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ABSTRACT
Motion planning for mobile agents, such as robots, acting in
the physical world is a challenging task, which tradition-
ally concerns safe obstacle avoidance. We are interested
in physics-based planning beyond collision-free navigation
goals, in which the agent also needs to achieve its goals,
including purposefully manipulate non-actuated bodies, in
environments that contain multiple physically interacting
bodies with varying degrees of controllability. Physics-based
planning is computationally hard due to the large number of
continuous motion actions and to the difficulty in accurately
modeling the rich interactions of such controlled, manip-
ulatable, and uncontrolled, potentially adversarial, bodies.
We contribute an efficient physics-based planning algorithm
that uses the agent’s high-level behaviors to reduce its mo-
tion action space. We first discuss the general physics-based
planning problem. We then introduce Tactics and Skills
as a model for infusing goal-driven, higher level behaviors
into a randomized motion planner. We present a physics-
based state and transition model that employs rigid body
simulations to approximate real-world interbody-dynamics.
We introduce and compare two variations of our tactics-
driven, physics-based planning algorithm, namely Behav-
ioral Kinodynamic Balanced Growth Trees and Behavioral
Kinodynamic Rapidly-Exploring Random Trees. We tested
our physics-based planners in a variety of rich domains and
show results in simulated domains where the agent manipu-
lates an object in a dynamic non-adversarial and adversarial
environment, namely in a robot minigolf and robot soccer
domain, respectively.
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eration
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1. INTRODUCTION
Autonomous mobile agents, such as robots, face the chal-

lenge of safely navigating in their environments. Traditional
motion planning focuses on the sole problem of the safe nav-
igation through an obstacle-ridden environment. However,
when embedded in a task, such mobile agents have behav-
iors and goals to achieve which could be used combined with
their motion plans. We are hence interested in planning
problems where an agent has to achieve goals which go be-
yond plain collision-free navigation. In particular, we aim
to solve control problems involving multiple physically in-
teracting bodies with varying degrees of controllability. In
such physics-based domains, an agent may not only need
to generate trajectories that are collision-free, but may also
need to purposefully manipulate non-actuated bodies, in en-
vironments that are potentially adversarial.

Planning in such domains is very challenging for several
reasons. The search space of an agent’s possible control ac-
tions in a continuous physical environment is vast and the
set of valid solutions is likely to be highly constrained, espe-
cially if complex dynamics, such as purposeful object manip-
ulations, are required. The presence of adversaries increases
this difficulty by further narrowing the solution space and by
introducing the need for opponent models which can predict
the reactive controls of adversarial bodies. Another compu-
tational challenge is to accurately model all of the bodies’
rich physical interactions and dynamics, such as momentum,
friction, and collisions.

We have extensively worked with domains where robots
navigate with sophisticated motion planning, but which does
not take into account the agent’s behaviors and goals [17,
6, 4]. In this work, we introduce and evaluate an efficient
physics-based planning approach that uses high-level behav-
ioral control models to effectively reduce the agent’s motion
search space and thus provide an efficient way for solving tac-
tically and physically complex domains. We consider non-
deterministic high-level behavioral control models that allow
the planner to effectively sample its search space, as well as
predict actions of similar bodies in the environment.

The paper is organized as follows. We first review re-
lated work. We then formally define the physics-based plan-
ning problem and present a state and transition model that
employs rigid body simulations to approximate real-world
interbody-dynamics. We define the different types of bodies
that can be encountered in a physics-based domain and dis-
cuss some of the unique challenges associated with planning
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goals involving these bodies. Next, we introduce sampling-
based Tactics and Skills as a model for infusing goal-driven,
high-level behaviors into a randomized motion planner. We
introduce and compare two variations of our tactics-skills-
driven randomized physics-based planning algorithm, namely
Behavioral Kinodynamic Balanced Growth Trees (BK-BGT)
and Behavioral Kinodynamic Rapidly-Exploring Random
Trees (BK-RRT). Finally, we evaluate and compare these al-
gorithms experimentally, discuss future work, and conclude
with a summary of the contributions.

