade to the top (aircraft operators). In par-
ticular, part suppliers may experience delays in delivering parts to
the service site, which in turn may prevent the service site from
repairing an engine on time, and result in the engine manufacturer
violating its contract with the aircraft operator. These delays may
occur for a number of reasons: a part supplier may take longer
than expected to fabricate a new part; the logistics agent may delay
shipping; or the service site may not find a permitted part supplier
to supply parts.

In this paper, we focus on the supply chain from the engine man-
ufacturer down to the part suppliers, so the simulations of Section 5
do not deal with the aircraft operators. Instead we focus on the
interactions (and normative restrictions) between engine manufac-
turer, service site, part suppliers and logistics agents. In these sim-
ulations, we use the monitor of Section 3.2 to detect contract viola-
tions and generate explanations for the origin of the violations. The
explanations thus generated guide the improvement of the contracts
and the simulation of the application domain.

3. NORMS AND MONITORING
In this section we briefly review our previous work on specifica-

tion of [14], reasoning about, and monitoring [7, 4] norms by norm
aware agents, which serves as a base on which we have developed
our aerospace aftermarket application.

Norms are essentially rules that can be categorised as permis-
sions, obligations, and prohibitions, that respectively describe what
may be done, should be done, and should not be done. While
agents typically comply with norms, they may decide not to do
so if it serves their self-interest, or simply if they cannot do so. For
example, an optimistic agent may over-commit on a manufactur-
ing contract, agreeing to provide more goods than it is capable of
manufacturing, after estimating that typically, large orders will not
arrive simultaneously. If the latter does occur, it may be unable
to meet one of its orders without incurring extra expense (e.g. by
sub-contracting), thus violating a norm. In such scenarios, culpable
agents are subject to sanctions (that may themselves be specified as
contrary-to-duty obligations that come into force when other obli-
gation are violated); in the above example, the manufacturer may
be obliged to pay a fine if an order is not delivered on time.

3.1 Representing Norms
Philosophers and computer scientists have carried out much re-

search into normative systems (e.g. [6, 9, 10]), most of which fo-
cus on deontic logic formalisations. While deontic logics provide
formal models for reasoning about norms, their representations are
somewhat abstract and do not readily lend themselves to implemen-
tation. To address this drawback, we have proposed a more readily
implementable framework for representation and reasoning about
norms [14]. While the framework makes no assumptions about the
context in which the norms are specified, it aims to easily handle
norms appearing within contracts. In [14], a norm N is a tuple:

〈Type,

ActivationCondition,

NormCondition,

ExpirationCondition,

Target〉
where Type identifies whether the norm is an obligation or permis-
sion1, and the next three parameters are all predicates expressed in
1We assume prohibitions are obligations to ensure some state of

some logical language (which we leave unspecified). The activa-
tion condition describes some state of the world in which N comes
into force; the normative condition describes some world state in
which N is being complied with (in the case of an obligation), or
being made use of (in the case of a permission). The expiration
condition describes some world state in which N no longer has
normative force, and N ’s target set specifies which agents are re-
sponsible for, or allowed to make use of, the norm. Consider the
following example obligation on a service site SS to repair an air-
craft engine E at some time T ′ that is within 7 days of receiving a
request from an engine manufacturer EM at time T :

〈Obligation,

received(engine_repair_request, EM, E, T),

engine_repaired(E, T ′) ∨ (T ′ ≤ T + 7),

engine_repaired(E, T ′) ∨ (T ′ > T + 7),

SS〉
It is important to note that the above norm can be considered to
exist as an abstract norm that comes into force, and so only exists
in its instantiated form when a specific repair request for a spe-
cific engine is received by a specific service site from a specific en-
gine manufacturer. Thus, an abstract norm serves as a template for
instantiated norms; when an abstract norm’s activation condition
evaluates to true, an instantiated norm is created and specialised to
the situation (i.e., the variables EM , E, T and SS are instanti-
ated). Multiple instantiated norms may be spawned from a single
abstract norm, and may exist at the same time. Once instantiated, a
norm persists until its expiration condition is met, regardless of the
state of its activation condition.

