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ABSTRACT

Security is a concern of major importance to governments and com-
panies throughout the world. With limited resources, complete cov-
erage of potential points of attack is not possible. Deterministic al-
location of available law enforcement agents introduces predictable
vulnerabilities that can be exploited by adversaries. Strategic ran-
domization is a game theoretic alternative that we implement in
Intelligent Randomization In Scheduling (IRIS) system, a software
scheduling assistant for the Federal Air Marshals (FAMs) that pro-
vide law enforcement aboard U.S. commercial flights.

In IRIS, we model the problem as a Stackelberg game, with
FAMS as leaders that commit to a flight coverage schedule and
terrorists as followers that attempt to attack a flight. The FAMS
domain presents three challenges unique to transportation network
security that we address in the implementation of IRIS. First, with
tens of thousands of commercial flights per day, the size of the
Stackelberg game we need to solve is tremendous. We use ERASER-
C, the fastest known algorithm for solving this class of Stackelberg
games. Second, creating the game itself becomes a challenge due
to number of payoffs we must enter for these large games. To ad-
dress this, we create an attribute-based preference elicitation sys-
tem to determine reward values. Third, the complex scheduling
constraints in transportation networks make it computationally pro-
hibitive to model the game by explicitly modeling all combinations
of valid schedules. Instead, we model the leader’s strategy space
by incorporating a representation of the underlying scheduling con-
straints.

The scheduling assistant has been delivered to the FAMS and is
currently undergoing testing and review for possible incorporation
into their scheduling practices. In this paper, we discuss the design
choices and challenges encountered during the implementation of
IRIS.
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1. INTRODUCTION
Transportation networks such as buses, trains, and airplanes carry

millions of people per day to their destinations, making them a
prime target for terrorists and extremely difficult to protect for law
enforcement agencies. In 2001, the 9/11 attack on the World Trade
Center in New York City via commercial airliners resulted in USD
27.2 billion of direct short term costs [11] as well as a government-
reported 2,974 lives lost. The 2004 Madrid commuter train bomb-
ings resulted in 191 lives lost, 1755 wounded, and an estimated cost
of 212 million Euros [5]. Finally, in the 2005 London subway and
bus bombings, 52 innocent lives were lost, 700 others injured, and
an estimated economic cost of 2 billion pounds [17].
In addition to security checkpoints prior to boarding the vehi-

cle, patrols aboard the vehicles are another key defensive measure
used by many organizations to provide law enforcement in these
domains [4, 9]. In all of these networks, there are hundreds or
thousands of vehicles to protect, making it difficult to create pa-
trol schedules at all. Furthermore, since motivated aggressors will
attempt to observe law enforcement patterns and try to exploit the
schedule, law enforcement organizations have embraced the use of
randomization in their scheduling practices. Also, in all of these
networks, it is not possible to simply assign law enforcement per-
sonnel to vehicles in isolation without considering the route the
vehicle takes as well as departure and arrival times. As a simple
example, we cannot ask an officer to board and protect a 10:00AM
flight from New York to Los Angeles as well as a 10:30AM flight
from London to Chicago.
Thus, three primary challenges must be overcome by any method

of randomizing law enforcement in transportation networks: (i) the
runtime of solution methods are often prohibitive due to the scale
of the problems; (ii) the number of inputs required under many
solution methods is also often prohibitive due to the scale of the
problem; (iii) the scheduling constraints of a transportation network
must be obeyed in any schedule created.
One obvious method of randomization is a dice-roll approach

where we protect each target with the same probability. However,
in a realistic situation, some targets are valued more highly than
others. If a security organization patrols every target with equal
probability, an intelligent attacker will undoubtedly choose the tar-
get with the highest value, as this will have the highest expected
payoff. Knowing this, the defenders should place more emphasis
on protecting the high-value target to decrease the expected value
that the attacker has for attacking it. Indeed, we could random-
ize based on the target values instead of uniformly. This strategy,
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which we show to be superior to a uniform random strategy, fails
to account for how the attacker will update his strategy based on
knowledge of the defender’s strategy.

An alternative methodology would be to use a non-game theo-
retic approach to modeling and solving the problem, such as learn-
ing andMDP’s as done by Ruan et al. [15]. As part of this work, the
authors model the patrolling problem with locations and varying
incident rates in each of the locations and solve for optimal routes
using a MDP framework. Such a framework could account for the
differing values of targets in the transportation network problem
and their use of multiple patrol routes to introduce unpredictabil-
ity to insurgents seems to address the majority of issues we face.
However, their strategy still fails to account for attackers updating
their strategy after observing the defender’s strategy.

