

AI-Based Software Defect Predictors:

Applications and Benefits in a Case Study

Ayse Tosun1, Ayse Bener2, Resat Kale3

1,2Software Research Laboratory (SoftLab), Department of Computer Engineering
Bogazici University, Bebek, 34342, Istanbul, Turkey

3Turkcell Technology, Gebze, Istanbul Turkey
1ayse.tosun@boun.edu.tr, 2bener@boun.edu.tr, 3resat.kale@turkcellteknoloji.com.tr

Abstract
Software defect prediction aims to reduce software testing
efforts by guiding testers through the defect-prone sections
of software systems. Defect predictors are widely used in
organizations to predict defects in order to save time and
effort as an alternative to other techniques such as manual
code reviews. The application of a defect prediction model
in a real-life setting is difficult because it requires software
metrics and defect data from past projects to predict the
defect-proneness of new projects. It is, on the other hand,
very practical because it is easy to apply, can detect defects
using less time and reduces the testing effort. We have built
a learning-based defect prediction model for a
telecommunication company during a period of one year. In
this study, we have briefly explained our model, presented
its pay-off and described how we have implemented the
model in the company. Furthermore, we have compared the
performance of our model with that of another testing
strategy applied in a pilot project that implemented a new
process called Team Software Process (TSP). Our results
show that defect predictors can be used as supportive tools
during a new process implementation, predict 75% of code
defects, and decrease the testing time compared with 25% of
the code defects detected through more labor-intensive
strategies such as code reviews and formal checklists.

 Introduction
Software defects are more costly if discovered and fixed in
the later stages of the development life cycle or during
production (Brooks 1995). Therefore, testing is one of the
most critical and time consuming phases of the software
development life cycle and accounts for 50% of the total
cost of development (Brooks 1995).
 The testing phase should be planned carefully in order to
save time and effort while detecting as many defects as

possible. Different verification, validation and testing
strategies have been proposed so far to optimize the time
and effort utilized during the testing phase: code reviews
(Adrian, Branstad and Cherniavsky 1982; Shull et al.
2002), inspections (Wohlin et al. 2002; Fagan 1976) and
automated tools (Menzies et al. 2007; Nagappan, Ball,
Murphy 2006; Ostrand, Weyuker, Bell 2005). Defect
predictors improve the efficiency of the testing phase in
addition to helping developers assess the quality and
defect-proneness of their software product (Fenton and
Neil 1999). They also help managers in allocating
resources. Most defect prediction models combine well-
known methodologies and algorithms such as statistical
techniques (Nagappan, Ball, Murphy 2006; Ostrand,
Weyuker, Bell 2005; Zimmermann et al. 2004) and
machine learning (Munson and Khoshgoftaar 1992; Fenton
and Neil 1999; Lessmann et al. 2008; Moser, Pedrycz,
Succi 2008). They require historical data in terms of
software metrics and actual defect rates, and combine these
metrics and defect information as training data to learn
which modules seem to be defect-prone. Based on the
knowledge from training data and software metrics
acquired from a recently completed project, such tools can
estimate defect-prone modules of that project.
 Recent research on software defect prediction shows that
AI-based defect predictors can detect 70% of all defects in
a software system on average (Menzies et al. 2007), while
manual code reviews can detect between 35 to 60% of
defects (Shull et al. 2002), and inspections can detect 30%
of defects at the most (Fagan 1976). Furthermore, code
reviews are labor-intensive since depending on the review
procedure, they require 8 to 20 LOC/minutes for each
person in the software team to inspect the source code
(Menzies et al. 2007). Therefore, AI-based models are
popularly used by various organizations (Menzies et al.
2007; NASA MDP 2007; Nagappan, Ball, Murphy 2006;
Nagappan, Murphy, Basili 2008; Ostrand, Weyuker, Bell
2005). They resemble the working principle of a human
brain that collects previous knowledge on a given topic,