3.2 Monitoring for Compliance
In this subsection, we build on our representation, and outline

our monitoring framework [4, 7] in order that we can subsequently
apply it to the aerospace aftermarket domain. Now, the goal of our
monitoring framework is to be able to identify the status of a norm
at any point in time. Typically, such statuses include whether a
norm is abstract or instantiated, as well as whether it has been vio-
lated or expired. The ability to determine and reason about such sta-
tuses is useful not only to agents interacting with each other within
the system, but also for activation of other norms. For example, a
sanction may take the form of a contrary-to-duty norm obliging an
agent to pay a penalty, which may come into effect if the status of
some other norm is “violated”.

In our monitoring framework, monitors receive observations from
trusted observers that are explicitly entrusted by all contract parties
to accurately report on the state of the world. These observations
are then processed, together with Augmented Transition Network
(ATN) [16] representations of norms, to determine their status.

The use of trusted observers ensures some degree of certainty
that a norm will be reported as violated if and only if it has in
actuality been violated, and so some assurance that sanctions will
only be applied as and when appropriate. Such assurances are im-
portant in order to encourage deployment of agents in electronic
contracting environments. For example, consider an obligation on
a service site to pay for engine parts within a certain time after re-
ceipt of these parts. Recognition that the payment has been made
may be based on an observer reporting that the monies for payment
have been deposited in the bank account of the part supplier, where
the observer may be the bank itself, and where the bank has been
explicitly entrusted by the service site and part supplier (in the rel-
evant supply contract) to report that the monies have been paid if
affairs does not hold.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

80

S0 S1

S2

S3

S4Act

NC

¬NC

¬NC

NC

Exp

Exp

Act

Figure 2: The ATN used to represent norms.

and only if they have in actuality been paid. Thus, if no such report
of payment is received by a monitor, then there is some degree of
certainty that the monitor’s reporting that the obligation has been
violated is accurate.2

Observations relayed by trusted observers to monitors may either
be messages observed as having been sent to and from contract
parties (e.g., a message received by a service site requesting repair
of an engine), or predicate logic descriptions of properties holding
in the world (e.g., that an engine has been repaired, or an action has
occurred). In either case, these observations are processed, together
with ATNs, to determine the status of the represented norms.

These ATNs are essentially 5-node directed graphs in which each
node represents a distinct state of the same norm. Based on mes-
sages received from observers describing the states of interest spec-
ified by the norm’s components, Activation, NormCondition
and Expiration, the monitor matches the messages with the labels
of the ATN’s arcs that describe the corresponding states of interest,
so as to transition the ATN from one node to the next. Figure 2
shows a generic ATN representation of a norm, as follows.

• S0 is the node indicating that the norm is in its abstract form.

• If the monitor receives observations indicating that the acti-
vation condition holds, then the ATN transitions across the
arc labelled by the activation condition, to S1, in which case
the norm is said to be activated. Thus, in our example obli-
gation, if an observer relays a message received by a specific
service site from an engine manufacturer requesting repair
of a specific engine, then the ATN for the obligation is tran-
sitioned to S1.

• If, subsequently, the monitor immediately receives observa-
tions indicating that the normative condition holds, then the
ATN is transitioned to S2, otherwise it transitions to S3. S2
thus represents the non violated state of an obligation, or the
‘made use of’ state of a permission, and S3 the violation state
of an obligation, or the ‘not made use of’ state of a permis-
sion. In our example obligation, the normative condition can
be expressed as engine_repaired(E, T ′)∨(T ′ ≤ T+7) so,
if at the current time T ′, either of these disjuncts is observed
as holding (if the engine is repaired at time T ′, or if T ′ is
within the seven day time window), then the ATN transitions
to the non-violated state S2. If the normative condition does
not hold, i.e., neither disjunct is observed as holding (the en-
gine is not repaired and the current time is greater than seven

2Contrast this with either the service site or part supplier reporting
that the monies have been paid, where it may be in the interest of
these parties to mis-report the truth of the matter.

Message
Queue

Abstract
ATNs

Instantiated
ATNs

Time-based
Transitions

Monitor
Control
Loop

Observer
Messages

Manager
Messages

Figure 3: Overview of the monitor control loop.

days after activation), then the ATN transitions to the vi-
olated state S3. Notice that in general, norms may toggle
between S2 and S3. For example, if an obligation to drive
on the left is activated once a driver begins to drive then, at
each subsequent time point, the driver may be observed to be
driving on the left, in which the case the corresponding ATN
is in state S2, or the driver may be observed to be driving on
the right, in which case the ATN is in state S3.

