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Abstract 
Software defect prediction aims to reduce software testing 
efforts by guiding testers through the defect-prone sections 
of software systems. Defect predictors are widely used in 
organizations to predict defects in order to save time and 
effort as an alternative to other techniques such as manual 
code reviews. The application of a defect prediction model 
in a real-life setting is difficult because it requires software 
metrics and defect data from past projects to predict the 
defect-proneness of new projects. It is, on the other hand, 
very practical because it is easy to apply, can detect defects 
using less time and reduces the testing effort. We have built 
a learning-based defect prediction model for a 
telecommunication company during a period of one year. In 
this study, we have briefly explained our model, presented 
its pay-off and described how we have implemented the 
model in the company. Furthermore, we have compared the 
performance of our model with that of another testing 
strategy applied in a pilot project that implemented a new 
process called Team Software Process (TSP). Our results 
show that defect predictors can be used as supportive tools 
during a new process implementation, predict 75% of code 
defects, and decrease the testing time compared with 25% of 
the code defects detected through more labor-intensive 
strategies such as code reviews and formal checklists. 

 Introduction   
Software defects are more costly if discovered and fixed in 
the later stages of the development life cycle or during 
production (Brooks 1995). Therefore, testing is one of the 
most critical and time consuming phases of the software 
development life cycle and accounts for 50% of the total 
cost of development (Brooks 1995).  
 The testing phase should be planned carefully in order to 
save time and effort while detecting as many defects as 
                                                 

possible. Different verification, validation and testing 
strategies have been proposed so far to optimize the time 
and effort utilized during the testing phase: code reviews 
(Adrian, Branstad and Cherniavsky 1982; Shull et al. 
2002), inspections (Wohlin et al. 2002; Fagan 1976) and 
automated tools (Menzies et al. 2007; Nagappan, Ball, 
Murphy 2006; Ostrand, Weyuker, Bell 2005). Defect 
predictors improve the efficiency of the testing phase in 
addition to helping developers assess the quality and 
defect-proneness of their software product (Fenton and 
Neil 1999). They also help managers in allocating 
resources. Most defect prediction models combine well-
known methodologies and algorithms such as statistical 
techniques (Nagappan, Ball, Murphy 2006; Ostrand, 
Weyuker, Bell 2005; Zimmermann et al. 2004) and 
machine learning (Munson and Khoshgoftaar 1992; Fenton 
and Neil 1999; Lessmann et al. 2008; Moser, Pedrycz, 
Succi 2008). They require historical data in terms of 
software metrics and actual defect rates, and combine these 
metrics and defect information as training data to learn 
which modules seem to be defect-prone. Based on the 
knowledge from training data and software metrics 
acquired from a recently completed project, such tools can 
estimate defect-prone modules of that project.  
 Recent research on software defect prediction shows that 
AI-based defect predictors can detect 70% of all defects in 
a software system on average (Menzies et al. 2007), while 
manual code reviews can detect between 35 to 60% of 
defects (Shull et al. 2002), and inspections can detect 30% 
of defects at the most (Fagan 1976). Furthermore, code 
reviews are labor-intensive since depending on the review 
procedure, they require 8 to 20 LOC/minutes for each 
person in the software team to inspect the source code 
(Menzies et al. 2007).  Therefore, AI-based models are 
popularly used by various organizations (Menzies et al. 
2007; NASA MDP 2007; Nagappan, Ball, Murphy 2006; 
Nagappan, Murphy, Basili 2008; Ostrand, Weyuker, Bell 
2005). They resemble the working principle of a human 
brain that collects previous knowledge on a given topic, 
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analyzes that information and comes up with a claim or 
prediction on the subject. AI-based predictors learn 
specific patterns concerning defect-proneness from past 
projects and use this information to predict the defect-
proneness of new projects. As more projects are observed 
throughout the development life cycle, more data is 
collected, and predictions are more accurate. 
  We conducted a comprehensive metrics program and 
built a defect prediction model at a large 
telecommunication company in Turkey during a period of 
one year (Tosun, Turhan, Bener 2009). During this metrics 
program, we collected static code metrics and churn 

matched the pre-release defects (the defects detected 
during the testing phase) of the previous releases with the 
source codes at file level. Then we made predictions on the 
new releases of the projects. We calibrated our model 
based on its prediction accuracy and discovered that it is 
possible to detect on an average of 88% of defective files 
using a defect predictor (Tosun, Turhan, Bener 2009).   
 In this paper, we describe our model from a machine 
learning perspective with measurable benefits such as the 
defect detection capability and the cost-benefit analysis. 
We present the pay-off of the model used and show how 
the model has been implemented in the company. We also 
used our model for defect prediction and compared its 
performance with a pilot process change, which employed 
labor-intensive checklists and formal procedures for 
detecting defects before the testing phase. Our results show 
that our prediction model automatically finds 75% of the 
defects detected in unit testing, code reviews and 
inspections only in a few seconds. Therefore, we conclude 
that the impact of process changes is limited.   

