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ABSTRACT

Rising deployment of Unmanned Aerial Assets in complex
operations requires innovative automatic coordination algo-
rithms, especially for decentralized collision avoidance. The
paper investigates a stochastic Probability Collectives (PC)
optimizer for the collision avoidance problem defined as an
optimization task where efficiency criteria, collision penal-
ties and airplanes’ missions are integrated in an objective
function. The paper provides two different implementa-
tion approaches of the proposed method — complex multi-
agent deployment distributes the PC optimization process
among airplanes and the Process Integrated Mechanism ap-
proach replaces communication with optimizer migration.
Both implementations have been developed and tested on
an airspace multi-agent framework AGENTFLY.

Categories and Subject Descriptors

1.2.11 [Computing Methodologies]: Artificial Intelligence—

Multi-agent systems; 1.2.9 [Computing Methodologies]:
Artificial Intelligence—Autonomous vehicles

General Terms

Algorithms, Experimentation

Keywords

Autonomous aircraft, Probability Collectives, Collision avoid-
ance, Decentralized algorithms

1. INTRODUCTION

Application of automatic coordination algorithms in the
field of collision avoidance (CA) in the air traffic domain
is very important nowadays. Several unmanned air vehicles
(UAVs) operate cooperatively fulfilling their mission goals in
the shared air space [1] and thus airplanes are required to im-
plement automatic See & Avoid capability [9]. A distributed
See & Avoid capability allows airplanes to implement the
free flight concept [14] — an approach of autonomous routing
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of the aircraft based on a local collision avoidance mecha-
nism. The free flight concept is also studied within manned
air traffic control in the Next Generation Air Transporta-
tion Systems (NGATS) for coordination within the enroute
part [19] while traditional Air Traffic Management (ATM)
is still responsible for operations in terminal parts. Such ap-
proach to the collision avoidance problem removes the per-
manent communication connection between airplanes and
the air space control center during enroute parts. The in-
dustrial potential of automatic collision avoidance is great
as it should be applied to all multiple UAVs deployments
[22]. For example in the forest fire monitoring application
[7], UAVs monitor large forest fire in areas inaccessible by
ground vehicles. The paper addresses the field of the co-
operative collision avoidance problem where airplanes are
equipped with bi-directional communication devices allow-
ing communication within a limited range.

The automated decentralized conflict resolution in a free
flight domain is widely addressed by the research commu-
nity [16]. One approach is based on a hybrid system com-
bining discrete events and individual dynamics modeled by
differential equations [20]. A computational geometry ap-
proach based on a Delaunay diagram is reported in [8]. Next,
potential and vortex fields can also be used for generating
heading changes for multi-airplane conflicts [15]. Others use
solutions based on agent to agent negotiation using various
protocols [30].

In the paper, an optimization approach to the collision
avoidance problem has been adopted — airplanes search such
a series of actions that would allow them to avoid collision
effectively. Efficiency criterion, collision penalty and air-
planes’ goals are incorporated into a shared objective func-
tion. The optimal control is a set of actions which minimizes
the function (see Section 3). The Probability Collectives
(PC) framework [17, 31] is used as an optimization solver.
The PC is a stochastic optimizer using probabilistic opera-
tors optimizing over a variable space. A brief introduction
to the PC algorithm is provided in Section 2. Other exist-
ing stochastic approaches such as Genetic Algorithms [13]
and Particle Swarm Optimization [23] operate on the design
variables rather than on their probability distributions.

Using the PC algorithm makes the designed control ro-
bust, adaptive and distributable. The PC algorithm mini-
mizes the objective over all possible instances of noise and
disturbance. There is no initial assumption about construc-
tion of an objective function which can be easily modified
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(also during the flight) without updating the optimization
framework. The major benefit of the PC optimizer is that
the whole optimization process can be distributed among
several agents controlling airplanes — several parts can be
performed simultaneously. The PC algorithm has already
been successfully deployed for the flight vehicle control [5] —
a large number of small, simple, trailing-edge devices con-
trolling vehicle dynamics.