• Finally, if at any time point T ′ the monitor receives obser-
vations indicating that the normative expiration holds (either
engine_repaired(E, T ′) or T ′ > T + 7 is observed as
holding) then the ATN transitions to S4. Since this is effec-
tively a terminal state, the ATN is no longer processed.

3.3 Monitoring Algorithm
The monitor itself fulfils a number of functions. First, it acts as

a store for all ATNs within the system. Second, it is responsible for
routing messages to the appropriate ATNs. Third, it must send out
notifications to the appropriate agents when a norm is instantiated,
violated, fulfilled or expires (i.e. when a norm’s status changes in a
specific way).

Storing ATNs is relatively trivial, and will not be discussed in
depth, but the monitor is able to add, remove, and retrieve ATNs.
Message routing requires sending any received messages to the ap-
propriate ATNs, causing them to transition between states as de-
scribed above. The monitor is responsible for passing one other
type of message to ATNs, namely time messages. These are sent to
all ATNs at regular intervals, indicating the passing of time. ATNs
process these messages differently, transitioning only when a time-
out condition on the edge successfully processes the time message.
These interactions are illustrated in Figure 3. Moreover, since the
monitoring algorithm handles each norm ATN independently (both
abstract and instantiated), it is easy to distribute it across multiple
computers, each handling a set number of ATNs.

We may conceptually view the monitoring process as following
the algorithm described in Table 1, in which the monitor repeatedly
dispatches messages to ATNs. If an abstract ATN’s activation con-
dition is satisfied (line 7), the ATN is instantiated (lines 8 to 10), and
added to the set of instantiated ATNs. Messages are then dispatched
to all instantiated ATNs in the system. If the message satisfies the
requirements on an arc leaving the current node (line 15), a transi-
tion takes place (line 17), and agents are notified of the transition as
appropriate (lines 18 to 21). Finally, if the transition leads to an ex-
pired state, the instantiated norm is removed from the instantiated
norm set (line 22). We assume that timestep messages are treated
as any other message.

4. EXPLANATIONS OF VIOLATIONS
Given the ATN representation and the monitoring algorithm a-

bove, we can now consider how the monitor generates explanations

Felipe Meneguzzi, Simon Miles,Camden Holt, Sanjay Modgil, Michael Luck,Malcolm Smith, Nora Faci, Nir Oren • Monitoring and Explanation of Contract Execution: A Case Study in the Aerospace Domain

81

Algorithm 1 Monitor control loop
Require: Message queue Qmsg

Require: Message store MSt

Require: Set of abstract norm ATNs XAbs

Require: Set of instantiated norm ATNs XInst

1: while Monitor is active do
2: while Qmsg is not empty do
3: Retrieve Msg from head of Qmsg

4: Add Msg to MSt{First, deal with messages}
5: for all Abstract norm ATN A in XAbs do
6: for all Arcs Act in A do
7: if satisfied(MSt,Act) then
8: create I , an instantiated version of the ATN I of A
9: add I to XInst

10: move I to state S1
11: end if
12: end for
13: end for
14: for all Instantiated norm ATN I in XInst, with current state C,

do
15: for all Arcs a leaving C, going to T , do
16: if satisfied(MSt,a) then
17: move I to state T
18: if T is S3 then
19: Notify manager of violation
20: else if T is S4 then
21: Notify manager of expiration
22: remove I from XInst

23: end if
24: end if
25: end for
26: end for
27: end while
28: end while

for contract clause (i.e. norm) violations.

4.1 Explaining Contract Violations
We consider first how a simple explanation could be formulated

by the monitor. As we have seen, the monitor detects that a norm is
violated when the ATN associated with it transitions to a particular
state, S3. Since every ATN is associated with a norm, an initial
approach to explaining a contract violation is to state which norm
in the contract has been violated.

However, an explanation consisting solely of the norm instance
that was violated is often inadequate for diagnosing any deeper
causes for a violation, as it expresses only the fact and not the
causes of the violation. A refinement of the explanation would be
to include the ATN transition that led to the violating state, i.e. the
observation of a message or state by which the monitor detected the
obligation or prohibition had not been fulfilled. This refined expla-
nation, which we will refer to as a single-ATN explanation below,
would allow a designer to pinpoint the immediate cause of a norm
being violated. However, it does not help to determine the overall
circumstances relevant to violation, for which we would also need
to explain the indirect causes leading up to the violation.