Brief Information about the Organization 
The organization we collaborated within this study is the 
leading GSM operator in Turkey and the third biggest 
GSM operator in Europe in terms of number of 
subscribers. As of 31 December 2009, it is providing 
mobile communication services to 35.4 million 
subscribers, with additional 26.1 million subscribers in 
Azerbaijan, Kazakhstan, Georgia, Ukraine and Northern 
Cyprus. It was founded in 1994, and since 2006, it has an 
R&D centre with around 200 engineers. In this R&D 
centre, they develop software products and solutions for 
mobile operators all over the world. Some of these 
solutions are network solutions, value added services, SIM 
related solutions, terminal based solutions, billing and 
charging solutions, data mining, data warehouse, customer 
and channel management systems and applications. Their 
legacy system contains millions lines of code that are being 
maintained. The majority of their software is implemented 
with Java, Jsp, PL/SQL and other new technologies such as 
SOA.  
 As with any other company, time and budget constraints 
put constant pressure on R&D. As customers require new 
functionality or technology changes, the company has to 

respond faster and faster with new software releases. 
Therefore, its approach to development is incremental, 
with each new release adding new functionality or a 
software modification to previous releases. In such a 
limited time, the software team cannot apply any 
measurement process to assess the overall software quality. 
Therefore, there was an urgent need to implement a 
measurement and analysis program to monitor defects, 
reduce defect rates and testing effort, and to improve 
software quality. We have built a measurement repository, 
bug tracing/matching system and a defect prediction model 
for the company. In this study, we explain the 
implementation of the defect prediction model after it has 
been calibrated with local data to achieve the highest 
prediction accuracy. 

Description of the Prediction Model 
Our learning-based defect predictor is a typical machine 
learning application: It contains a training phase to learn 
from the data related to previous projects and a testing 
phase to predict the potential defect-free and defective 
modules of the new project. A module could be a package, 
class, file, or method inside the source code. Erroneous 
predictions of the defect-free modules in the form of 
defects 
modules and waste their precious time. On the other hand, 
missing defective modules (false negatives) would cause 
more expensive and hard-to-fix failures on the final 
software product. Thus, false negatives need to be avoided. 

Basic Terminology: Input and Output Variables 
As a classification task, our input variables are a set of 
static code attributes such as lines of code (LOC), 
complexity, operand and operator counts extracted from 
the source code. Static code attributes are widely used and 
easily collected through automated tools (Menzies et al. 
2007; Moser et al. 2008; Lessmann et al. 2008) and 
proposed by various researchers such as McCabe (1976) 
and Halstead (1977). The full list of attributes collected 
from the source code in this study is illustrated in 
Appendix A.  
 In literature, various researchers have also used other 
type of metrics such as object-oriented design metrics 
(Basili, Briand, Melo 1996; Chidamber, Kemerer 1994), 
in-process metrics (Nagappan, Ball, Murphy 2006), and 
organizational metrics (Nagappan, Murphy, Basili 2008) in 
order to predict defects. Although increasing the 
information content of input data by adding different types 
of metrics has positive effects on defect prediction 
capability, it is not easy to collect in-process and 
organizational metrics from an organization. Therefore, we 
have preferred to use the source code as a means of 
collecting metrics, i.e. input variables.   
 In addition to code attributes, there are class labels for 
each module such as 0 as defect-free and 1 as defective in 
the training set. If a module in the software system has 
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been associated with a bug (code defect) during the testing 
phase, it is labeled as 1; otherwise, it is labeled as 0. It is 
not necessary to count the number of defects a module is 
associated with since our aim in this study is not predicting 
the number of defects. More precisely, the training set is an 
N-by-M matrix where N is the number of modules taken 
from past projects and M is the number of code attributes 
(M-1) extracted from their source code as well as a class 
label to indicate whether a defect has been detected on that 
module during testing.  
 The test set, on the other hand, contains attributes 
extracted from the modules of a new project whose defect 
labels are unknown. Therefore, the output variable (Y) of 
the model would be the class labels of modules in the test 
set as defect-free or defect-prone.  