This presents a problem for the security policy because it was
generated based on a given frequency of attacker appearances in
each of the locations. When the security policy is enacted, how-
ever, an intelligent attacker that observes the policy will adjust his
behavior and begin to attack locations that were weighted with less
security due to the relative infrequency of attacks there previously.

To alleviate this problem, another method would be to have a
human create randomized schedules and weight his coverage of the
targets based on their value as well as beliefs about attacker re-
sponse behavior. However, studies have shown that humans are
poor randomizers and can fall into predictable patterns [20]. Fur-
thermore, in large domains like transportation networks, the man-
hours of labor that must be spent to perform a randomization that
factors varying target values and attacker behavior by hand would
likely be prohibitively large.

Another possibility would be to use a game-theoretic method.
The ARMOR program that is currently deployed at Los Angeles
International Airport is one possible tool [14]. ARMOR random-
izes checkpoints and canine patrols using a Bayesian Stackelberg
game model and solves for the optimal randomized strategy for the
defender. When we model the security game as a Bayesian Stack-
elberg game, we are able to input different payoff values for each
of the targets, which allows us to account for varying target val-
ues in the real domain. The use of a set distribution of coverage
probabilities prevents human predictability from compromising the
system. Finally, the Stackelberg framework inherently accounts for
the attacker’s response to the defender’s policy.

However, while the approach provides a starting point for ad-
dressing the transportation network problem, the three challenges
unique to this domain remain. The DOBSS algorithm at the heart
of ARMOR does not scale well and would not be able to handle the
size of transportation network problems in a reasonable timeframe
[10]. Scale also presents an issue for inputing values. In the AR-
MOR system, domain experts individually specified payoff values
for each of the targets directly. In a transportation network, this
could come to tens of thousands of values versus the 10s of values
that we had at LAX. Also, the method of game modeling we used in
ARMORwill not realistically be able to handle the hard scheduling
constraints that we must account for. We outline the primary dif-
ferences between the LAX domain and the FAMS domain in more
detail in Section 2.

We provide three key contributions in the implementation of IRIS
that revolve around the application of new representations and al-
gorithms to the transportation network domain that allow us to
generate randomized schedules in reasonable timeframes. First,
we use a new, more efficient, MILP for modeling the Stackelberg
games to overcome runtime issues that arise due to scale. Second,
we introduce an attribute-based preference elicitation system for
risk/reward assessment of potential targets that allows us to avoid

requiring user inputs for every individual target [7]. Finally, we
model the game with defender actions that incorporate the schedul-
ing constrants, which allows us to accurately model and resolve the
scheduling constraints issue without combinatorially exploding the
actionspace.

Our work is an application of recent advances in multi-agent re-
search in security/patrolling problems and optimal equilibrium al-
gorithms for solving games [10] to a major security problem in the
real world. Patrolling problems in general have received much at-
tention in multi-agent research due to the variety of applicable do-
mains such as robot patrol and border patrolling of large areas [4,
20]. Game theoretic advances, specifically in solving Stackelberg
games [8, 16], have ultimately led to successful work in security
policy randomization using a multi-agent systems framework [12,
13] and the recent deployment of the ARMOR system at LAX. As
we develop more sophisticated techniques for solving these games,
we will be able to address larger and more difficult problems in the
real world that we could not previously handle. The creation of
IRIS for the FAMS is an example of new advances in multi-agent
research allowing us to solve a real-world problem that could not
realistically be solved with previous techniques.

2. FEDERAL AIR MARSHAL SERVICE
The Federal Air Marshal Service (FAMS) domain is a particular

instance of a transportation network security problem. The FAMS
places undercover law enforcement personnel aboard flights origi-
nating in and departing from the United States to dissuade poten-
tial aggressors and prevent an attack should one occur [2]. Strategic
randomization based on game-theoretic principles provides a possi-
ble method for creating a coverage schedule that avoids the pitfalls
of a deterministic strategy.