We therefore need to consider ways to recognise other observa-
tions of relevance to a violation, thus building a richer picture of the
surrounding circumstances. Notice that, as shown in the monitoring
algorithm of Section 3.3, each observation arriving at the monitor
is supplied to every ATN being monitored, allowing the monitor to
detect if a single observation causes more than one ATN to activate,
expire, or transition between violation and non-violation. Multiple
norms being affected (i.e. multiple ATNs being activated, violated,
unviolated, expired) by the same observation, means that violations
or fulfilments of those norms have a common cause.

Therefore, we can enhance our explanations of one violation by

reporting the observations causing transitions in other ATNs with
the same arc labels. For example, an engine requiring repair is an
activation condition for both returning the engine to working order,
and for ordering parts necessary to make repairs, each monitored
separately. If the engine is not repaired in time, violating the first
obligation, then observations relating to the ordering of parts may
help explain why this was the case. An explanation using this en-
hancement can thus take the form of a set of single-ATN explana-
tions chained together by the observations common to each ATN.
It is important to note here, that we assume a completely observ-
able environment, and thus the explanations will be deterministic,
and based on the ATNs available to the monitor. We will see an
example of a chained ATN explanation in Section 5.

4.2 Improving Explanations
The primary idea of our monitor is to detect violations of norms

stated in a contract agreed between the contract parties, e.g., en-
gine manufacturers and site services. Now, the observations that
the monitor receives (through subscribing to trusted observers) are
just those which indicate those norms are activated, violated or not,
or expired. However, as described above, our explanations of vi-
olations of the norms comprise the relevant observations received
by the monitor. Therefore, the explanations that the monitor can
give are limited to observations directly relevant to determining the
fulfilment of the contract clauses.

This is often inadequate for good explanations. For example, a
contract may place no obligations, prohibitions or permissions on
how engine parts are supplied, and so the monitor will receive no
observations regarding this supply, but it may be exactly this factor
that has led to the violation of the obligation to repair an engine
(i.e. something wrong with the part supply chain).

In our approach, we aim to improve explanations generated by
the same monitoring machinery described above, by adding ATNs
representing norms not present in the contract but helpful to mon-
itor, purely to build better explanations: explanation ATNs. So,
in the example above, we would want to add explanation ATNs for
monitoring the part supply chain, to ensure the monitor had records
of observations relating to part supply and could determine where
part supply problems and repair violations had a common cause.

An explanation ATN has no qualitative difference from an ATN
representing a contract clause. Every explanation ATN is of type
permission (rather than obligation or prohibition), because it does
not state what should happen, but what could happen, e.g. parts
could be delivered by this supplier. There is, therefore, no notion
of an explanation ATN itself being violated. Next, we look at how
this explanation mechanism is used in our aerospace case study.

5. SIMULATION SCENARIOS
The CONTRACT project has implemented a range of technologies

for supporting contract-based application execution, all available
as open source [1]. In this paper, the specific component we have
focussed on is the monitor, which behaves in the way described
in Section 3. The scenarios themselves are simulated using the
AgentSpeak(L) language [15] and run on the Jason [3] platform.
A graphical user interface allows users to explore the norms and
see the violation or fulfilment states reported by the monitor during
run-time, and a screenshot of this is shown in Figure 4. The screen
shows the formalised contract (top left), instantiated norms (top
right), the current monitored status of an instantiated norm (mid
right), and a log of the actions agents are taking (bottom).

In order to show how the explanations generated by our monitor
are used to detect both the origin of violations and potential prob-
lems in the aerospace aftercare simulation, we have designed two

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

82

Figure 4: Screenshot of the monitoring application.

typical scenarios that demonstrate the use of the monitor explana-
tions in improving the norm-regulated multiagent system. As we
have seen in Section 2, violations at the bottom of a complex sup-
ply chain can easily cascade to the top. Thus, in both the following
scenarios, an obligation on an engine manufacturer, to make avail-
able engines to an airline operator, are fulfilled or violated based
on whether the sub-contracted service site repairs the engine for
the engine manufacturer within a given time period. Furthermore,
provenance restrictions on parts, dictated by the airline operator to
the engine manufacturer, translate to permissions and prohibitions
on the service site’s ordering of parts from part suppliers.