2. RELATEDWORK
There is a vast body of work regarding motion planning

in continuous domains. One of the most popular algorithms
is Rapidly-Exploring Random Trees (RRT). Introduced by
LaValle [11], RRTs are based on the idea of growing a search
tree through the configuration space with the hope that one
of the tree’s leafs will eventually reach the goal-state. The
advantage of the RRT algorithm is that it employs sampling-
techniques which ensure that the resulting tree will tend to
rapidly cover the reachable configuration space. RRT has
been shown to be usable for navigation planning problems
which involve dynamics and kinematic constraints [12].

Traditional sampling-based motion planning algorithms,
such as RRT, are typically employed to solve the problem of
collision-free robot navigation [5, 13, 15]. We are however
interested in solving planning problems with goals that go
beyond the simple navigation to a target point, and which
can require complex, multi-body interactions and manipu-
lations. To tackle such difficult problems, our work aims
to integrate behavior-based agent control methods into the
motion planning algorithm. There exist many behavior-
based robot control architectures [3, 14, 2, 8, 10]. Our
work integrates and significantly extends the single agent
control blocks of the Skills, Tactics, and Plays (STP) archi-
tecture [3].

There are some related approaches which have also inte-
grated behavioral models into dynamics-based motion plan-
ning [9, 16]. However, these approaches are aimed at solving
computer graphics problems, and therefore assume full con-
trollability of all agents and other bodies in the domain.
As such, these approaches are inapplicable to solve physics-
based robot planning problems that require the manipula-
tion of passive bodies. Furthermore, the “behaviors” used
in these graphics approaches consist of pre-recorded com-
puter animation sequences that are unable to make state-
dependent decisions as required in most robot domains.

3. PHYSICS-BASED PLANNING
Similarly to a general planner, given a state space X, an

initial state xinit ∈ X, and a set of goal states Xgoal ⊂ X, a
motion planner searches for a sequence of actions a1, . . . , an,
which, when executed from xinit, ends in a goal state. The
state space is assumed to represent a physical geometry, and
the actions correspond to bodies’ actuation controls.

We use the term Physics-Based Planning for action mod-
els that aim to reflect the inherent physical properties of the
real world. The Rigid Body Dynamics model [1] provides
a computationally feasible approximation of basic Newto-
nian physics, and allows the simulation of the physical in-
teractions between multiple mass-based bodies, under the
assumption that such bodies are non-deformable. The term

Dynamics means that rigid body simulators are second or-
der systems, able to simulate physical properties over time,
such as momentum and force-based inter-body collisions.

More formally, let the Physics State Space X describe
the entire variable space of the physical domain and let us
assume the presence of n rigid bodies. A state x ∈ X is
defined as x = [t, r0, . . . , rn], where t represents time, and
ri represents the state of the i-th rigid body. A rigid body
state in a second order system is described by its position,
rotation, and their derivatives. That is, r = [p, q, v, ω]T

where:

p : position (3D-vector)

q : rotation (unit quaternion or rotation matrix)

v : linear velocity (3D-vector)

ω : angular velocity (3D-vector).

The action space A is the set of the applicable controls
that the physics-based planner can search over. An ac-
tion a ∈ A is typically defined as a vector of subactions
[ar1, . . . , arn ], where ari is a pair of 3D force and torque
vectors applicable to a corresponding rigid body state ri.

A physics-based planner chooses actions by reasoning about
the states resulting from the actuation of possible actions.
The state computations are done by simulation of the rigid
body dynamics. There are several robust rigid body sim-
ulation frameworks, freely available, (e.g., Open Dynamics
Engine (ODE), Newton Dynamics, and NVIDIA PhysX).
Frequently referred to as physics engines, these simulators
are used as a “black box” by the planner to simulate state
transitions in the physics space, as illustrated in Figure 1.

Figure 1: A Physics Engine returns state transitions.

Given a current physics state of the world x in combina-
tion with a control action vector a, the physics engine is then
able to simulate the rigid body dynamics forward in time by
a fixed timestep Δt. During the planner’s forward search,
the physics engine then internally resolves any inter-body
collisions and delivers a complete new planning state xnew.

3.1 Rigid Body Types
Planning for a solution sequence of physical actions is

clearly related to the types of bodies present in the domain.
We classify the types of bodies in the domains of the physics-
based planner, using a hierarchy as shown in Figure 2.