The next contribution of the paper is in comparison of
two implementation approaches to the described problem:
multi-agent and Process Integrated Mechanism (PIM). In
the first approach (Section 4) each optimized variable from
PC is mapped to one agent controlling one airplane. This
approach can fully profit from a parallelized execution of
the PC optimization, but on the other hand it requires a
complex negotiation protocol. The PIM approach (Section
5) replaces negotiation with migration in the respective air-
plane group and the whole PC algorithm is performed only
by the PIM process. However, in our approach the PIM
process is required to migrate during the optimization pro-
cedure because airplane model restrictions are not shared
among them.

Both approaches have been implemented in the AGENT-
FLY system — a scalable, agent-based technology for free-
flight simulation, planning and collision avoidance [25]. The
default airspace simulation based on complex flight plans
[27] has been replaced by airplane models reacting to a given
control action (e.g. change heading) resulting from the op-
timization process specified above. Experiments comparing
properties of both implementation approaches and studying
their integration complexity as well are provided in Section
7.

2. PROBABILITY COLLECTIVES

Details about the Probability Collectives (PC) theory ap-
plicable to an optimization problem with discrete variables
are provided in this section. The unconstrained optimization
problem is defined as

(1)

argmin G(T) ,
TEX

where G is the objective function and T = (x1,x2,...xN) is
the variable vector, also called joint move T € X. The PC
theory can be viewed as an extension of the conventional
game theory. There exists a game with N players i € Z. A
mixed strategy of the player i is a probability distribution
qi(z;) over player’s possible pure strategies (a definition set
of z;) [12]. Each player i chooses a value of the variable
z; independently by sampling ¢;(x;). There is no direct
communication between players in the game. Players learn
to cooperate through repeated plays. All coupling among
players occurs indirectly — their probabilities are updated
using the received reward based on the objective function
G(Z) combining all variables. The probability distribution
of the joint-moves q(T) is

¢@) = [[as(as) -

i€T

(2)

Bounded rational players [11] balance their choice of the
best move with the need to explore other possible moves.
Information theory shows that the equilibrium of a game
played by bounded rational players is the optimum of a La-
grangian of the probability distribution of the agents’ joint-
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moves [31, 32]. This equilibrium corresponds to at least a
local minimum of the original objective function G. The
expected world utility of all players with a common world
utility G under given players’ distributions ¢;(x;) is

E,(G(@) = Y [C@]]ai(e)] -

TEX i€

3)

In the Nash equilibrium, every player adopts a mixed strat-
egy that minimizes its expected utility with respect to the
mixed strategies of the others. The Nash equilibrium as-
sumption requiring full rationality (every player can calcu-
late strategies of the others) is replaced by the information
available to the players. This amount of information is the
negative of the Shannon entropy [24]' of the distribution

q(z)
S(q) ==Y [q(@) [g(@)]] .

TEX

(4)

Using the maximum entropy principle (Maxent) [18], each
player searches for the probability distribution ¢ that mini-
mizes the expected utility

(5)

subject to S(q) = s, >_, cx, ¢i(z:) = 1 and gi(z;) > 0 for
each i € 7, where s is the current level of uncertainty. From
the gradient-based optimization we have to find the critical
point of the Mazent Lagrangian

L£(q,T) = Eq(G(7)) + T[s - S(q)] , (6)

where T is the Lagrange parameter (also referred to as the

argmin E.(G(T)) ,
q

temperature). We need to find ¢ and T such that 25 = 2% —
dq oT
0.
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Figure 1: Iterative procedure lowering E,(G(%)) [4].

The algorithm lowering E,(G(T)) is an iterative procedure
of the following steps (see Figure 1, [4]):

1. Initialize the value of the Lagrange parameter 7T

2. Minimize the Lagrangian £(q,T") with respect to g at
specified T' (sample the system, update the probabili-
ties).

3. Reduce the value of T and repeat from Step 2 until
g converges (g does not vary more than the specified
threshold for a couple of iterations).

!The distribution with minimal information is the one that
does not distinguish at all between the various z and the
most informative distribution is the one that specifies a sin-
gle possible x.
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4. The 7 selected according to the final g is the solution
of Equation 1.

