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Abstract

Part I

The first part of this thesis strengthens the low-error PCP characterization of NP, coming closer
to the upper limit of the conjecture of [BGLR93]. Consider the task of verifying a witness for
the membership of a given input in an NP language, using a constant number of accesses. If the
witness is given as a string of characters, we show that it is possible to acheive this task with an
error probability that is polynomially small in the range of the characters, where the size of that
range is as high as 2logβ n , for any constant β < 1. The BGLR conjecture asserts the same for a
constant β where β ≤ 1.

Our results are in fact stronger, implying that the Gap-Quadratic-Solvability problem with a
constant number of variables in each equation is NP-hard. That is, given a system of n quadratic-
equations over a field F of size up to 2logβ n, where each equation depends on a constant number
of variables, it is NP-hard to distinguish between the case where there is a common solution to
all of the equations, and the case where any assignment satisfies at most a 2

|F| fraction of them.
At the same time, our proof presents a direct construction of a low-degree-test whose error-

probability is polynomially small in the range of the variables accessed. Such a result was previ-
ously known only relying on recursive applications of the entire PCP theorem.

Part III

In the second part of the theis we show that a boolean function over n variables can be tested for
the property of depending on only J of them, using a number of queries that depends only on J
and the approximation parameter ε.

We present three tests, that require a number of queries that is polynomial in J and linear in
ε−1. We show a non-adaptive test that has one-sided error, an adaptive version of it that requires
less queries, and a non-adaptive two-sided version of the test that requires the least number of
queries.

We then provide a lower bound of Ω̃(
√

J) on the number of queries required for the non-
adaptive testing of the above property; a lower bound of Ω(log(J + 1)) for adaptive algorithms
naturally follows from this. In providing this we also prove a result about random walks on the
group Zq2 that may be interesting in its own right. We show that for some t(q) = Õ

(
q2
)
, the

distributions of the random walk at times t and t + 2 are close to each other, independently of
the step distribution of the walk.

We also discuss a related question, as follows. When given in advance a known J-junta function
h, we show how to test whether h can be obtained from a given function f by a permutation on
its variables, using a number of queries that is polynomial in J and ε.

Part II

In the third part of this thesis we show that any boolean function f : {0, 1}n → {−1, 1} whose
weight on Fourier-Walsh products of size larger than k is bounded by (ε/k)(`+1)/`, where ` is any



fixed positive integer, is O(ε)-close to a junta whose size is independent of n. As a corollary, we
obtain that juntas are the only highly noise-resistant boolean functions. These results are proven
with respect to the p-biased distribution over the discrete cube, extending a result by Bourgain
that has somewhat better parameters but holds only for the uniform measure. Out method of
proof is different than that of Bourgain, thereby providing a conceptually simpler proof for the
uniform case as well.

We also show that for small values of ε, if the weight of a boolean function f on Fourier-Walsh
products of size larger than k is ε, then f is ε(1 + o(1))-close to a junta, whose size depends only
on k. This is a generalization of the result in [FKN01], who proved this for k = 1, and only with
respect to the uniform measure.
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Introduction

Property testing deals with the following task: For a fixed property P and any given input
I, one has to distinguish with high probability between the case where I satisfies P and
the case where I is ‘far’ from satisfying it. The goal in property testing is to make this
distinction using the least possible number of accesses to I.

The notion of property testing was first formulated by Rubinfeld and Sudan [RS92],
who were motivated mainly by its connection to the study of program checking. They
considered the problem of verifying that a given function, given as a table of its values, is a
polynomial of low-degree. Perhaps the most fundamental property for which efficient tests
are applicable, is the correctness of mathematical proofs. The study of proof testing (called
PCP, for Probabilistic Checkable Proofs), which originated in [FRS88, AS98], turned out
to have numerous applications in complexity and hardness of approximation, in addition
to its theoretical appeal.

The notion of property testing was extended for other combinatorial objects, mainly
for graphs, by Goldreich, Goldwasser and Ron [GGR98], and has become a very active
area of research. Boolean functions were also given much attention from the point of
view of property testing [GGL+00, DGL+99, FLN+02, PRS01]. For a more comprehensive
description of property testing and its applications, the reader is referred to the surveys
[Ron00] and [Fis01].

Part I, PCP

The first part of this thesis deals with proof testing, namely PCP. The framework considered
is as follows. A mathematical statement S is given, and P is an alleged proof for it, given as
a sequence of bits. One wishes to test the validity of P by accessing only a constant number
of bits from it. Remarkably, it was shown in [ALM+98] (improving the result of [AS98])
that if valid proofs are required to be encoded in a certain way, this is indeed possible.

Let us describe the above result a bit more formally. It was actually shown in [ALM+98]
that given the statement S and the length of the alleged proof P , one can construct in
polynomial time a system Ψ of local-tests, that verifies the correctness of P as follows.
Each local-test in Ψ is a boolean function, which depends on a constant number of bits
from the alleged proof, P . The local-tests of Ψ are all satisfied if P is a legal encoding of
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a correct proof for S. However if the initial statement S is incorrect, it is assured that no
proof, may it be properly or improperly encoded, can satisfy more than an ε-fraction of the
local-test, where ε is some positive constant.

It follows that one can test P by evaluating a random local-test ψ from Ψ. If S is
correct, and P is a legal encoding of a correct proof for it, then ψ is surely satisfied. If
S is incorrect, the probability that ψ be satisfied ‘by mistake’ is always bounded by the
parameter ε, also called the error parameter of Ψ.

PCP and In-Approximability

One can consider the result of [ALM+98] as a reduction from the problem of determining
whether a given mathematical statement S has a proof of a given length, to the problem
of distinguishing between the case where Ψ is completely satisfiable and the case where it
cannot be more than ε-satisfied. Since the first problem above is NP-complete (supposing
the required length of the proof is given in unary format), this implies that given a system
Ψ of local-tests, it is NP-hard to approximate the maximal number of satisfiable local-tests
in it within a factor of 1/ε. So in fact the result of [ALM+98] implies that unless NP = P ,
given a set of local-constraints over boolean variables, it is intractable to even approximately
maximize the number of satisfied constraints by an assignment to the variables.

The introduction of probabilistically checkable proofs led to a swarm of in-
approximability results ([FGL+91, ALM+98, LY94, BGLR93, BGS98, H̊as99, H̊as97,
DKRS98], to mention a few), obtained by introducing PCP’s with special properties and
parameters, or by applying appropriate reductions to known PCP systems.

The Sliding-Scale Conjecture

One version of a PCP system, first considered in [BGLR93], is where the proof P is not
given as a sequence of bits, but rather as a sequence of characters from a larger set R of
non-constant size. It was conjectured in [BGLR93] that it is possible to construct a PCP
system where the size of R is up to polynomial in the required length of P , and the error
parameter is polynomially small in the size of R. This was conjectured to hold even if each
local-test in the system still accesses a constant number of characters in P .

Optimality of the conjecture. Note that it is not possible to decrease the error pa-
rameter below some polynomial in the size of R, namely there is no way to ensure that
if S is incorrect, the number of satisfiable local-tests is smaller than some polynomial in
R: assuming without loss of generality that each local-test is satisfiable in its own, the
probability that a local-test is satisfied by taking P to be a random sequence of characters
is bounded below by some fixed polynomial in |R|. Using the linearity of expectation, one
obtains that for every system of satisfiable local-tests there exists an alleged proof satisfying
some fixed polynomial fraction of its local-tests.
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In addition, it is unlikely that the size of R can be made to exceed nO(1), where n is
the required length of the proof, while keeping the error parameter polynomially small in
|R|. This is since the system Ψ, which is constructed in polynomial time, can only contain
a polynomial number of local-tests. If the size of R exceeds nO(1) and the error parameter,
ε, is polynomially small in it, then ε must be smaller than 1/|Ψ|. It follows that when
the initial statement S is false, no alleged proof can satisfy even one of the local-tests.
Distinguishing between the case where S can be given a short proof and the case where S
is false thus reduces to the problem of deciding whether any of the local-tests in Ψ can be
satisfied at all. This leads immediately to the conclusion that NP = P .

Our results. The first part of this thesis presents a proof for the sliding scale conjecture,
applicable for range-sizes of up to 2logβ n, where β can be taken to be any constant smaller
than one. This result comes close to the limit of the conjecture, namely polynomially-sized
range. It is an improvement of the result in [RS97], which only obtained ranges of size

2logβ n for some fixed β which is separated away from 1.
In fact, the result presented here is somewhat stronger. The conjecture is proven for

the aforementioned range, where the characters of the proof are elements of a finite field F ,
and each local-test it in fact a quadratic-equation over F . Specifically, we prove that for
a quadratic equation-system of n equations over a field F of size 2logβ n (for any constant
β < 1), where each equation depends on a constant number of variables, it is NP-hard to
distinguish between the case where there exists a common solution to all equations, and
the where any assignment to the variables satisfies no more than a 2

|F| fraction of them.

Low-Degree Tests

A crucial part of the proof presented here, as well as of other PCP results, is the construction
of a test for low-degree polynomial functions (low-degree functions for short).

Roughly speaking, a test for an alleged proof must accomplish two tasks. First it should
verify that the alleged proof is well formatted, namely that it is a legal encoding of some,
not necessarily correct, proof. Assuming that the alleged proof is indeed a legal encoding,
the second task is to test that it is the encoding of a correct proof for the given statement.
In many PCP constructions, as well in the one herein, the encoding of the proof makes
use of low-degree polynomial functions. In such constructions it is therefore necessary to
construct a test for the property of being a low-degree polynomial function.

It is worth mentioning that the approach of encoding a proof using low-degree poly-
nomial functions already appears in [BFL91], where interactive-proof protocols are shown
for non-deterministic exponential time. There, a proof is encoded using a low-degree poly-
nomial, and to verify its correctness the proof is first tested for being a polynomial of
low-degree, and then it is tested for being correct.

To better explain our low-degree test, take F to be a finite field and let f : Fd → F
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be some function, given as a table of its values. Generally, a low-degree test is a random
procedure that is given f , and perhaps some additional auxiliary variables taking values
in F . Its goal is to test whether f is close to a low-degree polynomial function (a function
of degree up to, say,

√
|F|). Previous direct constructions could only obtain low-degree

tests by evaluating f at a non-constant number of points. Better parameters could only be
achieved by a technique called composition, taking a PCP construction and composing it
over another.

We present a direct construction of a low-degree test, based on the low-degree test of
[RS97], that makes a constant number of queries to f and to the auxiliary variables. This
is achieved, in part, by some relaxation of the requirements, following [RS97]. Instead of
requiring that f corresponds to one low-degree function or else the low-degree test rejects,
we allow the low-degree test to accept in case f corresponds to a short list of low-degree
functions, the permissible functions.

Permissible functions. We say that a low-degree function g : Fd → F is ρ-permissible
with respect to f , if it agrees with f on at least ρ-fraction of the points in Fd.

Our low-degree test is guaranteed to reject with high probability, unless all the values
of f that it queries are consistent with one of the ρ-permissible low-degree functions with
respect to f , where ρ is some non-negligible parameter. For parameters ρ in the range used,
it can be shown that there are never more than O(ρ−1) permissible functions for any given
f . Hence although our low-degree test does not ensure that f is close to one low-degree
function, when it accepts the evaluations it makes of f are with high probability consistent
with one of a short list of low-degree functions. It turns out that this is enough for our
PCP construction.

Part II, Testing Juntas

The principle discussed above, of checking consistency by verifying non-negligible agreement
with one of a short list of legal encodings, appears in many PCP constructions. In many
of them (e.g. [H̊as99, H̊as97, Kho02]) this approach is applied to the so called long-code.

The long-code. The long-code is used to encode elements i within the set {1, . . . , n}. It
has one entry for every element x ∈ {0, 1}n of the n-dimensional discrete hyper-cube, which,
in the encoding of i, contains xi. The encoding of i is thus the truth table of the function
LCi : {0, 1}n → {0, 1}, defined by LCi(x) = xi. Note that the function LCi depends, in fact,
only on the i’th coordinate of its input.

Suppose we wish to test whether a given codeword, represented as the truth table of a
function f : {0, 1}n → {0, 1}, corresponds to a short list of legal encodings. This can be
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interpreted in more than one way.
Since in a legal encoding there is only one coordinate which affects the value of f, one

may test that there is a short list of coordinates that have ’high influence’ on f. The tests in
[H̊as99] and [H̊as97] fall in that category. For a codeword f to pass these tests, there must be
a small number of coordinates, each of which highly influences f. It may be, however, that
f passes these tests although there is a large set of coordinates whose individual influence
on f might be small, but whose aggregate influence on f is very high.

The above approach is not always sufficient. For example, in the constructions of [DS02]
and [Kho02] it is necessary to verify that almost all the values of f depend on a short list
of coordinates. In other words, it is necessary to test whether f is close to a junta.

Juntas. A boolean function over {0, 1}n is said to be a J-junta, if it depends on at
most J coordinates. The term junta originates from considerations related to social choice,
where a boolean function f is seen as an election scheme, and each coordinate in its domain
corresponds to a voter. An element x ∈ {0, 1}n represents an election where xi = 1 if the
i’th voter votes ’yes’ and xi = 0 otherwise, and f(x) is the outcome of the election. In these
terms, a J-junta is an election scheme the outcome of which is completely determined by
at most J voters.

Our Results

The second part of this thesis considers the problem of testing whether a given boolean
function f is a J-junta. We show several tests that are given access to the truth table of
f, and distinguish between the case where f is a J-junta, and the case where the values of
f must be changed on at least an ε-fraction of the inputs for it to become a J-junta. The
number of queries these tests make is independent of the number of coordinates of f, and
their dependency on ε and J is polynomial.

The first test shown makes O(J4 ln(J+1)/ε) queries to the given function f, and always
accepts if it is a J-junta. On the other hand, if f is more than ε-far from being a J-junta,
the test rejects with probability at least 1/2. This test is non-adaptive, namely it decides
on which inputs to query f independently of the results of previous queries.

Variation. The main observation utilized by our junta-test, is that there is a very simple
way to measure the effect of a set I of coordinates on the values of a given boolean function
f : {0, 1}n → {0, 1}. This is an extension of the influence, defined in [BL89, KKL88], which
measure the influence of one coordinate on f. The variation of f on a set I of coordinates
is twice the probability that f yields different values when evaluated on two random inputs
that differ only on coordinates from I.

Note that it is very easy to test whether the variation of f on I is small, by just selecting
two inputs randomly as above and evaluating f on them. In fact, this procedure actually
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tests whether f depends on coordinates from I: it turns out that if the variation of f on
I is smaller than ε (namely with high probability f yields the same values for both inputs
queried), then it is possible to change less than (ε/2)-fraction of the values of f and obtain
a function that is completely independent of the coordinates in I.

Other tests. The junta-test mentioned above is in fact somewhat more general. By
extending the notion of variation to general products of probability spaces, we can apply
the same test for boolean functions whose variables are not necessarily boolean, but rather
take values in general probability spaces. The number of queries made by the test remains
the same, and is independent of the domain of the function being tested. In these settings
we also show an adaptive variant of the junta-test that makes O(J3 ln2(J + 1)/ε) queries,
and a version that is non-adaptive, but may reject a J-junta with probability up to 1/3.
The latter test makes only O(J2 ln2(J + 1)/ε) queries.

Another test, shown using the same techniques, uses a polynomial (in J and ε) number
of queries, and verifies whether a fixed J-junta h can be obtained from a given function f
by a permutation of its variables. This test is shown only for the case of boolean variables,
and it has two-sided error, namely it rejects with probability 2/3 if h is ε-far from every
variable-permutation of f, and it accepts with probability at least 2/3 if h can be obtained
by a variable-permutation of f.

Lower-bound. In addition, we show a lower-bound for the number of queries made by
non-adaptive tests for J-juntas. It is shown that such a test must make at least Ω(

√
J)

queries (up to logarithmic factors). Recently a better lower-bound was achieved by Chockler
and Gutfreund ([CG02]), that also holds for adaptive tests. However, our proof for the lower
bound may be of independent interest, as it relies on an interesting convergence of random
walks on weighted Cayley graphs of Zn

2 . While it may take a long time before a random
walk on such a graph becomes stationary, we prove that the distribution on the graph after
a walk of length t must be close the distribution after a walk of length t + 2, already for
relatively small values of t. This bound is independent of the choice of weights on the set
of generators.

Part III, Noise-Resistant Boolean Functions are Juntas

The tests discussed in Part II exploit properties of juntas that are easy to check using few
queries, such as the behavior of the variation on certain subsets of coordinates. However,
the number of queries made by these tests is too high for many applications (it depends
on J). For applications to PCP and hardness of approximation, one is often willing to
compromise certain properties of a test, as long as it achieves an extremely small number
of queries. It is thus natural to seek for properties which characterize juntas, and yet are
easily testable by a few queries. The noise-sensitivity is such a property.
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Noise-sensitivity. The noise-sensitivity of a boolean function f : {0, 1}n → {0, 1} mea-
sures the probability that the value of f changes when noise is applied to a random input
for f. To state this more formally, fix p, λ to be two positive parameters, p, λ < 1. Now
let x be a random input for f, chosen according to the p-biased distribution, namely by
setting each coordinate to be 1 with probability p and 0 with probability 1− p. To apply
noise to x, first choose a ‘noisy subset’ I ⊆ [n] of coordinates, taking each coordinate into
I with probability λ. Now let x′ be obtained from x by re-selecting each coordinate i ∈ I
according to the p-biased distribution. The probability that f yields different values on x
and x′ is called the λ-noise-sensitivity of f with respect to the p-biased distribution.

Note that for an appropriate choice of λ, a J-junta f must have small λ-noise-sensitivity.
This holds since there is a small probability that any of the variables that f depends on are
taken into the noisy subset. In addition, it is possible to test whether a given function f
has small noise-sensitivity using just two queries, by randomly choosing x and x′ as above,
and querying f(x) and f(x′).

The notion of noise-sensitivity makes sense in terms of social choice as well. If f is
regarded as an election scheme, and each voter casts his vote randomly with bias p, the
noise-sensitivity of f measures the stability of the outcome of the election scheme, with
respect to certain faults or changes of opinion of some voters.

Our Results

In the third part of this thesis we show that a boolean function whose λ-noise-sensitivity
with respect to p-biased distribution is smaller than a certain threshold, must be close to a
J-junta for some constant J . To be precise, we show that if f : {0, 1}n → {0, 1} has small
λ-noise-sensitivity with respect to p-biased distribution, then there exists a J-junta h, such
f(x) = h(x) with high probability (if x is chosen according to the p-biased distribution).
In terms of social choice, this means that juntas are the only election schemes which are
resilient against noise.

Our result is a generalization of a theorem of Bourgain ([Bou01]), which holds only
for the case where p = 1/2. The technique of [Bou01], though achieving somewhat better
parameters than ours, does not immediately generalize to the p-biased case, since it relies
on certain inequalities whose correctness for the p-biased case is unclear. Our result is thus
proven using a different technique, that is conceptually simpler than that of Bourgain, and
may be of independent importance.

The importance of the bias. We hope that the generalization of the result from [Bou01]
to the case of biased measure will be useful in complexity theory, not only due to the
techniques of its proof. It seems that applying biased measures on entries of codes, and
especially the long-code, brings out combinatorial properties that are not present with
respect to the uniform distribution. Such properties are crucial, for example, in [DS02],
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where the Vertex-Cover problem is shown to be hard to approximate within a 1.361 factor.
The proof of [DS02] utilizes the p-biased measure on {0, 1}n, where p is in the vicinity of
1/3. By allowing some leverage on the choice of p, they show that certain boolean functions
resulting from their construction must be close to juntas. Other combinatorial properties
of their construction, related to intersecting families, are obtained from the fact that the
bias is separated away from 1/2.

Noise-sensitivity and Fourier expansion. Let V denote the space of real-valued func-
tions over {0, 1}n. By viewing a boolean function f : {0, 1}n → {0, 1} as an element of V ,
one can obtain f as a linear combination of the elements of some basis for V , such as the
Fourier-Walsh basis. This well-known basis, which was first used to analyze boolean func-
tions in [KKL88], contains one function χ

S
for every set S ⊆ [n]. The Fourier-Walsh basis

is orthonormal with respect to the natural inner-product that corresponds to the uniform
measure on {0, 1}n. A similar basis appears in [Tal94], which is orthonormal with respect
to the inner-product that corresponds to the p-biased measure. Hence fixing p, any boolean
function f can be written in the form ∑

S⊆[n]

f̂(S)χ
S

where {χ
S
}S⊆[n] is the appropriate orthonormal basis.

It turns out that there is a simple formula, connecting the λ-noise-sensitivity of f with
respect to µp, to the coefficients f̂(S). It follows from the formula that in order for the

λ-noise-sensitivity of f to be small, the coefficients f̂(S) related to large sets S must be
small as well. More precisely, the formula shows that if the λ-noise-sensitivity of f is small
then for an appropriate number k,

∑
|S|>k f̂(S)2 must be small as well. We denote the latter

sum by ‖f>k‖2

2.

Asymptotic behavior. In showing that if f has small λ-noise-sensitivity it must be close
to a junta, it is actually proven that it is close to a junta if ‖f>k‖2

2 is smaller than a certain
threshold. This naturally gives rise to the question of how the distance of boolean functions
f from a junta behaves, as a function of ‖f>k‖2

2.

This question is discussed in [FKN01] for the case k = 1, where it is shown that the
distance from a junta behaves linearly as a function ‖f>1‖2

2. We extend this result, showing
that the distance of f from a junta that is dominated by a constant number of coordinates,
is bounded by (4 + o(1))‖f>k‖2

2 for small values of ‖f>k‖2

2. This bound is tight up to a
constant factor (note that for convenience, the result is formulated in Part III for functions
that take values in {−1, 1} rather than {0, 1}, hence the constant which appears there is 1
and not 4).
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Part I

PCP Characterizations of NP:
Towards a Polynomially-Small

Error-Probability





Chapter 1

Introduction to Part I

Cook-Levin’s characterization of NP implies that every L ∈ NP is reducible to 3-SAT. The
reduction from L to 3-SAT is a polynomial-time algorithm that receives an input string I,
and produces a set Ψ of boolean functions (called local-tests), each depending on a constant
number of variables. Ψ represents the membership of I in L, in the sense that there exists
an assignment satisfying all local-tests if and only if I ∈ L.

A PCP characterization of NP differs from Cook-Levin’s characterization in regards to
what is guaranteed in the case where the input is not in L: In Cook’s characterization, one
can only be sure that the reduction will produce a system that cannot be entirely satisfied.
To characterize NP in terms of PCP, it must be guaranteed that the reduction algorithm
produces a system Ψ such that no assignment can satisfy even a small fraction ε of its
local-tests.

In both cases, a satisfying assignment to Ψ can be viewed as a witness for I’s mem-
bership in L (and hence Ψ can be viewed as a membership-verification system). In a PCP
framework, however, this witness can be efficiently verified by randomly picking a local-test
of Ψ and verifying that it holds (hence the term PCP – Probabilistic Checking of Proofs).
In this case, the error probability parameter, ε, of the PCP, bounds the probability of ac-
cepting I even though I 6∈ L. Other parameters of Ψ, such as the variable range and the
number of variables accessed by each local-test, are also part of the PCP characterization.

For many applications of PCP, the characterization of NP with a constant error-
probability and variables of a constant range [AS98, ALM+98] suffices. In order to prove
NP-hardness of other problems, however, sub-constant error-probability has turned out to
be essential. For example, [LY94] and [BGLR93] were able to prove that approximating
SET-COVER to within logarithmic factors is almost NP-hard, using the constant error-
probability PCP characterization of NP. To improve this result to strict NP-hardness,
[BGLR93] had suggested the “sliding scale” conjecture.

The sliding scale conjecture states that it is possible to keep the number of variables
accessed by each local-reader constant, and to make the variables’ range non-constant,
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obtaining an error probability polynomially small in the size of the variable-range. In other
words, it is possible to acheive a membership verification system for any NP-language where
each local-test accesses a constant number of ‘words’ (variables), and where the error-
probability is exponentially small in the ‘word-length’ (number of bits in each variable).

One cannot expect the error-probability to be more than polynomially small in the size
of the variables’ range, since a random assignment will satisfy any satisfiable local-test with
such a probability (recall that each test depends on a constant number of variables). Hence
the sliding scale conjecture is optimal in the sense of error-probability.

According to the conjecture, the variables’ range may be increased up to a size poly-
nomial in the length of the original input (note that each local-test can be given as a
truth-table). Reaching larger range-size is unlikely since the error-probability would then
become less than 1/|Ψ|. In the case where the input is not in L, this implies that no
local-test succeeds, so the problem of deciding whether the input is in L reduces to that of
deciding whether any of the local-tests is satisfiable.

The sliding scale conjecture was shown to hold for a sizable portion of the applicable
range-size in [RS97], where a PCP characterization of NP was shown that achieves error-
probability polynomially small in the size of the variable range for a variable range of size
up to 2logβ n, where β < 1 is a certain positive constant (see also [AS97]).

Our Main Results

In this part of the thesis, we prove the sliding scale conjecture for variable range sizes of
up to 2logβ n where β is any constant smaller than one (as opposed to “some constant”
achieved by [RS97]), thus coming closer to proving the sliding scale conjecture for the full
applicable range.

In fact our result is somewhat stronger, proving the conjecture for the aforementioned
range using proof verification systems of a specific structure. In these systems the local-
tests have the form of quadratic-equations instead of being general boolean functions, with
the variables’ range representing a finite field. This result implies that for a quadratic
equation-system of n equations over a field F (with |F| ≈ 2logβ n for any fixed constant
β < 1), where each equation depends on a constant number of variables, it is NP-hard to
decide whether there exists a common solution to all equations, or whether any assignment
to the variables satisfies no more than a 2

|F| fraction of them.

One of the main tools used to obtain the above result, which is interesting in its own
right, is that of LDF-readers, a version of what is known in the literature as a low-degree test
(see [RS97, AS97]). A direct construction of an LDF-reader is shown herein, that achieves
an exponentially-small error-probability with respect to the number of bits it accesseses.
Such LDF-readers could previously be attained only by recursive applications of the entire
PCP theorem.
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Related Results

We note that there is no known PCP characterization of NP, where the size of the variable-
range is polynomial in the size of the membership-verification system (or equivalently, the
length of each variable is logarithmic in it), and the error probability is exponentially small
in the number of accessed bits. This is true even when allowing a super-polynomial time
reduction. The repetition lemma of [Raz98] shows that by two accesses to Θ(log n) bits, the
error-probability can be made polynomially small in n, where n is the size of the original
input, while the size of the generated system is nlogn. Similarly, the multi-linear extension
of [BFL91] yields a system with a 1

n
error-probability, whose size is nlogn. In fact, in any

known reduction there is always a factor of at least logε n in the exponent that separates
the error-probability from the size of the generated instance.

Achieving an error-probability polynomially small in the size of the generated instance is
an important open problem. Such a characterization of NP would improve hardness results
for several problems. For example, approximating the ‘Monotone-Minimum-Satisfying-
Assignment’ problem (which is closely related to approximating the length of propositional
proofs [ABMP98]) has been shown to be NP-hard in [DS98] via a reduction from PCP,
such that the hardness of approximation ratio is preserved. Hence a polynomially small
error-probability PCP characterization of NP would immediately imply that it is NP-hard
to approximate the length of propositional proofs to within an nε factor for some constant
ε > 0.

[RS97] managed to keep the exponential relation between the number of bits accessed
and the error-probability, thus showing the sliding scale conjecture true for a variable
range of size up to 2logβ n for some constant β < 1. For larger β (any constant β < 1)

[RS97] showed a system whose error probability is 2− logβ n, yet without the exponential
relation between the number of accessed bits and the error-probability, since the number
of bits accessed was O(logβ n · poly log log n). This factor of poly log log n is significant
when viewing, for example, the result in terms of Gap-Quadratic-Solvability. The result
of [RS97], if it were to be translated to Gap-Quadratic-Solvability terms, would at best
give an equation system with each equation depending on O(poly log log n) variables. In
comparison, our result translates to a quadratic equation-system with the same error-
probability, but where every equation depends on a constant number of variables, namely
Θ( 1

(1−β)2
).

Techniques

We use the general framework of [AS98, ALM+98, RS97] for our proof. However, instead of
the generalized form of the composition paradigm utilized in previous PCP proofs, we use
a more concrete representation. Our result could have been obtained using the previous
structure, but this representation simplifies our proof, and some of its techniques may be
of independent interest.
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In [HPS93], it was shown that given a system of quadratic equations over a finite field,
it is NP-hard to distinguish between the case that the system can be completely satisfied,
and the case that not even a small fraction of the equations can be satisfied by a single
assignment. The crucial difference between this and our main result is that in the [HPS93]
reduction each equation depends on almost all the variables in the system, while our main
result claims the same for the case where the equations are restricted to having a constant
number of variables each.

Our proof begins with a system Ψ of quadratic equations as in [HPS93], and reduces it
to a system Ψ′ of quadratic equations with a constant number of variables in each. The key
property of our proof is that throughout the reduction we use systems of equations over
the same field F , the field over which Ψ is defined. The field structure is utilized through
various steps of composition, thus enabling us to cross the barrier that limits the proof
technique of [RS97].

To simplify the exposition, the reduction partitions the variables of Ψ′ into subsets
called domains. In each such domain a mapping is defined, associating each variable to a
point in a linear space of the form Fd over F . An assignment to these variables can thus
be regarded as a function over the linear space.

The reduction has two main steps. At first, it transforms Ψ into a system Ψsc where
the number of variables in each equation is constant. This is accomplished by an iterative
application of the sum-check technique from [BFL91]. The system Ψsc has the required
properties only if the assignment to the variables in each domain, when viewed as a function,
is a low-degree polynomial. In order to get rid of this restriction, the reduction then
generates LDF-readers and plugs them into the equations of Ψsc, thereby obtaining the
final system Ψ′.

LDF-readers. LDF-readers are used to obtain evaluations of polynomial functions of
low-degree that are represented by a set of variables, by accessing only a very small part of
their representation. An LDF-reader should either reject or return values that are consistent
with some low-degree polynomial, even if the assignment to the representation variables
is not totally consistent with the representation of one polynomial. The probability that,
given an incorrect representation, the LDF-reader does not reject but still the returned
evaluations are not consistent with a low-degree polynomial, is its error probability. For a
more accurate definition of an LDF-reader, the reader is referred to Chapter 2.

An LDF-reader of sub-constant error-probability seems necessary in order to attain PCP
characterizations of NP with sub-constant error-probability. The plane-vs.-plane LDF-
reader introduced by [RS97], where a polynomial is represented by its restriction to planes,
achieves a sub-constant probability. The previously used line-vs.-point LDF-reader was
shown by [AS97] to have a small error-probability as well. However, the error probability
of these LDF-readers is not exponentially small in the number of bits they access.

In fact, in any direct LDF-reader comparing subspaces (lines, planes, etc.) for con-
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sistency, the error-probability can be no smaller than a polynomial in the number of bits
accessed. This occurs since many bits are required to represent the restriction of a poly-
nomial to a subspace. One way to attain exponentially small error-probability from these
LDF-readers is by utilizing the composition technique, applying the entire PCP theorem to
them. Our proof, in contrast, makes this recursion concrete, utilizing an explicit represen-
tation of low-degree polynomial functions that yields LDF-readers with an exponentially
small error probability.

The composition-recursion LDF-reader. Our LDF-reader uses a representation of
low-degree polynomials as follows. We begin with a representation where a multi-
dimensional polynomial is represented by all of its point evaluations, and also by its
restriction to certain constant dimensional subspaces. We use a new power-substitution
technique to then replace each constant dimensional restriction of the polynomial by a
multi-dimensional polynomial of a much smaller degree. This is done, roughly, by re-
placing monomials of high degree with new variables. The polynomials whose degree was
reduced are then represented by their point evaluations and their restriction to constant
dimensional subspaces, and the process is repeated.

After a constant number of such iterations we obtain polynomials of linear degree over
constant dimensional spaces. Each of these polynomials is then represented by a constant
number of variables that range over the field F . Hence to obtain evaluations our LDF-
reader is not required to completely read a low-degree polynomial over some subspace –
instead it only accesses a constant number of variables that range over F .

Organization of this part

Our main result and the main definitions required for its proof are stated in Chapter 2. The
proof of the main result, based on lemmas that are proven in the following chapters, appears
in Chapter 3. The construction of the LDF-reader that is utilized in the proof of the main
result appears in Chapter 4. In particular, the power-substitution technique, used in the
construction of the LDF-reader to represent polynomials using other polynomials with more
variables but with considerably smaller degrees, is described in Subsection 4.3. Finally,
Chapter 5 describes the recursive application of the sum-check (and other) techniques,
which are used in the reduction to obtain from the original system Ψ a system Ψsc with a
constant number of variables in each equation.
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Chapter 2

Preliminaries

In this chapter we describe the basic ideas and definitions utilized in the proof of our main
result.

Gap-Quadratic-Solvability

The Gap-Quadratic-Solvability problem is that of determining whether all the equations in
a given system of quadratic-equations can be simultaneously satisfied, or whether only a
small fraction of the equations can be satisfied. Viewing the quadratic equations as local-
tests of a PCP system, showing this problem to be NP-hard yields a PCP characterization
of NP.

Definition 2.1 (Gap-Quadratic-Solvability). The Gap-Quadratic-Solvability problem
with parameters D, F and ε (which are, implicitly, functions of the system size n), is de-
noted by gap-QS[D,F , ε]. An instance of the problem is a set of n quadratic-equations over
a finite field F , where each equation has at most D variables (D is called the dependency
parameter). The problem is to distinguish between the following two cases:

Yes. There is an assignment to the variables that satisfies all of the equations.

No. Every assignment to the variables satisfies at most an ε(n) fraction of the equations
– ε is called the error parameter.

An instance which falls under one of the above criteria is said to have the gap property.
Any outcome is acceptable for instances that do not have the gap property.

Our main theorem shows NP-hardness of gap-QS for a field of size |F| = 2c logβ n and
an error parameter ε = 2

|F| , where β < 1 is any constant smaller than 1 and c > 0 is some

constant. Note that the requirement for a 2
|F| error is almost optimal, since it is easy to

satisfy a 1
|F| fraction of the satisfiable equations of any system by a random assignment.
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On the other hand, from hardness for any error ε = 1
|F|c which is polynomially small in the

size of the field, one can obtain hardness for a 2
|F| error by a simple amplification technique.

We therefore abbreviate gap-QS[D,F ] for the gap-QS problem where ε is fixed to be 2
|F| .

Note that this error probability is polynomially small in the size of the field, and therefore
exponentially small in the length, measured in bits, of each variable.

Theorem 2.2 (main theorem). For every constant β < 1 there exists a constant c > 0

such that gap-QS[O(1),F ] is NP-hard, where |F| = 2c logβ n, n being the number of equations
in the system.

We actually prove Theorem 2.2 via a many-to-one reduction. Informally speaking, this
means that gap-QS[O(1),F ] is proven to be NP-complete.

Gap-QS[n,F ], where the number of variables in each equation is not bounded, is proven
to be NP-hard in [HPS93] for any field size bounded by nγ, using simple linear codes:

Theorem 2.3 ([HPS93]). Gap-QS[n,F ] is NP-hard, for any field size bounded by nγ, where
γ < 1 is a constant.

This theorem is proven by a relatively simple reduction from the Cook-Levin character-
ization of NP, so the entire difference between this characterization of NP and the PCP
characterization boils down to the constant bound on the number of variables that each
equation accesses.

Theorem 2.2 is proven by showing a reduction algorithm, taking as input a system Ψ
of n quadratic-equations and producing a new system Ψ′ where the number of variables
in each equation is bounded by a constant. The number of variables in each equation is
reduced while roughly preserving the fraction of satisfiable equations. Specifically, if Ψ is
completely satisfiable then Ψ′ is completely satisfiable as well; and if no more than a 2

|F|
fraction of the equations of Ψ can be satisfied then the same occurs for Ψ′.

LDFs and Domains

Let us set a notation for polynomial functions of low degree – an object used extensively
in this part of the thesis.

Definition 2.4 (LDF - low degree function). An [r, d]-LDF is a polynomial function
from Fd to F , of total-degree at most r.

The variables of the system Ψ′ that is generated by our reduction all range over F (since
Ψ′ is a system of quadratic equations over F). For the exposition of the reduction algorithm
and for the proof of correctness, it is useful to consider certain subsets of these variables
and associate the variables in such a subset with points in a vector field Fd over F . An
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assignment to the variables in the subset can thus be viewed as a function f : Fd → F , as
explained in the following definition of a domain.

Definition 2.5 (domain). A domain F is a set of variables ranging over F , that has
one variable F [x] for every point x ∈ Fd, where d = d(F ) is called the dimension of the
domain. F is said to be assigned a function f : Fd → F if for every x, the variable F [x]
is assigned f(x).

Two more parameters are associated with each domain in addition to the dimension
– The lower-degree, denoted s(F ), and the upper-degree r(F ) (r(F ) will always be larger
than s(F )).

Since a variable can be assigned every value in F , a domain F can be assigned any
function f : Fd(F ) → F . However, in the proof we give special consideration to assignments
of domains which correspond to LDFs. In particular, it will be shown that if the system
Ψ′ generated by the reduction is satisfiable, there is a satisfying assignment where every
domain F is assigned an s(F )-degree LDF. In case Ψ cannot be more than 2

|F| satisfiable,

it should be proven that no assignment can satisfy more than 2
|F| of the equations of Ψ′.

However, we prove later that it suffices to only show this for assignments where each domain
F is assigned an r(F )-degree LDF.

Definition 2.6 (assignment of a domain). The assignment f of a domain F is said to
be good, if f is an [s(F ), d(F )]-LDF, and it is said to be feasible if f is an [r(F ), d(F )]-
LDF. An assignment for a set of variables containing one or more domains is said to be
good (feasible) if the assignment to each domain is good (feasible).

The reduction which transforms Ψ into Ψ′ goes through an intermediate system Ψ1

where the number of variables in each equation is constant, but which does not yet have
the desired properties. In particular, Ψ1 might be completely satisfiable even when there
exists no assignment satisfying more than a 2

|F| fraction of the equations of Ψ. However,
Ψ1 behaves much better if we restrict the set of assignments considered: On one hand if Ψ
is completely satisfiable then not only Ψ1 is completely satisfiable, but there exists a good
satisfying assignment for it. On the other hand, if Ψ is no more than 2

|F| -satisfiable, then

there is no good or even feasible assignment for Ψ1 satisfying more than a 2
|F| fraction of

its equations.

LDF-Readers

To transform Ψ1 into the final system Ψ′, we should prevent it from being satisfiable by
assignments where domains are not assigned LDFs. In fact what we manage is a bit weaker
(although it suffices). Consider an equation ψ ∈ Ψ1 that has the variables F [x1], . . . , F [xk]
in a domain F . To prevent it from being satisfiable by unwanted assignments we use a
mechanism called an LDF-reader, which is plugged into ψ in place of these variables. The
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LDF-reader ensures that ψ either reads evaluations at (x1, . . . , xk) of an LDF (even if the
assignment to F is not feasible) or it is not satisfied.

An LDF-reader evaluating the tuple of points (x1, . . . , xk) in a domain F has two parts
– the representation, and the set of local-readers which produce the evaluations.

The representation. The representation is a set V that contains F and maybe other
variables and domains. The variables in V , including those associated with domains in it,
are called representation variables. The LDF-reader uses the representation variables to
produce evaluations. Every good assignment for F can be extended into a good assignment
for all the variables in V , called the encoding-assignment of the LDF assigned to F . If F
is assigned an LDF f and V is its encoding-assignment, then the LDF-reader will return
the evaluations of f .

The local-readers

The evaluations for (x1, . . . , xk) are produced by a set of local-readers, where each local-
reader accesses only a constant number of representation variables – this property is essen-
tial since the local-readers are plugged into Ψ1 to produce Ψ′ and the number of variables
in each equation must remain constant. Each local-reader may either produce evaluations,
or it may reject if it finds that the assignment is not an encoding-assignment.

Local-tests and evaluators. Each local-reader is a pair containing a local-test – a con-
junction of linear equations over representation variables, and a tuple of k evaluators. Each
evaluator is a linear-combination of representation variables. A local-reader is said to ac-
cept an assignment for the representation variables if the local-test is satisfied by it, and
otherwise it is said to reject it. If A is an encoding-assignment of an LDF f , then all local-
readers must accept, and moreover, the i’th evaluator in each local-reader must evaluate
to f(xi).

In case the representation variables are not given a correct encoding-assignment, we
would like the local-readers to always reject. This is not possible to achieve, however, with
local-readers that access a constant number of representation variables, not even if we allow
a small fraction of the local-readers to falsely accept. It is in fact not even possible to ensure
that local-readers which do not reject return evaluations of a single LDF. What we can
achieve (and turns out to be enough), is that apart from a small fraction, the local-readers
either reject or return evaluations of one of a short list of LDFs. This is the list of LDFs
which are permissible with respect to the assignment of F .

Definition 2.7 (permissible assignment). An [r(F ), d(F )]-LDF f is said to be ρ-
permissible with respect to an assignment of F if for at least a ρ-fraction of the points
x, F [x] is assigned f(x).
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We show later that for a wide range of permissibility parameters ρ, the list of permissible
LDFs is bounded by O(ρ−1). Since the list is only determined by the assignment to F and
is independent of the rest of the representation variables, it will be the same for all LDF-
readers evaluating tuples in F . This means that all equations that have variables in F will
read evaluations that are consistent with one of the LDFs on the relatively short list.

We now give the formal definition of the parameters of an LDF-reader.

Definition 2.8 ((ρ, ε)-LDF-reader). Let R be an LDF-reader evaluating a tuple
(x1, . . . , xk) in a domain F , and fix an assignment to its representation-variables. A local-
reader L is said to be ρ-erroneous if it accepts, and there exists no ρ-permissible LDF f
(with respect to the assignment of F ) such that the i’th evaluator evaluates to f(xi) for all
i.