1748

Proceedings of the Twenty-Second Innovative Applications of Artificial Intelligence Conference (IAAI-10)

analyzes that information and comes up with a claim or
prediction on the subject. AI-based predictors learn
specific patterns concerning defect-proneness from past
projects and use this information to predict the defect-
proneness of new projects. As more projects are observed
throughout the development life cycle, more data is
collected, and predictions are more accurate.
 We conducted a comprehensive metrics program and
built a defect prediction model at a large
telecommunication company in Turkey during a period of
one year (Tosun, Turhan, Bener 2009). During this metrics
program, we collected static code metrics and churn

matched the pre-release defects (the defects detected
during the testing phase) of the previous releases with the
source codes at file level. Then we made predictions on the
new releases of the projects. We calibrated our model
based on its prediction accuracy and discovered that it is
possible to detect on an average of 88% of defective files
using a defect predictor (Tosun, Turhan, Bener 2009).
 In this paper, we describe our model from a machine
learning perspective with measurable benefits such as the
defect detection capability and the cost-benefit analysis.
We present the pay-off of the model used and show how
the model has been implemented in the company. We also
used our model for defect prediction and compared its
performance with a pilot process change, which employed
labor-intensive checklists and formal procedures for
detecting defects before the testing phase. Our results show
that our prediction model automatically finds 75% of the
defects detected in unit testing, code reviews and
inspections only in a few seconds. Therefore, we conclude
that the impact of process changes is limited.

Brief Information about the Organization
The organization we collaborated within this study is the
leading GSM operator in Turkey and the third biggest
GSM operator in Europe in terms of number of
subscribers. As of 31 December 2009, it is providing
mobile communication services to 35.4 million
subscribers, with additional 26.1 million subscribers in
Azerbaijan, Kazakhstan, Georgia, Ukraine and Northern
Cyprus. It was founded in 1994, and since 2006, it has an
R&D centre with around 200 engineers. In this R&D
centre, they develop software products and solutions for
mobile operators all over the world. Some of these
solutions are network solutions, value added services, SIM
related solutions, terminal based solutions, billing and
charging solutions, data mining, data warehouse, customer
and channel management systems and applications. Their
legacy system contains millions lines of code that are being
maintained. The majority of their software is implemented
with Java, Jsp, PL/SQL and other new technologies such as
SOA.
 As with any other company, time and budget constraints
put constant pressure on R&D. As customers require new
functionality or technology changes, the company has to

respond faster and faster with new software releases.
Therefore, its approach to development is incremental,
with each new release adding new functionality or a
software modification to previous releases. In such a
limited time, the software team cannot apply any
measurement process to assess the overall software quality.
Therefore, there was an urgent need to implement a
measurement and analysis program to monitor defects,
reduce defect rates and testing effort, and to improve
software quality. We have built a measurement repository,
bug tracing/matching system and a defect prediction model
for the company. In this study, we explain the
implementation of the defect prediction model after it has
been calibrated with local data to achieve the highest
prediction accuracy.

Description of the Prediction Model
Our learning-based defect predictor is a typical machine
learning application: It contains a training phase to learn
from the data related to previous projects and a testing
phase to predict the potential defect-free and defective
modules of the new project. A module could be a package,
class, file, or method inside the source code. Erroneous
predictions of the defect-free modules in the form of
defects
modules and waste their precious time. On the other hand,
missing defective modules (false negatives) would cause
more expensive and hard-to-fix failures on the final
software product. Thus, false negatives need to be avoided.

Basic Terminology: Input and Output Variables
As a classification task, our input variables are a set of
static code attributes such as lines of code (LOC),
complexity, operand and operator counts extracted from
the source code. Static code attributes are widely used and
easily collected through automated tools (Menzies et al.
2007; Moser et al. 2008; Lessmann et al. 2008) and
proposed by various researchers such as McCabe (1976)
and Halstead (1977). The full list of attributes collected
from the source code in this study is illustrated in
Appendix A.
 In literature, various researchers have also used other
type of metrics such as object-oriented design metrics
(Basili, Briand, Melo 1996; Chidamber, Kemerer 1994),
in-process metrics (Nagappan, Ball, Murphy 2006), and
organizational metrics (Nagappan, Murphy, Basili 2008) in
order to predict defects. Although increasing the
information content of input data by adding different types
of metrics has positive effects on defect prediction
capability, it is not easy to collect in-process and
organizational metrics from an organization. Therefore, we
have preferred to use the source code as a means of
collecting metrics, i.e. input variables.
 In addition to code attributes, there are class labels for
each module such as 0 as defect-free and 1 as defective in
the training set. If a module in the software system has

1749

been associated with a bug (code defect) during the testing
phase, it is labeled as 1; otherwise, it is labeled as 0. It is
not necessary to count the number of defects a module is
associated with since our aim in this study is not predicting
the number of defects. More precisely, the training set is an
N-by-M matrix where N is the number of modules taken
from past projects and M is the number of code attributes
(M-1) extracted from their source code as well as a class
label to indicate whether a defect has been detected on that
module during testing.
 The test set, on the other hand, contains attributes
extracted from the modules of a new project whose defect
labels are unknown. Therefore, the output variable (Y) of
the model would be the class labels of modules in the test
set as defect-free or defect-prone.