Every body is by definition a rigid body. There are static
rigid bodies that do not move, even when a collision occurs,
which are often used to model the ground plane and all non-
movable bodies, such as walls and heavy objects. All other
bodies are manipulatable, meaning that they react to colli-
sion forces exerted upon them. Among these, the planner
can directly control the actively controlled bodies, i.e., it has
available actions directly applicable to these bodies.

Interestingly, there are two different types of bodies that
are manipulatable but not actively controlled, namely the
passive and foreign controlled bodies. Passive bodies can
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Figure 2: Rigid body classes

only be actuated by external influences and interactions,
such as being carried or pushed. The foreign controlled bod-
ies are actively actuated, but by external control to our plan-
ner. But such foreign controlled bodies can have predictable
motion, such as an escalator or a windmill, or be adversar-
ial capturing the challenges of their motion modeling by the
planner. In physics-based games, such adversarial bodies
can represent the intelligently controlled opponent agents.

3.2 Planning Challenges
Particularly challenging physics-based planning problems

involve planning goals defined in terms of the state of a
passive body. A solution then requires the manipulation
of the passive body through the means of collisions exerted
by the actively controlled body. The search is difficult as
there are no simple heuristics to guide the selection of the
actuation choices of the controllable body in order to bring
the passive body closer to its goal state, in presence of the
complex effects of the rigid body dynamics. The planner
encounters even further complications if the domain contains
adversarial bodies which might actively attempt to prevent
such manipulations from succeeding.

This disconnect between the action space of actively con-
trolled bodies and the goal state of passive bodies makes it
virtually impossible to construct a simple metric-based plan-
ning heuristic. However, we still need to bias the search by
some heuristic, as otherwise the search time grows dramat-
ically, making online planning completely infeasible. The
contributions of our work include the use of high-level be-
haviors as such heuristics for the physics-based planner.

4. TACTICS AND SKILLS
To overcome the challenge of searching through the vast

physics-based control space, we use a high-level behavioral
control model in a novel way to reduce the search space.

Among the many reactive behavioral control architectures,
e.g., [2, 8, 10], we choose the Skills, Tactics, and Plays (STP)
architecture, as it has effectively been used in real-time ad-
versarial robotics domains [3]. In STP, a Play captures the
behaviors of a group of multiple agents. A single agent’s
behavior is modeled as a reactive Tactic, representing a fi-
nite state machine (FSM) of lower-level Skills, which act as
pre-programmed, reactive control blocks. Our work involves
single-agent planning, therefore does not use Plays. Tradi-
tionally, the STP runs online, as a policy-based controller,
without any physics-aware planning at the Tactics level.

In our work however, our physics-based planner uses Tac-

tics and Skills as an action sampling model, and we need to
extend Tactics and Skills to be non-deterministic. Instead of
greedily executing a single Tactic online, we effectively use
planning to simulate the outcome of many different varia-
tions of the Tactic executions in simulated physics-space.
The planner selects a good goal-achieving simulated solu-
tion for execution. We modify the traditional definition of a
Tactic to be modeled probabilistically as a non-deterministic
FSM. Similarly, we create a non-deterministic version of
Skills which uses random sampling to choose from a set of
possible control actions. In summary, instead of being a re-
active controller as in traditional STP, the Tactic’s new role
is to guide the planner’s search by imposing constraints on
the searchable action space. Before we explain in detail in
the next section the use of the Tactics in the planning algo-
rithm, we now further define the non-deterministic Tactics
and Skills.

Figure 3 shows an example diagram of a Tactic. Internally,
a Tactic contains a FSM where each state represents a Skill.
Each Skill within the Tactic acts as a control block, being
able to read the current state of the world x and producing
a control sub-action ari. The tactic itself determines how
to transition between different Skills over time, thus taking
the state of the world x and a pointer to the currently active
Skill fsm-statesource as an input, and producing a pointer to
the newly active Skill fsm-statenew as output.