The Use of AI Technology 
We have used a Naïve Bayes classifier as the algorithm of 
our prediction model. The Bayes Theorem defines the 
posterior probability as proportional to the prior probability 
of the class p(Ci), and the likelihood of attributes, 
p(X\Y=Ci) (cf. Alpaydin 2004). In binary classification 
problems such as defect prediction, Naïve Bayes computes 
the posterior probability of a module being defective, or the 
probability of a module being defect-free, given its 
attributes. Then, it assigns a module to the defective class if 
its posterior probability is greater than a pre-defined 
threshold (0.5). Otherwise, the module is classified as 
defect-free. 
 We have used a Naïve Bayes classifier for several 
reasons. First of all, it is a widely used, simple and robust 
machine learning technique in various applications such as 
pattern recognition (Kuncheva 2006), medical diagnosis 
(Uyar et al. 2009) and defect prediction (Menzies et al. 
2007; Moser et al. 2008; Tosun, Turhan, Bener 2009). It is 
also easy for field practitioners to understand and 
implement. Second, defect prediction models with a Naïve 
Bayes classifier deliver the best prediction accuracy on 
public datasets compared with models with other 
classifiers (Menzies et al. 2007). One of the reasons for the 
success of the Naive Bayes classifier over other methods is 
that it combines signals coming from multiple sources. It is 

a (minor changes in 
training sample do not give completely different results) by 
polling numerous Gaussian approximations to the numeric 
distributions (Menzies et al. 2007). Therefore, minor 
correlations between attributes or samples in the training 
set within the field of software defect prediction do not 
confuse Naive Bayes classifiers. Third, a recent study by 
Lessmann et al. (2008) presents that the importance of 
classification algorithms in defect prediction may be less 
than previously assumed, since no significant performance 
differences exist among the top 17 classifiers. This result is 
very important for our case study since it reduces the 
necessity of trying all classification techniques. Thus, 
instead of applying different algorithms, we have selected 
Naïve Bayes as the algorithm of our model and focused on 
calibration based on local data.   

Performance Evaluation 
We use Receiver Operator Characteristics (ROC) curves to 
assess the discriminative performance of a binary Naïve 
Bayes classifier (Heeger 1998). In a ROC curve, our 
objective is to reach the point (1, 0) in terms of (y, x), 
where the y-axis represents the true positive rate and the x-
axis represents the false positive rate. We have computed 
these performance measures to evaluate the accuracy of 
our model. However, similar to defect prediction research 
(Menzies et al. 2007; Lessmann et al. 2008), we name the 
true positive rate as the probability of detection rate (pd) 
and the false positive rate as the probability of false alarm 
rate (pf) in this study. The ideal classification, point (1, 0) 
in a ROC curve can be reached when we correctly classify 
all defective modules (pd=1, i.e. 100%) with no false 
alarms (pf=0, i.e. 0%).  
 Finally, the prediction outcomes depending on the actual 
class labels of modules can be represented as a confusion 
matrix as shown in Table 1. The common classifier 
performance measures are derived from this confusion 
matrix (Menzies et al. 2007).  
 

Table 1. Confusion matrix 
Actual Predicted 

Defective Defect-free 
Defective TP FN 

Defect-free FP TN 
 

Probability of the detection rate (PD) is a measure of 
accuracy for correctly classifying defective modules. It 
corresponds to the true positive rate in machine learning 
and should be as close to 1 as possible:  
 

 (PD) = TP / (TP + FN)                      (3) 
 

Probability of the false alarm rate (PF) is a measure of 
accuracy to represent the false alarms when we misclassify 
defect-free modules. We must avoid high PF rates in 
software defect prediction models since they would 
increase the testing effort.  
 

(PF) = FP / (FP + TN)                       (4) 
  
 It is very rare to achieve the ideal case with 100% PD 
and 0% PF rates using a prediction model. When the model 
is triggered often to increase the PD rate, the PF rate 
would, in turn, increase. Therefore, our objective is to get 
as high PD rates as possible while keeping the PF rates at a 
minimum.  