The Use of AI Technology
We have used a Naïve Bayes classifier as the algorithm of
our prediction model. The Bayes Theorem defines the
posterior probability as proportional to the prior probability
of the class p(Ci), and the likelihood of attributes,
p(X\Y=Ci) (cf. Alpaydin 2004). In binary classification
problems such as defect prediction, Naïve Bayes computes
the posterior probability of a module being defective, or the
probability of a module being defect-free, given its
attributes. Then, it assigns a module to the defective class if
its posterior probability is greater than a pre-defined
threshold (0.5). Otherwise, the module is classified as
defect-free.
 We have used a Naïve Bayes classifier for several
reasons. First of all, it is a widely used, simple and robust
machine learning technique in various applications such as
pattern recognition (Kuncheva 2006), medical diagnosis
(Uyar et al. 2009) and defect prediction (Menzies et al.
2007; Moser et al. 2008; Tosun, Turhan, Bener 2009). It is
also easy for field practitioners to understand and
implement. Second, defect prediction models with a Naïve
Bayes classifier deliver the best prediction accuracy on
public datasets compared with models with other
classifiers (Menzies et al. 2007). One of the reasons for the
success of the Naive Bayes classifier over other methods is
that it combines signals coming from multiple sources. It is

a (minor changes in
training sample do not give completely different results) by
polling numerous Gaussian approximations to the numeric
distributions (Menzies et al. 2007). Therefore, minor
correlations between attributes or samples in the training
set within the field of software defect prediction do not
confuse Naive Bayes classifiers. Third, a recent study by
Lessmann et al. (2008) presents that the importance of
classification algorithms in defect prediction may be less
than previously assumed, since no significant performance
differences exist among the top 17 classifiers. This result is
very important for our case study since it reduces the
necessity of trying all classification techniques. Thus,
instead of applying different algorithms, we have selected
Naïve Bayes as the algorithm of our model and focused on
calibration based on local data.

Performance Evaluation
We use Receiver Operator Characteristics (ROC) curves to
assess the discriminative performance of a binary Naïve
Bayes classifier (Heeger 1998). In a ROC curve, our
objective is to reach the point (1, 0) in terms of (y, x),
where the y-axis represents the true positive rate and the x-
axis represents the false positive rate. We have computed
these performance measures to evaluate the accuracy of
our model. However, similar to defect prediction research
(Menzies et al. 2007; Lessmann et al. 2008), we name the
true positive rate as the probability of detection rate (pd)
and the false positive rate as the probability of false alarm
rate (pf) in this study. The ideal classification, point (1, 0)
in a ROC curve can be reached when we correctly classify
all defective modules (pd=1, i.e. 100%) with no false
alarms (pf=0, i.e. 0%).
 Finally, the prediction outcomes depending on the actual
class labels of modules can be represented as a confusion
matrix as shown in Table 1. The common classifier
performance measures are derived from this confusion
matrix (Menzies et al. 2007).

Table 1. Confusion matrix
Actual Predicted

Defective Defect-free
Defective TP FN

Defect-free FP TN

Probability of the detection rate (PD) is a measure of
accuracy for correctly classifying defective modules. It
corresponds to the true positive rate in machine learning
and should be as close to 1 as possible:

 (PD) = TP / (TP + FN) (3)

Probability of the false alarm rate (PF) is a measure of
accuracy to represent the false alarms when we misclassify
defect-free modules. We must avoid high PF rates in
software defect prediction models since they would
increase the testing effort.

(PF) = FP / (FP + TN) (4)

 It is very rare to achieve the ideal case with 100% PD
and 0% PF rates using a prediction model. When the model
is triggered often to increase the PD rate, the PF rate
would, in turn, increase. Therefore, our objective is to get
as high PD rates as possible while keeping the PF rates at a
minimum.