R is said to be a (ρ, ε)-LDF-Reader, if for any assignment to the representation-
variables, the fraction of ρ-erroneous local-readers is at most ε.



14 Preliminaries



Chapter 3

Proof of the Main Theorem

In this chapter we prove Theorem 2.2 by showing for any constant β < 1, a polynomial time
reduction from Gap-QS[n,F ], where |F| = 2logβ n, to Gap-QS[O(1),F ]. Given a system Ψ
of n quadratic equations over F , with up to n variables in each equation, the reduction
generates a system Ψ′ over the same field with at most a constant number of variables in
each equation. Denoting by m the number of equations in Ψ′, the size of the field as a
function of m would be of the form 2c logβ m where c > 0 is some constant (as stated in
Theorem 2.2), since m is polynomial in n.

Ψ′ will have the completeness property, namely that if the given system Ψ can be com-
pletely satisfied then Ψ′ will be completely satisfiable as well; and the soundness property
– if Ψ is no more than 2

|F| -satisfiable (namely no assignment can satisfy more than a 2
|F|

fraction of its equations), then Ψ′ is at most 2
|F| -satisfiable as well.

The reduction begins by transforming Ψ into a system Ψsc of quadratic-equations where
the number of variables in each equation is bounded by constant, and that has the desired
properties only if the assignments for its variables are restricted to being feasible. The
transformation of Ψ into Ψsc is done by a sum-check algorithm, whose properties are stated
in the following Lemma, proven in Chapter 5.

Lemma 3.1 (sum-check). There exists a polynomial-time algorithm as follows. It takes

as input a system Ψ of n quadratic equations over a field F , |F| = 2logβ n, where there
are up to n variables in each equation. Given Ψ, the algorithm generates a system Ψsc of
quadratic-equations over F where each equation has a constant number of variables (some
of which in domains), and that has the following properties:

• Completeness: If Ψ is completely satisfiable then Ψsc is completely satisfiable by a
good assignment.

• Soundness: If Ψ is no more than 2
|F|-satisfiable then Ψsc cannot be more than 2

|F|-
satisfied by a feasible assignment.
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Moreover, all the domains of Ψsc have the same dimension d = Θ(log1−β n), lower-degree
s, and upper-degree r, where s ≤ |F|c1 and r ≥ |F|c2 for some global constants c1 < c2 < 1.

To transform Ψsc into Ψ′, the reduction generates LDF-readers and plugs them into Ψsc

as follows. For each equation ψ of Ψsc, that has the variables F (x1), . . . , F (xk) of a domain
F , it generates an LDF-reader evaluating (x1, . . . , xk) in F . To plug the LDF-reader into
ψ, many copies of ψ are made, and one of the local-readers is plugged into each copy.

The local-tests are added in conjunction with each copy, and hence a system of conjunc-
tions is formed. In addition, some of the gap is lost when the LDF-readers are plugged in
– if Ψ is no more than 2

|F| -satisfiable, the fraction of satisfiable conjunctions in the system
obtained from Ψsc might be somewhat higher. A simple amplification technique is hence
applied to the system of conjunctions to avoid that, and then each conjunction is replaced
by equations, obtaining Ψ′.

Generating the LDF-Readers

To generate LDF-readers we use a constructor algorithm, as defined below.

Definition 3.2 (constructor). A constructor is an algorithm that takes as input a domain
F and a k-tuple (x1, . . . , xk) of points in Fd(F ), where k is a constant. It generates an LDF-

reader evaluating (x1, . . . , xk) in F , in time polynomial in |F|d(F ). The number of variables
appearing in each local-reader must be bounded by a constant, and so should be the number
of equations in the local-test of each local-reader. In addition, the number of local-readers
must only depend on the parameters of F .

The reduction uses a constructor that generates Composition-Recursion LDF-readers.
The existence of the constructor and the properties of the LDF-readers it generates are
stated in the next lemma, which is proven in Chapter 4.

Lemma 3.3 (Composition-Recursion constructor). There exists a global constant cg,
such that for every c1 < c2 < 1 and β < 1 the following holds. There exist a constant
c > 0, and an LDF-Reader constructor for domains of dimension d = Θ(log1−β n), lower-
degree s ≤ |F|c1, and upper-degree r ≥ |F|c2 (the algorithm runs independently of s and r).
The LDF-readers generated by the algorithm are (ρ,O(ρc))-LDF-readers, for all ρ’s which
satisfy ρ > (r/|F|)cgd.

Before the LDF-readers are actually generated, we make some small technical alterations
to Ψsc as follows.

Uniformization. The number of variables in each equation of Ψsc is bounded by some
constant k. This implies that an equation in Ψsc may have variables from up to k distinct
domains, and that the number of variables it has from each domain is bounded by k.
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Before generating LDF-readers, let us assume for simplicity that each equation of Ψsc has
variables from exactly k distinct domains, and that it has exactly k variables from each
domain. This requires the reduction to add arbitrary variables to the equations, multiplied
by zero coefficients.

LDF-Reader generation. After the uniformization, the reduction generates the LDF-
readers as described above – For each equation ψ of Ψsc, that has the variables
F (x1), . . . , F (xk) in a domain F , it generates an LDF-reader evaluating (x1, . . . , xk) in
F (this takes polynomial time in the size of Ψsc). Note that since all domains in Ψsc

have the same parameters (dimension d, lower-degree s and upper-degree r, as stated in
Lemma 3.1), the number of local-readers in each LDF-reader is the same as well.

The representation variables of the LDF-readers are added to the variables of the system,
and the local-readers are plugged into the equations of Ψsc as described below.

Plugging LDF-Readers In

For each equation ψ ∈ Ψsc there are now k associated LDF-readers – one for each domain
it has variables from. The first step in plugging the LDF-readers into Ψsc is to replace
each such equation ψ by its representation set Eψ, containing conjunctions of quadratic
equations that are obtained by plugging local-readers into ψ. Eψ represents ψ in the sense
that an assignment satisfying a large enough fraction of the conjunctions in Eψ implies a
satisfying assignment for ψ, as shown in the proof of Claim 3.4 below.

Generating Eψ. Let ψ ∈ Ψsc be an equation that has variables from the domains
F1, . . . , Fk. For each j, let us denote the variables of ψ in Fj by Fj[x

j
1], . . . , Fj[x

j
k]. ψ is there-

fore associated with k LDF-readers R1, . . . ,Rk, where Rj evaluates the tuple (xj1, . . . , x
j
k)

in Fj. The reduction generates one conjunction in Eψ for each choice of k local-readers
L1, . . . , Lk, where Lj ∈ Rj. The first equation in each such conjunction, denoted ψ′, is the
quadratic equation obtained from ψ by replacing each variable of the form Fj[x

j
i ] with the

i’th evaluator of Lj (it evaluates xji in Fj). ψ
′ is then put in conjunction with the local-tests

of the local-readers L1, . . . , Lk.

The system Ψ2. Note that the number of conjunctions in Eψ is the same for every

ψ ∈ Ψsc – it is |R|k, where |R| denotes the number of local-readers in each of the LDF-
readers we have generated. We set Ψ2 to be the union of all the sets Eψ. Since the number
of variables in each local-reader is constant, the number of variables in each conjunction of
Ψ2 is bounded by a constant as well. The system of conjunctions Ψ2 obviously retains the
completeness property of Ψsc. As the next claim shows, it also retains some of its soundness
property, even with respect to assignments which are not necessarily feasible.
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Claim 3.4. There exists a constant α, 0 < α < 1, such that Ψ2 has the following properties:

• Completeness: If Ψ is completely satisfiable, then Ψ2 is completely satisfiable as well.

• Weakened Soundness: If Ψ is at most 2/|F|-satisfiable, then Ψ2 is at most |F|−α-
satisfiable (by any assignment).

To prove the claim we need the following proposition, showing that there cannot be
many permissible LDFs for a domain – this implies that most local-readers in an LDF-
reader will either reject or return the evaluation of one of a short list of permissible LDFs.
This proposition appears in Chapter 4 as Claim 4.12, and is proven there.

Proposition 3.5. Let F be a domain, and let ρ >
(
r(F )
|F|

)cg
d(F ) where cg is the same

constant as in Lemma 3.1. Then for any assignment to F there can be at most 2ρ−1

ρ-permissible LDFs in all.

Proof of Claim 3.4:

Completeness. If Ψ is satisfiable, then there is a good assignment satisfying Ψsc. For
each of the constructed LDF-readers, extend the assignment to its representation using the
encoding-assignment of the associated domain. The extended assignment satisfies Ψ2: A
conjunction in Ψ2 contains local-tests, which are all satisfied by encoding-assignments, and
an equation ψ′. ψ′ was generated from an equation ψ ∈ Ψsc by replacing variables with
evaluators. But for encoding-assignments, the evaluators and the replaced variables have
the same values. Hence since ψ is satisfied, ψ′ is satisfied as well.

Weakened soundness. Fix an assignment A for Ψ2, and let γ be the fraction of con-
junctions it satisfies. For an appropriate α, we will show that if γ > |F|−α then there
exists a feasible assignment for Ψsc satisfying more than a 2

|F| fraction of its equation. This

implies that Ψ is more than 2
|F| -satisfiable – a contradiction.

We denote a
.
=(1− c1)cg/k, where c1 is the global constant mentioned in the Sum-Check

Lemma (Lemma 3.1). Let ρ
.
=|F|−a. By the choice of a it follows that ρ > (r/|F|)cgd, and

therefore the LDF-readers have parameters (ρ, ρc) where c is the constant mentioned in the
Composition-Recursion Constructor Lemma.

An equation ψ ∈ Ψsc such that the fraction of satisfied conjunctions in Eψ is higher
than kρc, is said to be potentially satisfiable. Since the sets Eψ are all of the same size, it
follows that the fraction of potentially satisfiable equations is at least γ − kρc.

Consider a potentially satisfiable equation ψ. Eψ was generated from ψ by plugging
in k LDF-readers R1, . . . ,Rk, evaluating tuples in k domains F1, . . . , Fk respectively. A
conjunction in Eψ is defined by choosing a local-reader Lj out of each LDF-reader Rj.
For every j, the fraction of conjunctions in Eψ where Lj is ρ-erroneous is bounded by ρc,
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as implied by the parameters of the LDF-readers, and hence the fraction of conjunctions
where any of the readers are erroneous is bounded by kρc.

It follows that there exists a satisfied conjunction in Eψ in which no local-reader is
erroneous, namely that the evaluator of each local-reader Lj gives the evaluations of a ρ-
permissible LDF fj with respect to the assignment of Fj. Hence if each domain Fj were
re-assigned the function fj, ψ would be satisfied.

So far we have shown that the potentially satisfiable equations, which make at least
a γ − kρc fraction of the equations ψ ∈ Ψsc, can be satisfied by re-assigning the domains
with ρ-permissible LDFs. For each domain F in Ψsc, choose a random ρ-permissible LDF,
or the zero LDF if no such LDF exists, and re-assign it to F . We have obtained a feasible
assignment for Ψsc. We compute the chance of a potentially satisfiable equation to be
satisfied by the new assignment.

There are at most O(ρ−1) ρ-permissible LDFs for each domain by Proposition 3.5,
and each equation has variables from k domains. Hence the probability of a potentially
satisfiable equation in Ψsc to be actually satisfied by the re-assignment is at least Ω(ρk).
It follows that the expected fraction of satisfied equations in Ψsc is Ω(ρk(γ − kρc)), and
hence at least one of the re-assignments achieves this fraction of satisfaction. We have thus
shown that there exists a feasible assignment for Ψsc satisfying an Ω(ρk(γ − kρc)) fraction
of its equations.

We now choose a constant α so that 0 < α < min {1− ka , ac} (note that such an α
exists). If γ > |F|−α, then

ρk(γ − kρc) = |F|−ak(γ − k|F|−ac) � 2

|F|

hence there exists a feasible assignment for Ψsc satisfying more than a 2
|F| fraction of its

equations.

Gap Amplification

The reduction now amplifies the soundness of Ψ2 by joining conjunctions together into
larger conjunctions, generating Ψ3. The soundness of Ψ3 is even stronger than needed,
but it still has conjunctions rather than equations. The next subsection describes how
conjunctions may be replaced by equations with only a small cost in the soundness, thus
completing the reduction.

The system Ψ3. Denote N
.
=d1/αe, where α is the constant mentioned in Claim 3.4.

The reduction generates Ψ3 by taking the conjunction of every ordered N -tuple of (not
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necessarily distinct) conjunctions from Ψ2, that is

Ψ3 = {
N∧
i=1

χi : ∀ i χi ∈ Ψ2 }

Note that it takes polynomial time in |F|N , and hence in n, to generate Ψ3. Since each
conjunction in Ψ3 is composed of a constant number of conjunctions from Ψ2, the number
of variables as well as the number of equations in each such conjunction is bounded by a
constant. The next claim states the completeness and soundness properties of Ψ3.

Claim 3.6. Ψ3 has the following properties:

• Completeness: If Ψ is completely satisfiable, then Ψ3 is completely satisfiable as well.

• Soundness: If Ψ is at most 2/|F|-satisfiable, then Ψ3 is at most 1/|F|-satisfiable.

The claim follows easily from Claim 3.4 and from the construction of Ψ3.

From Conjunctions to Equations

Ψ3 is a system of conjunctions where, as mentioned above, the number of equations in each
conjunction is bounded by a constant. We would like the reduction to transform it from a
system of conjunctions into the final system Ψ′ of quadratic-equations, but first we make
sure that the number of equations in all the conjunctions of Ψ3 is the same. To do so the
reduction adds equations of the form 0 = 0 where necessary.

The system Ψ′. To transform Ψ3 into Ψ′, the reduction replaces each conjunction in
Ψ3 with the set of all linear-combinations over its equations (equations can be added or
multiplied by a scalar, so the notion of a linear-combination of equations is well defined).
Since the number of equations in each conjunction is constant the blow-up is polynomial
in |F|, and hence in n.

Since the number of variables in each conjunction of Ψ3 is bounded by a constant, the
number of variables in each equation of Ψ′ is constant as well. In order to complete
the proof of Theorem 2.2, it is left to show that Ψ′ has the soundness and completeness
properties. This follows immediately from Claim 3.6 together with the next proposition.

Proposition 3.7 (conjunction representation). Let Ψa be a system of conjunctions of
equations over F , where the number of equations in each conjunction is the same. Let Ψb

be the system obtained from Ψa where every conjunction χ ∈ Ψa is replaced by all linear
combinations over F of its equations (with multiplicities, if the same equation occurs more
than once). Then
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• If Ψa is completely satisfied by a certain assignment, then the same assignment will
satisfy Ψb as well.

• If Ψa is at most γ-satisfiable then Ψb is at most (γ + 1/|F|)-satisfiable.

Proof. The first property is obvious from the definition of Ψb. To prove the second property,
fix an assignment for the variables of Ψa and Ψb. Then it satisfies at most a γ fraction
of the conjunctions in Ψa. For each conjunction χ in Ψa denote by ω(χ) the fraction of
equations replacing χ that are satisfied in Ψb. Since each conjunction of Ψa is replaced by
the same number of equations, the fraction of satisfied equations in Ψb is the average of
ω(χ) over all the conjunctions χ ∈ Ψa.

For a satisfied conjunction χ, ω(χ) = 1, and it is easy to observe that ω(χ) = 1/|F|
for any unsatisfied conjunction χ. Since satisfied conjunctions make at most a γ fraction
of the conjunctions in Ψa, we conclude that the fraction of satisfied equations in Ψb is no
more than γ + 1/|F|, as required.
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Chapter 4

The Composition-Recursion
Constructor

This chapter contains the proof of the Composition-Recursion Constructor Lemma
(Lemma 3.3), showing the constructor for Composition-Recursion LDF-readers, CR’s for
short. As a first step, we show a constructor for restricted LDF-readers, where some of
the domains in the representation are considered active. These LDF-readers have good
parameters only in the case where active domains are given feasible assignments. By a
composition of several such LDF-readers we then get a CR.

Definition 4.1 (restricted LDF-readers.). A restricted LDF-reader R is an LDF-reader
where some of the domains in the representation are considered active. The dimension,
and the upper and lower degree parameters of all active domains must be the same. These
parameters are called the active dimension, active upper-degree and active lower-degree of
R, and are denoted by d?(R), r?(R), and s?(R) respectively.

A local-reader L in R may have variables from at most one active domain, which is
called the active domain of L and is denoted by Dom?(L).

Parameters of restricted LDF-readers. We measure the parameters of restricted
LDF-readers only with respect to feasible assignments: An assignment for the representa-
tion of a restricted LDF-reader R is said to be feasible if the assignment of every active
domain is feasible (unlike in the case of equation-systems, we do not require the assignment
of all domains to be feasible). R is hence said to be a restricted (ρ, ε)-LDF-Reader if for
any feasible assignment, the fraction of ρ-erroneous local-readers is at most ε. Note that in
an encoding-assignment, all domains must still be given a good assignment.

Outline of this chapter. The next section shows a constructor for restricted LDF-
readers (the definition of a constructor generalizes naturally for restricted LDF-readers),
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called Subspace-vs.-Point LDF-readers, SP’s for short. The representation of an SP eval-
uating a tuple in a domain F contains, apart from F itself, only active domains, which
have the same degree-parameters as F but a constant dimension parameter. Therefore,
informally speaking, an SP LDF-reader uses constant-dimensional LDFs to represent an
LDF over a space of higher dimension, and using evaluations of these constant-dimensional
LDFs it produces consistent evaluations of the original LDF.

In Section 4.3 it is shown how the constant-dimensional active domains of an SP, R,
can be replaced by active domains that have non-constant dimension, but greatly decreased
degree parameters. This allows the composition of other SP’s over R, as described in
Section 4.4, to evaluate tuples in the replaced active domains. Section 4.5 shows how
an iterative application of this procedure yields the Composition-Recursion LDF-reader
(which is not restricted) and Section 4.6 proves its properties, thus completing the proof of
Lemma 3.3.

4.1 Subspace-vs.-Point LDF-Readers

In this section we show the SP constructor – a constructor that generates Subspace-vs.-
Point restricted LDF-readers. The representation of an SP that evaluates a k-tuple in a
domain F contains, in addition to F , active domains with the same degree parameters as
F but of dimension k + 2. Each domain is associated with a (k + 2)-dimensional subspace
U in Fd(F ); in an encoding-assignment each of them is assigned the restriction to U of the
LDF assigned to F . Before we go into the description of the constructor, let us state its
properties in the following lemma.

Lemma 4.2 (Subspace-vs.-Point LDF-reader). There exists a constructor that given a
domain F and a k-tuple of points in Fd(F ), generates a restricted LDF-reader R as follows.
The active domains of R have the same upper and lower-degree parameters as F , and their
dimension parameter equals k + 2. Moreover, R will have parameters (ρ,O(ρ1/3)) for all
ρ’s which satisfy ρ > (r(F )/|F|)cgd(F ), where 0 < cg ≤ 1/2 is a global constant∗.

The Subspace-vs.-Point constructor

We now describe how the SP constructor generates an LDF-reader R, given a domain
F and a k-tuple (x1, . . . , xk) of points in Fd(F ). The SP constructor is used later as a
procedure of the CR constructor, however in proving the parameters of the CR constructor
we only rely on the properties that are stated in Lemma 4.2. Without loss of generality,
throughout the construction it is assumed that d(F ) ≥ k + 2 – it is easy to adapt the
construction for the case d(F ) < k + 2.

∗This is the same constant as in Lemma 3.3, and in all other places where cg appears
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The representation. Other than F itself, the representation only includes active do-
mains, with upper-degree r(F ), lower-degree s(F ), and dimension k + 2. The constructor
first picks any (k−1)-dimensional affine subspace U0 ⊆ Fd(F ) which contains all the points xi
of the tuple (if the xi’s are in general position, there exists exactly one such subspace). De-
note by SubSp(R) the set of (k+2)-dimensional affine subspaces U ⊆ Fd(F ) which contain
U0. One active domain DU is then constructed for every affine subspace U ∈ SubSp(R).

Identification functions. A good assignment A to F assigns to it an [s(F ), d(F )]-LDF
f . In the encoding-assignment, the assignment to each domain DU represents the restriction
of f to U . In order to represent f |U as an LDF over Fk+2 the constructor chooses for each
domain DU an arbitrary linear isomorphism φ

U
: U → Fk+2, called the identification

function of U , that identifies each point y ∈ U with the point φ
U
(y) in Fk+2.

Encoding-assignments. Let A be a good assignment for F , assigning to it a
[d(F ), s(F )]-degree LDF f . The encoding-assignment for A extends it by assigning to
each domain DU the LDF f ◦ (φ

U

−1). Composing the assignment of DU with φ
U

there-
fore gives f |U . Since φ

U
is linear, DU is assigned an s(F )-degree LDF, and hence the

encoding-assignment of A is a good assignment.

Local-readers. The SP constructor generates one local-reader for each domain DU and
point y ∈ U . Its active domain is DU , its local-test is the single linear equation DU [φ

U
(y)] =

F [y], and for every 1 ≤ i ≤ k its i’th evaluator is the term DU [φ
U
(xi)].

To get a better understanding of the structure of local-readers, fix a feasible assignment A
for the representation variables, and consider a local-reader associated with a domain DU

and a point y. The LDF assigned to DU represents an r(F )-degree LDF g
U

over U , defined
by g

U
(x)

.
=A(DU [φ

U
(x)]) (this is the composition of the LDF assigned to DU with φ

U
).

The local-test therefore compares g
U
(y) with the assignment of F [y], and the i’th evaluator

returns g
U
(xi).

If A is the encoding-assignment of an LDF f , then F [y] is assigned f(y), and g
U

is the
restriction of f to U . The local-test is hence satisfied in that case, and the values g

U
(xi)

returned by the evaluators are in fact the values of f at the points xi.

The SP constructor works.

It is easy to verify that the SP constructor indeed falls under the definition of a constructor.
To verify the parameters of SP LDF-readers (which would conclude the proof of Lemma 4.2)
consider an SP LDF-reader R, that evaluates a k-tuple (x1, . . . , xk) in a domain F , and
fix a feasible assignment A for its representation. As explained above, A determines an
r(F )-degree LDF g

U
over every affine subspace U ∈ SubSp(R).
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The local-test of the local-reader determined by an affine subspace U ∈ SubSp(R) and
a point y ∈ U verifies that g

U
(y) = A(F [y]), and its evaluators return the values of g

U
at

the points x1, . . . , xk. The local-reader is ρ-erroneous if the local-test is satisfied, yet the
values g

U
(x1), . . . , gU

(xk) are not the evaluation of any ρ-permissible LDF (with respect to
the assignment of F ) at x1, . . . , xk. The next proposition bounds the fraction of erroneous
local-readers, thus proving that R has the parameters required in Lemma 4.2.

Proposition 4.3 (SP parameters). For some global constant 0 < cg ≤ 1/2, and for all
ρ’s which satisfy ρ > (r(F )/|F|)cgd(F ), the following holds.

Let U be a random affine subspace in SubSp(R), and y be a random point in U (this
determines a random local-reader). Let Err be the event that g

U
(y) = A(F [y]), yet

g
U
(x1), . . . , gU

(xk) are not the evaluation of any ρ-permissible LDF (with respect to the
assignment of F ) at x1, . . . , xk. Then Pr[Err] = O(ρ1/3).

In fact we show an stronger statement than the above proposition. We bound by O(ρ1/3)
the probability that g

U
agrees with the assignment of F at y, yet g

U
is not the restriction

to U of any ρ-permissible LDF (it is easy to observe that this implies Proposition 4.3).

Subspace-vs.-Point Parameters

The proof is based on a lemma from [RS97] where a slightly different setting is discussed.
While we are interested in the case where an LDF is associated with every (k + 2)-
dimensional subspace in a certain set SubSp(R), the [RS97]-Lemma deals with the case
where each plane (2-dimensional affine subspace) is associated with an LDF defined over
it.

Definition 4.4 (plane-assignment). Suppose that every plane P in Fd(F ) is associated
with an r(F )-degree LDF g

P
over P . The correspondence P → g

P
is called a plane-

assignment. An LDF g
P

is called the plane-LDF assigned to P .

Another difference is that the [RS97]-Lemma discusses a different kind of permissibility,
measured with respect to the plane-assignment instead of with respect to the assignment
of F .

Definition 4.5 (planewise-permissibility). Let (P → g
P
) be a

plane-assignment. An r(F )-degree LDF f over Fd(F ) is said to be ρ-planewise-permissible
if for at least a ρ-fraction of the planes P , g

P
= f |P .

A plane-LDF g
P

is said to be ρ-planewise-permissible if it is the restriction to P of a
ρ-planewise-permissible LDF f over Fd(F ).

We now state the discussed lemma from [RS97]. It shows that planewise-permissibility
can be tested by comparing the plane-LDFs assigned to two line-intersecting planes. If
the plane-LDFs agree on the line then with high probability they are both planewise-
permissible.
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Lemma 4.6 ([RS97]). There exists a global constant 0 < cg ≤ 1/2, such that for any
ρ > (r(F )/|F|)cgd(F ) the following holds.

Fix a plane-assignment (P → g
P
). Let ` be a random line in Fd(F ) and let P1 and P2

be two random, independently chosen planes that contain `. Denote by Err the event that
the plane-LDF assigned to P1 agrees on ` with the plane-LDF assigned to P2, yet they are
not both ρ-planewise-permissible. Then Pr[Err] = O(ρ).

Starting from Lemma 4.6, we gradually approach Proposition 4.3 by a sequence of
technical claims: Claim 4.7 shows Lemma 4.6 to hold even if two plane-LDFs are compared
on a point rather than a line. Claim 4.8 deals with the case where a plane-LDF is compared
against the assignment of F at a certain point, rather than against another plane-LDF.
Claim 4.10 goes from planewise-permissibility to permissibility, showing that a random
plane-LDF g

P
that agrees with the assignment of F at a random point on P is with high

probability the restriction to P of a ρ-permissible LDF. Finally Claim 4.14 completes the
proof of Proposition 4.3 by showing that the same holds for LDFs g

U
associated with a

random subspace U ∈ SubSp(R), instead of plane-LDFs.

Claim 4.7. Fix a plane assignment (P → g
P
), and suppose ρ satisfies the requirements of

Lemma 4.6. Let y be a random point in Fd(F ), let ` be a random line containing it, and let
P1 and P2 be random independently chosen planes that contain `. Denote by Err the event
that the plane-LDF assigned to P1 agrees on y with the plane-LDF assigned to P2, yet they
are not both ρ-planewise-permissible. Then Pr[Err] = O(ρ).

Proof. First note that y can be considered to be a random point on a randomly chosen line
` in Fd(F ), instead of the other way around.

The only case where Err occurs yet the event from Lemma 4.6 does not, is when the
restrictions to ` of the plane-LDFs of P1 and P2 differ, yet they agree on y. Since the
restrictions to ` are r(F )-degree LDFs, if they differ then the probability of agreement on
the random point y is r(F )/|F| ≤ ρ. Hence by Lemma 4.6, Pr[Err] ≤ ρ+O(ρ) = O(ρ).

The next step is to compare a plane-LDF to the assignment of F [y] for some point y on it,
instead of to the value at y of another plane-LDF .

Claim 4.8. Fix a plane assignment (P → g
P
), and suppose ρ satisfies the requirements of

Lemma 4.6. Let P be a random plane and y be a random point on P . Denote by Err the
event that g

P
(y) = A(F [y]), yet g

P
is not ρ-planewise-permissible. Then Pr[Err] = O(ρ1/2).

Proof. To be able to apply Lemma 4.6, we redefine y and P , and introduce new random
variables as follows. Let y be a random point in Fd(F ), ` be a random line containing y,
and P and P ′ be random independently chosen planes that contain ` (note that to obtain
the claim it is enough to the prove bound on Pr[Err] in these settings). Let Err2 be the
event that g

P
and g

P ′
agree on y yet they are not both ρ-planewise-permissible. Claim 4.7

implies that the probability of Err2 is bounded by O(ρ).
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To use the bound we have for Err2 we first show that for every fixed line `0 and point
y0 ∈ `0,

Pr[Err|` = `0, y = y0] ≤ (Pr[Err2|` = `0, y = y0])
1/2 (4.1)

Let Err′ be the event that g
P ′

(y) = A(F [y]) yet g
P ′

is not ρ-planewise-permissible (it is
similar to Err, only for P ′ instead of P ). Obviously

Pr[Err2|` = `0, y = y0] ≥ Pr[Err ∧ Err′|` = `0, y = y0]

because the event on the left-hand side contains the one on the right-hand side. Since P
and P ′ are independently chosen given `0, we have

Pr[Err ∧ Err′|` = `0, y = y0] = Pr[Err|` = `0, y = y0] · Pr[Err′|` = `0, y = y0]

= (Pr[Err|` = `0, y = y0])
2

which together with the above inequality implies Equation 4.1.

One may discard the conditioning in Equation 4.1, obtaining

Pr[Err] ≤ Pr[Err2]
1/2

using the law of complete probability and the concavity of the square-root function. Since
the probability of Err2 is bounded by O(ρ), this obtains the claim.

Our next step is to convert the statement of Claim 4.8 from planewise-permissibility
to permissibility in the usual sense. This requires the following bound on the number of
planewise-permissible LDFs.

Claim 4.9. Fix a plane assignment (P → g
P
), and suppose ρ satisfies the requirements of

Lemma 4.6. Then the number of ρ-planewise-permissible LDFs is less than 2ρ−1.

Proof. The proof is similar to that of Claim 4.12 below.

We can now prove the analogue of Claim 4.8 for permissibility in the usual sense.

Claim 4.10. Fix a plane assignment (P → g
P
), and suppose ρ satisfies the requirements

of Lemma 4.6. Let P be a random plane and y be a random point on P . Denote by Err
the event that g

P
(y) = A(F [y]), yet there is no ρ-permissible LDF f (with respect to the

assignment of F ), such that g
P

= f |P . Then Pr[Err] = O(ρ1/3).

Proof. We separate Err into two events, and bound the probability of each by O(ρ1/3): Let
Err1 be the event where Err occurs and in addition g

P
is not ρ2/3-planewise-permissible;

and let Err2 be the event where Err occurs and in addition g
P

is ρ2/3-planewise-permissible.
By applying Claim 4.8 using ρ2/3 instead of ρ, we obtain that the probability of Err1

is bounded by O(ρ1/3) as required (since ρ > (r(F )/|F|)cgd(F ) as required in Lemma 4.6,
ρ2/3 satisfies this requirement as well).
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It is left to bound the probability of Err2. By definition it occurs only when g
P
(y) =

A(F [y]) and there exists a ρ2/3-planewise-permissible LDF f which is not ρ-permissible,
such that g

P
= f |P . For an LDF f over Fd(F ), denote by Err3(f) the event where g

P
(y) =

A(F [y]) and g
P

= f |P (note that this implies f(y) = A(F [y])). Then the probability of
Err2 is bounded by the sum of Pr[Err3(f)] over all ρ2/3-planewise-permissible LDFs f
which are not ρ-permissible.

Let us bound the probability of Err3(f) for such an LDF f . Since f is not ρ-permissible
the probability that it satisfies f(y) = A[F (y)] is bounded by ρ, because y is a uniformly
random point in Fd(F ). The probability of Err3(f) is therefore bounded by ρ as well. Since
f should be ρ2/3-planewise-permissible, there can be at most 2ρ−2/3 such f ’s by Claim 4.9,
and therefore a bound of 2ρ−2/3ρ = O(ρ1/3) is obtained for the probability of Err2.

Note that the statement of Claim 4.10 is similar to what we wish to establish (see the
remark following Proposition 4.3), only for planes rather than (k+2)-dimensional subspaces
in SubSp(R). Claim 4.14 proves that by considering a random plane P , y ∈ P ⊆ U , in
addition to the random subspace U and the random point y ∈ U . Claim 4.10 can be
applied to P to obtain Claim 4.14, but for it to be applicable it should be shown that when
a random subspace U ∈ SubSp(R) is chosen , then a random plane P contained in U ,
and then a point y ∈ P , P and y are almost uniformly distributed. This is shown in the
following claim.

Claim 4.11. Let U be a random subspace in SubSp(R), and let P be a random plane
contained in U and y a random point in P . The distribution of P and y is almost uniform,
that is if P lns denotes the set of planes in Fd(F ) then

∑
P0∈Plns

|Pr(P = P0)− |P lns|−1| ≤ O(|F|−1)

and ∑
y0∈Fd(F )

|Pr(y = y0)− |F|−d(F )| ≤ O(|F|−1)

Proof. We only prove the second inequality. The proof of the first one is similar though
more tedious.

Observe that since all the subspaces in SubSp(R) contain U0 the probability of the

random point y in U to yield a specific point in U0 is higher than |F|−d(F ), the probability
of a uniformly random point, and the probability of y to yield a point outside of U0 is
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smaller than |F|−d(F ). Hence∑
y0∈Fd(F )

|Pr[y = y0]− |F|−d(F )|

=
∑
y0∈U0

(Pr[y = y0]− |F|−d(F )) +
∑

y0∈Fd(F )\U0

(|F|−d(F ) − Pr[y = y0])

< Pr[y ∈ U0] +
∑

y0∈Fd(F )\U0

(|F|−d(F ) − Pr[y = y0])

The total probability of y to belong to U0 is Pr[y ∈ U0] = |U0|/|U | = |F|−3. Additionally,
note that y is uniformly distributed on Fd(F ) \ U0. Hence for a point y0 outside U0 the
probability that y = y0 equals the probability of y to be outside U0 divided by the size of
Fd(F ) \ U0, so

Pr[y = y0] =
1− |F|−3

|F|d(F ) − |U0|
> (1− |F|−3)|F|−d(F ) = |F|−d(F ) − |F|−d(F )−3

Overall we obtain∑
y0∈Fd(F )

∣∣Pr[y = y0]− |F|−d(F )
∣∣ <

< |F|−3 + |F|d(F ) · |F|−d(F )−3 = 2|F|−3 = O(|F|−1)

Before we move to the final claim, we need the following two bounds. Claim 4.12, which
appears in Chapter 3 as Proposition 3.5, bounds number of ρ-permissible LDFs. Claim 4.13
bounds the fraction of planes on which two distinct LDFs may agree.

Claim 4.12. Suppose ρ satisfies the requirements of Lemma 4.6. Then there are less than
2/ρ ρ-permissible LDFs.

Proof. Assume for the sake of contradiction that there exists a set Per containing 2/ρ
distinct ρ-permissible LDFs. For each LDF f ∈ Per denote by U(f) the set of points
y ∈ Fd(F ) such that f is the only LDF in Per satisfying f(y) = A(F [y]).

Each LDF f ∈ Per is ρ-permissible, hence it agrees with A(F ) on at least a ρ-fraction
of the points. We bound from above the fraction of points for which it also agrees with
other LDFs in Per. Any other LDF in Per agrees with f on at most an r(F )

|F| fraction of the

points, so overall f may agree with other LDFs in Per on at most a 2r(F )
ρ|F| fraction of the

points. From the assumption ρ >
(
r(F )
|F|

)cg
d(F ) it follows in particular that ρ2 > 4r(F )/|F|

(recall that cg < 1/2 and that we assume d(F ) ≥ k + 2 > 2), and therefore 2r(F )
ρ|F| <

1
2
ρ.
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f thus agrees with A(F ) on at least ρ of the points, and on less than a 1
2
ρ fraction of the

points it agrees with other LDFs in Per. It follows that for every f ∈Per, U(f) contains
more than a 1

2
ρ fraction of the points. Since the sets U(f) are disjoint, it follows that the

fraction of all points contained in any of the U(f)’s is greater than 1
2
ρ · |Per| ≥ 1. This is

a contradiction.

Claim 4.13. For any t > 0, two distinct [r, t]-LDFs must disagree on all but at most an
r/|F| fraction of their possible restrictions to planes.

Proof. Let f and g be two distinct r-degree LDFs over F t, and let P be a random plane in
F t. We are to evaluate the probability that f |P equals g|P . Let y be a random point on P .
y is uniformly distributed in F t, and therefore it produces a disagreement with probability
1− r

|F| (this is a well known property of LDFs). Since y can produce a disagreement only
in the case that there is a disagreement over P , it implies that there is a disagreement over
P with probability at least 1− r

|F| .

The following claim directly implies Proposition 4.3.

Claim 4.14. Suppose ρ satisfies the requirements of Lemma 4.6. Let U be a random
affine subspace in SubSp(R), and y be a random point in U . Let Err be the event that
g

U
(y) = A(F [y]), yet there is no ρ-permissible LDF (with respect to the assignment of F )

whose restriction to U gives g
U
. Then Pr[Err] = O(ρ1/3).

Proof. Without loss of generality, we assume that P is a random plane contained in (the
random subspace) U , and y is a random point in P .

We define two events Err1 and Err2 such that Err1 ∪ Err2 contains Err, and bound
the probability of each by O(ρ1/3). Let Err1 be the event that g

U
(y) = A(F [y]), yet there

is no ρ-permissible LDF f that agrees with g
U

on P , namely f |P = g
U
|P . Let Err2 be the

event that there is no ρ-permissible LDF whose restriction to U gives g
U
, yet there exists

such an LDF that agrees with g
U

on P . Obviously Err ⊆ Err1 ∪ Err2.

Bounding Pr[Err2]. For a ρ-permissible LDF f , let Err3(f) be the event that f |U 6= g
U
,

yet f |P = g
U
|P . Err2 is contained in the union of the events Err3(f) over all ρ-permissible

LDFs f . For a ρ-permissible LDF f ,

Pr[Err3(f)|U = V ] ≤ r(F )/|F|

for every fixed subspace V ∈ SubSp(R), by applying Claim 4.13 to V . It follows that
Pr[Err3(f)] is bounded by r(F )/|F| as well. Since there are less than 2/ρ ρ-permissible
LDFs in all, we obtain that

Pr[Err2] <
2r(F )

ρ|F|
< ρ

(the last inequality follows easily from the restriction on ρ).
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Bounding Pr[Err1]. We change the distribution of U , P and y, by letting P be a random
plane in Fd(F ), U be a random space in SubSp(R) that contains P , and y be a random
point in P . By Claim 4.11, the statistical distance between the new distribution of P ,
which is uniform, and the original distribution is O(|F|−1). Under both the original and
the new distributions, the distribution of U and y conditioned on P being a fixed plane P0

are the same – U is a random space in SubSp(R) that contains P0 and y is a random point
in P0. It follows that the statistical distance between the new joint distribution of U , P
and y, and the original distribution is bounded by O(|F|−1). It is hence enough to bound
the probability of Err1 according to the new distribution.

Let g
P

.
=g

U
|P be considered as a random plane-assignment for the (random) plane P .

The definition of Err1 can hence be articulated as the event that g
P
(y) = A(F [y]), yet

there is no ρ-permissible LDF f such that g
P

= f |P . Claim 4.10 naturally extends to the
case where the plane-assignments is random as long as the assignment to F is not random,
hence it implies that Pr[Err2] = O(ρ1/3) (note that P is a uniformly random plane and y
is a random point in P ).

4.2 Overview of the CR-Constructor

Let us give an overview of the CR (Composition-Recursion) constructor. Given a domain
and a tuple, the CR constructor generates a constant-length sequence of restricted LDF-
readers that ends with the final, unrestricted, CR LDF-reader. Each transformation of an
LDF-reader R in the sequence into the next (except for the final one) has the same two
steps as follows.

Extension. In the first step, an extension-procedure is applied to each active domain of
R, replacing it by a domain with greatly reduced degree parameters in the price of an
increased dimension parameter. The active degree and dimension parameters of R are
thus changed, but its other properties are maintained.

Composition. The second step is the application of the composition procedure, which
incorporates new LDF-readers into R. First, it generates several new LDF-readers using
the SP constructor (actually, any constructor with properties as in Lemma 4.2 will do),
applying it to different active domains and tuples. The domains generated in the process
then become active instead of the old active domains. These new active domains are of
constant dimension, and because of the extension step their degree parameters are greatly
reduced with respect to the active domains of R. Finally the newly generated local-readers
are plugged into the local-readers of R, generating the next LDF-reader in the sequence.

We proceed as follows. First, in the next section, we give a formal definition of an ex-
tension and show the two extension-procedures used by the CR constructor. In Section 4.4
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we describe the composition procedure and prove its properties. Then, in Section 4.5 we
describe the CR constructor and prove its correctness in Section 4.6.

4.3 Extensions

An extension of a domain F is a domain G which contains the variables of F : Each variable
F [x] is endowed with another name G[φ(x)]. The function φ : Fd(F ) → Fd(G) is called the
gluing of F to G. The extension must preserve good and feasible assignments as follows.

Definition 4.15 (extension). Let F be a domain, and let G be a domain that contains
the variables of F . G is called an extension of F if the following properties hold:

• Extension Property: Any good assignment A for F can be extended to a good assign-
ment for G, called the encoding-assignment or the encoding LDF of A.

• Restriction Property: The restriction to F of any feasible assignment for G is a
feasible assignment for F .

The point about extensions is that they allow the representation of an LDF assigned to a
domain F by an encoding LDF with different properties. We can hence replace the active
domains of a restricted (ρ, ε)-LDF-reader R by their extensions and obtain a restricted
(ρ, ε)-LDF-reader where the active degree parameters are different, usually considerably
smaller.

Proposition 4.16 (extension). Let R be a restricted (ρ, ε)-LDF-reader, evaluating a tuple
in a domain F . Suppose that for each active domain G of R, e(G) is an extension of G,
and that all extensions have the same parameters. If an LDF-reader R′ is obtained from
R by just declaring these extensions as the active domains of R′ then R′ is a restricted
(ρ, ε)-LDF-reader.

