
Finding Optimal Solutions to
Cooperative Pathfinding Problems

Trevor Standley
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095

tstand@cs.ucla.edu

Abstract

In cooperative pathfinding problems, non-interfering
paths that bring each agent from its current state to its
goal state must be planned for multiple agents. We
present the first practical, admissible, and complete al-
gorithm for solving problems of this kind. First, we pro-
pose a technique called operator decomposition, which
can be used to reduce the branching factors of many
search algorithms, including algorithms for cooperative
pathfinding. We then show how a type of independence
common in instances of cooperative pathfinding prob-
lems can be exploited. Next, we take the idea of ex-
ploiting independent subproblems further by adding im-
provements that allow the algorithm to recognize many
more cases of such independence. Finally, we show
empirically that these techniques drastically improve
the performance of the standard admissible algorithm
for the cooperative pathfinding problem, and that their
combination results in a complete algorithm capable of
optimally solving relatively large problems in millisec-
onds.

Introduction

Pathfinding, or planning a route to a destination that avoids
obstacles, is a classic problem in AI. When only a single
agent is present, the problem is usually effectively solved
using the A* algorithm (Hart, Nilsson, and Raphael 1968).
When the problem contains multiple agents, however, care
must be taken to avoid computing a solution that leads any
subset of agents to conflict, for example, one that requires
two agents to occupy the same space at the same time, or
more abstractly, a solution in which agents access more of
a resource than is currently available. While cooperative
pathfinding is becoming increasingly important in modern
video games, it has many applications outside of entertain-
ment such as robotics, aviation, and vehicle routing (Wang
and Botea 2008; Svestka and Overmars 1996).

Unfortunately, it has been shown to be PSPACE-hard to
compute any set of paths that bring each agent to its goal
state without conflict in several cooperative pathfinding do-
mains, even those without obstacles (Hopcroft, Schwartz,

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Sharir 1984; Hearn and Demaine 2005), and the stan-
dard admissible algorithm for cooperative pathfinding prob-
lems has a branching factor that is exponential in the number
of agents (Silver 2005). It is for these reasons that existing
research on these problems focus on algorithms for finding
good solutions as often as possible rather than developing
optimal and complete algorithms. Our algorithm is com-
plete, however, and can find optimal solutions to nontrivial
problems, often in milliseconds.

This paper is divided into the following sections. First,
we describe related work in this area. Then, we describe one
particular formulation of the cooperative pathfinding prob-
lem. Next, we elaborate on the standard admissible algo-
rithm and our two improvements. Finally, we present our
experimental results and conclusion.

Related Work

Silver (2005) describes an algorithm which he claims is
widely used in the video games industry, Local Repair A*
(LRA*). In LRA*, a path is computed for each agent inde-
pendently, and conflicts are not discovered until execution.
If the algorithm discovers that following a solution one step
further results in a conflict, the algorithm re-plans the path
of one of the conflicting agents, disallowing only the move
that would immediately result in a conflict. Unfortunately
LRA* often results in cycles and deadlock. Silver’s solu-
tion to this problem, Hierarchical Cooperative A* (HCA*),
focuses on reducing the number of future re-plans by creat-
ing a reservation table for future timesteps. The algorithm
chooses an ordering of agents, and plans a path for each
agent that avoids conflicts with previously computed paths
by checking against the reservation table. While the solu-
tions found by HCA* are significantly shorter than those
computed by LRA*, the greedy nature of this algorithm still
results in suboptimal solutions. Furthermore, in 4.3% in-
stances, some agents never reach their destinations. Finally,
this technique offers no option to spend more computation
time to increase either the number of solutions found or so-
lution quality.

Other attempts establish a direction for every grid position
and encourage or require each agent to move in that direction
at every step (Wang and Botea 2008; Jansen and Sturtevant
2008a; 2008b). These methods reduce the chance of com-
puting conflicting paths by creating the analog of traffic laws

173

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)



Figure 1: A small random grid world instance. Cars rep-
resent initial agent positions. Flags represent destinations.
Obstacles are in black.

for the agents to follow. While these methods are effective
at reducing the number of incompatible paths, they limit the
types of paths that agents can follow, and thus virtually guar-
antee that the solutions found will be suboptimal. Moreover,
as paths are still computed one agent at a time, without re-
gard to the consequences that a choice of path can have on
the paths available to future agents, this strategy also suffers
from the problem of deadlock, and therefore some agents
may never reach their destinations.