Variation in target risk and value is extremely apparent in the
FAMS domain. While many flights are overbooked, there are some
flights with no passengers that are simply flying to a destination for
a subsequent flight. Similarly, while some flights fly over densely
populated areas, others do not. Also, while a particular subset of
flights might be low risk at one point in time, they could become
high risk at another time due to a special event [1]. We must some-
how account for these variations between flights in our random-
ization of law enforcement forces if we hope to utilize resources
effectively. We model this as a Stackelberg game, as in ARMOR
[14].

However, the three problems unique to transportation networks
remain and cannot be handled by the ARMOR system. Whereas
ARMOR handles 10 terminals at the LA airport, the FAMS must
protect tens of thousands of commercial flights per day. As shown
in Kiekintveld et al. [10], the DOBSS algorithm at the heart of
ARMOR cannot handle problems of this magnitude. Also, in AR-
MOR, domain experts have to enter four payoff values for each of
the 10 targets in the domain. Asking the same thing of the FAMS
would require tens of thousands of values to be entered by hand,
likely introducing user-error and a potentially prohibitive time bur-
den for each scheduling cycle. Finally, at LAX, we randomize fixed
checkpoint locations and canine patrols that only need to be given a
set of times and locations to be. The only constraints on resources
is the number of checkpoints and canines available to the system.
In the FAMS domain, we have hard scheduling constraints due to
the fact that they are patrolling moving vehicles and not fixed lo-
cations. For example, asking law enforcement personnel to cover
a flight from El Paso to New York might not be possible without
someone first flying to El Paso from somewhere else if there are
simply no personnel that normally reside in El Paso. In generating
a schedule for coverage, we need to be mindful of such constraints.
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Thus, the FAMS domain presents all three challenges that must
be overcome in a practical implementation of a randomized schedul-
ing assistant for a transportation network: (i) runtime issues due to
scale; (ii) preference elicitation issues due to scale; (iii) scheduling
constraints.

3. BACKGROUND
The primary contribution of this work is in the application of

game-theoretic methods to the FAMS domain and overcoming chal-
lenges encountered during implementation. Here, we lay the ground-
work for our decision to use Stackelberg games in this effort. In
Section 5 we will go on to detail how we map the FAMS domain
into a Stackelberg game and the challenges encountered during the
process.

A Stackelberg game allows us to create a randomized schedule
while taking into account varying values of the targets and the fact
that adversaries act with prior knowledge of a security force’s poli-
cies. Since these are the basic challenges that we must overcome
in solving security games, Stackelberg games form the basis of our
approach. First, we describe Stackelberg games and the subtleties
introduced by the leader/follower paradigm. Next, we outline their
application to the security domain specifically. Finally, we give a
brief overview of the ERASER-C algorithm that we use to solve
these games.

3.1 Stackelberg Games
While Stackelberg games were first introduced to study duopoly

competition [18], they have since been recognized as a general
model of leadership and commitment. In Stackelberg games, there
are two players: a leader and a follower. The leader commits to a
strategy first, after which the follower makes his strategy choice.
While this may appear completely detrimental for the leader, since
the follower can act with full knowledge of the leader’s strategy,
the leader actually has a signficant advantage as well. To see this,
consider a game with the payoff table as shown in Table 1. If we
played this as a simultaneous game, the only pure-strategy Nash
equilibrium is when the row player plays A and the column player
plays C, giving the row player a payoff of 2. However, if the row
player was the leader and the column player the follower in a Stack-
elberg game, the leader can commit to a uniform mixed strategy of
playing each A and B half the time. This will force the optimizing
follower to choose action D, giving the leader an expected payoff
of 3.5.

The fact that the leader is able to force the follower into a specific
subset of the actionspace potentially gives the leader an advantage
in Stackelberg games. Indeed, it has been shown that being able to
commit to a randomized mixed strategy always weakly increases
the leader’s payoff in equilibrium profiles of the game [19].

C D
A 2,1 4,0
B 1,0 3,2

Table 1: Payoff table for an example normal form game.