Utilization of the Model and Pay-off 
We built our defect prediction model on the software 
system of a telecommunication company. Previously, a 
tool that collected metrics from the source code did not 
exist. Moreover, although the defects were logged in a 
version management system, they were not matched with 
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the source code at any granularity level, i.e. package, file, 
method, or LOC.  
 We started a metrics program to collect the required data 
for building our defect predictor. We developed an open-
source metrics extraction and a defect prediction tool 
called Prest (2009), and collected code metrics from Java 
and Jsp files. Previously, there was no process in the 
company for bug tracking. Furthermore, there was no 
process to match defects with the files in order to keep 
track of the reasons for any change in the software system. 
Therefore, we implemented an organization-wide process 
change that is fully supported by the senior management 
(Tosun, Turhan, Bener 2009). This process change helped 
us to store defects as well as to match them at files level.  
 The static code attributes at file level and the defect 
labels matching the files (more precisely, Java and Jsp 
files) were collected from 9 different projects in 10 
releases, and this dataset was donated to a public data 
repository, Promise (2007). Then, the project-based defect 
prediction was performed such that the defective files of a 
project at release n were predicted using the static code 
attributes and the defect labels of the same project at 
release n-1. Based on this training-testing strategy, we 
assessed the performance of our predictor and discovered 
that the deployed model with a Naïve Bayes classifier 
correctly classifies 90% of the defective files while 
producing 50% false alarms (Tosun, Turhan, Bener 2009). 
Since false alarms were very high, we included a new 
software metric in addition to static code attributes, such as 
version history flags indicating the latest activity date on 
files as inputs to the model. This flag shows whether a file 
has been edited at least once for six months. If it does not 
have any activity for a long time, then it is less likely that 
the file contains defects. Using version flags further 
improved the prediction performance by decreasing the 
false alarm rates on an average of 28%, from 50% to 22% 
(Tosun, Turhan, Bener 2009). 
 Table 2 shows the summary of the prediction 
performances in 9 releases. We have made predictions for 
an average of three projects in every release and took the 
mean and the standard deviation of the prediction 
performances in terms of pd and pf rates. As it is seen in 
Table 2, we have successfully achieved 87% detection rate 
in 9 releases with 26% false alarms. Our defect predictor 
helps detecting defective modules using less time and 
effort. Furthermore, it guides testers through specific files 
and reduces the inspection effort compared to code reviews 
and inspections. The process is less labor-intensive if local 
data is collected as required.  
 The practical benefits of using a defect predictor have 
been further computed using a cost-benefit analysis from 
Arisholm and Briand (2006). The authors compared the 
inspection effort suggested by a defect prediction with a 
random testing strategy. Based on that, the gain in the 
effort to (GE) can be calculated with the following 
formula: 
 

                      (5)    

In Equation 5, MRT represents the number of Modules 
(files in our study) that must be inspected through a 
Random Testing strategy, whereas MDF represents the 
number of Modules that must be inspected with a Defect 
Predictor. We have conducted the cost-benefit analysis of 
our predictor to present the practical benefits for the 
company. If we would use a random testing strategy, we 
would have to inspect 87% of the files to be able to detect 
87% of the defects. However, our model highlights only 
25% of the files that contain 88% of defects. Therefore, the 
gain in the inspection effort is 72%. Table 4 shows that the 
implemented model reduces the inspection effort by 72.5% 
on average through highlighting the critical parts in the 
software system. Rather than looking at 87% of the files, 
we can inspect only 24% of the files and detect 87% of the 
defects in the system.   

 
Table 2. Performance of the prediction model 

Releases PD PF GE 
2 77 33 58 
3 92 21 81 
4 82 23 78 
5 75 15 74 
6 87 18 83 
7 83 21 71 
8 98 33 68 
9 88 29 72 

10 97 41 68 
Average 

(Std. Dev.) 
87 

(8.1) 
26 

(8.5) 
72.5 
(7.6) 