Figure 3: Example of a non-deterministic Tactic

Transitions between these Skills can be deterministic (such
as between “Skill 1” and “Skill 2” in Figure 3), they can be
modeled non-deterministically through user-defined transi-
tion probabilities (such as the outgoing transitions of “Skill
2”), or they can programmatically depend on any desired
property of the current state of the world x (such as the
outgoing transitions of “Skill 3”). The selection of Skills and
the actual transition probabilities and events are defined by
the developer. By being modeled in this non-deterministic
fashion, each execution of the Tactic can result in a different
sequence of state-transitions, thus covering different parts of
the search space. However, a developer is in full control over
how much “freedom of search” he or she wants to provide to
the Tactic by adjusting its transition probabilities.

The purpose of the Tactic’s individual Skills is to act as
a control model that provides a range of different actions
from which the planner can choose when searching. Tradi-
tionally, in its reactive mode, a Skill is deterministic and re-
turns a single action. Instead, we extend a Skill to compute
a continuous set of actions and make it non-deterministic
through the use of sampling among the possible actions (see
Figure 4).

Instead of deterministically producing a single control ac-
tion ari based on the current state vector x, the Skill is
defined to evaluate x and to produce a continuous set of ac-
tions Ari. It then uses random sampling to return a single
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Figure 4: Structure of a sampling-based Skill

non-deterministic action ari. Effectively, this means that
each Skill execution produces a different viable perturba-
tion of the Skill’s typical control behavior, thus providing a
sampling-based model which our planner uses to search.

The Skill’s action generation function and sampling model
are predefined and assume a certain higher level knowledge
about the domain’s goal and its physical properties, such
as the reasonable ranges of applicable forces and torques.
Typically, a single Skill implements a particular control ob-
jective such as “drive towards a sampling-based location,”
“push some target rigid body towards a sampling-based tar-
get region,” or “turn a sampling-based amount.” Designing
these actual Skills does take some programmatic effort and
it can be argued that some of the Skills should be consid-
ered domain-dependent. However, the STP architecture ex-
actly provides for Skills to be used as template-like“building
blocks” that apply to a variety of domains. Given a library
of Skills, it is feasible to rapidly create an intelligent tactical
model that is well-suited for solving a particular domain.
The effectiveness of our approach arises from the fact non-
deterministic Tactics and Skills can encode as much or as
little domain-dependent information as desired. Such en-
coding provides full continuous control over the trade-off
between choosing a more general, but possibly less efficient
Tactic, or a highly domain-optimized and efficient Tactic.
The use of different high-level Tactics and Skills allows for
the feasibility of the search for physics-based planning in
many domains.

5. PLANNING ALGORITHM
We are now ready to introduce the planning algorithm.

We present two variations of the algorithm that share the
same fundamental physics-based, forward-planning loop, but
differ in the way they control the growth of the search tree.
We name these two variations as Behavioral Kinodynamic
Rapidly-Exploring Random Trees (BK-RRT) and Behav-
ioral Kinodynamic Balanced Growth Trees (BK-BGT).

In order to use Tactics and Skills as a behavioral sampling
model for our planner, we integrate their internal states into
the state space. More formally, a state x ∈ X is now defined
as x = [t, fsm-states, r0, . . . , rn] where fsm-states represents
a vector of the current internal FSM states of all Tactics
used in the domain. The number of Tactics is dependent on
the number and types of bodies within the domain. Each ac-
tively controlled body has a corresponding non-deterministic
Tactic consisting of sampling-based Skills from where its ac-
tions are sampled. Additionally, we construct reactive, de-
terministic Tactics with deterministic Skills to act as predic-
tion models for each foreign-controlled, and especially also
to approximate the model of each adversarial body, if exist-
ing. Even if an adversary body’s exact Tactic is not known,
it may be useful to still model its roughly expected behavior
rather than assuming it is static. Finally, passive bodies in
the domain are non-actuated and do not require a Tactic.

Algorithm 1 shows the main planning loop. We initialize
the search with a tree T containing an initial state xinit ∈ X.
We then enter the main planning loop, which runs for a
predefined domain-dependent maximum number of search
iterations k, if no solution is found earlier. On each iteration,
the algorithm selects which node xsource to extend by using
the SelectNode node selection function.