3.2 Stackelberg Security Games
We now discuss how we map security games onto this frame-

work. In a security game, there exist two players; an attacker and a
defender that may have multiple types. As stated before, a defender
must perpetually defend the site in question, whereas the attacker
is able to observe the defender’s strategy and attack when success

seems most likely. This fits neatly into the description of a Stack-
elberg game if we map the attacker to the follower’s role and the
defender to the leader’s role [3, 6].
We can define the actions for the defender as the set of targets

that he chooses to defend. So, as shown in Table 2, action ‘1’ might
actually represent a decision to protect sites 1, 2, and 3. We refer
to this as a coverage set. For the attacker, the actions represent
which site to attack. Payoffs can be calculated based on the action
choices. If the attacker attacks a target that is in the defender’s
coverage set, then the attacker receives a negative payoff and the
defender receives a positive payoff where the magnitudes depend
on the value of the target. If the attacker attacks a target outside the
defender’s coverage set, then the attacker receives a positive payoff
and the defender receives a negative payoff. This is the approach
used in the ARMOR program at LAX [14]. ARMOR used the
DOBSS algorithm [12] to solve the resulting game for an optimal
mixed strategy for the defender, which would assign each coverage
set a probability of being used.

3.3 ERASER / ERASER-C
We briefly describe the ERASER (Efficient Randomized Alloca-

tion of SEcurity Resources) and ERASER-C (Constrained) meth-
ods for modeling these Stackelberg security games. Like DOBSS,
ERASER is a mixed-integer linear program. However, the addi-
tional insight that ERASER exploits is the fact that the payoffs in
these games do not depend on the coverage set being implemented,
but simply on whether or not the attacked target is in it. For ex-
ample, while we might have different types of defenders, the par-
ticular type of defender that protects a target does not impact the
payoff achieved. Also, whether or not an unattacked target is cov-
ered has no impact on the payoff either. This means that from a
payoff perspective, many coverage sets are actually identical and
we can represent the actions in terms of targets instead of coverage
sets.
In the previous representation which DOBSS operates on, if we

had 3 guards that could defend any of 10 sites, we would have
(103 ) = 120 actions. In the new representation, we simply have 10
actions, one for each target, and a probability distribution across the
targets that indicates how we distribute the 3 guards across them. In
Tables 2 and 3, we show the actionspaces for the example outlined
with DOBSS and then with ERASER.

Action Targets Prob.
1 1,2,3 p1

2 1,2,4 p2

3 1,2,5 p3

... ... ...
120 8,9,10 p120

Table 2: DOBSS.

Action Targets Prob.
1 1 p1

2 2 p2

3 3 p3

... ... ...
10 10 p10

Table 3: ERASER.

The first line of Table 2 indicates that, in the DOBSS represen-
tation, the first action has the three guards protecting targets 1, 2,
and 3 and we use the first action with a probability of p1. The
first line of Table 3 indicates that, in the ERASER representation,
the first action has a guard protecting target 1 with a probability of
p1. As can be seen, this compact representation idea combinato-
rially shrinks the actionspace of the game, providing tremendous
speed increases in solving these games. Although ERASER re-
quires some postprocessing to obtain a solution in the same form
as the DOBSS game, the postprocessing is compartively cheap.
ERASER-C takes this idea into a domain with scheduling con-

straints. Suppose we have 20 targets and 3 guards and the re-
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quirement that targets must be guarded as pairs in the set S =
{(1, 2), (3, 4), ..., (19, 20)}. In DOBSS, we would need to gener-
ate actions that represented all combinations of all valid schedules
instead of combinations of all valid targets as in the previous exam-
ple. In ERASER-C, we perform a similar aggregation to ERASER
and also include a mapping of schedules to targets. We then define
a defender’s strategy to be an assignment of resources to schedules
instead of an assignment of resources to individual targets as in the
previous case. In Tables 4 and 5, we show the actionspaces for the
example outlined with DOBSS and then with ERASER-C.

Action Targets Probability
1 (1,2),(3,4),(5,6) p1

2 (1,2),(3,4),(7,8) p2

3 (1,2),(3,4),(9,10) p3

... ... ...
120 (15,16),(17,18),(19,20) p120

Table 4: DOBSS.

Action Targets Probability
1 (1,2) p1

2 (3,4) p2

3 (5,6) p3

... ... ...
10 (19,20) p10

Table 5: ERASER-C.

This exponentially more compact representation allows
ERASER-C to solve this class of security games with scheduling
constraints exponentially faster than DOBSS and is discussed in
more detail in Kiekintveld et al. [10]. This makes it possible for
us to solve these large transportation network games in reasonable
timeframes, which we evaluate in Section 7.1.