Deployment of the Model  
The prediction results given above were so satisfactory that 
the quality assurance team at the company decided to 
integrate the model into their configuration management 
system. They planned to use the prediction model prior to 
the testing phase so that the defect-prone files would be 
investigated by a) the developer before he/she transfers the 
project to the test team or b) the tester so that his/her effort 
would be assigned to the critical parts only.  
 As mentioned above, we have implemented Prest 
(2009), an open source metrics extraction and defect 
prediction tool, during this study. This tool not only 
extracts code metrics from different granularity levels of 
projects written in Java, Jsp, C and C++, but also includes 
a defect prediction component in which a Naïve Bayes 
classifier can be executed on a new project given a training 
set.  
 We have customized the defect prediction component of 
Prest for the company. A graduate student from our 
research laboratory and an engineer from the company 
completed the implementation of this tool on the 

program was implemented to perform the following steps: 
MRT

MDF-MRT100x
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A shell script was written to call Prest and extract code 
metrics from a specified project. 
Shell scripts were written a) to retrieve the defects 
detected for a specified project from quality center and 
b) to match those defects with files that already 
included code metrics. 
The training set was prepared from the previous release 
of a specified project. 
The test set was prepared from the current release of a 
specified project. 
Prest was called once again a) to activate the prediction 
component, b) to load the training and test sets, and c) 
to run the algorithm and make the prediction. 
The program returned defect-prone files of a specified 
project for its current release. 

  
 This model has been applied on two major components 

in the last six months. It 
lists defect-prone files of these components at the 
beginning of the 
be assigned to critical parts. Every 2 weeks, a new release 
with 10 to 15 work packages and more than 400 graphical 
user interfaces of these components is being published. 
Since the release period is short, each release package 
contains at most one or two new functionalities and the rest 
are modifications/upgrades for the current system. These 
work packages are tested using 1000 to 1500 test cases by 
a total of 20 testers. Due to time constraints, the testing 
phase is limited to 5 days on average. Thus, each tester 
needs to run 10 to 15 automated test cases per day, i.e. 8 
hours, in order to inspect 80% of the functionality in total. 
It is also necessary for each tester to conduct manual 
inspections to ensure 100% test coverage. However, in 
reality, the development phase is delayed with frequent 
requirements changes due to revisions in government 
regulations. Thus, testers often have only 3 days to 
complete the verification of a release. During this period of 
time, a tester can execute 30 to 45 test cases. All test cases 
executed by 20 testers in 3 days can cover only 48% of the 
overall functionality. Therefore, the company applied our 
defect prediction model to prioritize critical parts of the 
code and assign few resources to those parts 
immediately. The model inspects 24% of files 
corresponding to 35 (23%) different functionalities and it 
detects 87% of defects. As a result, each tester is required 
to run 9 to 13 automated test cases per day to inspect a 
71% of the functionality in total. In other words, the 
company has managed to decrease the effort in person-
hours from 1.25 to 1.1 (decrease by 11.2%) with the help 
of our defect prediction model. The quality assurance team  
also counted the number of post-release defects for the last 
5 releases and found that, since the model successfully 
catches most of these defects during the testing phase, 
post-release failures due to a code defect have been 
decreased from 59% to 32% (decrease by 44%). 
 We have done an additional analysis to compare the 
effects of our model with a new process implementation on 

improving the quality of a software product, i.e. decreasing 
the defect rates and reducing the testing effort. Recently, a 
pilot project has been conducted for implementing a new 
process the so called, Team Software Process (TSP), in the 
company. A software team of four people developed a new 
project by applying the fundamental principles of TSP and 
reported all tasks they accomplished and planned as well as 
the actual times required for completing these tasks, the 
defects detected and removed during unit testing and the 
independent testing phases.  

Comparison with a Process Change: Team 
Software Process 
What is Team Software Process (TSP)? Along with 
Personal Software Process (PSP), TSP (SEI 2010) helps 
engineers: 

ensure the quality of software products, 
create secure software products, and 
improve process management in an organization.  

 
Engineering groups often use TSP to apply integrated team 
concepts to the development of software-intensive systems 
(SEI 2010). A launch process leads the teams and 
managers to establish their goals, define the roles within 
the team, assess risks, and produce a team plan. This 
process first directs the goals and the plans of engineers in 
the company individually. Then it helps create self-directed 
teams who take ownership of their plans and processes and 
direct their tasks accordingly. Using PSP, engineers do not 
only improve the process of planning and estimating the 
size and effort related to their tasks, but they also 
understand the means of managing quality and reducing 
defects. According to case studies carried out in various 
organizations such as Motorola, engineers have achieved 
less than 0.1 defects per KLOC on nearly 18 projects (SEI 
2010). Although the objectives and claims of applying 
such a process are very strong, it is clear that TSP, along 
with PSP, obliges engineers individually to ensure that 
they adopt good practices in term of engineering 
disciplines. 
Analysis on the Pilot TSP Project. The management 
selected a pilot group of four engineers to complete a new 
project using the TSP principles. Their objectives were a) 
to observe the applicability of TSP in their organization, 
and b) to evaluate the benefits of the process change in 
terms of productivity, estimation accuracy, the defects 
detected in unit testing, and defect density in the testing 
and production phases.  
 The pilot project would provide a modification for one 
of the four major software components in the large 
software system. When compared with the large system, 
for which we have implemented a predictor model, the size 
of the pilot project can be viewed as 1/5 of the entire 
system. At the end of development life cycle, it contains 
107 Java packages with around 105.925 executable LOC. 
The pilot project team executed two launches during the 
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project life cycle. Every launch started by defining the 
tasks required for completing the project, assigning each 
task to an engineer (or a group of engineers), estimating 
the time and size of the tasks and the number of defects 
injected and removed for each phase.  