Algorithm 1: BK-BGT / BK-RRT Planning Loop

T.AddVertex(xinit);
for k ← 1 to k do

xsource ← SelectNode (T);
fsm-states ← FsmTransitions(xsource.fsm-states);
a ← ApplySkills(fsm-states,xsource);
xnew ← Simulate(xsource,a,Δt);
xnew.t ← xsource.t + Δt;
xnew.fsm-states ← fsm-states ;
if IsValidState(xnew) then

T.AddVertex(xnew);
T.AddEdge(xsource,xnew,a);
if xnew ∈ Xgoal then

return xnew ;
end

end
end
return Failed;

The difference between BK-RRT and BK-BGT lies pre-
cisely on the node selection function. BK-RRT selects nodes
similarly to the Rapidly-Exploring Random Trees (RRT)
search, which allows rapid growth of a search tree through
a continuous space by probabilistically sampling the space
towards the goal or towards a random exploration target.
RRT has been used for collision-free motion planning in
many robotics applications, including dynamics-based nav-
igation [11, 5, 12]. The Function SelectNodeRRT(T) shows
the node selection scheme used in the BK-RRT search.

Function SelectNodeRRT(T)

srandom ← SampleRandomState();
return NNeighbor(T,srandom);

The function SampleRandomState uses an internal prob-
ability distribution to provide a sample srandom taken from
the sampling space S ⊆ X. The function NNeighbor then
finds the state-node in the tree which is the nearest neigh-
bor to srandom, according to some predefined distance metric.
As with traditional RRT, it is important that the sampling
space S, the underlying probability distribution, and espe-
cially the distance metric are all carefully chosen to match
the domain. For the rigid body domains tested, we define
this metric as the shortest possible time that it could take
an actively controlled body to reach srandom, defined as a
randomly sampled target configuration of the actively con-
trolled body within the confines of the domain. The advan-
tage of such an RRT-based node selection scheme is that
it results in a relatively efficient and probabilistically uni-
form coverage of the domain’s geometric workspace. The
downside of RRT-based node selection is that good dis-
tance metrics can be difficult to define and to compute in a
physics-based environment. Furthermore, the nearest neigh-
bor lookup becomes slower with growing tree sizes, resulting
in a quadratic runtime of algorithm.
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It is questionable whether it is worth to perform the wide
sophisticated RRT node selection scheme if the agent’s ac-
tions are already constrained by a Tactics model, therefore
not really requiring a uniform growth through the domain.
Considering the tactically constrained models, it makes more
sense to abandon any attempts in modeling complex dis-
tance metrics that involve knowledge about bodies and the
state-space, and instead focus on a fast and random growth
of the search tree itself. To test this hypothesis, we introduce
a novel less informed approach, but which has the objective
of growing the search tree in a well-balanced fashion. We call
this approach “Balanced Growth Trees,” and its correspond-
ing node selection function is shown in SelectNodeBGT(T).

Function SelectNodeBGT(T)

if
“

AvgLeafDepth(T)
AvgBranchingFactor(T)

”
> μ then

return PickRandomNonLeaf(T);
else

return PickRandomLeaf(T);
end

The only parameter of the BGT search is a single con-
stant μ that represents the desired ratio between the av-
erage leaf depth and the average tree branching factor. A
large value of μ leads the algorithm to expand further into
the future, but creates a “thinner” tree. A smaller value of μ
focus on a more dense expansion, but with a limited average
time horizon. As it is possible to keep running values of the
average branching factor and leaf depth as the tree grows,
this node selection scheme is able to run in constant time
per node selection. Our experimental evaluation compares
the use of the RRT and BGT node selection variations.

The search continues from the selected node xsource. Algo-
rithm 1 calls FsmTransitions to perform all Tactics’ inter-
nal FSM state transitions. Recall that the non-deterministic
Tactic switches non-deterministically between Skills and the
state vector’s component fsm-states identifies which Skill is
currently selected for each existing Tactic. The algorithm
then applies the Skills associated with the fsm-states through
the function ApplySkills, which invokes the sampling-based
Skills as described in Section 3. The Skill takes the state of
the world x as an input, and returns a non-deterministically
chosen action ari. The algorithm is now ready to call the
physics-engine through the function Simulate, with input
the source state xsource, and the forces and torques defined
by a, to simulate Δt forward in time of the physics of all the
bodies. The physics-engine returns a new state xnew. The
algorithm then checks the resulting state with a user-defined
function IsValidState to ensure that the simulation from
xsource to xnew did not violate any constraints which may be
required for the domain. This additional validity check is op-
tional and for many domains IsValidState simply returns
true. If accepted, the algorithm adds xnew to the search tree
T as a child of the chosen node xsource. The complete loop
is repeated until the algorithm either reaches the goal, or
until it reaches the maximum allowed number of iterations
k, at which point the search returns failure for this state.
(In robot domains, the algorithm can be repeatedly invoked
within the sensing cycle for a new state.) Once the goal
is reached, the algorithm simply traverses back to the root
the root of T and returns the reversed path as the planned
action sequence.