4. SYSTEM ARCHITECTURE
The IRIS system consists of an input module, a back-end mod-

ule, a display/output module, and a project management module.
Figure 1 shows a generic diagram of the system, with grey boxes
representing modules and white boxes within them representing the
components of the modules. We now describe the modules as well
as the particular instantiations of these modules in the FAMS do-
main.

The input module is composed of four classes of inputs that are
required by the system in order to generate a representative Stack-
elberg game and create an optimal schedule. The first input is the
resource data. In the FAMS domain, this is the coverage ability
and number of FAMs, which we have chosen to model as loca-
tions, where each location has a specific number of FAMs who
can cover some subset of flights. The second input is the target
data. In this case, this is the flight data and includes all relevant
information about flights that the user considers during scheduling,
such as flight number, carrier, origin, destination, aircraft type, etc..
The third input is data required for risk assessment which will be
used by our attribute-based risk analysis engine that we will dis-
cuss in Section 5.1. Figures such as number of passengers, flight
path, city of origin, and city of destination are examples of relevant
risk data in the FAMS domain. Finally, we allow inputs for data
that can be used in the GUI to aid the user’s navigation and un-
derstanding of the system’s output. This might include alternative

Figure 1: Generic diagram of IRIS system.

naming schemes for airports and airlines, for example. A sample
input screen is shown in Figure 2.

Figure 2: Example input screen: Airport details.

The back-end module has six primary components. First, as we
will describe later in Section 5, we have a preprocessing engine that
uses the flight and resource information to create the set of all valid
flight schedules which serve as the defender’s targets in our sys-
tem. Along with the flight data, this forms the target definition for
the game. Second, we have a payoff generation process that com-
bines the target definition information with the risk data. Third,
we translate the payoff information into a Stackelberg game, rep-
resented as an MILP. Fourth, we include a generic MILP solver to
solve the MILP created via the ERASER-C model. Fifth, we pro-
duce a randomized schedule of probability weights for each target
based on the solution created by ERASER-C. Finally, we use the
randomized schedule to create actual sample schedules that can be
implemented by the FAMS.
This information is presented to the user via the display/output

module. The schedule created is shown in the interface with pop-
up windows as the user’s mouse moves over the targets, showing
more detailed information about each target. The user is also able
to output the schedule to a file which he can then use to analyze
the schedule in more detail as desired. The sample assignment of
FAMs to flight schedules is exactly a schedule that could be used by
the FAMS. At this point, the scheduling assistant allows the expert
using the system to create numerous sample schedules based on
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the same optimal mixed strategy or simply change the assignment
of FAMs to flight schedules by hand to create a final schedule that
meets the needs of the FAMS. Of course, the user can also adjust
any of the parameters entered and re-solve the game completely.

The final module, the project manager, is a project-based system
where the input files can be stored as a ‘state-of-the-world’, which
can then be loaded again for future use. The user can then specify
a default project for general operational use. If additional security
risks are known to exist for the upcoming scheduling cycle, the
user can alter the default project and save the new settings in case
a similar situation arises again in the future. If this occurs, the
user simply needs to load the previously saved project and all the
data will be loaded into the system automatically. This also ensures
proper record-keeping of the entire process of schedule-generation
for accountability purposes.

5. MAJOR CHALLENGES
Now we describe the process of mapping the FAMS domain into

a Stackelberg security game and the challenges encountered and
addressed during the process.

5.1 Describing the game
Although we have decided to cast the FAMS domain as a Stack-

elberg game, we still have not determined what to use as targets
or their payoffs. For this, we must consult with the experts in the
domain such as the current scheduler and/or field personnel to un-
derstand what risks and potential damages they see in their domain.
In addition to understanding the current scheduling practices, the
key questions to answer in this phase will be used to determine the
structure of the game, such as target definition, resource capabili-
ties and constraints, and risk evaluation for the targets. The answers
to this set of questions will allow us to determine the data required
as inputs to the IRIS system.

The first two items are much more straightforward to understand.
The difficulty that remains with defining the game is efficiently
gathering the risk data. While we could simply ask the user to en-
ter each of these risk numbers for every single flight, the attribute-
based nature of the problem lends itself to a much easier method.
Here we introduce an attribute-based preference elicitation system
for aggregating the risk data associated with targets.