Finally, existing centralized approaches such those pre-
sented in (Ryan 2008) and (Svestka and Overmars 1996) are
complete, but do not aim for low solution cost. Furthermore,
the time and memory requirements of these algorithms limit
their applicability to problems containing only 100 positions
and less than ten agents.

Problem Formulation

There are many distinct types of cooperative pathfinding
problems, and each can be solved using a variant of our al-
gorithm. One example is planning the motions of robotic
arms, each of which must accomplish a separate goal with-
out moving into one another or monopolizing a resource.
Scheduling trains in a railroad network without sending a
pair of trains on a collision course and deciding actions for
automobiles approaching an intersection so that each may
pass through safely and quickly (Dresner and Stone 2004)
are also cooperative pathfinding problems. For the sake of
clarity, simplicity, and comparison to existing algorithms,
the testbed for our algorithm will be an eight-connected grid
world like the one in Figure 1.

In this formulation, each agent occupies a single cell of
the grid world, and has a unique destination. During a sin-
gle timestep, each agent either waits, or moves to any of its
free adjacent cells. A cell is free if it does not contain an
obstacle. Diagonal moves are allowed even when the two
tiles adjacent to both the starting tile and the target are ob-

Figure 2: Our formulation of the cooperative pathfinding
problem allows rotational moves, which result in each agent
occupying a previously occupied cell.

stacles. The cost of a single agent’s path is the total number
of timesteps that agent spends away from its goal, and the
cost of the entire solution is the sum of all path costs. Two
agents must not occupy the same tile at the same time.

Moreover, transitions in which agents pass through each
other including diagonal crossing are prohibited even when
those agents never occupy the same position during the same
timestep. In addition, we allow rotational transitions like the
ones depicted in Figure 2.

The Standard Admissible Algorithm

The standard admissible algorithm for this problem is A*
with the following problem representation: A state is an n-
tuple of grid locations, one for each of n agents (Wang and
Botea 2008). The standard algorithm considers the moves of
all agents simultaneously at a timestep, so each state poten-
tially has 9n legal operators. Each of these legal operators
is a solution to the constraint satisfaction problem in which
each agent must be assigned a move from {N, NE, E, SE,
S, SW, W, NW, and wait}, and there are constraints be-
tween sets of legal moves. For example, these legal moves
must not lead two agents to pass through each other. In or-
der to generate these operators, a backtracking search is em-
ployed to efficiently find all solutions to the CSP at every
node expansion. In practice, these CSPs are not difficult,
and most of the 9n combinations of moves are legal. The
cost of each operator is the number of agents not stopped on
their goals. An admissible heuristic, like the one presented
in a later section, is always coupled with this algorithm.

While this method can be used to solve some trivial prob-
lem instances, each node expansion can add approximately
59k nodes (approximately 1.5MB in our implementation) to
the open list when run on an instance with only 5 agents.

In many of the successors of a given node, the majority
of agents have moved farther from their goals, resulting in
nodes that have heuristic values as much as n higher than the
heuristic values of their parents. There are typically an ex-
ponential number of such unpromising nodes, and A* gen-
erates them all, placing each onto the open list.

Operator Decomposition

In the standard algorithm, every operator advances a state
by one timestep and changes the position of every agent.
We propose a new representation of the state space in which
each timestep is divided so that agents are considered one at
a time and a state requires n operators to advance to the next
timestep. In this representation, a state not only contains a

174



Figure 3: An example in which naı̈ve OD would fail.

position for every agent, but also contains up to one move
assignment for every agent.

An operator in this representation consists of assigning a
move to the next unassigned agent in a fixed order, leav-
ing the moves of the remaining agents to descendant nodes
within the same search. The new state representation has a
branching factor of 9 rather than 9n, but because each opera-
tor only advances a single agent rather than every agent, the
depth of a goal node increases by a factor of n. We call this
technique A* with operator decomposition (OD) because the
standard operators are decomposed into a series of operators.

Under this representation, there are two conceptually dif-
ferent types of states. We refer to standard states as those in
which no agent has been assigned a move, and intermediate
states as those in which at least one agent has been assigned
a move. Assigning a move to the last unassigned agent in an
intermediate state results in a standard state which has ad-
vanced to the next timestep. Note that while these states are
conceptually different, A* search treats them equivalently,
so intermediate nodes derived from different standard nodes
can be expanded in any order.