6. RESULTS
We tested our algorithm in a variety of simulated domains.

We implemented the planner in C++, we chose NVIDIA
PhysX as the underlying physics engine, and the results were
computed on a Pentium 4. Animations of the planning and
execution of the resulting plans and additional experiments
can be found in videos available at (link removed for blind
review). We used an action timestep Δt of 1/60th of a sec-
ond. Table 1 shows average planning times and tree sizes
in two testbeds, namely the “Minigolf” and the “Soccer” do-
mains.

Minigolf Domain
Algorithm Time & StdDev Nodes & StdDev μ
BK-RRT 5.3s ± 1.1s 13042 ± 1200 n/a
BK-BGT 2.5s ± 1.3s 8094 ± 1067 1000

Soccer Domain
Algorithm Time & StdDev Nodes & StdDev μ
BK-RRT 9.6s ± 5.1s 9752 ± 2157 n/a
BK-BGT 11.1s ± 2.1s 11088 ± 1267 100

Table 1: Performance comparison of BK-RRT and
BK-BGT. Each value represents an average over 8
experiments.

The goal in the “Minigolf” domain is to have a ball at a
final location. The domain includes one controllable body,
the robot, which needs to manipulate the ball through a
course with one or more moving obstacles. Figure 5 shows
the Tactic for the controllable robot body, which allows the
body to wait for a sampling-based amount of time (which
is significant as there are moving obstacles), then drive into
the ball at a sampling-based speed and angle, and actuate
the ball towards a sampling-based target.

wait

sampled

time

drive to

sample
1.00 kick to

sample
1.00

done
1.00

Figure 5: “Minigolf” Tactic for the controlled robot.

Note that the ball in this domain is a completely passive
body that our planner can only move by generating purpose-
ful collisions exerted from the robot body. Figure 6 shows a
visual example from this domain. As can be seen in Table 1,
the planner successfully finds solutions.

The “Soccer” domain (a single soccer attacking situation)
significantly enhances the concept of goal-driven manipula-
tion of a passive body, and truly demonstrates the unique
tactical planning abilities of our planner. The robot-body
features a complex tactical model, as shown in Figure 7.

The Tactic allows the robot to dribble the ball to a sam-
pled location, kick or chip the ball towards a sampled narrow
target, or towards a sampled point in the goal.

Additionally, we include in the domain three dynamic ad-
versary rigid bodies which were running deterministic adver-
sarial behaviors to block the ball from the goal. Note that
from a planning perspective, this domain represents a very
difficult problem. Not only does the robot need to navigate
around moving bodies, but it also needs to exert accurate
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Figure 6: The “Minigolf” domain. The bar-shaped
obstacle at the center of the course is rotating at
constant velocity and thus represents a predictable,
foreign-controlled body. The path shows an exam-
ple of a legal solution found by the planner for the
controllable body, the robot (dark cube, left): the
robot waits an appropriate amount of time and then
accurately manipulates the ball to use the rotating
obstacle as a bounce-platform, leading it into the
goal position (bottom right).

Figure 7: “Soccer” Tactic for the controlled robot.

control on the ball to achieve the high level scoring goal in
an adversarial environment. This domain generated various
interesting solutions, one of which is shown in Figure 8.

Looking at the performance values in Table 1, we can see
that neither of the two node selection schemes has a constant
advantage over the other. Instead, BGT seems to outper-
form RRT in the “Minigolf” domain, whereas the opposite
is the case in the “Soccer” domain. A possible explanation
for this behavior is that the “Minigolf” Domain is already
tightly constrained by its Tactics model, thus not gaining
much advantage of RRTs more elaborate selection scheme.
The “Soccer” domain on the other hand, features a broader
Tactics model which heavily relies on the agent exploring
the workspace, which might give RRT a slight advantage in
this domain.