We create a preference elicitation system based on the Threat,
Vulnerability and Consequence (TVC) model for estimating ter-
rorism risk [21]. In TVC, the risk of terrorism is broken down into
more easily estimated components and a formula is created to com-
bine them into an aggregate risk value. Thus, instead of asking the
user to calculate and input each flight’s overall risk values them-
selves, we can simply ask the user to input the risk/value numbers
for each of the components of risk that he would use to make the
calculation. From here we can create a vector of attributes for each
flight by automatically pulling in values that pertain to a flight. Us-
ing each of these vectors, we can specify a combination formula to
aggregate the information into payoff values for use in our Stackel-
berg game model. Since a given flight’s payoff value may be based
on a large number of attributes, we also allow the user to bypass this
system and directly edit the payoff value if required. This allows
the user to make quick corrections or changes if special situations
arise for individual flights.

During a restricted test run on real data, the attribute-based ap-
proach called for a total of 114 values to input regardless of the
number of flights. By contrast, there were 2,571 valid flights over
a week, each requiring 4 payoff values, summing to 10,284 user-
entered values without the attribute-based preference elicitation sys-
tem. The attribute-based approach clearly requires far fewer inputs

and remains constant as the number of flights increases, allowing
for excellent scalability as we deal with larger and larger sets of
flights. Equally importantly, attribute-based risk assessment is an
intuitive and highly-scalable method that can be used in any prob-
lem where people must distill numerous attributes of a situation
into a single value for a large number of situations that share the
same attributes.

5.2 Solving the game
We now describe in more detail the considerations involved in

addressing the scheduling constraint challenge mentioned in Sec-
tion 2 that we use ERASER-C to resolve.
Recall that we have a number of hard scheduling constraints in-

herent in the FAMS domain such as not being able to schedule a
FAM on a pair of flights from City A to City B and back if the re-
turn flight leaves before the arrival flight lands. These hard schedul-
ing constraints in the FAMS domain make the naïve formulation of
modeling every combination of possible schedules difficult to im-
plement. With tens of thousands of flights per day to consider,
the number of combinations of possible schedules explodes pro-
hibitively quickly as is discussed in detail in Kiekintveld et al. [10].
One reasonable approach to this issue would be to model the

problem with each ‘target’ representing a possible ‘schedule’ of
flights and simply preprocessing the flights into valid schedules be-
fore creating the game model. Thus, instead of a possible coverage
being ‘Flight 22 from City A to City B’, it might be ‘Flight 22 from
City A to City B and Flight 12 from City B to City A’, where each
flight schedule is a realistic sequence of flights that a FAM could
take that would also bring him home at the end of the schedule. The
defender would now simply need to determine an optimal coverage
strategy over the universe of flight schedules. The attacker would
do the same. However, this is no longer a true representation of
the domain. In reality, a potential attacker can actually choose to
attack individual flights, not only a sequence of flights, and restrict-
ing him to only attacking flight sequences changes the problem we
are solving.
An example that illustrates this problem can be constructed as

follows. Suppose there are four flights, A,B,C, and D, where flights
A and B are medium value, C is extremely high value, and D has
extremely low value. After constructing flight schedules, we find
that flights must be paired as A/B and C/D. Suppose that in our
valuation, the two medium-value flights come to the same overall
value assessment as a high-value paired with a low-value. Thus,
our strategy would be to defend both pairs with equal probability,
since an attacker evaluating the options would see the same two
equal-value options and be indifferent between the two.
However, an attacker might actually view flights individually be-

cause they may not have scheduling constraints. With defenders
spread evenly across all four flights, the attacker is clearly best off
attacking the highly-valued flight C. This should alter our strategy
so that we place more emphasis on the C/D flight pair than we did
previously to lower their expected payoff. Thus, the model of flight
schedules for attackers and defenders does not properly represent
the game and can lead to suboptimal strategies.
Instead, we model the scheduling constraints explicitly by pre-

processing the flights into valid flight schedules and incorporating
these in a compact way as described in Section 3.3. This alleviates
the problem of an exploding actionspace and allows us to solve
much larger games in reasonable timeframes. Thus, we are able
to simultaneously overcome the complexity introduced by schedul-
ing constraints and solve these games much more quickly than the
DOBSS method could have.
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6. ORGANIZATIONAL ACCEPTANCE
In real-world deployment of cutting-edge research, overcoming

organizational doubt and resistance is a critical and easily over-
looked aspect of the project. For example, if a new methodology
has too steep of a learning curve or is too dramatic a change from
the current methodology, it is very difficult for people to adopt.
If the new program requires significant infrastructure change in
order to incorporate it into other routines, it may simply not be
cost-effective to do so. Also, if people have trouble convincing
themselves that the new solution performs at least as well as the
existing solution, we cannot reasonably expect them to use it. We
now discuss three key points that contributed to our successful col-
laboration with the FAMS: adhering to current practices, ease of
incorporation, and error-checking.