In both the following scenarios, we describe monitoring of a con-
tract between the service site and engine manufacturer. The norms
encoded include the obligation on the service site to repair engines
in a given time frame, as specified in Section 3.1 (its ATN represen-
tation is the example in Section 3.2). We identify this obligation as
Ob1 in examples below. In addition, the contract includes the fol-
lowing clauses, all imposed on the service site agent (SS).

• A permission to order parts from part supplier 1, Per1, rep-
resented by an ATN as in Figure 2, where:

– Activation condition (Act) = engine repair request re-
ceived at time T (the same activation condition as Obl)

– Normative condition (NC) = order parts from part sup-
plier 1 (so ¬NC = not order part from supplier 1)

– Expiration condition (Exp) = part ordered from part
supplier 1

• A permission to order parts from part supplier 2, Per2, rep-
resented in the same way as Per1 except that part supplier 2
replaces part supplier 1 in its specification.

• A prohibition on the service site to order parts from part sup-
plier 3 (expressed as an obligation not to order parts from
part manufacturer 3), Pro1, represented by an ATN with:

– Activation condition (Act) = engine repair request re-
ceived at time T (the same activation condition as the
obligation)

Engine
Manufacturer

Service
Site

Part
Supplier 1

Part
Supplier 2

1. repairEngine 2. requestParts

3. winAuction

2. requestParts

4. missDeadline
5. missDeadline

Figure 5: Original scenario representation.

– Normative condition (NC) = not order parts from part
supplier 3 (¬NC = order part from supplier 3)

– Expiration condition (Exp) = false (the norm never ex-
pires).

5.1 Scenario 1: Tracing Violations
In the first scenario considered (depicted in Figure 5), the fol-

lowing events are simulated.

1. The service site, SS, receives a repair request. This event
activates Ob1, so the corresponding ATN transitions to S1
and then immediately to the non-violated state S2, given that
the 7 days have not elapsed. Similarly, Per1 is activated and
transitions to state S3 (indicating that the permission has not
been taken advantage of).

2. In a subsequent bidding phase, SS makes a request for a re-
quired part to part supplier 1 (PS1), which in turn responds
by indicating that it has the part in stock and the part can be
delivered in some given time.

3. PS1’s expected delivery time is acceptable to SS (in the sense
that it leaves enough time for SS to fulfill its time-limited

Felipe Meneguzzi, Simon Miles,Camden Holt, Sanjay Modgil, Michael Luck,Malcolm Smith, Nora Faci, Nir Oren • Monitoring and Explanation of Contract Execution: A Case Study in the Aerospace Domain

83

obligation to the engine manufacturer). SS then makes use of
Per1 to order the part from PS1, and the corresponding ATN
(that has also been activated by receipt of the repair request
and so is already in S1) transitions to S2 and then S4 (the
permission has been made use of and then expires). Notice
that in Figure 5, the bidding phase and subsequent use of the
permission is indicated by the winAuction arrow.

4. On the 8th day after activation, no message informing the
engine manufacturer of delivery of the engine has been ob-
served. Ob1’s ATN transitions to the violation state S3 and
then immediately expires, transitioning to S4.

Following this scenario, the monitor will report that Ob1 has
been violated. However, if it only monitors the four contractual
norms defined above (Ob1, Per1, Per2, and Pro1), the explanation
that the monitor can provide in this scenario consists only of the
observations that:

1. a repair request was received (activation condition of Ob1
and Per1);

2. a part was ordered from PS1 (normative and expiration con-
dition of Per1); and

3. the engine was not repaired in the time limit (negation of
normative condition and expiration condition of Ob1).

As discussed in Section 4.2, this explanation is inadequate. To
properly understand what has occurred, we would want to know
more about what occurred, e.g. what availability information the
part supplier provided and thus whether the service site was jus-
tified in ordering a part from that supplier on the basis of that in-
formation. To do this, we add (for future runs of the simulation)
explanation ATNs (ATNs for possible behaviour not explicitly per-
mitted in the contract) regarding the bidding process. Figure 6
shows the chained explanation that results from the chained ATN
explanation once explanation ATNs are added. Each box depicts a
single-ATN explanation, with the majority being explanation ATNs
causally connected to Per1.