Utilization of the Model and Pay-off
We built our defect prediction model on the software
system of a telecommunication company. Previously, a
tool that collected metrics from the source code did not
exist. Moreover, although the defects were logged in a
version management system, they were not matched with

1750

the source code at any granularity level, i.e. package, file,
method, or LOC.
 We started a metrics program to collect the required data
for building our defect predictor. We developed an open-
source metrics extraction and a defect prediction tool
called Prest (2009), and collected code metrics from Java
and Jsp files. Previously, there was no process in the
company for bug tracking. Furthermore, there was no
process to match defects with the files in order to keep
track of the reasons for any change in the software system.
Therefore, we implemented an organization-wide process
change that is fully supported by the senior management
(Tosun, Turhan, Bener 2009). This process change helped
us to store defects as well as to match them at files level.
 The static code attributes at file level and the defect
labels matching the files (more precisely, Java and Jsp
files) were collected from 9 different projects in 10
releases, and this dataset was donated to a public data
repository, Promise (2007). Then, the project-based defect
prediction was performed such that the defective files of a
project at release n were predicted using the static code
attributes and the defect labels of the same project at
release n-1. Based on this training-testing strategy, we
assessed the performance of our predictor and discovered
that the deployed model with a Naïve Bayes classifier
correctly classifies 90% of the defective files while
producing 50% false alarms (Tosun, Turhan, Bener 2009).
Since false alarms were very high, we included a new
software metric in addition to static code attributes, such as
version history flags indicating the latest activity date on
files as inputs to the model. This flag shows whether a file
has been edited at least once for six months. If it does not
have any activity for a long time, then it is less likely that
the file contains defects. Using version flags further
improved the prediction performance by decreasing the
false alarm rates on an average of 28%, from 50% to 22%
(Tosun, Turhan, Bener 2009).
 Table 2 shows the summary of the prediction
performances in 9 releases. We have made predictions for
an average of three projects in every release and took the
mean and the standard deviation of the prediction
performances in terms of pd and pf rates. As it is seen in
Table 2, we have successfully achieved 87% detection rate
in 9 releases with 26% false alarms. Our defect predictor
helps detecting defective modules using less time and
effort. Furthermore, it guides testers through specific files
and reduces the inspection effort compared to code reviews
and inspections. The process is less labor-intensive if local
data is collected as required.
 The practical benefits of using a defect predictor have
been further computed using a cost-benefit analysis from
Arisholm and Briand (2006). The authors compared the
inspection effort suggested by a defect prediction with a
random testing strategy. Based on that, the gain in the
effort to (GE) can be calculated with the following
formula:

 (5)

In Equation 5, MRT represents the number of Modules
(files in our study) that must be inspected through a
Random Testing strategy, whereas MDF represents the
number of Modules that must be inspected with a Defect
Predictor. We have conducted the cost-benefit analysis of
our predictor to present the practical benefits for the
company. If we would use a random testing strategy, we
would have to inspect 87% of the files to be able to detect
87% of the defects. However, our model highlights only
25% of the files that contain 88% of defects. Therefore, the
gain in the inspection effort is 72%. Table 4 shows that the
implemented model reduces the inspection effort by 72.5%
on average through highlighting the critical parts in the
software system. Rather than looking at 87% of the files,
we can inspect only 24% of the files and detect 87% of the
defects in the system.

Table 2. Performance of the prediction model

Releases PD PF GE
2 77 33 58
3 92 21 81
4 82 23 78
5 75 15 74
6 87 18 83
7 83 21 71
8 98 33 68
9 88 29 72

10 97 41 68
Average

(Std. Dev.)
87

(8.1)
26

(8.5)
72.5
(7.6)

Deployment of the Model
The prediction results given above were so satisfactory that
the quality assurance team at the company decided to
integrate the model into their configuration management
system. They planned to use the prediction model prior to
the testing phase so that the defect-prone files would be
investigated by a) the developer before he/she transfers the
project to the test team or b) the tester so that his/her effort
would be assigned to the critical parts only.
 As mentioned above, we have implemented Prest
(2009), an open source metrics extraction and defect
prediction tool, during this study. This tool not only
extracts code metrics from different granularity levels of
projects written in Java, Jsp, C and C++, but also includes
a defect prediction component in which a Naïve Bayes
classifier can be executed on a new project given a training
set.
 We have customized the defect prediction component of
Prest for the company. A graduate student from our
research laboratory and an engineer from the company
completed the implementation of this tool on the

program was implemented to perform the following steps:
MRT

MDF-MRT100x

1751

A shell script was written to call Prest and extract code
metrics from a specified project.
Shell scripts were written a) to retrieve the defects
detected for a specified project from quality center and
b) to match those defects with files that already
included code metrics.
The training set was prepared from the previous release
of a specified project.
The test set was prepared from the current release of a
specified project.
Prest was called once again a) to activate the prediction
component, b) to load the training and test sets, and c)
to run the algorithm and make the prediction.
The program returned defect-prone files of a specified
project for its current release.