For a given state, we refer to a post-move position as the
position that an agent will have after it follows the assigned
move, and a pre-move position as the position an agent has
before it follows an assigned move. We may refer to the
positions of agents without assigned moves as either pre-
move or post-move positions.

Note that the h() and g() values for intermediate nodes
can be different from those of their standard ancestor nodes
because some of the post-move positions may be different.
Therefore, A* can sometimes avoid expanding intermedi-
ate nodes because of cost. The standard algorithm, however,
cannot because it uses backtracking search to solve the CSPs
which has no concept of cost. It can only prune configura-
tions that are illegal.

Unfortunately, OD will not guarantee optimal solutions if
the implementation is naı̈ve. Consider the situation depicted
in Figure 3. If the algorithm considers agent 1 first, then it
might conclude that it has only two legal moves (N, wait).
However, the optimal solution requires that agents 1 and 2
both make the move E first. The problem with this naı̈ve OD
is that it is too strict. It restricts the types of moves an agent
can make on the basis of every other agent’s post-move posi-
tion. The algorithm should require that a new move assigned
to an agent be consistent with the existing assignments of
moves to agents in a node, but the algorithm should allow
agents to move into spaces occupied by agents who are yet
to be assigned moves within a node.

Consider again the example of Figure 3. When OD is used
correctly, A* starts by placing three nodes onto the open list
because agent 1 can be assigned N , E, or wait. Note that

Figure 4: The search tree of A* with OD for one. Pre-move
positions are shown. Move assignments are marked with
arrows.

both agents have the same post-move position in the node
in which agent 1 is assigned E. This is desirable because
agent 2 has not yet been assigned a move. Then, when that
node is chosen for expansion, A* considers assigning agent
2 the move E. The algorithm then checks to see that the
move assignment [1 : E, 2 : E] is legal (because agent 1
has already been assigned a move in this node) and places
the resulting child node onto the open list. The operators
wait and W are also checked, but discarded (because the
move assignment [1 : E, 2 : wait] results in two agents
overlapping, and the move assignment [1 : E, 2 : W ] results
in two agents passing through each other.

We see in Figure 4 that OD generates five nodes dur-
ing the first timestep in this example. On the other hand,
the standard algorithm generates eight successor nodes from
the start state because [wait, wait], [wait, E], [wait, NW ],
[N, wait], [N, E], [N, W ], [E,E], and [E,NW ] are all le-
gal standard operators from the start state. For both algo-
rithms, a node in which both agents have made the move E
is expanded next.

When coupled with a perfect heuristic and a perfect tie-
breaking strategy, A* search generates b × d nodes where
b is the branching factor, and d is the depth of the search.
Since the standard algorithm has a branching factor of ap-
proximately 9n and a depth of t (the number of timesteps in
the optimal solution), A* search on the standard state space
generates approximately (9n)t nodes when coupled with a
perfect heuristic. A* with OD, however, will generate no
more than 9nt nodes in the same case because its branching
factor is reduced to 9, and its depth only increases to n × t.
This is an exponential savings with a perfect heuristic.

OD is capable of generating every legal successor of a
standard node for any chosen order of agents by assigning
the appropriate move to each agent in turn. Therefore, A*
with OD is admissible and complete for all choices of agent
order due to the admissibility and completeness of the stan-
dard A* algorithm.

A* makes use of a closed list to detect duplicate nodes in
order to avoid redundant node expansions. Like many co-
operative pathfinding problems, the state space of the eight-
connected grid world variant grows only polynomially with
depth (although it is exponential in n). Therefore, because
the number of nodes in the search tree grows exponentially
with depth, the duplicate detection is indispensable.

175



Figure 5: Two pairs of similar intermediate states.

The intermediate descendants of a standard node form a
tree rooted at the standard node because a move assignment
to an agent cannot be changed until all agents have been as-
signed moves. Because duplicate intermediate nodes would
have duplicate standard ancestors nodes, A* will never en-
counter duplicate intermediate nodes. Therefore, it is rea-
sonable to put only standard nodes onto the closed list. Em-
pirically, this modification reduced the size of the closed list
by nearly 93% while improving running time in preliminary
experiments.

Alternatively, we can sometimes safely treat nodes that
are not equal, but have the same post-move positions, as du-
plicates. Observe in Figure 5 that both (A) and (B) have the
same post-move positions. Also, the set of possible moves
for agent 2 that do not conflict with agent 1’s move is the
same in both (A) and (B). These nodes will therefore have
the same set of standard descendants, and the algorithm can
safely treat them as duplicates. However, agent 2 cannot
legally move NE in state (C), but it can in state (D), so
treating these states as duplicates would be incorrect even
though they have the same post-move positions. This exam-
ple also shows the importance of storing move assignments
in addition to positions in a state. Enabling the algorithm to
treat nodes like (A) and (B) as duplicates is well worth the
overhead and is used in our experiments.