To further illustrate the point, the user receiving such an expla-
nation may still not be satisfied that enough has been provided to
pinpoint the events leading to violation. Therefore, they may add
further explanation ATNs regarding the logistics agent used to de-
liver the parts from part supplier to the service site. Such a sce-
nario is depicted in Figure 7. This drilling down to include inter-
connected, relevant details by adding to that part of the system that
is monitored can continue indefinitely, but the key aspect is that the
full monitoring process only occurs for events deemed potentially
relevant to the contractual norms by the user; that is, we are not try-
ing to monitor and connect all events in the system to the violation
of contracts.
5.2 Scenario 2: Relaxing Prohibitions

In the second scenario illustrated in Figure 8, SS again violates
its obligation to repair the engine within 7 days, but the explana-
tion of the violation above indicates that this is because both the
permitted part suppliers PS1 and PS2 are not able to provide suc-
cessful bids. PS1 cannot supply the part in time, and PS2 does not
have the part in stock. SS is prohibited from sourcing parts from the
only other available part supplier PS3, and so violates its obligation
to the engine manufacturer. After analysing the explanation, a de-
signer may conclude that the prohibition Pro1 should be relaxed in
case no other part suppliers are available. Thus PS3 can be sourced
in such exceptional circumstances so that obligation deadlines can
be met, as illustrated in Figure 9.

Permission ATN for ss to request
part availability from pm1

repair request
received

request part
availability

Permission ATN for ps1 to send
part availability info to ss

part availability
request received

send part
availability info

Per1 permission ATN for ss to
order part from ps1 (this is the only
contractually encoded permission)

part availability
info received

send accept

Permission ATN for ss to send
reject ps1 bid

part availability
info received

send reject

Permission ATN for ps1 to send
part within time declared in bid

order received

deliver part within
promised time

Figure 6: Chained explanation ATNs for Scenario 1

Engine
Manufacturer

Service
Site

Part
Supplier 1

Part
Supplier 2

1. repairEngine
2. re

questParts

3. winAuction

2. requestParts

5. missDeadline6. missDeadline Logistics
Provider

4. shipPart

Figure 7: Expanded representation.

Engine
Manufacturer

Service
Site

Part
Supplier 1

Part
Supplier 2

1. repairEngine

2. re
questParts

3a. delaysExpected

2. requestParts

4. missDeadline

Part
Supplier 3

3b. notInStock

2. requestParts3c. forbidden

Figure 8: Original scenario leading to failure.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

84

Engine
Manufacturer

Service
Site

Part
Supplier 1

Part
Supplier 2

1. repairEngine

2. re
questParts

3a. delaysExpected

2. requestParts

5. deliverEngine

Part
Supplier 3

3b. notInStock
2. requestParts4. deliverParts

Figure 9: Relaxed restrictions lead to success.

The above illustrates how sophisticated monitoring and explana-
tion of violations feed into a more general methodology for refining
contractual specifications. The approach is particularly applicable
in complex scenarios in which the reasons why high level goals
(such as obligations to have minimum numbers of serviced engines
readily available for airline operators) cannot be realised, are not
immediately apparent. Such scenarios occur in simulations such as
Aerogility’s, which also allows parameters affecting norms to be
changed (e.g. adding or relaxing prohibitions) in order to test vari-
ous contractual specifications, and thus arrive at an optimal specifi-
cation that maximises the chances of realising the high level goals.

6. CONCLUSIONS AND RELATED WORK
The value of explicit contracts between parties comes not only

from giving those parties a clear understanding of their obligations,
but also in making explicit what constitutes a violation of those
obligations. However, for violations to have a productive effect,
such as to improve business processes to ensure they do not occur
again, we have to be able to detect that they have occurred and ex-
plain the circumstances. In an application of any complexity, such
as we have in the collaboration between parties in the aerospace
domain, this is a non-trivial problem requiring robust and well-
specified solutions.

In this paper, we have applied our technologies for representing
contractual norms in a precise manner, monitoring for the viola-
tion of these norms, and explaining the outcomes of the monitoring
process, to aerospace aftermarket scenarios. We have shown that,
by using such techniques, critical information is conveyed to those
attempting to understand and improve a system. In particular, we
have shown that, by monitoring successively detailed parts of a sys-
tem we can drill down to the root cause (and then fix it), and that
by explicitly representing contractual norms and understanding the
causes of contract violation we are better placed to alter those con-
tracts to better govern the system. We have presented two scenarios
describing how the above benefits are realised in the aerospace af-
termarket scenarios.