The sequence lowering T' is the annealing schedule, in ref-
erence to the Simulated Annealing [2]. For a given T', each
player ¢ optimizes

Li(qi, T) = ‘%:X‘[qz'(ﬂfi)E[Gmﬂ —TS(q:)
= X [ai(@) 1 la(@)G(i, ;)]

T €X; JEL,jFi

=T 3 lgi(z:) Infgi(z4)]]

x, EX;

(7)

The function £; is convex, has a single minimum in the inte-
rior, the temperature T" controls the trade-off between explo-
ration and exploitation [32]. The first term >__ . [qi(z:)
E[G|xz;]] in Equation 7 is minimized by a perfectly ratio-
nal player while the second term 7'S(g;) is minimized by
a perfectly irrational player (by a perfectly uniform mixed
strategy ¢;). In the limit, ' — 0, the set of ¢ that simulta-
neously minimizes the Lagrangian is the same as the set of
¢ minimizing the objective function G.

3. PROBABILITY COLLECTIVES FOR
COLLISION AVOIDANCE

The problem of detection and removal of collisions in a
group of airplanes is included in the optimal control prob-
lem. The optimal control problem is formulated as finding
the control inputs (heading changes) which minimize a com-
mon objective function that penalizes deviations from target
oriented controls (fly to their desired way-points) and colli-
sion occurrence (based on the required separation distance).
The optimization is subject to constraints which ensure that
the control inputs are within the flight envelope limitations
(e.g. the maximum angular velocity of heading changes). It
is supposed that all airplanes can communicate together and
always participate in the running PC optimization? which
is invoked regularly after a given interval At.

For simplicity of description, it is supposed that there are
N airplanes A = (A1, Az,... An) which are flying at the
same flight level and this level is not changed during the
flight and the control action x; for every A; is defined as a
tuple {(w;, g;), where w; is the heading angular velocity and
gi € {0,1} specifies whether an action is taken considering
the entire future trajectory (g; = 0) or just for the next inter-
val At and then proceeding to the airplane’s target (¢; = 1).
Cruise speeds v; of all A; are fixed. For each A;, the next tar-
get way-point w; is specified. The function pos(A;) returns
the current position p,,. Whenever the Euclidean distance
P 4,0 w;| is below the specified tolerance, w; is accomplished
by the airplane A;. In this case, W; is set to the next mission
way-point of A; if there is any. If its final mission way-point
has been already reached, the A; is removed from the set of
existing airplanes A. The separation distance R; specifies
that there should not be any other airplane closer than R;
to A;.

For each PC optimization, the definition set &; for z; con-
tains 2m; + 1 control actions®. There are m; actions with

2 Alternatively, there can be running several separate inde-
pendent PC optimization covering airplanes within commu-
nication range, as there are no mutual influences between
distant airplanes due to the look ahead limitation in the
construction of objective function.

3The PC optimization objective function is based only on
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w; values evenly selected from an interval (—wi***, wi™*®)

with g; = 0 (repeated application of w;), m; actions with
w; values selected the same way but with g; = 1 (a single
application of w; and then proceeding to w;) and the sin-
gle action ", The w** bounds the maximum available
angular velocity, m; is an odd integer greater than 2 (this
ensures that the straight flight manoeuvre is included) and
x9P" is an optimal control action with respect to the specified
At navigating A; directly to w;. Actions in the set X; are
ordered by w; values (it does not matter whether ascending
or descending).

The AT is a general parameter for all A defining the future
trajectory sampling interval. The function f;(z;, k) returns
the future position of A; after k intervals A7 when A; applies
the action z; considering its current position pos(A;) and
A; constraints. The common objective function G(Z) used
for evaluation of joint samples in the PC optimization is

G@@) = GN(T) + oG (T) . (8)

It consists of two parts which are summed together using a
balancing factor c. The G penalizes separation violation
among all A using planned future positions and requires
separation distances. It is computed as

Gol@) =Y ¥ G (wi,xs),
ATEAAIEA,
Aj£A;

G (i, x5) =
kmal’

Z ﬁ(kil)[maX(Ri - |f1(m27 k)vfj (xj7 k)'a 0)]2 )

k=1

9)

where the factor 8 € (0, 1) is used for balancing the penalty
between earlier and later collisions (smaller 3 penalizes more
earlier separation violations) and the k4. defines the look-
ahead horizon which is reflected in the objective function.
The second part of the objective function G®* penalizes
deviation from airplanes’ optimal trajectories to their next
way-points,

Gdev(f) — Z G?GU(CL‘Z‘) s
A;eA
G (i) = [fi(2i, kmaz) — £:(277", kmaz)]® -

3

(10)

The deviation is expressed as the Euclidean distance be-
tween the position at the end of the look-ahead horizon kp,qq
after applying the evaluated action and the optimal control
action in the case when other airplanes are not considered.