Proof. It is given that all the active domains of R′ have the same parameters. To show
that R′ is a valid restricted LDF-reader we define an encoding-assignment of R′ , for every
good assignment to F .

Given a good assignment for F , let A be its encoding-assignment with respect to R. For
each active domain G of R, assign the encoding-assignment of A(G) to its extension e(G).
This obtains a good assignment for the representation of R′ , and since the assignments to
the variables of R are not changed all local-tests are satisfied and all local-readers return
evaluations consistent with the assignment of F .

The fact that R′ has parameters (ρ, ε) follows easily from the restriction property of
each extension e(G), which implies that the restriction of a feasible assignment for R′ yields
a feasible assignment for R.
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Extension-procedures. An extension-procedure is an algorithm which given a domain
F , generates an extension G of F . The running time of the algorithm must be polynomial
in |F|d(G). We next show the two extension-procedures used by the CR constructor – the
power-substitution and the linearization extension-procedures. In the sequence of restricted
LDF-readers that is generated by the CR constructor (see the overview above), the power-
substitution extension-procedure is used in the generation of all restricted LDF-readers
but the last. The last restricted LDF-reader is generated using the linearization extension-
procedure, and thus has active domains with linear lower-degree and upper-degree. The
final, unrestricted, CR LDF-reader is obtained by replacing each such domain with variables
that represent the coefficients of a linear function.

Given a domain F , the power-substitution extension-procedure constructs an exten-
sion G with greatly reduced degree parameters in the price of increasing the dimension
parameter. The linearization extension-procedure, when applied to a domain F , yields a
domain G with linear lower-degree and linear upper-degree. The dimension of G is, how-
ever, exponential in the degree parameters of F , hence the linearization is applied by the
CR constructor only after very small active degree parameters are achieved.

Gap consumption. The power-substitution extension-procedure has the following prop-
erty. Suppose G is the extension of a domain F , obtained by the power-substitution
extension-procedure. Then r(G)/s(G) < r(F )/s(F ), namely some of the gap between
the lower-degree and the upper-degree parameters is consumed by applying the power-
substitution extension-procedure. The CR constructor applies the power-substitution
extension-procedure several times as described in the overview, hence if it is applied to
a domain F where the gap between the upper-degree and lower-degree is not large enough
(see Lemma 3.3), domains are created where the upper-degree is smaller than the lower-
degree. Since the linearization extension-procedure is not applicable to such domains, the
CR constructor would not be able to construct an LDF-reader for F .

The power-substitution extension-procedure

We begin by stating the properties of the power-substitution extension-procedure. For
simplicity, we omit floor and ceiling signs where they are not essential.

Proposition 4.17 (power-substitution). There exists an
extension-procedure, called power-substitution, which given a domain F and a param-
eter b > 1, generates an extension G of F with the following parameters: For
t
.
=
⌊
logb(s(F ) + 1)

⌋
,

• d(G) = d(F )t

• s(G) = d(F )t(b− 1)
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• r(G) = r(F )/bt
(
≥ r(F )/s(F )

)
The procedure is based on the idea that by replacing powers of variables in an LDF f

with new auxiliary variables, the degree of f may be decreased dramatically. For example,
we fix an LDF over one variable f(u1) = u12

1 + u25
1 (the handling of multi-variate LDFs is

very similar), and show an encoding LDF g over three variables.

g is obtained from f by substituting powers of u1 with new variables. Informally
speaking, if v0 is considered as representing u1, v1 is considered as representing u3

1, and
v2 – as representing u9

1, then u12
1 = v1v2, and u25

1 = v0v
2
1v

2
2 (note that we used the base 3

representation of 12 and 25). Replacing these terms in f obtains an LDF g(v0, v1, v2) =
v1v2 + v0v

2
1v

2
2 of degree 5 rather than 25. g encodes and extends f in the sense that

g(u1, u
3
1, u

9
1) = f(u1) for every u1 ∈ F .

For a domain G, obtained from a domain F using the power-substitution extension-
procedure with parameter b, an LDF f of degree s(F ) assigned to F is encoded by an LDF
g over Fd(G) as follows. g is obtained from f by taking an auxiliary variable for each power
of the form ub

e

i of a variable ui of f . Any other power uji of ui can then be replaced by a
monomial over the new variables of degree at most b− 1 in each variable, using the base-b
representation of j.

Proof of Proposition 4.17: We begin by describing the power-substitution extension-
procedure and then prove that it has the required properties.

The procedure. Given a domain F and a parameter b, the procedure first generates a
domain G with parameters as stated in the proposition. It then generates a gluing function
φ : Fd(F ) → Fd(G) as follows:
For every x = (u1, . . . , ud(F )) ∈ Fd(F ), φ(x) is defined to be

(u1, u
b
1, u

b2

1 , . . . , u
bt

1 , u2, u
b
2, u

b2

2 , . . . , u
bt

2 , . . . , ud(F ), . . . , u
bt

d(F )) ∈ Fd(G)

Finally, each variable of the form G[φ(x)] is discarded, and the name G[φ(x)] is endowed
to the variable F [x] (which now has more than one name).

It is clear that the above procedure generates a domain G with the required parameters,
in time polynomial in |F|d(G). It remains to show that G is indeed an extension of F , namely
that it has the extension and restriction properties.

Extension property. Suppose F is assigned an [s(F ), d(F )]-LDF f (namely a good
assignment). We now show its encoding LDF g – it should be an [s(G), d(G)]-LDF
satisfying g ◦ φ = f , so that when assigned to G it does not conflict with F . First, let
f(u1, . . . , ud(F )) be written as a polynomial formula P over the variables u1, . . . , ud(F ). P is
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transformed into a polynomial formula P ′ over the variables

v(1,0), v(1,1), .., v(1,t−1), v(2,0), v(2,1), .., v(2,t−1), . . . , v(d(F ),0), .., v(d(F ),t−1)

by replacing each term uji in P with a monomial m(i,j) over v(i,0), .., v(i,t−1): Since the term

uji appears in P we gather that j ≤ s(F ), and hence its representation as a number in base
b has at most t digits. Let et−1, . . . , e1, e0 be the base b representation of j, and let

m(i,j)
.
=(v(i,0))

e0(v(i,1))
e1 . . . (v(i,t−1))

et−1

Replacing each term uji in P with the monomial m(i,j) we obtain P ′, and then we define g
by

g(v(i,0), . . . , v(d(F ),t−1))
.
=P ′(v(i,0), . . . , v(d(F ),t−1))

Since each monomial m(i,j) is of degree at most t(b − 1), it easily follows that g is an
[s(G), d(G)]-LDF. Considering m(i,j) as a function over Fd(G), it is also easy to see that for

all (u1, . . . , ud(F )), (m(i,j) ◦ φ)(u1, . . . , ud(F )) = uji . It follows that g ◦ φ = f , and hence g
is indeed an encoding-LDF.

Restriction property. Suppose G is given a feasible assignment, namely it is assigned an
[r(G), d(G)]-LDF g. The restriction of the assignment to F is hence an LDF f over Fd(F ),
given by f = g ◦ φ. The degree of f is at most deg(f) = deg(g) deg(φ) = r(G)bt = r(F ).
The restriction is hence a feasible assignment for F , as required.

The linearization extension-procedure

The linearization extension-procedure is very similar to the power-substitution procedure.
The idea is to encode an LDF f by a linear LDF, replacing every monomial by a new
auxiliary variable (recall that in the power-substitution, auxiliary variables where only
introduced for some powers of variables in f). Since many auxiliary variables are used, the
dimension increases dramatically.

Proposition 4.18 (linearization). There exists an extension-procedure called lineariza-
tion, which given a domain F with s(F ) ≤ r(F ), generates an extension G with the following
parameters: For t

.
=
(
s(F )+d(F )

d(F )

)
,

• d(G) = t

• s(G) = 1

• r(G) = 1

Proof. We begin by describing the linearization extension-procedure, and then prove that
it has the required properties.
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The procedure. Given a domain F , the procedure first generates a domain G with pa-
rameters as stated above. To generate the gluing function, the procedure picks an arbitrary
enumeration m1, . . . ,mt of the monomial functions of degree at most s(F ) over Fd(F ) (note
that there are exactly t such monomials). The gluing function φ : Fd(F ) → Fd(G) is then
defined by

∀ x ∈ Fd(F ) φ(x)
.
=(m1(x), . . . ,mt(x))

Having defined the gluing function, F and G are then “glued” in the usual way – each
variable of the form G[φ(x)] is discarded, and the name G[φ(x)] is endowed to the variable
F [x] (which now has more than one name).

The procedure clearly generates a domain G with the required parameters, in time poly-
nomial in |F|d(G). It remains to verify that G has the extension and restriction properties.

Extension property. Suppose F is assigned an [s(F ), d(F )]-LDF f , and let us construct
its encoding LDF – a linear LDF over Fd(G) satisfying g ◦ φ = f . First, one can write f as
a linear-combination of the monomial functions of degree at most s(F ):

f =
t∑
i=1

γimi

g is then defined by

∀ (v1, . . . , vt) ∈ Fd(G) g(v1, . . . , vt)
.
=

t∑
i=1

γivi

It is clear that g ◦ φ = f , as desired.

Restriction property. Suppose G is given a feasible assignment, namely it is assigned
a linear LDF g. The restriction of the assignment to F is the LDF f = g ◦ φ. Since φ is of
degree s(F ) and g is linear, the degree of f is at most s(F ) ≤ r(F ), as required.

4.4 The Composition Procedure

We now turn to describe the composition procedure of the CR constructor algorithm.
It takes as input a restricted LDF-reader R, and generates a restricted LDF-reader R′

with the same active degree parameters, but where the dimension of the active domains is
constant.

Suppose an LDF-reader R is given, which evaluates a tuple (u1, . . . , uk) in a domain F .
The composition procedure has two main steps: First it generates new LDF-readers using
the SP constructor as a sub-procedure, and then it incorporates them into R.
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Uniformization. Recall that each local-reader L of R has variables from only one active
domain, Dom?(L). Before the main two steps, it is convenient to make sure that all
local-readers L in R have the same number of active variables, namely variables from
Dom?(L). Denoting the maximal number of active variables in a local-reader of R by t,
the composition procedure adds arbitrary variables to local-readers so that all have t active
variables (the variables may be added anywhere in the local-reader, with zero coefficients).

Generating new LDF-readers. For each local-reader L in R, the procedure now
generates an LDF-reader denoted RL as follows. If G is the active domain of L and
G[x1], . . . , G[xt] are its active variables, then RL is generated by calling the SP constructor
with parameters G and (x1, . . . , xt).

Domain incorporation. The composition procedure now incorporates the domains of
the new LDF-readers intoR: The newly generated domains are added to the representation.
The active domains ofR cease to be active – the active domains ofR′ are the active domains
of the newly generated LDF-readers.

Local-reader incorporation. In a feasible assignment for R′ , the active variables of
R-local-readers L are no longer promised to be assigned the evaluation of a single feasible
LDF over Dom?(L). Instead, these variables are replaced by the evaluators of local-readers
ofRL, since their values are supposedly the evaluations of one of the (not many) permissible
LDFs over Dom?(L).

For each pair of local-readers, L of R and M from RL, the composition procedure
generates a local-reader of R′ , denoted by L ◦ M , as follows. Let G denote the active
domain of L, and let G[x1], . . . , G[xt] denote its active variables. To obtain L ◦M each
variable G[xi] in the evaluator or the local-test of L is replaced by the i’th evaluator of
M , and then the local-test of M is added in conjunction to the local-test of L (where the
G[xi]’s have been replaced).

Properties of the composition procedure

We now analyze the properties of the composition procedure that are important for its
application by the CR constructor – the time it takes, and the properties and parameters
of the LDF-readers it generates. In the analysis we assume that the composition procedure
is applied to LDF-readers where the the number of variables in each local-reader and the
number of conjunctions in each local-test is bounded by a constant, since the CR constructor
indeed applies it to such LDF-readers. Notice that under this assumption it is clear that the
composition procedure generates LDF-readers where the number of variables in each local-
reader and the number of conjunctions in each local-test is also bounded by a (different)
constant.
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Time. When applied to an LDF-reader R, the composition procedure applies the SP con-
structor several times. Each call to the SP constructor takes time polynomial in |F|d?(R),
according to the definition of a constructor (note that this is polynomial the number of
variables in each of the active domains of R). Since the number of calls to the SP con-
structor equals the number of local-readers in R, it follows that overall the composition
procedure takes time polynomial in the size of R.

Encoding-assignments. When the composition procedure is applied to an LDF-reader
R that evaluates a tuple (x1, . . . , xk) in a domain F , the resulting structure R′ has
representation-variables and local-readers. To be a valid LDF-reader, we show that for
every good assignment A for F there is an encoding-assignment with respect to R′ : First
extendA to an encoding-assignmentA′ forR. In particularA′ assigns a good assignment to
the active domain Dom?(L) of each local-reader L inR. Then extend the assignment of each
active domain Dom?(L) to an encoding-assignment with respect to RL. This obtains an
assignment for all the variables of R′ . It is easy to verify that it is an encoding-assignment
of A with respect to R′ .

Parameters of R′. Given an LDF-reader R, the composition procedure generates an
LDF-readerR′ . The parameters ofR′ can be computed from the parameters ofR according
to the following composition proposition.

Proposition 4.19 (composition). Let R be a (ρ, ε)-LDF-reader where ε3/4 >
(r?(R)/|F|)cgd?(R). Then the LDF-reader R′, generated from R by the composition pro-
cedure, has parameters (ρ, ε1/4).

Before the formal proof is given, we describe its main ideas. There are two types of ρ-
erroneous local-readers L◦M . One is where M is ε3/4-erroneous – this happens for at most
an O(ε1/4) fraction of the local-readers since the RL’s are (ε3/4, O(ε1/4))-LDF-readers.

In case M is not erroneous, its evaluators yield evaluations of an ε3/4-permissible LDF
f with respect to the assignment of Dom?(L). L ◦M is thus ρ-erroneous if and only if L
remains ρ-erroneous when Dom?(L) is assigned the feasible LDF f . Since for any feasible
assignment at most an ε-fraction of the local-readers ofR may be ρ-erroneous, and since the
number of ε3/4-permissible LDFs for every domain is less than 2ε−3/4, a counting argument
implies that the fraction of local-readers L ◦M where M is not erroneous is bounded by
2ε−3/4 · ε = O(ε1/4).

Proof of Proposition 4.19:
Fix a feasible assignment A′ for the representation of R′ and a parameter ρ′

.
=ε3/4,

and let us divide the ρ-erroneous local-readers of R′ into two sets according to ρ′ – the
periferal-erroneous local-readers are the local-readers L ◦ M where M is ρ′-erroneous as
a local-reader of RL, and the core-erroneous are those where M is not ρ′-erroneous. We
bound the fraction of both types of local-readers by O(ε1/4).
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Periferal-erroneous local-readers. Since ρ′ > (r?(R)/|F|)cgd?(R), Lemma 4.2 im-
plies that every LDF-reader RL generated by the composition procedure has parameters
(ρ′, O((ρ′)1/3)), so the fraction of ρ′-erroneous local-readers in it is O((ρ′)1/3) = O(ε1/4).
Hence for every local-reader L of R, the fraction of periferal-erroneous local-readers among
local-readers of the form L ◦M is O(ε1/4), and therefore the overall fraction of periferal-
erroneous local-readers in R′ is bounded by O(ε1/4) as desired.

We move to bound the fraction of core-erroneous local-readers. We first show that in such
a local-reader L ◦M , L has to be erroneous as a local-reader of R with respect to a certain
class of assignments, as explained below.

The assignments A(G, g) for R. For an active domain G of R and an [r(G), d(G)]-LDF
g, we define a class A(G, g) of assignments for R, based on A′. The elements of A(G, g)
are the assignments for R that assign g to G, and that are equal to A′ on all domains of
R which are not active. Active domains of R other than G may be assigned arbitrarily.
A local-reader L of R with Dom?(L) = G, may be either ρ-erroneous with respect to all
assignments in A(G, g), or with respect to none, because the assignments in A(G, g) are all
equal on the variables of L (recall that L cannot have variables from active domains other
than G).

Consider a local-reader L ◦M that is core-erroneous. The evaluators of M yield val-
ues consistent with an LDF g, which is ρ′-permissible with respect to the assignment of
G
.
=Dom?(L). It follows that as a local-reader of R, L is ρ-erroneous with respect to the

assignments in A(G, g) – these assignments yield the same values for the variables of G as
the evaluators of M , and give the same values as A′ to all the other variables of L.

Core-erroneous local-readers. Let G be an active domain of R. Denote by α(G, g)
the fraction among R-local-readers, of local-readers whose active domain is G and which
are ρ-erroneous with respect to the assignments in A(G, g). Denote by α(G) the maximum
over all α(G, g).

Let A be the assignment obtained from A′ by assigning to each active domain G of
R an LDF g such that α(G, g) is maximized. Then for every G, the fraction of R-local-
readers whose active domain is G, and which are ρ-erroneous with respect to A is α(G).
The parameters of R imply that the total fraction of ρ-erroneous local-readers is bounded
by ε, hence

∑
G α(G) ≤ ε.

For an active domain G of R we denote by γ(G) the fraction of local-readers L in R
whose active domain is G, and for which there exists a local-reader M in RL where L ◦M
is core-erroneous. We have seen that for an R-local-reader L to be accounted in γ(G), it
must be ρ-erroneous with respect to the assignments in A(G, g), where g is ρ′-permissible.
γ(G) is therefore bounded by the sum

∑
α(G, g) taken over all permissible LDFs g, and
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so by α(G) times the number of ρ′-permissible LDFs. By Proposition 3.5 the number of
ρ′-permissible LDFs is less than 2/ρ′, hence γ(G) < (2/ρ′)α(G), and we obtain that∑

G

γ(G) < (2/ρ′)
∑
G

α(G) ≤ 2ε/ρ′ = 2ε1/4

Namely the fraction ofR-local-readers L for which there exists a core-erroneous local-reader
L ◦M is bounded by O(ε1/4).

We show that this also bounds the total fraction of core-erroneous local-readers: Note
that there is the same number of local-readers in every LDF-reader of the form RL – this
follows from the definition of a constructor, together with the fact that all active domains of
R have the same degree parameters. Hence for each local-reader L of R there is the same
number of local-readers of the form L ◦M in R′ . A simple counting-argument now shows
that the fraction of core-erroneous local-readers is also bounded by O(ε1/4), as desired.

4.5 The CR Constructor

It is now the time to describe the actual CR constructor, proving the Composition-
Recursion Constructor Lemma (Lemma 3.3). Let F be a domain, and let (x1, . . . , xk)
be a k-tuple of points in Fd(F ) (where, as in Lemma 3.3, k is a constant). We assume,
under the notation as specified in Lemma 3.3, that d(F ) = O(log1−β n), s(F ) ≤ |F|c1 ,
and r(F ) ≥ |F|c2 . For simplicity we reset s(F ) and r(F ) so that the latter inequalities
hold as equalities – note that a (ρ, ε)-LDF-reader with respect to the new degree parame-
ters remains a (ρ, ε)-LDF-reader if s(F ) is reduced and r(F ) is increased to their original
values.

The CR constructor generates an (unrestricted) LDF-reader R evaluating (x1, . . . , xk)
in F . First, it generates a sequence R0, . . . ,RK , where K = O( 1

1−β ) is a constant that
will be chosen later, of restricted LDF-readers. The transformation of each Ri into Ri+1

is accomplished in two steps. At first a restricted LDF-reader R′
i is generated by applica-

tions of an extension-procedure to the active domains of Ri, as described in the extension
proposition (Proposition 4.16). The degree parameters of R′

i are decreased with respect
to Ri but the dimension is increased. Ri+1 is then generated by applying the composition
procedure to R′

i, thus the degree parameters remains the same while the active dimension
parameter becomes constant. Finally RK has a constant active dimension and both of its
active degree parameters are 1, hence in a good or feasible assignment each active domain of
RK is assigned a constant-dimensional linear function. The final unrestricted LDF-reader
is obtained by replacing each active domain of RK by a constant number of variables that
represent the coefficients of a linear function over it.

We now fully describe the generation of the sequence R0, . . . ,RK , and the transformation
of RK into R. We then show that the CR constructor has the properties required by
Lemma 3.3.
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Generating R0. To generate the first restricted LDF-reader, R0, the CR constructor
applies the SP constructor to the domain F and the tuple (x1, . . . , xk).

GeneratingR1, . . . ,RK−1. FromR0 the CR constructor continues to iteratively generate
restricted LDF-readers as follows. Having generatedRi, the constructor transforms it into a
restricted LDF-reader R′

i by applying the power-substitution extension-procedure to each
active domain of Ri with parameter

b = max { (s?(Ri) + 1)1/ log1−β n , 2 }

and taking these extensions to be the active domains of R′
i. The constructor then gener-

ates Ri+1 by applying the composition procedure to R′
i. The CR constructor iteratively

generates LDF-readers as described above until finally an LDF-reader RK−1 is generated
such that (

s?(RK−1) + d?(RK−1)

d?(RK−1)

)
≤ log1−β n

As proven below, this occurs for a constant K.

Generating RK. The transformation of RK−1 into RK is carried similarly to the previ-
ous transformations described above, only that R′

K−1 is generated using the linearization
extension-procedure instead of the power-substitution extension-procedure. Note that for
the linearization extension-procedure to be applicable the active lower-degree parameter of
RK−1 must not be greater than its active upper-degree. We show below that this indeed
holds.

Generating R. The constructor now transforms RK into the final CR LDF-reader. Hav-
ing used the linearization extension-procedure to produce R′

K−1, we gather that the active
lower-degree of RK (which equals that of R′

K−1) is 1. Its active dimension, d
.
=d?(RK), is

constant since RK is generated by the composition procedure. A good assignment to an
active domain G of RK is thus a linear LDF f , that can be represented using a constant
number of coefficient γi by

∀ (u1, . . . , ud) ∈ Fd g(u1, . . . , ud)
.
=

d∑
i=1

γiui

The CR constructor adds d variables to the representation, G1, . . . , Gd, for each active
domain G of RK , to represent the coefficients γ1, . . . , γd above. It then goes over all
the local-readers and replaces every term G[(u1, . . . , ud)], where G is an active-LDF, by∑d

i=1Giui. It is now possible to deactivate or even remove the active domains altogether
(their variables no longer appear anywhere), thus completing the generation of R.
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4.6 The CR Constructor Works

Below it is proven that the CR constructor above has the properties stated in Lemma 3.3.
We show that it stops after a constant number of iterations as stated above, and that
it takes polynomial time. It is then shown that although each transformation of Ri into
Ri+1 consumes some of the lower-degree to upper-degree gap, the active upper-degree of
RK−1 is not smaller than the active lower-degree (hence linearization extension-procedure
is correctly used by the CR constructor). We conclude by showing that for an appropriate
constant c > 0, the constructor generates (ρ,O(ρc))-LDF-readers for all ρ’s such that
ρ > (r/|F|)cgd.

First of all observe that as noted in the description of the properties of the composition
procedure, for every constant i both the number of variables and the number of conjunctions
in each local-reader are bounded by a constant.

The number of iterations is constant.

It should be shown that for some constant K = O( 1
1−β ), the parameters of the (K − 1)’th

element in the sequence R0,R1, . . . of LDF-readers satisfy(
s?(RK−1) + d?(RK−1)

d?(RK−1)

)
≤ log1−β n (4.2)

To see this we examine the parameters of the LDF-readers in the sequence.

Parameters of the Ri’s. Consider an LDF-reader Ri in the sequence, and assume
s?(Ri) + 1 > 2log1−β n. The power-substitution extension-procedure is applied to its active

domains using the parameter b = (s?(Ri) + 1)1/ log1−β n, hence the parameter t used within
the extension-procedure is t = log1−β n (see Proposition 4.17). Since the active dimension
of Ri is constant, Proposition 4.17 implies that

s?(Ri+1) = s?(R′
i) = d?(Ri)t(b− 1) = polylog(n)s?(Ri)

1/log1−β n (4.3)

As R0 is generated by the SP constructor, its active lower-degree parameter equals
s(F ), so s?(R0) = |F|c1 = 2Θ(logβ n). By inductively using Equation 4.3 one easily sees that
as long as β − i(1− β) > 0,

s?(Ri) = 2Θ(logβ−i(1−β) n) (4.4)

(the poly-logarithmic factor is absorbed in the exponent).

Parameters of Rio. Fix io
.
=
⌈
β/(1− β)

⌉
, and note that it is constant (it depends only

on β, which remains constant throughout the proof). We have

1− β ≥ β − (io − 1)(1− β) > 0



44 The Composition-Recursion Constructor

hence by Equation 4.4,

s?(Rio−1) = 2Θ(logβ−(io−1)(1−β) n)

R′
io−1 is generated by applying the extension-procedure with parameter

b = max {
(
2Θ(logβ−io(1−β) n)

)
, 2 } = O(1)

since β − io(1 − β) ≤ 0. The parameter t used is poly-logarithmic in n, specifically t =
O(logβ−(io−1)(1−β) n) ≤ O(log1−β n). It hence follows from Proposition 4.17 that s?(Rio) =
s?(R′

io−1) is poly-logarithmic in n.

Parameters of Rio+1. The power-substitution extension-procedure is applied with pa-
rameter b = 2 to generate R′

io from Rio . Since s?(Rio) is poly-logarithmic, t is poly-log-
logarithmic in n, and therefore s?(R′

io) = s?(Rio+1) is also poly-log-logarithmic in n. Since
d?(Rio+1) is constant, it follows that(

s?(Rio+1) + d?(Rio+1)

d?(Rio+1)

)
≤ log1−β n (4.5)

Setting K
.
=io + 2, we have that K = O(1/(1− β)) is constant and that Inequality 4.2

clearly holds for RK−1 = Rio+1.

The lower – upper-degree gap remains.

Going from RK−1 to R′
K−1, the CR constructor applies the linearization extension-

procedure to each active domain of RK−1. This procedure is only applicable to domains
where the lower-degree is not greater than the upper-degree, hence we must show that
s?(RK−1) ≤ r?(RK−1).

Let us compute how s?(Ri+1)/r?(Ri+1) behaves with respect to s?(Ri)/r?(Ri) for 0 ≤
i < K − 1. Let bi denote the b-parameter with which the power-substitution extension-
procedure is applied to the active domains of Ri to obtain R′

i, and let ti denote the
associated t-parameter. According to Proposition 4.17,

s?(Ri+1)

r?(Ri+1)
=
s?(R′

i)

r?(R′
i)
≤ s?(Ri) · d?(Ri)ti(bi − 1)

r?(Ri)
= O

(
s?(Ri)

r?(Ri)
· tibi

)
hence the ratio between the active lower-degree and the active upper-degree is consumed
by a factor of up to O(tibi) in the transition from Ri to Ri+1.

Let us bound tibi. By the choice of the parameters bi it follows that ti ≤ log1−β n for
all i. According to the above computations of s?(Ri), for 1 ≤ i < K − 3

bi = (s?(Ri) + 1)1/ log1−β n =
(
2Θ(logβ−i(1−β) n)

)1/ log1−β n

= 2Θ(logβ−(i+1)(1−β) n) = 2O(logβ−(1−β) n)
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and therefore tibi = 2O(logβ−(1−β) n). For i = K − 3 or i = K − 2, bi = O(1) so in these cases
tibi is poly-logarithmic in n.

The initial lower-degree upper-degree fraction is s?(R0)/r?(R0) = |F|c1−c2 = 2−Θ(logβ n).
This fraction is consumed in each of the constant number of iterations by either
2O(logβ−(1−β) n) or a poly-logarithm, hence s?(RK−1)/r?(RK−1) = 2−Θ(logβ n) and in particular
s?(RK−1) < r?(RK−1), as desired.

The CR constructor takes polynomial time

We need to show that the CR constructor takes polynomial time in |F|d(F ). Since

|F|d(F ) =
(
2logβ n

)Θ(log1−β n)

= nΘ(1)

this is equivalent to showing that it takes polynomial time in n. The proof is by showing
that the generation of each LDF-reader Ri in the sequence R0,R′

0,R1,R′
1, . . . ,RK takes

polynomial time in n and in the size of the predecessor of Ri (clearly the time it takes to
generate the final LDF-reader from RK is polynomial in the size of RK). This implies that
the CR constructor indeed takes polynomial time.

Generating R0. The CR constructor generates R0 using the SP constructor, which does
take time polynomial in |F|d(F ).

Generating Ri for 0 < i ≤ K. The CR constructor generates Ri by applying the
composition procedure to R′

i−1. As mentioned in Section 4.4, this takes polynomial time
in the size of R′

i−1.

Generating R′
i for i < K−1. The CR constructor generates R′

i by applying the power-
substitution extension-procedure to all active domains of Ri. The time it takes is bounded
by the size of Ri times the time needed for each application of the extension-procedure.
By the definition of extension-procedures, each such application takes polynomial time in
|F|d?(R′

i). According to Proposition 4.17, d?(R′
i) = d?(Ri)ti = O(ti) ≤ O(log1−β n) where

ti is as denoted in the degree-gap computation, hence |F|d?(R′
i) = nO(1). Therefore each

application of the extension procedure takes polynomial time in n, as needed.

Generating R′
K−1. The difference between the generation of RK and that of the other

R′
i’s, is that the linearization extension-procedures is applied to each active domain instead

of the power-substitution extension-procedure. Each such application still takes polynomial
time in |F|d?(RK−1) but here d?(RK−1) is calculated according to Proposition 4.18,

d?(RK−1) =

(
s?(RK−1) + d?(RK−1)

d?(RK−1)

)
≤ log1−β n
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|F|d?(RK−1) is therefore still polynomial.

(ρ, ε)-parameters of the CR constructor.

We now show that R has parameters (ρ, ρ4−K/3) for all ρ’s that satisfy ρ > (r/|F|)cgd. We
first prove by induction that for all i, Ri is a restricted (ρ, ρ4−i/3)-LDF-reader: For R0 it
follows directly from Lemma 4.2. Assume now that Ri−1 is a restricted (ρ, ρ4−i+1/3)-LDF-
reader. The extension proposition (Proposition 4.16) implies that R′

i−1 has the same pa-
rameters. Since Ri is generated from R′

i−1 by the composition procedure, Proposition 4.19
yields that Ri is a restricted (ρ, ρ4−i/3)-LDF-reader, as desired. Note that the requirement
over ε in Proposition 4.19 holds here, since we apply it with ε3/4 = ρ4−i ≥ ρ > (r/|F|)cgd.

By the above induction, RK is a restricted (ρ, ρc)-LDF-reader for c
.
=4−K/3. To show that

R has the same parameters, we define for each assignment A of R a feasible assignment A′

for RK , such that an RK-local-reader is ρ-erroneous with respect to A′ if and only if the
R-local-reader generated from it is ρ-erroneous with respect to A. This would imply that
R has the same (ρ, ε) parameters as RK .

A′ differs from A only on active domains of RK – for an active domain G and a variable
G[(u1, . . . , ud)] in it we define

A′(G[(u1, . . . , ud)] )
.
=

d∑
i=1

A(Gi)ui

where the Gi’s are the new variables added in the generation of the final CR constructor.
A′ assigns to each active domain G a linear LDF represented by the assignment of the
Gi’s, and is hence feasible. It is clear from the construction of R that a local-reader of
RK is ρ-erroneous with respect to A′ if and only if the R-local-reader obtained from it is
ρ-erroneous with respect to A.



Chapter 5

The Sum-Check

In this chapter we prove the Sum-Check Lemma, Lemma 3.1. A reduction algorithm is
shown that given a system Ψ of n quadratic-equations, where there are up to n variables
in each equation, generates a system Ψsc whose variables belong to domains, and where
every equation accesses only a constant number of variables. The reduction of Ψ into Ψsc

is gap-preserving in the sense that if Ψ is completely satisfiable then Ψsc can be completely
satisfiable by a good assignment to its domains; and if there is no assignment for Ψ that
satisfies more than a 2

|F| fraction of its equations, then no feasible assignment for Ψsc can

satisfy more than a 2
|F| fraction of its equations as well.

The reduction begins with the given system Ψ0
.
=Ψ, and puts it through a constant

number (O( 1
1−β ) ) of transformations, obtaining a sequence Ψ0,Ψ1, . . . ,Ψl of equation-

systems. The final system Ψsc is generated by a small alteration of Ψl. The intermediate
systems Ψi share a similar structure and are hence called restricted equation-systems, as
defined below. However, the number of variables in their equations decreases from up to n
in Ψ0, to a constant in Ψl.

A system Ψi in the sequence is transformed into Ψi+1 by substituting each equation ψ
of Ψi with several new equations. The new equations represent ψ in the following sense: if
ψ is satisfied by a certain good assignment then the new equations are also satisfied by an
extension thereof, and if ψ is not satisfied by a certain feasible assignment then the new
equations can not not be satisfied, except for at most an |F|−1/2 fraction. As shown below,
this property suffices for the gap to be mostly preserved in the transformation of Ψi into
Ψi+1.

We continue as follows. The next subsection defines the structure of a restricted
equation-system. The transformation of each restricted equation-system Ψi into Ψi+1 (the
transformation of Ψ0 into Ψ1 is an exception) is performed by an algorithm that is described
in Section 5.1. This algorithm is used for the transformation of each intermediate system
into the next, but it uses a different representation-procedure each time. Section 5.2 de-
scribes the properties of the different representation-procedures used, and of the algorithm
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which transforms Ψ0 into Ψ1. The complete reduction of Ψ into Ψsc is finally described in
Section 5.3. The next sections are dedicated to proving the correctness of the reduction
(Section 5.4), and to the description and correctness proofs of the product-check and the
representation-procedures it uses (Sections 5.5, 5.6, 5.7, 5.8, and 5.9).

Restricted Equation-Systems

All the systems Ψi, i = 1, 2, . . . , l, in the sequence generated by the reduction algorithm
have a similar structure. The following is an exact definition thereof.

Definition 5.1 (restricted equation-systems). A restricted equation-system Ψ, is a
quadratic equation-system where some domains are considered active. The dimension, and
the upper and lower-degree parameters of the active domains must all be the same. These
parameters are called the active dimension, active upper-degree and active lower-degree of
Ψ, and are denoted by d?(Ψ), r?(Ψ) and s?(Ψ) respectively.

Each equation ψ ∈ Ψ is written in the form “ψ? = ψc”. ψ? is called the active part of
ψ and ψc is called the core of ψ. While ψc may contain any variable of Ψ and can have
quadratic as well as linear terms, ψ? contains only linear terms and the variables in it must
all be from one active domain, called the active domain of ψ and denoted by Dom?(ψ). The
variables that appear in ψ? are called the active variables of ψ.

The equations in all intermediate equation-systems will have only a constant number of
variables in their core – all other variables appear in the active part of the equations. It is
hence useful to denote the number of variables in the core of an equation and the number
of active variables by different names.

Definition 5.2 (active and core-dependency). Let Ψ be a restricted equation-system.
The active-dependency of an equation ψ ∈ Ψ, denoted by D?(ψ), is defined as the number
of variables in ψ?. The core-dependency of ψ, Dc(ψ), is defined as the number of variables
in ψc. The active-dependency of Ψ, denoted by D?(Ψ), is the maximum of D?(ψ) over all
equations ψ ∈ Ψ. The core-dependency of Ψ is denoted Dc(Ψ), and is defined similarly.

As mentioned above, the core-dependency parameters of all the restricted equation-
systems in the sequence Ψ1, . . . ,Ψl are constants. The active-dependency parameter is
decreased gradually until it becomes constant in Ψl. The total number of variables in an
equation of Ψl is therefore constant, as required by Lemma 3.1 (this property is preserved
in the final transition from Ψl to Ψsc).

5.1 The Main Transformation-Scheme

The transformation of each restricted equation-system Ψi into the next is done by sub-
stituting each equation ψ of Ψi by a “representation” containing several new equations.
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The transformations of Ψi into Ψi+1 where i = 1, . . . , l − 1 are in fact of a more specific
structure, and are carried out by the system-representation algorithm. An important part
of this algorithm is the application of a representation-procedure to each equation in the
system (a different representation-procedure is used for different transformations). We now
define a representation-procedure, and then describe the system-representation algorithm.

Representation-procedures

A representation-procedure is an algorithm that is applied to an equation ψ and produces
a set Eψ of conjunctions of equations, and a new domain denoted by Dom?(Eψ) (the new
conjunctions may have variables from Dom?(Eψ)). The conjunctions of Eψ represent ψ in
the sense that they are only satisfied by an extension of assignments that also satisfy ψ –
otherwise almost none of them can be satisfied.

For i = 1, . . . , l, Ψi+1 is obtained from Ψi by applying a representation-procedure to
each equation ψ ∈ Ψi, generating a system Ψ′

i of conjunctions which is the union of the
sets {Eψ}ψ∈Ψi

. Ψi+1 is then generated by replacing the conjunctions with equations as
in Proposition 3.7. If the representation-procedure generates conjunctions with a small
number of variables, then the dependency parameter of Ψi+1 will be smaller than that
of Ψi (eventually the dependency is constant). Also, the active-domains of Ψi+1 are set
to be the new domains generated by the representation-procedure, and hence the active
parameters of Ψi+1 are changed. Actually the reduction generates domains with different
parameters, contrary to a requirement in Lemma 3.1. This is rectified by applying a simple
technical method at the end of the reduction, that makes all the domains uniform.

An [s, d]-representation-procedure. An [s, d]-representation-procedure is an algo-
rithm A that receives as input an equation ψ in a restricted equation-system Ψ, and
generates a set Eψ of conjunctions of quadratic-equations that “represent” ψ. It also gen-
erates a new domain denoted Dom?(Eψ) – the conjunctions in Eψ may have variables from
Dom?(Eψ) in addition to any variables of Ψ. For a conjunction χ ∈ Eψ we define the ac-
tive domain of χ to be Dom?(χ)

.
=Dom?(Eψ). The variables of χ that are associated with

Dom?(χ) are called the active variables of χ.
The parameters r(Dom?(ψ)), s and d determine the parameters of the new domain,

namely Dom?(Eψ) must satisfy r(Dom?(Eψ)) = r(Dom?(ψ)), s(Dom?(Eψ)) = s, and

d(Dom?(Eψ)) = d. The running time of A should be polynomial in |F|d = |Dom?(Eψ)|
and the size of ψ.

Extension and restriction properties. For the conjunctions in Eψ to properly repre-
sent ψ, it is required that A has the following extension and restriction properties:

• Extension Property: For every good assignment A for Ψ that satisfies ψ there should
be an s-degree LDF such that if it is assigned to Dom?(Eψ), all the conjunctions in
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Eψ are satisfied.

• Restriction Property: If a feasible assignment for Ψ and for Dom?(Eψ) satisfies at

least an |F|−1/2 fraction of the conjunctions in Eψ, then ψ is satisfied as well.

Uniformity. It is required that the parameters s and d be functions of Ψ alone, so that
the parameters of Dom?(Eψ) are the same for all equations ψ ∈ Ψ to which A is applied.
The number of conjunctions in Eψ should also be independent of ψ (and be a function of
Ψ alone). The number of equations in each conjunction of Eψ should all be the same, and
they must be independent of ψ as well. In addition we require that the number of equations
in each conjunction is bounded by O(d).

Conjunction-structure. The conjunctions of Eψ should have the following structure.
ψc may appear at most once in at most one equation of each conjunction χ ∈ Eψ. Except
for the terms in this copy of ψc, all terms must be linear and the number of terms not
associated with the domain Dom?(Eψ) must be bounded by a constant (that is, a number
which is independent of ψ and Ψ).

The system-representation algorithm.

Let us now describe how a restricted equation-system Ψi is transformed into Ψi+1 using a
representation-procedure A.

1. First, A is applied to every equation ψ ∈ Ψi.

2. A system Ψ′
i of conjunctions is constructed by taking the union of the sets {Eψ}ψ∈Ψi

.
Note that the number of equations in each conjunction of Ψ′

i is the same, and that
each equation of Ψi results in the same number of conjunctions in Ψ′

i.

3. Ψi+1 is generated by replacing each conjunction χ ∈ Ψ′
i by all linear-combinations of

its equations (with multiplicities, if the same equation occurs more than once). The
active domain of each equation is set to be the same as that of the conjunction from
which it originated. The active variables of such an equation are thus the same as
the active variables of the originating conjunction.

4. For each equation ξ ∈ Ψi+1, ξ? and ξc are defined as follows. The variables associated
with Dom?(ξ) are moved to the left-hand side of the equation, and the other variables
to the right-hand side (it follows from the properties of A that variables associated
with Dom?(ξ) only appear in linear terms). The left-hand side of ξ is then defined to
be the active part ξ? of ξ, and the right-hand side is set to be its core, ξc.

Let us examine some of the properties of the system-representation algorithm.
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The parameters of Ψi+1. Since the upper-degree parameter of the domains produced
by the representation-procedure A are the same as the active upper-degree of Ψi, we have
r?(Ψi+1) = r?(Ψi). If A is an [s, d]-representation-procedure, then the active domains of
Ψi+1 will all have lower-degree s and dimension d, hence s?(Ψi+1) = s and d?(Ψi+1) = d.

Time. The system-representation algorithm takes polynomial time in the size of Ψi and
|F|d?(Ψi+1). Especially note that step 3 is applicable in polynomial time in |F|d?(Ψi+1) and
in the size of Ψi – the uniformity property requires that the number of equations in each
conjunction be bounded by O(d?(Ψi+1)), hence the number of equations produced for each

conjunction is |F|O(d?(Ψi+1)).

Core-dependency. Note that the core-dependency of Ψi+1 is larger by at most a constant
than that of Ψi. Consider an equation ψ′ ∈ Ψi+1 whose origin is an equation ψ ∈ Ψi. It
has the variables of ψc, and at most a constant number of variables not associated with
Dom?(Eψ). The other variables are associated with Dom?(Eψ), and are hence active, so the
core-dependency of ψ′ is larger by only a constant than that of ψ.