In future work, we will continue to develop the detection and ex-
planation abilities of the monitoring architecture, with one poten-
tial avenue to adapt techniques from truth maintenance systems and
belief revision to track the multiple-cause-and-effect links that may
exist [2]. Since the current system does not provide any support for
users to create explanation-ATNs, we will also consider a method-
ology for creating them; in particular, by specifying the methodol-
ogy of the case study scenarios, as robust, re-usable guidelines. We
will also look at using the explanations of violations to determine

what danger states may be detected, i.e. states of the system indi-
cating that violation may be imminent without pre-emptive action.

Acknowledgements: The research described in this paper is
partly supported by the European Commission Framework 6 funded
project CONTRACT (INFSO-IST-034418). The opinions expressed
herein are those of the named authors only and should not be taken
as necessarily representative of the opinion of the European Com-
mission or CONTRACT project partners. The first author is sup-
ported by Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior (CAPES) of the Brazilian Ministry of Education.

7. REFERENCES
[1] IST Contract Open Source Libraries.

http://ist-contract.sf.net, 2008.
[2] J. J. Alferes, L. M. Pereira, and T. C. Przymusinski. Belief

revision in non-monotonic reasoning and logic programming.
Fundamenta Informaticae, 28(1-2):1–22, 1996.

[3] R. H. Bordini, J. F. Hübner, and M. Wooldridge.
Programming multi-agent systems in AgentSpeak using
Jason. Wiley, 2007.

[4] N. Faci, S. Modgil, N. Oren, F. Meneguzzi, S. Miles, and
M. Luck. Towards a monitoring framework for agent-based
contract systems. In M. Klusch, M. Pechoucek, and
A. Polleres, editors, Cooperative Information Agents XII,
2008.

[5] D. Grossi. Designing Invisible Handcufffs. PhD thesis,
Utrecht University, SIKS, 2007.

[6] J. F. Horty. Agency and Deontic Logic. Oxford University
Press, 2001.

[7] IST CONTRACT project. D5.2.1 - Contract Monitoring
Mechanisms and Tools. http://www.ist-contract.org, 2008.

[8] M. Jakob, M. Pěchouček, J. Chábera, S. Miles, M. Luck,
N. Oren, M. Kollingbaum, C. Holt, J. Vázquez, P. Storms,
and M. Dehn. Case studies for contract-based systems. In
Proceedings of the 7th International Conference on
Autonomous Agents and Multiagent Systems, 2008.

[9] C. Krogh. The rights of agents. In M. Wooldridge, J. P.
Müller, and M. Tambe, editors, Agent Theories,
Architectures, and Languages II, volume 1037, pages 1–16.
Springer, 1996.

[10] F. Lopez y Lopez. Social Power and Norms: Impact on agent
behaviour. PhD thesis, University of Southampton, 2003.

[11] F. Lopez Y Lopez, M. Luck, and M. d’Inverno. A normative
framework for agent-based systems. Computational and
Mathematical Organization Theory, 12(2-3):227–250, 2006.

[12] LostWax. Aerogility. http://www.aerogility.com/, 2007.
[13] F. Meneguzzi, S. Miles, C. Holt, M. Luck, N. Oren,

S. Modgil, N. Faci, and M. Kollingbaum. Electronic
contracting in aircraft aftercare: A case study. In Proceedings
of the 7th International Conference on Autonomous Agents
and Multiagent Systems, pages 63–70, 2008.

[14] N. Oren, S. Panagiotidi, J. Vazquez-Salceda, S. Modgil,
M. Luck, and S. Miles. Towards a formalisation of electronic
contracting environments. In Proceedings of COIN@AAAI,
pages 61–68, 2008.

[15] A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical
computable language. In W. V. de Velde and J. W. Perram,
editors, Agents Breaking Away; MAAMAW 96, volume 1038
of LNCS, pages 42–55. Springer, 1996.

[16] W. A. Woods. Transition network grammars for natural
language analysis. Communications of the ACM,
13(10):591–606, 1970.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