4. MULTI-AGENT APPROACH

The Probability Collectives approach is usable for dis-
tributed stochastic optimization using Multi-Agent Systems
[3]. Collectives in the PC algorithm can be taken as groups
of self-interested, learning agents that act together to min-
imize the objective function (Equation 1), see Figure 2.
Each variable is maintained by one agent. Thus, each agent
searches for the optimal action for one airplane (Section 3).
In this section, A; € A denotes the agent providing control
to airplane A;. Each A; keeps the current probability distri-
bution ¢; for its action variable z;. Computation of the ex-
pected utility value (value of the common objective function

the current control input w; and do not consider any future
control changes after At. Thus, such extension provides
wider chance to select given action which is anyway updated
in next optimization after At.
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G(@), Equation 8, and the convergence test requires cooper-
ation of all agents. Sampling and updating of all variables in
the iterative procedure of the PC algorithm are performed
independently. ‘ﬂ'

Plane
Agent 2

-

exchange of common
objective function

components,
y A v
synchronization
Plane » | Plane
Agent1 | « Agent 3

X X

Figure 2: Multi-agent implementation of Probabil-
ity Collectives.

The A; is configured using several airplane-oriented pa-
rameters: the maximum available angular velocity w;***,
the number of discrete steers m; and the separation distance
R;. Moreover, the A; manages its given mission and defines
the next way-point w;. All A; use common configuration
parameters: the size of the sample block in each iteration
Nsp, the look-ahead horizon k4., the look-ahead step in-
terval A7, the balancing factor «, the collision penalty time
factor § and the annealing schedule parameters.

Algorithm 1 presents a distributed implementation of the
PC optimization procedure executed by each agent. The
same algorithm is invoked regularly with At period based
on the current time for all airplanes. It is required that all
airplanes have their time synchronized with an error much
smaller than At. First, each agent performs an initial setup
of the optimal action 2?7*, definition set X;, probability dis-
tribution ¢; as uniform discrete distribution over X; and tem-
perature T (lines 1-4).

The iterative optimization loop lowering E4(G(Z)) from
Figure 1 is implemented at lines 5-26. Agents prepare sam-
ple blocks s; (Nsp actions selected from X; using Monte-
Carlo sampling) and prediction points pred; (for each action
in s; agents apply function f;(z;, k) where k = 1..kmaz ), lines
6 and 7. Then agents exchange their pred;, lines 8 and 9.
Computation of the common objective function G(Z) (equa-
tions 8, 9 and 10) for each joint action T in sample block s;
is distributed among all agents. Each agent A; computes G;
of the rewritten objective function

G@) = Y Gi(T),
AEA
Gi(T) = oG (z:) + > G (wi, a5) .

AjeA
Aj#A;

(11)

The deviation part of the objective function G¢¢¥ (z;) is pre-
pared at line 10. Each agent waits for other sample block
predictions from A\A; agents and adds the collision part
of the objective function for each processed pred;, lines 11—
15. After processing all predictions each agent has the value
G;i(z) for each sample block action and it sends these val-
ues to all others agents, lines 16 and 17. Then, the agent

Input: A
Output: w;
{1} 2" « Optimal action(w,);
{2} X; < Get =x; definition set(w!™*®, m,, z7");
{3} qi < Get initial distribution(X});
{4} T < Initialize temperature;
{5} while true do
{6} $i[NsB] < Sampling(X;, gi, NsB);
{7} pred;[NsB X kmaa| < Predictions(si, kmax);
{8} wait_set — A\ A;;
{9} Send (pred;, wait_set);
{10} G:[Nsp] « Own dev cost(pred;, 7°, a);
{11} while wait_set # () do
{12} Aj,pred; < Fetch other predictions;
{13} G < Add col cost(G;, R;, B, pred;, pred;);
{14} wait_set «— wait_set\Aj;
{15} end
{16} wait_set — A\ A;;
{17} Send (G;, wait_set);
{18} while wait_set # () do
{19} Aj,Gj < Fetch other costs;
{20} G; < Add costs(Gy, Gj);
{21} wait_set «— wait_set\ Aj;
{22} end
{23} qi < Update distribution(X;, ¢, si, Gi, T);
{24} T < Update temperature(7);
{25} if Converged(G;) then break;
{26} end

{27} return Sample final control(X;, ¢;);
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Algorithm 1: Agent PC optimization pseudocode

waits for all other parts and sums the values into G;, lines
18—22. At this point, all agents have the same values of the
objective function evaluation in their G;.