The gap. The extension and restriction properties of the representation-procedure A
that is used by the system-representation algorithm, ensure that the fraction of satisfiable
equations in Ψi with respect to good or feasible assignments is close to the satisfiable
fraction in Ψi+1. Here is a precise definition of this property.

Definition 5.3 (gap-preserving algorithm). An algorithm that transforms a given
equation-system Ψi into an equation-system Ψi+1 is said to be gap-preserving if it has the
following properties:

• Completeness: If Ψi can be completely satisfied by a good assignment then so can
Ψi+1.

• Soundness: If a feasible assignment for Ψi+1 can satisfy a γ-fraction of its equations,
then there exists a feasible assignment for Ψi satisfying at least a γ − O(|F|−1/2)
fraction of its equations.

Note that even in a gap-preserving algorithm, the gap is actually consumed by an
O(|F|−1/2) fraction. The reduction deals with this by applying a simple gap amplification
technique in the transformation from the system Ψl into the final system Ψsc.

Proposition 5.4. The system-representation algorithm is gap-preserving.

Proof. Assume that the system-representation algorithm is applied to a restricted equation-
system Ψi using a representation-procedure A, and outputs Ψi+1.

The completeness property is implied from the extension property of A as follows.
Suppose Ψi is satisfied by an assignment A. According to the extension property, A can
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be extended to assign for each ψ an s(Dom?(Eψ)) degree LDF to Dom?(Eψ) such that the
conjunctions in Eψ are satisfied. The system of conjunctions Ψ′

i, generated by the system-
representation algorithm, is hence satisfied by this extended assignment, and therefore Ψi+1

is satisfied as well by Proposition 3.7.
Let us now prove the soundness property. Assume that Ψi+1 is γ-satisfiable by a feasible

assignment A. Then by Proposition 3.7, Ψ′
i is at least γ − |F|−1 satisfied by A. Recall

that the number of conjunctions in the set Eψ is the same for every ψ ∈ Ψi. Hence

for at least a γ − 2|F|−1/2 fraction of the sets Eψ, a |F|−1/2 fraction of the conjunctions
are satisfied: Otherwise the fraction of satisfied conjunctions in Ψi+1 would be less than
γ − 2|F|−1/2 + (1− γ + 2|F|−1/2)|F|−1/2 < γ − |F|−1.

By the restriction property of A, it follows that at least a γ − 2|F|−1/2 fraction of the
equations in Ψi are satisfied by A. The proof is thus completed, noting that the restriction
of A to the variables of Ψi is feasible.

5.2 The Representation-Procedures

We now state the properties of the representation-procedures that are utilized in reducing
Ψ to Ψsc. Only the properties that are needed for the reduction are discussed – the actual
representation-procedures and the proofs of their stated properties appear later.

Product-check.

The product-check algorithm is actually not a representation-procedure. Its properties are
stated here since it is used to transform Ψ0 into Ψ1.

Lemma 5.5 (product-check). Let Ψ be a system of n quadratic equations over a field

F , |F| = 2logβ n, where there are at most n variables in each equation. There exists a
gap-preserving polynomial time algorithm that given such a system, constructs a restricted
equation-system Ψ∗ that has the following properties:

• Dc(Ψ∗) is bounded by a constant.

• Ψ∗ has exactly one domain F which is the active domain of all of its equations. The
parameters of F , that also determine the active degree and dimension parameters of
Ψ∗, are r(F ) = |F|1/4, s(F ) = |F|1/8, and d(F ) = Θ(log1−β n).

Interpolation.

Applying the system-representation algorithm to a system using the interpolation
representation-procedure generates a system of condensed equations – an equation is con-
densed if its active variables are associated with points from the principal cube of its ac-
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tive domain, defined shortly below. The reduction uses the interpolation representation-
procedure to transform Ψ1 into Ψ2 since the arithmetization representation-procedure, ap-
plied to Ψ2, can only be applied to condensed equations.

Next we formally define condensed equations in order to state the properties of the
interpolation representation-procedure. A more detailed explanation of the use of con-
densed equations appears in Section 5.7, which describes the arithmetization representation-
procedure.

The principal cube of a domain. To define the principal cube we assume that for
each non-negative number s < |F| an arbitrary subset Hs of F is fixed, of size s+ 1. The

principal cube of a domain F is defined to be the subset
(
Hs(F )

)d(F ) ⊆ Fd(F ).

Definition 5.6 (condensed equations). Let ψ be an equation or a conjunction with an
active domain F , in a restricted equation-system. ψ is said to be condensed if all of its active
variables are associated with points in the principal cube of F . A restricted equation-system
where all of its equations are condensed is called condensed.

Note that for a domain F , the value of an [s(F ), d(F )]-LDF at any point can be interpo-
lated by a linear combination of its values on the principal cube of F , where the coefficients
are independent of the LDF. Utilizing this, when applied to an equation ψ the interpolation
representation-procedure generates a representation Eψ containing only condensed conjunc-
tions. It follows that when the system-representation algorithm is applied to a restricted
equation-system with the interpolation as a procedure, the generated equation-system has
condensed equations.

Lemma 5.7 (interpolation). Let Ψ be a restricted equation-system satisfying r?(Ψ) <

|F|1/2.
There exists an [s?(Ψ), d?(Ψ)]-representation-procedure applicable to the equations of

such a system called interpolation, that generates only condensed conjunctions.

Arithmetization.

The arithmetization representation-procedure uses a technique from [BFL91] to generate
systems with a reduced active-dependency parameter. Given a condensed equation ψ, it
produces a representation Eψ where the number of active variables in each conjunction
is a function of the degree and dimension parameters of Dom?(ψ). If these parameters
are small enough, then the active-dependency is decreased. Note that the degree and
dimension parameters themselves are not decreased, hence an iterative application of the
arithmetization representation-procedure would not further reduce the dependency.

Lemma 5.8 (arithmetization). Let Ψ be a restricted equation-system satisfying

s?(Ψ)d?(Ψ) + r?(Ψ) < |F|1/2, and where all the equations are condensed.
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There exists a [2d?(Ψ)s?(Ψ) , d?(Ψ)+1]-representation-procedure applicable to the equa-
tions of such systems called arithmetization, that generates conjunctions with at most
2d?(Ψ) · s?(Ψ) active variables.

Curve-extension.

When applied to equations with a small active-dependency parameter, the curve-extension
representation-procedure generates domains with small degree and dimension parame-
ters. The active dependency is not reduced (in fact it increases somewhat), but then
the system-representation algorithm is applied to the resulting system using the arithmeti-
zation representation-procedure, and the decrease in the degree and dimension parameters
is utilized to reduce the active dependency as well. By applying the system-representation
algorithm using the curve-extension and the arithmetization representation-procedures al-
ternately, the reduction gradually reduces the active-dependency, the active degree and the
dimension parameters of the intermediate systems.

Lemma 5.9 (curve-extension). Let Ψ be a restricted equation-system such that

s?(Ψ)D?(Ψ) and r?(Ψ)D?(Ψ) are smaller than |F|1/2. There exists an [s, d]-representation-
procedure called curve-extension applicable to the equations of such systems, for

d
.
= min

{
d?(Ψ), log2

(
s?(Ψ) ·D?(Ψ)

)}
and s

.
=d ·max

{(
s?(Ψ) ·D?(Ψ)

) 1
d?(Ψ) , 2

}
that generates only condensed conjunctions.

Linearization.

Applying the system-representation algorithm using the linearization representation-
procedure obtains a system with constant active-dependency, as desired. However it is
applicable in polynomial time only to systems where the active degree and dimension pa-
rameters are very small (the running time of a representation-procedure is polynomial in
the size of the newly generated domains, which may become very large in the case of lin-
earization). Hence the reduction generates a sequence of intermediate equation-systems
where the active parameters are gradually reduced, until they finally become suitable for
the linearization representation-procedure to be applied.

Lemma 5.10 (linearization). Let Ψ be a system such that r?(Ψ)D?(Ψ) and s?(Ψ)D?(Ψ)

are smaller than (|F|1/2)/2.
There exists a [1, s?(Ψ)D?(Ψ)]-representation-procedure applicable to such systems called

linearization, that generates conjunctions with at most 4 active variables.

Note that as mentioned above, for the linearization representation-procedure to be appli-
cable within the reduction, s?(Ψ)D?(Ψ) should be in fact considerably smaller than the

above bound of |F|1/2.
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5.3 The Reduction Algorithm of Ψ Into Ψsc

We now state the reduction algorithm that transforms Ψ into Ψsc, as claimed by Lemma 3.1.
This algorithm is mostly a concatenation of the algorithms that were discussed above.
Starting with Ψ = Ψ0, the reduction algorithm applies the product-check algorithm to
obtain Ψ1, and from there it continues to use the system-representation algorithm, applying
it a constant ( O( 1

1−β ) ) number of times with different representation-procedures. This
yields a sequence of equation-systems Ψ2, . . . ,Ψl. Ψsc is then obtained from Ψl by a simple
transformation.

We next give the sequence of transformations and representation-procedures used to obtain
Ψl from Ψ0, and then describe how Ψsc is obtained from Ψl. In Section 5.4 it is shown
that this reduction takes polynomial time in n, and that the generated system Ψsc has the
desired properties. Section 5.4 also shows that although each representation-procedures is
applicable only to systems with certain parameters, the reduction algorithm does use them
correctly.

The sequence of systems.

First, the reduction applies the product-check algorithm to Ψ0 and obtains Ψ1. The
system-representation algorithm is then applied to Ψ1 with the interpolation representation-
procedure to obtain Ψ2. The next 2β

1−β systems∗, Ψ3, . . . ,Ψ 2β
1−β

+2 are generated, by apply-

ing the system-representation algorithm with the arithmetization and the curve-extension
representation-procedures alternately (the arithmetization is used first). The system-
representation algorithm is then applied once more to Ψ 2β

1−β
+2 using the arithmetization

representation-procedure, and then finally it is applied once again using the linearization
representation-procedure. The outcome is Ψl, where l

.
= 2β

1−β + 4. Apart from a simple
transformation that is described shortly below, Ψl is the outcome of the reduction.

Properties of Ψl.

Before we describe how Ψl is transformed into Ψsc, let us overview its main properties.

Constant dependency. Ψl has the desired dependency parameter, namely a constant.
Since it is generated using the linearization representation-procedure, it follows from
Lemma 5.10 that its active-dependency parameter is constant. As for the core-dependency,
Ψ1 is generated using the product-check algorithm and therefore by Lemma 5.5 its core-
dependency is constant. Since the other systems in the sequence Ψ2, . . . ,Ψl, are generated
using the system-representation algorithm, the core-dependency increases only by a con-
stant throughout the sequence (recall that the sequence is of constant length).

∗For simplicity of exposition, we assume here that β/(1− β) is an integer.
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Completeness, and soundness. Since each of the intermediate transformations that
were applied so far are gap-preserving, it follows immediately that the transformation from
Ψ = Ψ0 into Ψl is gap preserving as well. Hence Ψl has the following properties:

• Completeness: If Ψ can be completely satisfied by a good assignment then so can Ψl.

• Weakened Soundness: If Ψ is no more than 2
|F| -satisfiable then Ψl cannot be more

than O(|F|−1/2)-satisfied by a feasible assignment.

From Ψl to Ψsc.

Ψl fails to comply with two requirements of Lemma 3.1: The parameters of its domains are
not all the same, and it has only a weakened soundness property, which is less than what
is required in Lemma 3.1. The reduction hence transforms Ψl into Ψsc in two steps. First
it resets the degree and dimension parameters of its domains without changing any of the
other properties, and then it applies a simple technique to amplify the soundness property.

Parameter uniformization. First note that the upper-degree parameter is the same
for all the domains of Ψl since Ψ1 has only one domain, and the representation-procedures
generate domains with the same upper-degree as the active domain of the equation to
which they are applied. Denote this upper-degree by r(Ψsc), and fix s(Ψsc) to be the
maximum over all lower-degrees of domains in Ψl, and d(Ψsc) to be the maximum over all
the dimension parameters. As shown in Section 5.4, s(Ψsc) is smaller than r(Ψsc).

The reduction replaces each domain F of Ψl by a new domain F ′ with r(F ′) = r(Ψsc),
s(F ′) = s(Ψsc) and d(F ′) = d(Ψsc). Each variable F [x] which appears in an equation of Ψl

is then replaced by the variable F ′[x′], where x′ is obtained from x by padding it with the
appropriate number of zeros (in case the dimension parameter of F ′ is larger than that of
F ).

Note that the completeness and weakened soundness properties of Ψl are not affected by
the uniformization step. Resetting the lower-degree parameter maintains the completeness
property since the lower-degree parameters may only be increased, and it has no effect on
the soundness. The dimension enlargement also preserves the completeness property, as an
LDF that was assigned to a domain before the change of dimension extends naturally to
the larger domain maintaining the same degree, and thus a satisfying assignment can be
translated through the uniformization step. Similarly, a feasible assignment to a domain
with an enlarged dimension translates to a feasible assignment to the original domain by
restriction, thus preserving the values of the variables appearing in the equations, and
therefore the weakened soundness property is also maintained.
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Soundness amplification. To amplify the soundness of Ψl the reduction first generates
all conjunctions of three (not necessarily distinct) equations from Ψl. It then replaces each
such conjunction with the set of all linear-combinations over its equations. The set of
equations of Ψsc is thus

{
3∑
i=1

λiψi : ∀ i λi ∈ F , ψi ∈ Ψl}

Completeness and soundness for Ψsc. Since it is simple to observe that the complete-
ness property is maintained by the soundness amplification step, let us verify that Ψsc has
the soundness property. Assume then that Ψ is no more than 2/|F|-satisfiable. As men-

tioned above, a feasible assignment for Ψl cannot satisfy more than an O(|F|−1/2) < |F|−1/3

fraction of its equations, and this remains true when the domain-parameters of Ψl are reset.
The fraction of conjunctions of three equations that can be satisfied by a feasible assign-

ment is hence less than (|F|−1/3)
3

= 1/|F|. It then follows from Proposition 3.7 that Ψsc

cannot be more than 2/|F|-satisfiable by a feasible assignment (Proposition 3.7 discusses
general assignments but it is easily extendable to feasible assignments).

5.4 The Reduction Works

Based on the stated properties of the representation-procedures, we now verify that the
reduction algorithm described above is applicable, and that the generated system Ψsc has
the required parameters. The completeness and soundness properties of Ψsc have already
been verified. From the properties of Ψl and the construction of Ψsc it is obvious that
the number of variables in the equations of Ψsc is bounded by a constant and that the
parameters of its domains are all the same.

We now compute the active parameters of all the intermediate systems Ψ1, . . . ,Ψl,
and at the same time verify that all representation-procedures are correctly used by the
reduction. The computation will also imply that the parameters of the domains of Ψsc are
as required by Lemma 3.1, and that the reduction takes polynomial time. For simplicity,
we use O and Θ notations in the computation, where any function that depends solely on
β is regarded as constant.

The active parameters of the intermediate systems

As mentioned above the domains of Ψsc, as well as the domains in all the intermediate
systems, all have the same upper-degree parameter, namely r(Ψsc). It also equals the

active upper-degree of Ψ1, hence r(Ψsc) = |F|1/4. Let us consider the other parameters of
the intermediate systems.



58 The Sum-Check

The parameters of Ψ1 and Ψ2. Ψ1 is generated from Ψ0 using the product-check
algorithm (see Lemma 5.5), hence it has the parameters

• s?(Ψ1) = |F|1/8

• d?(Ψ1) = Θ(log1−β n)

Ψ2, generated from Ψ1 by applying the system-representation algorithm with the inter-
polation representation-procedure, has the same parameters. Note that the interpolation
representation-procedure is indeed applicable to the equations of Ψ1 under these parame-
ters.

The parameters of Ψ3. Ψ3 is obtained from Ψ2 using the arithmetization representation-
procedure. Note that the parameters of Ψ2 are such that the arithmetization representation-
procedure is applicable. The parameters of Ψ3, as follows from the arithmetization lemma,
are

• s?(Ψ3) = 2d?(Ψ2)s?(Ψ2) = Θ(|F|1/8 log1−β n) = 2Θ(logβ n)

• D?(Ψ3) = 2d?(Ψ2)s?(Ψ2) = Θ(|F|1/8 log1−β n) = 2Θ(logβ n)

• d?(Ψ3) = d?(Ψ2) + 1 = Θ(log1−β n)

The active parameters of Ψ4,Ψ5, . . . ,Ψl−5 (recall that l − 5 = 2β
1−β − 1) are given by the

following proposition.

Proposition 5.11. For i such that 4 ≤ 2i ≤ l− 6, the active parameters of Ψ2i (generated
using the curve-extension representation-procedure) are

• s?(Ψ2i) = 2Θ(logβ−i(1−β) n)

• d?(Ψ2i) = Θ(log1−β n)

and for i such that 5 ≤ 2i+ 1 ≤ l− 5, the parameters of Ψ2i+1 (that is generated using the
arithmetization representation-procedure) are

• s?(Ψ2i+1) = 2Θ(logβ−i(1−β) n)

• D?(Ψ2i+1) = 2Θ(logβ−i(1−β) n)

• d?(Ψ2i+1) = Θ(log1−β n)

Proof. The proposition is obtained by induction over i, calculating the parameters of an
equation-system according to the parameters of the previous system and the properties of
the appropriate representation-procedure. We omit the calculation.
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Note that the systems Ψ2i+1 have parameters such that the curve-extension representation-
procedure is applicable, and that the arithmetization representation-procedure is applicable
for the Ψ2i systems, hence the sequence of transformation is valid up to and including Ψl−5.
From the computations below it is also implied that the representation-procedure used for
generating Ψl−4, . . . ,Ψl are also applicable.

Parameters of Ψl−4. Setting 2i + 1 = l − 5 = 2( β
1−β ) − 1 in the above proposition we

obtain that s?(Ψl−5) = D?(Ψl−5) = 2Θ(log1−β n), and that d? = Θ(log1−β n). Hence according
to the Curve-Extension Lemma (Lemma 5.9),

• s?(Ψl−4) = Θ(log1−β n) ·Θ(1) = Θ(log1−β n)

• d?(Ψl−4) = Θ(log1−β n)

Parameters of Ψl−3. The active parameters of this system, that is obtained using the
arithmetization representation-procedure, are

• s?(Ψl−3) = Θ(log2(1−β) n)

• D?(Ψl−3) = Θ(log2(1−β) n)

• d?(Ψl−3) = Θ(log1−β n)

Parameters of Ψl−2. The system Ψl−2, generated using the curve-extension
representation-procedure, has parameters

• s?(Ψl−2) = Θ(log log n)

• d?(Ψl−2) = Θ(log log n)

Parameters of Ψl−1. This system, obtained via the arithmetization representation-
procedure, is the last before the linearization representation-procedure is applied. Its
parameters are

• s?(Ψl−1) = Θ(log log2 n)

• D?(Ψl−1) = Θ(log log2 n)

• d?(Ψl−1) = Θ(log log n)
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Parameters of Ψl. Ψl−1 obviously satisfies the conditions of the Linearization Lemma
(Lemma 5.10). According to the lemma, the parameters of Ψl are

• s?(Ψl) = 1

• D?(Ψl) ≤ 4

• d?(Ψl) = Θ(log log4 n)

The parameters of Ψsc. By the above computations it is possible to deduce the param-
eters of the domains of Ψsc. Noting that s?(Ψ3) is the highest active low-degree parameter

of all intermediate systems it follows that s(Ψsc) = s?(Ψ3) = Θ(|F|1/8 log1−β n). Since

r(Ψsc) = |F|1/4, it follows that the requirements over s and r in Lemma 3.1 hold. The
above computations also imply that the active dimension of all intermediate systems is
bounded by O(log1−β n), and hence d(Ψsc) = Θ(log1−β n) as required.

Polynomial time. Since Ψsc was shown to satisfy all the requirements of Lemma 3.1,
it is only left to verify that it is obtained from Ψ0 in polynomial time. Ψ1 is obtained in
polynomial time, as stated in lemma 5.5. The other intermediate systems Ψ2, . . . ,Ψl, are
obtained by applying the system-representation algorithm. As stated in Section 5.1, an
application of the system-representation algorithm to a system Ψi−1 takes polynomial time
in the size of Ψi−1 and in |F|d?(Ψi).

According to the computations above d?(Ψi) = O(log1−β n) for all i, so |F|d?(Ψi) is
polynomial in n. By induction it is therefore easy to verify that all intermediate systems
are produced in polynomial time in n. The transformation of Ψl into Ψsc obviously takes
polynomial time in the size of Ψl, so the entire reduction takes polynomial time in n.

5.5 The Product-Check Lemma

In this section we prove the product-check lemma. We show an algorithm that transforms a
given quadratic-equation system into a restricted equation-system with one domain, which
has a relatively small (with respect to the size of the field) dimension parameter.

The product-check algorithm actually disposes of all the variables of Ψ, substituting
them by the variables of the new domain F . Each variable of Ψ and each product of two
such variables is replaced by a variables of the form F [x] that represent it. This is done
so that for every assignment of Ψ there is a good assignment to F , where the value of each
variable F [x] is equal to the value of the corresponding term in Ψ.

However, not every feasible assignment to F indeed represents an assignment of Ψ.
Consider two variables of Ψ that are represented by F [x1] and F [x2] in F . There is no
guarantee that the value of the variable F [x] that represents their product is indeed the
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product of the values of F [x1] and F [x2]. Each equation of Ψ is hence replicated several
times in Ψ∗, where a “product-test” is added in conjunction to each copy to verify the
correctness of the assignment.

The product-check algorithm

Generating F . Let h
.
=|F|1/9, and choose H ⊆ F to be an arbitrary set of size h. Let

d
.
=dlogh(n+ 1)e (note that d = O(log1−β n) ). The procedure constructs a new domain

F with lower-degree parameter s(F ) = |F|1/8, upper-degree r(F ) = |F|1/4, and dimension
d(F ) = 2d.

Representing terms. The procedure chooses an arbitrary injection v → xv, associating
every variable of Ψ with a point in Hd ⊆ Fd (such an injection exists). The procedure
chooses another distinct point xI ∈ Hd to represent the value 1. Writing points in F2d as
pairs (x1, x2) of points in Fd, each variable v of Ψ is represented in Ψ∗ by F [(xv, xI)], and
the product of two variables u, v is represented by F [(xu, xv)].

Generating conjunctions. The procedure replaces each equation ψ of Ψ by a set Eψ
of conjunctions as follows. Given ψ, it produces one conjunction in Eψ for every point
(x1, x2) ∈ F2d, consisting of the following equations:

1. ψ itself, where every product u · v is replaced by F [(xu, xv)] and every variable v in
a linear term is replaced by F [(xv, I)].

2. The product-test equation F [(x1, xI)] · F [(x2, xI)] = F [(x1, x2)].

3. The equation F [(xI , xI)] = 1, which verifies that xI indeed represents the value 1.

From conjunctions to equations. Let Ψ′ denote the system of conjunctions, contain-
ing the union of all the sets Eψ where ψ ∈ Ψ. The system Ψ∗ is generated from Ψ′ by
replacing each conjunction with all linear combinations of its equations, as described in
Proposition 3.7. For every χ ∈ Ψ∗ we set Dom?(χ) to be F .

Observing the construction of the conjunctions and of Ψ∗, one notes that there is at
most one quadratic term in each equation χ ∈ Ψ∗. This quadratic term and the constant
term of each equation χ are moved, if they exist, to the right-hand side of ψ and are set to
be the core of ψ. The other terms are moved to the left-hand side, which is set to be the
active part of ψ.

Proof of correctness

It is easy to observe that the product-check algorithm indeed takes polynomial time. The
generated system Ψ∗ has one domain F , with parameters as stated by Lemma 5.5. As also
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required by the lemma, the core dependency of Ψ∗ is bounded by 2. It is left to show that
the product-check algorithm is gap-preserving.

Completeness. Suppose Ψ is satisfiable by a good assignment A. We show a good
assignment A′ for F which represents it, namely that

• A′(F [(xI , xI)]) = 1, and for every variable v of Ψ, A′(F [(xv, xI)]) = A(v).

• F [(x1, xI)] · F [(x2, xI)] = F [(x1, x2)] for every x1, x2 ∈ Fd.

It is easy to observe that an assignment A′ with the above properties will satisfy Ψ∗.
We define an LDF f : Fd → F and then use it to define A′. For points xv ∈ Hd

associated with a variable v of Ψ we set f(xv)
.
=A(v), and we also set f(xI)

.
=1. For points

x ∈ Hd not associated with variables, we arbitrarily set f(x)
.
=0. We extend f over Fd by the

unique extension to an LDF of degree h−1 in each variable. The total degree of f is therefore
(h−1)d = O(|F|1/9 log n). A′ will assign to F the LDF g, defined by g(x1, x2)

.
=f(x1)f(x2).

This is a good assignment since g is of total-degree O(|F|1/9 log n) < |F|1/8. The other
stated properties of A′ are easy to verify.

Soundness. The next proposition is the first step in proving the soundness property. It
shows that in order for Ψ∗ to be |F|−5/8-satisfiable by a feasible assignment A′, A′ must
be consistent with an assignment A for Ψ. After proving the proposition we show that in
that case A must satisfy almost the same (up to F−1) fraction of the equations in Ψ as A′

does for Ψ∗.

Proposition 5.12. Let A′ be an assignment of an r(F )-degree LDF g to F . If it satisfies

at least an |F|−5/8 fraction of the equations in Ψ∗, then there is an assignment A for Ψ
such that for every variable v of Ψ, A(v) = g(xv, xI), and for every two variables u, v of Ψ
A(u)A(v) = g(xu, xv).

Proof. Consider an assignmentA′ as above, that assigns an LDF g to F and satisfies at least
a |F|−5/8 fraction of the equations of Ψ∗. We define an [r(F ), d]-LDF f by f(x)

.
=g(x, xI),

and set an assignment A for every variable v of Ψ by A(v)
.
=f(xv) (hence the first stated

property of A holds).

By Proposition 3.7, if A′ satisfies more than an |F|−5/8 fraction of the equations of Ψ∗,

then it satisfies an Ω(|F|−5/8) fraction of the conjunctions in Ψ′. Then, for at least one

of the equations ψ ∈ Ψ, the fraction of satisfied conjunctions in Eψ is at least Ω(|F|−5/8).

By observing the product-test in each conjunction of Eψ, we obtain that for an Ω(|F|−5/8)
fraction of the points (x1, x2) ∈ F2d,

f(x1)f(x2) = A′(F [(x1, xI)])A′(F [(x2, xI)]) = A′(F [(x1, x2)]) = g(x1, x2) (5.1)
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In both sides of the equation we have LDFs of degree at most 2r(F ) = O(|F|1/4).
Different LDFs of such parameters may only agree on an O(|F|1/4/|F|) = O(|F|−3/4)

fraction of the points, however the LDFs in Equation 5.1 agree on an Ω(|F|−5/8) fraction
and are hence equal. We therefore have

∀ (x1, x2) ∈ F2d g(x1, x2) = f(x1)f(x2)

and specifically

∀ v, u A(u)A(v) = f(xu)f(xv) = g(xu, xv)

as required.

We now return to the soundness proof of the product-check procedure. Assume that Ψ∗
is γ-satisfiable by a feasible assignment A′, and let us show an assignment A satisfying a
γ−O(|F|−1/2) fraction of the equations in Ψ. We may assume that γ > |F|−1/2 (otherwise
there is nothing to show), and hence there exists an assignment A for Ψ that corresponds
to A′ as in Proposition 5.12.

The fraction of conjunctions in Ψ′ that are satisfied by A′ is, by Proposition 3.7, at least
γ−|F|−1. Hence for the same fraction of equations ψ of Ψ, there is at least one conjunction
χ ∈ Eψ which is satisfied by A′. One of the equations in such a conjunction χ is a copy
of ψ where certain terms are replaced. According to Proposition 5.12 the replaced terms
have the same value as the replacing terms, and therefore ψ is satisfied by A. This implies
that at least a γ − |F|−1 > γ − |F|−1/2 fraction of the equations of Ψ′ are satisfied by A.

5.6 The Interpolation Lemma

We now show the interpolation representation-procedure that given an equation ψ, gener-
ates a set Eψ of condensed conjunctions. This is achieved utilizing the fact that the value
of a good assignment to a domain F can be computed as a linear combination of its evalu-
ations at points of its principal cube. The coefficients of the combination are independent
of the LDF, and only depend on the point for which an evaluation is needed.

Let us describe the running of the algorithm for a given equation ψ in a system Ψ. Recall
that ψ is of the form ψ? = ψc, where ψ? is a linear combination of variables associated with
a domain E

.
=Dom?(ψ). For shortness, let us denote r

.
=r(E), s

.
=s(E), d

.
=d(E). Then the

principal cube of E is Hs
d.

Outline of the algorithm. The procedure generates the new domain F
.
=Dom?(Eψ) with

the same degree and dimension parameters as E, and hence with the same principal cube.
Each element of Eψ is a conjunction of two equations. One is an equation ψ′, derived from
ψ by replacing each of its active variables with a linear combination of variables from the



64 The Sum-Check

principal cube of F . The replacement is done so that if F is given the same assignment as
E, then the value of each active variable of ψ is the same as that of the linear combination
which replaces it.

The algorithm also produces a set of equations called a consistency-verifier, which are
not satisfied unless the assignment of F is the same as that of E (it is actually a bit more
subtle, as stated in Proposition 5.14). Eψ is generated by taking all the conjunctions of ψ′

and a consistency-verifier equation. Hence to satisfy a large fraction of the conjunctions of
Eψ, F and E must be given the same assignments, and therefore it is easy to conclude that
ψ is satisfied as well.

The interpolation representation-procedure

We now give the details of the algorithm. First, it generates the domain Dom?(Eψ), denoted
for shortness by F , with the same parameters as E, namely s(F ) = s, r(F ) = r, and
d(F ) = d.

Generating the consistency-verifier. The next step is the construction of the
consistency-verifier, but before that we need the following claim. It states that the in-
terpolation of an s-degree LDF from its values on the principal cube is possible.

Claim 5.13 (interpolation). Let s < |F|. Then there exists a polynomial algorithm that
receives as input a point x ∈ Fd and outputs a coefficient function κx : Hs

d → F with the
following properties:

• For every function f ′ : Hs
d → F , the function f : Fd → F defined by

f(x)
.
=
∑

y∈Hs
d κx(y)f

′(y) is an [s, d]-LDF.

• For any [s, d]-LDF f , f(x) =
∑

y∈Hs
d κx(y)f(y).

Proof. Each point y ∈ Fd determines an evaluation functional over the set of [s, d]-LDFs,
the value of which on an LDF f is defined to be f(y). Consider the set L of all evaluation
functionals determined by points in Hs

d. Since an [s, d]-LDF for which all these functionals
yield zero must be the zero LDF, it follows that L spans all the functionals over the set of
[s, d]-LDFs.

In particular, the evaluation functional determined by any point x can be obtained as a
linear combination of functionals from L. Let κx(y) denote the coefficient, in such a linear
combination, of the evaluation functional determined by y. It is easy to verify that κx has
the desired properties, and that it can be found in polynomial time.

The consistency-verifier is a set containing one equation χ[x] for each point x ∈ Fd. χ[x]
verifies that an evaluation of an LDF at x using κx (as in the claim) and the assignment
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of F , yields the same value as the assignment of E[x]:

χ[x] :
∑
y∈Hs

d

κx(y)F [y] = E[x]

Before continuing with the algorithm, we state the properties of the consistency-verifier
in the following proposition.

Proposition 5.14. Let A be a feasible assignment for E and F . Let f be the s-degree
LDF defined by f(x)

.
=
∑

y∈Hs
d κx(y)A(F [y]), as in Claim 5.13. Then either E is assigned

f , in which case all of the consistency-verifier equations are satisfied, or E is not assigned
F , in which case all but less than an |F|−1/2 fraction of the equations are not satisfied.

Proof. Note that an equation χ[x] of the consistency-verifier is satisfied iff E[x] is assigned
f(x). It is thus obvious that these equations will all be satisfied if E is assigned f . If E

is not assigned f then it is assigned another LDF of degree at most r < |F|1/2. Since two
different [r, d]-degree LDFs differ on at least a 1− r

|F| fraction of the points, f(x) will equal

the assignment of E[x] for at most an r/|F| < |F|−1/2 of the points. Therefore all except

for less than an |F|−1/2 fraction of the consistency-verifier equations are not satisfied.

Generating ψ′ . The procedure now generates an equation ψ′ from ψ by replacing each
of the active variables by a linear combination of variables from the principal cube of F . A
variable E[x] in ψ? is replaced by

∑
y∈Hs

d κx(y)F [y]. The equation ψ′ obtained “simulates”
ψ in the case where E is assigned the interpolation of the LDF assigned to F , as is stated
in the following claim.

Claim 5.15. Let A be an assignment for Ψ and for F . Let f be the s-degree LDF defined
by f(x)

.
=
∑

y∈Hs
d κx(y)A(F [y]), as in Claim 5.13, and assume that E is assigned f . In that

case ψ is satisfied by A if and only if ψ′ is satisfied by it.

Proof. Since E is assigned f , for every x ∈ Fd, A(E[x]) equals f(x) =
∑

y∈Hd κx(y)A(F [y]).

Therefore the evaluations of ψ? and ψ?
′ are equal, hence the claim.

Combining the consistency-verifier and ψ′. The last step of the interpolation
representation-procedure is to generate Eψ. Eψ will just be the set of conjunctions of ψ′ and
a consistency-verifier equation.

Proof of correctness

The domain F generated by the interpolation representation-procedure has the parameters
required by Lemma 5.7, and the conjunctions it generates are condensed as required. It
is also easy to see that the running time of the interpolation representation-procedure is
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polynomial in the size of ψ and in |F |. To complete the proof of Lemma 5.7 it only remains
to show that Eψ has the extension and restriction properties. The other stated properties
of the interpolation representation-procedure are obvious.

• Extension: Let A be a good assignment for Ψ, satisfying ψ. Denote by f the (s-
degree) LDF assigned to E. Extend A to F by assigning f to it, and let us show that
this satisfies both ψ′ and the consistency-verifier equations, and hence the conjunc-
tions of Eψ.

By Claim 5.13 we have

f(x) =
∑
y∈Hs

d

κx(y)f(y) =
∑
y∈Hs

d

κx(y)A(F [y]) (5.2)

where κx is the coefficient function for the parameter s. Hence from Claim 5.15 it fol-
lows that the extended A satisfies ψ′. Equation 5.2 also implies that the consistency-
verifier equations are satisfied by A.

• Restriction: Let A be a feasible assignment for Ψ, and for F . We define an [s, d]-LDF
f by

f(x) =
∑
y∈Hs

d

κx(y)A(F [y])

where the κx’s are coefficient functions as stated in Claim 5.13.

Now assume that at least an |F|−1/2 fraction of the conjunctions in Eψ are satisfied

by A. Then ψ′ is satisfied and at least an |F|−1/2 fraction of the consistency-verifier
equations are satisfied as well. By Proposition 5.14 it follows that E is assigned
f . Therefore from Claim 5.15 it follows that ψ is satisfied by A, thus proving the
restriction property.

5.7 The Arithmetization Representation-Procedure

In this section we show the arithmetization representation-procedure. When applied to an
equation ψ whose active LDF has small degree and dimension parameters, this procedure
produces a representation Eψ with small active-dependency. In essence, the arithmetiza-
tion representation-procedure utilizes the sum-check technique, from previous PCP proofs
(see [BFL91]).

We describe the running of the arithmetization representation-procedure over a given con-
densed equation ψ in a restricted equation-system Ψ. For shortness we denote E

.
=Dom?(ψ),

r
.
=r(E), s

.
=s(E), and d

.
=d(E).
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Outline of the algorithm. The equation ψ has the form ψ? = ψc. Since ψ is condensed,
ψ? can be written as a sum ∑

y∈Hs
d

κ(y)E[y] (ψ?)

where κ : Hs
d → F is a coefficient function. The assignment of the domain F

.
=Dom?(Eψ),

that is generated by the arithmetization representation-procedure, encodes the summands
in ψ? and also many of the partial sums. If the assignment of F is a correct encoding then
it is possible to evaluate ψ? by accessing only a few variables of F , since their values are
evaluations of large partial sums of ψ?.

Each conjunction of Eψ tests whether the assignment of F is a correct encoding, and
assuming that the encoding is indeed correct, verifies that ψ holds. This is accomplished by
accessing only a small number of variables of F . To satisfy more than an |F|−1/2 fraction
of the conjunctions in Eψ the assignment of F must encode the summands in the active
part of ψ correctly, and also ψ must be satisfied.

The assignment for F that correctly encodes the summands of ψ is called the sum-check
LDF, and is defined below. Values of the sum-check LDF at some points are evaluations
of certain partial sums of ψ?, and values of the sum-check LDF at other points are used in
testing the correctness of the encoding. It is necessary to define how the assignment of F
should encode the summands in ψ? before the construction of Eψ can be understood, so we
first describe the sum-check LDF and only then continue to the construction.

The sum-check LDF

We define the sum-check LDF of ψ with respect to a given good assignment A for E. First,
we extend κ to an LDF of degree ds over Fd – such an extension exists and is computable
in polynomial time in |F|d < |F |, and hence it is possible to compute the extension within
the representation-procedure. We now define d LDFs that encode different partial sums of
ψ?. The sum-check LDF is constructed from these LDFs below.

Definition 5.16 (the sum-check tree). For k = 1, 2, . . . , d, we define a function gk :
Fk → F by

∀x ∈ Fk gk(x)
.
=

∑
y∈Hs

(d−k)

κ(x, y)A(E[x, y])

where “x, y” means the concatenation of the vector x and the vector y. The sequence
g1, . . . , gd is called the sum-check tree with respect to A(E).

For an x ∈ Hs
k the value of gk(x) is a partial sum of ψ?. The value of gd at a point

x ∈ Fd is just κ(x)A(E[x]), and hence gd is an LDF of degree at most ds+ s = (d+1)s. It
follows from the above definition that the other gk’s have degree at most (d+ 1)s as well.
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The LDFs g1, . . . , gd form a tree of partial sums in the following sense. Consider a tree of
depth d, where every non-leaf node has |F| offsprings, and every node of depth k > 0 is
labeled by a point evaluation of gk. We label the root by

∑
y∈Hs

d κ(y)A(E[y]), which is the
evaluation of ψ?. The root has an offspring labeled by g1(z), for each z ∈ F . Note that for
z ∈ Hs, g1(z) is a partial sum of ψ?, and in fact the root-label is the sum of labels of its
offsprings that are assigned g1(z) for z ∈ Hs.

For a non-leaf node that has been labeled gk(x), we label one of its offsprings by
gk+1(x, z) for every z ∈ F . From the definition of the gk’s it follows that for every k < d
and x ∈ Fk,

gk(x) =
∑
z∈Hs

gk+1(x, z) (5.3)

Hence the label of each node labeled gk(x) in the tree is the sum of labels of its s + 1
offsprings that are assigned gk+1(x, z) for z ∈ Hs.

The sum-check LDF. We now incorporate all the LDFs g1, . . . , gk into a single LDF
of degree at most (d + 1)s + d ≤ 2ds, called the sum-check LDF. For this purpose, let
Hd−1 = {a1, . . . , ad} be an arbitrary subset of size d in F . The sum-check LDF, denoted
by f , will satisfy

f(ak, x1, . . . , xk, 0, . . . , 0) = gk(x1, . . . , xk) (5.4)

for every 1 ≤ k ≤ d, and every x = (x1, . . . , xk) ∈ Fk. There exists such an f – for example
it can be defined by

f(x0, x1, . . . , xd)
.
=

d∑
k=1

(
d∏

i=1,i6=k

x0 − ai
ak − ai

)
· gk(x1, .., xk)

Properties of the sum-check LDF. From Equation 5.4 and the discussion above it
follows that the sum-check LDF has the following properties:

•
∑

z∈Hs
f [(1, z, 0, . . . , 0)] is the evaluation of ψ?, as follows from the explanation after

Definition 5.16.

• For k = 1, 2, . . . , (d− 1) and every (x1, . . . , xk) ∈ Fk

f [(ak, x1, . . . , xk, 0, . . . , 0)] =
∑
z∈Hs

f [(ak+1, x1, . . . , xk, z, 0, . . . , 0)]

as follows from Equation 5.3.

• For every (x1, . . . , xd) ∈ Fd,

f [(ad, x1, . . . , xd)] = κ(x1, . . . , xd)A(E[x1, . . . , xd])

as follows from the explanation after Definition 5.16.
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The arithmetization representation-procedure

We now give the details of the arithmetization representation procedure. At first the
representation-procedure produces a new domain F = Dom?(Eψ) with parameters as stated
in Lemma 5.8, namely r(F ) = r, s(F ) = 2ds and d(F ) = d + 1. The procedure generates
conjunctions that can only be satisfied if F is assigned the sum-check f . For each x =
(x1, . . . , xd) ∈ Fd the procedure generates one conjunction, denoted by χ[x], consisting of
the following d+ 1 equations:

• The root equation: ∑
z∈Hs

F [a1, z, 0, . . . , 0] = ψc

• The d− 1 path equations for k = 1, 2, . . . , (d− 1):

F [ak, x1, . . . , xk, 0, . . . , 0] =
∑
z∈Hz

F [ak+1, x1, . . . , xk, z, 0, . . . , 0]

• The leaf equation:

F [ad, x1, . . . , xd] = κ(x1, . . . , xd)E[x1, . . . , xd]

Proof of correctness

Let us show that the arithmetization representation-procedure has the required proper-
ties. It is easy to verify that it runs in polynomial time, and that it generates a domain
F = Dom?(ψ) with parameters as required. As to the number of active variables in each
conjunction, there are s+1 variables associated with F in the root equation, s+2 variables
in each of the d−1 path equations, and one variable in the leaf equation. The total number
is therefore s+ 1 + (d− 1)(s+ 2) + 1 = ds+ 2d ≤ 2ds as required. It is left only to verify
the extension and restriction properties.