In creating solutions for people, we must be cognizant of how
difficult it will be for a user to adopt our solution. Each deviation
from existing methodology is a step away from the familiar that we
must convince the user to accept. Instead of asking people to make
numerous and sometimes-unnecessary changes, minimizing these
differences and complexities can help pave the way towards a suc-
cessful implementation. For example, we spent months fine-tuning
IRIS’s interface until we achieved a look and feel that they were fa-
miliar and comfortable with. Changes included such things as what
information to display in the schedule, how to output the finalized
schedule, how to format the flight number and carrier name, termi-
nology to use, colors to use, logos, etc. While it is true that these
changes were all cosmetic and as researchers we may be tempted to
dismiss them, their importance cannot be stressed enough in real-
world implementation.

Similarly, because infrastructure changes are often costly and
time-consuming, ease of incorporating our work into their daily
routine is essential. In our case, the FAMS had a system fromwhich
they could extract flight information as for their current schedule
generation practices and then a set of tools for analyzing the sched-
ules that were created. While the specific format of inputs/ouputs
is not of theoretical interest, we recognized that incorporating IRIS
into their scheduling practices will probably require a significant
amount of work already and asking them to change other processes
on our behalf would be very inconsiderate. Allowing IRIS to use
inputs and create outputs that were in the same format as existing
protocols minimized the additional work that our assistant would
create for them.

Another aspect of organizational acceptance is making it easy
to error-check your implementation. The existing practices have
a proven track record and users will inevitably be wary of new
methods until they have convinced themselves of its quality. In-
stead of attempting to convince the users that the solution is cor-
rect, we found that giving them tools to check, compare, and alter
the solution’s output served just as well. For example, in IRIS, we
output schedules in a manner that easily allows for external report-
ing tools to be run on them. This makes it that much simpler to
convince users of the ‘randomness’ of the schedules and that we
are not modeling their problem incorrectly. Also, due to the size
of the problem, error-checking helps identify errors in the process
that could lead to incorrect outputs. Instead of asking people to un-
reasonably assume correctness of our solution, we simply include
tools for them to check the results directly.

While not strictly a part of most academic research, organiza-
tional acceptance is a very real problem that must be tackled with
every application of theory into practice. Recognizing and working
through these situations is crucial and oftentimes proves to be quite
simple to achieve.

7. EXPERIMENTAL RESULTS
Two primary concerns might be raised regarding the IRIS sys-

tem: (i) time required to develop a randomized schedule; (ii) evi-
dence supporting the quality of the schedules generated. To address
this, we conduct experiments exploring these two issues. All of our
experiments were run on a machine with dual Xeon 3.2Ghz pro-
cessors and 2GB of RAM, running RHEL 3. We use CPLEX 9.0.0
with default parameter settings to solve the MILPs.

7.1 Runtime Analysis
In creating the system, practical application was the primary

goal. If the system was not fast enough for feasible use, then it
could not be useful to the FAMS. Thus, we set an initial goal of
creating a week’s schedule for all flights between the United states
and a Region A within a reasonable timeframe and include tools
to manage the effects of scheduling for successive periods to al-
low for schedule-creation for longer periods. In Figure 3, we show
results of creating randomized schedules for subsets of the FAMS
problem.

The experiments were run using one week of real flight data
for subregions of Region A and three separate sets of hypothetical
FAMS home city data that vary the number of FAMs available to
explore its impact upon runtime. Region A and the countries within
it are actual places for which we have used real flight data, but due
to security concerns we have anonymized them here. Region A is
composed of five larger countries which we have designated 1-5 as
well as a few small countries which are only included in the full re-
gion tests. We created random values for the other inputs and held
them constant throughout the experiments.

Figure 3: Runtimes for scheduling one week subregions of re-

gion A.