Update of the agent probability distribution minimizing
Lagrangian £;(q;, T') with the current T is done at line 23.
Then the temperature T is decreased according to the com-
mon annealing schedule, line 24. The convergence test of
the iterative optimization procedure is done simultaneously
by all agents, line 25. It is not necessary to communicate
during this phase as all agents have the same G(T) values.
Finally, the agent selects the final control according to its
stabilized probability distribution g;, line 27.

5. PROCESS INTEGRATED MECHANISM
APPROACH

The Process Integrated Mechanism (PIM) [10] is a novel
architecture which enjoys the advantages of having a sin-
gle controlling authority while avoiding the structural diffi-
culties that have traditionally led to its rejection in many
complex settings. The core idea of PIM is to retain the per-
spective of the single controlling authority but abandon the
notion that it must have a fixed location within the system.
Instead, the computational state of the coordinating process
is rapidly moved among the component parts of the PIM.

The PIM model consists of a single Coordinating Process
(CP) and a set of Components each capable of running the
CP. The CP cycles among the components at a speed that
is sufficient to meet the overall coordination needs of the
PIM (e.g. so the planes can coordinate their reaction to
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new events in a timely manner), see Figure 3. The time
that CP runs on a component is called its Residency Time.
Each component maintains the code for CP, so the control-
ling process can move from component to component by
passing only a small run-time state using the mechanism of
strong mobility [28]. The underlaying PIM runtime system
manages the actual movement of the CP across the compo-
nents, and presents the programmer with a virtual machine
in which there is a single coordinating process operating with
a unified global view where, in fact, data remains distributed
across the components.

_ »i Coord. i
v : Process : ~
/ N\
/ Migration of \
PIM coordinator

1 v
Coord. Coord
Process | « — — — — g__[:_’_r_c_)_c_:g_s__s___g

X X

Figure 3: Process Integrated Mechanism approach
to Probability Collectives.

The PIM model can be viewed as the inverse of "time shar-
ing.” Time sharing models revolutionized computing because
they allowed multiple processes to run on the same com-
puter at the same time as though each was the only process
running on that machine. The programmer could construct
the program with no concern for the details of the process
switching that is actually happening on the processor. To
the programmer it is as though their program has the entire
processor, even though in reality it is only running in bursts
as it is switched in and out.

The PIM model, on the other hand, provides the reverse.
To the programmer it still appears that there is one program
controlling all the components, but the CP is actually cy-
cling from component to component. Even further, it is as
though the memory and data available on each processor is
also always available, as in a distributed memory system. In
other words, the set of components appear to be a single en-
tity (e.g. a PIM). The programmer needs not be concerned
with the details of the process moving among the proces-
sors. In the time sharing model, it is important that each
process is run sufficiently frequently to preserve the illusion
that it is constantly running on the machine. Likewise, with
the PIM model, it is important that the CP runs on each
component sufficiently frequently to react appropriately to
any changing circumstances in the environment.

There are two implementations of JVM supporting PIM
concept natively. The first implementation is based on the
Aroma VM [29], which provides the necessary primitives
to asynchronously capture and move the execution state
of threads running inside the VM. Aroma allows the cap-
ture and migration of the CP between any two Java byte-
code instructions, thereby providing fine-grained and accu-
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rate control over the residency time of the CP at each node.
However, Aroma does not provide a Just-in-time Compiler,
thereby providing less performance than other VMs. The
second prototype implementation is based on the Mobile
Jikes RVM [6, 21], which is a modified version of the Jikes
Research VM developed by IBM. The state capture mech-
anism provided by the Mobile Jikes RVM is not as fine-
grained as Aroma. However, the Jikes RVM provides a
Just-in-time Compiler, thereby providing performance that
is close to the commercial Java VMs.