 This model has been applied on two major components

in the last six months. It
lists defect-prone files of these components at the
beginning of the
be assigned to critical parts. Every 2 weeks, a new release
with 10 to 15 work packages and more than 400 graphical
user interfaces of these components is being published.
Since the release period is short, each release package
contains at most one or two new functionalities and the rest
are modifications/upgrades for the current system. These
work packages are tested using 1000 to 1500 test cases by
a total of 20 testers. Due to time constraints, the testing
phase is limited to 5 days on average. Thus, each tester
needs to run 10 to 15 automated test cases per day, i.e. 8
hours, in order to inspect 80% of the functionality in total.
It is also necessary for each tester to conduct manual
inspections to ensure 100% test coverage. However, in
reality, the development phase is delayed with frequent
requirements changes due to revisions in government
regulations. Thus, testers often have only 3 days to
complete the verification of a release. During this period of
time, a tester can execute 30 to 45 test cases. All test cases
executed by 20 testers in 3 days can cover only 48% of the
overall functionality. Therefore, the company applied our
defect prediction model to prioritize critical parts of the
code and assign few resources to those parts
immediately. The model inspects 24% of files
corresponding to 35 (23%) different functionalities and it
detects 87% of defects. As a result, each tester is required
to run 9 to 13 automated test cases per day to inspect a
71% of the functionality in total. In other words, the
company has managed to decrease the effort in person-
hours from 1.25 to 1.1 (decrease by 11.2%) with the help
of our defect prediction model. The quality assurance team
also counted the number of post-release defects for the last
5 releases and found that, since the model successfully
catches most of these defects during the testing phase,
post-release failures due to a code defect have been
decreased from 59% to 32% (decrease by 44%).
 We have done an additional analysis to compare the
effects of our model with a new process implementation on

improving the quality of a software product, i.e. decreasing
the defect rates and reducing the testing effort. Recently, a
pilot project has been conducted for implementing a new
process the so called, Team Software Process (TSP), in the
company. A software team of four people developed a new
project by applying the fundamental principles of TSP and
reported all tasks they accomplished and planned as well as
the actual times required for completing these tasks, the
defects detected and removed during unit testing and the
independent testing phases.

Comparison with a Process Change: Team
Software Process
What is Team Software Process (TSP)? Along with
Personal Software Process (PSP), TSP (SEI 2010) helps
engineers:

ensure the quality of software products,
create secure software products, and
improve process management in an organization.

Engineering groups often use TSP to apply integrated team
concepts to the development of software-intensive systems
(SEI 2010). A launch process leads the teams and
managers to establish their goals, define the roles within
the team, assess risks, and produce a team plan. This
process first directs the goals and the plans of engineers in
the company individually. Then it helps create self-directed
teams who take ownership of their plans and processes and
direct their tasks accordingly. Using PSP, engineers do not
only improve the process of planning and estimating the
size and effort related to their tasks, but they also
understand the means of managing quality and reducing
defects. According to case studies carried out in various
organizations such as Motorola, engineers have achieved
less than 0.1 defects per KLOC on nearly 18 projects (SEI
2010). Although the objectives and claims of applying
such a process are very strong, it is clear that TSP, along
with PSP, obliges engineers individually to ensure that
they adopt good practices in term of engineering
disciplines.
Analysis on the Pilot TSP Project. The management
selected a pilot group of four engineers to complete a new
project using the TSP principles. Their objectives were a)
to observe the applicability of TSP in their organization,
and b) to evaluate the benefits of the process change in
terms of productivity, estimation accuracy, the defects
detected in unit testing, and defect density in the testing
and production phases.
 The pilot project would provide a modification for one
of the four major software components in the large
software system. When compared with the large system,
for which we have implemented a predictor model, the size
of the pilot project can be viewed as 1/5 of the entire
system. At the end of development life cycle, it contains
107 Java packages with around 105.925 executable LOC.
The pilot project team executed two launches during the

1752

project life cycle. Every launch started by defining the
tasks required for completing the project, assigning each
task to an engineer (or a group of engineers), estimating
the time and size of the tasks and the number of defects
injected and removed for each phase.