Extension. Let A be a good assignment for the variables of Ψ. Extend A to F by
assigning the sum-check LDF f to it (f is of degree less than s(F )). From the properties
of f stated above, it easily follows that if ψ is satisfied by A then all the conjunctions of
Eψ are also satisfied by the extension of A.

Restriction. Let A be a feasible assignment for the variables of Ψ and for F , and assume
that at least an |F|−1/2 fraction of the conjunctions in Eψ are satisfied. We define the sum-
check tree g1, . . . , gd and the sum-check LDF f with respect to the assignment of E, as in
Definition 5.16 and Equation 5.4 above. Since now the degree of the LDF assigned to E
may be up to r, the degree of the gk’s can be up to sd+ r < |F|1/2. We claim that F must
be assigned f , as shown in the following claim.
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Claim 5.17 (sum-check). Suppose that at least an |F|−1/2 fraction of the conjunctions
in Eψ are satisfied by a feasible assignment. Then for every k, 1 ≤ k ≤ d, and every
x = (x1, . . . , xk) ∈ Fk,

A(F [ak, x1, . . . , xk, 0, . . . , 0]) = gk(x1, . . . , xk)

Before proving the claim we show how it implies the restriction property. Note that the
root equation is common to all the conjunctions in Eψ, and hence it must be satisfied. So
together with the claim we have that the evaluation of ψc equals

∑
z∈Hs

f(a1, z, 0, . . . , 0),
which by the properties of the sum-check LDF equals the evaluation of ψ?. Therefore ψ is
satisfied, as required.

Proof of the sum-check claim. For every k, 1 ≤ k ≤ d, we define an [r, k]-degree LDF
g′k by

g′k(x1, . . . , xk)
.
=A(F [ak, x1, . . . , xk, 0, . . . , 0])

For the sake of contradiction, assume that g′k 6= gk for some k, and choose k to be the
highest for which this inequality holds. We distinguish between two cases for k:

• k = d: At least an |F|−1/2 fraction of the conjunctions of Eψ are satisfied, and
therefore at least the same fraction of the leaf equations are satisfied. So for at least
an |F|−1/2 fraction of the points x ∈ Fd, g′d(x) = A(F [ad, x]) = κ(x)A(E[x]) = gd(x).
But according to our assumption g′d 6= gd and therefore their evaluations can not be

equal on more than an sd+r
|F| < |F|−1/2 fraction of the points, a contradiction.

• 1 ≤ k < d: At least an |F|−1/2 fraction of the conjunctions of Eψ are satisfied, and
therefore in at least the same fraction of them the k’th path equation is satisfied. It
follows that for at least an |F|−1/2 fraction of the points x = (x1, . . . , xk) ∈ Fk,

g′k(x) = A(F [ak, x1, . . . , xk, 0, . . . , 0]) =

=
∑
z∈Hs

A(F [ak+1, x1, . . . , xk, z, 0, . . . , 0]) =

=
∑
z∈Hs

g′k+1(x1, . . . , xk, z)

By the maximality of k we have that g′k+1 = gk+1, hence for at least an |F|−1/2

fraction of the points x,

g′k(x) =
∑
z∈Hs

gk+1(x1, . . . , xk, z) = gk(x) (by Equation 5.3)

This is a contradiction to our assumption that g′k 6= gk, since they are both of degree
at most sd + r and therefore our assumption implies that they can be equal on at
most an sd+r

|F| < |F|−1/2 fraction of the points.
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5.8 The Curve-Extension Representation-Procedure

In this section we show the curve-extension representation-procedure. If it is applied to
an equation with a small enough active-dependency, then the new generated domain has a
small active lower-degree parameter, and for equations with even smaller active-dependency
the active dimension parameter becomes small as well. The conjunctions that are generated
by the procedure are all condensed.

Let us describe the running of the curve-extension representation-procedure over a given
equation ψ. For shortness we denote E

.
=Dom?(ψ), r

.
=r(E), s

.
=s(E), d

.
=d(E), and

D
.
=D?(ψ).

The principle of the algorithm. Denote the active variables of ψ by E[x1], . . . , E[xD].
We define below a polynomial vector function of small degree Γ : F → Fd, that goes
through the points x1, . . . , xD. The assignment of the domain F

.
=Dom?(Eψ), generated by

the curve-extension representation-procedure, encodes the restriction of the assignment of
E to the points of the curve Γ.

Variables in F associated with certain points in its principal cube have, in a correct
encoding, the values of the assignment of E at certain points on Γ. The values at other
points on Γ can be computed by interpolation over these variables of F , making use of
the fact that Γ has a small degree, and hence restricting the assignment of E to its points
yields an LDF of small degree as well. The conjunctions of Eψ use the variables of F to
evaluate ψ? and verify that ψ is satisfied, and they also test whether F is indeed given a
correct encoding.

The curve-extension algorithm

At first the representation-procedure produces a new domain F = Dom?(Eψ) with param-
eters as stated in Lemma 5.9, that is

r(F ) = r, d(F ) = min {d, log2(sD)}, and s(F ) = d(F ) ·max
{(
s ·D

)1/d
, 2
}

Each element of Eψ will be a conjunction of two condensed equations. One is an equation
ψ′, derived from ψ by replacing each of its active variables with a variable of F that
“encodes” it. The other equation is taken from a set of equations called a curve-verifier.
These equations are not satisfied unless the assignment of F is a correct encoding. Before
the construction of these equations, we define the curve Γ and describe how the assignment
of F encodes the restriction of the assignment of E to the points of Γ.

Definition 5.18 (the curve Γ). Let HsD−1 be an arbitrary subset of F of size sD, and
denote its elements by a1, . . . , asD. Γ : F → Fd is defined to be the (D−1)-degree polynomial
vector function satisfying

∀ 1 ≤ i ≤ D Γ(ai) = xi
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where E[x1], . . . , E[xD] are the active variables of ψ. Γ can clearly be computed in
polynomial-time.

Associating points with a1, . . . , asD. Let
(
Hs(F )

)d(F )
be the principal cube of F . The

procedure chooses an arbitrary subset H ⊆ Hs(F ) of size s(F )/d(F ) = max
{(
s ·D

)1/d
, 2
}
,

and associates to each point ai in HsD−1 a distinct point yi in Hd(F ) (note that Hd(F ) is
a subset of the principal cube of F and that it contains at least sD points). Each of the
variables F [yi] will encode the value of E[Γ(ai)]. The active variables of the conjunctions
in Eψ will all be of the form F [yi], so the conjunctions of Eψ are condensed. It is important
to note that any assignment to the variables F [yi] can be extended by interpolation to a
good assignment for F , as is shown below.

Generating the curve-verifier. Suppose E is assigned an LDF g. Then a correct
encoding assigns to F [yi] the value of g at Γ(ai). Since Γ is of degree at most D − 1, if
g is of degree s then g ◦ Γ is of degree less than sD − 1. The value of g at any point on
the curve Γ can hence be evaluated by interpolation over its values at Γ(a1), . . . ,Γ(asD) or,
if F is assigned a correct encoding, by interpolation over the variables F [y1], . . . , F [ysD].
This is stated precisely in the following claim, which is the one-dimensional equivalent of
Claim 5.13.

Claim 5.19 (curve-interpolation). Let s and D be such that sD < |F|. Then there
exists a polynomial (in |F|) algorithm that receives as input a point x ∈ F and outputs
a coefficient function κx : {a1, . . . , asD} → F with the following property: Every function
f ′ : {a1, . . . , asD} → F has a unique extension to an [sD − 1, 1]-LDF f over F , and f
satisfies

∀x ∈ F f(x) =
sD∑
i=1

κx(ai)f
′(ai)

The curve-verifier will have one equation χ[x] for each point x ∈ F . χ[x] verifies that
the interpolation over F [y1], . . . , F [ysD] using the κx from Claim 5.19 yields the value of
E[Γ(x)], as it should if F is assigned the encoding of a good assignment to E:

χ[x] :
sD∑
i=1

κx(ai)F [yi] = E[Γ(x)]

The next proposition shows that the curve-verifier equations cannot be satisfied unless
F is indeed assigned a correct encoding.

Proposition 5.20. Let A be a feasible assignment for E and F . Let f be the [sD − 1, 1]-
LDF defined by f(x) =

∑sD
i=1 κx(ai)A(F [yi]), as in Claim 5.19. Then either A(E) ◦ Γ = f ,

in which case all of the curve-verifier equations are satisfied, or less than an |F|−1/2 fraction
of the curve-verifier equations are satisfied.
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Proof. Note that an equation χ[x] of the curve-verifier is satisfied if and only if E[Γ(x)] is
assigned f(x). It is thus obvious that these equations will all be satisfied if A(E)◦Γ = f . If
this is not the case, then A(E)◦Γ and f are in particular two different [rD, 1]-LDFs. Since

rD < |F|1/2 it follows that their evaluations differ on all but less than an |F|1/2/|F| ≤
|F|−1/2 fraction of the points. Hence if A(E) ◦ Γ 6= f , then less than an |F|−1/2 fraction of
the curve-verifier equations can be satisfied.

Generating ψ′. The procedure generates an equation ψ′ by replacing each active variable
E[xi] in ψ? with the variable F [yi]. If F is assigned a correct encoding then ψ′ simulates
ψ, as stated in the following claim.

Claim 5.21. Let A be an assignment for Ψ and for F . Let f be the [sD−1, 1]-degree LDF
defined by f(x) =

∑sD
i=1 κx(ai)A(F [yi]), as in Claim 5.19, and assume that A(E) ◦ Γ = f .

In that case ψ is satisfied by A if and only if ψ′ is satisfied by it.

Proof. According to the definition of Γ, Γ(ai) = xi for i = 1, . . . , D. Hence it follows
from the assumption that A(E[xi]) = A(E[Γ(ai)]) = f(ai) for every i, 1 ≤ i ≤ D. But
according to Claim 5.19 f(ai) = A(F [yi]) for every i. Therefore the assignment of every
active variable E[xi] equals the assignment of F [yi]. The claim immediately follows.

Generating Eψ. The set Eψ is composed of all the conjunctions of ψ′ and an equation
χ[x] of the curve-verifier.

Proof of correctness

The domain F that is generated by the curve-extension representation-procedure has the
parameters required by Lemma 5.9, and the conjunctions of Eψ are all condensed. It is also
easy to verify that the curve-extension representation-procedure takes polynomial time in
the size of ψ and in |F |. To complete the proof of Lemma 5.9 it remains to show that Eψ has
the extension and restriction properties. The other properties required of a representation-
procedure are obvious.

• Extension: Let A be a good assignment for the variables of Ψ that satisfies ψ. We
extend A by assigning an s(F )-degree LDF to F such that all the conjunctions of
Eψ are satisfied. The LDF g, to be assigned to F , is defined as follows. First, let
g(yi)

.
=A(E[Γ(ai)]) for i = 1, . . . , sD. Since all the yi’s are contained in Hd(F ), there

exists an extension of g to an LDF over Fd(F ) of degree at most s(F )/d(F ) in each
variable. The total degree of this g is hence at most s(F ). We assign g to F . Then
A(F [yi]) = A(E[Γ(ai)]) for every i, and so Claim 5.21 implies that ψ′ is satisfied.
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Let f be the [sD − 1, 1]-LDF defined by f
.
=A(E) ◦ Γ. Then by Claim 5.19,

∀x ∈ F f(x) =
sD∑
i=1

κx(ai)f(ai) =
sD∑
i=1

κx(ai)A(E[Γ(ai)])

=
sD∑
i=1

κx(ai)A(F [yi])

where the coefficients κx(ai) are as in Claim 5.19. It hence follows that the curve-
verifier equations are all satisfied by the extended A. Since Eψ consists of conjunctions
of ψ′ and equations of the curve-verifier, we have that all of its conjunctions are
satisfied.

• Restriction: Let A be a feasible assignment for the variables of Ψ and for F , and
assume that at least an |F|−1/2 fraction of the conjunctions in Eψ are satisfied by A.

Since ψ′ appears in every conjunction of Eψ, ψ′ is satisfied, and at least an |F|−1/2

fraction of the curve-verifier equations are satisfied as well.

Define an (sD − 1)-degree LDF f by

∀x ∈ F f(x)
.
=

sD∑
i=1

κx(ai)A(F [yi])

where the coefficients κx(ai) are as in Claim 5.19. It follows from Proposition 5.20
that A(E) ◦ Γ = f . Since ψ′ is satisfied, it then follows from Claim 5.21 that ψ is
satisfied as well, thereby proving the restriction property.

5.9 The Linearization Representation-Procedure

In this section we show the Linearization representation-procedure. It is the final
representation-procedure used in the sequence of transformations, resulting in a system
of a constant active-dependency parameter.

The linearization representation-procedure is similar to the curve-extension. When
applied to an equation ψ, it uses the newly generated domain to encode the restriction of
the assignment of Dom?(ψ) to a curve that contains the active variables of ψ. The curve-
extension representation-procedure encoded directly the assignment at only some points of
the curve; to obtain other evaluations it applied interpolation by computing an appropriate
linear-combinations over the encoded values.

The linearization representation-procedure applies a method of [ALM+98], using the
newly generated domain to encode all linear-combinations of these values. Hence each
curve-verifier equation requires just one active variable of the new domain. Also, since the
active part of ψ is a linear-combination of variables associated with points on the curve,
ψ? can also be evaluated using one access to the new domain.
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The linearization representation-procedure

We now describe the linearization representation-procedure. We fix the notations
E
.
=Dom?(ψ), r

.
=r(E), s

.
=s(E), d

.
=d(E), and D

.
=D?(ψ). The linearization representation-

procedure first generates a new domain F with parameters as stated in Lemma 5.10, that
is

r(F ) = r, s(F ) = 1, and d(F ) = sD

In each conjunction in Eψ there will be an equation ψ′, that is derived by replacing the
active part of ψ with a variable of F that encodes it. Another equation in each conjunction
is taken from a set of equations called a linearization-verifier, that are not satisfied unless F
is assigned a homogeneous linear-LDF. As in the curve-extension representation-procedure,
the last equation in each conjunction is taken from a set called the curve-verifier, whose
equations are not satisfied unless the assignment of F is a correct encoding.

Generation of the linearization-verifier. The linearization-verifier has one equation
χ[y, t] for every y ∈ Fd(F ) and t ∈ F :

χ[y, t] : tF [y] = F [ty]

The equations of the linearization-verifier are not satisfied unless F is assigned a linear
homogeneous LDF. To prove it we need the following observation.

Claim 5.22. Let f be an [r(F ), d(F )]-LDF which is not linear homogeneous. For every
point y ∈ F sD we define an [r(F ), 1]-LDF φy by

∀ t ∈ F φy(t)
.
=f(ty)

Then φy is linear homogeneous for less than an (|F|−1/2)/2 fraction of the points y.

Proof. If f is linear but not homogeneous then obviously none of the φy’s are homogeneous,
so we assume that m

.
= deg(f) > 1. Then f can be written as a sum f = f1 + f2 where f1

is a homogeneous† function of degree m, and deg(f2) < m. Then φy(t) = f1(y)t
m + f2(ty).

The second term in this sum is of degree less than m as an LDF over t. The first term is
an LDF of degree exactly m in t (and in particular it is not linear), unless f1(y) = 0.

It follows that φy is not linear (and in particular not linear-homogeneous) unless f1(y) =

0, which occurs for at most an m
|F| ≤

r(F )
|F| ≤ |F|−1/2/2 fraction of the points y, as we needed

to show.

The next proposition shows that the linearization-verifier equations are indeed satisfied
only if F is assigned a linear-homogeneous function.

†f is homogeneous of degree m iff f(ty) = tmf(y) for every y and t.
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Proposition 5.23. Let A be a feasible assignment for F . Then less than an |F|−1/2

fraction of the linearization-verifier equations are satisfied unless F is assigned a linear-
homogeneous function, in which case all of the equations are satisfied.

Proof. It is clear that the linearization-verifier equations are all satisfied in the case that F
is assigned a linear-homogeneous function. We therefore suppose that A(F ) is not linear

homogeneous, and prove that less than an |F|−1/2 fraction of the equations are satisfied.
Define for every y ∈ Fd(F ) the [r(F ), 1]-LDF φy as in the proof of Claim 5.22:

∀ t ∈ F φy(t)
.
=A(F [ty])

As proven there, φy is linear-homogeneous for less than an (|F|−1/2)/2 fraction of the points
y.

Consider a point y for which φy is not linear-homogeneous. Since tA(F [y]) is linear-

homogeneous as a function of t, tA(F [y]) 6= A(F [ty]) for all but at most an r(F )
|F| ≤

(|F|−1/2)/2 fraction of the t’s, and hence at most an (|F|−1/2)/2 fraction of the equations
χ[y, t] are satisfied.

We have shown that for at least a 1 − (|F|−1/2)/2 fraction of the y’s φy is not linear-

homogeneous, and that for such y’s χ[y, t] is satisfied for less than an (|F|−1/2)/2 fraction

of the t’s. It follows that less than an |F|−1/2 fraction of the equations are satisfied, as we
needed to show.

The curve Γ. Write the active part of ψ as

ψ? :
D∑
i=1

αjE[xi]

As in the curve-extension representation-procedure, we define a curve Γ : F → Fd which
goes through the points associated with the active variables of ψ.

Definition 5.24 (the curve of ψ). Let HsD−1 = {a1, . . . , asD} be an arbitrary subset of
F . Define Γ : F → Fd to be the vector of (D − 1)-degree polynomial functions satisfying

∀ 1 ≤ i ≤ D Γ(ai) = xi

Given an assignment A for E, the assignment of F is used as an encoding of A(E) ◦
Γ. Unlike in the curve-extension representation-procedure, the correct encoding here is a
linear-homogeneous LDF.
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The encoding. The procedure generates a curve-verifier, whose equations are only sat-
isfied if the assignment of F is the correct encoding of A(E)◦Γ. To define what the correct
encoding is, suppose E is assigned an s-degree LDF g. The LDF g ◦ Γ : F → F , which
is to be encoded by the assignment of F , has degree at most sD − 1. Its encoding is the
following linear-homogeneous LDF, Lg:

∀ (x1, . . . , xsD) ∈ F sD Lg(x1, . . . , xsD)
.
=

sD∑
i=1

xig(Γ(ai))

The next claim shows how g ◦ Γ can be reconstructed, given Lg.

Claim 5.25 (linearizing-interpolation). For i = 1, . . . , sD let γi be the [sD−1, 1]-LDF
satisfying γi(ai) = 1 and γi(aj) = 0 for every j 6= i.

Then the polynomial vector function γ̂ = (γ1, . . . , γsD) satisfies Lg ◦ γ̂ = g ◦ Γ.

Proof. Lg is linear, hence Lg ◦ γ̂ is of degree at most sD − 1. Since it follows from the
definition of Lg that Lg ◦ γ̂(ai) = g(Γ(ai)) for i = 1, . . . , sD, we obtain that Lg ◦ γ̂ = g ◦ Γ
(also recall that g ◦ Γ is of degree at most sD − 1).

Generating the curve-verifier. It follows from Claim 5.25 that if an assignment A
assigns a good LDF to E and assigns its encoding to F , then A(F [γ̂(x)]) = A(E[Γ(x)]) for
every x ∈ F . To verify that F is assigned a correct encoding, the representation-procedure
generates one equation χ[x] in the curve-verifier for every x ∈ F as follows:

χ[x] : F [γ̂(x)] = E[Γ(x)]

where the vector-function γ̂ is as defined in Claim 5.25.

The following proposition shows that indeed the curve-verifier equations are not satisfied
unless the assignment for F is a correct encoding, in the sense that A(F ) ◦ γ̂ = A(E) ◦ Γ.
It is assumed that F is assigned a linear LDF, since otherwise the linearization-verifier
equations cannot be satisfied.

Proposition 5.26. Let A be a feasible assignment for E and F , assigning a linear LDF
to F . Then less than an |F|−1/2 fraction of the curve-verifier equations are satisfied unless
A(F ) ◦ γ̂ = A(E) ◦ Γ, in which case all of the equations are satisfied.

Proof. If A(F ) ◦ γ̂ = A(E) ◦ Γ then for every x ∈ F , A(F [γ̂(x)]) = A(E[Γ(x)]) and hence
χ[x] is satisfied.

Now assume that at least an |F|−1/2 fraction of the equations χ[x] are satisfied. Ac-

cording to this assumption, A(F [γ̂(x)]) = A(E[Γ(x)]) for at least an |F|−1/2 fraction of the

x’s. Since A(F ) ◦ γ̂ is an LDF of degree at most sD− 1 < |F|−1/2 and A(E) ◦Γ is an LDF

of degree at most r(D − 1) < |F|−1/2, this implies that A(F ) ◦ γ̂ = A(E) ◦ Γ.
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Generating ψ′. The procedure now generates the equation ψ′ such that when F is as-
signed a correct encoding, ψ′ is satisfied if and only if ψ is satisfied. ψ′ is obtained from
ψ by removing ψ? and replacing it with one variable F [y∗], where y∗ is as specified by the
following claim.

Claim 5.27. There exists a point y∗ ∈ Fd(F ) such that for any feasible assignment A for
E and F , for which A(F ) is a correct encoding of A(E), A(F [y∗]) equals the evaluation of
ψ?. Moreover, y∗ can be found, given ψ, in time polynomial in the size of ψ and in |F |.

Proof. For every assignment A satisfying the above conditions A(F ) is linear-homogeneous
and hence A(F ) ◦ γ̂ is of degree at most sD − 1. A(E) ◦ Γ is therefore an (sD − 1)-degree
LDF as well. According to the curve-interpolation claim (Claim 5.19), for every x ∈ F one
can find in polynomial time (and independently of A) a coefficient function κx such that

A(E[Γ(x)]) =
sD∑
i=1

κx(ai)A(E[Γ(ai)]) =
sD∑
i=1

κx(ai)A(F [γ̂(ai)]) =

= A
(
F
[ sD∑
i=1

κx(ai)γ̂(ai)]

)
where the last equality occurs because F is assigned a linear-homogeneous LDF.

Denote yx
.
=
∑sD

i=1 κx(ai)Γ(ai) for every x ∈ F , and recall that ψ? has the form∑D
j=1 αjE[xj]. We have from the equation above that A(E[xj]) = A(F [yxj

]) for every
j, and therefore since A(F ) is linear-homogeneous we conclude that the evaluation of ψ?
equals the assignment of F [y∗] for y∗

.
=
∑D

j=1 αjyxj

Generating Eψ. The linearization representation-procedure constructs the set of con-
junctions Eψ as follows. For each triple (x, y, t) where x, t ∈ F and y ∈ Fd(F ), Eψ will
have the conjunction of ψ′, the curve-verifier equation χ[x], and the linearization-verifier
equation χ[y, t].

Correctness of the algorithm.

The domain F that is generated by the linearization representation-procedure has the
required parameters, and it is easy to verify that the running time is polynomial in |F |.
To complete the proof of Lemma 5.7 let us show that Eψ has the extension and restriction
properties, as the other required properties are obvious.

• Extension: Let A be a good assignment for the variables of Ψ that satisfies ψ. Let
g be the [s, d]-LDF assigned to E, and extend A to F by assigning Lg to it. We
need to show that the extended A satisfies the conjunctions of Eψ. According to the
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construction, it is enough to show that ψ′ is satisfied and that the curve-verifier and
linearization-verifier equations are satisfied as well.

SinceA(F ) = Lg is a linear-homogeneous LDF, the linearization-verifier equations are
satisfied by Proposition 5.23. g is an s-degree LDF, hence by Claim 5.25 Lg◦γ̂ = g◦Γ,
which implies that the curve-verifier equations are all satisfied by Proposition 5.26.
The only difference between ψ and ψ′ is the replacement of ψ? with F [y∗]. But by
Claim 5.27 the evaluations of ψ? and F [y∗] are equal (the conditions of the claim hold
by the above discussion), and therefore since ψ is satisfied, ψ′ is satisfied as well.

• Restriction: Let A be a feasible assignment for the variables of Ψ and for F . We
assume that these assignments satisfy at least an |F|−1/2 fraction of the conjunctions

in Eψ. This implies that ψ′ is satisfied, and that at least an |F|−1/2 fraction of the

curve-verifier equations are satisfied, as well as an |F|−1/2 fraction of the linearization-
verifier equations. Let us prove that ψ is satisfied.

Since at least an |F|−1/2 fraction of the linearization-verifier are satisfied, we gather
from Proposition 5.23 that F is assigned a linear-homogeneous LDF. Proposition 5.26
then implies that A(F )◦γ̂ = A(E)◦Γ. The conditions of Claim 5.27 are thus satisfied,
hence ψ? has the same evaluation as F [y∗]. Since ψ′ is satisfied, this implies that ψ
is satisfied as well.
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Part II

Testing Juntas





Chapter 6

Introduction to Part II

A property P is said to be ε-testable using q queries, or simply (ε, q)-testable, if there exists
a probabilistic algorithm that makes at most q queries on any given input f (it is assumed
that the input is accessed using an oracle), such that

• if f satisfies P , then the algorithm accepts it with probability at least 2/3, and

• if f is ε-far from P , that is, if it must be changed in more than an ε-fraction of the
places in order to make it satisfy P , then the algorithm rejects it with probability at
least 2/3.

A testing algorithm is said to be 1-sided if it accepts with probability 1 any input that
satisfies P . A testing algorithm that determines all its queries in advance, and uses the
answers only in deciding whether to accept the input (and not in planning some of the
queries) is called a non-adaptive test.

Boolean functions, which are the focus of this part of the thesis, were given particular
consideration from the point of view of property testing, and especially properties related
to monotonicity [GGL+00, DGL+99, FLN+02]. Perhaps the work most closely related to
the results in this part of the thesis is [PRS01]. It presents testing algorithms that perform
O(1/ε) queries for the following properties of boolean functions: Being a singleton function
(a function of a single variable), being a J-monomial (a conjunction of at most J literals),
and being a monotone DNF function with a bounded number of terms.

Boolean functions and juntas

In this part of the thesis we consider properties of boolean functions over n variables,
namely functions over n variables that admit only two values. It will be convenient for us
to assume that the values of boolean functions range in {−1, 1}.

While some of our results consider functions over boolean variables, other results apply
to functions over variables that range in general domains. When the boolean function f
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being discussed is known, we denote the range of the i’th variable of f by Ωi (in the case
of boolean variables, Ωi = { 0, 1}). Denoting

P([n])
.
=

n∏
i=1

Ωi ,

we have that all boolean functions dealt with herein can be written in the form f : P([n]) →
{−1, 1}, and that any input x for such a function is a vector (x1, . . . , xn), where xi ∈ Ωi

for every i.

Juntas. The main property of boolean functions we focus on, is that of depending on
only J (or less) of its variables.

Definition 6.1 (juntas, dominating sets). A boolean function f : P([n]) → {−1, 1} is
called a J-junta if there exists a set J ⊆ [n] of size at most J , such that f(x) = f(y) for
every two inputs x, y ∈ P([n]) that agree on J , namely that satisfy xi = yi for all i ∈ J .
In this case it is said that f is dominated by J . Somewhat abusing notation, J is also
referred to as the junta which dominates f.

Preview of Results

Knowing that a function depends on only a small number of variables can be especially
useful in the context of learning. For various functions classes there exist algorithms that
are attribute efficient (cf. [Lit87, BHL95, BL96, UTW97]). That is, they have polynomial
dependence on the number of relevant variables of the function being learned but only
logarithmic dependence on the total number of variables. One should also mention here
the work of [MOS02] concerning computationally efficient learning of such functions when
the algorithm is restricted to uniform samples.

As part of this effort, [DT99] presented an algorithm that for any input function f over
boolean variables, uses O(J(log(J+1)/ε+log n)) queries to completely determine a J-junta
that dominates a function f ′ which is ε-close to f, if such a J-junta exists. In particular,
their algorithm can be used to test for the property of being a J-junta. We show here the
existence of a test for being a J-junta, for functions over arbitrary product spaces, whose
number of queries does not depend on n at all.

Theorem 6.2 (the main result). For every fixed J the property of being a J-junta is
(ε, poly(J)/ε))-testable for any given ε.

Almost juntas

Let us review the definition of testable properties, with respect to the property of being a
J-junta. To prove that this property is ε-testable, a test is to be shown, that distinguishes
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between J-juntas, and functions that must be changed in more than an ‘ε-fraction’ of the
places in order to become J-juntas. This is made more formal and somewhat more general
using the following definition, of a function that is ε-close to being a junta. Instead of just
counting the number of values of f that need to be changed in order to make it a J-junta,
giving the same weight to the value at every input, we allow weighing the inputs using a
product probability-measure.

Definition 6.3 ((ε, J)-juntas). Let f : P([n]) → {−1, 1} be a boolean function, and
assume that the range Ωi of each variable of f is equipped with a probability measure µi.
This determines a probability measure µ[n] =

∏n
i=1 µi over P([n]).

f is said to be a, (ε, J)-junta if there exists a boolean J-junta g : P([n]) → {−1, 1} such
that for a random input x ∈ P([n]) (chosen according to µ[n]),

Pr [f(x) 6= g(x)] ≥ 1− ε

In terms of the above definition, an (ε, q)-test for the property of being a J-junta is
given as input a function f, and a product measure µ[n] on its domain, and uses q queries to
distinguish between the case where the input function is a J-junta, and the case where it
is not an (ε, J)-junta. We require that the number of queries made be entirely independent
of µ[n].

Note that the above definition includes the standard case where f is defined over boolean
variables – one should just take Ωi = {0, 1} for every i, and µi to be the uniform measure
over Ωi. However, by supplying a biased measure µi for every i, a J-junta test can dis-
tinguish, using the same number of queries, between the case where a given f is a junta,
and the case where it must be changed on a set of µ[n]-measure ε in order to become junta.
Such a test can also be used to test functions that range over non-boolean variables.

Junta tests

In order to establish Theorem 6.2 we describe three testing algorithms. The first algorithm
is non-adaptive, requires O(J4 ln(J+1)/ε) queries, and is stronger in that it is 1-sided. We
also provide an adaptive variant of this algorithm which requires only O(J3 ln2(J + 1)/ε)
queries. The third algorithm presented here, is a non-adaptive variant of the first algorithm
that has a 2-sided error, but requires just O(J2 ln2(J + 1)/ε) queries.

Lower bound

On the other hand, at least with regards to non-adaptive algorithms, we show that the
query complexity has to be a power of J (the tilde notation in the following is used to hide
polylogarithmic factors), even if the test is restricted to functions over boolean variables
with respect to the uniform measure.
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Theorem 6.4. For every α > 0, a non-adaptive
(

1
2
− α, q

)
-test for the property of being a

J-junta requires at least q ≥ Ω̃
(√

J
)

queries, even if restricted to functions over boolean

variables and equipped with the uniform measure over their domain.

Recently, Chockler and Gutfreund [CG02] have proven a better lower bound, which
holds for adaptive testing algorithms as well. However, the proof given here may have
significance beyond the lower bound itself, since during its course we prove a result about
random walks on the group Zq

2 that may be of an independent interest.

Random walks

Given any (finite) group G and a distribution P on G, a random walk on G with step
distribution P starts with the identity element, and at each step t, denoting its current
position by Xt, picks a random element ξt of G according to P and goes to Xt+1 = ξtXt.
This definition of a random walk generalizes the more familiar notion of a random walk on
a Cayley graph of a group, which is obtained by setting P to be a uniform distribution on
the elements of a generating set for G.

A fundamental result of Markov [Mar06] from 1906 (see also [AD86]) states that this
random walk converges to the uniform distribution on G, unless P is concentrated on a
coset. A more recent question of interest is to estimate the rate of convergence of the
random walk to its limit distribution. It is easy to see that this rate depends on the
step distribution P , and therefore all the results in this direction concentrate on particular
families of distributions for which good bounds can be obtained.

Here we ask a different question: Given a distance parameter δ > 0, we ask when do
the distributions of Xt and Xt+c (for an appropriate constant c), become δ-close to each
other. Here we give a bound for the group Zq

2 (and c = 2), that does not depend on the
step distribution P .

Theorem 6.5. Let P be a distribution on Zq
2, and let X be the random walk on Zq

2 with
step distribution P . Let Pt be the distribution of X at step t. There is an absolute constant

C, such that for every δ > 0, if t ≥ C · log 1
δ

δ
· q2 log2(q + 1) then ‖Pt − Pt+2‖ ≤ δ.

Testing whether f is a permutation of h

Finally, we consider the question of testing that a function f is identical to a fixed function
h up to a permutation of its variables. We only consider functions over boolean variables
here, whose domains are equipped with the uniform measure. Similar questions were given
consideration already in [PRS01]. Here we construct a test for any function h which is a
J-junta that is given in advance.

Some notation about restrictions and permutations of vectors is needed for the exact
formulation of this result: Suppose that J = {j1, . . . , jJ} is some subset of [n], whose
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elements are given in ascending order, j1 < · · · < jJ . For any permutation σ : [J ] →
[J ] and every vector x = (x1, . . . , xn) ∈ {0, 1}n, we denote by x|σ(J ) the vector x =
(xjσ(1)

, . . . , xjσ(J)
) ∈ {0, 1}J .

Theorem 6.6. Let g : {0, 1}J → {−1, 1} be a function. The property, that f(x) = g(x|σ(J ))
for some J ⊂ [n] of size J and some permutation σ : [J ] → [J ], is (ε, poly(ε, J))-testable
for every ε.

Organization of this Part

We start with Chapter 7, where we give some preliminaries and notation required for the
subsequent chapter, and introduce the notion of the variation of a function f on a set I of
coordinates.

Chapter 8 presents our first junta test, called the size test. It randomly partitions the
coordinates of a given function f, and applies a simple test to each subset in the partition,
to discover whether f depends on any of its coordinates. The size test is non-adaptive, and
it has 1-sided error. In Chapter 9, we present two variants of the size test, which achieve
better query complexity. One of these variants has a 1-sided error but is adaptive, and the
other is non-adaptive but has a 2-sided error.

We then provide the lower bound for non-adaptive junta testing in Chapter 10, deriving
it from the result concerning random walks in Zq

2 that is also proven there. Finally, in
Chapter 11 we show how to test a function f for the property of being identical to a
permutation of a given function h.
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Chapter 7

Preliminaries

First, let us deal with a notational issue that will simplify the following exposition.

Partial inputs. Suppose that f : P([n]) → {−1, 1} is a boolean function, where P([n]) =∏n
i=1 Ωi, and each set Ωi is equipped with a probability measure µi. Each element x ∈

P([n]) is thus an assignment to the variables of f, where the i’th coordinate of x determines
the value of the i’th variable. To easily specify assignments for only some of the variables
of f, we define for each set I ⊆ [n] of coordinates,

P(I)
.
=
∏
i∈I

Ωi

and equip it with the probability measure µI
.
=
∏

i∈I µi. An element w ∈ P(I) is thus
a partial assignment for the variables of f. Whenever an element w ∈ P(I) is chosen
randomly, it is chosen with respect to µI unless stated otherwise.

Input manipulation. If w ∈ P(I) and z ∈ P(H) are two partial inputs, and I and H are
disjoint, let wtz ∈ P(I ∪H) denote the partial input whose i’th coordinate is wi if i ∈ I,
and zi, if i ∈ H. For a set I ⊆ [n] of coordinates and an input x ∈ P([n]), it is possible
to obtain a partial input by restricting x to the coordinates of I, obtaining x|I ∈ P(I).
For simplicity we somewhat abuse notation, writing x∩I instead of x|I . Similarly, we let
x \ I ∈ P([n] \ I) denote the partial assignment obtained from x by taking the coordinates
from [n] \ I.

Variation

We now turn to define a measure of dependency of a boolean function f on a given set of
coordinates (variables). The variation of f on a set I is proportional to the probability that
f does not yield the same values, given two random inputs that differ only on coordinates
from I.
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Definition 7.1 (variation). Let f : P([n]) → {−1, 1} be a boolean function, and fix a set
I ⊆ [n] of coordinates. Let w ∈ P([n] \ I) and let z1, z2 ∈ P(I) be chosen independently at
random. Then the variation of f on I is defined by

Vrf(I)
.
=2 Pr[f(wtz1) 6= f(wtz2)]

The variation is monotone and sub-additive, as stated in the next proposition.

Proposition 7.2 (monotonicity and sub-additivity). Let f : P([n]) → {−1, 1} be a
boolean function, and let A and B be subsets of [n]. Then

Vrf(A) + Vrf(B) ≥ Vrf(A ∪B) ≥ Vrf(B)

Proof. The proof of Proposition 7.2 is elementary, however somewhat tedious. Note that
for the case where P([n]) is the discrete cube equipped with the uniform measure, the
proposition follows directly from the Fourier-analytic formula for the variation, given in
Proposition 7.4.

We begin by proving the monotonicity property. Let A,B ⊆ [n], and suppose with-
out loss of generality that A and B are disjoint. Now let w be a random element of
P([n] \ (A ∪B)), let u1, u2 be random elements in P(A), and let v1, v2 be random ele-
ments in P(B), and assume that w, u1, u2, v1, v2 are all independent. Then according to
Definition 7.1, we have

Vrf(A ∪B) = 2 Pr [f(wtu1tv1) 6= f(wtu2tv2)] =

= 2Ew

[
Pr [f(wtu1tv1) 6= f(wtu2tv2)]

]
And similarly,

Vrf(B) = 2Ew

[
Pr [f(wtu1tv1) 6= f(wtu1tv2)]

]
Let us fix an arbitrary w ∈ P([n] \ (A ∪B)), leaving u1, u2, v1, v2 random, and conclude by
showing that

Pr [f(wtu1tv1) 6= f(wtu2tv2)] ≥ Pr [f(wtu1tv1) 6= f(wtu1tv2)] (*)

For every u ∈ P(A), define

αu
.
= Pr [f(wtutv1) = 1]

Then

Pr [f(wtu1tv1) 6= f(wtu2tv2)] = Eu1,u2 [αu1(1− αu2) + αu2(1− αu1)] =

= Eu1,u2 [αu1 + αu2 − 2αu1αu2 ] =
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(αu1 and αu2 are functions of independent variables, and therefore are independent)

= 2Eu1 [αu1 ]− 2
(
Eu1 [αu1 ]

)2 ≥
≥ 2Eu1 [αu1 ]− 2Eu1

[
α2
u1

]
=

= 2Eu1 [αu1(1− αu1)] =

= Pr [f(wtu1tv1) 6= f(wtu1tv2)]

We have (*), and therefore we have completed the proof of the monotonicity property.

Let us now continue with the sub-additivity of the variation. Let A,B ⊆ [n]. From
the monotonicity property it follows that we may assume that A and B are disjoint. Let
w, u1, u2, v1, v2 be randomly chosen as above. Then

Vrf(A ∪B) = 2 Pr[f(wtu1tv1) 6= f(wtu2tv2)] ≤
≤ 2 Pr[f(wtu1tv1) 6= f(wtu2tv1)] + 2 Pr[f(wtu2tv1) 6= f(wtu2tv2)] =

= Vrf(A) + Vrf(B)

Norms, Distances, and Inner-Products

Although our main concern here is the set of boolean functions over P([n]), it is useful to
consider such functions as elements in the space of real-valued functions f : P([n]) → R.
For such a function f, and any parameter 1 ≤ q <∞, the normalized `q-norm of f is defined
by

‖f‖q
.
= E

x∈P([n])
[|f(x)|q]1/q

(x is randomly chosen in P([n]) according to µ[n]). The inner-product between two functions
f, g : P([n]) → R, is defined by

〈f, g〉 .= E
x∈P([n])

[f(x)g(x)]

This inner-product is related to the `2 norm, satisfying 〈f, f〉 = ‖f‖2
2 for every real-valued

function f.

We also define another norm, that is used in Chapter 10 to measure the distance between
two probability measures P,Q : {0, 1}n → R over the discrete cube. The variation distance
between two such measure is defined by |P −Q| .=1

2

∑
x∈{0,1}n |P (x) − Q(x)| (this is not

related to the variation discussed above).
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Harmonic Analysis

Let us now focus on functions defined over the discrete cube {0, 1}n, equipped with the
uniform measure. Real-valued functions defined over this domain can be expressed by their
Fourier expansion as follows.

Definition 7.3 (characters and weights). Let S ⊆ [n]. The character χ
S

is the function
over {0, 1}n defined by χ

S
(x)

.
=
∏

i∈S(−1)xi.
Given a function f : {0, 1}n → R, its expansion as a linear combination of characters

f(x) =
∑
S⊆[n]

f̂(S)χ
S
(x)

is called the Fourier expansion of f (such an expansion always exists, since the set of char-
acters forms a linear basis for the set of real functions over {0, 1}n).

Properties of characters. The set of all characters forms an orthonormal basis for
the space of real-valued functions over {0, 1}n, with respect to the inner-product defined
above. In addition, every character χ

S
satisfies χ

S
(x ⊕ y) = χ

S
(x)χ

S
(y) for any points

x, y ∈ {0, 1}n, where ‘x⊕ y’ denotes the coordinate-wise addition of x and y in Zn
2 .

Variation and fourier expansion. The variation of a boolean function f, defined over
the discrete cube, can be written in terms of its Fourier expansion as follows.

Proposition 7.4. Let f : {0, 1}n → {−1, 1} be a boolean function, where {0, 1}n is equipped
with the uniform measure, and let I ⊆ [n] be a set of coordinates. Then

Vrf(I) =
∑
S∩I 6=∅

f̂2(S)

Note that Proposition 7.4 directly implies Proposition 7.2 above for functions over the
discrete cube (with the uniform measure).