In addition to analyzing our algorithm’s performance and
showing visual solutions, we are also interested in comparing
the qualitative performance of our planning approach to tra-
ditional reactive control methods as they are currently used
in many applications. To do so, we designed an experiment
in the simulated soccer environment where the player agent
and the soccer ball are placed at a randomly initialized lo-
cation. The agent’s goal is to deliver the soccer ball into
the goal-box which is protected by two reactive defenders.
We executed a traditional, deterministic version of Tactics
and Skills on this agent over multiple randomly initialized

trials. This deterministic control approach would follow a
simple robot-soccer policy of dribbling the ball and shooting
it into the corner of the goal-box with the widest opening.
We compared the success rate (resulting in a goal) of the
deterministic execution with trials generated with our BK-
BGT approach, using different maximum search tree sizes.
Table 2 shows the results.

Method Tree Size % Success
Deterministic Tactic n/a 30%

BK-BGT 2500 40%
BK-BGT 5000 55%
BK-BGT 10000 60%

Table 2: Average success rate of a simulated “at-
tacker vs. two defenders” scenario (20 randomly
initialized trials).

We can see that even with relatively small search tree
sizes, we obtain a greater average success rate than tradi-
tional methods. The reason for this outcome is that our
physics-based planning approach has the power to find many
intricate, physics-based solutions which the reactive version
will never execute based on its fixed policy. This experi-
ment highlights the potential advantage of a physics-based
planning approach over purely reactive policies.

7. CONCLUSION AND FUTUREWORK
We presented the physics-based planning problem and its

challenges. We introduced a non-deterministic version of
Tactics and Skills as a model for infusing goal-driven, high
level behaviors into a sampling-based motion planner, thus
reducing its action space and making search feasible. We in-
troduced two techniques for the search tree expansion, one
based on RRT, and a new “Balanced Growth Tree” one. We
experimentally demonstrated the effectiveness in challenging
physics-based planning testbed domains. We further com-
pared and reported the success of physics-based planning
versus reactive deterministic control.

We can identify several directions for future work, which
could be contributions on their own. Further improving the
planning performance is one of our own main focus points.
On the computational aspect, there are several promising
approaches, such as performing the physics-computations
on the Graphical Processsing Unit (GPU). Many modern
physics-engines are now starting to offer GPU-based hard-
ware-acceleration which has the potential to significantly
speed up the forward-simulation component of the algo-
rithm. Additionally, it might be interesting to parallelize the
entire planning algorithm to be run on modern multi-core
processors. One way to achieve this would be by designating
different branches of the search tree to different processing
cores.

On the algorithmic side, it would be interesting to look
into the concept of finite horizon planning. In particular, if
used in real robot domains, our planner would need to op-
erate within a fixed amount of time and under uncertainty.
Limiting the depth of the search tree in combination with
frequent replanning is a promising approach to achieve this.
Re-planning also brings along other additional challenges. A
very interesting question is whether it is possible to reuse a
previously generated plan to increase the speed of replanning
and reduce the amount of oscillations between consecutive
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Figure 8: An example of the “Soccer” domain. (a) The initial configuration of the bodies. The controllable
robot is initially at the top right, and the planning goal is to deliver the ball to the goal while avoiding the
defenders and goalie robot bodies; (b), (c) Snapshots of one solution found by the planner; (d) The entire
search tree representing the positions of all rigid bodies.

planning iterations. Existing planners, such as ERRT [7] or
Multipartite RRTs [18],have made use of past results dur-
ing replanning by caching previously used planning data.
Whether this is possible for tactically constrained, physics-
based planners, such as ours, is an open research question.

Finally, it might also be worthwhile to investigate the use
of supervised machine learning to automatically “train” a
particular tactical model by optimizing its internal transi-
tion probabilities and sampling distributions, thus creating
the strongest and most efficient planner possible for a given
domain. This could be achieved by executing the planner
under many random domain instantiations, and recording
which sampling choices frequently lead to a goal and which
ones do not. Such an optimized planner is very likely to
deliver significantly improved planning times because it will
focus its search on tactical branches which are more likely
to succeed.
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