Engineers in the pilot group purposefully applied the
TSP principles for almost six months. They prepared
reports with statistics on estimation accuracy, productivity
and defect rates. Based on these reports, we have formed a
chart that represents the actual time spent in software
phases (rates out of 1.0) aligned with the estimated time
periods in Figure 1.

Figure 1. Time in hours spent for each phase.

By looking at this figure, we can see that the team actually
applied TSP and made accurate estimations in terms of the
time spent in each phase. They spent 95% of their total
effort on high-level design (HLD), detailed design (DLD),
DLD review, implementation, code review, and unit tests.
Specifically, coding and code review took slightly more
than expected. Code reviews and inspections constitute
25% of this effort. When we observe the defects detected
and removed in each phase (Table 3), we see an interesting
pattern: 25% of all defects were detected and fixed during
code reviews and inspections in comparison to 28% of
defects detected during unit testing.
A panel on IEEE Metrics reports that code reviews and
manual inspections can detect 60% of defects on average
(Shull et al. 2002). However, although 17% of total time
was spent for code reviews and inspections in the course of
this project, the percentage of the defects detected during
independent testing activities was still 29 (i.e. testing
phase). Normally, TSP should increase the number of
defects detected in code reviews and unit testing since it
provides a guide for increasing the quality of the work of
engineers (software developers). Furthermore, TSP argues
that it should decrease the defect density in the testing
phase, and increase the software quality.

We argue that if a learning-based defect predictor is
used as complementary to code reviews and inspections, it

will help reduce both the time and the effort spent during
coding.

Table 3. Number of defects detected and fixed in phases
Phase Removed Count

Unit Testing 66
Code Inspection & Reviews 58

DLD Review 38
Design 6

Independent Testing 68
Total 236

Table 4. Predictions on pilot project using our prediction model

#Attributes #
Packages

Defectives
(%)

PD PF GE

20 107 15% 75% 26% 10%

Defect Prediction on the TSP Project. To evaluate and
compare the benefits of using a defect predictor with a
process change, we have made predictions on the TSP

(including code reviews, inspection and unit testing). In
TSP, defect logs were kept in detail and when possible,
they were matched with a Java package in the project. We
used Prest to extract static code attributes from the Java
packages of the pilot project. Then we matched the defects

 with code metrics of the
packages. We have assigned 1 as defective and 0 as defect-
free to every package in the source code if there was a
minimum of one defect. Finally, we have made package-
level predictions on the pilot project. Table 4 summarizes
the defect ratio in the package level and the prediction
performance of our predictor. It shows that using a smart
and automated tool, we managed to detect 75% of all
defects without spending too much effort on inspecting the
entire code through the use of labor-intensive checklists.
We can decrease the inspection effort by 10% compared to
a random testing strategy. This gain in the inspection effort
is lower than what we proposed in Table 2 due to the
granularity level we used in TSP analysis. Matching the
files with defects rather than packages would prove to be
more beneficial for reducing the inspection efforts. Thus,
we see that a process change itself is limited to reduce the
inspection effort or to improve the quality of coding in
terms of the number of defects detected during unit testing.
If we used such a tool during the TSP implementation, it
would enable us to save time and find the defects that were

 phase but detected during the
testing phase. The rate of false alarms seems to be high a
fact that would waste the limited testing effort on actual
defect-free modules. However, in this analysis, we have

coding
phase, but we have not matched the defects detected during
the testing phase with the software packages. Therefore,
the packages that are misclassified as defect-prone (false

1753

alarms) may also contain a defect detected during the
testing phase.
 To sum up, we have observed that process change and
applying organizational procedures are beneficial to obtain
high quality software products within the set time period
and budget. However, they may not provide a solution to
all problems such as decreasing the defects, increasing
quality, the accurate estimation of size and effort in the
software development life cycle. AI-based tools such as
defect predictors could be used in conjunction with new
processes to save time and effort as well as to decrease as
many defects as possible.