Proof of Proposition 7.4: Let w, z1, z2 be chosen randomly as in Definition 7.1. Then

1− Vrf(I) = Pr[f(wtz1) = f(wtz2)]− Pr[f(wtz1) 6= f(wtz2)] =

= Ew,z1,z2 [f(wtz1)f(wtz2)] =

= Ew,z1,z2

[(∑
S

f̂(S)χ
S
(wtz1)

)(∑
T

f̂(T )χ
T
(wtz2)

)]
=

=
∑
S,T

f̂(S )̂f(T )Ew,z1,z2 [χS
(wtz1)χT

(wtz2)]



Preliminaries 93

It is straightforward to verify that unless S = T and S ∩ I = T ∩ I = ∅,

Ew,z1,z2 [χS
(wtz1)χT

(wtz2)] = 0

and that otherwise the above expectaion equals 1. Hence we have

1− Vrf(I) =
∑
S∩I=∅

f̂(S)2

Since f is boolean, and since the set of characters forms an orthonormal basis, we have∑
S⊆[n] f̂(S)2 = ‖f‖2

2 = 1. Putting that into the above equality yields

Vrf(I) =
∑
S∩I 6=∅

f̂2(S)

as required.

Convolution.

The convolution of two distributions or functions f, g : {0, 1}n → R is denoted by f ∗ g, and
is defined by (f ∗g)(y)

.
=
∑

x

(
f(x) ·g(x⊕y)

)
. We will need the following important property

of convolution:
(̂f ∗ g)(S) = 2n · f̂(S) · ĝ(S).
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Chapter 8

The Size Test

The size test, shown herein, is a one-sided non-adaptive (ε,Θ(J4 ln(J + 1)/ε))-test for the
property of being a J-junta. The independence test, presented next, is its main component.
Given a set I of coordinates, the independence test is used to determine whether a given
boolean function f is independent of the coordinates in I. It is a simple two-query test as
follows.

The independence test. Choose a random w ∈ P([n] \ I), and choose z1, z2 ∈ P(I)
randomly and independently. Verify that f(wtz1) = f(wtz2).

Properties of the independence test. It is obvious that the independence test always
accepts if f is independent of the coordinates in I, and by Definition 7.1, its rejection
probability equals 1

2
Vrf(I).

If f is a J junta, then it clearly has the following property: for every partition I1, . . . , Ir
of the set of coordinates, all but at most J of them have zero variation. Hence when the
independence test is applied to f with respect to all but at most J of the subsets, it must
accept. This consideration motivates the following size test.

The size test. The test has two parameters, r and h, that are to be chosen later. The
test first chooses a random partition I1, . . . , Ir of the set [n] of coordinates. It then identifies
on which of the Ij’s f has non-negligible variation, using 2rh queries, by going over every
j from 1 to r and applying h iterations of the independence test to Ij. If f is found to be
dependent on more than J subsets, the test rejects, and otherwise it accepts.

Properties of the test. The size test obviously accepts every J-junta, thus having per-
fect completeness. We show in the next section that, for a proper setting of the parameters
r and h, the size test rejects with probability at least 1/2 unless f is an (ε, J)-junta (since
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the test is 1-sided this can easily be amplified to 2/3). Before we prove this, let us set the
r and h parameters.

The parameters of the test. Let us set r
.
=16J2 and h

.
=4er(ln(J + 1) + 2)/ε =

Θ(J2 ln(J + 1)/ε). Hence overall the test makes 2rh = Θ(J4 ln(J + 1)/ε) queries to f,
as required.

8.1 Soundness of the Size Test

Assume that f passes the test with probability 1/2. We prove that f must be an (ε, J)-junta
in two steps. We first take J to be the set of coordinates on which f has variation larger
than some threshold t, and prove that |J | ≤ J . Then we show that the total variation of f
on coordinates outside J is bounded by 2ε. This implies, by a simple argument, that f is
ε-close to a junta dominated by J .

Let t
.
=2(ln(J+1)+2)

h
= ε

2er
, and let J denote the set of all coordinates i for which Vrf({i}) > t.

We also denote J̄ .
=[n] \ J .

Proposition 8.1. If the size test succeeds on f with probability 1/2, then |J | ≤ J .

Proof. The key observation here is that if a set I of coordinates contains a member of J ,
then the variation of f on that set is at least t (by Proposition 7.2), and therefore each
iteration of the independence test on I detects the dependence with probability at least
t/2.

Suppose, for the sake of contradiction, that |J | > J . Since r = 16J2, it is easy to verify
that with probability at least 3/4 the number of subsets in the partition I1, . . . , Ir that
contain an element from J is at least J + 1. When this occurs, the probability that any of
the first J + 1 subsets which intersect J will not be identified by the size test is bounded
by (J + 1)(1− t/2)h ≤ (J + 1)e− ln(J+1)−2 < 1/4, since h = 2(2 + ln(J + 1))/t. Overall we
have that with probability at least 1/2 the size test rejects.

Having shown that |J | ≤ J , the proof of soundness will be complete by showing that f
is ε-close to a junta dominated by J . We actually show that Vrf(J̄ ) < 2ε. This is sufficient
to complete the proof, according to the following claim.

Proposition 8.2. Let J be a set of coordinates satisfying Vrf(J̄ ) < 2ε. Then there exists
a boolean function h, that depends only on coordinates from J , and agrees with f on a set
of inputs of measure at least (1− ε).

Proof. Let z be a random element in P(I), and define h : P([n]) → {−1, 1} by

h(x) =

{
1 Ez[f((x \ I)tz)] ≥ 0

−1 otherwise
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h(x) is the majority of the values of f over all inputs that agree with x on the coordinates
in J . It is easy to verify that h depends only on the coordinates in J , so to prove the
claim, we show that f and h agree on at least a (1− ε)-fraction of the inputs.

Fix w ∈ P([n] \ I), let z1, z2 ∈ P(I) be chosen randomly and independently, and denote
p(w)

.
= Prz1 [f(wtz1) 6= h(wtz1)]. Then

Pr [f(wtz1) 6= f(wtz2)] = 2p(w)(1− p(w))

and p(w) ≤ 1/2. Now if x is chosen randomly from P([n]) then w
.
=(x \ I) is a random

element in P([n] \ I), and we thus have

Pr
x

[f(x) 6= h(x)] = Pr
w,z1

[f(wtz1) 6= h(wtz1)] = Ew[p(w)] ≤

≤ Ew[2p(w)(1− p(w))] = Ew[ Pr
z1,z2

[f(wtz1) 6= f(wtz2)] ] =

= Pr
w,z1,z2

[f(wtz1) 6= f(wtz2)] =
1

2
Vrf(J̄ ) < ε

Bounding Vrf(J̄ )

It is left to show that Vrf(J̄ ) < 2ε. Assume otherwise, and let us prove that the test rejects
with probability at least 1/2.

Idea of the proof. The sum
∑r

j=1 Vrf(Ij\J ) is never less than Vrf(J̄ ), as follows from the

sub-additivity of the variation (see Proposition 7.2). Since we assume that Vrf(J̄ ) ≥ 2ε,
we have

r∑
j=1

E [Vrf(Ij \ J )] = E

[
r∑
j=1

Vrf(Ij \ J )

]
≥ 2ε

Using the fact that the sets in the partition are equidistributed, it follows that for any fixed
j,

E [Vrf(Ij \ J )] ≥ 2ε/r

Since Ij is a random set of coordinates, then using the fact that every coordinate can
contribute at most t to the variation of Ij \ J , we obtain a concentration property for its
variation. In fact, we show that Vrf(Ij \J ) (and therefore Vrf(Ij) ) is with high probability
at least a sizable portion of the bound for its expectation. This implies that with high
probability, there are many sets Ij in the partition whose variation is relatively high. Since
such sets are detected with high probability by the independence test, the size test rejects
f with high probability.

Definition 8.3. A set Ij in the partition is said to be detectable if Vrf(Ij) >
ε
er

.
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Lemma 8.4. Fix j, 1 ≤ j ≤ r. The probability that Ij is detectable, over the choice of the
partition I1, . . . , Ir, is at least 3/4.

Before we prove Lemma 8.4, we show how it completes the proof of the soundness of
the size test. Let q denote the probability that the number of detectable subsets in the
partition is smaller than r/4. Since the number of detectable subsets is bounded by r,
Lemma 8.4 implies that

1

4
rq + r(1− q) ≥ E [ number of detectable Ij’s ] ≥ 3

4
r

from which we have q ≤ 1/3. Hence with probability at least 2/3, there are at least
r/4 = 4J2 > J + 1 subsets in the partition, whose variation is larger than ε/er = 2t. The
size test fails in this case with probability at least 15/16, as follows from an argument
similar to that in the proof of Proposition 8.1. Therefore, the size test rejects f with an
overall probability at least 1/2, as required.

It is only left to prove Lemma 8.4.

Proof of Lemma 8.4: As mentioned above, the expectation of the variation of f on Ij \ J
is at least 2ε/r. Lemma 8.4 will follow by showing that with probability at least 3/4,
Vrf(Ij \ J ) ≥ 2ε/r.

Ij is a random subset, obtained by going over the coordinates i ∈ [n] and taking each
into Ij with probability 1/r. We can thus view the random variable Vrf(Ij \ J ) as a sum
of the gradual donation of each coordinate,

Vrf(Ij \ J ) =
n∑
i=1

(
Vrf
(
[i] ∩ (Ij \ J )

)
− Vrf

(
[i− 1] ∩ (Ij \ J )

) )
In order to use standard deviation bounds for Vrf(Ij \J ), we would like the summands

on the right-hand side to be independent and bounded by a small number. Note that
the i’th summand is zero if i ∈ J , and if i 6∈ J it is bounded by t, as follows from the
sub-additivity of the variation (and of course, all the summands are non-negative). The
summands are thus indeed bounded by a small number, but they are not independent.
This is tackled by introducing a technical tool that we call the unique-variation. While
related to the variation, the unique-variation of Ij can be written as the sum of independent
non-negative bounded random variables.

Definition 8.5 (unique-variation). Define the unique-variation of every coordinate i ∈
[n] by

Urf(i)
.
=Vrf([i] \ J )− Vrf([i− 1] \ J ),

where [0] denotes the empty set. Now for every set I ⊆ P([n]) define its unique-variation
by

Urf(I)
.
=
∑
i∈I

Urf(i)
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The following lemma, the proof of which is deferred to Section 8.2, shows that the unique-
variation of a subset I bounds the variation of I from below (note that in the case of the
discrete cube with the uniform measure, the lemma follows directly from Proposition 7.2).

Lemma 8.6. For every set I ⊆ [n] of coordinates, Urf(I) ≤ Vrf(I \ J ).

Therefore, it suffices to show that Pr [Urf(Ij) ≤ ε/er] < 1/4 in order to complete the
proof of Lemma 8.4.

Note that the unique-variation of coordinates in J is zero, and that Urf(i) ≤ Vrf(i) ≤ t
for coordinates i outside J , as follows from the sub-additivity property of the variation.
The unique-variation of Ij is therefore a sum of independent non-negative random variables,
each of which is bounded by t, and its expectation is given by

E [Urf(Ij)] =
1

r

∑
i∈[n]

Urf(i) = Vrf(J̄ )/r ≥ 2ε/r

We can therefore apply standard deviation bounds to it, such as the following Chernoff-
like bound, proven in Appendix A.

Proposition 8.7. Let X =
∑l

i=1Xi be a sum of non-negative independent random vari-
ables Xi, and denote the expectation of X by α. If each Xi is bounded above by t, then

Pr[X < ηα] < exp
( α
et

(ηe− 1)
)

for every η > 0.

Since E[Urf(Ij)] ≥ 2ε/r, Proposition 8.7 yields

Pr [Urf(Ij) ≤ ε/er] < exp
(
− ε

ert

)
= e−2 < 1/4

as desired.

8.2 Variation Dominates Unique-Variation

In this section we prove Lemma 8.6, showing that the unique-variation of every set I ⊆ [n]
of coordinates cannot exceed its variation. For this purpose we need to refine the sub-
additivity property of the variation (Proposition 7.2). While the sub-additivity property
states that Vrf(A∪B)−Vrf(A) ≤ Vrf(B) for every subsets A,B of coordinates, the property
needed for the proof of Lemma 8.6 is the following.

Lemma 8.8 (diminishing marginal variation). For every sets A,B,C ⊆ [n] of coor-
dinates,

Vrf(A ∪B)− Vrf(A) ≤ Vrf(B ∪ (A ∩ C))− Vrf(A ∩ C)
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Let us first show how this property implies Lemma 8.6.

Proof of Lemma 8.6: In fact we show that the unique-variation of I ⊆ [n] is bounded from
above by Vrf(I \ J ).

For i ∈ [n] denote Ai
.
=[i− 1] \ J , and Bi

.
={i} \ J . It follows from Lemma 8.8 that for

every i ∈ I,

Vrf([i] \ J )− Vrf([i− 1] \ J ) = Vrf(Ai ∪Bi)− Vrf(Ai) ≤
≤ Vrf(Bi ∪ (Ai ∩ I))− Vrf(Ai ∩ I) =

= Vrf(([i] ∩ I) \ J )− Vrf(([i− 1] ∩ I) \ J )

Hence

Urf(I) =
∑
i∈I

Urf(i) =
∑
i∈I

(
Vrf([i] \ J )− Vrf([i− 1] \ J )

)
≤

≤
∑
i∈I

(
Vrf(([i] ∩ I) \ J )− Vrf(([i− 1] ∩ I) \ J )

)
=

=
n∑
i=1

(
Vrf(([i] ∩ I) \ J )− Vrf(([i− 1] ∩ I) \ J )

)
= Vrf(I \ J )

as required.

Proof of Lemma 8.8

Let us now prove Lemma 8.8, in order to conclude the proof of Lemma 8.6. First, we
define the averaging projection with respect to a set of coordinates, and show some of its
elementary properties. We then give a formula for the variation of f on a set I, using the
function obtained by subtracting from f its average with respect to I. Lemma 8.8 is then
obtained by using this formula together with the properties of the averaging projection.

Definition 8.9 (averaging projection). Let g : P([n]) → R be any real-valued function,
and let z be chosen randomly in P(I). The average of g with respect to the set I is the
real-valued function over the domain P([n]), defined by

AvgI [g] (x)
.
=Ez[g((x \ I)tz)]

Proposition 8.10 (properties of the averaging projection). Let A,B ⊆ [n] be sets
of coordinates. Then

1. The transformation that takes a real-valued function g : P([n]) → R to AvgA [g] is an
orthogonal projection. Its image is the subspace of functions that do not depend on
coordinates from A
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2. For every function g : P([n]) → R,

AvgA [AvgB [g]] = AvgA∪B [g]

3. For every function g : P([n]) → R,

‖AvgA [g]− AvgA∪B [g]‖2
2 = ‖AvgA [g]‖2

2 − ‖AvgA∪B [g]‖2
2

Proof. It is easy to note that the averaging transformation with respect to A is a projection,
and that its image is as stated. To see that it is orthogonal, take w ∈ P([n] \ A) and
z ∈ P(A) to be random and independent. The orthogonality of the averaging projection
follows since for every function g : P([n]) → R,

〈g − AvgA [g] ,AvgA [g]〉 =

= EwEz

[(
g(wtz)− AvgA [g] (wtz)

)
AvgA [g] (wtz)

]
= Ew[0] = 0

The verification of the second statement is straightforward, and we omit it.

Let us verify the third property. It follows from the second statement that

〈AvgA [g] ,AvgA∪B [g]〉 = 〈AvgA [g] ,AvgB [AvgA [g]]〉

and then from the orthogonality of the averaging projection with respect to B, we have

〈AvgA [g] ,AvgB [AvgA [g]]〉 = ‖AvgB [AvgA [g]]‖2
2 = ‖AvgA∪B [g]‖2

2

Hence

‖AvgA [g]− AvgA∪B [g]‖2
2 =

= ‖AvgA [g]‖2
2 + ‖AvgA∪B [g]‖2

2 − 2 〈AvgA [g] ,AvgA∪B [g]〉 =

= ‖AvgA [g]‖2
2 − ‖AvgA∪B [g]‖2

2

Let us now express the variation of a set of coordinates in terms of the averaging
projection.

Proposition 8.11 (variation vs. average). For every set I ⊆ [n] of coordinates,

Vrf(I) = ‖f − AvgI [f]‖2
2
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Proof. For every w ∈ P([n] \ I) let αw be defined by

αw
.
= Pr

z∈P(I)
[f(wtz) = 1]

Then for every w ∈ P([n] \ I) and z ∈ P([I]), AvgI [f] (wtz) = 2αw−1. Hence if w is fixed,
and z, z1, z2 ∈ P(I) are chosen randomly and independently, one can easily verify that

Ez

[(
f(wtz)− AvgI [f] (wtz)

)2]
= 4αw(1− αw)

and that
Pr
z1,z2

[f(wtz1) 6= f(wtz2)] = 2αw(1− αw)

Now if w ∈ P([n] \ I) and z, z1, z2 ∈ P(I) are all chosen randomly and independently,
we have

‖f − AvgI [f]‖2
2 = EwEz

[(
f(wtz)− AvgI [f] (wtz)

)2]
=

= Ew[4αw(1− αw)] =

= 2Ew[ Pr
z1,z2

[f(wtz1) 6= f(wtz2)]] =

= 2 Pr
w,z1,z2

[f(wtz1) 6= f(wtz2)] = Vrf(I)

We now return to the proof of Lemma 8.8. According to proposition 8.11, it suffices to
show that

‖f − AvgA∪B [f]‖2
2 − ‖f − AvgA [f]‖2

2 ≤ ‖f − AvgB∪(A∩C) [f]‖2

2
− ‖f − AvgA∩C [f]‖2

2 (◦)

By applying the third statement in proposition 8.10 to both terms in the left-hand side
of (◦), and noting that f = Avg∅ [f], we have

‖f − AvgA∪B [f]‖2
2 − ‖f − AvgA [f]‖2

2 =

= ‖AvgA [f]‖2
2 − ‖AvgA∪B [f]‖2

2 = ‖AvgA [f]− AvgA∪B [f]‖2
2

Similarly,

‖f − AvgB∪(A∩C) [f]‖2

2
− ‖f − AvgA∩C [f]‖2

2 = ‖AvgA∩C [f]− AvgB∪(A∩C) [f]‖2

2

Now, according to the second statement in Proposition 8.10, and since an orthonormal
projection cannot increase the `2 norm of a vector, we have

‖AvgA [f]− AvgA∪B [f]‖2
2 = ‖AvgA

[
AvgA∩C [f]− AvgB∪(A∩C) [f]

]
‖2

2
≤

≤ ‖AvgA∩C [f]− AvgB∪(A∩C) [f]‖2

2

This implies Inequality (◦), thus completing the proof of Lemma 8.6.



Chapter 9

Improving the Query Complexity

In this chapter we present two tests for the property of being a J-junta, that obtain im-
proved query complexity with respect to the size test shown in Chapter 8. The first test
uses adaptivity in order to reduce the query complexity, and the other is two-sided, namely
it may reject a J-junta with probability up to 1/3.

9.1 Improving the Query Complexity Using Adaptiv-

ity

The size test applies several iterations of the independence test to every subset in the
partition, in order to detect whether it has a non-negligible variation. Here we show how
using adaptivity, it is possible to detect all the subsets in the partition that have non-
negligible variation using less queries (reducing one power of the dependency on J).

Theorem 9.1. Set r = 16J2 (as in the size test). Then there exists an adaptive one-sided
J-junta test, that uses

32erJ(1 + log2 r) ln(32J(1 + log2 r))

ε
= Θ

(
J3 ln2(J + 1)/ε

)
queries.

Proof. The idea of the adaptive test is to speed up the finding of the subsets of the partition
with non-negligible variation as follows: Instead of applying the independence test to each
subset individually, we apply it to blocks, each of which is a union of several such subsets. If
f is not found to depend on a block, then all of its elements can be declared to be ‘variation
free’ at once. When f is found to depend on a block, the algorithm divides the block into
two equally sized sub-blocks, for which the process is repeated.
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Definition 9.2 (blocks). Fix a partition I1, . . . , Ir of the coordinates. A set B of coor-
dinates is called a block, if it is the union of a positive number of subsets in the partition.
The size of the block is the number of subsets in the partition that take part in this union.

The adaptive test. The adaptive test begins by randomly partitioning the coordinates
into subsets I1, . . . , Ir. The test maintains, throughout its operation, a set S = {B1, . . . , Bl}
of at most J disjoint blocks with respect to this partition. The blocks in S supposedly
contain all the sets Ij in the partition that have non-negligible variation. Initially S is set
to have only one block which contains all coordinates, namely S = {[n]}. In each step, the
test performs the following.

• If all the blocks in S are of size one, accept (in this case at most J elements of the
partition supposedly have non-negligible variation).

• Otherwise, choose a block B ∈ S that has the largest size. Remove B from S, and
partition it arbitrarily into two sub-blocks B = B′∪B′′, whose sizes differ by at most
1.

• Apply 4er ln(32J(1+log2 r))
ε

iterations of the independence test to B′. If f is found to
depend on B′, then insert B′ into S, and otherwise discard it. Apply the same
treatment to B′′.

• If the size of S is now greater than J , reject (f depends on each of the subsets in S,
hence it is not a J-junta). Otherwise continue to the next step.

The adaptive test obviously accepts with probability 1 if f is a J-junta. To bound the
number of rounds, we note that if after round T the maximum size of the blocks is m,
then clearly after round T + J the maximum size of the blocks is no more than dm

2
e. This

implies that the algorithm terminates after at most 2J(1+ log2 r) steps, and that each step

uses 16er ln(32J(1+log2 r))
ε

queries. The total number of queries made is therefore as required.
To prove Theorem 9.1, it is left to show that if f passes the test with probability at

least 1/2, then it is an (ε, J)-junta.

Proposition 9.3 (soundness). If f passes the adaptive-test with probability 1/2, then it
is an (ε, J)-junta.

Proof. Let t = ε
2er

and let J be defined as the set of coordinates i for which Vrf({i}) > t
(as in Section 8.1). It suffices to prove that |J | ≤ J and that Vrf(J̄ ) ≤ 2ε. Assume on
the contrary that this is not the case, and let us prove that the adaptive-test rejects with
probability at least 1/2.

According to the proof of Proposition 8.1, if |J | > J then with probability at least
3/4 there are at least J + 1 subsets in the partition I1, . . . , Ir whose variation is at least t.
Moreover, it is shown in Section 8.1 that if Vrf(J̄ ) > 2ε, then with probability at least 2/3
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there are at least J + 1 subsets in the partition, whose variation is at least ε/er = 2t. In
both cases, with probability at least 2/3 there are at least J + 1 subsets in the partition
whose variation is at least t.

To complete the proof we show that if there are at least J + 1 subsets with variation
at least t in the partition I1, . . . , Ir chosen by the adaptive test, then the probability that
it accepts is at most 1/8. This holds since in order to accept, the test must at some point
discard a block whose variation is at least t. The probability of discarding each such block
is at most

(1− t

2
)

4er ln(32J(1+log2 r))
ε ≤ e− ln(32J(1+log2 r)) =

1

32J(1 + log2 r)

The test encounters two blocks at each step, so summing over all steps bounds the proba-
bility that such a block is discarded throughout the test by 1/8.

This concludes the proof of Theorem 9.1.

9.2 Improving the Query Complexity

Using Two-Sidedness

In this section we present a test with a significantly reduced query complexity. It makes
Θ(J2 ln2(J +1)/ε) queries, removing a J2 factor from the query complexity of the size test.
The test is two-sided, namely we allow it to reject a J-junta with probability at most 1/3,
on condition that it rejects an input that is not an (ε, J)-junta with probability at least
2/3.

Theorem 9.4. Let ε > 0 be any positive number, and fix r
.
=16J2, s

.
=20J(3 + ln r),

and h
.
=6er(3+2 ln s)

εJ
. Then there exists a non-adaptive J-junta test, which makes 2sh =

Θ(J2 ln2(J + 1)/ε) queries, and satisfies the following.

• Every J-junta is accepted with probability at least 2/3.

• Any input which is not an (ε, J)-junta is rejected with probability at least 2/3.

Proof. As in the size test, the two-sided test randomly partitions the coordinates into r
subsets. In order to reduce the number of queries, the two-sided test finds subsets in the
partition that have non-negligible variation by applying the independence test to blocks of
such subsets (see Definition 9.2), much like the adaptive test presented above.

The two-sided test. First, the test randomly partitions the coordinates into r subsets
I1, . . . , Ir. Then it picks s random subsets Λ1, . . . ,Λs ⊆ [r] independently, each of size J .
Each set Λl determines a block Bl

.
=
⋃
j∈Λl

Ij, to which the test applies h iterations of the
independence test.
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Acceptance conditions. The test declares a block Bl to be variation-free if none of the
independence test iterations applied to it finds f to depend on it. If Bl is declared variation-
free, then all the subsets Ij contained in it are declared variation-free on its behalf. The
test accepts f if both of the following conditions hold.

• At least half of the blocks B1, . . . , Bs are declared variation free

• Except for at most J subsets, every subset in the partition I1, . . . , Ir is declared
variation-free on behalf of some block

Properties of the test. It is obvious that the test performs 2sh queries, as required.
It is left to show that a J-junta is accepted by the test with probability at least 2/3, and
that an input which is not an (ε, J)-junta is rejected with probability at least 2/3. This is
proven in the next two lemmas.

Lemma 9.5 (completeness). If f is a J-junta, then it passes the two-sided test with
probability at least 2/3.

Proof. Fix any partition I1, . . . , Ir. If f is a J-junta, then it is independent of all subsets in
the partition, except for at most J of them. Hence for any fixed l, the probability over the
selection of the blocks that f is independent of Bl is at least(

1− J

r − J + 1

)J
> 1− J2

r − J
≥ 14

15

The probability that f depends on more than half of the blocks is therefore smaller than
2
15
< 1

6
, using the Markov inequality. Hence with probability at least 1− 1

6
, at least half of

the blocks are declared variation-free, and the first acceptance condition holds.
Now fix j such that f does not depend on Ij, and let us bound the probability that

it is not declared variation-free. Conditioned on the event that f does not depend on
Bl, the probability that in addition Bl contains Ij is at least J/r = 1/16J . Hence Ij is
declared variation-free on behalf of Bl with probability at least 1/20J , for every fixed l.
The probability that Ij is not declared variation-free is therefore bounded by(

1− 1

20J

)s
=

(
1− 1

20J

)20J(3+ln r)

<
1

6r

It follows that with probability at least 1− 1
6
, all the subsets in the partition on which f

does not depend are declared variation-free (in this case the second acceptance condition is
fulfilled). Overall we have that with probability at least 2/3, both conditions for acceptance
are satisfied.

Lemma 9.6 (soundness). If f passes the two-sided test with probability higher than 2/3,
then it is an (ε, J)-junta.
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Proof. Let t = εJ
3er

and let J denote the set of all coordinates i for which Vrf({i}) > t. As
shown in Chapter 8, it suffices to prove that |J | ≤ J and that Vrf(J̄ ) < 2ε. Assume on
the contrary that this is not the case, and let us prove that the two-sided test rejects with
probability at least 2/3.

First case, |J | > J. As in the proof of proposition 8.1, if |J | > J then with probability
at least 3/4 there are at least J+1 subsets in the partition I1, . . . , Ir with variation at least
t. To conclude this case, we show that the probability of each such subset to be declared
variation-free is bounded by 1

12(J+1)
.

Let Ij be a subset whose variation is at least t, and let Bl be a block that contains it. By
the monotonicity of the variation we have Vrf(Bl) > t, so each iteration of the independence
test on Bl detects a dependency of f on Bl with probability at least t/2. The probability
of Bl to be declared variation-free is therefore bounded by

(1− t/2)h = (1− t/2)2·(3+2 ln s)/t <

<
1

12s(J + 1)

Since Ij is contained in at most s blocks, the probability of it being declared variation-free
is bounded by 1/12(J + 1), as required.

Second case, Vrf(J̄ ) ≥ 2ε. Let us fix one index l, and show that Bl has high variation
with very high probability. This will imply that with high-probability, the number of blocks
not declared variation-free is larger than s/2, and the test rejects.

It follows from the procedure of choosing the partition and the blocks, that Bl is in
fact a random set of coordinates, independently containing each coordinate i ∈ [n] with
probability J/r. We now consider the unique-variation as in Definition 8.5, only with
respect to the set J as defined here. Then the expectation of Urf(Bl) is given by

E [Urf(Bl)] =
J

r

∑
i∈[n]

Urf(i) =
J

r
Vrf(J̄ ) ≥ 2εJ/r

Moreover, the unique-variation of Bl is a sum of non-negative independent random vari-
ables, each bounded by t. It thus follows from Lemma 8.6 and Proposition 8.7 that

Pr

[
Vrf(Bl) <

εJ

er

]
≤ Pr

[
Urf(Bl) <

εJ

er

]
< exp

(
− εJ

ert

)
= e−3 < 1/12

We say that a block Bl is detectable if its variation is at least εJ/er. The expected
number of undetectable blocks is therefore smaller than s/12. It follows from the Markov
inequality that with probability at least 1− 1

6
, there are less that s/2 undetectable blocks,
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and therefore there are more than s/2 detectable blocks. The probability of a detectable
block to be declared variation-free is bounded by(

1− εJ

2er

)h
< exp (−(9 + 6 ln s)) <

1

6s
,

and therefore with probability at least 1 − 1
6
, none of the detectable blocks are declared

variation-free. Overall we have that with probability at least 2/3, the number of detectable
blocks is more than s/2, and none of them is declared variation-free, and therefore the test
rejects.

This concludes the proof of Theorem 9.4.



Chapter 10

Lower Bound, and a Random Walks
on Zq2

We use Yao’s principle, which states that to show a lower bound on the complexity of a
randomized test, it is enough to present an input distribution for which any deterministic
test with that complexity is likely to fail.

We define distributions DP , DN on positive (J-junta) and negative (1
2
-far from any

J-junta) inputs, respectively. Our input distribution first chooses DP or DN with equal
probability and then draws an input according to the chosen distribution. We show that
every deterministic non-adaptive test with q = Õ(

√
J) queries has error probability larger

than 1/3 (with respect to the induced probability on inputs). For this purpose we show
that for any set of q = Õ(

√
J) vertices of the hypercube, the distributions DP and DN

induced on {−1, 1}q by restricting the functions to these q vertices have a variation distance
less than 1

3
.

The distributions DP and DN are simply uniform distributions over characters χ
S

of
size J and J + 2 respectively. We will, however, work with two auxiliary distributions
D̃P , D̃N , which are close to DP and DN , and which are easier to analyze. To choose a
function from D̃P , we choose a random set S ⊆ [n], |S| ≤ J , by picking J random elements
in [n] with repetition, and take the character χ

S
. The distribution D̃N is defined in the

same manner, but that we choose J + 2 elements in [n].
Note that if |S| > J , then the character χ

S
is 1

2
-far from any J-junta; and that both∣∣∣DP − D̃P

∣∣∣ and
∣∣∣DN − D̃N

∣∣∣ are bounded by O
(
J2

n

)
.

Now, consider the distributions induced by D̃P , D̃N on {−1, 1}q. Let x1, . . . , xq be the
queries, and let M be a q×n boolean matrix, with rows x1, . . . , xq. To choose an element x
of {−1, 1}q according to the first distribution, we choose at random, allowing repetitions, J
columns of M and sum them up. This gives us an element y of {0, 1}q. We take x = (−1)y,
where the power operation is performed coordinate-wise. The same holds for the second
distribution, the only difference being that we choose J + 2 columns.
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For x ∈ Zq
2, let P (x) be the probability of choosing x when we pick a column of M at

random. Consider a random walk on Zq
2
∼= {−1, 1}q, starting at 0, in which at every step

we choose an element of the cube according to P and add it to the current location. Let Pt
be the distribution induced by this walk after t steps. Note that PJ , PJ+2 are precisely the
distributions induced by D̃P , D̃N . Note also that Pt is the distribution of Y ⊕Y ⊕ . . .⊕Y ,
where we sum t independent copies of a Zq

2-valued random variable Y , taking every value
x with probability P (x).

We want to show that for t sufficiently large compared to q, the distributions Pt, Pt+2

are close in the variation distance. This is Theorem 6.5, presented in the introduction.
Theorem 6.4 (see the introduction) now follows as an immediate corollary.

Theorem 6.5 is proven below. We first give a very brief overview of the proof.Every
element x of Zq

2 defines a partition of the space into a subspace V0 = {y : 〈y, x〉 = 0} and
its complement V1. x is said to be a degenerate direction if the probability of either of these
sets is at most Õ (q−1). The proof is inductive on the dimension q. We distinguish between
two cases: if there are no degenerate directions, then the random walk is exponentially
close to being stationary after Õ (q2) steps, and the claim holds. If, on the other hand,
there is a degenerate direction x, then the walk ‘splits’ into two ‘independent’ walks, one
on V0 and one on V1, each of which is isomorphic to Zq−1

2 , and we can use induction.

Proof of Theorem 6.5

Let us consider the distribution Pt of the walk at time t. Recall that the distribution
of the sum of two independent random variables is the convolution of their distributions,
(P ∗Q)(x) =

∑
y P (y)Q(x⊕ y). This implies that Pt is the t-wise convolution of P , which

we will denote by P ∗t.

Now, for any r ≤ t we have |Pt − Pt+2| =
∣∣P ∗t − P ∗(t+2)

∣∣ =
∣∣P ∗(t−r) ∗

(
P ∗r − P ∗(r+2)

)∣∣ =∣∣P ∗(t−r) ∗ (Pr − Pr+2)
∣∣. The following fact is well-known and easy: for any two functions f, g

on Zq
2 it holds that ‖f ∗g‖1 ≤ 2q‖f‖1‖g‖1. Taking into account that P ∗(t−r) is a distribution

we deduce

|Pt − Pt+2| =
∣∣P ∗(t−r) ∗ (Pr − Pr+2)

∣∣ = 2q−1 · ‖P ∗(t−r) ∗ (Pr − Pr+2) ‖1 ≤

2q−1 · ‖Pr − Pr+2‖1 = |Pr − Pr+2|.

Therefore, the distance |Pt − Pt+2| is monotone non-increasing in t, and we are interested

in the first time t = t(q) for which Pt and Pt+2 are δ-close. We show t(q) ≤ O
(

log 1
δ

δ
· b(q)

)
,

where we set b(q)
.
=q2 log2(q + 1).

This is an immediate consequence of the following proposition, where S is the sum of
the convergent series

∑∞
J=1

J
b(J)

:
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Proposition 10.1. There exists an absolute constant C such that for any q ≥ 1, for any

distribution P on Zq
2, and for any t ≥ C

log 1
δ

δ
· b(q),

|Pt − Pt+2| ≤
δ

S
·

q∑
k=1

k

b(k)
< δ.

Proof. The proof is by induction on q.

We will assume, where needed, that C is sufficiently large. We set t = C
log 1

δ

δ
· b(q),

assuming this is an integer.
The case q = 1 is easy. It is possible to show that for a distribution P on Z2 with

P (0) = p and P (1) = 1 − p, we have |Pt − Pt+2| = 1
2
·
∣∣(2p− 1)t − (2p− 1)t+2

∣∣. A simple

analysis shows that if t ≥ C
log 1

δ

δ
, the last expression is at most δ

S
.

Assume the claim for holds for q − 1. We proceed with simple Fourier analysis, and
show that our claim is true if all the non-zero Fourier coefficients of P are relatively small
(a nice way to see this, though the actual proof is even simpler, is that this condition on
the Fourier coefficients implies that Pt converges rapidly to the uniform distribution U , and
|Pt − Pt+2| ≤ |Pt − U |+ |U − Pt+2|). We have

|Pt − Pt+2|2 = 22q−2 · ‖Pt − Pt+2‖2
1 ≤ 22q−2 · ‖Pt − Pt+2‖2

2 =

22q−2 ·
∑
R

(
P̂t(R)− P̂t+2(R)

)2

=
1

4
·
∑
R

(
at(R)− at+2(R)

)2
, (10.1)

where a(R)
.
=2qP̂ (R).

Clearly, a(∅) =
∑

x P (x) = 1. Now consider the case in which, for all R 6= ∅ we have
|a(R)| ≤ 1− δq√

Cb(q)
. In this case, the right hand side of (10.1) is at most

∑
R 6=∅

a2t(R) ≤ 2q ·
(

1− δq√
Cb(q)

)2C
log 1

δ
δ

·b(q)

≤ 2q · exp
{
−2
√
C · log

1

δ
· q
}
.

This is smaller than δ
S
≤ δ

S
·
∑q

k=1
k
b(k)

.
It remains to deal with the case where P has large Fourier coefficients. Let R be such

that |a(R)| ≥ 1− δq√
Cb(q)

.

We make two assumptions for the sake of clarity: we assume that R = e1
.
=(10 · · · 0),

and that a(R) ≥ 0. Both assumptions are easily shown not to lead to loss of generality and
we omit the proofs.

Now, a(e1) = P {x : x1 = 0} − P {x : x1 = 1}. It follows that P {x : x1 = 1} ≤ δq

2
√
Cb(q)

.

Observe that the direction e1 is degenerate, it partitions the cube {0, 1}q into two
subcubes V0 = {x : x1 = 0}, and V1 = {x : x1 = 1}, both of which are isomorphic to Zq−1

2 .
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Because of the degeneracy of e1, the walk will find it hard to leave the subcube it is in,
and we will ‘split’ it into two walks, on V0, V1, and use the induction hypothesis for these
walks.

For i = 0, 1 and for r = t, t + 2 we set P i
r
.
=(Pr|Vi). All four distributions so obtained

can be viewed as distributions on Zq−1
2 .

We write Pt as a convex combination Pt = Pt(V0) ·P 0
t +Pt(V1) ·P 1

t , and do the same for
Pt+2. Note that

∣∣Pt(V0)− Pt+2(V0)
∣∣ ≤ δq√

Cb(q)
. We will show, using the induction hypothesis,

that for i = 0, 1 we have

∣∣P i
t − P i

t+2

∣∣ ≤ δ

S
·

(
q−1∑
k=1

k

b(k)
+

q

2b(q)

)
.

This will conclude the proof, since

|Pt − Pt+2| ≤ 2
∣∣Pt(V0)− Pt+2(V0)

∣∣+ ∣∣Pt(V0) ·
(
P 0
t − P 0

t+2

)
+ Pt(V1) ·

(
P 1
t − P 1

t+2

)∣∣ ≤
δ

S
·

(
q−1∑
k=1

k

b(k)
+

q

2b(q)

)
+

2δq√
Cb(q)

≤ δ

S
·

q∑
k=1

k

b(k)
.

Let P 0 = (P |V0) and P 1 = (P |V1). Let Nr be a random variable counting the number
of times the walk makes a step in direction x with x1 = 1 during the first r steps.

Let i = 0. The other case is treated similarly.
The central (though simple) point of the argument is that for any r and for any even `

we have
(P 0

r |Nr = `) = (P 1)∗` ∗ (P 0)∗(t−`).

This is true because the distribution on the left hand side is the distribution on Zq−1
2 given

that the walk makes ` ‘odd’ steps x with x1 = 1 and r − ` ‘even’ steps, with x1 = 0. Since
the addition in Zq

2 is commutative, we might as well assume that all the odd steps were
made first, giving the right hand side.

Therefore, P 0
r can be written as a convex combination

P 0
r =

∑
`≤r,` even

Pr(Nr = `) · (P 1)∗` ∗ (P 0)∗(t−`).

Using this, we can bound
∣∣P 0

t − P 0
t+2

∣∣:
∣∣P 0

t − P 0
t+2

∣∣ ≤ Pr(Nt 6= Nt+2) + Pr

(
Nt ≥

√
C · log

1

δ
· q
)

+

∑
`≤
√
C·log 1

δ
·q,` even

Pr(Nr = `) ·
∣∣(P 1)∗` ∗

(
(P 0)∗(t−`) − (P 0)∗(t+2−`))∣∣. (10.2)
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The first summand in (10.2) is equal to the probability that an odd step was made in one
of the times t+ 1, t+ 2, and this is at most δq√

Cb(q)
.

As to the second summand, observe that Nt is a binomial random variable with param-

eters t = C
log 1

δ

δ
· b(q) and p = δq

2
√
Cb(q)

. The probability of the second summand is that of

Nt ≥
√
C · log 1

δ
· q, and this, using Chernoff bounds, is at most exp

{
−2
√
C · log 1

δ
· q/27

}
.

Thus, the sum of the two first summands is bounded from above by δ
S
· q

2b(q)
.

It remains to deal with the third summand. For ` ≤
√
C · log 1

δ
· q we have t − ` ≥

C
log 1

δ

δ
· b(q) −

√
C · log 1

δ
· q ≥ C

log 1
δ

δ
· b(q − 1), and therefore we may use the induction

hypothesis to conclude

∣∣(P 1)∗` ∗
(
(P 0)∗(t−`) − (P 0)∗(t+2−`))∣∣ ≤ ∣∣(P 0)∗(t−`) − (P 0)∗(t+2−`)∣∣ ≤ δ

S
·
q−1∑
k=1

k

b(k)
.

Consequently, the third summand in (10.2) is bounded from above by δ
S

∑q−1
k=1

k
b(k)

, and

∣∣P 0
t − P 0

t+2

∣∣ ≤ δ

S
·

(
q−1∑
k=1

k

b(k)
+

q

2b(q)

)
,

concluding the proof of the proposition and of Theorem 6.5.
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Chapter 11

Testing that f is a Permutation of a
Given h

Given a boolean function h : {0, 1}n → {−1, 1}, we say that a function f is a permutation
of h if there exists a permutation σ : [n] → [n], such that for every x = x1x2 . . . xn ∈
{0, 1}n we have f(x) = h(σ(x)), where we define (with a slight abuse of notation) σ(x) =
xσ(1)xσ(2) . . . xσ(n). We show a test for this property for any h that is a J-junta. We first
show a test with a linear dependence in ε−1 but an exponential one in J , and then show
how to change it to a test with a polynomial dependence on ε−1 and J . On the other hand,
a closer look at the proof of Theorem 6.4 shows that it also provides a lower bound on
testing that f is a permutation of h(x) = χ

[J]
= x1⊕ . . .⊕xJ which is a function of J , so

the limitation that h has a small junta is essential.
The tests constructed in the following are 2-sided. This is not a coincidence, as the fol-

lowing proposition shows that in some cases one needs a number of queries that depends on
n to provide a 1-sided test for being a permutation of a given h. On the other hand, [DT99]
in particular provides such a 1-sided test making a number of queries that is logarithmic
in n.