Region Flights Flight Schedules
1 873 1,181
1,2 1,147 1,403
1,2,3 1,528 1,660
1,2,3,4 1,845 1,975
1,2,3,4,5 2,033 2,114
Region A 2,571 2,416

Table 6: Game sizes for experiments run.
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In Figure 3, the y-axis represents the time required for gener-
ating a schedule in minutes and the x-axis shows which countries
are included in the game being run. The x-axis is grouped in three
separate sets which represent, from left to right, a small number of
FAMs, a medium number of FAMs, and a large number of FAMs
distributed through the same set of home cities. For example, the
first bar on the left represents an average runtime of 3.65 minutes
to create a schedule for all flights to Country 1 within a one week
period over 20 trials. In light grey, the first bar on the left repre-
sents the exact same experiment, but run with a medium number of
FAMs. In Table 6, we show the exact size of the game for each of
the subregions. As can be seen, all tested game instances could be
completed within 15 minutes.

7.2 Evaluation
In evaluating our method, we compare the schedules generated

using IRIS against a uniform random policy as well as a naïve
weighting policy. In the uniform random policy, each location cov-
ers all of its reachable flight schedules with equal probability re-
gardless of payoff. In the naïve weighting policy, each location
randomizes across the flight schedules based solely on the payoff
attainable by the attacker, where probabilities are dictated by the
relative payoffs. For example, if the universe of flight schedules
included 11 flights, where 10 flights had payoff of 10 and 1 flight
had a payoff of 100 and the defender had 2 resources available, the
naïve weighting policy would assign a probability of 100 percent to
the high value flight and 10 percent each to the low value flights. As
the benchmark of quality, we calculate the highest expected payoff
attainable by the defender assuming that the attacker chooses the
target with the highest payoff for him.

Figure 4: Maximum expected defender reward by strategy.

In Figure 4, the y-axis represents the normalized payoff return
for each of the three strategies, with all payoffs normalized to the
maximum expected defender’s payoff achievable under the strat-
egy generated by IRIS. Across the x-axis, each of the regions are
labeled as before. Thus, the rightmost group of bars, from left to
right, represents the maximum expected defender’s payoff achiev-
able under IRIS as 100 percent, under the weighted randomization
strategy as 9 percent worse than IRIS’s, and under the uniform ran-
domization strategy as 19 percent worse than IRIS. As can be seen,
IRIS’s solution is superior to the other two strategies in every region
tested.

8. SUMMARY
Onboard patrols are a key component of law enforcement in

transportation networks. In generating schedules for these patrols,
it is important to account for varying weights of the vehicles being
protected as well as the fact that potential attackers can often ob-
serve the procedures being used. This paper describes a scheduling
assistant for the FAMS, IRIS, which provides a game-theoretic so-
lution to this problem. Although similar in spirit to the ARMOR
system deployed at LAX, the inherent challenges of transportation
networks evident in the FAMS domain necessitate major additions
and advances to the existing methodologies.
In particularly, IRIS combines three key advancements: (i) it

uses the fastest known solver for this class of security games,
ERASER-C, that exploits symmetries in the payoff structure; (ii)
it models the problem with action definitions for defenders and
attackers that allow us to efficiently handle the scheduling con-
straints inherent in the domain; (iii) it includes an attribute-based
preference elicitation system for calculating risk values for targets
to alleviate the need for users to enter risk values for each target
individually.
IRIS makes use of algorithmic advances in multi-agent systems

research to solve the class of massive security games with com-
plex constraints that were not previously solvable in realistic time-
frames. Thus, although our work on IRIS thus far has been re-
stricted to the FAMS, it provides a general framework for solving
patrolling scheduling problems in other transportation networks as
well.
One example of another transportation network that resembles

the FAMS domain would be the New York City subway system.
The NYC subway includes tens of subway routes, thousands of
subway cars, and a daily weekday ridership of a few million. Al-
though there are only a few subway routes relative to the number of
commercial flights in the FAMS domain, once we consider that a
patrolling officer can start and end his patrol route at any two sub-
way stops and must also choose which subway cars to protect while
aboard the train, the number of potential patrol ‘actions’ explodes
extremely quickly. Similarly to the FAMS domain, we also have
scheduling constraints on what sequence of subway routes a law
enforcement officer can patrol. Other transportation networks that
share similar challenges include bus systems and commuter rails as
well.
A working version of IRIS is currently undergoing review by the

FAMS as of December 2008 and we are working to expand our
methods to other applicable domains in the near future.
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