6. PIM AS MOBILE AGENT

Evaluation experiments were performed using the AGENT-
FLY system which requires at least Java 1.6. Thus we do
not modify AGENTFLY to run on Aroma or Jike RVM.
For these reasons we decided to implement the PIM control
concept as a mobile agent (MA). The AGENTFLY system
is built on top of AGLOBE multi-agent platform [26]. The
migration in AGLOBE uses a weak mobility — a mobile agent
moves from one entity to another with some data in the net-
work upon its own request. It is based on messaging. When
MA intends to migrate, the state of the agent is saved and
is serialized using the JVM methods. The serialized state
of the agent is then migrated to the next entity where the
agent is restarted. The agent is migrated with its knowledge,
stored in internal structures of the agent. The code for the
agent can be already present on the target computer, thus
during migration AGLOBE verifies its version. The detailed
description of migration of agents can be found in [26]. In
contrast, the original PIM approach exploits strong mobility
(or thread migration), that allows a thread to transparently
transfer its execution to another JVM, along with its com-
putational state.

Traditionally, the PIM’s CP runs on each component for a
specified residency time. This time specifies how long the CP
resides on each component and its amount of computation
it can do. There is a trade-off between the reactivity of PIM
and this amount of computation. A longer residency time
reduces the total fraction of time lost to transmission delays,
thereby increasing the computational efficiency of the PIM
at the cost of increasing the latency of the CP as it moves
among components, thereby decreasing the coordination and
reactivity of the PIM. Conversely, a shorter residency time
enhances the system’s ability to coordinate overall responses
to new and unexpected events since the overall cycle time
of the CP will be shorter. But as we reduce the residency
time, we increase the ratio of the overhead associated with
moving the CP and thus decrease the computation available
to the PIM for problem solving.

In the MA implementation we do not prefer to migrate
the agent in specified time slices. The MA is migrated when
the computation of each step of the PC algorithm is finished.
The MA is notified when it has migrated to another host and
requests the data it needs for computation (e.g. samples or
future plans), then the computation is started. When the
computation is finished on the host, MA migrates to another
host.

The main advantage of the PIM is simplified development
of coordination processes. In PIM implementation of PC, we
run only one instance of CP in the group of entities and we
don’t need to solve synchronization issues. In fact, there is
one implementation of PC algorithm (Section 3) distributed
among all airplanes. Using the PIM concept, the paralleliza-
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tion benefits of the coordination algorithm cannot be used.

7. EVALUATION

The Probability Collectives algorithm for collision avoid-
ance was tested with the distributed multi-agent approach
(Section 4) and semi-centralized Process Integrated Mecha-
nism (Section 6). Both approaches use the same PC algo-
rithm with differences in the coordination part of the al-
gorithm. In the multi-agent implementation, distributed
message-based negotiation is utilized and in the PIM im-
plementation the centralized migrating agents is exploited.

g

Figure 4: The super-conflict experimental setup
with 10 airplanes. The diameter of the circle where
the start and goal way-points are located is 13 km.

We performed a set of repetitive tests for comparison of
both methods. A sequence of 20 repetitive runs in a super-
conflict configuration (see Figure 4) with a varying number
of airplanes (from 2 to 10) was carried out for each method.
The parameters were set as follows: Nsp = 20, o = 1,
B =0.995 At =5 s, AT =18, kmas = 125, v; = 35 m/s,
w® =4 °/s, m; =5 and R; = 500 m. Airplane param-
eters vi, w;"**, m; and R; are the same for all airplanes in
the configuration.

In Figure 5, the time spent in all optimizations for given
configuration is presented. The presented time sums the du-
ration required for all PC optimizations which are started
regularly each 5 seconds during the flight simulation. The
PIM approach consumes much more time than the multi-
agent approach. This is caused by the fact that only one co-
ordinator is running in the PIM architecture. The measured
time also includes the time required for the coordinator’s mi-
gration. The number of required migration loops increases
with the number of airplanes in the configuration and the
size of coordinator knowledge base increases as well. All
other airplanes waste their time when they are not hosting
the coordinator process. The time decrease for configura-
tions with 5 and 6 airplanes is caused by a lower number of
PC algorithm loops before it converges to the solution. The
same decrease was observed also in the multi-agent imple-
mentation.
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Figure 6: The overall number of messages exchanged
among all agents in the given configuration (aver-
aged from 20 repetitive runs).