Proposition 11.1. A non-adaptive testing algorithm that makes less than log(n/2) queries
on f(x), and accepts any permutation of h(x) = x1 ∧ x2 with probability 1, will necessarily
accept some permutation of h′(x) = x1 with probability at least 1

2
.

Proof. Suppose that we are given a sequence of l = log(n/2) queries, labeled by q(1) =

(x
(1)
1 , . . . , x

(1)
n ) · · · q(l) = (x

(l)
1 , . . . , x

(l)
n ). We define an equivalence relation over {1, . . . , n}

by stating that i ∼ i′ if for every 1 ≤ j ≤ l we have x
(j)
i = x

(j)
i′ . We say that i is isolated if

its equivalence class is {i}.
We observe that by the choice of l for every set of l queries there exist a set of at least

n
2

coordinates that are not isolated. Thus, for every non-adaptive testing algorithm there
exists a coordinate i with the property that it is not isolated with probability at least 1

2
.
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Now, for every query sequence q(1), . . . , q(l) for which i is not isolated, and which is taken
with positive probability by the algorithm, let i′ be such that i ∼ i′. Since the algorithm
has to accept f(x) = xi ∧ xi′ with probability 1, the algorithm must accept this function
when the sequence q(1), . . . , q(l) is chosen. But this means that the algorithm must accept
also the function f ′(x) = xi when this sequence is chosen, because these two functions are
identical on that whole query sequence. Summing up over all query sequences for which i
is not isolated, we conclude that the algorithm must accept f ′(x) = xi with probability at
least 1

2
, completing the proof.

We now turn to the proof of Theorem 6.6. The constructed tests are adaptive, but they
could be made non-adaptive with a penalty of an additional poly(J) factor.

A Test with an Exponential Dependency on J

We assume without loss of generality that g depends on all its variables. In this case, the
variation of g on every coordinate is at least 21−J . We begin by performing the J-junta
test given by Theorem 6.2 on f, with min {1

4
ε, 2−J} as the approximation parameter and 7

8

as the detection probability (we use the usual amplification techniques). If the test rejects
then we reject the input. If it accepts, we note that with high probability we have sets
Ui1 , . . . , Uil of coordinates such that each of them contains exactly one member of a junta
J of a function f ′ that is close to f (with l ≤ J). If l < J we reject the input, so from now
on let us assume that l = J , and for convenience denote Vj = Uij for 1 ≤ j ≤ J .

We first show how to test for the above property in the special case that g is symmetric
with regards to permutations of its variables, and then show how to generalize it to every
g.

We check f(x) at a randomly chosen x ∈ {0, 1}n for equality with g(x|J ), and repeat
this h = 12ε−1 times so that any f(x) that is 1

4
ε-far from g(x|J ) will be rejected with

probability at least 7
8
. However, since we do not know J (but only V1, . . . , VJ), we perform

the following.
Let us for the randomly chosen x denote by Zx the set of its zero coordinates {i|xi = 0}.

We construct y ∈ {0, 1}J as follows. For every j, we perform 3 · 2J(log h + log(2J) + 3)
iterations of the independence test for Vj ∩ Zx, to know with high probability whether
Vrf(Zx ∩ Vj) ≥ 2−J , and do the same for Vj\Zx (remember that in a J-junta, every set
containing a junta coordinate has variation at least 21−J). The probability that in any of
the h iterations such a dependence will not be detected is bounded by 1

8
.

If only Vj ∩ Zx is found to have variation then we set yj = 0, because this means that
the junta coordinate in Vj has the value 0. By the same token, if only Vj\Zx is found to
have variation then we set yj = 1, and in any of the other two cases (for the same j) we
reject the input. Having constructed y, we compare f(x) with g(y). The construction of
y according to the variation tests above ensures that with high probability x|J = y, and
thus we are done.
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For an asymmetric g we use a similar test as above, performing h = 12J log(J + 1)ε−1

iterations of the comparison above, to ensure that for every permutation σ : [J ] → [J ],
if f(x) is ε-far from g(x|σ(J )) then this is detected with probability at least 1 − 1/8J !.
We use the same queries for every of the J ! (or less) possible permutations of g, and so
with probability 7

8
we will detect ε-farness from any such permutation for which it exists.

The algorithm accepts the input if there was any permutation of g for which this was not
detected. Summing up, an input which is ε-far from being any permutation of g will be
rejected with probability at least 5

8
, and an input which was a permutation of g will be

accepted with probability at least 6
8

(it could only be rejected if the J-junta test did not
detect all the junta coordinates, or if in some stage the dependence of f on Zx ∩ Vj or on
Vj\Zx is not correctly detected).

Reducing the Dependency on J

We construct here a test for f being a permutation of g using O(ε−3(log J + log(ε−1))J3)
queries. The running time itself is still exponential in J , however.

First, we perform the J-junta test with the approximation parameter ε
4J

. We denote
Ui1 , . . . , Uil as before. However, after the size test we again use the independence test
to distinguish between Vrf(Uij) ≥ ε

2J
and Vrf(Uij) ≤ ε

4J
for every j, and discard from

Ui1 , . . . , Uil also the sets whose variation is low. Let us denote the undiscarded sets by
V1, . . . , Vm. Here we allow also for the possibility that m < J , as it could be the case that
some sets containing junta coordinates were not detected by the size test or were discarded
in the next phase.

Given any function g̃ on m coordinates, that has the additional property that every
coordinate has variation at least ε

4J
with respect to it, we perform the following procedure.

We choose a uniformly random x ∈ {0, 1}n, and denote Zx as before. For every j we use
12ε−1J log(hk) iterations of the independence test to check with probability at least 1− 1

8hk

whether Vj ∩ Zx or Vj\Zx have variation at least ε
4J

(if both or none of the two sets has it
we reject the input). We then construct y as above and check that f(x) = g̃(y).

We perform h = 32J2ε−2(4 + J ln(J + 1)) iterations of the above; we distinguish with
probability 1− 1/8(J + 1)! between the case that the probability of f(x) = g̃(y) is at least
1− 1

4
ε, and the case that it is at most 1− 1

2
ε (see [AS00, Appendix A] for the large deviation

inequality used here).
In order to accommodate g, we consider every g̃ which is a restriction of any permutation

of g to any subset of its coordinates that includes all those that have variation at least ε
2J

,
and may include any coordinates with variation at least ε

4J
as well. With probability at

least 5
8

the above will give the correct answer for all the possible g̃; we accept the input if
at least one of them has the higher probability for f(x) = g̃(y).
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Noise-Resistant Boolean Functions
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Juntas





Chapter 12

Introduction to Part III

This part of the thesis deals with boolean functions of the form f : P([n]) → {−1, 1},
where P([n]) denotes the power-set of [n]

.
={1, 2, . . . , n}. We regard functions f of this form

as boolean functions over n boolean variables (the value of the i’th variable determines
whether the argument of f contains i or not). We focus on a specific type of such functions:
A boolean function, f, is said to be a J-junta if there is a set of at most J coordinates
J ⊆ [n], such that the value of f on an input x ∈ P([n]) depends only on x ∩ J , that is,
the values of f are determined only by the coordinates in J . Somewhat abusing notation,
the set J is sometimes referred to as the junta which dominates f.

The term junta originates from considerations related to social choice, where a boolean
function f is seen as an election scheme, and each coordinate in its domain corresponds to
a voter. An element x ∈ P([n]) represents an election where i ∈ x if the i’th voter votes
’yes’ and i 6∈ x otherwise, and f(x) is the outcome of the election. In these terms, a J-junta
is an election scheme the outcome of which is completely determined by at most J voters.
It is now obvious why 1-juntas are called dictatorships.

However, monotone-increasing dictatorships can be also seen as words in a code known
as the long-code [BGS98]. Specifically, the truth table of a boolean function f is a legal
long-code word, if f depends on one coordinate i ∈ [n], and returns −1 for an input x if
i ∈ x and 1 otherwise. The decoding of a given long-code f, is the coordinate i which
determines its value.

The notions mentioned above, and their interplay, come up in a wide variety of research
areas, ranging from hardness of approximation [H̊as99, H̊as97, DS02, Kho02], to learning
theory, property testing [FKR+], theory of social choice [Kal01] and more [BKS99]. In
many such applications, one is given a long-code word, and needs to verify that this word
is close to a legal codeword. This is done by a test, or a construction, that rules out words
which do not satisfy some simple criterion. It is therefore of great importance to find the
simplest and weakest possible conditions over boolean functions, which ensure that they
are decodable.
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The decoding of a long-code word f is the coordinate i on which f depends. However
in many cases it suffices to ensure that f ’depends significantly’ on some small number
of coordinates ([H̊as99, H̊as97]). In other cases ([DS02]), one needs to ensure that f is
’almost-completely determined’ by a constant number J of its coordinates. In this case,
the elements in the set J of coordinates that determine f can be seen as a list of possible
decodings for f, since only encoding of such elements may have significant correlation with
f.

(ε, J)-juntas. The sense in which f should be ’almost-completely determined’ by the
coordinates in J needs some attention. A more precise statement would be that there
exists a function f ′ which only depends on coordinates in J , such that for an input x,
chosen according to a certain distribution µ, f(x) equals f ′(x) with probability at least
1− ε. In that case we say that f is an (ε, |J |)-junta according to the distribution µ.

For a fixed distribution µ, we are therefore interested in finding a weak-as-possible
condition that is satisfied by any long-code word, and such that any other boolean function
f satisfying it must be an (ε, J)-junta, for some small ε and a constant J . The distribution µ
may vary in different applications – for instance, in showing that it is hard to approximate
the minimal vertex-cover in a given graph, [DS02] use a distribution where each coordinate
i ∈ [n] is independently chosen to belong to x with some probability p. It is crucial for
their proof that p is well separated from 1/2. This so called p-biased distribution (namely
the product distribution of p-biased coins), which is the focus of this part of the thesis ,
seems to have many more applications.

Noise sensitivity. The property studied herein is that of noise-sensitivity. The noise-
sensitivity of a boolean function f is the probability that when some noise is applied to a
random input x, obtaining another input y, f yields different values for x and y, namely
f(x) 6= f(y). We show that, for appropriate choice of parameters, (ε, J)-juntas are the only
boolean functions whose noise-sensitivity is smaller than some threshold. In term of social
choice, this means that juntas are the only noise-resistant election schemes.

Related Work

Average-sensitivity

Let f : P([n]) → {−1, 1} be a boolean function. The influence of a coordinate i ∈ [n] on f
with respect to the distribution µp , is defined by

influencei(f)
.
= Pr
x∼µ[n]

p

[f(x \ {i}) 6= f(x ∪ {i})]
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The influence of i on f is therefore the probability that flipping it in a random input x
changes the value of f. The sum of influences of all coordinates i ∈ [n], is called the average-
sensitivity of f. Equivalently, it is the expected number of coordinates, for a random input
x, flipping of which changes the value of f. If f is a long-code word, its average-sensitivity
equals 1, and if f is a J-junta then its average-sensitivity is obviously bounded by J .

In [Fri98] it was shown that having small average sensitivity is a sufficient condition for
a function f to be a junta. More precisely, it was shown there that if the average-sensitivity
of f equals m, then f is an (ε, cm/ε)-junta with respect to µnp , where c = cp is some global
constant. This result is the one utilized in [DS02] to show hardness-of-approximation for
the Vertex-Cover problem, utilizing a distribution bias p in the vicinity of 1/3.

The condition of having small average-sensitivity, though sufficient, does not give a
good characterization of functions which are close to being juntas. This may be observed
by taking f ′ to be any J-junta, and then randomly flipping an ε-fraction of the values of f ′,
obtaining f. It it almost surely the case that f will be a (2ε, J)-junta, however its average
sensitivity will be linear in n.

Noise-sensitivity

To obtain a better characterization of juntas, we observe how the value of f changes when
the input is changed not on one, but on some small fraction of the coordinates. The λ-noise
sensitivity of a boolean function f with respect to the distribution µ

[n]
P , is defined to be the

probability the value of f changes when noise is applied to a random input x. The noise is
applied by first selecting a random set I of coordinates, taking each coordinate into I with
probability λ, and then randomly resetting each coordinate in I. That is

NSλ,p(f)
.
= Pr
x∼µ[n]

p , I∼µ[n]
λ , z∼µI

p

[
f(x) 6= f

(
(x \ I) ∪ z

)]

The condition of having small noise sensitivity is therefore very efficiently testable by
a perturbation test, which randomly selects x and y as above and tests whether f(x) =
f(y). Such a perturbation test was embedded into the long-code test, used in [H̊as97]
for showing hardness of approximating the number of satisfiable linear-equations, with at
most 3 variables in each equation, over Z2. The embedding of the perturbation test helped
the test of [H̊as97] rule out functions which do not have significant correlation with any
long-code word. Such considerations also appear in other hardness results.

It is natural to ask (and was indeed asked by Hastad) if having small noise-sensitivity
is in itself a sufficient condition for a function to be close to a junta. It follows from the
recent result in [Bou01] that if the λ-noise-sensitivity of f with respect to µ1/2 is sufficiently
small, than f is indeed close to a junta.
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Fourier representation and noise. One can consider a boolean function f as an element
in the space of real-valued functions. As such it has a Fourier representation, as a linear
combination of Walsh-products. It is easily verified that in order for f to have small λ-noise
sensitivity with respect to µ1/2, its weight on Walsh-products of high frequency must be
small. The result actually stated in [Bou01] is that any function f : P([n]) → {−1, 1} whose
weight on high-frequencies is small enough must be close to a J-junta, for some constant
J , namely

Theorem [Bou01]. Let f : P([n]) → {−1, 1} be a boolean function, and let k be a positive
integer and ε > 0 any fixed constant. Then for every η > 0 there is a constant cη, such that
if ∑

|S|>k

∣∣∣̂f(S)
∣∣∣2 < cηk

− 1
2
−η

then f is an (ε, k10k)-junta with respect to µ1/2.

Our Results

In this part of the thesis we extend the result of [Bou01] to the case of the p-biased measure
µp. For a bias p, we deal with the expansion of the boolean function f as a linear combination
of p-biased Walsh-products (the biased-measure analogue of the Fourier-expansion of f, as
defined in [Tal94]). It states that if f has very small weight on ’large’ Walsh-products, then

it must be close to a junta. Using f̂(S) to denote the coefficient of the biased Walsh-product
corresponding to S ⊂ [n], we have

Theorem 12.1. Fix a positive integer `. Then there exists a constant δ > 0, such that for
every ε > 0 and every boolean function f : P([n]) → {−1, 1} satisfying∑

|S|>k

∣∣∣̂f(S)
∣∣∣2 ≤ ( ε

k

)(`+1)/`

is an (O(ε), J)-junta∗, where

J = O
(
δ−4kε(`+1)/`k(2`+1)/`

)
The parameters obtained by the above theorem are different than those in [Bou01]. The

main difference, is the dependence on k of the threshold on
∑

|S|>k

∣∣̂f(S)
∣∣2, beyond which f

is ensured to be close to a junta of constant size. Here, it is required that this weight be
bounded by O(k−(`+1)/`), while the result in [Bou01] requires only a bound of order K−1/2−η

∗The O notation here hides constants which are independent of ε, k, and n. However they may depend
on the bias, p, and on `.
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for every constant η > 0. Our proof of Theorem 14.1 is, however, different than that of
Bourgain, and its technique may of of independent importance.

Note that we cannot obtain a result for the biased case by applying the same technique
used in [Bou01], since it uses an inequality concerning the norm of the Rademacher pro-
jection, which we cannot reproduce for the biased case. Once this fact is extended to the
biased case, it seems that the result in [Bou01] would easily extend to the biased case as
well.

As a direct corollary of Theorem 12.1, we have that juntas are the only noise-resistant
boolean functions, that is, a boolean function f whose λ-noise-sensitivity with respect to
µp is small, must be ε-close to a junta of size independent of n.

Corollary 12.2. There exists a constant δ > 0 for which the following holds. For any
integer ` and any parameter λ > 0, fix k = log(1−λ)(1/2). Then every boolean function

f : P([n]) → {−1, 1} whose λ-noise-sensitivity with respect to µn is at most (ε/k)(`+1)/`, is
an [O(ε), J ]-junta with

J = O
(
δ−4kε(`+1)/`k(2`+1)/`

)
Asymptotic behavior of the distance from a junta

In light of the above discussion, it seems natural to ask what is the best bound on the
distance of a boolean function f from a junta, given that its weight on large biased Walsh-
products is small. We give such a bound, which is optimal up to a constant factor, in the
case where the weight of f on Walsh-products larger than k is asymptotically small: the
following theorem takes effect when this weight is smaller than some negative exponent in
k.

Theorem 12.3. Let k > 0 be a fixed integer. Let f : P([n]) → {−1, 1} be a boolean function

and let ε
.
=
∑

|S|>k

∣∣̂f(S)
∣∣2. Then f is an ((1 + o(1))ε, J)-junta, where J is a constant which

depends only on k.

Theorem 12.3 was proven in [FKN01] for the case k = 1, and with respect to the
uniform measure µ1/2. We prove Theorem 12.3 by first giving an alternative proof for the
case k = 1, which is valid with respect to every µp, and then extending it to the case k > 1.

Structure of this part

In Chapter 13 we formally define the p-biased measure, and present the biased Walsh-
products which replace the usual Fourier-basis. In this chapter we also define basic notions
such as restrictions, variations, and the noise-sensitivity of a function f, and show their
connections with the expansion of f as a combination of biased Walsh-products. In addition
we state in Chapter 13 a biased version for the Beckner-Bonami hyper-contractive estimate.
The proof of this estimate is deferred to Chapter 18.
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In Chapter 14 we give a simple conceptual proof of Theorem 14.1, which contains the
main argument of the proof of Theorem 12.1, but achieves somewhat worse parameters.
In Chapter 15 we show an alternative proof for the theorem of [FKN01], namely the case
k = 1 in Theorem 12.3. This proof not only extends to the case of biased-measure, but
is also extendable to the case k > 1, thus obtaining Theorem 12.3. This is shown in
Chapter 16. Finally, in Chapter 17 we prove Theorem 12.1 simply by plugging the result
of Theorem 12.3 into the proof of Theorem 14.1. Corollary 12.2 is easily obtained from
Theorem 12.1 in the same chapter.



Chapter 13

Preliminaries

We begin by formally defining the product-measure with which we work. For a parameter
q, 0 < q < 1 and a finite set I, define a probability measure µIq on P(I) by

µIq(A)
.
=(1− q)|I|

(
q

1− q

)|A|
Now fix a bias p, 0 < p < 1, which is to remain fixed throughout this part. When referring
to the p-biased measure, we shall denote µI instead of µIp for shortness. We also abbreviate

µnq for µ
[n]
q .

Let us now formally define a J-junta, and when a boolean function is said to be ε-close
to one.

Definition 13.1 (junta). A boolean function f : P(n) → {−1, 1} is a J-junta if there
exists a set J ⊂ [n] of size |J | ≤ J such that

∀x f(x) = f(x ∩ J )

Definition 13.2 ([ε, J ]-junta). A boolean function f is an [ε, J ]-junta if there exists a
J-junta f ′ that disagrees with f on at most ε-fraction of the points, namely

Pr
x∼µn

p

[f(x) 6= f ′(x)] ≤ ε.

Discrete Fourier Expansion

It has shown to be useful to treat boolean functions as elements of the space of real-valued
functions f : P([n]) → R. This allows the introduction of powerful tools into the study of
boolean functions, such as the discrete Fourier transform. We next define the basic notions
we need concerning the space of real-valued functions over P([n]).
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Inner-product. The biased inner-product of two real-valued functions f, g over P([n]) is
defined by

〈f, g〉 .= E
x∼µn

[f(x)g(x)]

Norm. For every 1 ≤ q <∞, we define the q-norm of a function f : P([n]) → R by

‖f‖q
.
=

(
E

x∼µn
[|f(x)|q]

)1/q

Fourier basis. The usual Fourier basis for the space of functions f : P([n]) → {−1, 1}
is not orthonormal (or even orthogonal) with respect to the biased inner-product. Follow-
ing [Tal94], we thus define the following basis which is orthonormal with respect to the
biased inner-product. When p = 1/2, this is the usual Walsh/Fourier basis.

Definition 13.3 (biased Walsh-Products). For every i ∈ [n], we define the i’th biased
Rademacher function χ{i} : P([n]) → R by

χ{i}(x)
.
=


√
p/(1− p) i 6∈ x

−
√

(1− p)/p i ∈ x

For every set S ⊆ [n], the biased Walsh-product that corresponds to it is then defined by
χ

S

.
=
∏
i∈S
χ{i} . The cardinality of S is called the size or the frequency of χ

S
.

Projections

An important aspect of the Fourier representation is that it enables the definition of simple
orthonormal projections of f. The projection of f onto a set Ω of Walsh-products is obtained
by restricting the Fourier expansion of f to Walsh-products from Ω, namely

f|Ω =
∑
χ

S
∈Ω

f̂(S)χ
S

The weight of f on Ω is defined to be

‖ f|Ω ‖2
2 =

∑
χ

S
∈Ω

f̂2(S)

Next let us define two such projections which are crucial for our analysis, dividing the
Walsh-products into low-frequencies and high-frequencies.
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Definition 13.4 (frequency separation). For a given 1 ≤ k ≤ n and a function f denote

f≤k =
∑
|S|≤k

f̂(S)χ
S
, and f>k =

∑
|S|>k

f̂(S)χ
S

The averaging projection. Let I ⊆ [n] be a set of indices. For a function f over P([n]),
consider the function obtained from it by averaging, for each element x ∈ P([n]), over all
distinct input settings of the form (x \ I) ∪ z where z ⊆ I – this is a non boolean function
that depends only on Ī = [n]\I. This function, denoted by AvgI [f] : P(Ī) → R, is formally
defined by

AvgI [f] (x)
.
= E
z∼µI

[f((x \ I) ∪ z)]

One observes that AvgI can also be written as the projection onto the set of Walsh-products
whose support is disjoint from I, namely

AvgI [f] =
∑
S∩I=∅

f̂(S)χ
S

The following proposition connects the 1-norm, the 2-norm, and the average function.

Proposition 13.5. Let f : P([n]) → {−1, 1} be a boolean function, and let I ⊆ [n]. Then

‖f − AvgI [f]‖2
2 = ‖f − AvgI [f]‖1

Proof. For every y ∈ P(Ī) (where Ī
.
=[n] \ I), define

α(y)
.
= Pr
z∼µI

[f(y ∪ z) = 1]

Then for every x ∈ P([n]),
AvgI [f] (x) = 2α(x \ I)− 1

Hence

‖f − AvgI [f]‖2 = E
x∼µn

[
(f(x)− AvgI [f] (x))2

]
=

= E
y∼µĪ

E
z∼µI

[(
f(y ∪ z)− AvgI [f] (y ∪ z)

)2
]

=

= E
y∼µĪ

[
α(y)(2− 2α(y))2 + (1− α(y)) · (2α(y))2

]
=

= E
y∼µĪ

[4α(y)(1− α(y))] =

= E
y∼µĪ

E
z∼µI

[|f(y ∪ z)− AvgI [f] (y ∪ z)|] = ‖f − AvgI [f]‖1
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Variations

We now define the variation of a boolean function f : P([n]) → {−1, 1} on a subset of
the coordinates I ⊆ [n]. The variation of f on a singleton {i} coincides with the classical
definition ([BL89, KKL88]) of the influence of the i’th coordinate on f (up to a fixed constant
factor, if p 6= 1/2). The variation of f on I is twice the probability that f yields different
values, given two random inputs that agree on all the coordinates outside I, that is

Vrf(I) = 2 Pr
y∼µ[n]\I

z1,z2∼µI

[f(y ∪ z1) 6= f(y ∪ z2)]

Following is a definition of the variation of f on I which coincides with the one above
for boolean functions f, but also extends to the case of real-valued functions (the fact
that the two characterizations of the variation coincide for boolean functions is proven in
Proposition 8.11 on page 101).

Definition 13.6 (variation). The variation of a function f : P([n]) → R on a set I ⊆ [n]
of coordinates is defined by

Vrf(I)
.
=‖f − AvgI [f]‖2

2 =
∑
S∪I 6=∅

f̂2(S)

A useful property of variations, which is obvious from the definition, is their sub-
additivity.

Claim 13.7 (sub-additivity). Let f : P([n]) → R, and let I1, I2 ⊆ n. Then

Vrf(I1 ∪ I2) ≤ Vrf(I1) + Vrf(I2)

Another very important property of variations, is that if a boolean function f has small
variation on a set of coordinates, then it is almost independent of these coordinates. Putting
it differently, if the variation of f on the complement of a set I is small, than f is close to
some boolean function g which depends only on the coordinates in I.

Proposition 13.8. Let f : P([n]) → {−1, 1} be a boolean function, and let I ⊆ [n] be a set
of coordinates satisfying Vrf(Ī) < 2ε, where Ī

.
=[n] \ I. Then there exists a noolean function

g : P([n]) → {−1, 1} which depends only on coordinates from I, and satisfies

Pr
x∼µn

[f(x) 6= g(x)] < ε

Proof. Let g
.
= sign (AvgĪ [f]) (we arbitrarily set sign(0)

.
=1). Then g depends only on coor-

dinates from I. Let us show that f(x) = g(x) for most x’s.
For y ∈ P(I), denote

α(y)
.
= Pr
z∼µĪ

[f(y ∪ z) 6= g(y ∪ z)]
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and note that α(y) ≤ 1/2 for all y. Therefore, we have

Pr
x∼µn

[f(x) 6= g(x)] = E
y∼µI

[α(y)] ≤ E
y∼µI

[2α(y)(1− α(y))] =

= Pr
y∼µI

z1,z2∼µĪ

[f(y ∪ z1) 6= f(y ∪ z2)] =
1

2
Vrf(Ī) < ε

Combining the above two ways to project a function – one according to frequency and
the other according to non-emptiness of the intersection with some given subset of the
indices – we can define:

Definition 13.9 (low-frequency variation). The k-low-frequency variation on a subset
I ⊆ [n] of f, is

Vr≤kf (I)
.
=Vrf≤k(I) =

∑
S∩I 6=∅
|S|≤k

f̂2(S)

For shortness, denote Vr≤kf (i)
.
=Vr≤kf ({i}).

Restrictions

For a given set of coordinates I ⊆ [n] and every x ∈ P(Ī), let us denote by fI [x] : P(I) →
{−1, 1} the boolean function defined by

fI [x](y)
.
=f(x ∪ y)

The Fourier expansion of fI [x] can be deduced from the Fourier expansion of f. For every
S ⊆ I, it is easily seen that

f̂I [x](S) =
∑
T⊆[n]

T∩I=S

f̂(T )χ
T\S

(x)

where χ
T\S

can in fact be replaced by χ
T
.

Note that the variation on a subset I of a function f can be expressed in terms of
restrictions. It is the expected variance of fI [x], over all input settings x ∼ µĪ outside I.
This leads immediately to the following claim.

Claim 13.10. Let f be a boolean function, and let I ⊆ [n]. Then

Vrf(I) = E
x∼µĪ

[
VrfI [x](I)

]
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Noise-Sensitivity

As already mentioned in the introduction, the λ-noise-sensitivity of a boolean function
f : [n] → {−1, 1} (with respect to µp) is defined by

NSλ,p(f)
.
= Pr
x∼µn , I∼µn

λ , z∼µI

[
f(x) 6= f

(
(x \ I) ∪ z

)]
The following proposition shows how the λ-noise-sensitivity of f is connected with its
Fourier-expansion.

Proposition 13.11. Let f : P([n]) → {−1, 1} be a boolean function. Then for every pa-
rameter λ,

NSλ,p(f) =
1

2
− 1

2

∑
S

(1− λ)|S |̂f(S)2

Proof. We omit the simple proof

Bonami-Beckner Inequality

We define for every 0 ≤ δ ≤ 1 an operator Tδ over real-valued functions f : P([n]) → R. At
each point x, Tδ[f](x) is the expected value of f when a (1− δ)-noise is applied to x, that is

Tδ[f](x) = E
I∼µn

(1−δ)
, z∼µI

[f((x \ I) ∪ z)] =
∑
S

δ|S |̂f(x)χ
S
(x)

Bonami and Beckner proved that, in the uniform case, Tδ is hyper-contractive for appro-
priate values of δ:

Theorem 13.12. Let q ≥ r ≥ 1, and let f : P([n]) → R. Then in the uniform case, namely
when the norms are taken with respect to µn1/2,

‖Tδ[f] ‖q ≤ ‖f‖r for any δ ≤
√

(r − 1)/(q − 1) .

In [Fri98], a special case of Theorem 13.12 was shown to hold for the biased case as
well. We prove another special case of this theorem, which is needed for our purposes.

Theorem 13.13. There exists a constant δ = δp > 0, such that for every f : P([n]) → R,

‖Tδ[f] ‖4 ≤ ‖f‖2

where the norms are taken with respect to µnp .
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This theorem is proven in Chapter 18. Note that in the sequel all the parameters
denoted δ refer, unless noted otherwise, to the parameter δ for which Theorem 13.13 holds.
The best δ for which the theorem holds was, in fact, found recently by K. Oleszkiewicz
[Ole02] to be δp = (1 + p−1/2(1− p)−1/2)−1/2, which is of order p1/4 for small values of p.

The analysis herein, as well as many other Fourier analytic results concerning boolean
functions, utilizes the following simple corollary of this hyper-contractivity estimate.

Corollary 13.14. There exists a constant δ > 0 such that any function g : P(n) → R for
which g>k = 0, satisfies

‖g‖4 ≤ δ−k‖g‖2

Proof. Take δ to be as in Theorem 13.13, and apply Tδ to f
.
=(Tδ)

−1(g). The corollary now
follows from Theorem 13.13 by applying Parseval’s identity to f.
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Chapter 14

The Main Argument

The main result of this chapter shows that a function f whose weight is concentrated on
low-frequencies is close to a junta. The parameters it achieves can be improved, though.
In Chapter 17 the parameters are indeed improved by essentially repeating the same proof,
and plugging in the parameters obtained from Theorem 16.1, proven in Chapter 16.

Theorem 14.1. There exists a constant δ > 0, such that every boolean function
f : P([n]) → {−1, 1} satisfying ‖f>k‖2

2 ≤ (ε/k)2, is an [O(ε), J ]-junta for J = O(ε−2k3δ−4k).

Note that the O-notation here, and throughout this part, hides constants which are
independent of ε, k, and n, but may depend on the bias, p.

Theorem 14.1 easily implies Corollary 14.2 below, showing that a function whose λ-noise-
sensitivity is small must be close to a junta.

Corollary 14.2. There exists a constant δ > 0 with the following property. For any
parameter λ > 0, fix k = log(1−λ)(1/2). Then every boolean function f : P([n]) → {−1, 1}
whose λ-noise-sensitivity with respect to µnp is bounded by (ε/k)2, is an [O(ε), J ]-junta,
where

J = O(ε−2k3δ−2k)

Proof. Let f be a boolean function as stated in Corollary 14.2. Then according to propo-
sition 13.11,

NSλ,p(f) = (ε/k)2 ≥ 1

2
− 1

2

∑
S

(1− λ)|S |̂f(S)2 ≥ 1

2
− 1

2

∑
|S|≤k

f̂(S)2 +
1

2

∑
|S|>k

f̂(S)2


Since f is boolean, we have

∑
S f̂(S)2 = ‖f‖2

2 = 1, hence we obtain from the above inequality
that ∑

|S|>k

f̂(S)2 ≤ 4(ε/k)2

Corollary 14.2 now follows from Theorem 14.1.
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Proof of Theorem 14.1

We now move to the proof of Theorem 14.1. In fact, we prove the following theorem, which
yeilds Theorem 14.1 by setting r

.
=k2/ε and τ

.
=δ4kε2/k2.

Theorem 14.3. There exist global positive constants C and δ, such that for any τ > 0,
and for any positive integers k and r > 2k, the following holds. For every boolean function
f : P([n]) → {−1, 1}, f is an [γ, J ]-junta with respect to µn, where J = k/τ and

γ = Cr
(
δ−4kτ + k2/r2 + ‖f>k‖2

2

)
Proof. First, we specify a set of coordinates that will be shown to determine most of the
values of f. These are the coordinates on which f has non-negligible k-variation.

Definition 14.4. Let
J .

=
{
i ∈ [n] | Vr≤kf (i) ≥ τ

}
Also, denote J̄ .

=[n] \ J .

The following is a simple observation.

Claim 14.5. |J | ≤ k/τ .

To prove that f is indeed close to a junta dominated by J , let us randomly partition
the coordinates in J̄ into r subsets I1, . . . , Ir. Lemma 14.6 below, which is proven in the
next section, states that for every fixed h, the expectation of Vrf(Ih) is very small (note

that for every h, Ih is a random subset of J̄ , distributed according to µJ̄1/r). In light of

Proposition 13.8, this means that when a partition of J̄ is chosen randomly, it is expected
that f be almost independent of each subset in the partition.

Lemma 14.6. There exists a global constant C and a global positive constant δ > 0, such
that for any r > 2k,

E
I∼µJ̄

1/r

[Vrf(I)] ≤ C
(
δ−4kτ + k2/r2 + ‖f>k‖2

2

)
The linearity of expectation and the sub-additivity of the variation, now imply that in

fact f is almost independent of all the coordinates in J̄ , that is

Vrf(J̄ ) ≤ E

[
r∑

h=1

Vrf(Ih)

]
≤ Cr

(
δ−4kτ + k2/r2 + ‖f>k‖2

2

)
From Proposition 13.8 we thus obtain that f is a

[
1
2
Cr
(
δ−4kτ + k2/r2 + ‖f>k‖2

2

)
, |J |

]
-junta.

This completes the proof, since |J | ≤ k/τ .
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14.1 Random Subsets of J̄ Have Small Variation

The proof of Lemma 14.6 proceeds by showing that on a random I chosen according to
µJ̄1/r, the following holds with high probability: for almost all input settings x outside I the

weight of fI [x] is concentrated on Walsh-products of size at most 1. Once this is shown, it
is possible to apply Theorem 14.7 (stated below) which states that in this case fI [x] must
be close to either a dictatorship or a constant. We then show that fI [x] cannot be close to a
non-constant dictatorship too often, hence it is usually almost constant, hence the lemma
follows.

When k = 1

We start by a theorem that considers the case where a boolean function f has low weight
on Walsh-products of size more than one. It shows that in this case f must be close to a
dictatorship. This theorem was proven in [FKN01] for the uniform case, and we extend the
proof for the biased case as well. Note that the proof of this theorem does not generalize
directly to the case of frequencies higher than 1, since it uses the fact that the values of
Walsh-products of size one on a random assignment are completely independent. This
property does not hold for Walsh-products of larger size.

Theorem 14.7. There exists a global constant M so that for any boolean function f, there
exists a boolean dictatorship g (g may be constant) such that

‖f − g‖2
2 ≤M · ‖f>1‖2

2

Proof. This follows directly from Corollary 15.2 in Chapter 15.

We use the following simplified form of Theorem 14.7, which follows immediately from
it by computing the Fourier-coefficients of a non-constant dictatorship:

Corollary 14.8. There exists a global constant M , so that given any boolean function
f : P(m) → {−1, 1}, either there exists a coordinate i such that |̂f({i})| > √

p, or

Vrf([m]) ≤M‖f>1‖2
2.

Few Dictatorships

We now return to the proof of Lemma 14.6 which states, in essence, that for most choices
of I ⊆ J̄ , fI [x] is almost constant for most of the x’s in P(Ī). We begin by giving an upper-
estimate on the (weighted) number of restrictions fI [x] that can be close to non-constant
dictatorships. Then, in the next subsection, we show that indeed most of these restriction
are almost constant.
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For a given I ⊆ [n] denote the ’dictatorship set’ by

DI
.
=
{
x ∈ P(Ī)

∣∣ ∃ i ∈ I for which
∣∣∣f̂I [x]({i})∣∣∣ > √

p
}

To bound the measure of DI , we use the fact that the coefficient of χ
i
in fI [x] is a function

of x that is concentrated on low-frequencies, and has small norm (since every i ∈ I has
small variation). We thus use the following lemma, which utilizes Theorem 13.13 to show
that such a function cannot often attain large values. We conclude that the coefficient of
χ

i
is almost never high enough for it to become a dictator.

Lemma 14.9. Let δ be as in Theorem 13.13, and let 0 < α < β be any parameters. Then
for any function g : P(m) → R

Pr
x∼µm

[|g(x)| > β] ≤ α−4δ−4k‖g≤k‖4

2 + (β − α)−2‖g>k‖2

2

Proof. We start off with a simple claim concerning the case where only the low frequencies
portion of the function is considered.

Claim 14.10. Let g : P(m) → R be a real-valued function such that g>k = 0, and let α < 1
be a positive parameter; then

Pr
x∼µm

[|g(x)| > α] ≤ α−4δ−4k‖g‖4
2

Proof. By applying Markov’s inequality for |g|4 and then applying Theorem 13.13, we have

α4 · Pr
x∼µm

[|g(x)| > α] ≤ ‖g‖4
4 ≤ δ−4k‖g‖4

2

Now to prove Lemma 14.9, we break g into its low-frequency and its high-frequency
parts. The probability that |g(x)| evaluates above β by bounding the probability that the
low-frequency part evaluates above some α < β, and the probability of the high-frequency
part to evaluate above β−α (if those two parts evaluate to a smaller value than prescribed,
they can never reach β):

Pr
x∼µm

[|g(x)| > β] ≤ Pr
x∼µm

[∣∣g≤k(x)∣∣ > α
]
+ Pr

x∼µm

[∣∣g>k(x)∣∣ > β − α
]
≤

≤ α−4δ−4k‖g≤k‖4

2 + Pr
x∼µm

[
(g>k(x))2 > (β − α)2

]
≤

≤ α−4δ−4k‖g≤k‖4

2 + (β − α)−2‖g>k‖2

2
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Now fix i ∈ I and consider the function gi : P(Î) → R, which assigns to every x the
coefficient of χ

i
in fI . That is,

gi(x) = f̂I [x]({i})

For fI [x] to be a dictatorship, one of the gi’s must evaluate to at least
√
p in absolute value.

Applying lemma 14.9, with parameters α =
√
p/2 and β =

√
p, we get a bound on the

probability, for a random x, that fI [x] is a dictatorship.

Pr
x∼µĪ

[x ∈ DI ] ≤
∑
i∈I

Pr
x∼µĪ

[|gi(x)| >
√
p] ≤

= 16p−2δ−4k
∑
i∈I

‖g≤ki ‖4

2 +
4

p

∑
i∈I

‖g>k‖2

2 =

= 16p−2δ−4k
∑
i∈I

∥∥∥ ∑
|S|≤k

S∩I={i}

f̂(S)χ
S

∥∥∥4

2
+

4

p

∑
i∈I

∥∥∥ ∑
|S|>k

S∩I={i}

f̂(S)χ
S

∥∥∥2

2
≤

≤ 16p−2δ−4k
∑
i∈I

( ∑
|S|≤k

S∩I={i}

f̂2(S)

)2

+
4

p
‖f>k‖2

2

Since
∑

|S∩I|=1 f̂2(S) ≤ 1, it follows that

∑
i∈I

( ∑
|S|≤k

S∩I={i}

f̂2(S)

)2

≤ max
i∈I

∑
|S|≤k

S∩I={i}

f̂2(S) = max
i∈I

Vr≤kf (i) < τ

Altogether this implies that for some constant M1,

Pr
x∼µĪ

[x ∈ DI ] ≤M1δ
−4kτ +M1‖f>k‖

2

2

Restrictions are Mostly Constant

We are now ready to prove that the restrictions fI [x] are mostly constant. In fact, we show
that the variation of f on I is, with high probability, quite small. First, note that for an x
such that x 6∈ DI , Corollary 14.8 asserts that

VrfI [x](I) ≤M
∑
|R|>1

f̂I [x]
2
(R)
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and by Claim 13.10 we have that

E
I∼µJ̄

1/r

[Vrf(I)] = E
I∼µJ̄

1/r

x∼µĪ

[
VrfI [x](I)

]
≤

≤ Pr
I∼µJ̄

1/r

x∼µĪ

[x ∈ DI ] + E
I∼µJ̄

1/r

x∼µĪ

M ∑
|R|>1

f̂I [x]
2
(R)

 ≤

≤M1δ
−4kτ +M1‖f>k‖

2

2 +M E
I∼µJ̄

1/r

 ∑
|S∩I|>1

f̂2(S)

 ≤
≤M1δ

−4kτ +M1‖f>k‖
2

2 +M‖f>k‖2

2 +M E
I∼µJ̄

1/r

 ∑
|S|≤k
|S∩I|>1

f̂2(S)



Now note that E
I∼µJ̄

1/r

[ ∑
|S|≤k
|S∩I|>1

f̂2(S)
]
≤ k2/r2

1− k/r
.

This follows since the total weight of all Walsh-products is bounded by 1, and since

Pr
I

[|S ∩ I| > 1] ≤
k∑
i=2

(
k

i

)
r−i(1− 1/r)k−i ≤

k∑
i=2

kir−i ≤ k2/r2

1− k/r

Therefore, we get that overall, the expectation of the variation is bounded by

E
I∼µJ̄

1/r

[Vrf(I)] ≤M1δ
−4kτ +M1‖f>k‖

2

2 +M

(
k2/r2

1− k/r
+ ‖f>k‖2

2

)

This completes the proof of Lemma 14.6.