The Heuristic

A* makes use of an estimate of the true distance to the goal
for every state. This allows A* to intelligently search only
a relevant subset of the search space. If this heuristic never
overestimates the cost from a state to a goal state, it is called
admissible, and A* will return optimal solutions.

One admissible heuristic for a state in any cooperative
pathfinding problem is the sum of the costs of the optimal
single-agent paths for all agents. Conceptually, these dis-
tances could be obtained by running a single-agent search
for every agent whenever A* generates a node. However,
we can simply run a breadth-first search from an agent’s goal
position to every free grid position to precompute a table of
the single agent distances for every agent at every position.
During the A* search with OD, the change in heuristic value
from a state to a child state is due to the move assignment for
a single agent. The change in heuristic value is the difference
between the table entry for the agent’s post-move position
and the table entry for the agent’s pre-move position. So the
heuristic can be updated using two table lookups. One could
also use Reverse Resumable A* (RRA*) (Silver 2005) to
fill in the table values, which improved the efficiency of the
breadth-first search option by a small additive constant for
each agent in our preliminary experiments. RRA* is used in
our experiments.

Independent Subproblems

Although operator decomposition allows the algorithm to
avoid considering a substantial portion of the search space,
the resulting algorithm is still exponential in the number
of agents. It would be ideal if one could plan a path
for each agent independently. This seems to be the in-
tuition behind most inadmissible algorithms developed up
to this point (Silver 2005; Jansen and Sturtevant 2008b;
Dresner and Stone 2004; Wang and Botea 2008). A slightly
more general idea involves independently planning optimal
paths for disjoint and exhaustive subsets of the agents. If
these paths were all found to not interfere with one another,
then the total solution obtained would be optimal.

In general, we would like to have an algorithm for parti-
tioning the agents into disjoint sets in such a way that the op-
timal paths computed for each set of agents do not interfere
with the others. This way, we can be sure that the combined
solution is optimal.

In order to discover such a partitioning, we developed the
simple independence detection (SID) algorithm, which as-
sumes that the paths for all agents will be independent, and
cooperatively recomputes the conflicting paths using an op-
timal algorithm like operator decomposition if the assump-
tion fails. Because the planning time is exponential in the
size of the largest group, the largest replan dominates the
running time.

Algorithm 1 Simple Independence Detection
1: assign each agent to a singleton group
2: plan a path for each group
3: repeat
4: simulate execution of all paths until a conflict occurs
5: merge two conflicting groups into a single group
6: cooperatively plan new group
7: until no conflicts occur
8: solution ← paths of all groups combined
9: return solution

To simplify the explanations below, we only consider the
case in which conflicting groups are singleton groups (the
extension to general groups is straightforward).

We can improve SID by making the following observa-
tion: Each agent will usually have many optimal paths to its
goal, and whether two agents are found to be independent
depends on which two paths the algorithm finds initially.
Therefore, we can sometimes avoid merging the groups of
two agents whose paths conflict by finding another optimal
path for either agent. In order to ensure optimality, the new
path for an agent must have the same cost as the initial path.
Furthermore, the new path must not conflict with the other
agent. To realize these goals, we can give the search algo-
rithm a cost limit and an illegal move table which is popu-
lated just before finding an alternate path.

If two agents a1 and a2 conflict and we decide to replan
the path of a1, we would populate the illegal move table with
the transitions a2 makes when following its current path at
every timestep. When the search algorithm expands a node
while replanning the path for a1, it checks the table at that
node’s timestep to see which possible moves will not conflict

176



with a2’s move for that timestep. If a path is found, then the
conflict between these two agents has been resolved.

During these replans, it is important that the algorithm
finds a path that creates the fewest conflicts with other
agents. This can be achieved using a table similar to the
illegal move table, called the conflict avoidance table, which
stores the moves of all other agents for every timestep. A*
will typically have a choice between several nodes with the
same minimum f() cost to expand first, and tie breaking is
usually done in favor of nodes with the lowest h() value to
achieve the best performance. Alternatively, each node can
keep track of the number of conflict avoidance table viola-
tions that have occurred on the path leading up to this node,
and break ties in favor of nodes with the fewest violations,
only relying on the h() to break ties when nodes have an
equal violation count as well as f() cost. This method en-
sures that the path returned during the replan will lead to the
fewest future conflicts of any optimal path.