In Figure 6, the overall number of messages required for
coordination behavior of all airplanes is shown. The num-
ber of messages required for the PIM approach is lower than
in the distributed implementation, because each message in
PIM means one jump of the coordinating process. As the
multi-agent approach is using the complex negotiation pro-
tocol, this approach needs more messages for PC optimiza-
tion.

Figure 7 presents the total amount of message flow among
all airplanes required for their coordination in the given sit-
uation. The PIM approach has much higher message flow in
the system. As the PIM coordinator collects data from all
entities in the system, the required amount of transmitted
data is higher than in the distributed implementation. In
each step, the PIM coordinator receives a new set of data
from each entity and this information must be stored and
transferred to other entities. Thus this causes high transfers
of knowledge. This problem is tightly coupled with the over-
all speed of the system. In each PIM coordination step, this
knowledge must be serialized (see implementation details in
Section 6) and this slows down the response of the system.
On the other hand, the multi-agent approach can utilize
multi-casted messages which can further save the communi-
cation bandwidth especially in the configuration with more
airplanes.

The presented evaluation compares two different approaches
for solving Probability Collectives optimization for collision
avoidance coordination of airplanes. Based on the experi-
mental evaluation only, the multi-agent approach utilizing
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Figure 7: Total communication flow among all air-
planes (averaged from 20 repetitive runs).

the parallelization opportunity of the algorithm is much
more efficient for this coordination algorithm. The main
disadvantage of the PIM approach is the size of knowledge
required for coordination. Not all migrating knowledge is
necessary at every airplane. Moreover, the loss of paral-
lelization wastes available computational power of all other
entities, where the coordinator is not present.

Issues were also identified with the scalability of the PIM
approach. In the configuration with 5 and more airplanes,
it is almost impossible to compute the optimal solution for
collision avoidance in a reasonable time interval (see Fig-
ures 7 and 5). The presented values can be slightly affected
by the chosen PIM implementation as a mobile agent. In
the case where the PIM coordinator will be implemented in
one of the PIM frameworks, the values for the total flow
in the system will be almost the same, because the mobile
agent implementation uses externalization approach mini-
mizing the size of the serialized agent to its minimum. On
the other hand, the strong mobility in native PIM frame-
works will provide higher performance. This doesn’t affect
the coordination performance as the computational power
is not as constrained as the available communication band-
width among airplanes.

8. CONCLUSION

The paper addresses the problem of automated decentral-
ized collision avoidance among cooperating airplanes. The
conflict resolution task has been defined as an optimization
task specified by a common objective function. The required
control actions for all airplanes are defined as input variables
of the objective function. The Probability Collectives (PC)
stochastic optimizer is used for optimization of the objec-
tive function. Its use makes the optimization robust against
noise and introduces a potential for distribution.

The presented collision avoidance approach has been im-
plemented in two different versions: multi-agent (MA) and
process integrated mechanism (PIM). The MA implemen-
tation requires transformation of the main PC optimization
algorithm that is executed by several agents in parallel. Syn-
chronization parts have to be carefully inserted in the im-
plementation and the common objective function has to be
optimally split among all agents so that minimum parts are
computed by more agents redundantly. The PIM approach
is clearly straight-forward as the PC optimization algorithm
is implemented as a semi-centralized part migrating among
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airplanes in a loop. Such implementation is very fast and
does not require any modification of the algorithm.

During an experimental evaluation of both implementa-
tions, it was identified that the price for the complex multi-
agent implementation is compensated by the implementa-
tion performance. Especially in the configuration with higher
number of airplanes, the PIM approach becomes unusable
for real-time coordination as the communication flow in-
creases quickly in this specific case. However, advanced tech-
niques can be applied to provide better performance also for
larger coordination groups. For example, a large group of
airplanes can be divided into several smaller airplane groups,
introducing some kind of hierarchy to the coordination. It
means that each of these smaller groups is controlled by
its own low-level PIM coordinator and group-to-group co-
ordination is done by a high-level PIM process migrating
between these groups. This is possible mainly in the coor-
dination tasks where the algorithm can be split into several
parts without any impact on the coordination goal.
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