Engineers in the pilot group purposefully applied the 
TSP principles for almost six months. They prepared 
reports with statistics on estimation accuracy, productivity 
and defect rates. Based on these reports, we have formed a 
chart that represents the actual time spent in software 
phases (rates out of 1.0) aligned with the estimated time 
periods in Figure 1.  

 

Figure 1. Time in hours spent for each phase. 

By looking at this figure, we can see that the team actually 
applied TSP and made accurate estimations in terms of the 
time spent in each phase. They spent 95% of their total 
effort on high-level design (HLD), detailed design (DLD), 
DLD review, implementation, code review, and unit tests. 
Specifically, coding and code review took slightly more 
than expected.  Code reviews and inspections constitute 
25% of this effort. When we observe the defects detected 
and removed in each phase (Table 3), we see an interesting 
pattern: 25% of all defects were detected and fixed during 
code reviews and inspections in comparison to 28% of 
defects detected during unit testing.  
A panel on IEEE Metrics reports that code reviews and 
manual inspections can detect 60% of defects on average 
(Shull et al. 2002). However, although 17% of total time 
was spent for code reviews and inspections in the course of 
this project, the percentage of the defects detected during 
independent testing activities was still 29 (i.e. testing 
phase). Normally, TSP should increase the number of 
defects detected in code reviews and unit testing since it 
provides a guide for increasing the quality of the work of 
engineers (software developers). Furthermore, TSP argues 
that it should decrease the defect density in the testing 
phase, and increase the software quality.  

We argue that if a learning-based defect predictor is 
used as complementary to code reviews and inspections, it 

will help reduce both the time and the effort spent during 
coding. 
 

Table 3. Number of defects detected and fixed in phases 
Phase Removed Count 

Unit Testing 66 
Code Inspection & Reviews 58 

DLD Review 38 
Design 6 

Independent Testing 68 
Total 236 

 
Table 4. Predictions on pilot project using our prediction model 

#Attributes # 
Packages 

Defectives 
(%) 

PD PF GE 

20 107 15% 75% 26% 10% 
 
Defect Prediction on the TSP Project. To evaluate and 
compare the benefits of using a defect predictor with a 
process change, we have made predictions on the TSP 

 
(including code reviews, inspection and unit testing). In 
TSP, defect logs were kept in detail and when possible, 
they were matched with a Java package in the project. We 
used Prest to extract static code attributes from the Java 
packages of the pilot project. Then we matched the defects 

 with code metrics of the 
packages. We have assigned 1 as defective and 0 as defect-
free to every package in the source code if there was a 
minimum of one defect. Finally, we have made package-
level predictions on the pilot project. Table 4 summarizes 
the defect ratio in the package level and the prediction 
performance of our predictor. It shows that using a smart 
and automated tool, we managed to detect 75% of all 
defects without spending too much effort on inspecting the 
entire code through the use of labor-intensive checklists. 
We can decrease the inspection effort by 10% compared to 
a random testing strategy. This gain in the inspection effort 
is lower than what we proposed in Table 2 due to the 
granularity level we used in TSP analysis. Matching the 
files with defects rather than packages would prove to be 
more beneficial for reducing the inspection efforts. Thus, 
we see that a process change itself is limited to reduce the 
inspection effort or to improve the quality of coding in 
terms of the number of defects detected during unit testing. 
If we used such a tool during the TSP implementation, it 
would enable us to save time and find the defects that were 

 phase but detected during the 
testing phase. The rate of false alarms seems to be high  a 
fact that would waste the limited testing effort on actual 
defect-free modules. However, in this analysis, we have 

coding
phase, but we have not matched the defects detected during 
the testing phase with the software packages. Therefore, 
the packages that are misclassified as defect-prone (false 
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alarms) may also contain a defect detected during the 
testing phase. 
 To sum up, we have observed that process change and 
applying organizational procedures are beneficial to obtain 
high quality software products within the set time period 
and budget. However, they may not provide a solution to 
all problems such as decreasing the defects, increasing 
quality, the accurate estimation of size and effort in the 
software development life cycle. AI-based tools such as 
defect predictors could be used in conjunction with new 
processes to save time and effort as well as to decrease as 
many defects as possible.  