This is the intuition behind our improved independence
detection algorithm (ID), which starts by assigning each
agent to its own group. It then finds an initial path for each
agent independently. Upon detecting a conflict between the
current paths of two agents, the algorithm attempts to find
an alternate optimal path for one of the conflicting agents,
ensuring that the new path does not conflict with the other
agent. If this fails, it tries this process with the other conflict-
ing agent. Finally, if both attempts to find alternate paths fail
or two agents that have conflicted before are found to con-
flict again, the algorithm merges the conflicting groups and
cooperatively plans a path for this new group without a cost
limit or illegal move table. All plans are found with a con-
flict avoidance table which is kept up to date so that every
path always results in the fewest number of future conflicts.

Algorithm 2 Independence Detection
1: assign each agent to a group
2: plan a path for each group
3: fill conflict avoidance table with every path
4: repeat
5: simulate execution of all paths until a conflict between two

groups G1 and G2 occurs
6: if these two groups have not conflicted before then
7: fill illegal move table with the current paths for G2

8: find another set of paths with the same cost for G1

9: if failed to find such a set then
10: fill illegal move table with the current paths for G1

11: find another set of paths with the same cost for G2

12: end if
13: end if
14: if failed to find an alternate set of paths for G1 and G2 then
15: merge G1 and G2 into a single group
16: cooperatively plan new group
17: end if
18: update conflict avoidance table with changes made to paths
19: until no conflicts occur
20: solution ← paths of all groups combined
21: return solution

These independence detection algorithms do not solve
pathfinding problems on their own. They simply call a

Figure 6: Running time of each instance and percent of prob-
lems solved for each algorithm.

search algorithm many times on subproblems allowing that
algorithm to solve many smaller problems rather than the
full problem. The independence detection algorithms can
use the standard algorithm or operator decomposition as the
needed search algorithm. ID will merge two groups and run
a search algorithm on the combined group if it cannot find
nonconflicting paths for both groups. Therefore ID is com-
plete when coupled with a complete search algorithm. Both
OD and the standard algorithm are complete.

Experiments

Experiments were run on an Intel Core i7 @ 2.8GHz us-
ing benchmarks like those proposed in (Silver 2005): 32x32
grids were generated with random obstacles (each cell is an
obstacle with 20% probability). Each agent was placed in a
random unique location with a random unique destination.

The inadmissible algorithm, hierarchical cooperative A*
(HCA*), from (Silver 2005), and admissible combinations
of the standard algorithm (S), operator decomposition (OD),
and independence detection (ID) were run on the same
10,000 instances with a random number of agents chosen
uniformly between 2 and 60. Figure 6 shows the running
time of each algorithm on instances that took less than a
second to solve, sorted in ascending order of solution time
for each algorithm. The performance of the standard algo-
rithm was highly dependent on the number of agents in the
problem which lead to the stair-step shape observed in the
graph. When ID is used, OD not only helps on easy prob-
lems, solving them more quickly, but more importantly al-
lows the algorithm to solve the harder problems. OD+ID
optimally solved 90.45% of the problems in under a second
each. Note that the one second time limit is arbitrary and
can be increased in case of hard instances.

Only 69 instances were not solved by either OD+ID or
HCA*. Moreover, OD+ID solved 361 out of the 430 prob-
lems that HCA* did not solve even though the problems had
to be solved optimally for OD+ID. In the problems that were
solved by both algorithms and had more than 40 agents, the
optimal solutions were an average of 4.4 moves longer than
the the heuristic lower bound, while the solutions produced
by HCA* were an average of 12.8 moves longer than the
heuristic lower bound.

ID partitions a problem instance into subproblems, and

177



Figure 7: Proportion of largest non-independent subprob-
lems given by ID solved within two seconds by OD and S.

the subproblem with the highest number of agents typically
dominates the computation time for the instance. Exper-
iments show that the strongest indicator of running time
on these instances was indeed the number of agents in the
largest non-independent subproblem solved by OD. An ex-
ponential regression yielded the equation t = 0.465e1.14s

where t is time (ms) taken for OD+ID to solve a problem,
and s is the number of agents in the largest non-independent
subproblem of ID. The regression equation had an R2 of
0.77. Figure 7 shows the results of OD and S on the largest
such subproblem solved during each of the above 10,000 in-
stances. In this experiment, OD and S are given two seconds
to solve each subproblem regardless of what time was spent
solving other subproblems before reaching this subproblem.
Since ID could not detect independence within these sub-
problems, these problems are more challenging for OD and
S than random instances with the same number of agents.
The ability of the standard algorithm to solve these prob-
lems degrades quickly with problem size. In contrast, not
only can operator decomposition solve larger problems re-
liably, but its ability to solve these problems also degrades
more slowly with problem size.