Maintenance
Similar to many AI-based models, our model also requires
calibration. The company decided to train the model with
new data in periods of three months and make predictions
on new releases. Since the model has been successfully

from the quality assurance team is selected to form a new
training set every three-months and update the model with
new parameters. The company also motivates the teams for
making such tools part of their routine during the
development and testing stages. This way, it will be easier
to apply the model in collaboration with the development
and test teams in order to analyze the code quality and to
predict the critical parts of the software. Furthermore, we
plan to track the prediction performance and the usage of
the model in the company through one year and will
calibrate the algorithm if necessary.

Lessons Learned
 There are certain challenges during the development and
implementation of predictive models. During the
development process, we easily collected software metrics
using our open source metric extraction tool Prest.
However, matching each defect with its corresponding file
in order to form training set for the model was a
challenging task. To do this, companies have to store
certain data in their systems. First, it is necessary to keep
track of any bug/defect recorded during the testing phase
through a bug tracking system. Second, the changes
applied on the source code due to a defect should be kept
in a version history. Then, we can mine the version history
to match every defect with all the files changed to fix the
corresponding defect. After forming the training set, it is
easy to apply any algorithm, and not necessarily only
Naïve Bayes, on the training set to learn the parameters.
Software metrics required to form the testing set can be
quickly collected with Prest.
 During the implementation process, we must ensure at
the beginning that the model yields the optimal prediction
accuracy for the local data collected from the organization.
Then, it is important to decide how and when a defect
predictor would be used within the development life cycle.

We suggest that such predictors should be used prior to the
testing phase in order to guide the testers through defect-
prone modules in the software system. We have integrated

database system (CMDB), which displays certain
properties about the source code such as the difference
between two releases, the complexity of the latest change
and added/deleted LOC during a given a time period (i.e.
release). Using our prediction model, this system also
presents the defect-proneness of any software module
selected from the system by assigning 1 as defect-prone
and 0 as defect-free. Thus, developers, as well as testers,
can track the defect-proneness of their code in every
release.
 The application has been in use at the company for eight
months now. The company plans to improve the
predictions by adding new metrics from version
management systems. Furthermore, they plan to use these
predictions to compute defect rates for every release and
compare these defect rates with a pre-defined reliability
threshold. If estimated defect rates of a release is higher
than the reliability threshold, then quality
assurance team would decide to delay or cancel the release.

Acknowledgment
This research is supported in part by the Turkish Scientific
Research Council (TUBITAK) under the grant number
EEEAG108E014, and Turkcell Inc.

Appendix A
Table A.1. List of static code attributes (NASA 2007)

Attribute Description Attribute Description
McCabe metrics

Cyclomatic
density,
vd(G)

the ratio of

cyclomatic
complexity to
its length

Essential
complexity,
ev(G)

the degree
to which a
module
contains
unstructured
constructs

Design
density,dd(G)

condition/
decision

Cyclomatic
complexity,
v(G)

linearly
independent
paths

Essential
density,ed(G)

(ev(G)-
1)/(v(G)-1)

Maintenance
severity

ev(G)/v(G)

Halstead metrics
Difficulty (D) 1/L Length (N) N1 + N2
Level (L) (2/n1)*(n2/N2) Programming

effort (E)
D*V

Volume (V) N*log(n) Programming
time (T)