Maintenance 
Similar to many AI-based models, our model also requires 
calibration. The company decided to train the model with 
new data in periods of three months and make predictions 
on new releases. Since the model has been successfully 

from the quality assurance team is selected to form a new 
training set every three-months and update the model with 
new parameters. The company also motivates the teams for 
making such tools part of their routine during the 
development and testing stages. This way, it will be easier 
to apply the model in collaboration with the development 
and test teams in order to analyze the code quality and to 
predict the critical parts of the software. Furthermore, we 
plan to track the prediction performance and the usage of 
the model in the company through one year and will 
calibrate the algorithm if necessary.   

Lessons Learned 
 There are certain challenges during the development and 
implementation of predictive models. During the 
development process, we easily collected software metrics 
using our open source metric extraction tool Prest. 
However, matching each defect with its corresponding file 
in order to form training set for the model was a 
challenging task. To do this, companies have to store 
certain data in their systems. First, it is necessary to keep 
track of any bug/defect recorded during the testing phase 
through a bug tracking system. Second, the changes 
applied on the source code due to a defect should be kept 
in a version history. Then, we can mine the version history 
to match every defect with all the files changed to fix the 
corresponding defect. After forming the training set, it is 
easy to apply any algorithm, and not necessarily only 
Naïve Bayes, on the training set to learn the parameters. 
Software metrics required to form the testing set can be 
quickly collected with Prest.  
 During the implementation process, we must ensure at 
the beginning that the model yields the optimal prediction 
accuracy for the local data collected from the organization. 
Then, it is important to decide how and when a defect 
predictor would be used within the development life cycle. 

We suggest that such predictors should be used prior to the 
testing phase in order to guide the testers through defect-
prone modules in the software system. We have integrated 

database system (CMDB), which displays certain 
properties about the source code such as the difference 
between two releases, the complexity of the latest change 
and added/deleted LOC during a given a time period (i.e. 
release). Using our prediction model, this system also 
presents the defect-proneness of any software module 
selected from the system by assigning 1 as defect-prone 
and 0 as defect-free. Thus, developers, as well as testers, 
can track the defect-proneness of their code in every 
release.  
 The application has been in use at the company for eight 
months now. The company plans to improve the 
predictions by adding new metrics from version 
management systems. Furthermore, they plan to use these 
predictions to compute defect rates for every release and 
compare these defect rates with a pre-defined reliability 
threshold. If estimated defect rates of a release is higher 
than the reliability threshold, then quality 
assurance team would decide to delay or cancel the release. 
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Appendix A 
Table A.1. List of static code attributes (NASA 2007) 

Attribute Description Attribute Description 
McCabe metrics 

Cyclomatic 
density, 
vd(G) 

the ratio of 

cyclomatic 
complexity to 
its length 

Essential 
complexity, 
ev(G) 

the degree 
to which a 
module 
contains 
unstructured 
constructs 

Design 
density,dd(G) 

condition/ 
decision 

Cyclomatic 
complexity, 
v(G) 

# linearly 
independent 
paths 

Essential 
density,ed(G) 

(ev(G)-
1)/(v(G)-1) 

Maintenance 
severity 

ev(G)/v(G) 

Halstead metrics 
Difficulty (D) 1/L Length (N) N1 + N2 
Level (L) (2/n1)*(n2/N2) Programming 

effort (E) 
D*V 

Volume (V) N*log(n) Programming 
time (T) 

E/18 

Lines of code metrics 
Unique 
operands 

n1 Executable 
LOC 

Source lines 
of code that 
contain only 
code and 
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white space 
Branch count # branches Total 

operators 
N1 

Decision 
count 

# decision 
points 

Total 
operands 

N2 

Condition 
count 

# conditionals Unique 
operators 

n2 
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