Conclusion

This paper describes the general problem of cooperative
pathfinding. We discussed the pitfalls of modern incomplete
and inadmissible algorithms for the cooperative pathfinding
problem, and identified two improvements to the standard
admissible algorithm: Operator decomposition, which was
used to reduce the branching factor of the problem, was ef-
fective at allowing the algorithm to consider only a small
fraction of the children of each node, and independence de-
tection, which often allowed the paths of groups of agents
to be computed independently, without sacrificing optimal-
ity. The largest improvement was gained by exploiting this
independence. On the other hand, operator decomposition
provided a significant benefit even when no independence
was present in the problem, and scaled more gracefully to
larger problems than the standard admissible algorithm. We
also began characterizing the quality of optimal solutions,
and the running time of our algorithm.

While both independence detection and operator decom-
position are applicable to cooperative pathfinding problems

in general, we presented a specific example of cooperative
pathfinding which was modeled after typical video game de-
signs, and used this problem to test the presented algorithms
as well as to clarify the algorithm descriptions. The results
of the tests show that the standard admissible algorithm can
be substantially improved. Furthermore, we showed that
when the techniques are used in combination, the algorithm
can be made practical.

Acknowledgments
This research has been supported by NSF grant No. IIS-
0713178 to Richard Korf. We also sincerely thank Richard
Korf and Dawn Chen for their many edits, suggestions and
discussions. Artwork by Dawn Chen.

References
Dresner, K., and Stone, P. 2004. Multiagent traffic man-
agement: A reservation-based intersection control mecha-
nism. In In The Third International Joint Conference on
Autonomous Agents and Multiagent Systems, 530–537.
Geramifard, A.; Chubak, P.; and Bulitko, V. 2006. Biased
cost pathfinding. In Laird, J. E., and Schaeffer, J., eds., AI-
IDE, 112–114. The AAAI Press.
Hart, P.; Nilsson, N.; and Raphael, B. 1968. A formal basis
for the heuristic determination of minimum cost paths. IEEE
Transactions on Systems Science and Cybernetics 4(2):100–
107.
Hearn, R. A., and Demaine, E. D. 2005. PSPACE-
completeness of sliding-block puzzles and other problems
through the nondeterministic constraint logic model of com-
putation. Theor. Comput. Sci. 343(1-2):72–96.
Hopcroft, J.; Schwartz, J.; and Sharir, M. 1984. On the Com-
plexity of Motion Planning for Multiple Independent Ob-
jects; PSPACE-Hardness of the Warehouseman’s Problem.
The International Journal of Robotics Research 3(4):76–88.
Jansen, M. R., and Sturtevant, N. R. 2008a. Direction maps
for cooperative pathfinding. In Darken, C., and Mateas, M.,
eds., AIIDE. The AAAI Press.
Jansen, R., and Sturtevant, N. 2008b. A new approach to
cooperative pathfinding. In AAMAS, 1401–1404. Richland,
SC: International Foundation for Autonomous Agents and
Multiagent Systems.
Ryan, M. R. K. 2008. Exploiting subgraph structure in
multi-robot path planning. J. Artif. Int. Res. 31(1):497–542.
Silver, D. 2005. Cooperative pathfinding. In Young, R. M.,
and Laird, J. E., eds., AIIDE, 117–122. AAAI Press.
Svestka, P., and Overmars, M. H. 1996. Coordinated path
planning for multiple robots. Technical Report UU-CS-
1996-43, Department of Information and Computing Sci-
ences, Utrecht University.
Wang, K.-H. C., and Botea, A. 2008. Fast and memory-
efficient multi-agent pathfinding. AAAI 2008.
Wang, K.-H. C., and Botea, A. 2009. Tractable Multi-Agent
Path Planning on Grid Maps. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence IJCAI-09,
1870–1875.

178


	AAAI-10
	Contents
	Index
	Help
	Terms
	AAAI