E/18

Lines of code metrics
Unique
operands

n1 Executable
LOC

Source lines
of code that
contain only
code and

1754

white space
Branch count # branches Total

operators
N1

Decision
count

decision
points

Total
operands

N2

Condition
count

conditionals Unique
operators

n2

References
Alpaydin, E. eds 2004. Introduction to machine learning.
The MIT Press.
Adrian, R.W., Branstad, A. M., Cherniavsky, C. J. 1982.
Validation, Verification and Testing of Computer Software,
ACM Computing Surveys (14), 22: 159-192.
Arisholm, E., Briand. L.C. 2006. Predicting fault-prone
components in a java legacy system. In Proceedings of the
2006 ACM/IEEE International symposium on Empirical
software engineering, 8-17, ACM, New York, NY, USA.
Basili, V., Briand, A., Melo, W.L. 1996. Validation of
object oriented design metrics as indicators of quality
indicators, IEEE Transactions on Software Engineering
(22), 751-761.
Boetticher, G. Menzies, T., Ostrand, J.T. 2007. The
PROMISE Repository of Empirical Software Engineering
Data.http://promisedata.org/repository.
Brooks, A. eds. 1995. The Mythical Man-Month: Essays on
Software Engineering. Addison-Wesley.
Chidamber, S.R., Kemerer, C.F. 1994. A metrics suite for
OO design, IEEE Transactions on Software Engineering
(20), 476-493.
Fagan, M. 1976. Design and Code Inspections to Reduce
Errors in Program Development. IBM Systems Journal
(15), 3.
Fenton, N., Neil, M. 1999. A Critique of Software Defect
Prediction Models. IEEE Transactions on Software
Engineering (25), 675-689.
Halstead, H.M. eds 1977. Elements of Software Science.
New York, Elsevier.
Heeger, D. 1998. Signal Detection Theory. Available at
http://white.stanford.edu/ heeger/sdt/sdt.html.
Kuncheva, L.I. 2006. On the optimality of Naïve Bayes
with dependent binary features. Pattern Recognition
Letters (27), 7: 830-837.
Lessmann, S., Baesens, B., Mues, C., Pietsch, S. 2008.
Benchmarking Classification Models for Software Defect
Prediction: A Proposed Framework and Novel Findings.
IEEE Transactions on Software Engineering (34), 4: 1-12.
McCabe, T. 1976. A Complexity Measure. IEEE
Transactions on Software Engineering (2), 4: 308-320.
Menzies, T., Greenwald, J., Frank, A. 2007. Data mining
static code attributes to learn defect predictors. IEEE
Transactions on Software Engineering (33), 1: 2-13.
Moser, R., Pedrycz, W., Succi, G. 2008. A comparative
analysis of the efficiency of change metrics and static code
attributes for defect prediction, In Proceedings of the 30th
International Conference on Software Engineering, 181-
190.

Munson, J. C., Khoshgoftaar, T. M. 1992. The detection of
fault-prone programs. IEEE Transactions on Software
Engineering (18), 5: 423-433.
Nagappan, N., Ball, T., Murphy, B. 2006. Using Historical
In-Process and Product Metrics for Early Estimation of
Software Failures. In Proceedings of the International
Symposium on Software Reliability Engineering, NC.
Nagappan, N., Murphy, B., Basili, V. 2008. The Influence
of Organizational Structure on Software Quality: An
Empirical Case Study. In Proceedings of 30th International
Conference on Software Engineering, 521-530.
Nasa/Wvu IV&V Facility, Metrics Data Program,
available from http://mdp.ivv.nasa.gov, accessed 2007.
Ostrand, T.J., Weyuker E.J., Bell, R.M. 2005. Predicting
the Location and Number of Faults in Large Software
Systems. IEEE Transactions on Software Engineering (31),
4: 340-355.
Prest. 2009. Department of Computer Engineering,
Bogazici University, http://code.google.com/p/prest/.
Shull, F., Boehm, V.B., Brown, A., Costa, P., Lindvall, M.,
Port, D., Rus, I., Tesoriero, R., and Zelkowitz, M. 2002.
What We Have Learned About Fighting Defects. In
Proceedings of the Eighth International Software Metrics
Symposium, 249-258, 2002.
Software Engineering Institute (SEI). 2010. Team Software
Process. Carnegie Mellon University,
http://www.sei.cmu.edu/tsp/.
Tosun, A., Bener, A. and Turhan, B. 2009. Practical
Considerations in Deploying AI for Defect Prediction: A
Case Study within the Telecommunication Industry. In
Proceedings of the 1st International Conference on
Predictor Models (PROMISE), Best Paper Award.
Uyar, A., Bener, A., Ciray, H.N., Bahceci, M. 2009. ROC
Based Evaluation and Comparison of Classifiers for IVF
Implantation Prediction. In Proceedings of Second
International ICST Conference on Electronic Healthcare
for 21st century, Istanbul.
Wohlin, C., Aurum, A., Petersson, H., Shull, F.,
Ciolkowski, M. 2002. Software inspection benchmarking -
a qualitative and quantitative comparative opportunity. In
Proceedings of the 8th International Symposium on
Software Metrics, 118-127, 2002 IEEE Computer Society,
Washington, DC, USA.
Zimmermann, T., Weisgerber, P., Diehl, S., Zeller, A.
2004. Mining version histories to guide software changes. .
In Proceedings of the 26th International Conference on
Software Engineering, 563-572, IEEE Computer Society,
DC, USA.

1755

	AAAI-10
	Contents
	Index
	Help
	Terms
	AAAI