Chapter 15

Biased FKN

The following theorem shows that in order for a real-valued linear function to be close
to boolean, its weight must be concentrated on the constant character and perhaps on
one more character of size one. It is therefore close to a ’real-valued dictatorship’, a real
function which depends on only one of the coordinates. The main result of this chapter,
Corollary 15.2, follows it, showing that a boolean function whose weight is concentrated on
Walsh-products of size at most 1 is in fact close to a boolean-valued dictatorship.

Theorem 15.1. Let f : P([n]) → R be a linear real valued function, namely f>1 = 0. Let
ε
.
=‖ |f| − 1 ‖2

2 measure the squared distance of f from the nearest boolean function. Then,

denoting by io the index such that
∣∣∣̂f({io})∣∣∣ is maximal, we have

‖f −
(̂
f(∅) + f̂({io})χ{io}

)
‖

2

2
< (1 + o(1))ε

Before we prove Theorem 15.1, we state and prove the following corollary, which immedi-
ately implies Theorem 14.7.

Corollary 15.2. Let f : P([n]) → {−1, 1} be a boolean function, and let ε
.
=‖f>1‖2

2. Then f
is a

(
(1 + o(1))ε , 1

)
-junta, namely it is (1 + o(1))ε-close to some boolean dictatorship.

Proof. Note that ‖
∣∣f≤1

∣∣− 1 ‖2

2
≤ ‖f>1‖2

2 = ε. Hence according to Theorem 15.1, there is
some coordinate io ∈ [n] such that

Vrf([n] \ {io}) = ‖f − Avg[n]\{io} [f]‖2

2
= ‖f −

(̂
f(∅) + f̂({io})χ{io}

)
‖

2

2
≤

≤ ε+ ‖f≤1 −
(̂
f(∅) + f̂({io})χ{io}

)
‖

2

2
< (2 + o(1))ε

It follows from Proposition 13.8 that there exists a boolean function g that depends only
on the coordinate io (and is thus a dictatorship), such that

Pr
x∼µn

[f(x) 6= g(x)] < (1 + o(1))ε

Therefore f is a
(
(1− o(1))ε , 1

)
-junta.
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Proof of Theorem 15.1: For simplicity, we write f = a0 +
∑n

i=1 aiχ{i} , and assume without

loss of generality that |a1| ≥ |a2| ≥ . . . ≥ |an|. We should thus prove that
∑n

i=2 |ai|
2 <

(1 + o(1))ε. First, we prove that there cannot be a large coefficient within a2, . . . , an.

Claim 15.3. For some global constant c1 (depending only on p) and for all i, 2 ≤ i ≤ n,
|ai| ≤ c1

√
ε.

Proof. The proof is very elementary, and we give only its outline. Suppose that |a2| (and
therefore also |a1|) is larger than specified. Then for every setting z ∈ P({3, . . . , n}) of the
coordinates 3, . . . , n, it is easy to find a setting y ∈ P({1, 2}) for the first two coordinates
such that for x

.
=y ∪ z (

| f(x) | − 1
)2

>
ε

(min {p, 1− p})2 (15.1)

Hence for a random input x, Equation (15.1) holds for x with probability at least
(min {p, 1− p})2, and therefore ‖ |f| − 1 ‖2

2 > ε, a contradiction.

According to Claim 15.3, for every 2 ≤ i ≤ n, |ai|2 ≤ c21ε. We thus choose m ∈ {2, . . . , n}
to be the minimal index satisfying

n∑
i=m

|ai|2 ≤ (c21 + 2)ε (15.2)

Denote I
.
={m, . . . , n}. Then

ε ≥ ‖ |f| − 1 ‖2
2 = E

x∼µn

[
(|f(x)| − 1)2] = E

y∼µĪ

[
E

z∼µI

[
(|f(y ∪ z)| − 1)2]] =

= E
y∼µĪ

[
‖ |fI [y]| − 1 ‖2

2

]
hence for some y ∈ P(Ī), ‖ |fI [y]| − 1 ‖2

2 ≤ ε. Now fI [y] has the form

fI [y] = b+
n∑

i=m

aiχi

for some b, and therefore it satisfies the conditions of Theorem 15.1, with the additional
property that ‖f>0

I [y]‖2

2 ≤ (c21 + 2)ε. We use the following lemma, which deals with such a
situation.

Lemma 15.4. Fix any (large) constant c > 0 and let f : P([n]) → R be a function satisfying
f>1 ≡ 0. Let ε

.
=‖|f| − 1‖2

2, and suppose further that ‖f>0‖2
2 < cε. Then it also holds that

‖f>0‖2

2 < (1 + o(1))ε
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Before proving Lemma 15.4, let us show how it concludes the proof of Theorem 15.1.
Lemma 15.4 implies that

n∑
i=m

|ai|2 = ‖f>0
I [y]‖2

2 < (1 + o(1))ε

If m = 2, this is what we wanted to show. If m > 2, Claim 15.3 implies that m is not the
minimal index satisfying (15.2), a contradiction.

Proof of Lemma 15.4

We now return to the proof of Lemma 15.4. For convenience, we write f = b+
∑n

i=1 aiχ{i} .

Then the variance (not the variation!) of f is given by
∑

i |ai|
2. Now, since the variance of |f|

is bounded by ‖ |f| − 1 ‖2
2 (this expression is minimized by replacing 1 with the expectation

of |f|), we have V(|f|) < ε. Lemma 15.4 will therefore follow if we show that V(f) is
essentially bounded by V(|f|).

To prove this, we first show that the expectation of f, b, is well separated from zero.
This holds since |f| is ε-close to 1 on the one hand, and cε-close to |b| on the other hand.
After proving this we assume, for instance, that b is positive. It follows that for almost all
inputs x, f(x) = |f(x)|, since the weight of the non-constant part of f is rather small. This
implies that Ef ≈ E|f| and hence that V(f) ≈ V(|f|).

Fixing c2
.
=(1 +

√
c), we have

‖ |b| − 1 ‖2 ≤ ‖ |f| − |b| ‖2 + ‖ |f| − 1 ‖2 ≤ ‖f − b‖2 +
√
ε ≤ c2

√
ε

and hence |b| ≥ 1− c2
√
ε, therefore b is well-separated from zero. We assume without loss

of generality that b is positive.

Writing |f| − f = 2|f|1{f<0}, we have

E|f| − Ef ≤ 2E|f|1{f<0} (15.3)

To show that the expectations on the left-hand side are approximately equal, we bound
the term on the right-hand side using the following special case of Azuma’s inequality
(see [Sch99] for a proof).

Theorem 15.5 (Azuma’s inequality). Let X =
∑n

i=1Xi be a sum of independent ran-
dom variables with zero expectation, such that the absolute value of each xi is bounded by
di. Then

Pr [|X| > t] ≤ 2 exp

(
−t2∑n
i=1 d

2
i

)
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The absolute value of a Rademacher function χ{i} is bounded by some constant c3,

which only depends on p. Denoting λ
.
=
∑

i |ai|
2, we have, by applying Azuma’s inequality

to
∑n

i=1 aiχi
, that

E|f|1{f<0} =

∫ ∞

t=0

Pr [f < −t]dt =

∫ ∞

t=0

Pr

[
b+

∑
i

aiχi
< −t

]
dt =

=

∫ ∞

t=b

Pr

[∑
i

aiχi
< −t

]
dt ≤ 2

∫ ∞

t=b

exp

(
−t2

c23λ

)
dt ≤

≤ c23λ

b

∫ ∞

t=b

2t

c23λ
exp

(
−t2

c23λ

)
dt ≤ c23λ

b
exp

(
−b2

c23λ

)
Now since λ < cε and b > 1 − c2

√
ε, we have E|f|1{f<0} = o(ε). Therefore, it follows

from Equation (15.3) that

ε > ‖|f| − 1‖2
2 ≥ V(|f|) = ‖f‖2

2 − E|f|2 = V(f) + Ef2 − E|f|2 =

= V(f) + (Ef + E|f|)
(
Ef − E|f|2

)
≥

≥ V(f) + o(ε) =
∑
i

|ai|2 + o(ε)

which completes the proof.



Chapter 16

Extending FKN to Higher
Frequencies

Following, is an extension of Theorem 15.1 to the case where f is concentrated on Walsh-
products of size at most k rather than 1. This extension is applicable only when the weight
of f on higher frequencies is smaller than a tiny constant (exponentially small in k), and in
this sense it is weaker than Theorem 14.1. However, it gives a much better estimate of the
asymptotic behavior of the distance of f from a junta, as a function of its weight on higher
frequencies: The squared 2-norm distance from a (real-valued) junta is shown to be at most
1 + o(1) times the weight on high frequencies. We do not know whether the small range
for which we prove this estimate is a weakness of our proof, or whether this really is the
range where the squared 2-norm distance from a junta behaves according to this estimate.

In Chapter 17 it is shown that the following theorem may be used to considerably
improve the parameters in Theorem 14.1.

Theorem 16.1 (high-frequency FKN). Let f : P([n]) → R be a real valued function
of degree k, namely f>k ≡ 0. Let ε

.
=‖|f| − 1‖2

2 measure the squared distance of f from the
nearest boolean function. Then there exists a subset J ⊆ P([n]) of coordinates whose size
is bounded by a global constant (depending only on k), such that

Vrf(J̄ ) ≤ (1 + o(1))ε ,

where J̄ .
=[n] \ J .

Note that theorem 12.3 follows from Theorem 16.1, using the same proof as in Corol-
lary 15.2.
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16.1 Proof of Theorem 16.1

We begin by taking τ to be a small enough constant (τ ≈ δ16k), that is specified exactly
later. The set J can already be declared by

J .
={i ∈ [n] | Vrf({i}) > τ}

Note that since f is of degree k, |J | ≤ kτ−1, so |J | is bounded by a constant and therefore
it suffices to prove that Vrf(J̄ ) ≤ (1 + o(1))ε ,.

Suppose that J̄ is not empty (otherwise there is nothing to prove), and let us assume,
without loss of generality, that ε < τ . We consider sets I ⊆ J̄ that satisfy Vrf(I) ≤ 3τ ,
and take I ⊆ J̄ to be a maximal set with this property.

Program of Proof. In the proof of Theorem 15.1 we used the fact that the variation on
a set I of coordinates is also the variation on I of any restriction fI [x]. We could thus fix x
and focus only on fI [x], as in Lemma 15.4. Here this is not the case, however according to
Claim 13.10 the variation on I of f, which is bounded by τ , is the average of the variations
on I of restrictions of the form fI [x]. The proof thus begins by bounding the deviation of
the variations on I of restrictions fI [x], showing that the contribution of restriction with
high variation to this average is very small. For restrictions fI [x] where the variation on
I is not very high, it is shown that the squared 2-norm distance of fI [x] from the nearest
boolean function is essentially bounded below by VrfI [x](I).

By averaging over all restrictions, this implies that the distance of f from the nearest
boolean function is essentially bounded below by Vrf(I), and therefore Vrf(I) < (1+o(1))ε.
This completes the proof, since if I = J̄ we are obviously done, but on the other hand, if
I 6= J̄ , one can add a coordinate to I, keeping its variation below 3τ , in contradiction to
the maximality of I.

Bounding High Variations of Restrictions

To show that there cannot be too many restrictions fI [x] with large variation, we need the
following lemma, proven in the next section.

Lemma 16.2. Let g1, . . . , gm : P([l]) → R be real-valued functions such that g>ki ≡ 0 for
every i. Then for every α ≥ 0,

Pr
x∼µm

[∑
|gi(x)|2 > α

]
≤ 256α−2δ−4k

(
m∑
i=1

‖gi‖2
2

)2

where δ = min
{
δp, δ1/2

}
is the minimum between the δ parameters obtained from Theo-

rem 13.13 for p and for 1/2.
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For shortness, denote η
.
=Vrf(I) (then η < 3τ), and let

D .
=
{
x ∈ P(Ī) | VrfI [x](I) > η3/4

}
be the set of restrictions whose variation is much higher than expected.

Proposition 16.3.

E
x∼µĪ

[
VrfI [x](I)1{x∈D}

]
< 512δ−4kη5/4

Proof. For a non-empty set S ⊆ I, define for every x ∈ Ī,

gS(x)
.
=f̂I [x](S)

Then each gS is a function of degree at most k − 1, and for every x,

VrfI [x](I) =
∑
S⊆I
S 6=∅

g2
S(x)

It follows that ∑
S⊆I
S 6=∅

‖gS‖2
2 = E

x

[∑
S⊆I
S 6=∅

g2
S(x)

]
= E

x

[
VrfI [x](I)

]
= Vrf(I) = η

Hence

EVrfI [x](I)1{x∈D} =

=

∫ ∞

t=0

Pr
[∑

gS(x)
2 ≥ max(t, η3/4)

]
dt =

=

∫ η3/4

t=0

Pr
[∑

gS(x)
2 ≥ η3/4

]
dt+

+

∫ ∞

t=η3/4

Pr
[∑

gS(x)
2 ≥ t

]
dt ≤

(using Lemma 16.2)

≤ η3/4 · 256δ−4kη−3/2η2 + 256δ−4kη2

∫ ∞

t=η3/4

t−2dt =

= 512δ−4kη5/4
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Bounding VrfI [x](I) for x 6∈ D

Proposition 16.4. For every x 6∈ D,

‖ |fI [x]| − 1 ‖2
2 ≥ VrfI [x](I)− 20δ−4kη3/2

Proof. Define

C .=
{
x ∈ Ī

∣∣∣∣ ∣∣∣ |f̂I [x](∅)| − 1
∣∣∣ > 1

2

}

We proof the statement separately for x ∈ C \ D and for x 6∈ C ∪ D.

The case x ∈ C \ D. It suffices to show that in this case for most y ∈ P(I),∣∣∣ |fI [x](y)| − 1
∣∣∣ ≥ 1/4. Note that fI [x] − f̂I [x](∅) is a function of degree at most k, and

that since x 6∈ D,

‖fI [x]− f̂I [x](∅)‖
2

2 = VrfI [x](I) ≤ η3/4

Hence by Claim 14.10

Pr
y∼µI

[∣∣∣fI [x](y)− f̂I [x](∅)
∣∣∣ > 1/4

]
< 44δ−4kη3/2

It follows that with probability at least 1− 44δ−4kη3/2,
∣∣∣ |fI [x](y)| − 1

∣∣∣ > 1/4. Therefore in

this case

‖ |fI [x]| − 1 ‖2
2 ≥

1

16
(1− 44δ−4kη3/2) � τ 3/4 > η3/4 ≥ VrfI [x](I)

The case x 6∈ C ∪ D. Recall that VrfI [x](I) = V(fI [x]) and note that ‖ |fI [x]| − 1 ‖2
2 is

bounded from below by V(|fI [x]|). We thus show that V(|fI [x]|) & V(fI [x]). For this

purpose, we assume without loss of generality that f̂I [x](∅) is positive (it is therefore at
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least 1/2 and at most 3/2). One sees that

V(fI [x])− V(|fI [x]|) = ‖ fI [x]‖2
1 −

∣∣∣f̂I [x](∅)∣∣∣2 =

=
(
‖ fI [x]‖1 + f̂I [x](∅)

)(
‖ fI [x]‖1 − f̂I [x](∅)

)
≤

≤
(
‖ fI [x]‖2 + f̂I [x](∅)

)(
‖ fI [x]‖1 − f̂I [x](∅)

)
≤

≤
((

V(fI [x]) + f̂I [x](∅)2
)1/2

+ f̂I [x](∅)
)(

‖ fI [x]‖1 − f̂I [x](∅)
)
≤

≤ 6
(
‖ fI [x]‖1 − f̂I [x](∅)

)
=

= 6 E
y∼µI

[
| fI [x](y) | − fI [x](y)

]
=

= 6 E
y∼µI

[
| fI [x](y) | · 1{fI [x](y)<0}

]
≤ 6

∫ ∞

t=0

Pr [fI [x] < −t]dt =

= 6

∫ ∞

t=0

Pr
[
fI [x]− f̂I [x](∅) + f̂I [x](∅) > −t

]
dt ≤

(using claim 14.10)

≤ 6δ−4kη3/2

∫ ∞

t=f̂I [x](∅)
t−4dt ≤ 20δ−4kη3/2

Hence we are done.

Completion of the Argument

From Proposition 16.4 and Proposition 16.3, we have

η = Vrf(I) = E
x∼µĪ

[
VrfI [x](I)

]
=

= E
x∼µĪ

[
VrfI [x](I) · 1{x∈D}

]
+ E

x∼µĪ

[
VrfI [x](I) · 1{x 6∈D}

]
<

< 512δ−4kη5/4 + E
x∼µĪ

[
‖ |fI [x]| − 1 ‖2

2 · 1{x 6∈D}
]
+ 20δ−4kη3/2 ≤

≤ 532δ−4kη5/4 + E
x∼µĪ

[
‖ |fI [x]| − 1 ‖2

2

]
=

= 532δ−4k(Vrf(I))
5/4 + ‖ |f| − 1 ‖2

2 =

= 532δ−4kη5/4 + ε

From which it follows that
η
(
1− 532δ−4kη1/4

)
< ε (16.1)



150 Extending FKN to Higher Frequencies

We now select τ to be
δ16k

3(1064)4

Since η < 3τ , we have 532δ−4kη1/4 < 1/2, and thus Equation (16.1) yields η < 2ε. Putting
this into Equation (16.1) again, we get

Vrf(I) = η <
ε

1− 532δ−4kη1/4
< ε
(
1 + 1064δ−4kη1/4

)
<

< ε
(
1 + 1064δ−4k(2ε)1/4

)
= ε
(
1 + o(1)

)
thus completing the proof.

16.2 Proof of Lemma 16.2

Before we prove Lemma 16.2, we need the following technical observation.

Lemma 16.5. Let λ1, . . . , λm be (not all zero) real numbers, and let y1, . . . , yn be indepen-
dent random variables, distributed uniformly on {−1, 1}. Then

Pr

[( n∑
i=1

λiyi

)2

>
1

4

n∑
i=1

λ2
i

]
>

1

16

Proof. Set λ2 .=
∑

i λ
2
i , and let

p(t)
.
= Pr

[( n∑
i=1

λiyi

)2

> t
]

Then

λ2 = E
( n∑
i=1

λiyi

)2

=

∫ ∞

t=0

p(t)dt =

∫ λ2/4

t=0

p(t)dt+

∫ 8λ2

t=λ2/4

p(t)dt+

∫ ∞

t=8λ2

p(t)dt ≤

≤ λ2/4 + 8λ2p(λ2/4) +

∫ ∞

t=8λ2

p(t)dt (16.2)

Let us bound the last term on the right-hand side of (16.2). We use Azuma’s inequality
(Theorem 15.5).∫ ∞

t=8λ2

Pr
[( n∑

i=1

λiyi

)2

> t
]
dt < 2

∫ ∞

t=8λ2

exp

(
− t

2λ2

)
dt = 4λ2 exp

(
−8λ2

2λ2

)
< λ2/4

Putting this back into (16.2) we have

p(λ2/4) >
λ2/2

8λ2
= 1/16

which is what we wanted.
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Proof of Lemma 16.2: For x ∈ P([l]) and y ∈ P([l +m] \ [l]), let

g(x ∪ y) .=
∑
i6∈y

gi(x)−
∑
i∈y

gi(x) =
m∑
i=1

vi(y)gi(x)

where vi is the i’th Rademacher function for bias 1/2. Then g contains mixed walsh-
products (with some biased Rademacher functions and some uniform Rademachers) of size
at most k + 1, and

‖g‖2
2,µl×µm

1/2
=

m∑
i=1

‖gi‖2
2

According to Lemma 16.5,

Pr
x∼µm

[∑
|gi(x)|2 > α

]
≤ 16 Pr

x∼µl

y∼µm
1/2

[
g(x ∪ y)2 > α/4

]
(16.3)

To bound the right-hand side of (16.3), we use Claim 14.10 with respect to the measure∗

µl × µm1/2. We obtain, for some global constant δ (here δ is the minimum between the δ

that is valid in Theorem 13.13 for the uniform measure and for the biased measure)

Pr
x∼µm

[∑
|gi(x)|2 > α

]
≤ 16 · 16α−2δ−4k‖g‖4

2 ≤ 256α−2δ−4k

(
m∑
i=1

‖gi‖2
2

)2

∗ Claim 14.10 requires Theorem 13.13. As is shown in [Bec75], this theorem can be applied to a product
of two-point spaces, even if each is equipped with a different measure. In our case the coordinates of x lie
in two-point spaces with a biased measure, and the coordinates of y are uniformly distributed
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Chapter 17

Improving the Junta Threshold

Building on the strengthening of Theorem 14.7 by Theorem 16.1, we turn to improve the
tradeoff between ‖f>k‖2

2 and the distance of f from a junta. As a consequence, we improve

the threshold on ‖f>k‖2

2 which suffices to ensure that f is close to a junta. The main
argument in this chapter is contained in the following lemma.

Lemma 17.1. Fix a positive integer `, and let f : P([n]) → {−1, 1} be a boolean function.
Then there exists a global constant C and a global positive constant δ > 0, such that for
any τ > 0 and any positive integers k and r > 2k,

E
I∼µJ̄

1/r

[Vrf(I)] ≤ C
(
δ−4kτ + (k/r)`+1 + ‖f>k‖2

2

)
where J =

{
i ∈ [n] |Vr≤kf (i) ≥ τ

}
.

Let us show how Lemma 17.1 implies Thereom 12.1. For convenience, we first cite it again
here.

Theorem 12.1. Fix a positive integer `. Then there exists a constant δ > 0, such that
for every ε > 0 and every boolean function f : P([n]) → {−1, 1} satisfying

‖f>k‖2

2 ≤
( ε
k

)(`+1)/`

is an (O(ε), J)-junta, where

J = O
(
δ−4kε(`+1)/`k(2`+1)/`

)

Proof. Following the proof of Theorem 14.3, but using the parameters of Lemma 17.1, we
obtain the following Lemma.
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Lemma 17.2. Fix a positive integer `. There exist global positive constants C and δ, such
that for any τ > 0, and for any positive integers k and r > 2k, the following holds. For
every boolean function f : P([n]) → {−1, 1}, f is an [ε, J ]-junta with respect to µn, where
J = k/τ and

ε = Cr
(
δ−4kτ + (k/r)`+1 + ‖f>k‖2

2

)
Taking

r
.
=
(
k`+1/ε

)1/`
and τ

.
=δ4k(ε/k)(`+1)/`

we obtain Theorem 12.1.

Corollary 12.2 follows from Theorem 12.1, with the same proof as that of corollary 14.2.

17.1 Proof of Lemma 17.1

The proof of Lemma 17.1 is similar to that of Lemma 14.6. First, it is shown that on a ran-
dom I chosen according to µJ̄1/r, it is very likely that for almost all input settings x outside

I the weight of fI [x] is concentrated on Walsh-products of size at most `. Theorem 16.1 is
then applied, showing that in this case fI [x] must either have a large Walsh-coefficient, or
be close to constant. It is then shown that in fact the first alternative almost never occurs,
hence the lemma follows.

When k = `

We start by a corollary of Theorem 16.1, showing that a boolean function that is concen-
trated on Walsh-products of size at most `, either has a large Walsh-coefficient, or is very
close to constant.

Corollary 17.3. Fix a positive integer `. Then there exist constants d,M , with properties
as follows. For every boolean function g : P(I) → {−1, 1}, either there exists a non-empty

subset T ⊆ I of size at most ` with |ĝ(T )| > d ; or Vrg(I) < M‖g>`‖2

2.

Proof. We can assume that ‖g>`‖2

2 is smaller than any tiny constant. In that case, Theo-
rem 16.1 implies that there exists a constant-sized subset J ⊆ I such that

‖g − AvgJ̄ [g]‖2
2
≤ (1 + o(1))‖g>`‖2

2

Denoting g′
.
= sign (AvgJ̄ [g]), one easily verifies that

‖g − g′‖2
2 ≤ (4 + o(1))‖g>`‖2

2

If g′ is constant, we are done. If it is not constant, it must be that AvgJ̄ [g] − ĝ(∅)
obtains values larger than 1. It follows that the weight of g on characters χ

T
, where T ⊆ J

and T 6= ∅, is bounded from below by some very small constant. Since there are only a
constant number of such characters, g satisfies the first condition in Corollary 17.3.
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Few Large Coefficients

We now return to the proof of Lemma 17.1 which states, in essence, that for most I’s
and x’s fI [x] is almost constant. We begin by giving an upper-estimate on the (weighted)
number of restrictions fI [x] that can be far from constant. The next subsection will show
that indeed most restriction are almost constant.

For a given I ⊆ [n] denote

DI
.
=
{
x ∈ P(Ī)

∣∣ ∃T ∈ I |T | ≤ ` ,
∣∣∣f̂I [x](T )

∣∣∣ > d
}

where d is as in Corollary 17.3. To bound the measure of DI , we note that the coefficient
of χ

T
in fI [x] is a function of x that is concentrated on low-frequencies, and has small norm

(since every i ∈ I has small variation). Hence according to Theorem 13.13, it cannot often
attain large values, and therefore the coefficient of χ

T
almost never reaches d.

Fix T ⊆ I to be a non-empty set of size at most `, and consider the function g
T
: P(Î) → R,

which assigns to every x the coefficient of χ
T

in fI . That is,

g
T
(x) = f̂I [x](T )

For x to be in D, one of the g
T
’s must evaluate to at least d in absolute value. Applying

lemma 14.9, with parameters α = d/2 and β = d, we get a bound on the probability, for a
random x, that fI [x] is a dictatorship.

Pr
x∼µĪ

[x ∈ DI ] ≤
∑
T⊆I
T 6=∅

Pr
x∼µĪ

[|g
T
(x)| > d] ≤

= 16d−4δ−4k
∑
T⊆I
T 6=∅

‖g≤k
T
‖4

2
+

4

d2

∑
T⊆I

‖g>k‖2

2 =

= 16d−4δ−4k
∑
T⊆I
T 6=∅

∥∥∥ ∑
S⊆[n],|S|≤k

S∩I=T

f̂(S)χ
S

∥∥∥4

2
+

4

d2

∑
T⊆I
T 6=∅

∥∥∥ ∑
S⊆[n],|S|>k

S∩I=T

f̂(S)χ
S

∥∥∥2

2
≤

≤ 16d−4δ−4k
∑
T⊆I
T 6=∅

( ∑
S⊆[n],|S|≤k

S∩I=T

f̂2(S)

)2

+
4

d2
‖f>k‖2

2

Since the sum of f̂2(S) over all S’s equals 1, we have∑
T⊆I
T 6=∅

( ∑
S⊆[n],|S|≤k

S∩I=T

f̂2(S)

)2

≤ max
T⊆I
T 6=∅

∑
S⊆[n],|S|≤k

S∩I=T

f̂2(S) ≤ max
i∈I

Vr≤kf (i) < τ
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Altogether this implies that for some constant M1,

Pr
x∼µĪ

[x ∈ DI ] ≤M1δ
−4kτ +M1‖f>k‖

2

2

Restrictions are Mostly Constant

We are now ready to prove that the restrictions fI [x] are mostly constant. First, note that
for an x such that x 6∈ DI , Corollary 17.3 asserts that

VrfI [x](I) ≤M
∑
|R|>`

f̂I [x]
2
(R)

and by Claim 13.10 we have that

E
I∼µJ̄

1/r

[Vrf(I)] = E
I∼µJ̄

1/r

x∼µĪ

[
VrfI [x](I)

]
≤

≤ Pr
I∼µJ̄

1/r

x∼µĪ

[x ∈ DI ] + E
I∼µJ̄

1/r

x∼µĪ

M ∑
|R|>`

f̂I [x]
2
(R)

 ≤

≤M1δ
−4kτ +M1‖f>k‖

2

2 +M E
I∼µJ̄

1/r

 ∑
|S∩I|>`

f̂2(S)



Now note that E
I∼µJ̄

1/r

[ ∑
|S|≤k
|S∩I|>`

f̂2(S)
]
≤ (k/r)`+1

1− k/r
:

This holds since for S ⊆ [n] with |S| ≤ k,

Pr
I

[|S ∩ I| > `] ≤
k∑

i=`+1

(
k

i

)
r−i(1− 1/r)k−i ≤

k∑
i=`+1

kir−i ≤ (k/r)`+1

1− k/r

and since the total weight of all Walsh-products is bounded by 1.

Therefore, we get that the overall probability of disagreement with the majority is
bounded by

E
I∼µJ̄

1/r

[Vrf(I)] ≤M1δ
−4kτ +M1‖f>k‖

2

2 +M

(
(k/r)`+1

1− k/r
+ ‖f>k‖2

2

)



Chapter 18

The Biased Bonami-Beckner
Inequality

In this chapter we prove Theorem 13.13. As is shown in [Bec75], it is enough to prove
the statement for the two-point space, namely for the case where f : {∅, {1}} → R. By
homogeneity, we may assume that f(∅) = 1, and denote t

.
=f({1}). Also, for convenience we

denote q
.
=1− p. It is easy to verify that

Tδ[f](∅) = q + δq + (1− δ)pt , and Tδ[f]({1}) = (1− δ)q + (p+ δq)t

Hence we should show that

Lemma 18.1. for every p ∈ (0, 1) there exists a δ = δp > 0, such that for every t,[
q(q + δp+ (1− δ)pt)4 + p((1− δ)q + (p+ δq)t)4

]1/4 ≤√q + pt2

Proof. The following inequality is equivalent to the inequality stated in lemma 18.1.

q(q + δp+ (1− δ)pt)4 + p((1− δ)q + (p+ δq)t)4 − (q + pt2)2 ≤ 0 (◦)

To prove it for every t (for an appropriate δp), it is obviously enough to consider only
non-negative t’s in (◦). Moreover, notice that replacing t by 1/t in (◦) and multiplying by
t4 yields the same inequality, only where the roles of p and q are reversed. We can therefore
find a parameter δ that is suitable only for t’s in the segment [0, 1], and then take δp to be
the minimum between the δ parameters obtained for p and that which is obtained for q (it
is known that ‖Tδ(f)‖4 is a decreasing function in δ).

We are thus left with the task of proving that for every p ∈ (0, 1), there exists a positive
δ, such that (◦) holds for every t ∈ [0, 1]. Denoting

Aδ(t)
.
=q(q + δp+ (1− δ)pt)4 + p((1− δ)q + (p+ δq)t)4



158 The Biased Bonami-Beckner Inequality

and

B(t)
.
=(q + pt2)2

this is equivalent to finding a δ such that

∀ t ∈ [0, 1] lnAδ(t)− lnB(t) ≤ 0 (∗)

For every δ, Aδ(1) = B(1) = 1, and hence (∗) holds there as an equality. We would like
to show that the derivative, with respect to t, of the left-hand side of (∗) is non-negative
in the segment [0, 1] for an appropriate δ. This would imply that for this δ, (∗) holds
throughout the segment.

Since it can also be verified that A′
δ(1) = B′(1) = 1 (where F ′ denotes the derivative of

F with respect to t), we have that the derivative of the left-hand side of (∗) zeros at 1 as
well. Hence by similar arguments as above, if we prove that the second derivative of the
left-hand side of (∗) is non-positive for t ∈ [0, 1], for a suitable positive δ, we are done.

What we show, in fact, is that

max
t∈[0,1]

(lnA0 − lnB)′′(t) < 0

That is, we show that for δ = 0, the maximum of the second derivative in (∗) is strictly
negative. Since the maximum is a continuous function of δ, we have that there also exists
a positive δ for which the maximum is still negative, which completes the proof.

Taking two derivatives of the left-hand side of (∗), we obtain

(lnA0 − lnB)′′(t) = −4p

(
p

(q + pt)2
+

q − pt2

(q + pt2)2

)
Taking a common denominator, we get

(lnA0 − lnB)′′(t) = −4pq(q + pt)−2(q + pt2)−2
(
q + 2pqt+ (3p2 − pq)t2 − 2p2t3

)
The third clause in the above expression equals

2p2(t2 − t3) + pq(t− t2) + p2t2 + pqt+ q

which is at least q for every t ∈ [0, 1]. It follows that the second derivative is strictly
negative for every such t. The proof of Lemma 18.1, and hence the proof of Theorem 13.13,
is thus complete.



Discussion and Open Problems

Following are some remarks and open-problems arising from, or related to, results in this
thesis.

The Sliding-Scale Conjecture

In Part I of this thesis, it is proved that the sliding-scale conjecture of [BGLR93] holds for

almost polynomial range-size, namely where the size of the range is up to 2logβ n, and β is
any constant below 1. It would be most interesting to know whether it holds for the full
applicable range, namely for range-size up to and including some polynomial in the length
of the proof. In addition to giving a full characterization of NP in terms of PCP, in the
case of a constant number of accesses for each local-test, such a result is likely to have other
applications.

For example, in [DKRS98] it is proven that the problem of finding the distance between
a given vector and a given lattice in Rn, namely the Closest Vector Problem, is NP-hard to
approximate to within almost polynomial factors (in fact they obtain an in-approximability

ratio of the form 2logβ n, where β approaches 1 as n goes to infinity). Some of the methods
used there are very similar to those used in the first part of this thesis. It seems that the
methods required for proving that the sliding-scale conjecture holds for polynomially-sized
range, are likely to also give a polynomial in-approximability ratio for the Closest Vector
Problem.

The J-Junta Test

An efficient non-adaptive one-sided J-junta test. Instead of the two-sided version
of the J-junta test which appears in Chapter 9, it is also possible to obtain quadratic
dependency on J by somewhat relaxing the soundness requirement (as proposed to us by
A. Wigderson). This is obtained if while requiring the test to accept every J-junta, we only
require that it rejects inputs which are, say, not even (ε, 2J)-juntas.

To achieve the quadratic dependency on J , note that we chose the number of elements
in the partition to be quadratic in J , so that any J+1 influential coordinates would go into
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distinct subsets in the partition with high probability. If we allow juntas of size 2J to be
accepted, it is enough to take a partition of size only linear in J . This reduces the number
of queries by a factor of J . But since the subsets in the partition are now larger, we can
take the ‘junta threshold’ to be linear in 1/J , and reduce by a factor of J the number of
independence tests applied to each subset, as explained there for the two-sided case.

Lower-bound conjecture. We believe that J2/ε is a lower-bound for the query complex-
ity of both the one-sided and the two-sided non-adaptive J-junta tests (up to logarithmic
factors). In light of the two-sided test presented in Chapter 9, this seems to be a tight
lower-bound, up to logarithmic factors, for the two-sided test. We believe that J2/ε is a
lower-bound also for the relaxed test proposed in the previous remark.

Testing permutations for non-juntas. With regards to testing that f is a permutation
of a given function h (Chapter 11), we can pose the following question. If we know that
a function h with n variables is far from all J-juntas, does it imply a lower bound (that
depends on J) on the number of queries required for testing that f is a permutation of
h? The lower bound proof presented in Chapter 10 already implies such a bound for some
functions h, namely, those that are characters of size J .

Random Walks on Cayley Graphs

In Chapter 10 it is proven that a random walk on a weighted Cayley graph of Zq
n has

similar distributions in time t and in time t+2 for relatively small values of t, even though
it may take much longer before the walk becomes stationary. Since the bound given on t
is independent of the weights given to the generators in the graph, this is a property of the
group Zq

n. The following question therefore arises naturally: for what other groups G can
one prove a convergence result similar to Theorem 6.5?

Functions over Products of Probability-Spaces

The Rademacher Projection. Let {χ
S
}S⊆[n] denote the set of p-biased Walsh prod-

ucts. For a real-valued function f : {0, 1}n → R, whose Fourier expansion is given

by
∑

S⊆[n] f̂(S)χ
S
, define Rad(f)

.
=
∑

i∈[n] f̂({i})χ{i} . In the case where p = 1/2, and for

1 < q < 2, the proof in [Bou01] uses the inequality

(q − 1)1/2‖Rad(f)‖2 ≤ ‖f‖q (18.1)

It seems that if the same inequality were proven for the case where p 6= 1/2, the rest of the
proof in [Bou01] would adapt easily to the biased case as well.
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Once this is achieved, the parameters of Theorem 12.1 (page 124), and hence of Corol-
lary 12.2 (page 125), would be improved to parameters similar to those in [Bou01]. This
would lead to a two-query test for the biased long-code, similar to the two-point test which
appears in [Kho02].

Generalized Bonami-Beckner Inequality. In the definition on page 132 of the
Bonami-Beckner operator Tδ, both a combinatorial formula and a Fourier analytic formula
for Tδ are given. It is easy to extend the combinatorial formula so that Tδ is applicable to
functions defined over a general product of probability spaces. Hence it is natural to ask
whether an analogue of Theorem 13.12 holds for the case where Tδ is applied to functions
defined over such a domain.

We show (Theorem 13.13 in page 13.13) a special case of such an analogue, for the
biased measure on the discrete cube. A full analogue in the case of the biased measure on
the discrete cube, with tight parameters, was recently shown in [Ole02]. Such an analogue
in the general case seems to imply the generalization of the results in [KKL88], [Fri98],
and also of Theorem 12.1, to the case of boolean functions that are defined over general
products of probability-spaces.

Generalized Fourier Expansion.

Using the notation of Part III, consider a function f : P([n]) → R that is defined over
the discrete hypercube, equipped with the p-biased measure. For a fixed set S ⊆ [n] of

coordinates, let TS denote the orthogonal projection defined by TS(f)
.
=f̂(S)χ

S
. It is not hard

to find a combinatorial definition for this projection, similar to that of the Bonami-Beckner
operator, using appropriate linear combinations of the averaging projections defined in
Chapter 13. Once this is done, the operator TS can be defined for functions over general
products of probability-spaces.

Let P([n]) now denote the product of some general probability-spaces Ω1, . . . ,Ωn (we
are now using the notation of Part II). One can verify that the projections {TS}S⊆[n]

form a spectral decomposition of the identity operator on L2(P([n])), hence every function
f : P([n]) → R has a decomposition

f =
∑
S⊆[n]

TS(f)

This decomposition may serve as a generalized Fourier expansion as far as variations and
noise-sensitivity are concerned. For example, the Fourier analytic formula for the Beckner-
Bonami operator has an analogue in the generalized product-space case using the above
decomposition. The noise-sensitivity and the variation of a boolean function f also have
formulas, similar to those in Proposition 13.11 (page 132) and Proposition 7.4 (page 92):

to obtain these formulas one should simply replace f̂(S)2 by ‖TS(f)‖2
2.
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Low-weight on high-frequencies, and juntas. Using the above decomposition, it
makes sense to define the weight of a given function f on frequencies higher than k, by∑

|S|>k ‖TS(f)‖
2
2. It seems that proving an analogue of the Bonami-Beckner inequality

in the case of functions defined over products of probability spaces, would lead to the
generalization of the result in [FKN01], as well as of Theorem 12.3 (page 125).

Rademacher projection revisited. Using the above decomposition, one can also apply
the analogue of the Rademacher projection, to functions defined over a general product of
probability-spaces. This leads to the question of whether Inequality 18.1 has an analogue
in the generalized case. If this is so, and the generalized Bonami-Beckner inequality can
also be proven, it seems to imply that an analogue of the result of [Bou01] also holds in
the generalized setting.

Other Tests

An f(x) 6= f(x′) test. Our characterization of juntas using noise-sensitivity implies that
a boolean function f that satisfies f(x) = f(x′) with high probability, when x and x′ are
chosen randomly according to an appropriate distribution, must be close to a junta. It
seems interesting, however, to also find a characterization of juntas of the form f(x) 6= f(x′).
Specifically, a test for juntas that applies two queries to f and accepts if these queries yield
different values, may be applicable to obtain a better hardness of approximation result for
the Max-Cut problem.

Characterizing testable properties. It is somewhat ambitious, but very interesting, to
ask the following question. Can one formulate conditions relating to the Fourier expansion
of families of boolean functions, such that all families that satisfy them are testable using
a number of queries that is independent of the number of coordinates?



Appendix A

Proof of Proposition 8.7

For 0 ≤ x ≤ t, e−x/t ≤ 1 − x
et

. This holds since e−x/t is convex as a function of x, and
since the inequality holds at the ends of the segment [0, t]. It follows that for all i,

E
[
e−Xi/t

]
≤ E

[
1− Xi

et

]
= 1− E[Xi]

et

Since the expectation is multiplicative for independent variables, we have

E
[
e−X/t

]
=

l∏
i=1

E
[
e−Xi/t

]
≤

l∏
i=1

(
1− E[Xi]

et

)
We use the convexity of the above expression, together with the fact that

∑
i E[Xi] = α,

and obtain

E
[
e−X/t

]
≤
(
1− α

elt

)l
≤ e−α/et

The Markov inequality now yields

Pr[X ≤ ηα] = Pr
[
e−X/t ≥ e−ηα/t

]
≤ e−α/et

e−ηα/t
= e

α
et

(ηe−1)



164 Proof of Proposition 8.7



Bibliography

[ABMP98] M. Alekhnovich, S. Buss, S. Moran, and T. Pitassi. Minimum propositional
proof length is NP-hard to linearly approximate. Manuscript, 1998.

[AD86] D. Aldous and P. Diaconis. Shuffling cards and stopping times. American
Mathematical Monthly, 93(5):333–348, 1986.

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario
Szegedy. Proof verification and the hardness of approximation problems. Jour-
nal of the ACM, 45(3):501–555, May 1998.

[AS97] Sanjeev Arora and Madhu Sudan. Improved low degree testing and its applica-
tions. In Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory
of Computing, pages 485–495, El Paso, Texas, 4–6 May 1997.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: a new char-
acterization of NP. Journal of the ACM, 45(1):70–122, January 1998.

[AS00] Noga Alon and Joel H. Spencer. The probabilistic method. Wiley-Interscience
[John Wiley & Sons], New York, second edition, 2000. With an appendix on
the life and work of Paul Erdős.
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